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ABSTRACT 
 

This dissertation searches for possible sources of life in mathematics pedagogy. It is 

motivated by my observation that much of mathematics education of today is obstructed by 

inertia. We teach mathematics today using methods and educational philosophies that have 

changed little in decades of practice, and we generally avoid the harder question of why do it at 

all?  I use Wilber’s (1995) integral theory, a broad metatheory of psychosocial development, to 

conceptualize life in general, and aspects of life in mathematics education in particular. Wilber’s 

epistemological framework, called AQAL, describes reality as manifesting in four quadrants – 

subjective, objective, intersubjective, and interobjective – and in multiple developmental levels. I 

use AQAL to examine what is revealed about life in mathematics education through these 

perspectival lenses. The dissertation studies evolutionary dimensions of five related phenomena 

in mathematics education: purposes of teaching and learning mathematics, human relations in 

mathematics classes, the subject matter of mathematics, teachers’ mathematical knowledge, and 

ecological sustainability. I connect the diverse evolutions of these phenomena to reveal extant 

developmental pathologies in mathematics education, such as the Platonic barrier and excessive 

objectification. Moving beyond critique, the synthesis gestures toward a new emergent pedagogy 

– living mathematics education – that evolves mathematics education past these pathologies. The 

new pedagogy is elaborated through the examples of an instructional unit on circles and the 

participatory research methodology of concept study. I provide specific suggestions how living 

mathematics pedagogy may be practiced through dialogical classes, a new purpose of healing the 

world, a curriculum of sustainability, a skillful blending of Platonic and non-Platonic 

mathematics, and an improvisatory disposition towards teaching. 
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CHAPTER	  1	  

LIFE	  IN	  MATHEMATICS	  EDUCATION	  
 

From kindergarten to high school, mathematics education spans the whole of our 

students’ educational experience. Over a period of 12 years or more, we teach mathematics to 

prepare students to be numerate citizens and productive workers. We teach arithmetic to prepare 

students for algebra; we teach algebra to prepare students for calculus; and then we teach 

calculus. Incoming mathematics teachers are often successful graduates of this curricular 

sequence. Once they join the profession, many of them end up perpetuating it through their 

pedagogy.  

It is strangely easy to argue that today’s school mathematics is moribund. The limitations 

of the prevailing modernist-industrial model, which seeks to convey pre-established 

mathematical truths through transmission pedagogy and which measures learning by means of 

standardized test scores, are increasingly apparent. International test results (PISA, 2009) show 

that many students do not succeed with mathematics and continually confront obstacles to 

engaging with it. Policy decisions of the last decade, which often promoted even more testing 

and closer scrutiny of test results, have done little to enhance the experience of mathematics 

teaching and learning.  

The emphasis on hyper-instrumentality in mathematics education has likely contributed 

to increased student disaffection with the subject matter (cf. Ma & Willms, 1999). And yet, 

postmodern approaches to mathematics education, largely championed by members of the 

mathematics education research community (e.g., Walshaw, 2004), have gained little traction in 

actual practice. It is not easy to reconcile the vocabulary of postmodernity with that of formal 

mathematics and its pedagogy. Indeed, early attempts to do so have resulted in no less than the 

outbreak of Math Wars (Schoenfeld, 2004). Fluid postmodern notions of identity, discourse, 

equity, and place often appear incompatible with rigid mathematical formalisms.  

Over the past 20 years, I have taught mathematics to students at all levels, from 

kindergarten to university, and I am particularly experienced in high school mathematics. I have 

also instructed pre-service and in-service mathematics teachers in my university’s teacher-
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education program. I also own and operate a large for-profit tutoring firm in Western Canada that 

caters to the ever-growing demand for remedial mathematics education and tutoring support. The 

high value accorded to mathematics among school subjects has meant that my skills are always 

in great demand, and I derive direct professional benefit from the ongoing crisis in mathematics 

education in Western Canada. But despite the success that I have enjoyed in the field of 

mathematics education, it appears to me that much of the project of mathematics education is 

obstructed by inertia. We teach mathematics today using methods and educational philosophies 

that have changed little in decades of practice, and we generally avoid the harder question of: 

why do it at all?   

The Oxford English Dictionary defines inertia as “indisposition to motion, exertion, or 

change.” An inert object “lacks vigour.” As far as I can tell, when my high school students 

interact with mathematics, they are rarely invigorated or even moved by their learning 

experiences. Even though they attend the classes and work on their assignments, it is obvious 

that most of these teenagers are just going through the motions; they are “doing school”. This is 

evidenced by a question that is all too familiar to us teachers of mathematics: “Will this be on the 

test?” It is the external inducement provided by testing that drives much of their learning; the 

subject matter, on the other hand, appears to be inert for them.  

Why do so many students experience mathematics in this way? Why don’t they enjoy it 

as I did in school and have continued to do throughout my life? I take genuine pleasure in the 

analytical demands, orderliness, and beauty of mathematics. Others do too, of course, including 

some of my own students. But then again, I know of many other intelligent and accomplished 

people who are practically traumatized by mathematics. In fact, there seem to be far more self-

professed victims of mathematics than people who enjoy it, and many more students who want 

nothing to do with mathematics than students who love it. Why should this be so? 

In my early years of teaching I attributed certain students’ lack of interest in high-school 

mathematics to their laziness, to the distraction of teenage hormones, to inadequate teaching in 

elementary school, to deficiencies in my own instructional methods, to distractions brought on 

by computers and video gaming, and to a host of other peripheral reasons. I wanted to believe 

that there had to be an explanation other than the mathematics itself for the students’ apathy and 

discontent. I had to believe that the mathematics I was teaching was intrinsically valuable, for 
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otherwise, there would be no compelling reason to continue teaching it. But, with time, my 

doubts grew, and I began to realize that I may have been avoiding some hard truths about the 

enterprise of teaching mathematics. When I looked into the positions of some of the guiding 

lights in the field, I was surprised to discover some similar conclusions: 

Many teachers today believe their own propaganda – that is, they believe something is 

wrong with either students or teachers if students do not evince an interest in a given 

subject. However, after many years of teaching, I have come to believe that this is a great 

mistake. (Noddings, 1997, p.30) 

Like Noddings, I needed many years of teaching to get to a point where I could begin to 

deconstruct the underlying assumptions of the profession, especially with regards to my basic 

alignment with its subject matter. My aim in these years was to refine my pedagogy in the hope 

that better methods of instruction would lead to greater student engagement and improved 

overall learning. During this time, I became a sought-after mathematics teacher in my city. And 

still, classroom engagements with mathematics remained inert for many of my students despite 

my many efforts to change their attitudes and stimulate their creativity. The basic fact remains 

that students “do” high school mathematics because they are coerced into it. They appreciate my 

help in making it as painless as possible, and they commit it to short-term memory for their tests, 

but they mostly forget it just as quickly. 

I enrolled in the doctoral program at UBC hoping to study the question, Where is life in 

mathematics education? I initially intended to focus my research on the narrow topic of 

logarithms, which in my experience of teaching is a particularly traumatizing and lifeless area of 

the curriculum for many students. If only I could bring life to the teaching of logarithms, I 

reasoned to myself, then I would surely be able to replicate the experience elsewhere in the 

curriculum. But to my surprise, the narrow focus on logarithms I had intended for my research 

could not be sustained. My direction of study compelled me to keep broadening the question. 

The basic question of How to teach logarithms? transformed into Why teach logarithms?, then to 

Why teach mathematics?, then to Why teach?, and finally to Why? Each new question challenged 

or extended the preceding one in some way, but did not cancel it. All the questions which 

accumulated as my range of inquiry broadened appeared to be systematically co-implicated. I 

came to believe that meaningful answers would likely arise simultaneously, and would require a 
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theoretical framework that would be comprehensive enough to include some larger philosophical 

questions, yet flexible enough to tackle practical questions in mathematics pedagogy.  

1.1	  	  Searching	  for	  a	  Theory	  of	  Life	  
What is life?  For our purposes, the term life stands in opposition to inertia. Life is 

dynamic in that its energy animates action and expression. To understand this dynamism better, I 

set out to find what common characteristics are shared by all living systems. Complexity science 

provided for me a compelling answer. 

Capra (2002) offered a systemic analysis of the building blocks of life in diverse 

phenomena: biological cells, consciousness, and social reality. Capra’s synthesis is based on the 

proposition that there is a fundamental unity to life, and that different living systems exhibit 

similar patterns of organization. This proposition has been supported by the major findings of 

complexity science, systems theory, and cognitive science in the past three decades. 

Accordingly, the pattern of organization of biological systems is the self-generating network. 

Living systems are cognitive learning systems (cf. Maturana & Varela’s Santiago theory, 1972), 

where cognition is closely related to the process of autopoiesis, i.e., the processes of self-

organization and self-generation. Living systems are structurally coupled to their environments, 

and they continuously respond to environmental influences with structural changes. Living 

systems are also dissipative structures; that is, they are open to the environment and operate far 

from equilibrium where new forms of order may emerge (Johnson, 2002). Emergence is the 

creative aspect of life and is the source of development or evolution.  

One example of life is a living biological cell. Living cells are membrane-bounded, 

metabolic networks that are materially and energetically open to their environment. They use a 

constant flow of matter and energy to repair themselves and self-generate. Because cells operate 

far from equilibrium, new forms of order may spontaneously emerge within cells through 

changes in DNA molecules, thereby leading to biological evolution. Another example of life is 

social culture. A culture is created and sustained by a network of communications that produce 

meaning (cf. Luhmann, 1990). Each instance of communication gives rise to additional thoughts 

and communications, and hence the network of communications generates itself autopoietically. 

Artifacts and texts are the material embodiments of a given culture, and they are used to pass on 
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meaning between generations. Identity is an emergent property of cultural networks that helps to 

establish their boundaries.  

When I first encountered complexity science and its distinct conception of life, I was 

impressed by the breadth of its application to many different contexts. But I was also put off by 

its vocabulary. Terms such as autopoiesis, structural coupling, and far from equilibrium, 

appeared technical, abstract, detached from everyday experience, and far better suited to the 

analysis of physical phenomena than to the study of human interactions between students and 

teachers. Indeed, as I came to understand, the discourse of complexity arose out of the exact and 

natural sciences. The earliest manifestations of complexity thinking were chaos theory in 

mathematics, nonlinear dynamics in physics, nonequilibrium thermodynamics in chemistry, and 

systems theory in computer science. Only in the past few decades has complexity thinking been 

gaining a foothold in the social sciences and humanities: management (Wheatley, 1994), politics 

(Capra, 2002), economics (Goodwin, 1990), and education (Davis & Sumara, 2006).  

Educational research is primarily concerned with interior human phenomena (e.g., 

knowing and learning). The vocabulary of complexity, on the other hand, derives from empirical 

observations of exterior phenomena (e.g., vortices in river flows). It follows that any use of 

complexity thinking in education necessarily should be metaphorical. Unfortunately, the 

metaphors did sometimes appear to me to be far-fetched or unmanageable when applied to 

practical teaching. I remained unconvinced that the discourse of complexity would provide 

comprehensive explanations of social phenomena, even taking into account extended social 

complexivist theories, such as Juarrero’s  theory of intentional behaviour (1999). The 

interior/exterior divide between education and complexity science kept me searching for other 

theoretical frameworks that might provide a better means of understanding life in mathematics 

education.  

Aside from complexity theory, there was no shortage of theories to choose from in 

forming my analysis. The prevailing discourse in schools of education nowadays is 

postmodernism. Postmodernism is an umbrella term for a mass of theories and discourses, all of 

which share the aspect of rejecting some aspect of modernism. They include: constructivism, 

social constructionism, structuralism, poststructuralism, critical theory, pragmatism, 

psychoanalysis, feminism, ecology, existentialism, enactivism, cognitive science, and systems 
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theory, to name but some. During my studies, I attended many presentations that began with the 

speaker’s announcing a given theory to which he or she was committed.  The chosen theory, 

acting as a lens on the world, was touted as the “right one,” given a defined set of assumptions 

and philosophical underpinnings. The theoretical orientation of the day was proposed as the one 

we would have to employ if we were to understand reality correctly. It was not unusual to 

encounter thinkers who believed that language and discourse amount to textual reality in their 

own right, or that power relations govern human behaviour and thought entirely, or that the 

masculine/feminine duality explains all of the strife in the world. From my perspective, I was 

willing to acknowledge that each of the theories and discourses that I encountered contained 

some valid insights. But it was difficult to see how they all fit together.  

At the time, I also fostered a favourite theory, that of humanistic dialogue. The works of 

Martin Buber and Nel Noddings spoke to me directly and deeply. They moved me in ways that 

other works did not. I often thought that if everyone conceptualized reality as these authors did, 

the world would be a better place. For a while I considered adopting the lens of intersubjective 

dialogue as my theoretical framework. But just as I doubted the partiality of other people’s 

commitments to their unitary points of view, I knew that the intersubjective lens was also partial 

and subject to its own limitations. While human relations are a very important aspect of 

mathematics classes, the subject matter is also very important. Yet humanistic dialogue had little 

to offer when it came to the subject matter of mathematics.  

At this point it appeared that my choices for a theory of life were either complexity 

science – an emerging transphenomenal discourse with a convoluted scientifically derived 

vocabulary – or a whole range of more restrictive, single-cause theories. Neither choice satisfied 

me. What I needed was a framework that would combine the breadth of complexity science, and 

its profound understanding of natural and systemic evolution, with the interiority of many 

postmodern theories. I found this framework in Ken Wilber’s integral theory. 
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1.2	  	  The	  Need	  for	  Integrative	  Metatheory	  
― You exposed me to all these theories but gave me no way to sift and winnow among 

them. How do I know which theory is better or worse than another? 

― I’m sorry that you feel that way. That’s too bad.  

(Van de Ven, 1999, pp. 120-121) 

The above fictional conversation between a graduate student and his program director 

points to a major challenge engendered by theoretical pluralism. Certainly the point of 

deliberation is not to decide which theories are relatively better or worse. But as theoretical 

diversity increases, the need to approach the resulting theoretical complexity methodically and to 

find the links between various theories also increases.  

In recent years, mixed-methods research (Johnson and Onwuegbuzie, 2004) has been 

advanced as a practical response to the ongoing quantitative vs. qualitative disputes in research 

agendas. Johnson and Turner (2003) recommended that “methods should be mixed in a way that 

has complementary strengths and non-overlapping weaknesses … It involves the recognition that 

all methods have their limitations as well as their strengths.” (p. 299)  But how are the limitations 

and strengths of different methods to be compared and assessed? Research goals, researched 

phenomena, and research paradigms are all grounded in theory. So any organized mixing of 

methods should be carried out with reference to the connections between the underlying theories. 

It appears that what is needed is integrative metatheoretical research, that is, “the systematic and 

deliberative study of theories and their constituent conceptual lenses” (Edwards, 2010).   

Meta-theorizing is a time-honoured tradition in academic scholarship dating back to 

Hegel and Marx. In recent decades it has fallen out of favour in academic circles, primarily due 

to postmodernity’s distrust of grand narratives. While some past and present meta-theories may 

be critiqued justifiably as totalizing, decontextualizing, and marginalizing, these qualities do not 

inhere in the metatheoretical process. As we shall later see, integrative metatheory can be 

pluralistic, inclusive, and appreciative of differences. The goal of integrative metatheory is not to 

develop a theory of everything in order to provide a complete description of some pre-established 

domain. Rather, it is to develop a flexible framework for connecting multiple paradigms and 

theories within a robust conceptual landscape. 
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Meta-theorizing is conducted at a higher level of abstraction than ordinary theory. 

