Separation of Carbon Dioxide from Flue Gas
(Post-Combustion Capture) via Gas Hydrate Crystallization

by

PRAVEEN LINGA

Bachelor of Technology (Chem. Eng.), University of Madras, 2000
Master of Technology (Chem. Eng.), Indian Institute of Technology, Kharagpur, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES
(Chemical and Biological Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)

April 2009

© 2009 Praveen Linga
ABSTRACT

This thesis examines the prospect of employing hydrate crystallization in a gas/liquid stirred vessel for separation of carbon dioxide (CO$_2$) from a flue gas mixture. A treated flue gas mixture contains CO$_2$, O$_2$ and N$_2$. Because O$_2$ and N$_2$ form hydrate at approximately same pressure-temperature conditions a model gas mixture to work with consists of 17 mol % CO$_2$ and 83 mol % N$_2$.

Gas hydrates were formed in a 323 cm3 vessel at 273.7 K and constant pressures. The data enabled us to propose a process based on three hydrate stages coupled with a membrane separation stage. Two metrics, CO$_2$ recovery and separation factor were introduced to evaluate the efficiency of the process. The operating pressures were found to be 10, 5 and 2.5 MPa for the three stages. The high operating pressure required for the first stage necessitated the use of an additive to lower the pressure. Tetrahydrofuran (THF) was chosen and relevant thermodynamic and kinetic data were obtained and reported. The efficiency of the separation was also determined. It was concluded that a stream containing 96% CO$_2$ can be obtained from of a medium-pressure process consisting of three hydrate stages. The three stages operate at 2.5 MPa and 273.75 K without compromising the separation efficiency obtained without the addition of THF.

A new apparatus was designed and built to demonstrate the hydrate process at a larger scale. The results showed an improvement in the kinetics and the separation efficiency. Finally, the kinetics of the hydrate crystallization were also studied using a fixed bed of silica sand particles and the results were compared with those obtained in the gas/liquid systems. The gas uptake was found to be significantly higher for the systems involving water dispersed in silica sand.
TABLE OF CONTENTS

ABSTRACT ... ii

TABLE OF CONTENTS .. iii

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

NOMENCLATURE .. xv

ACKNOWLEDGEMENTS .. xvi

DEDICATION ... xvii

CO-AUTHORSHIP STATEMENT ... xviii

1. LITERATURE REVIEW .. 1
 1.1. CO₂ capture and storage (CCS) ... 1
 1.2. Background on gas hydrates .. 11
 1.2.1. CO₂, N₂ and CO₂/N₂ mixed hydrates .. 17
 1.3. Research objectives .. 23
 1.4. Thesis organization ... 24
 1.5. References .. 27

2. KINETICS OF HYDRATE FORMATION FROM A FLUE GAS MIXTURE... 37
 2.1. Introduction .. 37
 2.2. Experimental section .. 38
 2.2.1. Materials ... 38
 2.2.2. Apparatus and procedure ... 39
 2.2.3. Calculation of the amount of gas consumed ... 41
 2.2.4. Gas phase analysis .. 43
2.3. Results and discussion ... 43
2.4. Conclusions .. 53
2.5. References .. 54

3. THE CLATHRATE HYDRATE PROCESS FOR POST COMBUSTION CAPTURE OF CO₂ ... 58
3.1. Introduction .. 58
3.2. The clathrate hydrate process .. 59
3.3. CO₂ recovery and separation factor ... 62
3.4. Results and discussion ... 63
3.5. Conclusions .. 68
3.6. References .. 70

4. THE MEDIUM-PRESSURE CLATHRATE HYDRATE/MEMBRANE HYBRID PROCESS FOR POST COMBUSTION CAPTURE OF CO₂ 72
4.1. Introduction .. 72
4.2. Experimental section .. 72
4.3. Results and discussion ... 74
4.3.1. Phase equilibrium measurements .. 74
4.3.2. Gas uptake measurements ... 77
4.3.3. Proposed medium pressure hybrid process ... 86
4.3.4. Membrane unit for CO₂/N₂ separation .. 88
4.3.5. Comparison of hydrate process with membrane separation 90
4.3.6. Justification of the hybrid process ... 91
4.4. Conclusions .. 93
5. A NEW LARGE SCALE APPARATUS TO TEST CO₂ CAPTURE PROCESS VIA HYDRATE CRYSTALLIZATION

5.1. Introduction

5.2. Experimental section

5.2.1. A new large scale hydrate apparatus

5.2.2. Hydrate formation procedure for “batch operation”

5.2.3. Hydrate formation procedure for “semi-batch operation”

5.3. Results and discussion

5.4. Conclusions

5.5. References

6. ENHANCED RATE OF GAS HYDRATE FORMATION IN A SILICA SAND MATRIX COMPARED TO A STIRRED VESSEL

6.1. Introduction

6.2. Experimental section

6.2.1. Materials

6.2.2. Apparatus

6.2.3. Procedure for hydrate formation

6.2.4. Calculation of the amount of gas consumed during hydrate formation

6.3. Results and discussion

6.3.1. CH₄/water system

6.3.2. CH₄/C₃H₈/water system

6.3.3. CH₄/C₂H₆/water system

6.4. Conclusions

6.5. References
LIST OF TABLES

Table 1-1: Total carbon dioxide emissions (Mt) from fossil fuels in 1997, added by 2020 (Source: World Energy Outlook 2000)... 2

Table 1-2: Worldwide capacity of potential CO2 storage sites (Herzog, 2001). 6

Table 1-3: Structural properties of hydrates. ... 14

Table 1-4: Size ratio for CO2 and N2. ... 15

Table 2-1: Experimental conditions along with measured induction times and hydrate formation rates for CO2/N2/H2O system at 273.7 K. 47

Table 2-2: Vapor phase composition during hydrate formation from CO2/N2 mixture. .. 51

Table 3-1: Split fraction and separation factors for the three stages for CO2/N2 separation. ... 68

Table 4-1: Incipient equilibrium hydrate formation conditions for CO2/N2/THF/water system. ... 75

Table 4-2: Experimental conditions along with measured induction times and hydrate formation rates for CO2/N2/THF/H2O system at 273.7 K. The CO2/N2 composition of the mixture was 16.9 mol % CO2 and balance N2. 80

Table 4-3: Vapor phase composition during hydrate formation from CO2/N2/THF system. .. 82

Table 4-4: Experimental conditions along with measured induction times and hydrate formation rates for hydrate formation from CO2/N2 mixtures corresponding to the initial gas phase composition for the three process stages at 273.7 K...... 85

Table 4-5: Comparison of energy penalty between membrane separation process and hydrate process... 90
Table 5-1: Experimental conditions along with measured induction times and hydrate formation rates for CO₂/N₂/THF/H₂O system at 273.7 K. The CO₂/N₂ composition of the mixture was 16.9 mol % CO₂ and balance N₂. 110

Table 5-2: CO₂ composition at start and end of the experiment as analyzed by gas chromatography. ... 112

Table 5-3: Split fraction or CO₂ recovery and separation factor. 114

Table 5-4: Comparison of CO₂ recovery or split fraction between small and the new large scale apparatus. Both experiments run for 7 hours. 120

Table 6-1: Summary of experimental conditions along with the induction time and percent conversion of water to hydrates achieved at the end of the experiment. .. 151
LIST OF FIGURES

Figure 1-1: Methods for storing CO\textsubscript{2} in deep underground geological formations,

Courtesy of Intergovernmental Panel on Climate Change, Special report on
CO\textsubscript{2} Capture and Storage (IPCC, 2005). ... 8

Figure 1-2: Gas hydrate cavity structures. .. 13

Figure 1-3: Equilibrium hydrate formation conditions for pure carbon dioxide hydrate. 19

Figure 1-4: Equilibrium hydrate formation conditions for pure nitrogen hydrates. 20

Figure 1-5: Equilibrium hydrate formation conditions for CO\textsubscript{2} – N\textsubscript{2} mixtures. 21

Figure 2-1: Apparatus. .. 40

Figure 2-2: Incipient equilibrium hydrate formation conditions for CO\textsubscript{2}/N\textsubscript{2} gas mixture.44

Figure 2-3: A typical gas uptake measurement curve together with the temperature profile
in the aqueous phase (experiment 3, table 3-1)... 45

Figure 2-4: Memory effect on hydrate formation for experiment carried out at 9.0 MPa
and 273.7 K... 49

Figure 2-5: Rate of hydrate formation vs experimental pressure for the kinetic
experiments given in Table 2-1.. 50

Figure 2-6: Mole consumption and molar ratio for the CO\textsubscript{2}/N\textsubscript{2}/H\textsubscript{2}O system at 11 MPa. 52

Figure 2-7: Mole consumption and molar ratio for the CO\textsubscript{2}/N\textsubscript{2}/H\textsubscript{2}O system at 10 MPa.. 53

Figure 3-1: Hydrate based gas separation... 60

Figure 3-2: Block diagram of the experimental methods for the hydrate formation kinetic
and separation experiments... 62

Figure 3-3: Hydrate based separation for CO\textsubscript{2} (16.9 mol %) – N\textsubscript{2} (83.1 mol %) gas
mixture (Temperature = 273.7 K, 120 Minutes growth). 64
Figure 3-4: Gas uptake measurement curve for the second stage (Pressure = 5.0 MPa & Temperature = 273.7K)..65

Figure 3-5: Gas uptake measurement curve for the third stage (Pressure = 2.5 MPa & Temperature = 273.7K)..66

Figure 3-6: Composition changes due to stage-wise hydrate formation from CO2/N2 mixtures..67

Figure 3-7: A hybrid hydrate-membrane process for CO2 recovery from flue gas.69

Figure 4-1: Incipient equilibrium hydrate formation conditions for 16.9 % CO2 and rest N2 gas mixture..76

Figure 4-2: Temperature-Composition equilibrium data for THF + water system (not isobaric condition). The symbols HII, S, L, and G stand for s-II THF hydrate, solid (ice Ih), aqueous solution, and gas phases, respectively. The subscript 1 means that the THF composition is lower than the stoichiometric ratio of s-II THF hydrate, and 2 means a composition greater than the stoichiometric ratio (stoichiometric ratio of s-II THF hydrate is 5.56 mol%). Reprinted (“Adapted”) with permission from Makino et al. (2005). Copyright 2005 American Chemical Society. ...77

Figure 4-3: Gas uptake measurement for the CO2/N2/THF hydrate at 273.7 K and 2.2 MPa in the presence of 0.5 mol% THF (experiment 1).................................78

Figure 4-4: Gas uptake measurement curves for 0.5, 1.0 and 1.5 mol% THF fresh solutions carried out at a driving force of 1.2 MPa or at a pressure of 2.15, 1.55 and 1.4 MPa, respectively..81
Figure 4-5: Gas uptake measurement curves for 0.5, 1.0 and 1.5 mol% THF memory solutions carried out at a driving force of 2.2 MPa or at a pressure of 3.15, 2.55 and 2.35 MPa, respectively... 81

Figure 4-6: Gas uptake curves for 1.0 mol% THF concentration solutions with memory at 273.7 K and different pressures. ... 83

Figure 4-7: CO₂ content in the gas phase (initial composition), hydrate phase and residual gas phase (final composition) for the three process stages all operating at 2.5MPa and 273.7 K. ... 85

Figure 4-8. Gas uptake curves for hydrate formation with flue gas mixtures corresponding to the initial gas phase composition of the three process stages at 2.5 MPa and 273.7 K (the initial gas phase compositions are shown in Figure 4-7). ... 86

Figure 4-9: A hybrid hydrate-membrane process for CO₂ recovery from flue gas in the presence of THF as additive. Hydrate formation is carried out at 273.75 K and 2.5 MPa in the three stages. ... 87

Figure 4-10: Membrane separation process for flue gas separation, Reprinted from Herzog et al. (1991) with permission of John Wiley & Sons, Inc., Copyright 1991... 89

Figure 5-1: Schematic of the apparatus. ... 102

Figure 5-2: Top and side view of the crystallizer with dimensions........................ 103

Figure 5-3: Cross section of the crystallizer with the stirrer and nozzle arrangement. .. 104

Figure 5-4: Effect of stirring rate on hydrate formation at 273.7 K and 2.5 MPa. The experiment was performed under a batch mode. ... 106
Figure 5-5: A typical gas uptake measurement curve carried out at 2.5 MPa and 273.7 K (experiment 3)... 108

Figure 5-6: Gas uptake measurement curves for 1.0 and 1.5 mol% THF memory solutions carried out at a driving force of 2.2 MPa or at 2.5 and 2.3 MPa respectively. ... 109

Figure 5-7: Gas uptake curves for 1.0 mol% THF concentration solutions with memory at 273.7 K and different pressures. .. 113

Figure 5-8: Hydrate growth for a typical hydrate formation experiment (experiment 5) along with the calculated average rates for 20 min..................... 115

Figure 5-9: Rate of hydrate formation vs driving force for the kinetic experiments carried with 1.0mol% memory solutions..................................... 116

Figure 5-10: Comparison of gas uptake for hydrate formation for 1.0 mol% (Pressure = 2.5 MPa, Temperature = 273.7 K)... 118

Figure 5-11: Schematic of the mass transfer resistance encountered in the lab scale apparatus described in Chapter 2... 118

Figure 5-12: Comparison of the gas consumption for the lab scale apparatus and the new apparatus on a water free basis plotted against experimental pressure........ 119

Figure 5-13: The normalized rate of gas supply calculated by taking into account of amount of water (equation 5.3) for the experiments conducted in the presence of 1.0 mol% THF in the lab-scale apparatus (Linga et al., 2008) and the new large scale apparatus plotted against the experimental pressure............... 121

Figure 5-14: The normalized rate of gas supply calculated by taking into account of the volume of reactor (equation 5.4) for the experiments conducted in the
presence of 1.0 mol% THF in the lab-scale apparatus (Linga et al., 2008) and the new large scale apparatus plotted against the experimental pressure. 122

Figure 6-1: Schematic of the experimental apparatus... 130

Figure 6-2: Comparison of gas uptake (hydrate growth) measurement curves for
CH₄/water hydrate formation experiments. Time zero in the graph is induction
time for the corresponding experiment (given in Table 6-1)............................ 135

Figure 6-3: Comparison of the rate of methane uptake per mol of water for CH₄/water
system. .. 135

Figure 6-4: Comparison of gas uptake (hydrate growth) measurement curves for
CH₄/water hydrate formation experiment conducted in the same apparatus
with and without the presence of silica sand. ... 137

Figure 6-5: Comparison of gas uptake (hydrate growth) for CH₄ (90.5%)/C₃H₈
(9.5%)/water system. Time zero in the graph is induction time for the
corresponding experiment (given in Table 6-1).. 138

Figure 6-6: Comparison of the rate of gas uptake for CH₄ (90.5%)/C₃H₈ (9.5%)/water
system. .. 139

Figure 6-7: Comparison of gas uptake (hydrate growth) for CH₄ (91.0%)/C₂H₆
(9.0%)/water system. Time zero in the graph is induction time for the
corresponding experiment (given in Table 6-1).. 140

Figure 6-8: Comparison of gas consumption for all the three hydrocarbon containing
systems. The experimental time is the same for both experiments carried for
each system. .. 141
Figure 6-9: Comparison of temperature profiles and gas uptake for CH₄ (90.5%)/C₃H₈ (9.5%)/water system. .. 142

Figure 6-10: Comparison of temperature profiles and gas uptake for CH₄ (91.0%)/C₂H₆ (9.0%)/water system. .. 143

Figure 6-11: Comparison of gas uptake (hydrate growth) for CO₂/water system (Temperature = 1.0 C, Pstart = 3.1 MPa). Time zero in the graph is induction time for the corresponding experiment (given in Table 6-1). 144

Figure 6-12: Comparison of gas uptake (hydrate growth) for CO₂ (38.1%)/H₂ (59.4%)/C₃H₈ (2.5%)/water system (Temperature = 1.0 C, Pstart = 5.1 MPa). Time zero in the graph is induction time for the corresponding experiment (given in Table 6-1). .. 146

Figure 6-13: Comparison of gas uptake (hydrate growth) for CO₂ (16.9%)/N₂ (83.1%)/1.0 mol% THF system (Temperature = 1.9 C, Pstart = 2.5 MPa). Time zero in the graph is induction time for the corresponding experiment (given in Table 6-1). ... 147

Figure 6-14: Comparison of gas uptake (hydrate growth) for CO₂ (16.9%)/N₂ (83.1%)/1.0 mol% THF system (Temperature = 1.9 C, Pstart = 5.0 MPa). Time zero in the graph is induction time for the corresponding experiment (given in Table 6-1). ... 148

Figure 6-15: Comparison of gas consumption for all the three hydrocarbon containing systems. The experimental time is the same for both experiments carried for each system. ... 149
NOMENCLATURE

\(n_T \) total number of moles

CR crystallizer

SV supply vessel

\(n_H \) moles of the gas in Hydrate + Water phase of CR

\(n_G \) moles of gas in gas phase of CR

\(n_{SV} \) moles of gas in SV

\(\Delta n_{H}^{i} \) mole consumption for \(i \) component in hydrate + liquid phase

\(t_{\text{ind}} \) induction time (min)

\(V_G \) volume of gas phase in CR

\(V_{SV} \) volume of supply vessel

\(y_i \) mole fraction in gas phase

\(n_{\text{Feed}}^{\text{CO}_2} \) number of moles of CO\(_2\) in feed gas

\(n_{H}^{\text{CO}_2} \) number of moles of CO\(_2\) in hydrate phase

\(n_{H}^{\text{N}_2} \) number of moles of N\(_2\) in the hydrate phase

\(n_{\text{gas}}^{\text{CO}_2} \) number of moles of CO\(_2\) in the gas phase at the end of the kinetic experiment

\(n_{\text{gas}}^{\text{N}_2} \) number of moles of N\(_2\) in the gas phase at the end of kinetic experiment

\(z \) compressibility factor

THF tetrahydrofuran

P pressure

T temperature

R gas constant

IGCC Integrated Gasification Combined Cycle
ACKNOWLEDGEMENTS

I would like to acknowledge the following people and organizations that helped me in various ways throughout the duration of this project.

Firstly, I am very grateful to my supervisor, Professor Peter Englezos for his support, skilful guidance and encouragement throughout my doctoral studies to accomplish this challenging research project. I would also like to extend my gratitude to Dr. John A. Ripmeester with whom I had meaningful discussions and encouragement when he visited our lab at UBC.

I would also like to thank Natural Science and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI) and Natural Resources Canada (NRCan) for providing funding for this project.

I would also like to extend this acknowledgement to my colleagues and friends in the gas Hydrate and PPC labs: Rajnish Kumar, Shivamurthy Modgi, Rajeev Chandraghatgi, Dr. Judong Lee, Robin Susilo, Professor Myungho Song, Hui-Jie Wu, Dr. Xiaosen Li, Nayef Al-Saifi, Adebola Adeyemo, Dr. Sung-Chan Nam, Cef Haligva, Jeffry Yoslim and Nagu Daraboina for their help and support. A special thanks to Rajnish Kumar for all the discussion and fun I had with him while working together in the lab. Last but not least, I would like to thank my family, particularly my wife, Sandhya for being patient and supportive during difficult times during my research work.
Dedicated to my parents

and

To my wife and my brother
CO-AUTHORSHIP STATEMENT

The work of this thesis consists of six different manuscripts which correspond to chapters two to six. The authors include Linga P., Kumar R., Adeyemo A., Haligva C., Ripmeester, J.A., and Englezos P. Professor Peter Englezos is my principal research supervisor at the University of British Columbia. During the course of my research, I was fortunate enough to hold meaningful discussions with Dr. John A. Ripmeester who is a principal research officer at SIMS, National Research Council Ottawa. Kumar R. (Ph.D.), Adeyemo A. (MASc) and Haligva C. (MASc) are fellow researchers in our lab.

The literature review, experimental design, performing experiments and data analysis were done extensively by P. Linga under supervision of Professor P. Englezos. In some part of the work R. Kumar, A. Adeyemo and C. Haligva provided assistance with the experiments. Finally, I did the final preparation for each manuscript after careful revision and approval of my research supervisor.
1. LITERATURE REVIEW

1.1. CO₂ capture and storage (CCS)

Carbon dioxide and other chemicals such as methane (CH₄), nitrous oxide (N₂O) and chlorofluorocarbons (CFCs) are known collectively as greenhouse gases because of their ability to absorb infrared radiation that leads to a rise in atmospheric temperature (global warming). CO₂ has the highest concentration in the atmosphere and hence it is considered the dominant greenhouse gas. Global warming is likely to induce large climatic changes with many consequences. Consequently, global warming has become an enormously serious problem (Shindo and Komiyama, 1994). Thus, the urgent need to prevent carbon emissions produced by human activities from reaching the atmosphere.

Energy related activities are by far the largest source of greenhouse gas emissions. The energy sector includes emissions of all greenhouse gases from the production of fuels and their combustion for power generation. Though estimates vary, world total primary energy consumption is projected to increase by 57 percent between 1997 and 2020. Under the Reference scenario of the World Energy Outlook (2000), fossil fuels will account for around 90 percent of the world primary energy supply mix by 2020. One major implication on reliance on fossil fuels, however, is the environmental consequences of their use. Use of fossil fuels may cause a number of environmental impacts, ranging from global climate change to regional and local impacts on air, land and water. Although the specific issues vary these impacts are concerns throughout the world. Hence, even with environmental policies in place, increasing demand for energy will be accompanied by an increase in emissions world wide. According to the
Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), the future emissions of CO₂ are projected on the basis of six illustrative scenarios in which global CO₂ emissions range from 29 to 44 GtCO₂ (8–12 GtC) per year in 2020, and from 23 to 84 GtCO₂ (6–23 GtC) per year in 2050. It is also projected that the number of CO₂ emission sources from the electric power and industrial sectors will increase significantly until 2050, mainly in South and East Asia. As seen in Table 1-1, global CO₂ levels under the reference scenario will increase across the world by 60 %, or 13,697 Mt, between 1997 and 2020. Emissions will be specifically influenced by power generation which alone will account for 43 % of the increase in global CO₂ emissions over the next twenty years.

Table 1-1: Total carbon dioxide emissions (Mt) from fossil fuels in 1997, added by 2020 (Source: World Energy Outlook 2000)

<table>
<thead>
<tr>
<th>Region</th>
<th>CO₂ Emissions (1997)</th>
<th>Added by 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>3952</td>
<td>331</td>
</tr>
<tr>
<td>Oil</td>
<td>5195</td>
<td>1221</td>
</tr>
<tr>
<td>Gas</td>
<td>2320</td>
<td>1280</td>
</tr>
<tr>
<td>Developing countries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>4012</td>
<td>3656</td>
</tr>
<tr>
<td>Oil</td>
<td>3537</td>
<td>3833</td>
</tr>
<tr>
<td>Gas</td>
<td>980</td>
<td>1972</td>
</tr>
<tr>
<td>Transition Economies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>792</td>
<td>336</td>
</tr>
<tr>
<td>Oil</td>
<td>652</td>
<td>383</td>
</tr>
<tr>
<td>Gas</td>
<td>1119</td>
<td>529</td>
</tr>
<tr>
<td>World</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>8758</td>
<td>4324</td>
</tr>
<tr>
<td>Oil</td>
<td>9806</td>
<td>5592</td>
</tr>
<tr>
<td>Gas</td>
<td>4419</td>
<td>3781</td>
</tr>
</tbody>
</table>

Because climate change will have world-wide implications various courses of action are being considered internationally to reduce greenhouse gas emissions, the root
cause of the climate change problem (Freund, 1997). Four broad options are typically considered for reducing anthropogenic emissions of greenhouse gases and CO\textsubscript{2} in particular (carbon management): (a) improvement in energy efficiency in power generation or in end-use; (b) switching to fuels containing less carbon (e.g. natural gas); (c) substitution of electricity from carbon-free sources (e.g. renewable or nuclear); (d) Carbon dioxide capture and secure storage (CCS). The capture and secure storage of carbon dioxide that would otherwise be emitted to the atmosphere is defined as CO\textsubscript{2} sequestration (IPCC, 2005).