Whereas middle-range theories typically utilize concepts that derive mostly from empirical 

observations, metatheory utilizes second-order abstractions derived from the analysis of other 

theories. The abstract nature of metatheory and its objects has led to the modernist critique that 

metatheory is impractical and not scientific. But social theory, and especially big-picture theory, 

can have a profound transformative impact on social systems. Giddens pointed to the “double 

hermeneutic” process (1984, p. xxxii) wherein our theories do not only describe our world but 

also shape it; people’s actions depend on how they interpret their environment.    

It is unfortunate that the postmodern and modernist critiques have superseded meta-

theorizing in recent decades. Big-picture thinking is more important now than ever before. It is 

highly doubtful that the current eclecticism of middle-range theories would be sufficient to tackle 

the immense environmental and social problems that we all face. Fortunately, meta-theorizing is 

starting to make a comeback in many academic disciplines, whether it is explicitly designated as 

such or not. Complexity science provides a good example of this resurgence of metatheory. 

Although complexivists would not necessarily identify themselves as meta-theorists, as there 

should be no advantage for them in doing so, complexity science is a grand narrative that unites 

the insights of a host of theories – systems theory, chaos theory, cybernetics, network theory, and 

enactivism. It describes a common pattern that connects natural phenomena – the network 

pattern – and tells a compelling story of natural evolution through emergence. As another 

example, Torbert’s developmental action inquiry (2004) is an explicit metatheory that draws 

attention to four different territories of experience in multiple scales. It has been influential in the 

establishment of organizational transformation as a field of research (see Edwards, 2010). 

Probably the most comprehensive integrative metatheory of our time is Wilber’s integral 

theory (1995), also known as the AQAL framework. Integral theory originated from Wilber’s 

early studies (1977) of psychological development and spiritual transformation, and has 

expanded and matured over a period of nearly 35 years through the successive addition of 

metatheoretical lenses.  Some of AQAL’s lenses are: interior-exterior, individual-collective, 

agency-communion, structural development (stages), multidimensionality (types, lines, states), 

perspective (first, second third), and methodology (integral methodological pluralism). The 
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integration of these lenses in a unified model makes AQAL a sophisticated multi-perspectival 

framework for analyzing social reality and psychosocial development.  

I came upon integral theory by chance while studying the transformative education 

literature. Integral theory provided a sophisticated expansive framework in which different 

paradigms and theories could be situated and connected. The strong analytical bent of the AQAL 

framework appealed to my mathematical sensibilities. AQAL’s emphasis on subjective and 

intersubjective development made it eminently suitable for the analysis of educational 

phenomena. I chose AQAL as the theoretical framework for my research because it opened up a 

productive space for inter-perspectival conversation and synthesis. 

1.3	  	  Overview	  of	  the	  Dissertation	  
Integral theory enabled me to think afresh about five large-scale research questions in 

mathematics education:  

• Why teach mathematics?  

• What role do human relations play in the mathematics classroom? 

• How has the subject matter of mathematics evolved and in what directions will it 

evolve next? 

• What mathematics do teachers need to know in order to teach mathematics? 

• How can mathematics education respond to the central challenge of global society – 

the problem of ecological sustainability?  

I selected these questions because each of them gestures towards a promising source of 

life in mathematics education – purpose, human relations, subject matter, teacher’s knowledge, 

and environment. My reflections on these questions are the main substance of the present 

dissertation. They combine to form a response to the overall research question: What does 

integral analysis disclose about life in mathematics classrooms? 

Chapter 2 is an overview of integral philosophy and the AQAL framework. Integral 

theory is sufficiently new to academic discourse that a brief synopsis of its history, elements, 

methodology, and critiques is warranted. Chapters 3 to 7 are the primary research chapters and 

they address the five research questions above respectively. Chapter 3 examines the main 

purposes of mathematics education, past and present, and how they fit together from an integral 
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perspective. It culminates in a proposal of a lively new purpose for mathematics education in our 

time. Chapter 4 studies the powerful role of intersubjective dialogue in the mathematics 

classroom. In this chapter, I interrogate the tension between teachers’ loyalties to the subject 

matter of mathematics and the competing need to promote dialogical human encounters. Chapter 

5 focuses on the subject matter of mathematics itself. A survey of the history of conceptions of 

mathematics identifies Platonism as a major barrier to evolution. The second part of the chapter 

reports on concept study – a participatory research methodology that is making great strides in 

helping teachers overcome the Platonic barrier. Chapter 6 offers an integral reconceptualization 

of the popular Mathematics for Teaching (MfT) problem in mathematics education research. It 

challenges the conventional conception of MfT as a body of knowledge, and argues that MfT is 

better understood as an open disposition towards mathematics in pedagogical settings. Chapter 7 

issues a call to mathematics educators to begin addressing themselves to the problem of 

ecological sustainability, and offers concrete examples of how we might go about achieving 

solutions. Integral analysis is used to predict how educators are likely to respond to the call 

towards sustainable mathematics education. Chapter 8 provides a cross-reading of the preceding 

chapters and identifies some common themes – overcoming Platonism, emergence vs. stability in 

mathematics education, the importance of language in mathematics pedagogy, and the expanding 

boundaries of the mathematical in education. In this chapter, I consider the overall contribution 

of the dissertation’s integral thinking to mathematics education, and whether or not this type of 

meta-thinking has practical value for mathematics teaching. I conclude with an argument that 

constant integration of perspectives should be the very essence of the daily work of mathematics 

teachers. 

From a structural perspective, the overall framework of the dissertation is the AQAL 

matrix. Each of Chapters 3 to 7 was written as a standalone paper intended for publication. 

Chapters 5 to 6 have been published as book chapters, and Chapter 7 was published as a journal 

article. I retained the published versions of these chapters intact in the dissertation. I hope that 

you, the reader, will forgive any repetition that arises as a result. Since Wilber’s integral theory is 

not yet widely accepted by editors of academic journals, some of the chapters employ integral 

thinking without referring to the theory by name. For the benefit of readers of this dissertation, I 

precede each chapter with a short synopsis that explains how the chapter ties into the overall 
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AQAL structure. You will also find some short “teaching interludes” interspersed among the 

chapters. They contain pedagogical episodes that arose in a Grade 8 instructional unit on circles 

that I co-taught this year. These are intended to provide brief respites for readers from the 

theoretical demands of the research chapters.  

My research is limned over a large canvas. It addresses big-picture questions and looks 

for large-scale answers. I ask readers to indulge the necessary use of broad strokes and 

orientating generalizations in the writing. Rather than ask, How can you prove that?, I invite you 

to ask, Does it fit? Does it open up new productive paths? Although research in the social 

sciences has been plagued by physics-envy for the better part of the 20th century, validation 

methods of the natural sciences do not often apply to the study of complex human phenomena. A 

social theory is a story validated by its functional fitness for a given community. If it rings true 

and produces useful ideas for some readers then it is worthwhile. This dissertation is the 

phenomenological product of over 20 years of mathematics teaching and 6 years of engagement 

with the education and integral literatures. It rings true from my perspective, and I hope that it 

opens up new paths for you too. It is in this spirit that I invite you to enjoy the rest of the work.  
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CHAPTER	  2	  

AN	  OVERVIEW	  OF	  INTEGRAL	  THEORY	  
 

Developed by the American philosopher Ken Wilber over the past three decades, integral 

theory is a broad metatheory of psychosocial development. It provides a large-scale framework, 

called AQAL (Wilber, 1995), for making connections among diverse theories of social reality. 

AQAL is an analytical space for the systematic integration of many knowledge traditions and 

paradigms.  

In order to place Wilber’s integral theory in its historical context, I shall begin this 

chapter with an overview of integral thinking. I shall then survey some of integral theory’s main 

components: perspectivalism, quadrants and levels, and integral methodological pluralism. The 

chapter will conclude with some critiques of metatheorizing and personal reflections on integral 

theory. 

2.1	  	  History	  of	  Integral	  Thinking	  
The roots of integral philosophy can be traced to Georg Wilhelm Hegel, who posited that 

every domain of reality develops in a dialectical process, wherein synthesis transcends and 

partially preserves the conflicting dualisms inherent in any given thesis and antithesis. Hegel saw 

reality as an ongoing process of “becoming,” and understood knowledge and consciousness as 

developmental processes. Dialectic thinking has since been applied in many domains. Karl Marx, 

for example, interpreted social evolution as a dialectic between techno-economic means and 

class structure.  

In the first half of the 20th century, Alfred Whitehead and Pierre Teilhard de Chardin 

extended Hegel’s understanding of the universe as unfolding, by relating external and internal 

development. Whitehead conjectured that all natural structures in the cosmos, from atoms to 

humans, possess some form of consciousness, and hence a subjective interiority. Teilhard de 

Chardin (1964) later formulated the law of complexity-consciousness which holds that 

consciousness develops in direct proportion to an organism’s organizational complexity: 
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“Complexification due to the growth of consciousness, or consciousness the outcome of 

complexity: experimentally the two terms are inseparable.” (p. 147) 

Developmental psychologists were the first to recognize that consciousness evolves 

through distinct and universal stages. In 1911, James Mark Baldwin (1906-1911/2007) outlined 

the first stage model for the dialectical development of human consciousness. It consisted of five 

distinct stages: pre-logical, quasi-logical, logical, extra-logical, and hyper-logical. Baldwin’s 

work had a pivotal influence on Jean Piaget’s subsequent theories of cognitive development in 

children. Piaget’s work, in turn, inspired numerous other psychologists who formulated stage 

models for different aspects of consciousness development (e.g., Lawrence Kohlberg, Jane 

Loevinger, and Abraham Maslow).  

Clare Graves (1970) and his followers Don Beck and Christopher Cowan (2006) studied 

the systemic nature of consciousness development. They proposed a spiralling double-helix 

topology, which they called the spiral of development, to depict the dialectic pattern in which 

bio-psycho-social systems emerge as humans respond to external life conditions. The spiral of 

development revolves around the demands of one’s need to adapt to one’s environment and 

one’s desire to adapt the environment to one’s self. The resulting emergent systems manifest as 

structures of core values (value memes) that serve to organize both individual and collective 

consciousness.   

Spiral Dynamics’ structure-stages bear a close resemblance to the structures of 

consciousness outlined by Jean Gebser (1984) in his study of human history. In tracing the 

historical development of nearly every major field of human undertaking (e.g., art, science, 

language, literature, and philosophy), Gebser discerned an unfolding pattern of transformation 

that includes five consecutive worldview structures: archaic, magic, mythical, mental-rational, 

and integral. Each successive structure is characterized by a novel relationship to space and time, 

while earlier structures continue to operate even as new ones emerge.  

Complexity science emerged in the last three decades of the 20th century. It provides a 

comprehensive new understanding of natural evolutionary systems. Complex systems arise from 

the co-dependent interactions of autonomous agents, and evolve through the nonlinear dynamic 

processes of emergence and autopoiesis. Emergence is the process by which the agents cohere 

into increasingly higher order unities. These new forms of organization manifest transcendent 
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properties, not present preceding forms. Autopoiesis (Maturana & Varela, 1987) is the ongoing 

process through which complex systems self-organize to regenerate their structures and maintain 

coherence within their environments.  

Complex systems are typically nested and exhibit self-similarity among the qualitatively-

different phenomena that are found in their multiple layers of organization. The boundaries of 

complex systems and their constituent layers are not fixed; they are typically determined by the 

observer’s perspective. Hence, the histories and memories of complex systems are embodied in 

structure. Indeed, the structure of a complex system is the sum total of its modifications to a 

given point in time. 

Wilber may be seen as the father of integral philosophy of our time. His integral theory is 

a massive synthesis of results and insights from systems theory, complexity and evolutionary 

science, postmodern philosophy, and developmental psychology. Wilber’s AQAL model (1995) 

extends current understandings about complexity and evolution in nature to the domains of self 

and culture. It is a comprehensive map of reality that correlates development in the three realms 

of nature, self, and culture.   

2.2	  	  Integral	  Perspectivalism	  

The term universe usually refers to the physical realm of nature exclusively. Wilber uses 

the term Kosmos to refer to the expanded mental-physical universe, which also includes interior 

dimensions of self and culture. Central to AQAL’s construction of a map of the Kosmos are the 

notions of holon and perspective. 

Holons were first proposed by Koestler (1968) as a way to describe complex evolving 

entities. Koestler noted that biological and social systems were not made up of simple parts, but 

rather of nested hierarchies of part-wholes, which he called holons. Every component in a system 

is simultaneously a whole and part of a greater whole. Holarchic systems evolve through a 

pattern of transcendence and inclusion. So, for example, organisms transcend and include cells, 

which in turn transcend and include molecules, which in turn transcend and include atoms.  

Wilber distinguishes between individual holons that have centered subjectivities and 

social holons that have distributed subjectivities. A central injunction of integral philosophy is 

that the capacity for perspective taking is ontologically foundational for all individual holons. 
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[T]here are no perceptions anywhere in the real world; there are only perspectives. A 

subject perceiving an object is always already in a relationship of first-person, second-

person, and third-person when it comes to the perceived occasions. If the manifest world 

is indeed panpsychic—or built of sentient beings (all the way up, all the way down)—

then the manifest world is built of perspectives, not perceptions … Subjects don't prehend 

objects anywhere in the universe; rather, first persons prehend second persons or third 

persons: perceptions are always within actual perspectives. (Wilber, 2006c, p. 4) 

Wilber’s privileging of perspectives over perception overcomes the modernist 

misconception that subjects perceive objects, that is, the idea that subjects apprehend an 

objective pre-given reality. The primacy of perspectives also transcends the postmodern Myth of 

the Framework (Popper, 1996), which is the belief that all reality is illusory and arbitrarily 

constructed by the observer. Integral post-metaphysics maintains that while evolution proceeds 

by creative emergence and there are no ontological pre-givens, existing levels of evolution are 

rehearsed over time to become ingrained Kosmic habits. “…[T]he older the level, the more 

deeply it has become etched into the Kosmos” (Wilber, 2006c, p. 246). Deep Kosmic habits are 

concrete and in the course of time have attained an existence that is independent of any particular 

human individual. Due to the reliability with which they show up in the phenomenological 

worldspace of humans, Kosmic habits attain an independent existence that all humans must 

confront. The evolution of consciousness is characterized by the ability to take on an increasing 

number of perspectives. Although all human perception is filtered through perspectives, the 

relative degree to which a given perspective has power depends on how much of reality it 

apprehends. 

According to Wilber, all knowing is perspectival. In other words, all experience is 

interpreted within, and limited by, the conceptual scheme of one’s perspective. Some important 

factors governing human perspectives, for example, are level of development and abstract 

language. Hence, the integral motto for perspectivalism is “Do not confuse the map with the 

territory.” 
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2.3	  	  Components	  of	  AQAL	  
AQAL is short for all quadrants, all levels, all lines, all states, and all types. Quadrants, 

levels, lines, states, and types are five essential metatheoretical perspectival lenses for 

understanding an evolving Kosmos. They apply at all scales and all contexts. None of them is 

assigned an ontological or epistemological priority as they all co-arise in the seamless fabric of 

reality in every moment.    

2.3.1	  	  Quadrants	  

When we investigate any psychosocial phenomenon, we should take two fundamental 

perspectives into account. The interior-exterior perspective refers to the relationship between 

subjective experience and objective behaviour. The individual-collective perspective refers to the 

relationship between the personal and the social. The two perspectives combine to yield the four 

quadrants – experiential (subjective), behavioural (objective), cultural (intersubjective), and 

social (interobjective). The quadrants are four interrelated domains of reality and also four 

perspectives through which we can gain access to these domains. 

The four quadrants represent four irreducible domains. A common reductionist mistake, 

called quadrant absolutism, is to privilege one quadrant to the exclusion of the others. For 

example, when I feel elated after listening to a performance of a violin concerto, the experience 

of elation can be understood in different ways. From a subjective perspective, I experienced a 

transcendent feeling of transformation that made me very excited. From an objective perspective, 

sound waves vibrated in my ear and caused specific neural activity in parts of my brain. From an 

intersubjective perspective, my culture attaches emotional value to the activity of listening to 

music. From an interobjective perspective, the piece I listened to belonged to the canon of 

Western music, which is a specific system for organizing sound. A scientific description of the 

event that focuses solely on brain activity necessarily misses out on much of the vitality of the 

experience. To be sure, the feeling of elation in the experience of music has correlates in all 

quadrants. But the most exciting part of the experience probably resides in the subjective 

quadrant of intangible experience.   
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Figure	  1.	  	  Four	  quadrants	  

2.3.2	  	  Levels	  

The quadrants provide a minimal set of categories for mapping out the development of 

psychosocial phenomena. The diagonal arrows (see figure 2) represent the spectrum of 

development in each quadrant, that is, the levels of development through which phenomena in 

each quadrant have evolved and complexified since the Big Bang. But the linear depiction is 

somewhat misleading since integral theory does not view development as a rigid, step-by-step 

linear process. 

Development is not a linear ladder but a fluid and flowing affair, with spirals, swirls, 

streams, and waves – and what appear to be an almost infinite number of multiple 

modalities.” (Wilber, 2000b, p. 5) 

Integral theory uses the terms levels, waves, stages, streams, and structures 

interchangeably to describe the many facets of development. Development is complex and 

nonlinear, with moments of progress and regress, stagnation and transcendence. It is 

characterized by idiosyncratic change within deep patterns of regularity. Recognizing the layers 

of development within different domains is valuable because it allows practitioners to direct their 

efforts toward key leverage points in the developmental spectrum. Integral developmental 

analysis has been applied successfully in such diverse fields as psychotherapy (Marquis, 2007), 
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ecology (Esbjörn-Hargens & Zimmerman, 2009), sustainable development (Hochachka, 2009) 

and organizational transformation (Edwards, 2010).  

 

 

Figure	  2.	  	  Quadrants	  and	  levels	  

A central proposition of integral theory is that the quadrants tetra-evolve, i.e., 

development happens simultaneously in all four quadrants. Exterior evolution of nature and 

society in the right-hand quadrants is paralleled by interior development of self and culture in the 

left-hand quadrants (figure 2). Wilber offered the notion of altitude as a content-independent way 

of comparing and contrasting development across different domains. He also used colours of the 

spectrum to denote altitudes. These altitudes are degrees of awareness. Each new altitude opens 

up an aperture in which new phenomena can arise that are not visible from preceding altitudes. 

Wilber also described altitudes as levels of consciousness: “Consciousness itself is not a 
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phenomenon, but the space in which phenomena arise” (Wilber, 2006a, p. 68). “A ‘level of 

consciousness’’ is simply a measure of the types of things and events that can arise in the first 

place; a measure of the spaciousness in which a world can appear; a degree of openness to the 

possibilities of the Kosmos …” (Wilber, 2006c, p. 95). 

Kegan’s (1994) subject-object theory offers a clear way of differentiating between levels 

of human development: the subject of one level becomes the object of the subject of the 

succeeding level. Each new level is a different order of consciousness because the former order 

“is transformed from whole to part, from the very system of knowing to an element in a new 

system, from subject to object” (p. 128). The new level does not simply negate or replace the 

preceding one. “Rather, the relationship is transformative, qualitative, and incorporative. Each 

successive principle subsumes or encompasses the prior principle” (p. 33).  

Integral theory’s motto of “Transcend and include” captures the manner in which new 

levels of development incorporate preceding levels in their structures. Wilber asserts that all 

levels are valuable for the wellbeing of the evolutionary system, and cautions that “transcend 

without include” is a developmental pathology. Each level of consciousness arises in response to 

certain life conditions and has its proper application under these conditions. While lower levels 

are more fundamental and provide possibility, higher levels are more significant and offer new 

probabilities. Each new level is characterized by increased capacity for perspective taking, and 

hence thus enables greater inclusivity.  

2.3.3	  	  Lines,	  Types,	  and	  States	  

While my research in this dissertation makes extensive use of the perspectival lenses of 

quadrants and levels, it does not concentrate on the lenses of lines, types, and states. I shall 

include short descriptions of these only for the sake of completeness. 

Lines refer to specific aspects of human consciousness that develop. Wilber (2000b) 

mapped more than 20 lines of development in the human psyche, including cognition, morality, 

role taking, psychosexuality, creativity, altruism, spirituality, values, needs, and worldviews. 

These lines can and do develop semi-independently. The cognitive line leads development in 

other lines because cognition determines the breadth of one’s awareness. Even though different 
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lines develop at different rates it is still possible to speak broadly of an individual’s 

developmental centre of gravity.  

Types refer to different personality categories such as gender and Myers-Briggs type 

indicators. States refer to temporary states of consciousness and other temporary aspects of 

reality. They include natural states, such as waking, dreaming, or deep sleep. They also include 

altered states experienced, such as the Witness and non-duality, which are experienced through 

meditation. 

2.4	  	  Integral	  Methodological	  Pluralism	  

AQAL is a comprehensive map of perspectives on reality. Its descriptive usefulness 

would be limited however if it were not accompanied by a set of practices to enact and research 

the territory. Wilber (2006a) proposed Integral Methodological Pluralism (IMP) as a companion 

meta-methodological approach to AQAL. IMP is governed by the recognition that since reality 

consists of multiple perspectives, truth is disclosed by a plurality of methods and practices. Valid 

truth claims are those that pass validity tests for their own paradigms in their own fields. The 

paradigm of one field cannot be used to assert or deny the validity of truth claims brought forth 

by other paradigms in another field.  

Integral theory’s corresponding mottos are “everybody’s right” and “true, but partial”. 

Every paradigm discloses some aspect of reality, since no one is 100% wrong.  And yet no 

paradigm discloses all of reality, and so every perspective is necessarily partial. In order to 

access more of reality, we must constantly integrate partial perspectives into grander partialities.  

The four quadrants give rise to different categories of validity claims (figure 3). For 

example, objective claims are assessed for their truth or correspondence, while subjective claims 

are assessed for their truthfulness, sincerity, or authenticity. 
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Figure	  3.	  	  Validity	  tests	  in	  four	  quadrants	  

Integral methodological pluralism calls on researchers to use appropriate methodologies 

for the phenomena under study. As figure 4 shows, each quadrant of AQAL is divided into two 

methodological zones. Each zone, in turn, represents a family of methods and practices that enact 

or study phenomena in the quadrant, either from the outside or from the inside. For example, to 

study or enact my subjective interiority from the inside I may use phenomenology, journaling, or 

meditation. If someone wanted to study my subjective interiority from the outside, she might use 

a personality test or interview my friends.  
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Figure	  4.	  	  Eight	  methodological	  zones	  

Integral writers (Esbjörn-Hargens, 2006; Martin, 2008) have recently begun 

operationalizing IMP as a disciplined mixed-mode research methodology. Integral research 

examines phenomena using 1st, 2nd and 3rd person methodologies concurrently. Any data 

generated is presented in terms of its respective methodology in order to avoid reductionism. 

AQAL is then used to correlate the different data into a coherent presentation. 

2.5	  	  Critiques	  of	  Metatheorizing	  

The breadth and ambition of the metatheoretical project have provoked considerable 

reaction and criticism among philosophers. Modernist critiques have characterized 

metatheorizing as removed from practical application and impossible to validate. Postmodern 

critiques have characterized metatheorizing as totalizing, uncritical, decontextualizing, 

neglecting the local, and as representing “the view from nowhere.”  
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In terms of relevance, Giddens (1984) pointed to the double hermeneutic between social 

theory and society, that is, the “mutual interpretive play between social science and those whose 

activities compose its subject matter” (p. xxxii). Social theory, and in particular so-called big 

theory, can play a profound, often unseen, role in shaping social practices and human experience. 

From a historical perspective, the profound impact that big social theories such as Hegelian 

dialectics have had on human life are apparent in movements such as Marxism.  

The critique that metatheorizing lacks method, and therefore cannot be verified, is largely 

justified. Until now, most metatheorizing has been conducted through private scholarship. A 

researcher will read across many disciplines and use personal insights to suggest an overarching 

framework for integration. One problem of traditional scholarship is that it may lack a solid 

methodological foundation. Research methods, by their nature, are self-evaluating and include 

phases that limit the scope and interpretation of their studies. Fortunately, the revival of 

metatheorizing has lately been accompanied by new interest in methods for large-scale theory 

building and integrative conceptual research. Edwards’ (2010) general method for metatheory 

building and Sirgy’s (1988) method for developing general systems theories are examples of the 

new methodological turn the field is now taking. 

Pluralistic metatheory building, of which Wilber’s integral theory is an example, does not 

aim to totalize or subsume the diversity of all experience into a unified model. Instead, it 

acknowledges the multiplicity and irreducibility of approaches to social reality and calls for their 

integration. Integration is the process of building connections among theories rather than 

unifying or deconstructing them. 

Metatheorists frequently survey all extant theories in a given field. As such, they are 

positioned to raise critical awareness about the relationship between dominant and marginal 

discourses in the field. Even though metatheorizing uses theory data instead of empirical data, it 

does enable social researchers to situate their perspectives within a grander framework of 

competing perspectives. Doing so contextualizes researchers’ fieldwork.  

Integral theory’s deep level of abstraction and broad scope of conceptualization can in 

some cases give it the appearance of objectifying essentialism. The theory’s developmental 

orientations also make it susceptible to claims that it promotes oppressive hierarchical 

hegemonies. As Wilber’s writings demonstrate, integrative pluralistic metatheory is very much 
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concerned with inclusion, contextualization, and critique in social research. Integral 

metatheorists would doubtless benefit from further public clarification of their goals, methods, 

and the limitations of their approaches. 

2.6	  	  Personal	  Reflections	  on	  AQAL	  

A steep learning curve has to be overcome in order to apprehend the ideas that make up 

integral theory. Wilber is a prolific writer and many of his integral arguments are made through 

synthesis of modern and postmodern thinking. Familiarity with both is therefore a prerequisite 

for gaining admission to integral discourse. AQAL then adds layers of metatheoretical 

terminology. Aside from the epistemological framework discussed so far, Wilber has written 

about the role of spirit in evolution. Since I do not engage in regular spiritual practice, much of 

this writing has passed “over my head” as it were. Trusted colleagues whom I have met over the 

years in the integral community have assured me that my understanding of reality will remain 

limited until I choose to engage in such internal practice, and they may well be right. 

As I studied AQAL’s epistemological framework it became increasingly apparent that it 

offered many useful tools for examining life in mathematics education. The model’s scope and 

ambition were vast, and Wilber’s method of orientating generalizations appeared to be a 

reasonable and fruitful way to tackle big-picture ideas. AQAL helped identify the appropriate 

domains of application of divergent discourses and practices. Rigid dichotomies and binary 

categories – e.g., the modern vs. the postmodern, child-centered vs. curriculum-centered 

pedagogy – began to dissolve for me as I proceeded through Wilber’s works.  

Through experience, I have come to realize that AQAL is not only a map but also an 

enactive paradigm of inclusion. I have grown more cognizant of the partiality and fluidity of 

different points of view in general, and also more compassionate about those who hold views 

that diverge from my own. I constantly compare and consider perspectives in order to identify 

how they fit together, and I become concerned when a major perspective is left out of 

consideration. I even listen to the news of the day differently after having studied in this field. 

Rather than choose sides on the issues, I take pleasure in tracing the developmental patterns of 

world events when I am able to do so. Mottos such as “True, but partial” and “Everybody’s 

right” have changed my teaching and altered my personal interactions profoundly.  
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My engagement with integral thinking over the past four years has complexified my 

worldview and made me more optimistic. Integral theory maintains that evolution proceeds 

towards greater capacities for perspective taking, that is, towards greater inclusion and love. It is 

a hopeful theoretical orientation that endorses the human potentials inherent in cultural 

evolution. My personal rewards in studying integral theory have thus grown beyond providing 

me with a theoretical framework for my research.  

In the remainder of the dissertation, I will use the terms AQAL, integral philosophy, 

integral thinking, and integral theory interchangeably to refer to Wilber’s integral framework.  
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Teaching	  Interlude	  1:	  What’s	  Interesting	  about	  Circles?	  	  
 

Our unit on circles began with a video that we found by searching for the keyword 

“circles” on Youtube. The theme was circles found in nature. Images of circular galaxies 

changed into images of volcanic smoke rings, which in turn gave changed into images of 

dolphins playing with ring bubbles. The students and I were fascinated by the beauty of the 

images. We all wanted to watch the video again. At the end of the viewing, I sensed a feeling of 

great expansiveness in the room. 

We then proceeded to study and derive some of the more standard mathematics of circles: 

the number π, circumference and area of a circle. I then told the students that they would decide 

what we should study about circles for the rest of the unit. I asked them to get together into 

groups and respond to the question, What’s interesting about circles? 

After about 20 minutes of group consideration, the students came up with many 

questions. Through discussion, the class settled on two of them: 

1) How many sides does a circle have? One or infinitely many? 

2) Why is the number pi so mysterious? 

We took a vote and over four-fifths of the class opted for the first question. 

– Why do you think that a circle has one side?  

– It just does.  

– (The student traced an imaginary circumference with her finger.)  

– So why does a circle have infinitely many sides?  

 Two students came up to the blackboard and drew a sequence of geometric shapes.  
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Figure	  5.	  	  A	  sequence	  of	  polygons	  with	  increasing	  number	  of	  sides	  

– As the number of sides increases, the shape looks more and more like a circle. So when 

there are infinitely many sides, it must be a circle.  

– Looking at your drawing, I see that we have figures with three or more sides, starting 

with the triangle. And we said that a circle might have one side. So what about figures 

with two sides? Can you think of some? 

The students paused to think. Two suggestions were offered: a semi-circle and a two-

sided figure drawn on a sphere. 

	  	  

Figure	  6.	  	  Polygons	  with	  two	  sides	  

– Are we allowing our figures to be drawn on spheres now, or are we limiting them to the 

two-dimensional Euclidean plane? 

A lively debate then began, but the bell rang and we had to stop for the day. 

We were off to explore the question, How many sides does a circle have? This was not a 

question I had ever contemplated. So we were all in it together. This question would occupy us 

for the next three classes. 
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CHAPTER	  3	  

“WHY	  LEARN	  THIS	  STUFF?”:	  RETHINKING	  THE	  PURPOSES	  OF	  

MATHEMATICS	  EDUCATION	  

 
My opening research chapter is a critical essay about the purposes of today’s 

modernist mathematics education. It deconstructs the espoused purposes of mathematics 

education – utility, mental training, and cultural significance – and the unstated purposes of 

the hidden curriculum – social efficiency and social mobility. The essay is intended for one 

of the teaching journals in mathematics education (e.g., Mathematics Teacher) and is not a 

standalone piece; it is to be completed by a companion essay on mathematics education and 

ecological sustainability (see Chapter 7). 

The chapter does not employ explicit integral language, but is clearly integral in 

outlook. The educational purposes it surveys draw from both the individual and collective 

quadrants. The interplay between the social purpose of social efficiency and the individual 

purpose of social mobility is a particularly illuminating instance of related co-arising 

phenomena in different quadrants. From a developmental perspective, all of the purposes 

under consideration are clearly aligned with the modernist wave, with the exception perhaps 

of the more traditional cultural significance purpose. My analysis reveals that the 

development of purpose in mathematics education is currently arrested at the modernist 

wave.  