In practice it is unlikely that any single approach would be used alone. Most likely, a combination of these four options will be adopted to meet particular needs. According to the IPCC report on climate change, CCS will play an important role among mitigation strategies for global warming (IPCC, 2005). This report provides a detailed assessment of the current state of knowledge regarding the technical, scientific, environmental, economic and societal dimensions of CCS. The projected potential of CO\textsubscript{2} capture associated with the emission ranges explained above has been estimated at an annual 2.6 to 4.9 GtCO\textsubscript{2} by 2020 (0.7–1.3 GtC) and 4.7 to 37.5 GtCO\textsubscript{2} by 2050 (1.3–10 GtC). These numbers correspond to 9–12%, and 21–45% of global CO\textsubscript{2} emissions in 2020 and 2050, respectively (IPCC, 2005). The advantage of removing carbon dioxide from flue gases is that it will enable society to continue using fossil fuels and enjoy the standard of living that was attained over the years while minimizing the impact on the environment.

There are three broad based methods for carbon dioxide sequestration: (a) biological which exploits the natural process through which biomass accumulates CO\textsubscript{2}
directly from the atmosphere i.e. biofixation-forestry, biofixation-microalgae; (b) geological which involves capture of CO₂ from large scale industrial processes e.g. power generation and its subsequent transport and storage to a suitable geological formation; and (c) ocean which mainly involves direct dissolution of captured CO₂ or injection at depths greater than 1 km.

There are two general approaches to capture CO₂: either carbon can be removed before the fuel is burned (pre-combustion capture) or CO₂ can be removed from the flue gas (post-combustion capture). Post-combustion capture deals with CO₂ from conventional power plants. On the other hand Integrated Gasification Combined Cycle (IGCC) plants offer one of the most promising routes to CO₂ capture by converting the gas from the gasifier into a stream of H₂ and CO₂ via a shift reaction (Barchas and Davis, 1992). CO₂ can then be removed for disposal and the resultant H₂ could be used in fuel cells or in gas turbines.

Separation of CO₂ from natural gas mixtures has been practiced in the past in order to recover CO₂ and meet gas specifications and also use it in enhanced oil recovery projects. A variety of processes have been developed for removing or isolating a particular gaseous component from a multi-component gaseous stream. These processes include absorption, adsorption, membrane separation etc. (Aaron and Tsouris, 2005; Barchas and Davis, 1992; Kikkinides et al., 1993). Commercial CO₂ separation plants employ chemical absorption with a solvent like monoethanolamine that selectively absorbs CO₂. This process requires a significant amount of energy, a key energy requirement for this process is the regenerator reboiler duty which accounts for 32-53% of the energy in the coal (Herzog et al., 1991). Also, some of the key operational
concerns for amine based separation process are corrosion, foaming, and solvent degradation (Herzog et al., 1991). In order to employ chemical absorption for CO$_2$ capture formulation of new solvents and reduction of equipment size are required in order to reduce energy costs (Herzog et al., 1997). The thorough review of the processes for post and pre combustion capture of CO$_2$ by Aaron and Tsouris (2005) concluded that absorption using amines is considered to be the most promising current method while some others are promising but too new for comparison. There is continued interest in the development of less energy intensive processes such as adsorption using materials like zeolites and pressure swing adsorption (PSA) which is employed in the natural gas industry for the separation of CO$_2$. Use of polymeric membranes for separating CO$_2$ from flue gases has also been reported (Ho et al., 2006a,b; Shingo et al., 2004).

One of the new promising methods for separating CO$_2$ from flue gas or fuel gas (mixture of CO$_2$ and H$_2$) is through clathrate or gas hydrate formation (Englezos and Lee, 2005; Han et al., 2007; Kang and Lee, 2000; Klara and Srivastava, 2002). Clathrate or gas hydrates are crystals formed by water molecules and a number of substances such as CO$_2$, N$_2$, O$_2$, H$_2$, and natural gas components (Davidson, 1973; Englezos, 1993; Ripmeester, 2000; Sloan, 1998). When gas hydrate crystals are formed from a mixture of gases, the concentration of these gases in the hydrate crystals is different than that in the original gas mixture. This is the basis for the utilization of clathrate hydrate formation/decomposition as a separation process.

Once CO$_2$ has been captured, it can be stored or utilized in order to prevent emissions from reaching the atmosphere. CO$_2$ can be used in enhanced oil recovery (EOR) and to make solid carbonate minerals. Large quantities of CO$_2$ could be stored in
the deep oceans or geological locations or sequestered in terrestrial ecosystems. Preliminary estimates of these capacities have been made but as represented in Table 1-2 there is a large range. Efforts are underway throughout the world to establish more accurate worldwide and national estimates and eventually establish standards for site selections.

Table 1-2: Worldwide capacity of potential CO₂ storage sites (Herzog, 2001).

<table>
<thead>
<tr>
<th>Sequestration Option</th>
<th>Worldwide Capacity (GtCO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean</td>
<td>1000² to uncertain</td>
</tr>
<tr>
<td>Deep Saline Formations</td>
<td>1000 – uncertain, but possibly 10⁴</td>
</tr>
<tr>
<td>Depleted Oil and Gas Reservoirs</td>
<td>675 – 900</td>
</tr>
<tr>
<td>Coal Seams (ECBM)</td>
<td>3 – 200</td>
</tr>
</tbody>
</table>

A major effort was devoted towards the development of technology for Ocean Disposal. This is not surprising since the ocean has a capacity of storing 10,000 Gigatons of Carbon (GtC) compared to a 1000 GtC capacity of depleted oil and gas reservoirs and 20 GtC of unminable coal seams. While these estimates vary, the deep ocean has by far the largest storage potential. It is noted that the annual global CO₂ emissions amount to an equivalent of 22 GtC (Herzog et al., 1997). The majority of work on CO₂ sequestration in the ocean concerned laboratory and modeling studies. However, these are insufficient to evaluate such a complex system and ocean CO₂ injection trials should be attempted to assess the viability of the technology (Sloan, 2000). One such trial concerned injection of liquid CO₂ into the Norwegian Sea but was cancelled by Norway’s environment ministry.
because the “the use of deep sea areas as potential places for CO$_2$ must first be thoroughly discussed at the international level and clarified legally”. This trial would have been the world’s first attempt to demonstrate sequestration of CO$_2$ in oceans by injecting liquid CO$_2$. A similar trial off the coast of Hawaii has also been cancelled. Therefore, there are serious concerns regarding ocean disposal of liquid CO$_2$ and alternative storage techniques such as dry ice and carbon dioxide hydrate and sites e.g. deep ocean aquifers are explored (Takahashi et al., 2000; Yamasaki, 2000).

Since there is a serious concern about ocean disposal as a mitigation option research work on geological storage (in depleted oil gas reservoirs, deep saline aquifers, deep unminable coal beds and mineralization) is underway in Canada, European Union, U.S., Australia and Japan (McKee, 2002). Figure 1-1 shows the various technological options for storing CO$_2$ in deep underground geological formations. Depending on the formation, CO$_2$ can be sequestered by a combination of three mechanisms: (a) hydrodynamic trapping (it is trapped as gas or supercritical fluid under a low-permeability cap rock similar to the way that natural gas is trapped in gas reservoirs or stored in aquifer gas storage); (b) solubility trapping (the CO$_2$ dissolves into the fluids); and (c) mineral trapping (the CO$_2$ reacts directly or indirectly with the minerals and organic matter in the formation to become part of a solid matrix (McKee, 2002).
Figure 1-1: Methods for storing CO$_2$ in deep underground geological formations, Courtesy of Intergovernmental Panel on Climate Change, Special report on CO$_2$ Capture and Storage (IPCC, 2005).

Geological storage is actually being demonstrated in Norway where CO$_2$ from gas fields is stored in an undersea aquifer in the North Sea (Herzog et al., 1997; McKee, 2002). Because CO$_2$ and water forms solid gas hydrate under suitable temperature and pressure conditions hydrate formation may prevent the pumping of liquid CO$_2$ into deep saline aquifers. However, according to Takahashi et al. (2000) the temperature conditions due to geothermal heat fluxes raise the minimum pressure for hydrate formation above the hydrostatic pressure at the aquifer. However storage of CO$_2$ in oil reservoirs where CO$_2$ can enhance oil recovery enables the oil and gas industry to practice CO$_2$ capture and storage within the Kyoto time frame (2008-2012).
According to the IPCC (2005) special report on CO₂ capture and storage, the cost of capture of CO₂ from coal or gas fired power plants would be in the range of 15-75 US$/tCO₂ net captured. The cost of pipeline transport for a nominal distance of 250 km would be typically in the range of 1-8 US$/tCO₂ transported. The representative estimates of the costs for storage in saline formations and depleted oil and gas fields would be typically between 0.5-8 US$/tCO₂ injected while the costs of monitoring are 0.1-0.3 US$/tCO₂ additional. When storage is combined with EOR or ECBM or potentially Enhanced gas recovery (EGR), the economic value of CO₂ can reduce the total cost of CCS. Based on data and oil prices prior to 2003, it is reported that enhanced oil production for onshore EOR with CO₂ storage could yield net benefits of 10-16 US$/tCO₂ (including the costs of geological storage). All the above estimates were reported based on the cost for large-scale, new installations, with natural gas prices assumed to be 2.8-4.4 US$ GJ⁻¹ and coal prices 1-1.5 US$ GJ⁻¹ (IGCC, 2005).

Thus, technologies exist and are being developed that can prevent emissions from the production and use of fossil fuels from reaching the atmosphere. They are discussed in detail in a Technology Status Report from the International Energy Agency (McKee, 2002). The report concludes that a number of these technologies have not been optimized. Thus, it is recommended that R&D of the science and technology underlying each capture and storage option is continued in order to improve existing technologies and enable development of critical new components that can optimize capture and storage systems. Furthermore, the focus should be directed towards reducing costs and developing effective, safe and environmentally sound storage options. Recently in July 2008 at a summit in Hokkaido (Japan), the G8 (Britain, Canada, France, Germany, Italy,
Japan, Russia and United States) countries agreed in principle to the recommendations given by carbon sequestration leadership forum (CSLF) to diversify a portfolio of at least 20 fully integrated industrial scale installations (larger than 1 Mt per year). The expectation is that supporting technology learning and cost reduction will enable the broad deployment of CCS by 2020 (CSLF, 2008). The report also highlights the need for well-resourced research and development to drive the capture costs down to the levels needed for widespread deployment in the power sector. In addition to technology development optimization strategies have been proposed to tackle large single source emissions. For example, Elkamel and his group have focused on the Canadian oil sands industry, the petroleum refining industry and power generation (Ba-Shammakh et al., 2007; Elkamel et al., 2008; Ordorica-Garcia et al., 2008).

This thesis focuses on gas or clathrate hydrate crystallization for CO$_2$ separation from flue gas mixtures. Interestingly, gas hydrate formation also plays a role during ocean or geological sequestration and deep saline aquifers (Takahashi et al., 2000; Yamasaki, 2000). The goal of this thesis is to examine the formation of hydrates from flue gas mixtures in order to obtain thermodynamic and kinetic data relevant to the hydrate-based process for CO$_2$ mitigation. Moreover, the thesis will propose relevant conceptual process flowsheets and assess their economic potential and scale up.

Next the thesis presents essential background information on gas hydrates. This background information provides the framework and foundation to present and discuss the specific research objectives of the thesis (Section 1.3).
1.2. Background on gas hydrates

Clathrates are non-stoichiometric crystalline compounds (Davidson, 1973; Englezos, 1993; Makogon, 1981; Ripmeester, 2000; Sloan, 1998). They consist of two molecular species, one physically entrapping the other by making up a cage-like structure containing cavities. There are two categories of clathrates; those where the cage or lattice-like structure is made up of water molecules bonded together, and those built up by molecules other than water. The first group mentioned is known as clathrate hydrates or gas hydrates.

In a hydrate, the species forming the lattice is commonly called the host, while the caged component is called the guest. In clathrate hydrates, the host-lattice is created by water molecules connected together through hydrogen bonding. The host-lattice is thermodynamically unstable without the presence of a guest molecule in the cavity. The guest molecule is held in place inside cavities of the hydrogen-bonded water molecules. The lattice is stabilized by van der Waals forces between host and guest molecules. It is important to note that there is no chemical bonding between the host-lattice and guest molecule, and that only one guest molecule is contained in each cavity. Recently, it was found that under certain T and P condition, more than one \(\text{H}_2 \) molecules can be trapped in a cavity (Florusse et al., 2004; Mao et al., 2002; Sluiter et al., 2004).

There are three known gas hydrate structures: Structure I; Structure II; Structure H (Ripmeester et al., 1987). Structure I consist of two different types of cavities. The first cavity is formed when water molecules hydrogen bond in such a way that they form a structure with 12 faces and 5 sides to each face called a pentagonal dodecahedron \((5^{12}) \). This cavity or cage is present in all three gas hydrate structures.
When the pentagonal dodecahedral cages link together by their vertices a second type of cavity is created, a polyhedron with 12 pentagonal and 2 hexagonal faces ($5^{12}6^2$) called a tetrakaidecahedron, which is larger than the dodecahedron. A unit cell of this structure consists of six large $5^{12}6^2$ cavities, and two small 5^{12} cavities created by 46 water molecules. Only small molecules with a diameter between 4.2-6.0 Å, can form structure I hydrates. Common structure I forming gases are methane, ethane and carbon dioxide. When the pentagonal dodecahedral cages link together through face sharing, not by the vertices as in structure I, then the structure is known as structure II. By linking together through face sharing, they create a hexakaidecahedron, a polyhedron with 12 pentagonal and 4 hexagonal faces. Structure II hydrate consists of 16 small and 8 large cavities made up by 136 water molecules. Molecules forming structure II have a diameter less than 4.2 Å and between the range of 6-7 Å. Some examples of structure II forming substances are nitrogen, propane, tetrahydrofuran and iso-butane.

Structure H was discovered in 1987 by Ripmeester et al (1987). It consists of three different kinds of crystal cavities, two which are small and of comparable sizes, and one large non-spherical cavity. It is unique compared to the two previous structures because it requires molecules of two different sizes to stabilize the crystal. Like structure I and structure II, structure H has the basic 5^{12} cage. The two other cavities are: a $4^35^66^3$ cage which has three fairly strained square faces, six pentagonal and three hexagonal faces and a large $5^{12}6^8$ cage made up of twelve pentagonal and eight hexagonal faces. The latter cavity is the largest hydrate cavity of any of the structures and is estimated to fit guests up to 9 Å in diameter. The shapes of all the cavities formed in structure I, Structure II and structure H are shown in Figure 1-2.
One unit cell of structure H can contain at most one large molecule, five small and 34 water molecules. Another feature of structure H hydrate that makes it unique compared to the two other structures is that it is not enough for the large molecule in structure H to have the right size as for structure I and structure II, the shape and efficient space filling is also important. Small molecules, known as help guests, such as methane, xenon or hydrogen sulfide, can occupy the two small cages in structure H, while intermediate sized hydrocarbons such as adamantane, cycloheptane or 2,2-dimethylbutane, also known as neohexane, can fill the large cavity of structure H.
Table 1-3 compares the structural properties of structures I, II and H. The structure of hydrate that is formed is primarily a function of the gas(es) used to form the hydrate. In certain cases, such as when hydrates are formed from mixtures of methane and ethane, there is a structural transition that is a function of the feed gas composition (Subramanian et al., 2000).

Table 1-3: Structural properties of hydrates.

<table>
<thead>
<tr>
<th></th>
<th>Structure I</th>
<th>Structure II</th>
<th>Structure H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity types</td>
<td>$5^{12}, 5^{12}6^4$</td>
<td>$5^{12}, 5^{12}6^4$</td>
<td>$5^{12}, 4^35^66^3, 5^{12}6^8$</td>
</tr>
<tr>
<td>Radius (A)</td>
<td>3.91, 4.33</td>
<td>3.902, 4.683</td>
<td>3.91, 4.06, 5.71</td>
</tr>
<tr>
<td>Cages/unit cell</td>
<td>2, 6</td>
<td>16, 8</td>
<td>3, 2, 1</td>
</tr>
<tr>
<td>Co-ordination number</td>
<td>20, 24</td>
<td>20, 28</td>
<td>20, 20, 36</td>
</tr>
<tr>
<td>Crystal type</td>
<td>Cubic</td>
<td>Cubic</td>
<td>hexagonal</td>
</tr>
</tbody>
</table>

Sloan and Koh (2008) suggested that it would be instructive to consider the diameter ratio of guest molecules to each cavity for simple (single guest) hydrate formers to determine the upper and lower limits to guests size. In order to obtain a stable hydrate structure the ratio needs to be approximately in the range of 0.76-1.0. If the ratio is less than 0.76, the molecular attractive forces contribute less to cavity stability and if the ratio is above 1.0, the guest molecule cannot fit into a cavity without distortion (Sloan and Koh, 2008). The molecular diameters to cavity diameter ratios for nitrogen and carbon dioxide gases are shown in Table 1-4. CO$_2$ forms structure I (sI) hydrate and N$_2$ forms structure II (sII) hydrate (van Hinsberg et al., 1993) in its pure form. The structure of hydrate from the gas mixture of CO$_2$ and N$_2$ is either sI or sII depending upon the relative ratio of the
two gas molecules in the small and large cavities (Kang and Lee, 2000). A detailed description about the structure and stability of the CO$_2$/N$_2$ mixed hydrate is discussed in section 1.2.1.

Table 1-4: Size ratio for CO$_2$ and N$_2$.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Struure I</th>
<th>Structure II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cavity type</td>
<td>512</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>Guest diameter (Å)</td>
<td>5.12</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>4.1</td>
<td>0.804</td>
</tr>
</tbody>
</table>

The thermodynamics of hydrate formation has been studied extensively over the years. Consequently, experimental data on the thermodynamics of gas hydrate formation has been obtained for many systems and the computational methods to predict gas hydrate formation conditions are well established. The first experimental observation of gas hydrates was made by Sir Humphry Davy (1811). Carson and Katz (1942) studied the four phase equilibria of gas-mixtures in the presence of gas hydrates and of hydrocarbon-rich liquids. Ng and Robinson (1976) investigated the conditions of hydrate formation in liquid hydrocarbon/water systems. Studies on hydrate equilibrium are focused on gathering incipient equilibrium hydrate formation data as well as developing predictive methods for the calculation of phase equilibria. Incipient hydrate formation conditions refer to the situation in which an infinitesimal amount of the hydrates are present in equilibrium with the fluid phases. A thorough account of the experimental work and the
computational methods on hydrate equilibria is available (Davidson, 1973; Englezos, 1993; Holder et al., 1987; Makogon, 1981; Ripmeester, 2000; Sloan, 1998).

Several models have been proposed over the years to predict the equilibrium hydrate formation conditions (Parrish and Prausnitz, 1972; Holder and John, 1983). They are all based on the statistical thermodynamics model of van der Waals and Platteeuw (1959) that described the hydrate phase. Bishnoi et al. (1989) developed a computational procedure to perform multi-phase flash calculations for systems that contain hydrates. Methods to account for the effect of electrolytes on hydrates from hydrocarbons and CO₂ have also been proposed (Englezos and Bishnoi, 1988; Englezos, 1992) Clarke et al. (1999) modeled the conditions for hydrate formation in porous media. It is noted that in the above calculations the fugacity or a chemical component in the fluid phases is calculated by using a suitable equation of state such as the Trebble – Bishnoi equation of state (Trebble and Bishnoi, 1987), the Peng – Robinson equation of state (Peng and Robinson, 1978) or the Statistical Associating Fluid Theory (Li et al. 2006).

There are two fundamental questions that must be addressed when time is a consideration with respect to hydrates. The first is the amount of time required in order for a hydrate to reach a critical size nucleus. The second is how fast the hydrate grows after the critical size nucleus has been achieved.

Hydrate nucleation refers to the process where hydrate nuclei, grow and disperse until they attain a critical size for continued growth. If the size of the nuclei is less than the critical size, the nuclei are unstable and may continue to grow or break in the aqueous solution (Natarajan et al., 1994). If the growing nuclei reach the critical size it then becomes stable, which leads to the formation of hydrate crystals. This period when the
hydrate nuclei are forming and dissolving in a supersaturated solution to the time when
the nuclei reach the critical size is called the induction time.

Gas hydrate formation is a crystallization process from a fluid/water system with
“limited observability” because the number of variables that can be monitored is a small
sub set of those needed to fully describe a hydrate forming system under time-dependent
conditions. Traditionally, when a gas hydrate former (e.g. CO₂) is used, the
measurements consisted of monitoring the rate of “gas consumption” or “gas uptake”. In
other words they focused on the gas phase. Recently, the focus shifted to the solid phase
by using Raman techniques, optical microscopy and particle size analysis to alleviate the
observability problem (Moudrakovski et al., 2004; Sloan, 2003). For example, Susilo et
al. (2006) monitored the kinetics of structure I and H methane hydrate growth by
employing Nuclear Magnetic Resonance (NMR) spectroscopy and imaging (MRI) and
found out that the results agree with the results from gas uptake measurements obtained
by Lee et al. (2005). Recently, Kumar et al. (2008) reported the kinetics and structure of
gas hydrates from methane/ethane/propane mixtures relevant to the design of natural gas
hydrate storage and transport facilities. The results obtained from kinetics at macroscopic
level (gas uptake) were found to agree with the results obtained at molecular level
(powder x-ray diffraction, NMR, and Raman spectroscopy). The composition of the gas
phase and the hydrate phase was found to evolve over time, suggesting that kinetic and
transport factors contribute in addition to thermodynamics (Kumar et al., 2008).

1.2.1. CO₂, N₂ and CO₂/N₂ mixed hydrates

CO₂ is known to form structure I hydrate. The CO₂ molecules occupy primarily the large
cavities and some small ones (Ripmeester and Ratcliffe, 1998; Udachin et al., 2001). CO₂
can also serve as help gas for structure H hydrate (Ripmeester and Ratcliffe, 1998). Since CO$_2$ can be sequestered by mineral trapping and in depleted oil and gas reservoirs there could be implications for the use of CO$_2$ in secondary oil recovery if structure H hydrate forms in these systems. Hence, it is essential to know the equilibrium hydrate formation conditions in carbon dioxide containing systems. The equilibrium hydrate formation conditions for carbon dioxide have been extensively investigated and are available in the literature (Deaton and Frost, 1946; Falabella, 1975; Larson, 1955; Miller and Smythe, 1970; Ng and Robinson, 1985; Robinson and Mehta, 1971; Song and Kobayashi, 1987; Unruh and Katz, 1949). Deaton and Frost (1946) were first to report equilibrium hydrate formation conditions for carbon dioxide. Larson (1955) investigated equilibrium hydrate formation conditions of carbon dioxide at temperatures below the freezing point of water. Equilibrium hydrate formation conditions for carbon dioxide in ice were also reported by Miller and Smythe (1970). The equilibrium hydrate formation conditions for carbon dioxide in liquid water are shown in Figure 1-3. As it can be seen in the figure, for example at 274.15 K, the equilibrium pressure is 1.414 MPa. Hydrate is stable above this pressure while they do not exist below this pressure at 274.15 K. The CO$_2$ saturation curve (vapor pressure curve) is also shown.
The equilibrium hydrate formation conditions for nitrogen were first observed by van Cleef and Diepen (1960). Recently, Sugahara et al. (2002) observed the equilibrium hydrate conditions of nitrogen for higher temperatures. Figure 1-4 shows the three phase equilibrium hydrate formation conditions (G – Lw – H) for nitrogen in water. As it can be seen in the figure, for example at 274.15 K the minimum pressure for N\(_2\) to form hydrates is 17.807 MPa.
Figure 1-4: Equilibrium hydrate formation conditions for pure nitrogen hydrates.