The chapter ends with a call for practitioners in our discipline to evolve the purposes 

of mathematics education towards more encompassing and world-centric values. I borrowed 

my purpose of “healing the world” from the Jewish principle of Tikkun Olam (“repair of the 

world”), a vaguely-defined yet moving notion that invites endless hermeneutic elaboration 

and active participation.  

 

In celebration of the centenary of Mathematics Teacher, the National Council of 

Teachers of Mathematics’ (NCTM) high-school journal, several former presidents of the NCTM 

were asked to select their favourite past articles for republication. The first article chosen for the 

August 2006 number was F. L. Wren’s “Why Study Mathematics?”, originally published in 
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December 1931. In explaining her selection, Glenda Lappan (2006), the NCTM president in the 

years 1998 to 2000, remarked on the historical recurrence of articles in the journal that examined 

persistent problems in mathematics teaching and learning. Lappan was drawn to a class of 

articles which questioned the place and value of mathematics in the education of young people. 

Her choice of “Why Study Mathematics?” is certainly one that is topical for me as well. After 20 

years of teaching advanced mathematics to high school and university students, I am also more 

interested in questions of “why” mathematics education matters than in re-hashing “how-to” 

questions that aim to fix its problems.   

After teaching nearly every subject in the high school mathematics curriculum 20 times 

or more, I have, like all old hands, refined my problem selections, tightened up my sequencing 

and honed my presentation. When I think of my teaching as a performing art (Sarason, 1999), I 

feel like an actor who has performed the role of Hamlet for the 200th time. The actor knows the 

lines, the inflections, what works for the audience and what does not. He has had plenty of time 

to reflect on his role, and his performance has become predictably nuanced. He is secure in his 

ability to deliver a satisfactory performance, so he is willing to take more chances. Most 

importantly, when he performs, the seasoned actor has time to analyze, and to listen to the spaces 

between the words. Likewise, when I teach, I have time to look into my students’ eyes in an 

attempt to decipher what meaning the experience holds for them.  

When it comes to instructing a mathematical topic nowadays—say, logarithms—I have 

the luxury of time to reflect on the subject’s overall value for my students. The problem of How 

to teach logarithms is no longer central to my practice; I have such confidence in the tools I have 

built up over the years that I mostly take them for granted. But I still have to confront the thorny 

question of Why teach logarithms at all? And on this point, I have not put together any sort of 

satisfactory answer.  

What is the intrinsic value of the subject matter of logarithms? How can the privileged 

position of school mathematics within the curriculum be justified? I should be in a position to 

answer these questions clearly. After all, I chose my profession partly because of my love of 

mathematics, and I readily view the world through the bias of a quantitative lens. Yet, when I 

step out of my subjective position as a classroom teacher, I find it difficult to spot the cognitive, 

emotional, and spiritual benefits that mathematics education, as it is practiced today, might offer 
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my students. I question whether, at this time in human history, the compulsory study of 

logarithms is a wise application of teenagers’ resources of time and energy. So unsure I have 

become about the value of my practice that, in order to teach logarithms, I must sometimes 

suspend my questioning and just perform the lesson. Fortunately, teaching logarithms, even with 

a fuzzy sense of purpose, is still a satisfying experience for me. So it goes, I imagine, for many 

teachers out there. 

As an experienced mathematics teacher, I have reached a point in which I am compelled 

to confront the biggest existential question of my profession: Why Teach Mathematics? This 

chpater is a personal exploration of this question in which I strive to examine the most 

commonly stated purposes for the teaching and learning of mathematics. I will also examine 

some purposes that, although not stated explicitly, clearly govern the current practice of 

mathematics education. I will discuss my own personal response, as an educator, to each one of 

these purposes, and argue that there is an urgent need to rethink contemporary purposes of math 

education. I will conclude by proposing a new purpose for mathematics education of today—one 

of healing the world—which calls for a rethinking of mathematics education as a transformative 

discipline. 

I should note that my question Why teach mathematics? focuses on secondary 

mathematics, the mathematics of later middle school, high school, and early university.  Some 

example topics are: algebra, trigonometry, circle geometry, combinatorics, probability and 

statistics, and calculus. I distinguish these from topics of elementary mathematics: arithmetical 

operations, the decimal system, fractions, percents, and measurement.  There is no doubt in my 

mind that all students should acquire skills of basic numeracy. It is hard to imagine how a person 

can function in today’s world without understanding multiplication or percents. On the other 

hand, it is not hard to imagine how a person functions without understanding logarithms. Indeed, 

most people do just fine without the benefit of logarithms.  
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3.1	  	  The	  Politics	  and	  Subjectivity	  of	  Educational	  Purposes	  
Any discussion of the purposes of mathematics education should begin with the 

recognition that educational purposes are, by their nature, both political and subjective. The aims 

of education reflect the wishes, interests, hopes, and dreams of different communities. 

Consequently, setting and promoting goals in education is fundamentally a political process. It is 

a way for various groups in society to advance their visions of society’s future. It is inevitable 

that, in a diverse and pluralistic society, the purposes of public schooling will be contentious. 

The constant struggle for dominance among political interests in free societies is reflected in the 

ongoing battle to direct the purposes of education.  

Educational purposes are also subjective because public education, in mandating 

compulsory education for all, must remain sensitive to a multiplicity of personal and community 

contexts, or face backlash. In examining a given purpose for education, it is important to ask 

both these questions: Whose purpose is it? and To whom does it apply? Students from low-

income families may choose, or be obliged, to study mathematics for quite different reasons than 

do students from upper-middle-class families. The mathematical needs of citizens in an 

economically developing society can differ greatly from those of citizens in a post-industrial 

society.  Of course, generational factors also play a part in determining educational purposes, 

since values and attitudes are liable to change over time in societies, and education is expected to 

respond to such changes in a coherent and responsible fashion. Keeping in mind that educational 

purposes are inherently political in nature, and that they depend on social and historical contexts, 

we may now proceed to examine some of the goals of mathematics education.  

3.2	  	  The	  Utilitarian	  Purpose	  
One of the most influential developments in American mathematics education over the 

past 30 years has been the Standards reform of the NCTM.  The document Principles and 

Standards of School Mathematics (2000) made the case for school mathematics as follows: 

We live in a mathematical world. Whenever we decide on a purchase, choose an 

insurance or health plan, or use a spreadsheet, we rely on mathematical understanding. 

The World Wide Web, CD-ROMs, and other media disseminate vast quantities of 
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quantitative information. The level of mathematical thinking and problem solving needed 

in the workplace has increased dramatically.  

In such a world, those who understand and can do mathematics will have opportunities 

that others do not. Mathematical competence opens doors to productive futures. A lack of 

mathematical competence closes those doors. 

Students have different abilities, needs, and interests. Yet everyone needs to be able to 

use mathematics in his or her personal life, in the workplace, and in further study. All 

students deserve an opportunity to understand the power and beauty of mathematics. 

Students need to learn a new set of mathematics basics that enable them to compute 

fluently and to solve problems creatively and resourcefully. (Overview section, ¶ 1) 

In explaining the need for high school mathematics, Principles and Standards of School 

Mathematics (2000) asserts: 

In secondary school, all students should learn an ambitious common foundation of 

mathematical ideas and applications. This shared mathematical understanding is as 

important for students who will enter the workplace as it is for those who will pursue 

further study in mathematics and science. All students should study mathematics in each 

of the four years that they are enrolled in high school. 

Because students' interests and aspirations may change during and after high school, their 

mathematics education should guarantee access to a broad spectrum of career and 

educational options. (Standards by Grade Band section, ¶ 20) 

The justification presented by the NCTM for teaching mathematics is exceedingly 

utilitarian. The argument is that we teach mathematics because students will find need for it at 

some point in their personal lives, in future education, and in the workplace. The repeated 

mention of the value of mathematics in the workplace establishes a causal link between workers’ 

mathematical competence and the well-being of the nation’s economy. Moreover, mathematics is 

cast as a means toward social mobility, as it opens the doors of opportunity and leads to 

economically productive futures for students.   
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But how convincing is the utilitarian argument really? Ernest (2000) contended that the 

actual usefulness of school mathematics is greatly overestimated. Admittedly, many of the 

interconnected systems of commerce and power in modern societies, such as finance, 

management, and information technology rely heavily on complex mathematics. However, once 

these systems are set in motion, and refined over decades by technical experts, they require 

relatively little individual mathematical know-how to sustain. In other words, most people are 

affected and regulated in a myriad of ways by highly mathematical systems without having to 

understand these systems’ mathematical, logical, and technical underpinnings in any meaningful 

way. As much as one can happily drive a car without understanding the mechanical intricacies of 

its transmission, one can operate a computer without knowing binary arithmetic or discrete 

mathematics. The mathematics of everyday life used in making a purchase at a store, in choosing 

an insurance or health plan, or even in using a spreadsheet—these being the three illustrative 

applications chosen by the NCTM—does not go much beyond basic numeracy acquired in 

elementary school.  

Modern society requires a small group of workers to design and control critical 

information systems, and technicians to program and service them. But even these workers 

typically do not rely on academic mathematics by and large, but rather they employ specific 

technical skills that are often learned on the job, outside academic institutions. For example, 

computer programmers learn new programming languages by referring to programming 

manuals. While computer programming is in principle a highly mathematical activity, it actually 

requires a very specific set of technical skills that do not draw directly on school mathematics.  

Let’s return to logarithms, which are clearly of little use to a consumer who makes a 

purchase, a salesman who finalizes a sale, and a computer technician who programs the checkout 

application. Why then do we teach logarithms as part of the common foundation of mathematical 

ideas recommended by the NCTM for all students? The NCTM (2000) would reason that all 

options should be kept open for students, as logarithms may well be required for some future 

studies in mathematics. As it turns out, first-year university calculus courses typically do include 

instruction in differentiation and integration of logarithmic functions. But this line of reasoning 

sets up school mathematics as a self-justifying system. One needs arithmetic in order to study 
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algebra, and one needs algebra in order to study calculus. But why does one need calculus? This 

is where the utilitarian argument breaks down.  

Students, in my experience, are rarely convinced by the utility argument and so they 

hardly ever miss the chance to grumble when I resort to it. This, in turn, leads to a loss of trust 

between teacher and student. Nowadays, when I face students who ask in exasperation, “When 

will I ever use this stuff?”, I answer, “You may not use it in real life, but you will probably come 

across it again on tests in future courses.” This answer, while truthful, still evades the deeper 

question being asked, and is therefore mutually unsatisfactory. Nevertheless, I prefer it to the 

shaky utilitarian response, “You will need it someday. Trust me.” 

3.3	  	  The	  Social	  Efficiency	  Purpose	  
Why has the NCTM relied so heavily on the utilitarian argument for justification of its 

agenda? To answer this question, we should examine the historical situation of the Standards. In 

the early 1980s, the United States economy was in the grip of a recession, while Asian 

economies were thriving. In response to the deepening economic crisis, the National 

Commission on Excellence in Education (1983) published the influential report A Nation at Risk. 

It placed the blame for America’s poor economic performance squarely on the shoulders of 

American education: 

Our Nation is at risk. Our once unchallenged pre-eminence in commerce, industry, 

science, and technological innovation is being overtaken by competitors throughout the 

world. ... The educational foundations of our society are presently being eroded by a 

rising tide of mediocrity that threatens our very future as a Nation and a people. (p. 1) 

As Cuban (2003) explained, the growing discontent of corporate leaders with public 

schooling led to the formation of a coalition between big business and public officials, union 

leaders, educators, and community activists. Their aim was to enlist public schooling to the cause 

of training students for skilled jobs. Corporate leaders redefined the notion of vocational training 

by proposing that academic disciplines, such as English, mathematics, and science, which were 

once considered liberal arts, provide the training, skills, and attitudes needed to build and sustain 
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a competitive technological economy. A college degree became the accreditation of choice for 

the corporate workplace.  

Since the reformers viewed public schooling as an extension of the national economy, 

they established new criteria borrowed from the discourse of business management to measure 

the effectiveness of schools. An effective school, according to this mindset, was one that set high 

academic standards for students, tested students often, and achieved high test scores. The 

emphasis on terms such as effectiveness, excellence, success, and achievement in educational 

discourse was meant to advance the narrow goal of higher scores on standardized tests.  

The NCTM’s (1989) Curriculum and Evaluation Standards for School Mathematics 

emerged into a political climate that was conditioned by the admonitions of A Nation at Risk. It 

reflected the NCTM’s response to growing political pressures on mathematics educators to bring 

their practice into line with the perceived requirements of the national economy. It is not 

surprising therefore that the utility of mathematics in the workplace figured prominently as a 

justification for the Standards. Even though the NCTM also promoted democratic equality by its 

call for mathematics education for all students, we may see that even 30 years later the purpose 

of producing skilled workers persists in the public consciousness as the foremost purpose of 

mathematics education.  

As Cuban (2003) has observed with regret, there is at present one dominant ideological 

test of a “good” school: it prepares all of its students for college.  Similarly, there is currently 

also one prevailing version of “good” mathematics education: it prepares students for college 

mathematics and trains them to score high on the mathematics sections of standardized tests. 

Other critical observers (Purpel & McLaurin 2004; Shapiro, 2006) have likewise issued scathing 

condemnations of schooling that is mainly dedicated to the goal of social efficiency. They 

pointed out that the manufacture of workers to fit a pyramid-shaped economic model—with a 

tiny percentage of high-net-worth individuals above, and larger ranks of lower wage earners at 

each stage below—necessarily leads to a ruthless process of social ranking of students in 

schools. Since the economy needs relatively few CEOs but requires many tiers of lower-wage 

workers down the line, educators and administrators are bound to engage in perpetual 

assessment, rating, sorting, and ranking of children. The use of standardized tests and the bell 

curve ensures that only a few students will come out on top.  
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Moreover, research shows that these top-ranking students are likely to come from 

privileged households. Studies (National Science Foundation, 2000; Kozol, 1992) have 

consistently revealed that socio-economic status and race are the most reliable predictors of 

academic performance and dropout rates. To my mind, these findings may be explained by 

recognizing that an educational system that molds students to fit the existing economic system 

necessarily replicates the social injustices inherent to this system.   

Its privileged position among school disciplines makes mathematics a convenient tool for 

social sorting. Most standardized tests required for college admission include substantial 

mathematics sections. There are many skills to be tested, and mastery of one subject area leads 

neatly into subsequent ones. A student who misses a link in the chain may find it difficult to 

catch up, in which case, there are at least as many opportunities for failure. Furthermore, people 

often associate good performance in school mathematics with intelligence. Students who are not 

performing well in mathematics may be labelled, and consequently might well see themselves, as 

being inadequate.  

As an educator, I see it as my duty to recognize and nurture the potential that is present in 

every student. But to be honest, I’ve tested and ranked students myself for many years. Once I 

became aware of the hidden curriculum that social efficiency imposes on schooling, I could not 

continue to do so in good faith. I have altered my entire approach to assessment to reflect this 

change in attitude. Even though I recognize that a sound economy is important to the welfare of 

society, I refuse to place the needs of the economy above the needs of my students for 

understanding, compassion, and support. I trust that human beings who are permitted to flourish 

in school will grow up to improve their society, and their country’s economy, in ways that are far 

removed from the crude logic of social efficiency.   

3.4.	  The	  Social	  Mobility	  Purpose	  

Business-driven reforms in education could not have succeeded as well as they have in 

the past 20 years without broad-based support from the public, and from parents. Why did 

parents embrace these reforms? Surely parents have more immediate concerns than the ability of 

American corporations to compete in global markets. In fact, where parents are concerned, we 
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see the goal of social efficiency transformed on an individual level to the educational purpose of 

social mobility. 

Parents and students increasingly view education today as a consumer good whose chief 

purpose is to provide individuals with social advantage. The social mobility agenda promotes a 

meritocratic system of education. In this system everyone has equal opportunity to compete, the 

rules of competition are laid out clearly, and the competitors with the greatest merit emerge as 

winners. Both low-income and upper-middle class parents have bought into this competitive 

model for different reasons. Low-income parents would like their children to have the 

opportunity, remote as it may be, for social advancement through academic achievement. Upper-

middle class parents want their children to retain their privilege by competing in a system that 

has always favoured their class.  

The Standards (National Council of Teachers of Mathematics, 1989) has dovetailed 

neatly with this meritocratic view of education. It called for equal access for all children to an 

ambitious mathematical curriculum. It specified standards for curriculum and evaluation that 

clearly laid out the scope of the competition and how quality was to be judged. The winners 

would be those who scored highest on standardized tests, and who were admitted to college. 

From the social mobility perspective, there could hardly be a fairer competition than a 

standardized test with questions on logarithms.   

Both social mobility and social efficiency are driven by economic concerns, but they 

differ in some important respects. Social mobility views education as a private good, benefiting 

one individual at the expense of another. Social efficiency views education as a public good, 

whose benefits are enjoyed by all members of the community. Social mobility treats education as 

a form of exchange value, to be transacted by the exchange of one’s credentials for a job or a 

comfortable lifestyle. Social efficiency treats education as a form of use value, and considers the 

content and skills learned to be intrinsically useful (Labaree, 1997).  

Based on my own experience, I believe that the ongoing ascendancy of the goal of social 

mobility is transforming present-day education in profound ways. When social mobility is the 

prime motive for learning, students are apt to be less interested in the subject matter and more 

interested in the formalisms of the educational process—tests, marks, and credits.  Students 

become proficient in the mechanics of scoring high grades, and in maximizing their results with 
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the least amount of effort. They also engage in an ongoing “bargaining” process with the teacher, 

in an attempt to optimize work-for-credit ratios (Sedlak, Wheller, Pullin & Cusick, 1986).   

It hardly matters whether the subject matter is logarithms or Sanskrit poetry. The all-

pervading question is Will it be on the test? Hence the test becomes the ultimate authority 

dictating the approach to any given subject matter. But once the test is marked, returned, and 

incorporated into a cumulative average, its subject matter loses what little relevance it had, and is 

likely forgotten before the ink is dry on high-school diplomas. 

Students become producers of credentials that will later be exchanged for tangible value 

in the job marketplace. Some of the students also become consumers of supplementary education 

in the process, from tutoring to preview courses. The need to gain advantage over other students 

in a zero-sum game results in demands for more stratification, more specialized programs, more 

specialized streams, and more honours to go on one’s transcript. Education becomes a series of 

routines and rituals whose purpose is the quantification of merit. It carries no meaning, and yet 

students still go through the motions of “getting through” the necessary steps to achievement, 

and teachers still take skills inventories to measure results.  

As a mathematics educator who chose his profession because of his love of mathematics, 

and his love of human beings, I refuse to allow my practice to be dragged down to the level of 

mechanical routine. I view social mobility as an anti-educational goal that threatens the entire 

project of education. When learning is replaced by the acquisition of credentials, when the 

meaning of the subject matter is of little consequence, when students vie for individual 

advantage and take no notice of their community, the spirit of schooling as laboratory for 

constructive social development withers away.  

3.5	  	  The	  Mental	  Training	  Purpose	  

The notion that engagement with mathematics trains people to think clearly and logically 

is another common rationale for teaching mathematics. For instance, Wren (1931/2006) argued 

that, “the abstractions of algebra, the formal logic of a geometrical demonstration, the induction 

and deduction, the synthesis and analysis that characterizes mathematical thought give mental 

training that can be found in no other field of endeavour” (p. 7).  
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In my own experience, I have noticed that while some parents may question the utility 

argument because they have found little downstream use for advanced mathematics in their lives, 

nearly all parents seem to firmly believe that advanced mathematics should be taught because it 

trains children in logical thinking and problem solving. This mental training purpose is closely 

related to the popular belief that knowledge of mathematics is a sign of superior intelligence, a 

belief that can be traced to proponents in Hellenic antiquity, such as Plato, who regarded 

mathematics as the best training for the mind. 

Current popular endorsement of the mental training purpose in mathematics education is 

based on a transfer theory of learning. This theory maintains that skills and knowledge learned in 

one context can be applied to others. How does this theory apply to the current practice of 

mathematics instruction? What thinking skills do we teach in our mathematics classrooms and 

how do they transfer to other areas of students’ lives?  These questions are rarely, if ever, 

explored in the mathematics education literature.  

When we examine the process of problem solving as it is commonly practiced in today’s 

schools, we find that much of it is linear and convergent, as opposed to creative and divergent. 

Students are told that every mathematics problem they encounter in class has a solution, and they 

are typically challenged to find it in a few minutes or less. Because problems are often posed 

immediately after new mathematical concepts are taught, students are trained to consider each 

problem in light of the latest bit of conceptual mathematics they have learned. The teacher then 

verifies whether or not the students’ solutions follow the approved procedure for producing the 

correct answer.  

What messages about thinking and problem solving are communicated by this process? 

Students learn that every problem has a defined solution, and that only one route to the solution 

is the right one. Problem solving is rendered not as an exploratory process of discovering new 

truths, but rather as a process of confirming extant truths. The ultimate judge for the means to 

this end is an authoritative adult.  Students frequently come to believe that any problem whose 

solution takes more than a few minutes to unravel cannot be solved, or at least that they cannot 

solve it, and thus the whole undertaking should be abandoned as pointless (Schoenfeld, 1994). 

Unless we wish our students to grow up to be mentally complacent adults, who submit readily to 
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authority when seeking answers, we should be quite concerned about the messages that are 

communicated by our instructional practices.    

I do not doubt that engagement with mathematics can offer our students many beneficial 

habits of mind. But we, as math educators, must first understand and explicate for ourselves 

which habits of mind we wish to instill in our students. As long as we keep asking our students to 

find the roots of 4th-degree polynomials in the vague hope that they will become better thinkers, 

we will never be able to unlock the real potential of educational transfer.  

Papert (2005) said that “You can’t think about thinking without thinking about thinking 

about something” (p. 366). I believe that educators who aspire to teach clear thinking and good 

habits of mind must be concerned with the quality of their subject matter, especially in terms of 

the intellectual interest that it generates. Students will not engage meaningfully with lifeless, 

irrelevant, and programmatic subject matter. On the other hand, good habits of mind can be 

fostered through a variety of logico-mathematical domains of application that extend beyond the 

traditional curriculum of arithmetic, algebra, geometry, and calculus. Formal and conversational 

logic, games of strategy and chance, recreational mathematics, and the mathematics of finance 

and money, are all fertile grounds for problem solving. These approaches can easily yield 

meaningful, inspiring, and practical problems for study. Perhaps if the discipline of mathematics 

education were renamed formal thinking, educators would not be as limited by traditional 

perceptions of what ought to comprise the approved curriculum.     

3.5	  	  The	  Cultural	  Significance	  Purpose	  

Jerome Bruner (1996) described education as an agent of culture making. Since education 

has the power to shape future culture, the public has traditionally called on educators to teach by 

means of the finest examples of past and present human culture. Indeed, mathematics stands as 

one of the most important intellectual achievements of humanity, and it is appropriate to argue 

that it is worthy of study as an important cultural text in its own right. This argument, however, 

raises several questions for educators.	  	  

First, mathematics is only one of many fundamental intellectual accomplishments in 

human history. What criteria should be used to judge which cultural texts are more or less 

worthy of study in school? Consider philosophy, for example. It is another important subject, but 
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there is hardly any mention of it in today’s schools. My Grade 12 students typically cannot name 

three philosophers, let alone outline key ideas from the canon of Western philosophy.  

Second, we may ask whether our current practice of mathematics education, with its 

strong focus on technical competence, really provides students with the tools to appreciate the 

cultural significance and importance of mathematics. Ernest (2000) listed various aspects of 

awareness that may be construed as appreciation of mathematics. These include: qualitative 

understanding of some of the big ideas of mathematics, such as infinity, symmetry, recursion, 

and chaos; understanding of the main branches of mathematics, their interconnections, and the 

unity of mathematics; and awareness of mathematics’ foundational role in culture, art, science, 

and life. These aspects play very minor roles in today’s mathematics education, and are 

downplayed in our current curriculum and pedagogy. Now and then textbook writers do include 

some historical or contextual information about mathematical concepts, but such information is 

almost always treated as an informational “extra.” Since it is on the periphery of what material 

must be studied for the almighty test, it is usually ignored.   

Teaching mathematics as a cultural text would require a profound reassessment of current 

teaching practices. Mathematics classes may come to resemble social studies classes, as the 

focus would shift away from technical competence to mathematical appreciation. Teachers 

would have to be trained in an entirely new curriculum. Yet I doubt that most mathematics 

educators see a pressing need for such a change at all; so used we have become to seeing 

mathematics education as a process of skill acquisition. But as long as our students keep 

performing synthetic division of polynomials in the absence of any context, we cannot justify the 

practice of mathematics education on cultural grounds.  

3.6	  	  The	  Need	  for	  Relevant	  Purposes	  

Teaching is an intentional activity and ideally there should be a strong relation between 

the expressed aims and the realized practices of mathematics education. Where this link fails to 

obtain there is an area of disequilibrium and inconsistency which creates stresses for teachers and 

students. (Ernest, 2000, p. 10) 

As my review has shown, the actual practices of today’s mathematics education generally 

fail to meet the espoused goals of the discipline. Secondary mathematics is not very useful in the 
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daily lives of most adults; prevailing pedagogical methods are unlikely to turn students into 

better thinkers in other areas of their lives; and the instructional focus on technical competence 

comes at the expense of mathematics appreciation. I have also discussed the two unstated 

economic purposes that drive much of today’s schooling: social mobility and social efficiency. 

Both these purposes are inherently conservative, in that they seek to perpetuate existing 

modernist society and its structures. I explained how these two aims have shaped the present-day 

educational system into a meritocracy, and the educational process into a competition for 

credentials. The dominant educational experience of the past 30 years has focused on 

standardized testing and grades rather than on the human quality of the educational encounter. 

The discrepancy between stated goals and actual practice has contributed to a pervasive loss of 

meaning, both among students and teachers, as epitomized by the question we hear so often: 

“Why are we learning this stuff?”  

In my own practice, I have sensed that my inability to provide a convincing answer to 

students has led to a loss of trust on their part. As trust is vital to authentic communication, the 

discourse of mathematics education today has become largely divorced from real-world lived 

experience. If there are meaningful connections between log28 and my students’ out-of-class 

lives, I find it hard to tell what they would be. I deeply regret that my students rarely experience 

mathematics as useful, significant, meaningful, or relevant.  My classroom sometimes resembles 

a work camp, in which students perform tedious labour in order to receive a payoff in the form of 

marks and credits. It is therefore no wonder that students rarely experience joy, curiosity, fun, 

surprise, intellectual struggle, discovery, and achievement in connection with mathematics. 

I believe that the absence of active debate on the goals of mathematics education has 

contributed to the stagnation of the discipline. Indeed, secondary mathematics education of today 

is very similar to that of a century ago. We still teach logarithms, and we still use “chalk and 

talk” methods as the dominant mode of instruction. The most notable difference between now 

and then is that the number of students who are taught logarithms in this way has increased 

dramatically. Sometimes it seems that the entire project runs on past precedent alone. This 

impasse will surely hold back the evolution of mathematics education as a discipline in the 21st 

century. 
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Many of today’s educational arguments are won on economic grounds. An argument 

could be made that we should continue our current educational practices without reflection, 

because we are satisfying the needs of the market for knowledge workers. But by focusing 

exclusively on the economy, this type of argument ignores the even bigger challenges that 

confront humanity in our time. Given the problems that our society faces, an attitude of 

complacency is simply not one that we can afford.  

We live in times of hyper-accelerated change, in which the proliferation of problems 

seems to outpace society’s ability to solve them. Some examples are: unsustainable growth, 

plundering of the earth’s resources, pollution and global warming, poverty, famine and hunger, 

disease, war, clashes of cultures, and disastrous combinations of these ills. Sociologist John 

Berger (1999) compared modern life to a painting by Hieronymous Bosch:  

There is no continuity between actions; there are no pauses, no paths, no pattern, no past 

and no future. There is only the clamor of the disparate, fragmentary present. Everywhere 

there are surprises and sensations, yet nowhere is there any outcome. Nothing flows 

through; everything interrupts.	  (p	  4)	  	  	  

Even North Americans and Western Europeans, who are surely the most affluent people 

in human history, experience chronic social and economic troubles—crime, racism, depression, 

anxiety, isolation, alienation, and a widening gap between rich and poor—that seem to resist 

every new scheme for improvement that society devises. As Wheatley (2002) observed: 

Almost everyone is experiencing life as more stressful, more disconnected, and less 

meaningful than just a few years ago.  It’s not only that there’s more change, or that 

change is now continuous.  It’s the nature of the change that is upsetting.	  (p.	  14)	  	  

Erich Fromm (1976) pointed out that in our culture, “having” has become much more 

important than “being.” In other words, consumption of material goods has replaced our concern 

with lived experiences and relationships. The primary drive of a free-market economy to mold 

people into compliant, diligent consumers can often override individual emotional and spiritual 

needs for human contact, relationship, and meaning. This ongoing conflict between the needs of 
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the economy and the actual needs of human beings has led to a pervasive crisis of meaning in 

society (Shapiro, 2006). 

There is, I think, a direct counterpart to this crisis of meaning in the warnings about the 

continued viability of life on earth that we hear from scientific communities. In November 1992, 

1700 of the world's leading scientists, including the majority of Nobel laureates in the sciences, 

issued a Warning to Humanity, which cautioned:  

If not checked, many of our current practices put at serious risk the future that we wish 

for human society and the plant and animal kingdoms, and may so alter the living world 

that it will be unable to sustain life in the manner that we know. (Union of Concerned 

Scientists, 1992, p 1) 

A recent UN-sponsored study (Millennium Ecosystem Assessment, 2005) of ecosystems 

by 1360 scientists in 95 countries pointed out that ecosystem degradation will worsen 

significantly over the next 50 years. It included the warning that, “Any progress achieved in 

addressing the goals of poverty and hunger eradication, improved health, and environmental 

protection is unlikely to be sustained if most of the ecosystem 'services' on which humanity relies 

continue to be degraded” (p. 2). In his book, Our Final Century, Martin Rees (2003), former 

president of the British Association for the Advancement of Science, concluded that “The odds 

are no better than fifty-fifty that our present civilization . . .  will survive to the end of the present 

century . . . unless all nations adopt low-risk and sustainable policies based on present 

technology” (p. 8).  

Given the uncertainty of the future to which we might well condemn our children, and the 

enormity of the problems that they may have to face, we as educators can do much better than 

engage in systematic social ranking of our students. We can seek purposes that honour the 

original reasons for which many of us chose the profession—our love of children, and our love 

of mathematics. We can adopt purposes that make mathematics relevant in the lives of our 

students, and that begin to address the urgent problems facing the world.  
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3.7	  	  Mathematics	  Education	  for	  Healing	  the	  World	  

I propose that mathematics education of our time should adopt a new moral purpose—

mathematics education for healing the world. Education for healing the world is essentially about 

setting an emotionally compelling goal that will frame personal and communal meaning-making 

around the urgent questions of our time. The goal is explicit and broad. It opens up a wide 

spectrum for individual and collective hermeneutic elaboration and subsequent action. As 

healing the world occurs within one’s self, one’s immediate community, one’s nation, and the 

world—every step in this direction, at any scale, is worthwhile and potentially rewarding.  