Dholabhai et al. (1993) measured the formation conditions of CO$_2$ hydrates in aqueous electrolyte solutions. Englezos and Hall (1994) investigated the equilibrium hydrate formation conditions of carbon dioxide in the presence of aqueous electrolyte solutions, water soluble polymers and montmorillonite. Breland and Englezos (1996) investigated the equilibrium hydrate formation conditions of carbon dioxide in the presence of glycerol. Fan et al. (2000) studied the hydrate formation conditions for carbon dioxide and carbon dioxide rich gas mixtures in the presence of ethylene glycol. Olsen et al (1999) studied the equilibrium hydrate formation conditions of carbon the dioxide-nitrogen mixture. Mooijer-van-der Heuvel et al. (2001) investigated the effect of additives on carbon dioxide hydrate formation conditions. The additives used were...
organic substances like tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane.

Figure 1-5: Equilibrium hydrate formation conditions for CO\textsubscript{2} – N\textsubscript{2} mixtures.

Kang et al. (2001) reported equilibrium hydrate formation data for a mixture of carbon dioxide and nitrogen with varying ratios of each. The equilibrium hydrate formation conditions for the mixture of carbon dioxide and nitrogen are shown in Figure 1-5. Kang et al. (2001) also reported thermodynamic data on the effect of tetrahydrofuran (THF) on the hydrate formation conditions for CO\textsubscript{2}/N\textsubscript{2} mixtures.
Recently, Duc et al. (2007) studied the effect of tetra-\textit{n}-butyl ammonium bromide (TBAB) on the hydrate formation conditions of CO\textsubscript{2}, N\textsubscript{2} and CO\textsubscript{2}/N\textsubscript{2} mixed hydrates. Seo and Lee (2004) studied the structure and guest distribution of mixed (CO\textsubscript{2}+N\textsubscript{2}) hydrates of carbon dioxide and nitrogen using X – ray diffraction and C NMR spectroscopy. X–ray diffraction results showed that for mixed (CO\textsubscript{2}+N\textsubscript{2}) hydrates with 3 – 20 mol\% CO\textsubscript{2}, the unit cell parameter was ~11.8 Å and the structure formed is structure I. For 1 mol\% CO\textsubscript{2}, the unit cell parameter was found to be 17.26 Å and the structure formed was identified as Structure II. NMR spectra results revealed that carbon dioxide molecules mainly occupied the large 51262 cages of structure I when the mixed hydrate (CO\textsubscript{2}+N\textsubscript{2}) was formed at a vapor phase composition range of 10 – 20 mol\% CO\textsubscript{2}. Seo and Lee (2004) also reported that CO\textsubscript{2} molecules may occupy both large and small cavities of structure I when the CO\textsubscript{2} content in the gas phase exceeds 33 \%. Seo et al. (2005) studied CO\textsubscript{2}-N\textsubscript{2} hydrate formation in porous silica gels and presented phase diagrams illustrating phase compositions. They also reported that C cross-polarization NMR spectral analysis and direct measurement of CO\textsubscript{2} content in the hydrate phase suggested that the mixed hydrate formed of more than 10 mol \% of CO\textsubscript{2} gas is structure I and the CO\textsubscript{2} molecules occupy mainly the more abundant 51262 cages.
1.3. Research objectives

Given that gas hydrate crystal formation offers the possibility for developing a novel technology for CO\textsubscript{2} separation from flue gases (post-combustion capture) and from fuel gas mixtures ("pre-combustion capture") in Integrated Gasification Combined Cycle (IGCC) power plants our scope is to provide fundamental data for the conceptual design of the hydrate-based CO\textsubscript{2} capture process. Our work is primarily concerned with CO\textsubscript{2}/N\textsubscript{2} separation ("post-combustion capture"). However, the knowledge obtained from this work is sufficiently general and is expected to be useful in the other applications. In order for the hydrate-based process for CO\textsubscript{2}/N\textsubscript{2} separation to be successful, we need to provide further basic thermodynamic and kinetic data relevant to the separation process. Moreover, gas/water contact modes should be studied in order to identify operating conditions that favor fast conversion of water to hydrate. One of the key elements for successful development of hydrate technology is the improvement of gas/liquid contact to improve hydrate growth (Mori, 2003). More specifically the objectives and the anticipated outcomes are as follows

1. Determination of the incipient equilibrium hydrate formation conditions whenever not available for (a) CO\textsubscript{2}/N\textsubscript{2} hydrate; and (b) CO\textsubscript{2}/N\textsubscript{2} hydrate in the presence of additives that lower the formation conditions. The outcome is to establish the most favorable process operating conditions (Temperatures and Pressures).

2. Determination of the kinetics of CO\textsubscript{2}/N\textsubscript{2} hydrate formation. This will provide information about the extent of hydrate growth and the degree of separation achieved. Appropriate metrics will be introduced to assess the separation efficiency.
3. Elucidation of the effect of additives to nucleation and hydrate crystal growth. This would provide the basis to establish the role of additives as performance enhancers.

4. To set up a new apparatus to test the separation process at a larger scale. The outcome would be significant in terms of designing the most efficient gas/liquid hydrate formation vessel ("reactor) and scaling it up.

5. To test an alternative to gas/liquid water contact mode by dispersing water in a bed of silica sand particles. The kinetics of hydrate formation will be determined

1.4. Thesis organization

The basic information about gas hydrates is given in Chapter 1. This chapter also discusses the significance of gas hydrates towards human welfare and a variety of prospective applications involving gas hydrates. The current knowledge on hydrate research relevant to CO₂ capture is also discussed.

Chapter 2 presents the thermodynamic and kinetic data on hydrate formation for a flue gas mixture of CO₂ (16.9%) and rest N₂. While thermodynamic data are universally valid, the kinetic data after a certain time depend on the mass transfer limitations. The material for this chapter is published.

Based on the results of chapter 2, chapter 3 presents on the clathrate hydrate process for the separation of CO₂ from flue gas mixture in three stages coupled with a membrane process to treat the lean CO₂ stream. The 99.0% CO₂ stream can be obtained in three stages. Two metrics defining CO₂ recovery or split fraction and Separation factor
were presented to assess the separation process. The high operating pressure of the process results in significant compression costs for the flue gases. In the next chapter an additive will be evaluated to reduce the operating pressure. The material for this chapter is published.

Chapter 4 reports thermodynamic and kinetic data on the effect of tetrahydrofuran (THF) on separation of CO$_2$ from the flue gas mixture. 1.0 mol% THF was found to be the optimum for the separation process. It was found that 94-96% CO$_2$ can be obtained in three stages by adding 1.0 mol% THF without compromising the CO$_2$ recovery and separation factor significantly. Addition of a small amount of THF (1.0 mol %) significantly reduces the operating pressure for hydrate formation from 10.0 MPa to 2.5 MPa for the first hydrate stage and form 5.0 MPa to 2.5 MPa for the second hydrate stage.

Chapter 5 presents a new large scale apparatus specifically designed and set up for demonstrating the separation process involving CO$_2$ capture. The specific objective of this apparatus is to test the medium pressure separation process presented in chapter 4 at a larger scale with improved gas-water contact. It was successfully demonstrated that it is possible to separate CO$_2$ from a flue gas mixture on a larger scale without
compromising on the separation efficiency and the CO$_2$ recovery. Even though the compression costs are low due to the addition of THF as an additive, there is a need for mechanical agitation which makes the hydrate process energy intensive. An alternative gas/water contact arrangement that does not involve agitation is evaluated in the next chapter. The material for this chapter is in preparation to be submitted for publication.

Chapter 6 presents a detailed study on the effect of silica sand on the kinetics of hydrate formation for different gas hydrate applications relevant to the storage and transportation of natural gas and also the separation processes involving post and pre combustion capture of CO$_2$. It was found dispersing water in silica sand significantly enhanced the gas uptake for hydrate formation for the systems involving water whereas for the systems involving 1.0 mol% THF relevant to post combustion capture of CO$_2$, the effect was minimal. The material for this chapter is in preparation to be submitted for publication.

Finally, in Chapter 7 the conclusions are highlighted and recommendations for future work are proposed.
1.5. References

2. KINETICS OF HYDRATE FORMATION FROM A FLUE GAS MIXTURE

2.1. Introduction

Gas hydrate formation being a crystallization process is characterized by nucleation followed by growth and agglomeration. Kinetics is concerned with the rate at which the phase transformation occurs and the identification of the factors affecting it. The rate of nucleation e.g. number of hydrate crystal nuclei formed per unit time per unit volume is an extremely difficult measurement and to date there is no data reported. On the other hand the induction time marking the onset of crystallization is easily obtained experimentally. Most gas hydrate kinetics studies have focused on the growth phase coupled sometimes with measurement of the particle size distribution (Bishnoi and Natarajan, 1996; Clarke and Bishnoi, 2005; Englezos, 1993, 1996; Koh, 2002; Sloan, 1998).

The rate of hydrate crystal growth is defined operationally. Thus, one may determine the gas uptake rate to describe kinetics or the rate at which a hydrate/solution interface advances. The question that arises is how an intrinsic rate can be distinguished from the relevant transport processes. It is noted that it is difficult to distinguish the intrinsic rate from the relevant transport processes. Consequently, kinetic studies focusing

on particular hydrate forming systems and hydrate vessel configurations continue to appear.

Treated flue gas from power plants contains CO\textsubscript{2}, N\textsubscript{2}, O\textsubscript{2} and one of the methods for the separation for subsequent storage or utilization of CO\textsubscript{2} is through gas hydrate formation (Aaron and Tsouris, 2005; Englezos and Lee, 2005; Kang and Lee, 2000; Seo et al., 2005). Since N\textsubscript{2} and O\textsubscript{2} form hydrate crystals at approximately the same conditions the treated flue gas is considered a CO\textsubscript{2}/N\textsubscript{2} mixture. In order to facilitate the development of hydrate based separation process, thermodynamic and kinetic data are needed to define the operating conditions. While equilibrium data for the above mixtures are in general available, studies on the kinetics of hydrate growth coupled with compositional analysis of the gas phase are not available. Thus, the purpose of the present study is to obtain such kinetic information.

2.2. Experimental section

2.2.1. Materials

The gas mixtures used in the present study were UHP grade and were supplied by Praxair Technology Inc. The gas compositions were chosen so that they represent industrial compositions. For example, in post-combustion capture from power plants using hydrates the task is to separate CO\textsubscript{2} from a CO\textsubscript{2}/N\textsubscript{2} mixture in which the CO\textsubscript{2} molar content is approximately 15-20 %. The dry molar (%) gas compositions of the binary gas mixtures were determined by gas chromatography and are as follows: CO\textsubscript{2} (16.9)/N\textsubscript{2} (83.1) and CO\textsubscript{2} (39.2)/H\textsubscript{2} (60.8).
2.2.2. Apparatus and procedure

The apparatus is shown in Figure 2-1. It consists of a crystallizer (CR) immersed in a temperature-controlled bath. The crystallizer is a vessel made of 316 stainless steel. It has a volume of 323 cm3. The crystallizer has two circular viewing windows made of Plexiglas on the front and back. Mixing of the crystallizer contents is accomplished using a magnetic stir bar. A baffle arrangement is used in the crystallizer in order to prevent vortex formation and to enhance mixing of the crystallizer contents. Two Rosemount smart pressure transducers, model 3051 (Norpac controls, Vancouver, BC) are employed for pressure measurement with a maximum uncertainty of 25 kPa. The temperature of the liquid phase in the crystallizer is measured using an Omega copper-constantan thermocouple with an uncertainty of 0.1 K.

The kinetics of hydrate formation were studied through gas uptake measurements following a technique pioneered at Bishnoi’s laboratory (Englezos et al., 1987a; 1987b; Vysniauskas and Bishnoi, 1983). The procedure followed in this work is described in detail elsewhere (Lee et al., 2005). Essentially, one measures the amount of hydrate forming gas consumed in the crystallizer under constant temperature and pressure. The key to obtaining meaningful results is an accurate measurement of the amount of gas consumed and the control of the mixing conditions in the crystallizer. The first requirement is satisfied through accurate pressure measurements, a pressure control system and a reference gas reservoir. Use of mass flow meters is expected to be significantly less accurate and that it is discouraged. The second requirement is satisfied through the baffle arrangement described in detail by Lee et al. (2005).
Figure 2-1: Apparatus.

The crystallizer was filled with 140 cm3 of water. Any air present was flushed out by repeating three pressurizations with the gas mixture and depressurizations to atmospheric pressure. Subsequently, the crystallizer was filled with hydrate forming gas until the desired pressure is reached. Once the temperature was stabilized (typically within 2 min) the stirrer in the crystallizer was started. This is time zero. It is assumed that the amount of gas dissolved in water up to this point is negligible because the time is very small for mass transfer due to diffusion into the quiescent liquid water to be
significant. As the gas in the crystallizer was consumed for hydrate formation, additional
gas was supplied and the pressure was maintained constant with a PID controller.

All kinetics experiments were carried out at pressures above the equilibrium so
that a finite rate of crystallization is obtained. The deviation of the experimental pressure
from the equilibrium pressure is frequently called driving force.

2.2.3. Calculation of the amount of gas consumed

At any given time, the total number of moles ($n_{T,t}$) in the system remains constant and is
equal to that at time zero ($n_{T,0}$). The system includes the crystallizer (CR), the supply
vessel (SV) and the connecting tubing. The total number of moles at any given time is the
sum of the number of moles (n_{SV}) in the supply vessel, the number of moles (n_G) in gas
phase (G) of the crystallizer and the number of moles (n_H) consumed to form hydrate (H)
or dissolved in water.

\[n_{G,0} + n_{SV,0} + n_{H,0} = n_{G,t} + n_{SV,t} + n_{H,t} \] \hspace{1cm} (2.1)

The number of moles that have either gone into the water or have been consumed for
hydrate formation can then be calculated as follows.

\[n_{H,t} - n_{H,0} = n_{G,0} - n_{G,t} + n_{SV,0} - n_{SV,t} \] \hspace{1cm} (2.2)

or

\[\Delta n_H = n_{H,t} - n_{H,0} = \left(\frac{PV}{zRT} \right)_{G,0} - \left(\frac{PV}{zRT} \right)_{G,t} + \left(\frac{PV}{zRT} \right)_{SV,0} - \left(\frac{PV}{zRT} \right)_{SV,t} \] \hspace{1cm} (2.3)

Where z is the compressibility factor calculated by Pitzer’s correlation (Smith et al.,
2001).
During the kinetic experiment, the composition of the gas phase is determined by gas chromatography. At any given time by knowing the composition of the gas mixture in the crystallizer, the number of moles of the individual gas component consumed for hydrate formation can be calculated by the component mass balance

\[
\Delta n_{ii}^i = n_{ii, t}^i - n_{ii, 0}^i = \left(y_i^i \frac{PV}{zRT} \right)_{G, 0} - \left(y_i^i \frac{PV}{zRT} \right)_{G, t} + \left(y_i^i \frac{PV}{zRT} \right)_{SV, 0} - \left(y_i^i \frac{PV}{zRT} \right)_{SV, t}
\]

\[
= V_G \left[\left(y_i^i \frac{P}{zRT} \right)_{G, 0} - \left(y_i^i \frac{P}{zRT} \right)_{G, t} \right] + y_i^i V_{SV} \left[\left(\frac{P}{zRT} \right)_{SV, 0} - \left(\frac{P}{zRT} \right)_{SV, t} \right]
\]

(2.4)

where, the superscript \(i \) refers to component of the gas mixture.

Conversion of water to hydrates is determined from the information obtained from gas uptake and the experimental conditions using the following equation

\[
\text{Conversion of water to hydrates (mol\%)} = \frac{\Delta n_{H_2O} \times \text{Hydration Number}}{n_{H_2O}} \times 100
\]

(2.5)

where \(\Delta n_{H_2O} \) is the number of moles of gas consumed for hydrate formation at the end of the experiment determined from the gas uptake measurement and \(n_{H_2O} \) is the total number of moles of water in the system. The hydration number is defined as the number of water molecules per guest molecule. It can be determined experimentally using tools like NMR spectroscopy combined with statistical thermodynamics (Davidson et al., 1983; Ripmeester and Ratcliffe, 1988), Raman spectroscopy (Sum et al., 1997; Uchida et al., 1999) and single crystal and powder x-ray and neutron diffraction (Kumar et al. 2008; Rawn et al., 2003; Susilo et al. 2007; Udachin et al., 2002).
The uncertainties in the mole numbers due to the uncertainties in the measurement of pressure, temperature and composition were calculated. For example for the CO$_2$/N$_2$ system (Experiment 3, Table 2-1) the uncertainty was found to be 9.1% at the induction time, 4.3% at 20 minutes after the induction time and 1.9% after 200 minutes. Thus, the uncertainty at the induction time and during the first 10-20 min is believed to be about 10% and it decreases as the number of moles consumed increases.

2.2.4. Gas phase analysis

A Varian CX-3400 gas chromatograph (GC) with a Thermal conductivity detector and flame ionization detector along with a CP-PoraPLOT U capillary column were used. Ultra high purity He was used as carrier gas. The gas sample was transferred from the crystallizer to a 1/8” stainless steel sampling tube. The volume of the sampling tube is 300 μL, considering that the volume of crystallizer is 323 mL it is reasonable to assume that the amount in the sample does not affect the mass balance calculations. The sampling tube was flushed out three times with He before collecting a sample for analysis. The gas from the sampling tube was injected into the GC through a 6-port valve which had 100 μL of sampling loop.

2.3. Results and discussion

Incipient equilibrium hydrate formation conditions for a 16.9% CO$_2$ and the rest N$_2$ was determined using the isothermal pressure search method (Englezos and Ngan, 1994). The equilibrium pressure for three temperatures of 273.7, 274.8 and 275.9 K, respectively was determined and found to be 7.7, 8.4 & 9.2 MPa respectively. Figure 2-2 shows the comparison of the experimental data with data available in the literature and as it can be
seen, the data agrees well with the literature. The incipient equilibrium hydrate formation pressure at 273.7 K is 7.7 MPa. It is noted that at 273.7 K, the minimum pressure required to form pure CO$_2$ and pure N$_2$ hydrates is 1.32 and 17.13 MPa respectively (Deaton and Frost, 1946; van Cleeff and Diepen, 1960). CO$_2$ forms structure I (sI) and N$_2$ forms structure II (sII) hydrate. The structure of hydrate from the gas mixture is either sI or sII depending upon the relative ratio of the two gas molecules in the small and large cavities (Kang and Lee, 2000). For a gas mixture of more than 10% CO$_2$ and rest N$_2$, the hydrate structure formed is structure I (Seo et al., 2005).

![Figure 2-2: Incipient equilibrium hydrate formation conditions for CO$_2$/N$_2$ gas mixture.](image-url)
Gas uptake measurements were carried out at 273.7 K and at 9.0, 10 and 11.0 MPa which correspond to 1.3, 2.3 and 3.3 MPa above the hydrate equilibrium pressure. Table 2-1 summarizes the results. Experiments with fresh water as well as with memory water were conducted. Memory refers to the situation where water that is used in the experiment has experienced hydrate formation. The water obtained is used three hours after hydrate decomposition.

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Moles consumed</th>
<th>Temperature [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>272.0</td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
<td>272.5</td>
</tr>
<tr>
<td>4</td>
<td>0.04</td>
<td>273.0</td>
</tr>
<tr>
<td>6</td>
<td>0.06</td>
<td>273.5</td>
</tr>
<tr>
<td>8</td>
<td>0.08</td>
<td>274.0</td>
</tr>
<tr>
<td>10</td>
<td>0.10</td>
<td>274.5</td>
</tr>
<tr>
<td>12</td>
<td>0.12</td>
<td>275.0</td>
</tr>
</tbody>
</table>

Figure 2-3: A typical gas uptake measurement curve together with the temperature profile in the aqueous phase (experiment 3, table 3-1).

A typical gas consumption or gas uptake curve for a period of two hours is shown in Figure 2-3. The general shape of this curve agrees with the behavior of the curve described in detail by Bishnoi and Natarajan (1996). As seen, nucleation takes place in 19 min and the number of moles of gas (CO$_2$/N$_2$) consumed up to that time (induction time) is 0.033. The rate of hydrate growth (R_t) is defined as the slope of the gas uptake curve
during the first 20 min after the induction time. The rates of hydrate growth along with other information are given in Table 2-1. The justification for this choice is the visual observation that the hydrate particles are well-dispersed in the water phase (Lee et al. 2005). Visual observations of the crystallizer contents allow the experimenter to approximately identify when the state of extensive hydrate crystal agglomeration commences and results in accumulation of crystals as stagnant pockets at the gas/water interface. This prevents more gas from coming into contact with the water. The agglomeration behavior of hydrate crystals has not received any considerable attention and thus it is difficult to correlate its behavior. However, this is changing. Fidel-Dufour et al. (2006) has studied the rheology of methane hydrates in water/dodecane emulsion system.

The temperature in the water phase is also shown in figure 2-3. Gas hydrate formation is an exothermic process. As seen, the temperature rises immediately after nucleation, reaches a higher level and then gradually is brought down because the temperature controller brings back the temperature to the set point value. The gas uptake curves for all of the experiments along with the temperature profile are given in Appendix A.
Table 2-1: Experimental conditions along with measured induction times and hydrate formation rates for CO\textsubscript{2}/N\textsubscript{2}/H\textsubscript{2}O system at 273.7 K.

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Sample State</th>
<th>Driving forcea [MPa]</th>
<th>P\textsubscript{exp} [MPa]</th>
<th>Induction Time [min]</th>
<th>R\textsubscript{f}b [mol/min]</th>
<th>Final moles consumed [mol of gas/mol of H\textsubscript{2}O]</th>
<th>Water conversion to hydrated [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fresh</td>
<td>3.30</td>
<td>11.0</td>
<td>14.0</td>
<td>0.0020</td>
<td>0.018</td>
<td>11.2</td>
</tr>
<tr>
<td>2</td>
<td>Memory</td>
<td>3.30</td>
<td>11.0</td>
<td>6.3</td>
<td>0.0020</td>
<td>0.013</td>
<td>8.4</td>
</tr>
<tr>
<td>3</td>
<td>Fresh</td>
<td>3.30</td>
<td>11.0</td>
<td>19.0</td>
<td>0.0018</td>
<td>0.014</td>
<td>9.0</td>
</tr>
<tr>
<td>4</td>
<td>Memory</td>
<td>3.30</td>
<td>11.0</td>
<td>9.7</td>
<td>0.0021</td>
<td>0.017</td>
<td>10.8</td>
</tr>
<tr>
<td>5</td>
<td>Fresh</td>
<td>2.30</td>
<td>10.0</td>
<td>10.3</td>
<td>0.0017</td>
<td>0.014</td>
<td>9.0</td>
</tr>
<tr>
<td>6</td>
<td>Memory</td>
<td>2.30</td>
<td>10.0</td>
<td>7.0</td>
<td>0.0021</td>
<td>0.017</td>
<td>10.6</td>
</tr>
<tr>
<td>7</td>
<td>Fresh</td>
<td>2.30</td>
<td>10.0</td>
<td>16.3</td>
<td>0.0014</td>
<td>0.013</td>
<td>8.1</td>
</tr>
<tr>
<td>8</td>
<td>Memory</td>
<td>2.30</td>
<td>10.0</td>
<td>9.3</td>
<td>0.0015</td>
<td>0.013</td>
<td>8.2</td>
</tr>
<tr>
<td>9</td>
<td>Fresh</td>
<td>1.30</td>
<td>9.0</td>
<td>1063.3</td>
<td>0.0005</td>
<td>0.008</td>
<td>5.3</td>
</tr>
<tr>
<td>10</td>
<td>Memory</td>
<td>1.30</td>
<td>9.0</td>
<td>154.0</td>
<td>0.0003</td>
<td>0.007</td>
<td>4.3</td>
</tr>
<tr>
<td>11</td>
<td>Fresh</td>
<td>1.30</td>
<td>9.0</td>
<td>No hydratec</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>Memory</td>
<td>1.30</td>
<td>9.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

a Driving force = P\textsubscript{exp} - P\textsubscript{eq} (P\textsubscript{exp} = experimental pressure, P\textsubscript{eq} = equilibrium pressure)

b Rate of hydrate growth (gas consumption rate for the first 20 min after nucleation)

c Did not nucleate for two days.

d Hydration number of 6.28 (Kang et al., 2001) was used for the calculation.
It is generally accepted that the induction time required in a system with memory is shorter (Lee et al., 2005; Uchida et al., 2000). This is what was also found in this work. For example, as it can be seen in Figure 2-4, the induction time was shortened from 1063.3 min (experiment 9) to 154.0 min (experiment 10) for a driving force of 1.3 MPa. There is a weak correlation between induction time and driving force (Bishnoi and Natarajan, 1996). In general, the induction time is shorter as the driving force increases. This is seen in experiments 1 to 8. It is noted that the observed memory-related phenomena have not been explained yet. Buchanan et al. (2005) concluded that there is no significant difference between the structure of water before hydrate formation and the structure of water after hydrate decomposition nor is there any significant change to the methane hydration shell. It is noted that nucleation is heterogeneous under almost all circumstances encountered. This means that memory effects also are determined by impurities rather than structure (which is an intrinsic property).
The calculated rates (Table 2-1), R_f, indicate that in general the rate decreases with decreasing driving force. While one should be careful not to generalize these observations the observed rates indicate the relative speed of phase change of the different hydrate forming systems. It should be pointed out that kinetics through gas uptake measurements and macroscopic techniques in general are in reality “average kinetics” over the whole sample because the conversion to hydrate is quite an inhomogeneous process and that the observation of gradual conversion in bulk samples only arises as a result of averaging over many local environments (Moudrakovski et al., 2004). Susilo et al. (2006) employed Nuclear Magnetic Resonance (NMR) spectroscopy and imaging (MRI) to monitor the kinetics of structure I and H methane hydrate growth and found that the results agree with the results from gas uptake measurements obtained.
by Lee et al. (2005). Figure 2-5 shows the calculated rates of hydrate formation plotted against the experimental pressure for all the experiments reported in Table 2-1. As it can be seen in the figure, in general the rate of hydrate formation increases with the increase in driving force. The standard errors and R^2 values for the calculated rates are given in Appendix A (Table A-1).