The goal of healing the world calls on mathematics educators to deliberately connect 

their discipline with the environment and living systems in which it is embedded. Some 

mathematics education researchers have already begun to make these connections. The Critical 

Mathematics Education movement (e.g., Skovsmose, 1994; Gutstein, 2006) has been relating 

mathematics to issues of social justice. Complexivist researchers (e.g., Davis and Simmt, 2003) 

have been examining the transformative potential of systems thinking and collectivity in 

mathematical settings. And humanistic researchers (e.g., Davis and Hersh, 1986) have studied 

the ways in which mathematical assumptions both enable and constrain humans’ perception and 

construction of their world. The notion of education for healing the world can serve to bind these 

different approaches to a common purpose, and to engender a transformative movement in 

education.  

I believe that the educational purpose of healing the world can capture teachers’ 

imaginations and build commitment, if only because it elevates teachers to the position of leaders 

in social transformation. In the best of all worlds, the answer to the question Why teach 

mathematics? will become self-evident: We teach mathematics to bring forth the best world 

possible for ourselves, and for our children. What this world might look like remains to be 

continually negotiated through living educational encounters.  

In introducing her selected article for the anniversary volume of the Mathematics 

Teacher, Glenda Lappan (2006) concluded: 

The thought provoking articles from the early years of the Mathematics Teacher seem to 

have given way to a primary focus on classroom-ready activities. Perhaps we should 
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strive over the next decade to hit a balance between classroom activities and substantive 

debate on what we teach and why. (p. 4) 

By concentrating on classroom procedures to the detriment of debating and revitalizing 

the goals of education, we educators have allowed our discipline to lose sight of its social 

purpose. We should not continue along this path of complacency, for otherwise, history will 

certainly condemn us for burying our heads in the sand, and for distracting ourselves with worn-

out ideas rather than facing the challenges of our time.  
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Teaching	  Interlude	  2:	  A	  Song	  about	  π	  	  
 

On that day, I told my students that I wished to start the class with a song called “π,” 

written and performed by one of my favourite artists, Kate Bush (2005). I distributed the lyrics 

and we began to listen. 

Sweet and gentle sensitive man 
With an obsessive nature and deep fascination 
For numbers 
And a complete infatuation with the calculation 
Of π 
Oh he love, he love, he love 
He does love his numbers 
And they run, they run, they run him 
In a great big circle 
In a circle of infinity 
 
3.1415926535 897932 
3846 264 338 3279 
50288419 716939937510 
582319749 44 59230781 
6406286208 821 4808651 32 
82306647 0938446095 505 8223… 
 
(Pi. Words and music by Kate Bush. © 2005 EMI MUSIC PUBLISHING LTD. 
All rights in the U.S. and Canada controlled and administered by SCREEN GEMS-EMI. All rights reserved. 
International copyright secured. Used by permission. Reprinted by permission of Hal Leonard Corporation) 
 

The melody of the song is very repetitive, especially when the singer recites the digits of 

π. After a while some students became bored and started to giggle. At the end of the song, I 

asked how many people did not like the song. About half of the students raised their hands.  

– Why not?  

– Because it’s not very interesting.  

– Would you rather listen to a song of Lady Gaga?  

– Yes, definitely.  

– Do you think that Kate intended for the song to be boring?  

– Yes. Even the idea of saying the digits of π is boring. 
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– So is it a deliberate choice? Why would an artist choose to make her song boring? 

The class was silent for a while. Then some students offered their observations: 

– The music fits with the lyrics. The words talk about numbers that run in a big circle of 

infinity.  

– Hey guys, I bet that Kate thinks that a circle has infinitely many sides. 

– Yes. And this is her way to create infinity in music … very repetitive and dreamy. 

The conversation then turned to the lyrics.  

– What kind of a song is this? Is it a song about math?  

– No. It’s a love song.  

– Who is it written for?  

– A mathematician.   

– How many love songs do you know that are written for mathematicians? 

– Not many. 

– Who does Lady Gaga write love songs for? 

– Hot guys. 

The class began to discuss the differences between popular dance music and art music. They 

considered the aims and challenges of each musical style. We then continued our conversation.  

– When you grow up, do you think that you’ll be the type of person to whom Lady Gaga 

writes a love song? 

– No way. 

– Why not? 

– We’re not hot. We don’t look anything like the guys in her videos. 

– What do you think Kate Bush loves about the man to whom she wrote her song? 

– His complex mind. 

– What else? 

– He is obsessed with the number π. 

– How many of you tend to obsess over things? 
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(Many students raised their hands.) 

– What are you obsessed about? 

– Science fiction! Music! Quantum physics! Shakespeare! 

The students were proud to put forward their so-called “obsessions.” It was obvious that they 

identified with them strongly. 

We continued to explore ordinary love, and what it means to love an ordinary person. 

The students were very interested in the topic because they could imagine themselves growing 

into ordinary adults, and were happy to think about the love relationships in which they would be 

involved. They wanted to be loved for who they were, for their obsessions and eccentricities.  



 

50	  

	  

CHAPTER	  4	  

SPEAKING	  VOLUMES:	  HUMAN	  RELATIONS	  IN	  THE	  MATHEMATICS	  CLASS	  
	  

Mathematics education for healing the world is a four-quadrant project. This chapter 

examines the importance of human relations, which reside in the intersubjective (LL) quadrant. It is 

the most personal chapter in my dissertation because it employs a humanistic perspective with 

which I identify closely; it also speaks directly to my own instructional style.  

I frame the discussion of human relations in this chapter in terms of a pedagogical paradox. 

I then proceed to approach the paradox from two very different theoretical lenses – relational 

ontology and complexity theory. While AQAL is not mentioned explicitly, I use integrative 

framework to examine the phenomenon of human relation simultaneously on the individual and 

systemic scales. The resulting synthesis provides a comprehensive explanation of the pivotal role of 

human encounters in mathematics classes. From this perspective, the chapter raises some 

fundamental questions about the inter-quadrant interplay between the subject matter of 

mathematics and human relations.  

While the chapter is likely to appeal to journals on humanistic and transformative 

education, I do hope to publish it in a mainstream mathematics education journal at some point, 

where it is likely to be read by more mathematics educators. This might not be achievable as the 

chapter’s strong advocacy of human relations is provocative to some extent in its critique of the 

transcendent role accorded to mathematics in the context of mathematics pedagogy and research. 

	  

Should mathematics teaching be concerned with the goal of curriculum coverage?  This 

is a question I have contemplated often over my 20 years of teaching.  

When I began teaching mathematics, I believed that the whole of the assigned curriculum 

should be covered during the course of my classes. My thinking at that time was that 

mathematics teaching could not properly succeed otherwise. I presumed that my job was to teach 

to the curriculum so that all students would meet the prescribed learning outcomes. My hope was 

that if I could teach well enough, and explain the required concepts in a coherent and logical 

fashion, most of my students would have no trouble performing up to standard in mathematics. 
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But, as I learned through experience, this is not how things work in practice. Although I did not 

realize it then, my view of teaching was coloured by the myth of coverage (Battista, 1999), which 

is the belief if the curriculum and its constituent topics are covered by instruction then students 

learn. Yet despite my best efforts to present the mathematics curriculum in clear and 

understandable terms, a substantial number of my students year in and year out just “did not get 

it.”  

To overcome this problem, I kept refining my lessons and explanations over the early 

years of teaching. But even though I became increasingly confident in my ability to teach some 

of my students effectively, I still could not see why I was regularly failing to reach the other 

students. When I asked myself why this was so, I noticed that the less-able students typically did 

not show much interest in mathematics; and their interest was not increased by my teaching. So I 

concluded that their lack of interest stemmed from a lack of proper motivation. If only I could 

make high school mathematics more interesting, I thought, these students would learn in step 

with their better-achieving peers.  But once again, I was proven wrong.  

In my efforts to build up the motivation of the less interested students, I researched 

practical applications and historical contexts of the mathematics we were studying. However, 

many topics of school mathematics did not lend themselves to applied examples and contexts. 

And when I did find mathematical applications, they often seemed artificial and far removed 

from my students’ frames of experience. Similarly, the history of mathematics was not 

particularly appealing for my students, and seemed to do nothing for their motivations to learn.  

So I was resigned to the fact that trying to build up intrinsic motivation for learning in some of 

my students was pretty much a lost cause. Like many teachers, I found myself fostering learning 

in those students who were more interested and motivated to perform in line with the objectives 

set out in the curriculum.  

Noddings (1997) pointed out that different students have preferences for different topics, 

and so it is a mistake for teachers to think that something is wrong when some students do not 

take interest in a given subject. Since I wished that all of my students, even those who weren’t 

particularly interested in mathematics, should have meaningful experiences in my mathematics 

classes. I began to stray from strict coverage of the topics in the curriculum. Some of the 

conversations in my classes began to revolve around matters raised by my students instead of 
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mathematics. In short order, I was discussing with my teenage students issues that appeared to 

concern them a lot. These included: their uncertainty about how to plan their futures, their social 

lives, difficulties that they were experiencing with adults, their dreams of earning and spending a 

lot of money, their critiques of society, the music and movies that they were enjoying, and, above 

all, their hopes and fears about love relationships. 

Straying from the prescribed curriculum was not easy at first; I felt that I was failing at 

my job as a teacher by using valuable class time for purposes that could not be readily connected 

to mathematics. However, the benefits of my decision to wander off the mandated course of 

topics were evident almost immediately. The classes grew more lively and inclusive, as more 

students started to participate in discussions. For a while, I was concerned that discussion of 

extra-curricular topics would not leave me enough time to cover the program of studies. To my 

surprise, this was not the case. Students were more attentive, and their increased receptivity 

enabled me to get through my lessons more quickly, and to explore the mathematics in greater 

depth. Many of the weaker students were showing considerably more interest in mathematics, 

and the test scores of most of them improved.  

Easing off of my former commitment to coverage of mathematical topics led to improved 

learning of mathematics by my students. This was by standard expectations a paradox, especially 

where the less able students were concerned. Since then, free engagement with students about 

non-mathematical topics has become a hallmark of my teaching. And I have developed 

techniques for doing it, just as I would for teaching formal prescribed topics. I have often seen 

the learning of mathematics enhanced as a result. Therefore, I now believe that mathematics 

teaching need not be directed toward the goal of curriculum coverage, and that “staying on task” 

need not be an overriding concern for mathematics teachers. I have developed a different 

approach to teaching mathematics, which draws on what I call the paradox of reduced coverage.  

What happens when classroom discussion wanders away from mathematics? The 

students and I are still relating to one another, but not for the strict purpose of learning 

mathematics. Indeed, our interactions often do not follow any specific purpose or objective. We 

are able to relax our specific social roles of “math teacher” and “math students,” and to interact 

as one adult talking with a group of teenagers. And yet, this simple human inter-relationality 
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leads us to an enhanced engagement with mathematics, seemingly through increased interest and 

motivation.  

In this chapter, I will approach the paradox of reduced coverage from the theoretical 

perspectives of relational ontology and complexity science.  I will examine how mathematics and 

inter-human relationality converge in the mathematics classroom.  

4.1	  	  Relational	  Ontology	  and	  the	  Pedagogy	  of	  Relation	  

The philosophical importance of inter-human relations has been long acknowledged in 

the Western tradition. The philosopher Martin Buber and literary theorist Mikhail Bakhtin were 

exponents of the primacy of inter-human relations. Buber and Bakhtin each developed an 

ontological theory of human relations. “In the beginning is the relation” (Buber, 1923/1970, p. 

69). What exist first and foremost are relations and not objects or persons. “To be means to 

communicate dialogically” (Bakhtin, 1929/1984, p. 252). A human being is defined in his or her 

human quality only by being in dialogical relations with other humans.   

At the heart of both theories is the notion of dialogue. The term dialogue refers here to 

more than a conversation between two people; it signifies many different types of relationality. 

Jenlink and Banathy (2005) surveyed the meanings of dialogue. Dialogue in its broadest sense 

refers to the entire web of human relationality. It is also a specific type of relation, which Buber 

called I―Thou, characterized by mutuality, directness, presentness, intensity, and ineffability. 

Dialogue is also a mode of social discourse in which human beings encounter each other with 

inclusivity, and without objectification. It is also an attitude of profound openness and receptivity 

that requires a temporary transcendence of preoccupations with the self. Sidorkin (1999) outlined 

characteristics of dialogue: it is beyond time and space; it knows neither genesis nor causality; 

there are no objects, only subjects, in dialogue; it does not include social or psychological 

structures; it precedes language; it establishes intersubjectivity, and enables participants to create 

understanding across differences. 

If the notion of dialogue appears elusive and difficult to achieve in practice, Bakhtin 

(1929/1984) explained that this is due to the predominance of monological discourse in the 

modern use of language. Dialogue cannot be properly described by terms that refer only to 

monological, unidirectional communication. This is because monologue is characterized by 
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radical objectification, and by separation of ideas expressed in language from individual 

speakers. Monological discourse is fully alienated and presents objects as being “in the world” 

and not in the discourse itself (Sfard, 2008). Monological narratives take the form of a single, 

transcendent, and disembodied voice, which Bakhtin referred to as “the voice of the life itself,” 

“the voice of nature,” and “the voice of God.” Monological truth consists of unitary meanings, 

whereas dialogical truth is always shared through communication, and manifests in a multitude 

of voices that are mutually addressed and in constant discursive tension. Sidorkin (1999) argued 

that even some postmodern discourses, in replacing a grand monologue with multiple isolated 

micro-monologues that still aim at specific meanings, are also monological. Be it in modern or 

postmodern discourse, the language of subject-object relations, or I―it relations as Buber called 

them, makes it almost impossible to theorize the realm of the dialogical using the historically 

established philosophical terms of ontology and metaphysics.  

And yet, both Buber and Bakhtin insisted that dialogue is a universal phenomenon that is 

available to all of human discourse.  “All actual life is encounter” (Buber, 1923/1970, p. 62); 

“All else is the means; dialogue is the end” (Bakhtin, 1929/1984, p. 252). For them, dialogue is 

both an essential aspect of communication and the highest point of inter-human engagement 

through discourse.   

Buber and Bakhtin described dialogue as pure, unmediated relation. In contrast, the 

educative relation between teacher and students is typically conditioned by a power imbalance 

between them, and is mediated by a presumed commitment to the instrumental purpose of 

learning the subject matter at hand. We may ask then whether or not dialogue is even possible in 

educational settings. Sidorkin (2002) maintained that even though educative relations are 

asymmetrical, because they are motivated not only by mutuality but also by instrumentality, it is 

possible for a qualitatively different form of dialogue to emerge in educative environments. He 

called on teachers to become adept at directing the relations in their classrooms toward moments 

of emergent dialogue. 

In educational theory, feminist theorists were the first to recognize and analyze the 

primacy of human relations. Some theoretical constructs founded on inter-human relationality 

are Noddings’ (1986) ethics of care, Martin’s (1992) notion of the schoolhome, and Gilligan’s 

(1982) feminist ethics. Noddings, who has perhaps been the most successful in bringing 
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relational thinking to the mainstream of educational theory, suggested that educators should be 

“taking relations as ontologically basic” (p. 4).  