![Graph showing rate of hydrate formation vs experimental pressure](image)

Figure 2-5: Rate of hydrate formation vs experimental pressure for the kinetic experiments given in Table 2-1.

The conversion of water to hydrate for all the kinetic experiments is given in Table 2-1. The conversions of water to hydrate for 1.3, 2.3 and 3.3 MPa driving force are in average 4.8, 9.0, and 9.9, respectively. There is certainly an increasing trend in the conversion with the increase in the driving force for hydrate formation. Overall, the conversion of water to hydrate is low because of the mass transfer resistance in the
existing lab scale apparatus which employs mixing the liquid contents using a magnetic stirrer bar coupled with an electric motor. Recall that, visual observations of the crystallizer contents allow the experimenter to identify the state of extensive hydrate crystal agglomeration which results in accumulation of crystals as stagnant pockets at the gas/water interface. This prevents more gas from coming into contact with the water. Eventually, the gas uptake slows down with time due to the formation of bulk hydrates at the water/gas interface which hinders further growth of hydrate formation (Figure 2-3).

Table 2-2: Vapor phase composition during hydrate formation from CO$_2$/N$_2$ mixture.

<table>
<thead>
<tr>
<th>Sampling time (min)</th>
<th>CO2 mole fraction in CR ($y{CO_2}$)</th>
<th>Sampling time (min)</th>
<th>CO2 mole fraction in CR ($y{CO_2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.169</td>
<td>0.0</td>
<td>0.169</td>
</tr>
<tr>
<td>15.0</td>
<td>0.132</td>
<td>16.0</td>
<td>0.127</td>
</tr>
<tr>
<td>52.0</td>
<td>0.108</td>
<td>30.0</td>
<td>0.118</td>
</tr>
<tr>
<td>82.0</td>
<td>0.096</td>
<td>52.0</td>
<td>0.108</td>
</tr>
<tr>
<td>260.0</td>
<td>0.097</td>
<td>128.0</td>
<td>0.109</td>
</tr>
</tbody>
</table>

The gas phase was analyzed for a typical hydrate formation experiment at 273.7 K and pressures 10.0 MPa and 11.0 MPa respectively. Table 2-2 shows the gas composition in the gas phase of the crystallizer at various times during experiments 3 and 7. As seen, the CO$_2$ content in the gas phase of the crystallizer decreases as the experiment progresses which indicates enrichment of the hydrate phase with this gas. It is interesting to recall that the crystallizer operates in a semi-batch mode and constant pressure. The
fate of the gases in the crystallizer is tracked through equation 2.4 and the results are plotted in Figure 2-6 and Figure 2-7 which show the CO$_2$ and N$_2$ moles consumed to form hydrate. The CO$_2$/N$_2$ molar ratio is also shown. As seen, more gas is consumed at 11 MPa (experiment 3) compared to experiment 7 at 10 MPa. Since the number of moles of CO$_2$ consumed is almost same it means that more N$_2$ went into hydrate at 11 MPa. This is intuitively correct since the equilibrium formation pressure for N$_2$ is much higher than that of CO$_2$. As seen, the formation of hydrates from the CO$_2$/N$_2$ mixture resembles a fractionation process whereby the composition of the hydrate is different than that in the gas phase. This is desirable and provides the basis for a hydrate based CO$_2$/N$_2$ separation process.

![Figure 2-6: Mole consumption and molar ratio for the CO$_2$/N$_2$/H$_2$O system at 11 MPa.](image-url)
Figure 2-7: Mole consumption and molar ratio for the CO$_2$/N$_2$/H$_2$O system at 10 MPa.

2.4. Conclusions

Incipient equilibrium hydrate formation data were presented for three temperatures for a 16.9\% CO$_2$ rest N$_2$ gas mixture. The equilibrium pressure at 273.7, 274.8 and 275.9 K, was found to be 7.7, 8.4 & 9.2 MPa respectively. Gas hydrate formation kinetic experiments were carried out in a crystallizer operating in a semi-batch mode with a fixed amount of water and a continuous supply of gas at 273.7 K and constant pressure. Hydrates formed from memory water reduced the induction time significantly for experiment carried out at a lower driving force and the rate of hydrate formation decreases with decreasing driving force. CO$_2$ is preferentially incorporated into the hydrate crystal offering the possibility for separation from the binary CO$_2$/N$_2$ flue gas mixture. The water conversion achieved ranged from 4.3 to 11.2 \%.
2.5. References

3. THE CLATHRATE HYDRATE PROCESS FOR POST COMBUSTION CAPTURE OF CO$_2$

3.1. Introduction

There are two general approaches to CO$_2$ capture: either carbon can be removed before the fuel is burned (pre-combustion capture) or CO$_2$ can be removed from the flue gas (post-combustion capture) (Klara and Srivastava, 2002). Post combustion capture deals with CO$_2$ from conventional power plants. On the other hand Integrated Coal Gasification Cycle (IGCC) plants offer one of the most promising routes to CO$_2$ capture by converting the gas from the gasifier into a stream of H$_2$ and CO$_2$ via a shift reaction (Barchas and Davis, 1992). CO$_2$ can then be removed for disposal and the resultant H$_2$ could be used in fuel cells or in gas turbines. Further work is needed to improve efficiency and reduce operation cost of an IGCC plant, particularly with CO$_2$ capture (Audus, 1998; Davison, 2004).

A variety of processes have been developed for removing or isolating a particular gaseous component from a multi-component gaseous stream. These processes include absorption, adsorption, membrane separation etc. (Barchas and Davis, 1992; Kikkinides et al., 1993). It has been estimated that, the cost of separation and disposal of CO$_2$ from existing coal fired, air blown boilers would increase the cost of electricity by about 75 % (Hendriks, 1990). The cost of separation of CO$_2$ alone reduces the power generation efficiency from 38 to 26 % (Chakma et al., 1995). A thorough review on the processes

for CO₂ separation is available in the literature (Aaron and Tsouris, 2005). Liquid absorption using amines was considered the most promising current method while some other methods are promising but too new for comparison. There is continued interest in the development of less energy intensive processes.

3.2. The clathrate hydrate process

One of the new methods for separating CO₂ from flue gas or fuel gas (mixture of CO₂-H₂) is through clathrate or gas hydrate formation. As it was found in the previous chapter when gas hydrate crystals are formed from a CO₂/N₂ mixture the concentration of these gases in the hydrate crystals is different than that in the original gas mixture. This is the basis for the utilization of clathrate hydrate formation/decomposition as a separation process.

Treated flue gas contains CO₂, N₂, O₂. Since N₂ and O₂ form hydrate crystals at approximately the same conditions the treated flue gas is considered a CO₂/N₂ mixture. Thus, in post-combustion capture from power plants using hydrates, the task is to separate CO₂ from a CO₂/N₂ mixture in which the CO₂ molar content is approximately 15-20%. Figure 3-1 illustrates the basic idea behind the gas separation using gas hydrate technology. A CO₂/N₂ mixture is fed in to the process where it comes into contact with water at suitable temperature and pressure conditions and forms hydrate crystals. The crystals are separated and subsequently decomposed to create the CO₂-rich stream while the rest constitute the CO₂-lean one.
The first task towards process development is to determine the operating temperature and the minimum hydrate formation pressure at the operating temperature for the flue gas mixture. A conventional power plant emits flue gas of composition 15-20 % CO$_2$, 5-9 % O$_2$ and rest N$_2$. Pretreatment involves removal of acid gases (H$_2$S, SO$_2$) and particulates. The pretreated flue gas is to be used in the clathrate hydrate process for CO$_2$ separation. A CO$_2$/N$_2$ gas mixture containing 16.9 % CO$_2$ was used in our work. A temperature of 273.7 K was chosen as the operating temperature since it was decided to form hydrate crystals from liquid water instead of ice. The hydrate formation pressure increases with temperature and in order to minimize compression costs the smallest possible pressure is desired. The minimum pressure to form hydrate crystals from this flue gas at 273.7 K was found to be 7.7 MPa. It is noted that at 273.7K, the minimum pressure required to form pure CO$_2$ and pure N$_2$ hydrates is 1.32 (Deaton and Frost, 1946) and 17.13 MPa (van Cleeff and Diepen, 1960) respectively.

Figure 3-1: Hydrate based gas separation.
The second task is to establish the rate of hydrate formation and separation efficiency. For that purpose hydrate formation/decomposition experiments were carried out at 273.7 K in a semi-batch mode. The hydrate formation experiments are described in detail in Chapter 2.

The rate of phase change from a water-gas mixture to hydrate is dependent on the magnitude of the deviation of the experimental conditions from those at equilibrium (Englezos, 1993; Lee et al., 2005). Thus, hydrate formation experiments were carried out at 10.0 and 11.0 MPa. These conditions are significantly above the minimum pressure (7.7 MPa) required for hydrate formation.

Following hydrate formation for about 120 minutes hydrate crystal/gas separation was carried out. The pressure in the crystallizer was quickly brought down to atmospheric pressure and the hydrates were allowed to completely dissociate. The gas which evolved from the decomposed hydrate and that released from the liquid water phase (dissolved amount at the higher pressure) was collected and analyzed by gas chromatography. The procedures for the hydrate formation and separation experiments are given as a flow diagram in Figure 3-2.
Hydrate formation kinetic experiment (Chapter 2)

140 cm³ of water is added to Crystallizer (CR)

CR pressurized with CO₂/N₂ to \(P_{\text{exp}} \)

Hydrate formation for two hours at constant \(T \) and \(P_{\text{exp}} \)

End of experiment

Gas supplied by a Supply Vessel (SV)

Gas sample from CR is analyzed in GC

Crystallizer pressure set to 1 atm

Hydrates allowed to decompose

Gas evolved is analyzed in GC

Figure 3-2: Block diagram of the experimental methods for the hydrate formation kinetic and separation experiments.

3.3. \(\text{CO}_2 \) recovery and separation factor

The following quantities are introduced in order to provide appropriate metrics for the separation. Their values are calculated based on the kinetic and separation experiments.

The \(\text{CO}_2 \) recovery or split fraction (S.Fr.) of carbon dioxide in gaseous and hydrate phase is calculated as follows
where \(n_{\text{Feed}}^{\text{CO}_2} \) is the as number of moles of CO\(_2\) in feed gas and \(n_{\text{H}}^{\text{CO}_2} \) is the number of moles of CO\(_2\) in hydrate phase at the end of the experiment. In addition, the *separation factor* (S.F) is given by

\[
\text{S.F.} = \frac{n_{\text{H}}^{\text{CO}_2}}{n_{\text{N}_2}^{\text{gas}} \times n_{\text{H}}^{\text{N}_2}}
\]

where \(n_{\text{H}}^{\text{CO}_2} \) is the number of moles of CO\(_2\) in the gas phase at the end of the kinetic experiment, \(n_{\text{H}}^{\text{N}_2} \) is the number of moles of N\(_2\) in the gas phase at the end of the kinetic experiment and \(n_{\text{H}}^{\text{N}_2} \) is the number of moles of N\(_2\) in the hydrate phase.

3.4. Results and discussion

Figure 3-3 shows the CO\(_2\) content in the flue gas mixture (initial composition), the hydrate formed and the residual gas phase (final composition). As seen, flue gas (17% CO\(_2\)) forms hydrate which contains about 55 to 57% CO\(_2\). The split fraction or CO\(_2\) recovery was calculated and was found to be 36.7% for the experiment carried out at 11.0 MPa and 273.7 K. The separation factor for the above experiment calculated from equation 2 is 5.3. For the experiment at 10.0 MPa and 273.7 K the values obtained for CO\(_2\) recovery and separation factor are 42.1% and 13.2 respectively (see Table 3-1). As the pressure increases the CO\(_2\) recovery decreases. This is due to the fact that at higher pressure more number of N\(_2\) gas will occupy its corresponding cages in the hydrate structure. This is also seen in the decrease in the separation factor.
The above results indicate that following a one-stage hydrate formation/decomposition process for the CO$_2$/N$_2$ mixture, a CO$_2$-rich gas is obtained which contains 57.3 % CO$_2$ at 10 MPa. Given that the equilibrium hydrate formation pressure of this gas mixture is about 2.4 MPa, a second stage is advocated to obtain a more concentrated CO$_2$ mixture. The second hydrate formation vessel would operate at a lower pressure compared to the first one since the equilibrium pressure is lower by about 5.3 MPa. The hydrate formation/separation experiment was carried out for a gas mixture consisting of 57.0% CO$_2$ and rest N$_2$ at 5.0 MPa and 273.7 K. Figure 3-4 shows the gas uptake curve for the above experiment. The composition of this hydrate after decomposition had 83.2% CO$_2$ and the rest N$_2$. Hence a third stage of hydrate formation/separation is carried out using this gas mixture. Hydrate formed from the
83.0%/17.0% (CO₂/N₂) gas mixture at 2.5 MPa and 273.7 K gave a hydrate with a composition of 99.1% CO₂. This CO₂ can be readily disposed for sequestration. Figure 3-5 shows the gas uptake curve for the experiment conducted. The uptake curves in figure 3-4 and figure 3-5 display the expected characteristics of the gas uptake curve.

[Graph of gas uptake curve with Induction time = 2.7 min and Rate (Rf) = 0.0020 mol/min]

Figure 3-4: Gas uptake measurement curve for the second stage (Pressure = 5.0 MPa & Temperature = 273.7K).
Figure 3-5: Gas uptake measurement curve for the third stage (Pressure = 2.5 MPa & Temperature = 273.7K).

Figure 3-6 shows the CO\(_2\) content in the flue gas mixture (initial composition), the hydrate formed and the residual gas phase (final composition) for the three stages. Hence, in three stages of hydrate formation/decomposition it is possible to obtain a CO\(_2\) rich stream consisting of 99.0% CO\(_2\). Moreover, we envision a hybrid process whereby hydrate formation in three stages is combined with a membrane process. This concept is illustrated in Figure 3-7.
Figure 3-6: Composition changes due to stage-wise hydrate formation from CO₂/N₂ mixtures.

Table 3-1 shows the calculated split fraction and separation factors for the three stages for CO₂/N₂ separation. The major disadvantage of the process shown in Figure 3-7 is the high pressure required specially in the first stage. The above-illustrated process shows the feasibility of the concept but not the economic viability. Compression costs were calculated for a 500 MW conventional power plant, in order to pressurize the flue gas from 0.1 MPa and 70°C to 10 MPa and 1°C. It was found that four compression stages with inter-cooling are required. The power penalty was found to be 385 MW, which is 75% of the power output (The calculations are given in Appendix B). Clearly, from an economic viewpoint lower pressures are required. This can be achieved by adding a proper chemical to reduce the hydrate formation pressure at any given temperature without compromising the CO₂ recovery and separation efficiency. Clearly,
this demonstrates the need for additives to render the hydrate process economically attractive. Tetrahydrofuran (THF) is one such additive (Kang and Lee, 2000). Its evaluation is presented in the next chapter.

Table 3-1: Split fraction and separation factors for the three stages for CO$_2$/N$_2$ separation.

<table>
<thead>
<tr>
<th>System</th>
<th>Experimental conditions</th>
<th>Split fraction or CO$_2$ recovery</th>
<th>Separation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pexp (MPa)</td>
<td>Peq (MPa)</td>
<td></td>
</tr>
<tr>
<td>CO$_2$ (16.9%)/N$_2$</td>
<td>10.0</td>
<td>7.7</td>
<td>0.42</td>
</tr>
<tr>
<td>CO$_2$ (57.0%)/N$_2$</td>
<td>5.0</td>
<td>2.4</td>
<td>0.32</td>
</tr>
<tr>
<td>CO$_2$ (83.0%)/N$_2$</td>
<td>2.5</td>
<td>1.6</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Pexp: Experimental pressure; Peq: Equilibrium pressure

3.5. Conclusions

New kinetic and thermodynamic data on the separating of carbon dioxide from flue gas (post combustion capture) using gas hydrate formation are presented. Hydrate crystal formation/decomposition from CO$_2$/N$_2$ mixtures showed that CO$_2$ prefers the hydrate phase compared to N$_2$. Two metrics split fraction or CO$_2$ recovery and separation factor were introduced to quantify the separation achieved by the hydrate process. CO$_2$ recovery was found to be 36.7 to 42.1 % in one stage at 11.0 and 10.0 MPa respectively. A hybrid hydrate-membrane process was proposed for the post combustion capture of carbon dioxide involving three hydrate formation/decomposition stages. The process is able to produce a 99.0% CO$_2$ stream. Compression calculations revealed that additives must be used in order to reduce the operating pressure and thus improve the economics of the process.
Figure 3-7: A hybrid hydrate-membrane process for CO₂ recovery from flue gas.
3.6. References

4. THE MEDIUM-PRESSURE CLATHRATE HYDRATE/MEMBRANE HYBRID PROCESS FOR POST COMBUSTION CAPTURE OF CO$_2$3

4.1. Introduction

A conceptual process flow sheet was presented in Chapter 3 for the recovery of carbon dioxide from a flue gas mixture in three stages. The first stage requires a pressure of 10 MPa. In order to compress the flue gas from a 500 MW conventional power plant 75 % of the power output would be required. Consequently, the need for a lower pressure process was recognized. It is known that the addition of tetrahydrofuran (THF) even in small quantities considerably reduces the equilibrium pressure (Kang and Lee, 2000). While the THF reduces the equilibrium pressure it is not known how the kinetics of the phase change is influenced. Therefore, it is of interest to assess how the addition of THF also affects the kinetics of hydrate formation and separation efficiency and CO$_2$ recovery.

Thus, the objective is to provide a conceptual process based on the use of THF along with the relevant thermodynamic data and kinetic information as well as data on the CO$_2$ recovery and separation efficiency of the process.

4.2. Experimental section

A CO$_2$/N$_2$ gas mixture containing 16.9 % CO$_2$ was used in our experimental work to simulate a pre-treated flue gas mixture. THF used in the experimental work was supplied

by Fisher Scientific with 99% purity. The water used was distilled and deionised. The apparatus and procedures to carry out hydrate phase equilibrium measurements, hydrate kinetic experiments and CO₂ recovery determination (separation experiment) are all described in chapter 2 & chapter 3. Therefore, only a brief description will be given along with relevant references.

The isothermal pressure search method to determine the incipient phase equilibrium hydrate formation pressure at a given temperature and a given THF concentration in the water was followed. Gas hydrate formation kinetic experiments were conducted in a high pressure vessel operating like a chemical reactor in a semi-batch manner at constant temperature and pressure. The apparatus is properly instrumented with pressure and temperature sensors to allow calculation of the mass of gas being consumed in the crystallizer (gas uptake) versus time. In addition, gas phase composition in the hydrate vessel was also measured with a Varian CX-3400 gas chromatograph (GC) with a thermal conductivity detector.

After the end of a kinetic (gas uptake measurement) experiment, the pressure in the crystallizer was quickly brought down to the atmospheric pressure and the hydrates were allowed to completely dissociate. The gas which evolved from the decomposed hydrate and that released from the liquid water phase (dissolved amount at the higher pressure) was collected in the crystallizer (CR).

A temperature of 273.7 K was chosen as the operating temperature. It is noted that the minimum pressure to form hydrate crystals from this flue gas in pure water at 273.7 K was found to be 7.7 MPa. Hydrate kinetic measurements in which the gas uptake in the hydrate crystallizer is measured were carried out at 273.7 K and at different pressures for
0.5, 1.0 and 1.5 mol% THF solutions. All kinetics experiments were carried out at pressures above the equilibrium so that a finite rate of crystallization is obtained. The rate of phase change from a water-gas mixture to hydrate depends on the magnitude of the deviation of the experimental conditions from those at equilibrium (Lee et al., 2005; Uchida et al., 2000). The deviation of the experimental pressure from the equilibrium pressure (overpressure) is called *driving force*. Experiments with fresh water as well as with memory water were conducted.

Conversion of water to hydrates is determined from the information obtained from gas uptake and the experimental conditions using the following equation

\[
\text{Conversion of water to hydrates (mol%)} = \left(\frac{\Delta n_{H,↓} + \Delta n_{\text{THF}}}{n_{\text{H}_{2}\text{O}}} \right) \times 100 \quad (4.1)
\]

where \(\Delta n_{H,↓} \) is the number of moles of gas consumed for hydrate formation at the end of the experiment determined from the gas uptake measurement, \(n_{\text{H}_{2}\text{O}} \) is the total number of moles of water in the system and \(\Delta n_{\text{THF}} \) is the number of moles of THF consumed for hydrate formation at the end of the kinetic experiment. \(\Delta n_{\text{THF}} \) is calculated based on the occupancy ratio for sII (16S:8L), i.e. 1 mole of gas consumed in small cages would require ½ mole of THF in the large cage.

4.3. Results and discussion

4.3.1. Phase equilibrium measurements

Table 4-1 presents the incipient hydrate formation conditions for the flue gas mixture in the presence of varying amounts of THF at 273.7, 274.8 and 275.9 K. The \(\text{CO}_2 \) composition in the gas phase at the equilibrium condition was determined by gas
chromatography and is also given in the table. As seen, the gas phase is slightly leaner in CO₂ compared to that of the original gas mixture as expected due to the differential solubility of CO₂ and N₂ in water.

Phase equilibrium measurements were carried out for three molar concentrations of THF which are 0.5, 1.0 and 1.5 mol% respectively. For all the three molar concentrations of THF and 17% CO₂/N₂ gas mixture, the hydrates structure formed is sII (Kang and Lee, 2000; Kang et al., 2001a). It is noted that 17.0% CO₂ and rest N₂ gas mixture in pure water forms structure I (Seo and Lee, 2004).

Table 4-1: Incipient equilibrium hydrate formation conditions for CO₂/N₂/THF/water system.

<table>
<thead>
<tr>
<th>THF Concentration</th>
<th>0.5 mol %</th>
<th>1.0 mol %</th>
<th>1.5 mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (K)</td>
<td>Pressure (kPa)</td>
<td>% CO₂ in gas phase at equilibrium</td>
<td>Pressure (kPa)</td>
</tr>
<tr>
<td>273.7</td>
<td>920</td>
<td>16.8</td>
<td>345</td>
</tr>
<tr>
<td>274.8</td>
<td>1090</td>
<td>15.8</td>
<td>500</td>
</tr>
<tr>
<td>275.9</td>
<td>1350</td>
<td>15.2</td>
<td>690</td>
</tr>
</tbody>
</table>

* Obtained at 274.2 K

Figure 4-1 shows the incipient equilibrium hydrate formation conditions obtained in the presence of THF compared to that of pure water for the same flue gas mixture. Incipient refers to the situation that an infinitesimal amount of hydrate crystals coexist in equilibrium with the gas and aqueous phases (Englezos and Ngan, 1994). As seen, there is a considerable reduction in the equilibrium formation pressures in the presence of THF.
compared to hydrate formation in pure water. The results also agree well with the
literature (Kang and Lee, 2000; Kang et al., 2001a). Interestingly, the system with 1.5
mol% THF formed hydrates at ambient pressure at 273.7K.

![Figure 4-1: Incipient equilibrium hydrate formation conditions for 16.9 % CO₂ and
rest N₂ gas mixture.](image)

The incipient equilibrium measurements indicate that it is preferable from a
process design point of view to select the highest THF concentration and thus achieve the
greater reduction in pressure. For instance, the flue gas mixture that required a minimum
pressure of 7.7 MPa at 273.7 K, now requires only 0.345 MPa to form crystals with the
addition of 1 mol% THF.

Makino et al. (2005) reported phase equilibria for the tetrahydrofuran + water
system below atmospheric pressure in the temperature range from 272 to 278 K. The
temperature-composition diagram of THF + water system (not isobaric conditions) is
given in Figure 4-2. Makino et al. (2005) reported that a 1.13 mol% THF solution can form crystals at 272.27 K & 1.2 kPa while a 2.44 mol% THF solution can form crystals at 275.73 K & 2.6 kPa. This explains why the 1.5 mol % THF solution formed hydrates at ambient pressure and 273.7 K.

![Figure 4-2: Temperature-Composition equilibrium data for THF + water system (not isobaric condition). The symbols H_{II}, S, L, and G stand for s-II THF hydrate, solid (ice Ih), aqueous solution, and gas phases, respectively. The subscript 1 means that the THF composition is lower than the stoichiometric ratio of s-II THF hydrate, and 2 means a composition greater than the stoichiometric ratio (stoichiometric ratio of s-II THF hydrate is 5.56 mol%). Reprinted (“Adapted”) with permission from Makino et al. (2005). Copyright 2005 American Chemical Society.]

4.3.2. Gas uptake measurements

Table 4-2 summarizes the results from the kinetic experiments at 273.75 K. As seen, the induction times at the pressures chosen to conduct the experiments are very
short (less than 7 minutes). Short induction times are definitely desirable from a practical standpoint to speed up the process but the drawback of increasing the pressure is the higher compression costs. Finally, the induction times with memory water are either smaller or practically the same with those in fresh water. Thus, the memory effect is either very small or negligible because the induction times with fresh water are very short.

Figure 4-3 shows a typical gas uptake curve for a period of two hours. This curve represents the kinetics of hydrate growth and agglomeration for the indicated time. The general shape of this curve agrees with the gas uptake curve described in detail by Bishnoi and Natarajan (1996) and Lee et al. (2005). The temperature in the aqueous water phase was also measured and shown in the figure. As seen in the figure, the temperature rises immediately after nucleation because hydrate formation is an exothermic process. The temperature reaches a higher level and then gradually is brought down because the
temperature controller brings back the temperature to the set point value. The number of moles of gas (CO\textsubscript{2}/N\textsubscript{2}) consumed up to the induction time of 6.3 min is 0.0079. The gas uptake curves for all the other experiments reported in the Table 4-2 are given in Appendix C.

The rate of hydrate growth, R_f, is defined operationally as the slope of the gas uptake curve during the first 20 min after the nucleation point (Lee et al., 2005; Linga et al., 2007b). The standard errors and R^2 values for the calculated rates (given in Table 4-2) are given in Appendix C (Table C-1). As seen in Table 4-2, the rates increase with increasing driving force at the same THF concentration as expected. However, the effect of THF concentration is interesting because the observed rates are maximum at 1 mol % THF. The total number of moles consumed at the end of the experiment was also found to be higher in the case of 1.0 mol% THF. Figure 4-4 shows the gas uptake measurements at a constant driving force of 1.2 MPa and different THF concentrations. It is interesting to note that this concentration dependency was also observed for the memory experiments at the same corresponding driving force. The same was observed for experiments carried out at the higher driving force of 2.2 MPa. Figure 4-5 shows the gas uptake curves obtained from three experiments carried out at a 2.2 MPa driving force with memory water. It is not known why the addition of more THF would decrease the rate of gas uptake. From a practical standpoint the 1.0 mol % THF concentration is considered optimum at 273.7 K. It has to be noted that for the same temperature the minimum pressure required for hydrate formation is 7.7 MPa for the CO\textsubscript{2}/N\textsubscript{2} system in the absence of THF.
Table 4-2: Experimental conditions along with measured induction times and hydrate formation rates for CO$_2$/N$_2$/THF/H$_2$O system at 273.7 K. The CO$_2$/N$_2$ composition of the mixture was 16.9 mol % CO$_2$ and balance N$_2$.

<table>
<thead>
<tr>
<th>THF concentration (mol%)</th>
<th>Exp. No.</th>
<th>Sample State</th>
<th>Driving forcea (MPa)</th>
<th>Pexp (MPa)</th>
<th>Induction Time (min)</th>
<th>R_f^b (mol/min)</th>
<th>Final moles consumed (mol of gas/mol of H$_2$O)</th>
<th>Water conversion to hydrated (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1</td>
<td>Fresh</td>
<td>1.25</td>
<td>2.15</td>
<td>6.3</td>
<td>0.0008</td>
<td>0.0046</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Memory</td>
<td>1.25</td>
<td>2.15</td>
<td>2.7</td>
<td>0.0009</td>
<td>0.0042</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Fresh</td>
<td>2.25</td>
<td>3.15</td>
<td>4.3</td>
<td>0.0013</td>
<td>0.0061</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Memory</td>
<td>2.25</td>
<td>3.15</td>
<td>2.7</td>
<td>0.0014</td>
<td>0.0062</td>
<td>5.3</td>
</tr>
<tr>
<td>1.0</td>
<td>5</td>
<td>Fresh</td>
<td>0.70</td>
<td>1.05</td>
<td>1.3</td>
<td>0.0005</td>
<td>0.0031</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Memory</td>
<td>0.70</td>
<td>1.05</td>
<td>1.3</td>
<td>0.0006</td>
<td>0.0024</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Fresh</td>
<td>1.20</td>
<td>1.55</td>
<td>1.0</td>
<td>0.0010</td>
<td>0.0057</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Memory</td>
<td>1.20</td>
<td>1.55</td>
<td>1.0</td>
<td>0.0010</td>
<td>0.0052</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Fresh</td>
<td>2.20</td>
<td>2.55</td>
<td>0.7</td>
<td>0.0012</td>
<td>0.0083</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Memory</td>
<td>2.20</td>
<td>2.55</td>
<td>0.3</td>
<td>0.0016</td>
<td>0.0083</td>
<td>7.1</td>
</tr>
<tr>
<td>1.5c</td>
<td>11</td>
<td>Fresh</td>
<td>1.20</td>
<td>1.35</td>
<td>0.3</td>
<td>0.0008</td>
<td>0.0046</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Memory</td>
<td>1.20</td>
<td>1.35</td>
<td>0.3</td>
<td>0.0008</td>
<td>0.0043</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Fresh</td>
<td>2.20</td>
<td>2.35</td>
<td>0.3</td>
<td>0.0007</td>
<td>0.0069</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Memory</td>
<td>2.20</td>
<td>2.35</td>
<td>0.3</td>
<td>0.0007</td>
<td>0.0055</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Fresh</td>
<td>1.20</td>
<td>1.35</td>
<td>0.3</td>
<td>0.0007</td>
<td>0.0053</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Memory</td>
<td>1.20</td>
<td>1.35</td>
<td>0.3</td>
<td>0.0008</td>
<td>0.0034</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Fresh</td>
<td>2.20</td>
<td>2.35</td>
<td>0.3</td>
<td>0.0009</td>
<td>0.0075</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Memory</td>
<td>2.20</td>
<td>2.35</td>
<td>0.3</td>
<td>0.0009</td>
<td>0.0048</td>
<td>4.1</td>
</tr>
</tbody>
</table>

a Driving force = $P_{\text{exp}} - P_{\text{eq}}$ (P_{exp} = experimental pressure, P_{eq} = equilibrium pressure)

b Rate of hydrate growth (gas consumption rate for the first 20 min after nucleation)

c Experiments carried out at 274.2 K

d Hydration number of 5.71 (Kang et al., 2001b) was used for the calculation.
Figure 4-4: Gas uptake measurement curves for 0.5, 1.0 and 1.5 mol% THF fresh solutions carried out at a driving force of 1.2 MPa or at a pressure of 2.15, 1.55 and 1.4 MPa, respectively.

Figure 4-5: Gas uptake measurement curves for 0.5, 1.0 and 1.5 mol% THF memory solutions carried out at a driving force of 2.2 MPa or at a pressure of 3.15, 2.55 and 2.35 MPa, respectively.
The conversion of water to hydrate for the kinetic experiments performed for different THF concentrations and at different driving force is also given in Table 4.2. The increase in the driving force gave better yields for the experiments for any given THF concentration. The same trend was observed for the other THF concentrations. It is noted that the water conversion to hydrates for 0.5, 1.0 and 1.5 mol% THF solutions are 5.25%, 7.10% and 5.28%, respectively for the experiments conducted at a driving force of 2.2 MPa. This is due to the fact that higher gas consumption was achieved for 1.0mol% THF experiments compared to 0.5 and 1.5mol% THF experiments. Similar trend can be seen for the experiments conducted at the lower driving force (1.2MPa).

Table 4-3: Vapor phase composition during hydrate formation from CO$_2$/N$_2$/THF system.

<table>
<thead>
<tr>
<th>CO$_2$/N$_2$/1.0 mol% THF/H$_2$O at 1.0 MPa (Experiment 5)</th>
<th>CO$_2$/N$_2$/1.5mol%THF/H$_2$O at 1.4 MPa (Experiment 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling time (min)</td>
<td>Sampling time (min)</td>
</tr>
<tr>
<td>CO2 mole fraction in CR (y${CO_2}$)</td>
<td>CO2 mole fraction in CR (y${CO_2}$)</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.169</td>
<td>0.169</td>
</tr>
<tr>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>0.149</td>
<td>0.157</td>
</tr>
<tr>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>0.131</td>
<td>0.131</td>
</tr>
<tr>
<td>20.0</td>
<td>40.0</td>
</tr>
<tr>
<td>0.120</td>
<td>0.111</td>
</tr>
<tr>
<td>40.0</td>
<td>60.0</td>
</tr>
<tr>
<td>0.109</td>
<td>0.103</td>
</tr>
<tr>
<td>60.0</td>
<td>120.0</td>
</tr>
<tr>
<td>0.101</td>
<td>0.099</td>
</tr>
<tr>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>0.098</td>
<td></td>
</tr>
</tbody>
</table>

The composition of the gas phase was analyzed using a GC during the kinetic experiment. Table 4-3 shows the gas composition in the gas phase of the crystallizer at various times during experiments 5 and 16. As seen, the CO$_2$ content in the gas phase of
the crystallizer decreases as the experiment progresses which indicates enrichment of the hydrate phase with this gas. The compositional changes during the experiment resemble the experiments carried out without the presence of THF reported in chapter 2. Recall that a CO\textsubscript{2} composition of 9.7\% and 10.9\% for experiments carried out at 10.0 and 11.0 MPa, respectively after two hours of hydrate formation with the absence of THF was found.

![Figure 4-6: Gas uptake curves for 1.0 mol% THF concentration solutions with memory at 273.7 K and different pressures.](image)

Figure 4-6 shows the effect of driving force on the rate of hydrate formation for 1.0 mol % THF solution. As can be seen, the total number of moles consumed increases with the increase in driving force. Thus a driving force of 2.2 MPa is preferable. A separation experiment was conducted after the end of a kinetic experiment at 273.7 K and
2.55 MPa with 1.0 mol % THF. The released gas was analyzed by gas chromatography and the composition was found to be 36.9 % CO₂ and the balance N₂.

The above results indicate that following a one-stage hydrate formation/decomposition process for the CO₂/N₂ gas mixture with a 1.0 mol% THF aqueous solution, a CO₂-rich gas is obtained which contains approximately 37 % CO₂ at 2.5 MPa. This gas mixture obtained from the first stage will form hydrate at a pressure of at least 3.60 MPa in pure water. Hence, a second stage with 1.0 mol% is advocated to obtain a more concentrated CO₂ mixture as well as to achieve it at a lower experimental pressure. The equilibrium hydrate formation pressure of CO₂/N₂ gas mixture with 38% CO₂ and the rest nitrogen in the presence of 1.0 mol% THF is 0.30 MPa at 273.7 K. A hydrate formation experiment at 2.5 MPa and 273.7 K was carried out to form hydrate with a 38% CO₂/62% N₂ mixture in 1.0 mol% THF, the new CO₂-rich mixture contained 71.2% CO₂ in the hydrate phase. The equilibrium hydrate formation pressure of CO₂/N₂ gas mixture with 70% CO₂ and rest nitrogen in the presence of 1.0 mol% THF is 0.28 MPa at 273.7 K. A kinetic hydrate formation/dissociation experiment was performed for 70.0% CO₂ and the rest N₂ at 2.5 MPa and 273.7 K. The hydrate consisted of 94% CO₂ on a water free basis.

Figure 4-7 shows the CO₂ content in the gas phase (initial composition), the hydrate formed and the residual gas phase (final composition) for a typical kinetic experiment. Figure 4-8 shows the gas uptake measurement curves for the experiments conducted for the three stages. As seen, the rate correlates with the CO₂ content and is fastest at the third stage which contains the most CO₂. Split fraction or CO₂ recovery for the above experiments were determined from equations 3.1 and 3.2 and the calculated
values are reported in Table 4-4. The split factors for the first two stages indicate that nearly half of the CO$_2$ contained in the flue gas is converted into hydrate and feeds the third stage where 37% is recovered and thus separated.

![Graph showing CO$_2$ content in the gas phase (initial composition), hydrate phase and residual gas phase (final composition) for the three process stages all operating at 2.5 MPa and 273.7 K.]

Figure 4-7: CO$_2$ content in the gas phase (initial composition), hydrate phase and residual gas phase (final composition) for the three process stages all operating at 2.5 MPa and 273.7 K.

Table 4-4: Experimental conditions along with measured induction times and hydrate formation rates for hydrate formation from CO$_2$/N$_2$ mixtures corresponding to the initial gas phase composition for the three process stages at 273.7 K.

<table>
<thead>
<tr>
<th>System</th>
<th>Pexp (MPa)</th>
<th>Induction Time (min)</th>
<th>R_f^a (mol/min)</th>
<th>Split fraction or CO$_2$ recovery</th>
<th>Separation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(16.9%CO$_2$/N$_2$/1.0 mol% THF)-stage 1</td>
<td>2.5</td>
<td>0.7</td>
<td>0.0013</td>
<td>0.46</td>
<td>7.6</td>
</tr>
<tr>
<td>(38.0%CO$_2$/N$_2$/1.0 mol% THF)-stage 2</td>
<td>2.5</td>
<td>0.7</td>
<td>0.0016</td>
<td>0.47</td>
<td>6.8</td>
</tr>
<tr>
<td>(70.0%CO$_2$/N$_2$/1.0 mol% THF)-stage 3</td>
<td>2.5</td>
<td>0.3</td>
<td>0.0026</td>
<td>0.37</td>
<td>7.7</td>
</tr>
</tbody>
</table>

aRate of hydrate growth (gas consumption rate for the first 20 min after nucleation)
Figure 4-8. Gas uptake curves for hydrate formation with flue gas mixtures corresponding to the initial gas phase composition of the three process stages at 2.5 MPa and 273.7 K (the initial gas phase compositions are shown in Figure 4-7).

4.3.3. Proposed medium pressure hybrid process

The medium pressure conceptual process with the use of THF (1.0 mol %) operates at 2.5 MPa and 273.75 K as seen in Figure 4-9. Similar to the high pressure process we envision a hydrate process coupled most likely with a membrane-based separation to deal with the lean CO₂ stream. There is still a need for three compression stages to bring the flue gas pressure up to 2.5 MPa in the first crystallizer. If the operating pressure was 1.6 MPa then only two stages would be required. However, the rate of gas consumption as seen in Figure 4-6 is 37 % smaller. Hence, there is a need for a more efficient gas/water contacting that would enhance the rate of hydrate crystallization that would yield better gas consumption for hydrate formation.
Figure 4-9: A hybrid hydrate-membrane process for CO$_2$ recovery from flue gas in the presence of THF as additive. Hydrate formation is carried out at 273.75 K and 2.5 MPa in the three stages.
It would be of interest to compare hydrate process with a membrane or other processes. Herzog et al. (1991) evaluated the performance of the membrane separation process for the capture of CO\textsubscript{2} from conventional power plants and compared it with cryogenic separation and amine absorption. Therefore, we will attempt to compare the proposed medium pressure hybrid process with the membrane process.

4.3.4. Membrane unit for CO\textsubscript{2}/N\textsubscript{2} separation

Membrane separation is believed to be one of the promising methods to separate CO\textsubscript{2}/N\textsubscript{2} gas mixtures (Ho et al., 2006a,b; Herzog et al., 1991; Shingo et al., 2004). The performance of gas separation via membranes relies on the fact that different components in a gas mixture interact differently with the membrane material. One component may dissolve or diffuse preferentially into the membrane and will enrich the permeate or product stream. The other component will enrich the waste or retentate stream. Membranes can be classified into organic, inorganic and hybrids of organic/inorganic systems. Selectivity and permeation rate are the most important properties of a membrane with respect to gas separation. However, a membrane’s durability and mechanical integrity under the operating conditions must be balanced against cost issues. Gas separation using polymeric membranes was first reported over 180 years ago by Mitchell (Mitchell, 1831). Polymeric membranes are economical compared to inorganic ceramic/metal membrane (Feron and Jansen, 2002; Paul and Yampolskii, 1994).

A two stage membrane separation process for CO\textsubscript{2} capture from a flue gas mixture was presented by Herzog et al. (1991). The flowsheet is shown in Figure 4-10.
As can be seen in the figure, a two stage membrane process would produce a CO₂ rich stream consisting of 90% CO₂. The feed for the first membrane stage would have a recycle stream coming out of the second membrane stage with a composition of 36% CO₂. Essentially, 25.5% CO₂ feed stream would produce a permeate stream (CO₂ rich stream) having 55.0% CO₂.

![Figure 4-10: Membrane separation process for flue gas separation, Reprinted from Herzog et al. (1991) with permission of John Wiley & Sons, Inc., Copyright 1991.](image)

Herzog et al. (1991) also presented a comparison of the energy requirements to capture a certain percentage of CO₂ and to compress it to 150 bars for transport as a supercritical fluid. They compared four methods namely, air separation/FG recycling, an amine scrubbing process, cryogenic fractionation and a membrane separation process. For a 500MW, CO₂ capture by Air separation/FG recycling would require an energy requirement of 26-31% of the energy of coal, Amine scrubbing requires 47-79% of the energy of coal, Cryogenic fractionation would require 55-95% of the energy of coal and the membrane separation process would require 50-75% of the energy of the coal. Moreover, only amine scrubbing and cryogenic fractionation would produce a CO₂ rich stream.
stream consisting of >95% CO\(_2\). The other two processes only produce a 90% CO\(_2\) stream. In order to further enrich the CO\(_2\) concentration, a third stage would be required for the membrane separation process. Overall, in a membrane separation process, the dominant cost is the cost associated with the compression of the flue gas to induce the pressure differences between the feed side and the permeate side of the membrane (Herzog et al., 1991; Ho et al., 2006a; Shingo et al., 2004).

Table 4-5: Comparison of energy penalty between membrane separation process and hydrate process.

<table>
<thead>
<tr>
<th></th>
<th>Membrane separation (Ho et al., 2006a)</th>
<th>Hydrate process (Tajima et al., 2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPO</td>
<td>PEO</td>
</tr>
<tr>
<td>Power plant (MW)</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>CO(_2) in feed (%)</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Total power loss</td>
<td>267</td>
<td>243</td>
</tr>
<tr>
<td>Energy penalty (% power plant output)</td>
<td>53.4</td>
<td>48.6</td>
</tr>
</tbody>
</table>

4.3.5. Comparison of hydrate process with membrane separation

Ho et al. (2006a) presented a detailed comparison for the performance of the three membranes (Poly phenylene oxide (PPO), Poly ethlene oxide (PEO) and Polyimide (PI)), for CO\(_2\) capture from a flue gas mixture. Tajima et al. (2004) estimated the energy consumption required for a hydrate based separation process for CO\(_2\) capture from a flue gas mixture. It was found that for a 1000MW power plant the total energy consumption for the hydrate based separation process would be 158.4 MW. Tajima et al. (2004) reported the energy consumption for a single stage hydrate formation/decomposition operating at 274.0 K and 140 bars. Tajima et al. (2004) also reported that some of the compression work on the feed gas can be recovered by the expansion of the off gas
stream in a turbine. The results from Ho et al. (2006a) and Tajima et al. (2004) are summarized in Table 4-5. It can be seen in the table that the membrane separation process for the available gas separation membranes are more costly for CO$_2$ capture compared to the hydrate process. Several studies have been reported on the energy penalty for the amine process for flue gas separation (Halmann and Steinberg, 1999; Ho et al., 2006a; IEA GHG, 2004; NETL, 2002; Parsons, 2002; Rubin et al., 2005; Simbeck, 2002). Energy penalties for CO$_2$ capture utilizing amine process from the above mentioned studies vary between 7.0 - 28.8% of the power output. Based on these reports it can be concluded that among the novel (new) methods for capturing CO$_2$ from flue gas mixtures emitted from conventional power plants, the energy penalty is clearly less for the hydrate process (15.8%) compared to the membrane separation process (48 – 54%). Moreover, the energy penalty for the hydrate process is comparable to the more mature amine based process (7.0 - 28.8%).

Recently, Duc et al. (2007) reported that capturing CO$_2$ from the steelmaking industry via hydrate crystallization would be profitable compared to technologies like the amine process and the membrane separation process. The authors’ reported the cost for hydrate based separation process to be in the range of 14.5 to 29.6 €/ton of CO$_2$ captured for a CO$_2$ feed composition in the range of 23-36% (Duc et al., 2007). The costs for membranes and amine process is reported to be in the range of 20-30 €/ton of CO$_2$ captured for steelmaking industry (Duc et al., 2007).

4.3.6. Justification of the hybrid process

In the conceptual process flowsheet presented in Figure 4-9, the CO$_2$ (9.8%) lean gas exiting the first stage of hydrate process would be at a pressure of 2.5 MPa. In the current
conceptual process (Figure 4-9), when membrane separation is used in conjunction with
hydrate separation process, the membrane separation unit only takes the load of the
residual gas phase from stage one (9.8% CO$_2$ and the purge streams from stage 2 and 3).

Another worthwhile alternative would be to have a membrane separation unit
before the first hydrate separation unit. There is no experimental data available in the
literature to evaluate a membrane separation process for such a scenario. The membrane
separation process shown in Figure 4-10 would require an operating pressure of 2.14
MPa. Since the hydrate process and the membrane process would require similar
operating pressures the compression costs to either the first membrane stage or the 1$^{\text{st}}$
hydrate stage are the same. The compression ratio required after the 1$^{\text{st}}$ stage is also the
same for the two processes. However, the gas flow rates are not the same. Here is where
information about the membrane process is lacking whereas for the hydrate process the
flow rates can be determined. The flue gas mixture from a first stage membrane process
would yield a permeate stream (after the first stage) consisting 45% CO$_2$ assuming a 90%
CO$_2$ recovery (Ho et al., 2006a). Experimental results obtained for the first stage of the
hydrate process (46% CO$_2$ recovery) produced a CO$_2$ rich stream of ~37% CO$_2$.
However, if we also assume 90% CO$_2$ recovery for the first hydrate stage, then the CO$_2$
rich stream would have a composition of 96% CO$_2$.