Since the early 2000s, a diverse group of educational researchers has addressed the 

central philosophical notion of pedagogy of relation. Together they issued the Manifesto of 

Relational Pedagogy (Noddings et al., 2004), which called for a reorganization of schooling 

around human relations. Relational pedagogy starts with the assumption that learning motivation 

is mainly a function of relations. If we accept that the Self is the intersection of multiple relations 

that include the individual, then it may be that the formation and development of human identity 

also depends on relations. Human relations exist in and through shared practices of which the 

most complex is language. So the goal of schooling should be to create dialogical communities 

within discourses.  

4.2	  	  Monologues	  of	  the	  Mathematics	  Class	  

Mathematics as it is taught today may be the most monological of all mandated school 

subjects. Current pedagogical practices present mathematics to students as a collection of 

irrefutable propositions to be mastered and memorized. Each mathematical result, be it 2 + 2 = 4 

or Pythagoras’ theorem, represents an absolute truth that exists “in the world,” apart and distinct 

from those who come to know it. Mathematical truths are communicated, more often than not, by 

way of an alienated “voice of the textbook.” Once students are told that 2 + 2 cannot equal 

anything but 4, there is no opportunity for them to question or contemplate alternatives to this 

absolute mathematical result. Even though students may employ various methods to arrive at 

their answers to a given mathematical problem, these answers are ultimately verified by 

comparison with the predetermined and correct results of formal mathematics. English 

pedagogy, on the other hand, is very different. English students are frequently invited to offer 

personal interpretations of literary texts. Their interpretations are assessed not on the basis of 

their being right or wrong, true or false, but rather on their coherence, sophistication, and fit in 

context.  

In addition to the subject matter itself, another factor that contributes to the monological 

nature of mathematics education is the prevalent focus on performative instrumentality. Sidorkin 

(1999) described a person of dialogical integrity as one whose notion of self organizes around 
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the need to remain unfinalized and open to the polyphony of human voices. Since any choice 

inevitably reduces plurality and impoverishes life, Sidorkin advised teachers not to hasten 

students to draw conclusions when faced with a problem. “School tries to complete human 

growth, while it should uncomplete it” (p. 67). Mathematics pedagogy appears to be failing on 

all these counts. The ubiquitous quizzes, tests, exercises, and drills in mathematics thoroughly 

train students in monological decision-making. Not only are students required to make decisions 

about methods for solutions quickly and efficiently, but they also must always arrive at the 

correct answers in order to be right. Failure on any of these competencies – imitation, speed, or 

accuracy – supposedly shows that a student is deficient in mathematics. Such behaviouristic 

expectations promote the opposite of learning as plurality and polyphony.  

In my experience, extra-curricular conversations in my classes serve to alleviate the 

stranglehold of monologism. Students have opportunities to express themselves in varied and 

novel ways. Unlike formalized “math talk,” which is typically directed at a simple binary, “is this 

answer true or false?,” our extra-curricular conversations tend to promote greater complexity of 

viewpoints. Unlike mathematical discourse, which sometimes alienates and excludes students, 

the extra-curricular topics of engagement often enable students to position themselves within a 

conversation and mutual discourse. In most cases the extra-curricular conversations do not lead 

to a finalized outcome, and no one feels that such an outcome is necessary for the fulfilment of 

pedagogical purpose. For instance, in a conversation about music, students may express many 

different preferences and tastes. It is perfectly alright to end such a conversation without a 

definite resolution, as the real outcome is an enhanced appreciation of human plurality.  

4.3	  	  The	  Problem	  of	  Weak	  Motivation	  

Much of contemporary mathematics education practice and research is founded on the 

assumption that children want to learn mathematics. Many mathematics educators believe that 

children are driven by natural curiosity to inquire about arithmetic, algebra, and geometry. When 

children do not display the curiosity assumed by educators, the failing is often attributed to a lack 

motivation on the part of the students. More broadly, when student interest flags, something must 

be wrong, either with the child, with the teacher, or with the pedagogy, but certainly not with the 

subject matter. Noddings (1997) advised teachers not to “believe their own propaganda” (p. 30).  
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Clearly, there is a large gap between the perceptions of students and of teachers when it 

comes to interest in school disciplines. Heath (1994) reported that 57 percent of students in 

suburban schools viewed their classes as boring, but only 11 percent of their faculty members did 

so. Neill (1961) wrote, “most of the school work that adolescents do is simply a waste of time, of 

energy, of patience” (p. 25). As a mathematics teacher, I have a large personal stake in arguing 

that Neill is off the mark, and that school mathematics is useful, interesting, and not a waste of 

my students’ time. But even if I am interested in mathematics, it is misguided of me to assume 

that my students would be as interested in it as I am. And if they are not, then Neill’s argument is 

compelling; mathematics education is a form of oppression for students who are bored by 

mathematics.  

On the whole, my experience as a teacher has shown me that mathematics itself is often a 

weak motivator for the learning of mathematics, especially for students in their teens. Even 

educators who disagree with me would likely agree that mathematics does not motivate all 

students at all times. Educators must face the question of what might make uninspired students 

want to learn mathematics. The pedagogy of relation offers one possible answer – quality human 

relations are likely the strongest attractor for students to participate in school life of every sort, 

and therefore, in mathematics as well. 

The extra-curricular conversations in my classes enable me to build relations with 

students who are not particularly interested in mathematics. These relations almost always start 

out with my taking interest in whatever interests my students. This practice conforms to 

Noddings’ (1997) observation that teachers who work with the present motives and expressed 

needs of their students show respect for their students as Others, and consequently these teachers 

enable dialogue. As I gain the students’ trust and respect over time, our relations transform into 

personal ones, in which the students want to be around me because they enjoy my company. 

Some of these students then begin to show more interest in learning mathematics. It is not that 

mathematics has suddenly become intrinsically motivating. The students take interest in 

mathematics because they like their interactions with me, and mathematics happens to be one of 

my areas of interest.  

Sidorkin (2002) suggested that this sequence of transformations of relations – from a 

teleological relation aimed at the students’ motives, to a personal relation, to a teleological 
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relation aimed at learning – is a valuable one for teachers who consciously manage the economy 

of relations in their classes. Students are willing to learn because this is a price they pay for the 

relations they enjoy at school. Teachers pay back with the currency that students need – 

appreciation, compassion, love, and a lot of attention. Teleological relations, that is, ones 

mediated by predetermined purposes, are necessarily monological. But the formation of a 

teacher-student personal relation opens up the possibility of dialogue. This possibility is 

multiplied when the collective aspects of classroom relations are considered.  

4.4	  	  Complexity	  Science	  and	  Network	  Theory	  

The educative relation between students and their teacher is one of many overlapping 

relations that are to be found in any mathematics class. Researchers who examined the systemic 

nature of classroom collectives (Davis & Sumara, 2006; Davis & Simmt, 2003) proposed that 

these collectives can be understood and analyzed as complex learning systems. Due to their 

emergent nature, complex systems are typically nested and exhibit self-similarity among the 

qualitatively-different phenomena found in their multiple levels of organization. A fundamental 

assertion of complexity science is that nested phenomena must be studied at the level of their 

emergence. Davis and Sumara (2006) listed three key conditions that are necessary for 

emergence in dynamic systems: a tension between diversity and redundancy of agents; sufficient 

density of neighbour interactions under decentralized control; and enabling constraints that 

mediate the tension between systemic coherence and change. 

The structures of complex systems can be represented and analyzed using graphical 

network models. In these networks, nodes represent agents, and links represent agent 

interactions. Research in network theory since the late 1990s (Barabási, 2003; Watts, 2003) has 

revealed that dynamic networks exhibit a scale-free connectivity pattern in which a few nodes, 

called hubs, are densely connected, and most nodes are weakly connected. In this topology, 

nodes tend to cluster into small networks, which in turn cluster into grander networks. These 

structural patterns have been used to explain the behaviours of complex systems operating in 

diverse fields, such as sociology and biology.  Drawing on the results of complexity science and 

network theory, we will proceed to investigate two important networks which operate in any 

given math class: the human relations network and the mathematics network. 
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4.5	  	  The	  Human	  Relations	  Network	  

The system of human relations in the mathematics class can be represented by a network 

in which the students and their teacher are nodes, and the relations among them are links. 

Students may relate to each other in a variety of ways. For example, John and Mary take 

mathematics together, but also play woodwinds in the school band. Both of them might have run 

for the school’s social committee last year, but Mary won; John was upset by his loss. Mary and 

John’s sisters are old friends. John might be thinking of asking Mary out on a date, but Mary is 

interested in Tim. Due to the diversity of their social positionings, Mary and John would relate to 

each other in multiple ways, all of which could be represented by links that connect Mary to John 

in the human relations network. 

Social roles and positionings divide the students in a given mathematics class into many 

subgroups: female students, students who are good in mathematics, students who play football, 

and students who listen to Lady Gaga, for instance. Each of these subgroups is represented by a 

cluster in the network diagram. Some students are very sociable, and they act as relational hubs 

in the diagram; others keep to themselves, and they are more sparsely linked. The teacher is also 

a hub because, at minimum, she is linked to each student in the class through the educative 

teacher-student relation.  

In his study of dialogical schools, Sidorkin (1999) identified complexity as a necessary 

condition for emergence of dialogue in schools. Complexity, according to Sidorkin, is “a feature 

of school culture that allows a multitude of human voices to coexist without ever merging or 

coming to an agreement on anything at all.” (p. 120) Sidorkin’s condition of complexity 

correlates with Davis and Sumara’s (2006) conditions of agent diversity and density of 

neighbour interactions. In network terms, dialogical communities are represented by densely 

linked networks, as each pair of co-existing voices creates a new relation, that is, a new link.   

Conducting a mathematics class within the narrow constraints afforded by a prescribed 

curriculum may diminish the complexity of interactions that arise in the class. The numerous 

human relations and divergent voices that are present in the collective of the class may not find 

their proper expression when communication is limited to mandated topics. In such an 

environment, people may be able to build only partial relations amongst each other, as such 

relations may occur only with reference to the mathematics curriculum. For instance, a student 
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who is identified as being “bad at math” because of his low scores on quizzes and tests might 

only be able to interact with his peers in the rigid negative terms of under-achievement. In 

network terms, mathematics classes that are narrowly focused on the objectives set out in the 

curriculum are represented by skeletal, sparsely linked networks of relations. The typical 

organizational strategy of mathematics classrooms is one of a centralized network with the 

teacher as the only hub. Fuite (2005) hypothesized that teachers’ commitments to covering large 

amounts of curriculum material as efficiently as possible may bring about this centralized 

organizational strategy.    

When my class discussions move away from the defined topics of mathematics, students 

are given opportunities to be heard and identified in multiple and novel ways. They get to take on 

differing roles because they have the chance to express affiliation with different human groups. 

New relations are formed, as clusters in the human network are activated. Most importantly, with 

the addition of new links, the whole network grows. Growth is a necessary condition for the 

viability of dynamic networks (Barabási, 2003). It appears then that extra-curricular 

conversations serve to advance the complexity of the human community and its network of 

relations.  

4.6	  	  The	  Network	  of	  Mathematics	  

Our discussion so far has focused on the importance of human relations and dialogue. We 

have seen that strict adherence to curriculum coverage in mathematics classes runs counter to 

dialogical engagement. At this point, one may ask, why should we bother with teaching 

mathematics at all? If, as relational ontologists advocate, human meeting in dialogue is the true 

aim of education, then what has mathematics got to do with achieving this aim? Before we 

investigate the relation between subject matter and dialogical relationality, it is important to 

realize that mathematics and mathematical understanding are complex systems in their own 

right. 

Mowat (2008) argued that mathematics is a dynamic evolving complex form with 

emergent properties. She used Lakoff and Núñez’s (2000) theory of embodied mathematics to 

describe a network model of mathematical understanding, in which the nodes are conceptual 

domains, and the links are conceptual metaphors. Subjective mathematical knowledge is 
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understood to be a collection of concepts whose meanings are determined by metaphorical 

relations. Sfard (2008), who reached similar conclusions in her study of mathematical discourse, 

also pointed to the developmental dimension of the mathematics network: 

….mathematical discourse, especially when frozen in the form of a written text, can be 

seen as a multi-level structure, any layer of which may give rise to, and become the 

object of another discursive stratum. From this description, mathematics emerges as an 

autopoietic system – a system that contains the objects of talk along with the talk itself 

and that grows incessantly “from inside” when new objects are added one after another. 

(p. 129) 

4.7	  	  Relating	  the	  Two	  Networks	  

Both the human relations network and the mathematics network are present in every 

mathematics class. We may ask: what is the interplay between subject matter and human 

relations in a given math class? In other words, how are they positioned relative to one another? 

In this section, I will argue that the two networks are co-implicated within the context of the 

mathematics class.  

The Russian educational theorist Liudmila Novikova, who studied collective education in 

the Soviet Union, posited that schools are living holistic social systems, with their own cultures 

and ecologies. Since Novikova’s work remains untranslated to English in its entirety, I will draw 

on the interpretation of the relevant sections of her writings cited in Sidorkin (2002). When 

schools are viewed as holistic systems, all aspects of school life, including formal curriculum and 

informal peer interactions, are interrelated and equally significant. Novikova maintained that any 

school can be analyzed in terms of its relational field and core activity.  

The notion of relational field should already be familiar from our earlier discussion of 

networks. The term refers to the pattern of relations within a complex system; that is, the 

topology described by the system’s network diagram. The notion of core activity is less familiar. 

It is related to Vygotsky’s and Leontev’s activity theory, which seeks to understand human 

activities as complex socially situated phenomena. Activity theorists view learning as a process 

that grows out of collective action. The engagement of learners in different kinds of human 



 

62	  

	  

activities enables the transformation of objective, extra-personal knowledge into the subjective 

knowledge of lived experience.  

The concept of core activity can also be analyzed in terms of Davis and Sumara’s (2006) 

conditions of emergence. Since human beings possess intentionality, human collectives gather 

around shared purposes and manifest in shared practices. The similarity of purpose shared by the 

members of the collective contributes to agent redundancy within the system. Moreover, the 

initial reason for the formation of any collective, which Buber (1923/1970) called the original 

relational incident, is a shared memory embedded in the structure of the system. This formative 

event constrains the system’s range of neighbour interactions and adaptations to the 

environment. For example, the members of an orchestra are involved in a social collective that 

was formed for the purpose of creating music. They are likely to engage with each other in all 

regards that relate to making music, but they don’t usually solve mathematical problems 

together. To the extent that the core activity of a collective social system promotes the conditions 

of agent redundancy and enabling constraints, it provides the system with internal coherence. 

Next, we will examine the core activities, relational fields, and emergent phenomena of 

the human relations and mathematics networks. The results of our analysis are summarized in 

Table 1. 
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Mathematics 

 

Human Relations 

 

Core activity 

 

Mathematizing 

 

Meeting / Encounter 

 

Relational field 

Nodes   

Links 

 

 

 

Mathematical concepts  

Mathematical metaphors 

 

 

Human beings  

Inter-human relations 

Emergent phenomena Subjective mathematical 

understanding  

Mathematical knowledge 

production 

Novel mathematics 

Knowledge production about 

inter-human relations 

Intersubjectivity 

Discursive realms (e.g., dialogue) 

 

Table	  1.	  	  Characteristics	  of	  the	  mathematics	  and	  human	  relations	  networks	  

The core activity of the mathematics network is mathematizing, that is, human 

engagement with objects and processes of mathematics. The relational field consists of 

mathematical concepts, which are connected by embodied metaphors that inform their meanings. 

The emergent phenomena include subjective mathematical understanding, mathematical 

knowledge production, and novel mathematics. 

The core activity of the human relations network is meeting, or human encounter. The 

relational field consists of persons who are connected by inter-human relations. The emergent 

phenomena include knowledge production about inter-human relationality, intersubjectivity, and 

discursive realms, such as dialogue.  