Hence, in our opinion there is no advantage in using a membrane separation as a
first stage replacing the hydrate formation stage. Thus, we envision a hybrid gas
separation process, combining the advantage of high selectivity (hydrate crystallization)
and small size (membranes) as illustrated in Figure 4-9. This hybrid process will produce
a CO₂ rich stream of >95% CO₂ and also the residual flue gas exiting the membrane separation unit will have less than 1% CO₂ which can be released to the atmosphere.

4.4. Conclusions

Thermodynamic, kinetic and separation efficiency data were presented for a process to capture and separate CO₂ from a flue gas from a conventional power plant in the presence of THF. The data enabled the creation of a conceptual process for post combustion capture of CO₂ which consists of three hydrate formation/decomposition stages operating at 273.75 K and 2.5 MPa coupled with a membrane separation stage to tackle a CO₂-lean stream. Nearly 50% of CO₂ is recovered in the first two hydrate stages and 37% in the third one. The presence of a small amount of THF (1.0 mol %) reduces the operation pressure for hydrate formation considerably compared to a system without THF. There is some room for the operating pressure to be reduced further but better gas/water contacting is needed in order to enhance the rate of hydrate formation that would lead to higher gas consumption and eventually better CO₂ recovery. The energy penalty of the hydrate process appears to be comparable to that of the mature amine process and less than that of a membrane-based process.
4.5. References

5. A NEW LARGE SCALE APPARATUS TO TEST CO₂ CAPTURE PROCESS VIA HYDRATE CRYSTALLIZATION

5.1. Introduction

In chapter 3 a conceptual process flow sheet was presented for the recovery of carbon dioxide from a flue gas mixture in three stages. However, the operating pressures required for the process is high. For the flue gas separation, the first stage requires 10 MPa. The addition of THF even in small quantities considerably reduces the operating pressure. For example, a gas mixture of 16.9% CO₂ and rest N₂ forms hydrate at 7.7 MPa at 273.7 K. With the addition of 1 mol% THF, the mixture readily forms hydrate at 0.345 MPa. In chapter 4, thermodynamic and kinetic data obtained from a semi batch stirred tank reactor on the effect of THF on the hydrate formation from a CO₂/N₂ gas mixture was presented. Based on this experimental information, a medium pressure clathrate process for CO₂ capture operating at 273.7 K and 2.5 MPa was presented. Nearly 50% of CO₂ is recovered in the first two hydrate stages and 37% in the third one. The process uses 1 mol % THF. Even though, the operating pressure is reduced significantly, the rate of hydrate formation, the overall gas consumption for hydrate formation and the water conversion were less compared to the high pressure process without THF (Linga et al., 2008; Linga et al., 2007b). Thus, a major technological challenge for the hydrate based

4A version of this chapter will be submitted for publication. Linga, P., Kumar, R., Ripmeester, J. A., Englezos, P. Demonstration of hydrate process for pre and post combustion capture of CO₂ in a large scale apparatus. Manuscript in preparation.
separation process is to enhance the rate of hydrate formation that would lead to higher gas consumption.

Mori (2003) presented in detail the advantages and disadvantages of several reactor configuration aimed at enhancing the kinetics of hydrate formation. Mori (2003) also attempted to compare the rate of hydrate formation between different reactors available in the literature by defining a metric called rate of guest-gas fixation by hydrate formation per unit volume inside the reactor. It is noted that the above metric does not take into account the amount of water used in the hydrate formation experiment. Mori (2003) concluded that the rate of hydrate formation is not necessarily limited by the total rate of heat removal from the reactor but is limited by local rate processes inside the reactor such as kinetics of hydrate formation and heat transfer from the hydrate formation sites to the bulk of the water pool. Finally, Mori (2003) concluded that there is a need to focus on developing reactors and the operating schemes aimed at achieving higher hydrate forming efficiencies.

The objective of this work is to develop a new apparatus which will be at a larger scale compared to that presented in earlier chapters and at the same time utilize different gas/water contact modes so that the rate of hydrate formation is enhanced. The apparatus will then be used to test the hydrate based separation process of CO₂ capture from a flue gas mixture in order to determine the CO₂ recovery or separation efficiency of the process.
5.2. Experimental section

5.2.1. A new large scale hydrate apparatus

The schematic of the new apparatus is given in Figure 5-1. It consists of the crystallizer (CR) and a supply vessel (SV), which is used to supply gas during hydrate formation experiments. Both CR and SV are immersed in a water bath. The temperature of the water bath is controlled by an external refrigerator (VWR Scientific) in order to maintain a constant temperature. Two Rosemount smart pressure transmitters, model 3051 (Norpac controls, Vancouver, BC) are employed for pressure measurement with a maximum uncertainty of 0.075% of the span (0-15,000 kPa) i.e. 11 kPa. The temperatures of the hydrate phase and the gas phase of the crystallizer are measured using Omega copper-constantan thermocouples with an uncertainty of 0.1 K. A control valve (Fisher Bauman) coupled with a PID controller enables carrying out the formation experiment at constant pressure. The data acquisition system (National Instruments) is coupled with a computer to record the data as well as to communicate with the control valve during the experiment and the software used for this purpose is LabView 7.0 (National Instruments). The apparatus is also equipped with a safety pressure valve.

Figure 5-2 shows the top view and the side view of the designed crystallizer with the design specifications. Figure 5-3 shows the cross section A of the crystallizer as indicated in Figure 5-2. It is a modular type crystallizer with two removable sections connected together with top and bottom flanges. The total volume of the crystallizer is 1892.7 cm3. The crystallizer is equipped with a stirrer. The shaft of the stirrer has a special arrangement with the propeller so that when the experiment is run under a pressure it allows the flow of gas through the shaft and then releases it in the liquid.
through the propeller blades. Hence, it enables proper mixing as well as internal circulation of gas into the liquid. The crystallizer is also connected to a high pressure pump. The crystallizer can also be operated in continuous mode by circulating the liquid contents from the bottom of the crystallizer using the pump and spraying it through two nozzles connected at the top of the crystallizer as shown in figure 3 and 4.

Figure 5-1: Schematic of the apparatus.
Figure 5-2: Top and side view of the crystallizer with dimensions.
Figure 5-3: Cross section of the crystallizer with the stirrer and nozzle arrangement.
5.2.2. *Hydrate formation procedure for “batch operation”*

Hydrate formation experiments were carried out at various stirrer speeds in order to study the effect of stirring rate on the hydrate formation. A volume of 700 mL of 1.0 mol% aqueous THF solution is added into the crystallizer. The pressure is then set to the desired experimental value and the temperature is allowed to reach the desired value. The stirrer is set at the desired speed setting and is started. This is time zero for the formation experiment. Data is then logged in the computer for every 20 seconds. All hydrate formation experiments are carried out with a fixed amount of water and gas (closed system). The temperature in the crystallizer is maintained constant by an external refrigerator. When hydrate formation occurs, gas will be consumed and hence the pressure in the closed system drops. Pressure and temperature data are used to calculate the moles of gas consumed in the crystallizer (gas uptake) for hydrate formation.

5.2.3. *Hydrate formation procedure for “semi-batch operation”*

Experiments in this mode were carried out following procedures similar to those for kinetic experiments and CO$_2$ recovery determination (separation experiment) described in chapter 2 & chapter 3. The mass of gas being consumed in the crystallizer (gas uptake) versus time is easily calculated based on the temperature and pressure measurements as described in chapters 2 & 3. In addition, gas phase composition in the hydrate vessel was also measured with a Varian CX-3400 gas chromatograph (GC) equipped with a thermal conductivity detector.

After the end of a kinetic (gas uptake measurement) experiment, the pressure in the crystallizer was quickly brought down to the atmospheric pressure and the hydrates were allowed to completely dissociate. The gas which evolved from the decomposed
hydrate and that released from the liquid water phase (dissolved amount at the higher pressure) was collected in the crystallizer (CR).

Hydrate kinetic measurements in which the gas uptake in the hydrate crystallizer is measured were carried out for 1.0 and 1.5 mol% THF solutions. Experiments with fresh water as well as with memory water were conducted. Memory refers to the situation where water that is used in the experiment has experienced hydrate formation. In the experiments reported in this work memory water was obtained by decomposing hydrates and using it to form new hydrate three hours after the hydrate decomposition.

5.3. Results and discussion

![Graph showing the effect of stirring rate on hydrate formation at 273.7 K and 2.5 MPa. The experiment was performed under a batch mode.](image)

Figure 5-4: Effect of stirring rate on hydrate formation at 273.7 K and 2.5 MPa. The experiment was performed under a batch mode.
Figure 5-4 shows a comparison of the gas uptake measurement curves obtained for the three experiments conducted at different stirring rates. Clearly, the gas uptake was considerably higher for the experiment conducted at 400 rpm compared to the one conducted at 200 and 300 rpm. Experiments were not performed at stirring rates higher than 400 rpm due to the mechanical stability of the experimental set up. In the current experimental set up, the motor required to run the stirrer is mounted on the top of the crystallizer which causes slight vibration when the stirrer is operated at speeds higher than 400 rpm. Hence, for all the hydrate formation experiments that were conducted in a semi-batch operation the stirring speed was fixed as 400 rpm.

The separation process for capture of CO\textsubscript{2} from a flue gas mixture was also assessed in the new apparatus. Table 5-1 summarizes the experimental conditions and the results. Hydrate formation experiments were studied at 1.0 and 1.5 mol % THF concentrations. It is noted that for both these THF concentrations, the 17% CO\textsubscript{2}/N\textsubscript{2} gas mixture forms structure II hydrate (Kang and Lee, 2000; Kang et al., 2001a). It is also noted that 17.0% CO\textsubscript{2} and rest N\textsubscript{2} gas mixture in pure water forms structure I (Seo and Lee, 2004). Experiments with 1.0 mol% were carried out for two driving forces of 2.2 and 1.2 MPa at 273.75 K. The equilibrium hydrate formation pressure for the 1.0 mol% THF for 16.9% CO\textsubscript{2}/N\textsubscript{2} gas mixture at 273.75 K are 0.345 MPa (Linga et al., 2008).

It can also be seen in Table 5-1 that memory water experiments have less induction times compared to the fresh water experiments. The induction times for 1.0mol% THF and for the same gas composition reported in chapter 4 for similar driving forces were all less than 1 min when experiments were studied at a small scale (140 cm3).
of aqueous solution). However, for a larger amount of liquid contents in this study (700 cm\(^3\)) in a new apparatus, the induction times were significantly higher for the fresh water. However, for the memory water the induction times were less than 2 min and hence similar to the results for the small scale apparatus reported in chapter 4. Short induction times are definitely desirable from a practical standpoint to speed up the process and hence the results demonstrate that it is desirable to use memory water for hydrate formation. The final gas consumption at the end of the experiment is approximately the same for both fresh and memory solutions.

![Figure 5-5: A typical gas uptake measurement curve carried out at 2.5 MPa and 273.7 K (experiment 3).](image)

Figure 5-5 shows a typical gas uptake measurement with the temperature profile. This curve represents the kinetics of hydrate growth and agglomeration for the indicated
time. The induction time for this experiment (experiment 1) is 70.3 min. The general shape of this curve agrees with the behavior of the curve for hydrate formation in stirred vessels described in detail by Bishnoi and Natarajan (1996). Gas hydrate formation is an exothermic process and as seen in the figure the temperature rises immediately after nucleation, reaches a higher level and then gradually is brought down because the temperature controller brings back the temperature to the set point value. The gas uptake curves for the all the experiments along with the temperature profile are given in Appendix D.

Figure 5-6: Gas uptake measurement curves for 1.0 and 1.5 mol% THF memory solutions carried out at a driving force of 2.2 MPa or at 2.5 and 2.3 MPa respectively.
Table 5-1: Experimental conditions along with measured induction times and hydrate formation rates for CO$_2$/N$_2$/THF/H$_2$O system at 273.7 K. The CO$_2$/N$_2$ composition of the mixture was 16.9 mol % CO$_2$ and balance N$_2$.

<table>
<thead>
<tr>
<th>System</th>
<th>Exp. No.</th>
<th>Sample State</th>
<th>Driving forcea (MPa)</th>
<th>P$_{exp}$ (MPa)</th>
<th>Induction Time (min)</th>
<th>Final gas consumed (mol of gas/mol of H$_2$O)</th>
<th>Water conversion to hydratec (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CO$_2$/N$_2$/THF/H$_2$O) 1.0 mol% THF</td>
<td>1</td>
<td>Fresh</td>
<td>1.2</td>
<td>1.5</td>
<td>70.3</td>
<td>0.0098</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Memory</td>
<td>1.2</td>
<td>1.5</td>
<td>1.7</td>
<td>0.0089</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Fresh</td>
<td>2.2</td>
<td>2.5</td>
<td>52.0</td>
<td>0.0178</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Memory</td>
<td>2.2</td>
<td>2.5</td>
<td>0.7</td>
<td>0.0174</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Fresh</td>
<td>2.2</td>
<td>2.5</td>
<td>10.7</td>
<td>0.0181</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Memory</td>
<td>2.2</td>
<td>2.5</td>
<td>0.7</td>
<td>0.0180</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Fresh</td>
<td>1.2</td>
<td>1.5</td>
<td>60.3</td>
<td>0.0092</td>
<td>7.8</td>
</tr>
<tr>
<td>(CO$_2$/N$_2$/THF/H$_2$O) 1.5 mol% THFb</td>
<td>8</td>
<td>Memory</td>
<td>1.2</td>
<td>1.5</td>
<td>2.7</td>
<td>0.0090</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Fresh</td>
<td>2.2</td>
<td>2.3</td>
<td>4.0</td>
<td>0.0163</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Memory</td>
<td>2.2</td>
<td>2.3</td>
<td>0.3</td>
<td>0.0164</td>
<td>14.1</td>
</tr>
</tbody>
</table>

a Driving force = P$_{exp}$ - P$_{eq}$ (P$_{exp}$ = experimental pressure, P$_{eq}$ = equilibrium pressure)

b Experiments carried out at 274.2 K

c Hydration number of 5.71 (Kang et al., 2001b) was used for the calculation.
Figure 5-6 shows a comparison of the gas uptake measurements obtained at a constant driving force of 2.2 MPa and two different THF concentrations. It can be seen that the total number of moles consumed at the end of the experiment was found to be higher in the case of 1.0 mol% THF. This concentration dependency was also observed for the fresh experiments at the same corresponding driving force. Linga et al. (2008) (see chapter 4) observed and reported the same behavior for several experiments carried out at different driving forces for experiments carried out at 0.5, 1.0 and 1.5 mol% THF solutions at a smaller apparatus (see chapter 4). One of the possible reasons for this concentration dependency could be that, for the kinetic experiments conducted at higher THF concentration, THF readily occupies the large cage in structure II and stabilizes the hydrate leaving little time for the gas to occupy the small cages in the structure, hence resulting in lower gas consumption. This would lead to THF occupying the large cages which is enough to stabilize the structure leaving many small cages empty. A similar THF concentration dependency was observed by Lee at al. (2005) when experiments were performed with H₂ gas for hydrogen storage in clathrate hydrate. Lee et al. (2005) reported the storage potential of H₂ in a mixed hydrate of THF/H₂ by investigating hydrate formation with different THF concentrations and at high operating pressures (120 bars). They found that experiments conducted with THF concentrations of less than 1.0 mol% offered a higher storage potential for H₂ (Lee et al., 2005). A similar trend can be seen with the water conversion to hydrates between 1.0 and 1.5 mol% THF concentrations given in Table 5-1 which is due to the higher gas consumption obtained for 1.0 mol% THF experiments. Hence, based on experiments conducted in the lab-scale
and the new large apparatus, we believe that 1.0 mol% should be the optimum concentration which reduces the operating pressure of the hydrate vessel significantly.

Table 5-2: CO$_2$ composition at start and end of the experiment as analyzed by gas chromatography.

<table>
<thead>
<tr>
<th>Description</th>
<th>Experiment 1</th>
<th>Experiment 3</th>
<th>Experiment 4</th>
<th>Experiment 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF concentration (mol%)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Feed gas composition (start)</td>
<td>0.169</td>
<td>0.169</td>
<td>0.169</td>
<td>0.169</td>
</tr>
<tr>
<td>Gas phase composition (end)</td>
<td>0.100</td>
<td>0.092</td>
<td>0.095</td>
<td>0.105</td>
</tr>
<tr>
<td>Hydrate phase composition</td>
<td>0.351</td>
<td>0.383</td>
<td>0.372</td>
<td>0.321</td>
</tr>
</tbody>
</table>

Figure 5-7 shows the effect of driving force on the rate of hydrate formation for 1.0 mol % THF solution. As seen in the figure, the total number of moles consumed increases with the increase in driving force. The same trend was also observed for the fresh water experiments. Water conversion to hydrates for all the experiments carried out is given in Table 5-1. As seen in the table, the conversion is significantly higher (twice) for the higher driving force experiments (15%) compared to the lower driving force experiments (8.0%). Thus, a driving force of 2.2 MPa is preferable.

The composition of gas phase was analyzed using a GC at the end of the kinetic experiment. The CO$_2$ composition in the gas phase of the crystallizer at the end of the kinetic experiment is given in Table 5-2. As seen the CO$_2$ content in the gas phase of the crystallizer decreases as the experiment progresses which indicates enrichment of the hydrate phase with this gas. The compositional changes during the experiment resemble to the experiments carried out with the presence of THF reported by Linga et al (2008). Linga et al. (2008) reported a CO$_2$ composition of 9.8% for the experiment carried out at
1.0 MPa (1.0 mol% THF) and 9.9% for the experiment carried out at 1.4 MPa (1.5 mol% THF). A separation experiment was conducted after the end of a kinetic experiment in order to determine the composition of the hydrate phase. The released gas was analyzed by gas chromatography and the CO$_2$ composition is also given in Table 5-2.

![Gas uptake curves for 1.0 mol% THF concentration solutions with memory at 273.7 K and different pressures.](image)

Figure 5-7: Gas uptake curves for 1.0 mol% THF concentration solutions with memory at 273.7 K and different pressures.

Split fraction or CO$_2$ recovery and the separation factor were determined from equations 3.1 and 3.2 and the calculated values are reported in Table 5-3. As it can be seen in the table the split fraction for all the experiments carried out with 1.0 mol% THF solutions was greater than 0.6 while that of 1.5 mol% THF solution was slightly less than
0.6 indicating that 60% of the CO$_2$ in the feed gas is separated in one stage of hydrate formation. One can see from the table and conclude that it would be wise to have the first stage of hydrate formation for CO$_2$ capture from a flue gas operating at 1.5 MPa since the CO$_2$ recovery is practically the same with that of the experiments studied at 2.5 MPa. However when we compare the CO$_2$ recovery (Table 5-3) and the gas uptake (Figure 5-7) in tandem, we can see that for the experiment at 2.5 MPa the final gas consumption is almost 2 times greater than the experiment at 1.5 MPa. It is desirable to have a good CO$_2$ recovery and also a better gas uptake for the separation process.

Table 5-3: Split fraction or CO$_2$ recovery and separation factor.

<table>
<thead>
<tr>
<th>Description</th>
<th>Exp. 1</th>
<th>Exp. 3</th>
<th>Exp. 4</th>
<th>Exp. 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF concentration (mol%)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Pressure (MPa)</td>
<td>1.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.3</td>
</tr>
<tr>
<td>Gas consumption (end)</td>
<td>0.36</td>
<td>0.66</td>
<td>0.65</td>
<td>0.59</td>
</tr>
<tr>
<td>Split Fraction or CO$_2$ recovery</td>
<td>0.60</td>
<td>0.61</td>
<td>0.63</td>
<td>0.58</td>
</tr>
<tr>
<td>Separation factor</td>
<td>4.12</td>
<td>4.31</td>
<td>4.52</td>
<td>3.88</td>
</tr>
</tbody>
</table>

The rates of hydrate formation were calculated for all the kinetic experiments conducted using the forward difference method given below,

\[
\left(\frac{dn}{dt} \right)_i = \frac{n_{i+\Delta t} - n_i}{\Delta t}, \quad \Delta t = 20 \text{ sec}
\]

(5.1)

The average of theses rates are calculated for 20 min due to the very large number of data points and also to minimize the noise in the calculated rates using the following equation,
Average rate of hydrate formation \(R_{av} \) = \[
\left[\frac{dn}{dt} + \frac{dn}{dt} + \ldots + \frac{dn}{dt} \right] \mbox{, m} = 60 \quad (5.2)
\]

The calculated rate (equation 5.1) and the average rate (equation 5.2) along with the hydrate growth for a typical experiment are shown in Figure 5-8. Time zero in the graph corresponds to the induction time of the experiment given in Table 5-1. As seen, the rate during the first hour is greater than 0.15 mol/hr but it gradually slows down and remains more or less constant at about 0.06 mol/hr after two hours. It is noted that the maximum rate found with the small apparatus is 0.0016 mol/min or 0.096 mol/hr (see Table 4.2).

Figure 5-8: Hydrate growth for a typical hydrate formation experiment (experiment 5) along with the calculated average rates for 20 min.
Figure 5-9 shows a comparison of the calculated average rates for the experiments conducted at different driving force using memory solutions. As seen in the figure, there is a strong dependency of the rate on the driving force for the first two hours. The calculated rates are considerably higher for the experiments carried out at the higher driving force. Recall that a similar dependency was reported in chapter 4 for the experiments conducted at the lab-scale apparatus.

![Figure 5-9: Rate of hydrate formation vs driving force for the kinetic experiments carried with 1.0mol% memory solutions.](image)

One of the primary objectives of this work was to illustrate the separation process of CO₂ capture from a flue gas mixture in a large scale apparatus with a focus on improving the gas uptake and also improving the CO₂ recovery. Hence, a comparison can be made if the gas uptake is compared (on a water free basis) with the apparatus
described in chapter 2 and also reported by Linga et al. (2008). Figure 5-10 shows a comparison of gas uptake per mole of water to two such experiments performed under same pressure and temperature. As it can be seen in the figure, the gas uptake is substantially higher for the experimented conducted at a larger scale than that reported by Linga et al. (2008). During the first 2 hrs, the rates are similar with that in the new large apparatus somewhat higher. During this phase, the hydrate particles are well suspended in water and appear as shown in section C of Figure 5-11. After 2 hrs of hydrate growth, particle agglomeration and growth results in accumulation of gas hydrate crystals at the gas/liquid interface of the laboratory apparatus as shown in section D of Figure 5-11. On the other hand, hydrate continues to grow in the new large apparatus. This is due to better contacting of gas and liquid by mechanical agitation and due to the circulation of gas through the liquid phase by the special arrangement of the shaft and impeller. Additionally, the presence of the second impeller just below the gas/liquid interface (as shown in Figure 5-3) constantly renews the interface and also prevents any agglomeration of hydrate crystals at the gas/liquid interface. As a result, the gas uptake is 72.6% higher for the new apparatus. Similar results from other experiments as shown in Figure 5-12 demonstrate the improvement achieved in the gas uptake on a water free basis.
Figure 5-10: Comparison of gas uptake for hydrate formation for 1.0 mol% (Pressure = 2.5 MPa, Temperature = 273.7 K).

Figure 5-11: Schematic of the mass transfer resistance encountered in the lab scale apparatus described in Chapter 2.
The second objective of this work was to compare the CO$_2$ recovery or split fraction obtained with the smaller scale apparatus of chapter 2 (Linga et al. 2008). The experimental conditions and the results for the two experiments shown in Figure 5-10 are given in Table 5-4. The CO$_2$ recovery is 36.9% higher for the new apparatus indicating a better capture of CO$_2$ in the crystals. Also, the conversion of water to hydrates was more than twice in the new apparatus compared to the lab scale apparatus.
Table 5-4: Comparison of CO\textsubscript{2} recovery or split fraction between small and the new large scale apparatus. Both experiments run for 7 hours.

<table>
<thead>
<tr>
<th>Description</th>
<th>Exp. 4 (this work)</th>
<th>Linga et al. (2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF concentration (mol%)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Volume of THF solution (ml)</td>
<td>700</td>
<td>140</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>273.7</td>
<td>273.7</td>
</tr>
<tr>
<td>Pressure (MPa)</td>
<td>2.50</td>
<td>2.55</td>
</tr>
<tr>
<td>Split Fraction or CO\textsubscript{2} recovery</td>
<td>0.63</td>
<td>0.46</td>
</tr>
<tr>
<td>Water conversion to hydrate (%)</td>
<td>14.9</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Mori (2003) compared the rate of hydrate formation between different reactors available in the literature by defining a metric called rate of guest-gas fixation by hydrate formation per unit volume inside the reactor. It is noted that the above metric does not take into account the amount of water used in the hydrate formation experiment. We believe that the amount of water should also be taken into account in any meaningful comparison between the performances of the different reactors for a particular hydrate forming system. The normalized rate of gas supply taking into account the amount of water taken in the experiment is represented as follows,

\[
\text{Normalized rate of gas supply, } \left(\frac{\text{mol/mol}}{\text{hr}} \right) = \left(\frac{\Delta n_{H_2O}^{\text{end}}}{n_{H_2O}} \right) \left[\frac{\text{mol}}{\text{mol}} \right] = \left[\frac{\Delta n_{H_2O}^{\text{end}}}{\Delta t_{\text{end}}} \right] \]

(5.3)
Figure 5-13: The normalized rate of gas supply calculated by taking into account of amount of water (equation 5.3) for the experiments conducted in the presence of 1.0 mol% THF in the lab-scale apparatus (Linga et al., 2008) and the new large scale apparatus plotted against the experimental pressure.

Figure 5-13 represents the calculated normalized rate of gas supply with respect to the amount of water for the lab-scale and the new large scale reactors. As seen in the figure, the calculated normalized rate of gas supply is on more than ~1.4 times higher for the new large scale apparatus compared to the lab-scale apparatus for the experiment carried out at a lower driving force and ~1.8 times higher at higher driving force.

For a comparison we also determined the normalized rate of gas supply with respect to the volume of the reactor (Mori, 2003). The equation is represented as,

\[
\text{Normalised rate of gas supply, } \left(\frac{\text{cm}^3/\text{cm}^3}{\text{hr}} \right) = \left[\frac{V_{\text{gas,STP}}}{V_{\text{reactor}}} \right]_{\text{end}}
\]
(5.4)
Figure 5-14: The normalized rate of gas supply calculated by taking into account of the volume of reactor (equation 5.4) for the experiments conducted in the presence of 1.0 mol% THF in the lab-scale apparatus (Linga et al., 2008) and the new large scale apparatus plotted against the experimental pressure.

Figure 5-14 shows the calculated normalized rate of gas supply with respect to the volume of the reactor for the lab-scale and the new large scale reactors. As seen in the figure, the normalized rate of gas supply for the new large scale apparatus is the same as that of the lab scale for the experiments conducted at lower driving force. While, at the higher driving force, the normalized rates are ~1.4 times higher for the new large scale reactor compared to lab-scale reactor. Hence overall, normalized rates calculated taking into account the amount of water or the volume of the reactor were higher in the new large scale reactor compared to the lab scale reactor. It is also noted that from the
calculated normalized rates it’s also clearly evident that an operating pressure of 2.5 MPa is essential for the hydrate process.

Hence, we have successfully demonstrated the applicability of gas hydrate process for the separation of CO\textsubscript{2} from a flue gas mixture with the presence of 1.0 mol\% THF using a new apparatus which operates at a larger scale compared to the laboratory apparatus presented in Chapter 2. It is envisioned that the results from this work will lead to a pilot plant testing and a possible demonstration plant implementation of the technology in the medium to long term. However it is noted that the fact that the apparatus relies on mechanical stirring will require additional energy in addition to that required for the compression of the flue gas. This energy is significant, thus the use of static mixer (Tajima et al., 2004) or an alternative contact mode should be investigated. One such way is to disperse water in silica gel and contact with water as a fixed bed column (Adebola, 2009; Seo et al., 2005). Another way is to use silica sand as a contact medium in a fixed bed column which is investigated in Chapter 6.

5.4. Conclusions

A new hydrate formation apparatus equipped with a modular-type crystallizer having a volume of 1,899.5 cm3 is presented. The new apparatus improves the gas/water contact and as a result the gas uptake increases significantly (~77 % at 2.2MPa driving force) compared to the previously used laboratory apparatus. The rate of hydrate formation was calculated and found to correlate with the driving force (overpressure) as expected. Moreover, the normalized rates calculated by taking into account the volume of water and also the volume of reactor were found to be higher in the new apparatus. Moreover, the CO\textsubscript{2} recovery was found to be significantly higher (37\%) indicating a better separation of
CO₂ from the feed gas. Hence, it is possible to scale up the separation process of CO₂ capture from a flue gas mixture. It is also possible that the new apparatus can be employed to form hydrates from natural gas for storage and transportation and also for CO₂ capture from fuel gas (pre-combustion capture).
5.5. References

6. ENHANCED RATE OF GAS HYDRATE FORMATION IN A SILICA SAND MATRIX COMPARED TO A STIRRED VESSEL

6.1. Introduction

Successful scale up of hydrate formation vessels for the industrial application of hydrate-based processes for CO$_2$ capture, other gas separations e.g. CO$_2$/CH$_4$ and natural gas storage and transport will depend significantly on the ability to have enhanced rates of crystal formation. Various designs of reactors can be seen in the literature, particularly in the patent documents. The majority of these designs use either the dispersion of gas in liquid water or the dispersion of liquid in gas in order to generate a large gas/water interfacial area per unit volume of the reactor. Mori (2003) presented in detail the advantages and disadvantages of the above mentioned configurations aimed at enhancing the kinetics of hydrate formation. Mori (2003) concluded that there is a need to focus on developing reactors and the operating schemes aimed at achieving higher hydrate forming efficiencies. McCallum et al. (2007) discussed the impact of the size of the hydrate formation vessel on induction time and hydrate formation/decomposition. Mesoscale experiments were conducted on a 72 liter seafloor process simulator (SPS) and were compared with a 450mL Parr vessel. They concluded that hydrates from the SPS consistently had less overpressures and shorter induction times than the equivalent experiments in the Parr vessel (McCallum et al 2007). McCallum et al. (2007) reported

A version of this chapter will be submitted for publication. Linga, P., Haligva, C., Ripmeester, J. A., Englezos, P. Enhanced rate of gas hydrate formation in a silica sand matrix compared to a stirred vessel. Manuscript in preparation.
that the large volume of the SPS was a contributing variable which increased the likelihood of the initial hydrate nucleation clusters to grow and accumulate. However, McCallum et al. (2007) did not report any kinetic data (gas uptake or hydrate formation rate) or the conversion of water to hydrate.

One of the new approaches to enhance the kinetics of the hydrate formation is to disperse water in a porous media that could lead to the faster and higher conversion of water to hydrates (Lee et al., 2005; Seo et al., 2005). Seo et al. (2005) reported hydrate yields of about 85% in one hour of hydrate formation with water dispersed in silica gel pores when reacted with CO$_2$ based on 1H NMR microimaging experiments. Linga et al. (2009) and Haligva (2008) reported hydrate conversion of more than 73% for all the hydrate formation experiments that were performed with methane/water system by dispersing water in silica sand conducted at 4.0 and 1.0 C starting with an experimental pressure of 8.0 MPa.

Therefore, a bed of silica sand particles offers an alternative way of carrying out hydrate formation. The objective of this work is to compare the kinetics of gas hydrate formation in a silica sand matrix and in a stirred vessel. Kinetics are correlated with the gas uptake during hydrate formation. The percent conversion of water to hydrate is also determined. In addition to CO$_2$ containing systems (CO$_2$/water, CO$_2$/H$_2$/C$_3$H$_8$/water and CO$_2$/N$_2$/THF) experiments with three hydrocarbon systems namely, CH$_4$/water, CH$_4$/C$_3$H$_8$/water and CH$_4$/C$_2$H$_6$/water were conducted in order to be able to generalize the conclusions.
6.2. Experimental section

6.2.1. Materials

The gas/mixtures that were used for this work were UHP grade supplied by Praxair Technology Inc., silica sand with an average diameter of 329 μm (diameter ranges from 150 to 630 μm) supplied by Sigma-Aldrich and distilled and deionised water was used.

6.2.2. Apparatus

Two experimental apparatus were used in this study. Figure 6-1 shows the schematic of one of the apparatus (Apparatus #1). The detailed description of this apparatus is available elsewhere (Haligva, 2008). It consists of a crystallizer (CR) which is immersed in a temperature controlled water bath. The temperature of the water bath is controlled by an external refrigerator (VWR Scientific). The temperatures of the hydrate phase and the gas phase of the crystallizer are measured using Omega copper-constantan thermocouples with an uncertainty of 0.1 K. The data acquisition system (National Instruments) is coupled with a computer to record the data as well as to communicate with the control valve during the experiment and the software used for this purpose is LabView 8.0 (National Instruments). The apparatus is also equipped with a safety pressure valve.

A detailed description of the other apparatus (Apparatus #2) that was used for the experiments carried out in stirred tank reactor is given in chapter 2.
6.2.3. Procedure for hydrate formation

6.2.3.1. Silica sand experiments

The amount of silica sand placed in the crystallizer for each experiment is 228.5 g. The volume of water required to fill the void space with water was found to be 35.0 ml for 161.0 g of sand. Accordingly, 49.7 ml of water is added into the sand. Once the crystallizer bed is setup with the required amount of sand and water, it is closed. The crystallizer is pressurized with the experimental gas mixture and depressurized at a pressure below the equilibrium hydrate formation pressure three times in order to
eliminate the presence of any air bubbles in the system. The pressure in the crystallizer is then set to the desired experimental value and the temperature is allowed to reach the target value (approximately 5 min). This is time zero for the formation experiment. Data is logged in the computer for every 20 seconds. All hydrate formation experiments for this work are carried out in a closed system (fixed amount of water and gas) at a constant temperature. When hydrate formation occurs, gas will be consumed and hence the pressure in the closed system drops. The pressure and temperature data are recorded and the data are used to calculate the moles of gas being consumed in the crystallizer (gas uptake).

6.2.3.2. Bulk water experiments with mixing

The experimental procedure for the experiments carried out with bulk water is as follows. The amount of water taken for the bulk water experiments is 49.7 ml (amount of water is the same as taken for the silica sand experiments). The crystallizer is pressurized with the experimental gas/mixture and depressurized at a pressure below the equilibrium hydrate formation pressure three times in order to eliminate the presence of any air bubbles in the system. The pressure in the crystallizer is then set to the desired experimental pressure and the temperature is allowed to reach the experimental temperature (approximately 5 min). The liquid contents in the crystallizer are now stirred using the magnetic stirrer at a constant speed of 300 rpm. This is time zero for the experiment. All hydrate formation experiments carried out for this case are also conducted in a closed system (fixed amount of water and gas) at a constant temperature. When hydrate formation occurs, gas will be consumed and hence the pressure in the closed system drops. The pressure and
temperature data are recorded and the data are used to calculate the moles of gas being consumed in the crystallizer (gas uptake).

6.2.4. Calculation of the amount of gas consumed during hydrate formation

At any given time, the total number of moles \(n_{T,t} \) in the system remains constant and equal to that at time zero \(n_{T,0} \). The system includes the crystallizer (CR) and the connecting tubing. The total number of moles at any given time is the sum of the number of moles \(n_{G} \) in the gas phase (G) of the crystallizer and the number of moles \(n_{H} \) consumed to form hydrate (H) or dissolved in water.

At any given time, the number of moles of the gas that has been consumed for hydrate formation is the difference between the number of moles of the gas at time \(t = 0 \) present in the gas phase of the crystallizer (CR) and the number of moles of the gas present in the gas phase of CR at time \(t = t \) and is given by the following equation,

\[
n_{H,t} - n_{H,0} = n_{G,0} - n_{G,t}
\]

or

\[
\Delta n_{H,t} = n_{H,t} - n_{H,0} = \left(\frac{PV}{zRT} \right)_{G,0} - \left(\frac{PV}{zRT} \right)_{G,t}
\]

where \(z \) is the compressibility factor calculated by Pitzer’s correlation (Smith et al., 2001), \(V \) is the volume of gas phase of the crystallizer, \(P \) and \(T \) are the pressure and temperature of the crystallizer.

Percent conversion of water to hydrates is determined from the information obtained from gas uptake and the experimental conditions using the following equation
Conversion of water to hydrates (mol%) = \(\frac{\Delta n_{H,\downarrow} \times \text{Hydration Number}}{n_{H_2O}} \times 100 \) \(6.3 \)

where \(\Delta n_{H,\downarrow} \) is the number of moles of gas consumed for hydrate formation at the end of the experiment determined from the gas uptake measurement and \(n_{H_2O} \) is the total number of moles of water in the system.

For the systems containing aqueous THF solutions, conversion of water to hydrates is determined from the following equation

\[
\text{Conversion of water to hydrates (mol%) = } \left(\frac{\Delta n_{H,\downarrow} + \Delta n_{\text{THF}}}{n_{H_2O}} \right) \times 100 \ \ 6.4
\]

where \(\Delta n_{H,\downarrow} \) is the number of moles of gas consumed for hydrate formation at the end of the experiment determined from the gas uptake measurement, \(n_{H_2O} \) is the total number of moles of water in the system and \(\Delta n_{\text{THF}} \) is the number of moles of THF consumed for hydrate formation at the end of the kinetic experiment. \(\Delta n_{\text{THF}} \) is calculated based on the occupancy ratio for sII (16S:8L), i.e. 1 mole of gas consumed in small cages would require \(\frac{1}{2} \) mole of THF in large cage.

6.3. Results and discussion

Table 6-1 summarizes the experimental conditions for the systems studied in this work.

Hydrate formation is a crystallization process and an exothermic reaction. Induction point is the time when hydrate formation occurs and is determined from the experimental data and reported in Table 6-1. The experiment end times are also reported in the table.
6.3.1. CH$_4$/water system

Figure 6-2 shows a comparison of the methane uptake curves obtained for the experiment with water dispersed in silica sand and the stirred tank reactor. As seen, methane uptake is faster in the stirred tank reactor. We believe that nuclei formed are forced to circulate within the liquid phase and essentially “seed” the entire system with hydrates. On the other hand the extensive work on the CH$_4$/H$_2$O system in silica sand showed occurrence of localized nucleation (Haligva, 2008). It is noted that mixing the contents become impossible after 180 min (visual observation) because a significant mass of hydrate and occluded water prevents efficient gas/water contact. Thus, the gas uptake decreases and becomes less than that in the sand system. Overall, the methane uptake is considerably faster and higher for the experiment carried out with water dispersed in silica sand. For instance, at 10 hours the methane uptake for the experiment carried out in the presence of silica sand is more than two times that of the stirred tank reactor.
Figure 6-2: Comparison of gas uptake (hydrate growth) measurement curves for CH$_4$/water hydrate formation experiments. Time zero in the graph is induction time for the corresponding experiment (given in Table 6-1).

Figure 6-3: Comparison of the rate of methane uptake per mol of water for CH$_4$/water system.
The rate of hydrate formation was determined for every 5 min using forward difference method and the average of these rates for 30 min is determined and presented in Figure 6-3. As it can be seen in the figure, the rate is higher for the experiment conducted in stirred vessel by around by 4 times at the start but it gradually decreases due to extensive hydrate formation which leads to mass transfer limitations. However, in the case of the experiment in the presence of silica sand, hydrate formation continues to occur, however at varying rates. Kneafsey et al. (2007) reported a similar behavior of hydrate growth occurring at different rates, when hydrates were formed at 6.2 MPa and 1.1°C in the presence of silica sand with a particle size of 100 to 200 µm. They achieved a water to hydrate conversion of 65% using a hydration number of 5.75. Seo et al. (2005) reported that gas molecules can easily penetrate a bed of silica gel particles saturated with water and the dispersed water presents a huge surface for contacting gas molecules. It is noted that based on 1H NMR microimaging experiments, Seo et al. (2005) reported hydrate yields of about 85% in one hour of hydrate formation with water dispersed in silica gel pores when reacted with CO$_2$.

Percent conversion of water to hydrate (hydrate saturation) was determined from equation 6.3 using a hydration number of 6.1 (Tulk et al., 2000) and is given in Table 6-1. Conversion of 94.7% was achieved for the experiment with the presence of silica sand in 34 hours while the hydrate saturation achieved for the experiment carried out in stirred vessel was 76.1% in 80 hours.
One hydrate formation experiment was performed in the apparatus shown in figure 1 with the absence of silica sand. 49.7 ml of water was placed in the crystallizer and the pressure and temperature was set to experimental conditions as shown in Table 6-1. Figure 6-4 shows the comparison of the kinetic experiments studied with and without the presence of silica sand conducted in the same apparatus. As one can see in the figure, hydrate formation in a quiescent liquid water/gas system is very slow compared to the experiment where the water is dispersed in the interstitial spaces of silica sand particles. As it can be seen from Figure 6-2 & 6-4 the system with the presence of silica sand resulted in achieving significantly higher methane consumption in a shorter time.

Figure 6-4: Comparison of gas uptake (hydrate growth) measurement curves for CH₄/water hydrate formation experiment conducted in the same apparatus with and without the presence of silica sand.
Figure 6-5: Comparison of gas uptake (hydrate growth) for \(\text{CH}_4 \) (90.5%)/\(\text{C}_3\text{H}_8 \) (9.5%)/water system. Time zero in the graph is induction time for the corresponding experiment (given in Table 6-1).

6.3.2. \(\text{CH}_4/\text{C}_3\text{H}_8/\text{water} \) system

Figure 6-5 shows a comparison of gas uptake obtained for the system with silica sand and the other system carried out in a stirred tank reactor. As it can be seen in the figure, the gas uptake for the experiment in the stirred vessel is faster initially (first 15 min) but soon decreases and reaches a steady state. On the other hand the uptake in the silica sand bed continues to increase indicating extensive hydrate formation. The final conversion of water to hydrates was 73.8% for the experiment carried out with water in the presence of silica sand as compared to 18.1% for the experiment conducted in a stirred vessel. Percent conversion of water to hydrate was calculated assuming a hydration number of 8.0 for this system (CSMHYD: Sloan, 1998). Figure 6-6 shows the comparison of the rate of hydrate formation for both the experiments studied with and without the presence...
of silica sand. As we can see in the figure, hydrate continues to form till about 4 hours for the experiment with the presence of silica sand even though the rate is decreasing along the time where as for the system with mixing the rate becomes near zero at 75 min.

![Graph](image)

Figure 6-6: Comparison of the rate of gas uptake for CH₄ (90.5%)/C₃H₈ (9.5%)/water system.

6.3.3. CH₄/C₃H₆/water system

Figure 6-7 shows a comparison of gas uptake obtained for the system with silica sand and the uptake in the stirred tank reactor. As it can be seen in the figure, the gas uptake for the experiment with the presence of silica sand was greater and resulted in more hydrates. However, the behavior of the uptake curve in the stirred vessel is similar to that for the CH₄/water system (Figure 6-2). It is interesting to note that in this case stirrer stopped after 3 hours due to the presence of hydrate crystal but in spite of that hydrates continue
to grow for the next 15 hours. At the end of the experiment, 75.6% of water was converted to hydrate for the system with silica sand while 60.3% of water was converted for the experiment conducted in a stirred vessel. Percent conversion of water to hydrate was calculated assuming a hydration number of 6.2 for this system (CSMHYD: Sloan, 1998).

![Graph showing gas uptake comparison](image)

Figure 6-7: Comparison of gas uptake (hydrate growth) for CH₄ (91.0%)/C₂H₆ (9.0%)/water system. Time zero in the graph is induction time for the corresponding experiment (given in Table 6-1).

For all the hydrocarbon systems studied, the gas consumption was higher for the experiments carried out with the presence of silica sand. Figure 6-8 shows the comparison of gas consumption for the two experiments carried out for all the three systems. The comparison is made at the same experimental time (hydrate formation time was same). As can be seen in the figure, the gas consumption is significantly higher for the experiments conducted in the presence of silica sand compared to the experiments.
conducted in a stirred vessel. Also, higher percent conversion of water to hydrates was achieved for the experiments carried out with the presence of silica sand at the end of the experiment. For example, for CH₄ (90.5%)/C₃H₈ (9.5%)/water system the mole consumption is more than 4 times higher for the experiment conducted with the presence of silica sand compared to the experiment conducted in a stirred vessel even after running the experiment for ~97 hr.

Figure 6-8: Comparison of gas consumption for all the three hydrocarbon containing systems. The experimental time is the same for both experiments carried for each system.

Figure 6-9 shows a comparison of the temperature profiles for the system mentioned above along with the gas uptake as a function of time. It is clearly evident from seeing the temperature profiles and the gas uptake in conjunction that the extent of heat released from the experiment performed in the presence of silica sand is due to the extensive formation of hydrates as opposed to the experiment performed in a stirred vessel.
vessel. Figure 6-10 shows a similar comparison of the temperature profiles along with the gas uptake as a function of time for the CH$_4$ (91%)/C$_3$H$_8$ (9.0%)/water system. As one can see for the experiment carried out with silica sand, there are three large temperature spikes occurring at ~ 3.3, 75.3 & 565.7 min, respectively and several small spikes occurring due to hydrate formation inside the bed which results in higher gas consumption and subsequently higher percent conversion of water to hydrates.

Figure 6-9: Comparison of temperature profiles and gas uptake for CH$_4$ (90.5%)/C$_3$H$_8$ (9.5%)/water system.
Figure 6-10: Comparison of temperature profiles and gas uptake for CH$_4$ (91.0%)/C$_2$H$_6$ (9.0%)/water system.
6.3.4. CO$_2$/water system

Figure 6-11 shows a comparison of gas uptake obtained for the system with silica sand and the other system carried out in a stirred tank reactor. As it can be seen in the figure, the gas uptake for the experiment with the presence of silica sand was greater and resulted in more hydrates. The gas uptake for the experiment conducted in stirred vessel reached a plateau at around 5 hr where as in the other case, hydrate growth continues till 47 hr and reaches a plateau thereafter. The gas consumed for the silica sand experiment at the end of the experiment is 2.4 times higher than that of the experiment conducted in a stirred vessel. Also, 59.8% of water was converted to hydrate for the system with silica sand while 25.3% of water was converted for the experiment conducted in a stirred vessel. Percent conversion of water to hydrate was calculated assuming a hydration number of 6.5 for this system (Udachin et al., 2001).

![Graph](image_url)

Figure 6-11: Comparison of gas uptake (hydrate growth) for CO$_2$/water system (Temperature = 1.0 C, Pstart = 3.1 MPa). Time zero in the graph is induction time for the corresponding experiment (given in Table 6-1).
6.3.5. CO$_2$/H$_2$/C$_3$H$_8$/water system

Formation experiment for CO$_2$ (38.1%)/H$_2$ (59.4%)/C$_3$H$_8$ (2.5%)/water system with and without silica sand was carried out at 1.0 °C and the experimental pressure at the start of the experiment for this system was 5.1 MPa. This gas mixture is of particular interest for the pre-combustion capture of carbon dioxide from a fuel gas mixture coming out of an IGCC plant. It has been demonstrated that with the presence of small amount of propane as an additive the equilibrium hydrate formation pressure is significantly lower for any given temperature compared to CO$_2$ (40%)/H$_2$ (60%)system (Kumar et al., 2006). It was found that 99% CO$_2$ stream can be obtained from the above mentioned gas mixture in two stages of hydrate formation/dissociation with or without the presence of propane as an additive (Kumar et al., 2008; Linga et al., 2007). The presence of propane significantly reduces the operating pressure at any given temperature without compromising the CO$_2$ recovery from the fuel gas mixture (Kumar et al., 2008).

Figure 6-12 shows a comparison of gas uptake obtained for the system with silica sand and the experiment conducted in stirred vessel. Gas uptake for the experiment with the presence of silica sand was more than 4 times higher than the experiment carried out in a stirred vessel at the end of the experiment. The final conversion of water to hydrates was 86.4% for the experiment carried out with water dispersed in silica sand compared to only 19.8% for the experiment conducted in a stirred vessel. The hydration number used for this system was 10.05 (Kumar et al., 2009).
Figure 6-12: Comparison of gas uptake (hydrate growth) for CO$_2$ (38.1%)/H$_2$ (59.4%)/C$_3$H$_8$ (2.5%)/water system (Temperature = 1.0°C, P$_{\text{start}}$ = 5.1 MPa). Time zero in the graph is induction time for the corresponding experiment (given in Table 6-1).

6.3.6. CO$_2$/N$_2$/1.0 mol% THF system

Figure 6-13 shows a comparison of gas uptake obtained for the system with silica sand and the other system carried out in a stirred vessel. As seen in the figure, the gas uptake for both the experiments is the same. For all the systems shown above involving water and different gas or gas mixtures, the gas consumption was significantly higher for the experiments carried out with the presence of silica sand. However, with the presence of 1.0 mol% THF instead of water, the difference is not that much (Figure 6-13). Linga et al. (2008) found out that the optimum concentration of THF to be 1.0 mol% for experiments carried out in a stirred tank vessel for hydrate formation from a flue gas mixture (CO$_2$/N$_2$). Maybe, the optimum for the system with the presence of silica sand might be different. Hence, the effect of THF concentration should be further investigated. Moreover, the
interaction of silica with THF is not well understood. Similar observations were made by Adeyemo (2008) for experiments carried out in the presence of 1.0 mol% THF in the presence of silica gel pores at 5.0 MPa. In order to elucidate the effect of driving force, we decided to perform another experiment at a higher pressure of 5.0 MPa. Figure 6-14 shows a comparison of the gas uptake obtained for the system with silica sand and the other system carried out in a stirred vessel. As it can be seen in the figure, the gas consumption was not significantly higher for the silica sand compared to the one carried out in a stirred vessel.

![Figure 6-13: Comparison of gas uptake (hydrate growth) for CO$_2$ (16.9%)/N$_2$ (83.1%)/1.0 mol% THF system (Temperature = 1.9 C, P$_{start}$ = 2.5 MPa). Time zero in the graph is induction time for the corresponding experiment (given in Table 6-1).](image-url)
Figure 6-14: Comparison of gas uptake (hydrate growth) for CO$_2$ (16.9%)/N$_2$ (83.1%)/1.0 mol% THF system (Temperature = 1.9 C, P$_{\text{start}}$ = 5.0 MPa). Time zero in the graph is induction time for the corresponding experiment (given in Table 6-1).

Figure 6-15 shows the comparison of the gas consumption for all the CO$_2$ containing systems performed in a stirred vessel and by dispersing the liquid in silica sand. Overall, the gas consumption was significantly higher for the systems studied in water (CO$_2$, CO$_2$/H$_2$/C$_3$H$_8$ systems) while there was not much of a significant difference in the gas consumption for the system studied in aqueous 1.0mol% THF solutions (CO$_2$/N$_2$ system). For instance, the gas consumption was 4.5 times higher for the CO$_2$/H$_2$/C$_3$H$_8$ system carried out by dispersing water in silica sand compared to the experiment conducted in a stirred vessel. Moreover, as can bee seen in Figure 6-12, the hydrate growth was significantly faster for the system carried out by dispersing water in silica sand compared to the experiment conducted in a stirred vessel. Dispersing water in silica sand offers an
excellent possibility for employing hydrate based separation process for the capture of CO$_2$ from a fuel gas mixture (CO$_2$/H$_2$/C$_3$H$_8$ system).

Figure 6-15: Comparison of gas consumption for all the three hydrocarbon containing systems. The experimental time is the same for both experiments carried for each system.

Dispersing liquid contents in a bed of silica sand particles offers a large contact area for gas/liquid and also the possibility of multiple nucleation sites occurring in the bed for hydrate formation that resulted in higher gas uptake and subsequently higher conversion of water to hydrates. In an actual industrial application, mode of contact of gas/water would depend on whether the process requires higher yields or better initial reaction rates. For all the experiments, the initial rate of hydrate formation was faster for the experiments carried out in a stirred tank system. However the final gas consumption and
hydrate yield was significantly higher for the experiments conducted by dispersing water in silica sand.

6.4. Conclusions

The gas uptake for hydrate formation in a bed of silica sand particles was compared with that in a stirred vessel where gas is contacted with bulk water. Hydrate formation experiments were carried out for three systems, CH\textsubscript{4}/water, CH\textsubscript{4}/C\textsubscript{3}H\textsubscript{8}/water and CH\textsubscript{4}/C\textsubscript{2}H\textsubscript{6}/water, respectively that are of interest for natural gas transport and storage facilities. The gas uptake for all the three systems was found to be significantly higher for systems studied with water dispersed in silica sand. Subsequently it resulted in a higher percent conversion of water to hydrates. Similar experiments were studied for CO\textsubscript{2} and two CO\textsubscript{2} containing mixtures CO\textsubscript{2}/H\textsubscript{2}/C\textsubscript{3}H\textsubscript{8}, CO\textsubscript{2}/N\textsubscript{2}/1.0 mol\% THF that are of interest for CO\textsubscript{2} capture via clathrate hydrate crystallization. The gas uptake was found to be significantly higher for the CO\textsubscript{2} and CO\textsubscript{2}/H\textsubscript{2}/C\textsubscript{3}H\textsubscript{8} systems with water dispersed in silica sand. Dispersing liquid contents in a bed of silica sand particles offers a large contact area for gas/liquid and also the possibility of multiple nucleation sites occurring in the bed for hydrate formation. This results in higher gas uptake and subsequently higher conversion of water to hydrates.
Table 6-1: Summary of experimental conditions along with the induction time and percent conversion of water to hydrates achieved at the end of the experiment.

<table>
<thead>
<tr>
<th>System</th>
<th>Experimental state</th>
<th>T [°C]</th>
<th>Pexp [MPa]</th>
<th>Induction time [min]</th>
<th>Time [hr]</th>
<th>gas consumed [mol/mol of H$_2$O]</th>
<th>Hydration Number</th>
<th>Water conversion to hydrate (mol %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$/water</td>
<td>Water + silica sand</td>
<td>4.0</td>
<td>8.0</td>
<td>7.3</td>
<td>34.7</td>
<td>0.1604</td>
<td>6.1</td>
<td>94.7</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>4.0</td>
<td>8.0</td>
<td>18.1</td>
<td>91.1</td>
<td>0.0197</td>
<td>6.1</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>Water in stirred vessel</td>
<td>4.0</td>
<td>8.0</td>
<td>2.0</td>
<td>66.7</td>
<td>0.1249</td>
<td>6.1</td>
<td>74.1</td>
</tr>
<tr>
<td>CH$_4$/C$_3$H$_8$/water</td>
<td>Water + silica sand</td>
<td>4.0</td>
<td>4.6</td>
<td>8.7</td>
<td>43.0</td>
<td>0.0921</td>
<td>8.0</td>
<td>73.8</td>
</tr>
<tr>
<td></td>
<td>Water in stirred vessel</td>
<td>4.0</td>
<td>4.6</td>
<td>1.0</td>
<td>96.6</td>
<td>0.0226</td>
<td>8.0</td>
<td>18.1</td>
</tr>
<tr>
<td>CH$_4$/C$_2$H$_6$/water</td>
<td>Water + silica sand</td>
<td>4.0</td>
<td>8.0</td>
<td>2.0</td>
<td>40.0</td>
<td>0.1220</td>
<td>6.2</td>
<td>75.6</td>
</tr>
<tr>
<td></td>
<td>Water in stirred vessel</td>
<td>4.0</td>
<td>8.0</td>
<td>0.7</td>
<td>68.3</td>
<td>0.0972</td>
<td>6.2</td>
<td>60.3</td>
</tr>
<tr>
<td>CO$_2$/water</td>
<td>Water + silica sand</td>
<td>1.0</td>
<td>3.1</td>
<td>8.0</td>
<td>55.3</td>
<td>0.0920</td>
<td>6.5</td>
<td>59.8</td>
</tr>
<tr>
<td></td>
<td>Water in stirred vessel</td>
<td>1.0</td>
<td>3.1</td>
<td>1.7</td>
<td>68.5</td>
<td>0.0389</td>
<td>6.5</td>
<td>25.3</td>
</tr>
<tr>
<td>CO$_2$/H$_2$/C$_3$H$_8$/water</td>
<td>Water + silica sand</td>
<td>1.0</td>
<td>5.1</td>
<td>24.7</td>
<td>42.8</td>
<td>0.0859</td>
<td>10.0</td>
<td>86.4</td>
</tr>
<tr>
<td></td>
<td>Water in stirred vessel</td>
<td>1.0</td>
<td>5.1</td>
<td>1.7</td>
<td>42.8</td>
<td>0.0197</td>
<td>10.0</td>
<td>19.8</td>
</tr>
<tr>
<td>CO$_2$/N$_2$/THF (1.0mol %)</td>
<td>Water + silica sand</td>
<td>1.9</td>
<td>2.5</td>
<td>21.7</td>
<td>15.6</td>
<td>0.0103</td>
<td>5.7</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>Water in stirred vessel</td>
<td>1.9</td>
<td>2.5</td>
<td>1.3</td>
<td>22.7</td>
<td>0.0102</td>
<td>5.7</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>Water + silica sand</td>
<td>1.9</td>
<td>5.0</td>
<td>1.7</td>
<td>47.5</td>
<td>0.0197</td>
<td>5.7</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td>Water in stirred vessel</td>
<td>1.9</td>
<td>5.0</td>
<td>1.3</td>
<td>47.6</td>
<td>0.0176</td>
<td>5.7</td>
<td>15.0</td>
</tr>
</tbody>
</table>

* Pexp is the pressure at the start of the formation experiment.
6.5. References

7. CONCLUSIONS, CONTRIBUTION TO KNOWLEDGE AND RECOMMENDATIONS FOR FUTURE WORK

7.1. Conclusions

One of the new promising methods for separating CO\textsubscript{2} from flue gas or fuel gas is through clathrate or gas hydrate formation (Englezos and Lee, 2005; Han et al., 2007; Kang and Lee, 2000; Klara and Srivastava, 2002). Post combustion capture of CO\textsubscript{2} from a flue gas mixture via hydrate crystallization has been investigated for different operating conditions. Gas hydrate formation experiments were carried out in a crystallizer (323 cm3) operating in a semi-batch mode for a CO\textsubscript{2} (17\%)/N\textsubscript{2} (83\%) gas mixture (Linga et al., 2007a). Kinetics experiments coupled with compositional analysis using a GC revealed that CO\textsubscript{2} is preferentially incorporated into the hydrate crystal.

Two metrics, CO\textsubscript{2} recovery and separation factor were defined based on the hydrate separation experiments in order to assess the separation efficiency of the CO\textsubscript{2} capture process (Linga et al., 2007b). CO\textsubscript{2} recovery was found to be 36.7 to 42.1 \% in one stage at 11.0 and 10.0 MPa respectively. Hybrid hydrate-membrane processes were proposed for the post combustion capture of carbon dioxide involving three stages of hydrate formation resulting in a 99.0\% CO\textsubscript{2} stream (Linga et al., 2007b). Because the operating pressures are high the associated compression costs are significant. Tetrahydrofuran (THF) is known to form hydrates and can reduce the hydrate formation pressure for the flue gas mixture (Kang and Lee, 2000). The thesis also examined the impact of adding small amounts of THF on hydrate formation from the CO\textsubscript{2}/N\textsubscript{2} mixture (Linga et al., 2008). It was found that, the presence of THF reduces the operating pressure and induction time.
significantly without compromising the separation efficiency but also resulted in lower
gas consumption and rate of hydrate growth. The new thermodynamic, kinetic and
separation efficiency data enabled the creation of a conceptual process which consists of
three hydrate formation/decomposition stages operating at 273.75 K and at a pressure of
2.5 MPa coupled with a membrane separation stage to tackle a CO$_2$-lean stream. Nearly
50 % of CO$_2$ is recovered in the first two hydrate stages and 37 % in the third one (Linga
et al., 2008). The energy penalty of the hydrate process associated with the compression
of the flue gas was estimated. However stirring power costs were not taken into account.

A new hydrate formation apparatus equipped with a modular-type crystallizer having
a volume of 1,899.5 cm3 was presented. The gas uptake and the CO$_2$ recovery were found
to be significantly higher in the apparatus compared to the lab-scale apparatus. Thus, it is
possible to scale up the separation process of CO$_2$ capture from a flue gas mixture. The
new apparatus can be employed to test several other technological applications of gas
hydrates like natural gas storage and transportation and pre-combustion capture of CO$_2$.
Even though the new apparatus improves the mass transfer resistance, the energy costs
associated with the stirring makes the process energy intensive.

Finally, the kinetics of hydrate formation for six different gas/mixtures that are of
interest in several technological applications of gas hydrates were studied in a crystallizer
where gas is contacted with water dispersed in a silica sand matrix. This arrangement is
desirable as it does not require mechanical stirring. The gas uptake and water conversion
to hydrate were found to be significantly higher compared to the results obtained in the
same scale stirred vessel described in chapter 2.
7.2. Contribution to the knowledge

This thesis provides new insights on a new method for separation of carbon dioxide from a flue gas mixture via hydrate formation. The contributions to knowledge are as follows:

1. Our findings were the first to validate through kinetic gas uptake measurements the applicability of gas hydrates process to separate CO$_2$ from flue gas mixtures by providing information on the time dependant compositional changes during the kinetic experiment.

2. We proposed two metrics, the CO$_2$ recovery and the separation factor to determine the efficiency of the separation process.

3. Hybrid hydrate-membrane processes is proposed for post combustion capture of carbon dioxide involving three stages of hydrate formation resulting in a 99.0% CO$_2$ stream.

4. The presence of THF significantly reduces the operating pressures for hydrate formation and renders the separation process more attractive for an industrial scale. One mol % THF was determined to be the optimum concentration for the kinetic experiments conducted in a stirred tank crystallizer. Nearly 50 % of CO$_2$ is recovered in the first two hydrate stages and 37 % in the third one (all the three stages operating at 2.5 MPa & 273.7 K).

5. The addition of 1.0 mol% THF reduces the compression costs for the first stage of hydrate formation by 29.3% compared to the high pressure process with no additives.
6. A new hydrate formation apparatus was designed and set up to demonstrate the hydrate based separation process at a larger scale with better gas/liquid contacting. The results showed a significant increase in the gas uptake on a water free basis and also an increase in the CO₂ recovery.

7. When gas is contacted with water dispersed in a silica sand matrix the gas uptake and water conversion to hydrate were found to be significantly higher compared to the results obtained in the same scale stirred vessel described in chapter 2.

7.3. Recommendations for future work

Based on the forgoing conclusions, a number of recommendations can be made as to how this work may be improved and extended in future investigations.

1. Demonstrate the hydrate based separation process for post combustion capture in a pilot plant scale. Such a pilot plant study would enable to study the cost analysis of the hydrate based separation process for the separation of CO₂ from flue gas mixture which can be compared with more mature processes like amine based separation.

2. Establish how the hydrate process can operate in a continuous manner. Our experiments showed that the hydrate process can definitely be operated in a semi-batch manner. We believe, the hydrate process can also be operated in a continuous manner, if the hydrate slurry could be replaced with fresh THF solution.
3. Carry out molecular level studies like 1H NMR micro imaging experiments in order to understand the mechanism of hydrate formation for systems involving water in the presence of silica sand.

4. Review and attempt alternative crystallizer designs such as fluidizing silica gel particles in the flue gas stream or circulating the liquid contents and spraying through nozzles.

5. Employ an alternative rotor arrangement in the new apparatus described in chapter 5 in order to be able to operate at stirrer speeds higher than 400 rpm.
7.4. References

Figure A-1. Gas uptake measurement curve with temperature profile.

Figure A-2. Gas uptake measurement curve with temperature profile.
Figure A-3. Gas uptake measurement curve with temperature profile.

Figure A-4. Gas uptake measurement curve with temperature profile.
Figure A-5. Gas uptake measurement curve with temperature profile.

Figure A-6. Gas uptake measurement curve with temperature profile.
Figure A-7. Gas uptake measurement curve with temperature profile.

Figure A-8. Gas uptake measurement curve with temperature profile.
Figure A-9. Gas uptake measurement curve with temperature profile.
Table A-1. The standard errors and the R^2 values for the calculated rates reported in Table 2-1.

<table>
<thead>
<tr>
<th>Exp No</th>
<th>Rate (mol/min)</th>
<th>Standard error for rate</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.002</td>
<td>0.000019</td>
<td>0.9977</td>
</tr>
<tr>
<td>2</td>
<td>0.002</td>
<td>0.000049</td>
<td>0.9614</td>
</tr>
<tr>
<td>3</td>
<td>0.0018</td>
<td>0.000022</td>
<td>0.9913</td>
</tr>
<tr>
<td>4</td>
<td>0.0021</td>
<td>0.000019</td>
<td>0.9977</td>
</tr>
<tr>
<td>5</td>
<td>0.0017</td>
<td>0.000016</td>
<td>0.9947</td>
</tr>
<tr>
<td>6</td>
<td>0.0021</td>
<td>0.000011</td>
<td>0.9980</td>
</tr>
<tr>
<td>7</td>
<td>0.0014</td>
<td>0.000009</td>
<td>0.9957</td>
</tr>
<tr>
<td>8</td>
<td>0.0015</td>
<td>0.000008</td>
<td>0.9981</td>
</tr>
<tr>
<td>9</td>
<td>0.0005</td>
<td>0.000005</td>
<td>0.9958</td>
</tr>
<tr>
<td>10</td>
<td>0.0003</td>
<td>0.000003</td>
<td>0.9898</td>
</tr>
<tr>
<td>11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
APPENDIX B

Gas compression calculations for the separation of CO$_2$ from flue gas mixture from a power plant.

The mass flow rates used for the calculations were obtained from the MIT report, “the future of coal” available at http://web.mit.edu/coal/. Details of the power plant emissions are shown in the figure below,

![Figure B-1. A Subcritical 500 MW$_e$ Pulverized Coal Unit without CO$_2$ capture, Courtesy of Massachusetts Institute of Technology’s report on Future of Coal (MIT, 2007).](image)

Assuming that H$_2$O can be removed by condensation, if we add up CO$_2$, N$_2$ and O$_2$, the flow rate is 2,439,000 kg/hr. The molar percent is 74.6% N$_2$, 19.0% CO$_2$ and 6.4 % O$_2$.

The operating pressure of the crystallizer is 10.0 MPa. Pout/Pin = 10.0/0.1 = 100, we need four compression stages, heuristic from Seider et al. (2004).

According to Biegler et al. (1997), the work required is given by,
\[W = \mu \times N \times \left(\frac{\gamma}{\gamma - 1} \right) \times R \times T_0 \times \left[\frac{P_N}{P_0} \right]^{\frac{\gamma - 1}{\gamma N}} - 1 \]

(B1)

where,

\[\mu = \text{molar flow rate} = 80,372 \text{ kmol/hr} \]

\[N = 4 \text{ (Number of compression stages)} \]

\[P_N = 10 \text{ MPa} \]

\[P_0 = 0.1 \text{ MPa} \]

\[\gamma = \frac{C_p}{C_v} = 1.4 \]

\[R = 8.314 \text{ kJ/kmol K} \]

\[T_0 = 274 \text{ K} \]

The theoretical value of \(W \) was determined from equation B1 to be 277 MW. Assuming a compressor efficiency of 0.8 and motor efficiency of 0.9, the \(W_{\text{real}} \) was determined to be 385 MW.

References

Figure C-1. Gas uptake measurement curve along with temperature profile.

Figure C-2. Gas uptake measurement curve along with temperature profile.
Figure C-3. Gas uptake measurement curve along with temperature profile.

Figure C-4. Gas uptake measurement curve along with temperature profile.
Figure C-5. Gas uptake measurement curve along with temperature profile.

Figure C-6. Gas uptake measurement curve along with temperature profile.
Figure C-7. Gas uptake measurement curve along with temperature profile.

Figure C-8. Gas uptake measurement curve along with temperature profile.
Figure C-9. Gas uptake measurement curve along with temperature profile.

Figure C-10. Gas uptake measurement curve along with temperature profile.
Figure C-11. Gas uptake measurement curve along with temperature profile.

Figure C-12. Gas uptake measurement curve along with temperature profile.
Figure C-13. Gas uptake measurement curve along with temperature profile.

Figure C-14. Gas uptake measurement curve along with temperature profile.
Figure C-15. Gas uptake measurement curve along with temperature profile.

Figure C-16. Gas uptake measurement curve along with temperature profile.
Figure C-17. Gas uptake measurement curve along with temperature profile.

Figure C-18. Gas uptake measurement curve along with temperature profile.
Table C-1. The standard errors and the R^2 values for the calculated rates reported in Table 4-2.

<table>
<thead>
<tr>
<th>Exp No</th>
<th>Rate (mol/min)</th>
<th>Standard error for rate</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0008</td>
<td>0.000016</td>
<td>0.9748</td>
</tr>
<tr>
<td>2</td>
<td>0.0009</td>
<td>0.000021</td>
<td>0.9712</td>
</tr>
<tr>
<td>3</td>
<td>0.0013</td>
<td>0.000033</td>
<td>0.9656</td>
</tr>
<tr>
<td>4</td>
<td>0.0014</td>
<td>0.000028</td>
<td>0.9776</td>
</tr>
<tr>
<td>5</td>
<td>0.0005</td>
<td>0.000006</td>
<td>0.9919</td>
</tr>
<tr>
<td>6</td>
<td>0.0006</td>
<td>0.000008</td>
<td>0.9908</td>
</tr>
<tr>
<td>7</td>
<td>0.0010</td>
<td>0.000017</td>
<td>0.9823</td>
</tr>
<tr>
<td>8</td>
<td>0.0010</td>
<td>0.000019</td>
<td>0.9781</td>
</tr>
<tr>
<td>9</td>
<td>0.0012</td>
<td>0.000017</td>
<td>0.9875</td>
</tr>
<tr>
<td>10</td>
<td>0.0016</td>
<td>0.000021</td>
<td>0.9902</td>
</tr>
<tr>
<td>11</td>
<td>0.0008</td>
<td>0.000015</td>
<td>0.9826</td>
</tr>
<tr>
<td>12</td>
<td>0.0008</td>
<td>0.000012</td>
<td>0.9856</td>
</tr>
<tr>
<td>13</td>
<td>0.0007</td>
<td>0.000008</td>
<td>0.9924</td>
</tr>
<tr>
<td>14</td>
<td>0.0007</td>
<td>0.000009</td>
<td>0.9896</td>
</tr>
<tr>
<td>15</td>
<td>0.0007</td>
<td>0.000029</td>
<td>0.9007</td>
</tr>
<tr>
<td>16</td>
<td>0.0008</td>
<td>0.000030</td>
<td>0.9217</td>
</tr>
<tr>
<td>17</td>
<td>0.0009</td>
<td>0.000038</td>
<td>0.9220</td>
</tr>
<tr>
<td>18</td>
<td>0.0009</td>
<td>0.000043</td>
<td>0.8891</td>
</tr>
</tbody>
</table>
Figure D-1. Gas uptake measurement curve along with temperature profile (experiment 1, table 6-1).

Figure D-2. Gas uptake measurement curve along with temperature profile (experiment 2, table 6-1).
Figure D-3. Gas uptake measurement curve along with temperature profile (experiment 3, table 6-1).

Figure D-4. Gas uptake measurement curve along with temperature profile (experiment 4, table 6-1).
Figure D-5. Gas uptake measurement curve along with temperature profile (experiment 5, table 6-1).

Figure D-6. Gas uptake measurement curve along with temperature profile (experiment 6, table 6-1).
Figure D-7. Gas uptake measurement curve along with temperature profile (experiment 7, table 6-1).

Figure D-8. Gas uptake measurement curve along with temperature profile (experiment 8, table 6-1).
Figure D-9. Gas uptake measurement curve along with temperature profile (experiment 9, table 6-1).

Figure D-10. Gas uptake measurement curve along with temperature profile (experiment 10, table 6-1).