People usually have a clear sense of what it means “to do math,” and so the core activity 

of the mathematics network is strongly defined. Mathematizing also often produces recognizable 

mathematical artifacts, such as solutions and proofs. On the other hand, the core activity of the 

human relations network – encounter among individuals – is more difficult to define than 
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mathematical activity. The products of human encounters, such as intersubjectivity, are abstract 

and often defy absolute definitions. Some people may not even consider encountering other 

human beings in dialogical relations to be an activity at all. Therefore, mathematizing, in its 

various manifestations – learning mathematics, teaching mathematics, and solving mathematical 

problems – is more easily conceived of as a shared practice than are human encounters. 

On the other hand, the relational field of the human relations network is more open for 

individuals to inhabit than the relational field of the mathematics network. Humans have 

developed rich vocabularies to describe and negotiate the immense variety of relations found in 

social situations. There are family relations, friendship relations, intimate relations, educative 

relations, and power relations, to name but a few. People are constantly engaged in interpreting, 

positioning, and transacting human relations. The dense topology of the human relations network 

offers a myriad of possibilities for rich interactions and emergent novelty. Of course, this is not 

to suggest that the relational field of the mathematics network does not offer rich prospects for 

relations as well. Clearly, the variety of mathematical metaphors used to make sense of 

mathematical concepts can serve as a basis for many meaningful interactions. But, given the 

many drives and instincts that make up human psychology, mathematical metaphors are usually 

subordinate to the dynamics of inter-human relations in social settings.  

We may now see that both the human relations and mathematical networks play 

important, but different, roles in a given mathematics class. The mathematics network provides a 

well-defined shared practice around which the collective gathers. It contributes to the collective’s 

sense of stability and coherence. The human relations network provides a complex relational 

field for rich interactions. It contributes to the collective’s capacity for change and novelty. Both 

networks are essential for conditioning evolution of the math class collective.  

4.8	  	  Mathematics	  Class	  as	  a	  Grand	  Network	  

The symbiotic relation between the networks of mathematics and human relations 

suggests that the mathematics class is a grander network than either network considered 

individually. I call this total network the mathematics class network. Table 2 summarizes the 

core activity, relational field, and emergent phenomena of this network. 
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Mathematics Class 

 

Core activity 

 

Mathematizing and meeting 

 

Relational field 

Nodes   

Links 

 

 

 

Human beings and mathematical concepts   

Inter-human relations and mathematical metaphors 

Emergent phenomena Subjective mathematical understanding  

Knowledge production about mathematics and inter-human relations 

Novel mathematics 

Intersubjectivity 

Discursive realms (e.g., dialogue) 

Table	  2.	  	  Characteristics	  of	  the	  math	  class	  network	  

The mathematics class network is greater than the sum of its components. Its hybrid 

objects and relations bring to light the interdependence of subject matter and human relations in 

mathematics education. Once educators realize the important role that intersubjective 

relationality plays in the emergence of mathematical understanding, they are faced with a 

number of important questions: How can human relations in the classroom be managed to bring 

about meaningful engagement with mathematics? Conversely, in what ways does the subject 

matter stimulate or inhibit dialogue and the formation of dialogical communities?  

Mathematics educators tend to frame the goals of mathematics education in terms of 

learners’ proficiencies in mathematics. Mathematics instruction is therefore directed toward 

promoting subjective mathematical understandings in learners. The communal dimensions of the 

class collective are typically regarded as incidental to the mathematics being taught, and 

sometimes, they are seen as extraneous factors that interfere with the learning process. Relational 

ontologists, on the other hand, frame the goals of education in terms of the learners’ exposure to 

dialogical encounters. They emphasize the primacy of human encounter over disciplinary 
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knowledge production. Which of the two viewpoints is the correct one with reference to the 

communal relations in a given mathematics class? Do humans meet in order to learn 

mathematics, or do they learn math in order to meet? Our mathematics class network model 

indicates that all these actions and motives co-arise simultaneously. It is counterproductive to 

differentiate the foreground from the background in the integral classroom network, as all of its 

elements are interrelated. Discounting either mathematics or human relations in the teaching and 

learning of mathematics negates the mathematics class’ primary core activity and relational field.  

4.9	  	  Towards	  Dialogical	  Mathematics	  Classes	  

From a complexity perspective, one broad purpose of mathematics education is to expand 

the space of learners’ interpretive possibilities with respect to the project of being a human, co-

existing with other humans, as part of a more-than-human world, by way of mathematization. 

Achieving this purpose requires that learners become full participants in mathematical discourse, 

which in turn necessitates that mathematics classes become dialogical communities. 

The prospect for dialogue is already alive in any given mathematics class, since dialogue 

can emerge from the class’s intricate network of human relations at any point. Stimulating 

dialogical emergence requires teachers to be attentive to the various discourses in their 

classrooms, and to the roles that mathematics and the mathematics curriculum play in shaping 

these discourses. The challenge for teachers is to invite and sustain dialogue that includes their 

students and mathematics in the same discourse. Treating mathematics monologically often leads 

to monological discourses that exclude students from participation.  

Sidorkin (1999) identified three conditions for dialogical emergence in educative settings: 

complexity, civility, and carnival. As discussed earlier, complexity requires that a plurality of 

voices be allowed to co-exist in the class. The second condition, civility, ensures that these 

voices be mutually addressed, and that they attend to each other. For example, Davis and Simmt 

(2006) proposed that explicit awareness of the many metaphors that underlie a mathematical 

concept would help learners appreciate the importance of the concept. Mathematics teachers can 

inspire a plurality of mutually-addressed voices in different ways: engaging a plurality of 

mathematical metaphors, taking plurality of approaches to solving a given problem, introducing 

a plurality of curricular and non-curricular topics, eliciting a plurality of student interests, and 
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recognizing and valuing a plurality of human relations. By bringing all these pluralities into 

classroom discourse, and by explicitly supporting such pluralities, teachers can open up 

opportunities for students to become participants in the full discursive space created by open 

dialogue. It is hoped that students who are exposed to plurality in different aspects of classroom 

discourse would be more likely to understand that mathematical truths are open to interpretation. 

If students do come to this understanding, they might also come to view mathematics a 

discourse, rather than a set of disembodied, ever-lasting, logical certainties that are impervious to 

change and discussion.  

The third condition, carnival, refers to a cultural phenomenon described by Bakhtin 

(1941/1965). The spirit of the carnivalesque is often expressed through laughter. The carnival is 

a short-lived suspension of the restraints of social conduct and authority. It is often manifested 

through ludic celebrations and parodies of accepted social hierarchies. It can promote dialogue 

by granting permission for saying and doing things that would otherwise seem frivolous or 

offensive under normal power relations. The times in which mathematics is not discussed in my 

classes can provide the third space needed for carnivalesque discussions that break down the 

seriousness of mathematics as a subject. These playful digressions often include laughter and 

jokes about school and about the inflexibility of the curriculum.  

Sidorkin (1999) suggested that laughter is an integral part of learning, since humans 

cannot make sense of ideas unless they have the freedom to challenge, deconstruct, and ridicule 

them. I have found that one of the most effective ways to engage my students’ interests with the 

subject of mathematics is to politicize it. By opening up each topic in the curriculum to 

interrogation, and by openly questioning whether it is useful or interesting, I invite my students 

to mediate the subject matter through their own viewpoints. Over time, students realize that the 

mathematics curriculum is not a sacred text, but rather an arbitrary set of discursive choices 

made by educational authorities. Questioning the mathematics curriculum in this way leads my 

students to interact with mathematics more freely, since they are able to see the subject matter in 

a new and different light. Dialogical mathematics classes enable students to see themselves, their 

viewpoints and modes of understanding, within the same order of discourse as the learning that 

they are expected to gain.  
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4.10	  	  Mathematics	  as	  Dialogue	  

This chapter began with a paradoxical outcome which I noticed during the course of my 

teaching: reduced emphasis on curriculum coverage, and free engagement with non-

mathematical topics in my classes, often leads to improved learning of mathematics. Two 

theoretical frameworks, relational ontology and complexity science, were used to examine this 

counter-intuitive outcome. The relational ontology perspective considers dialogical relations to 

be of primary value in classroom interactions. From this perspective it appears that, when the 

monological grip of the mathematics curriculum is loosened in my classes, a space for genuine 

dialogue is created. This opportunity, in turn, contributes to improved interactions with my 

students. The complexity science perspective discloses two networks that are present in every 

mathematics class: the human relations network and the mathematics network. The mathematics 

network has a clearly identifiable core activity, while the human relations network is defined by 

a rich and complex relational field. Since the networks are co-implicated, the extra-curricular 

discussions in my classes condition the emergence of mathematical understanding by activating 

the relational field of the human relations network. 

Given vital interplay between inter-human relations and mathematics in the classroom, 

why do so many mathematics teachers organize their instruction strictly around curriculum 

coverage? Why are some teachers reluctant to depart from mathematics, and why do they view 

moments of spontaneous dialogue in their classes as counter-productive distractions or “noise?” 

Why is it that so much of mathematics education research is focused on mathematics and human 

cognition, and not on inter-human relations? In my view, these tendencies in teaching practice 

occur because of the prevalent monological discourses of mathematics. When mathematics is 

viewed as a collection of disembodied and objective truths, which stand separate and apart from 

the human beings who enact them, it may well make sense to organize mathematics instruction 

around predetermined curricular objectives. However, if mathematics educators were to take a 

dialogical view of their subject matter, their approach to instruction would likely shift away from 

strict adherence to curriculum coverage. From the dialogical perspective, the act of involving the 

learner dialogically in mathematical discourse is the most important part of teaching. 

Mathematics instruction should be organized with careful attention to inter-human relationality.  
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Some educators might argue that bringing non-mathematical interactions into class is a 

waste of time, and that mathematics is sufficiently engaging and diverse as subject to foster 

dialogue. Indeed, I admire teachers who enable dialogue in their classes while adhering strictly to 

mathematics. However, given the problem of weak motivation discussed earlier, I believe that it 

would be far easier for many teachers to initiate dialogues around their students’ interests, and 

then bring mathematics into the discourse once dialogues are established. 

In my experience, conversing freely with my students without restricting myself to the 

mandated curriculum has been deeply rewarding, and ultimately very productive. The freedom to 

share in my students’ interests and to bring up interesting topics enables me to become a full 

participant in the classroom discourse. As a teacher, I am not just a limited being, an agent of the 

curriculum or of mathematics, but a complete person who happens to be passionate about 

mathematics. Even when the conversations turn to music, or money, or love, or anything else 

that teenagers enjoy talking about, I often make sense of these themes through my mathematical 

orientation. I cannot really do otherwise, since mathematics is an integral part of my being. 

Mathematics is a mode of discourse that I use to interpret my reality. Numbers, probabilities, and 

formal thinking are never completely absent from my conversations with my students, no matter 

what the topic at hand may be.  

Mathematics speaks volumes in my classes when school math is silent. Far from 

relinquishing the task of teaching mathematics, I use these occasions to engage with mathematics 

dialogically. To put it differently, I use my position as a relational hub in the mathematics class, 

which is to say a teacher and interlocutor, to show my students what it means to be a 

mathematizing human, co-existing with other humans, in a more-than-human world.  
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Teaching	  Interlude	  3:	  Rope	  around	  the	  Equator	  
 

Suppose that the earth is a perfect sphere and that I tie a rope tightly around the equator. 

How long will that rope be? What information do you need to know in order to answer 

this question? 

The students asked me how long the radius of the earth was. I told them that it was 6391 

kilometers long. Individually and in small groups, they then quickly calculated that the rope 

would be about 40,000 kilometers long. 

Now, suppose that I don’t wish the rope to be so tight. I add 10 more meters of rope to the 

existing 40,000 kilometers, and then loosen the new longer rope evenly around the equator.  

Do you all agree that a gap will form between the earth and the rope? 

The students nodded in agreement. 

How tall will this gap be? What could pass through it?  An amoeba, an ant, a child, or a 

mountain? Please give me your best estimate.  

We took a vote. Almost all of the students thought that an ant could pass through the gap. A few 

thought that the gap would be too small for an ant to pass through, and voted for the amoeba.  

OK. Now please calculate the height of the gap. 

The students worked out some answers. After some discussion, everyone agreed that the 

correct answer was about 1.6 meters long. In other words, the gap is tall enough to let a child 

pass through. The students gave a collective gasp of surprise. I then told them that this result had 

surprised me too when I first came across it, and that it still does. Intuitively, it seems that when 

we lengthen a rope of 40,000 kilometers by 10 meters, the loosening effect should be negligible.  

How can it be that the gap is large enough to allow a child through? How would you 

explain this result to a person who cannot calculate it? 
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I posed this question to the students, even though I did not know the answer myself. The 

students took about 15 minutes to come up with answers. A number of explanations were offered 

but they were mostly verbal reiterations of the calculations that were just performed. Then one of 

the students raised his hand and provided this answer: 

For us, a gap of 1.6 meters looks big. But this gap 1.6 meters is added to the radius of the 

earth. If you compare 1.6 meters to the radius of the earth, which is 6391 kilometers, you 

can see that it is not large at all. In fact, it’s tiny.  

There it was – a perfectly clear and sensible explanation that had eluded me for years. The 

proportional increase of 1.6 meters is negligible, even though a child can pass through the gap. 

The student was able to explain the result even though common intuition was unreliable in 

thinking through the question. His explanation was not one that I would expect to find in a 

mathematics textbook. New mathematics was created right there, in the moment, and it was 

brilliant. The incident made me smile for days afterwards. I was thankful to have trusted the 

class’ collective intelligence enough to pose the question. 
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CHAPTER	  5	  

LIFE	  IN	  MATHEMATICS:	  EVOLUTIONARY	  PERSPECTIVES	  ON	  SUBJECT	  

MATTER	  
	  

If the last chapter veered off the subject matter of mathematics to some extent, this present 

chapter focuses squarely on mathematics as it manifests in the objective (UR) quadrant. I use 

developmental analysis to construct an evolutionary stage model for conceptions of mathematics. 

My reading of the model reveals that, largely due to the legacy of Platonism, the development of 

mathematics is stunted at the formalist/modernist stage. I argue that the reluctance to evolve 

mathematics past this stage robs the subject matter of much of its vitality.  

The explicit use of integral theory in the chapter permitted me to examine what the next 

stage in the evolution of mathematics, the integral stage, might look like. The chapter considers 

different approaches to transcend Platonism and to promote evolution of mathematics. One 

approach, detailed in considerable length, is concept study, a research methodology for 

interrogating teachers’ mathematical knowledge that consciously activates multiple quadrants and 

levels. I use the integral lens to interpret the results of an extended concept study on multiplication.  

	  

Edgardo Cheb-Terrab is an applied mathematician who specializes in developing 

algebraic algorithms for Maple, a mathematical software package for symbolic computation. His 

algorithms solve classes of problems, including differential equations and special functions.   

In 1999, Cheb-Terrab used his software to investigate solutions of Abel equations—a 

class of first-order non-linear differential equations that was first described by the Norwegian 

mathematician Niels Abel in the 1820s. By the end of the 20th century, the mathematics research 

literature contained solutions to nearly 40 types of Abel equations; each of these types was 

thought to require its own method of solution. Cheb-Terrab showed that all these types are 

special cases of an 8-parameter hyper-class. By devising a computer algorithm for solving all 

equations of this hyper-class, he expanded the range of solvable Abel equations far beyond what 

was thought possible. These results could not have been derived without a computer. 
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Even though one may have expected such innovation to be greeted enthusiastically, 

Cheb-Terrab’s work has met with suspicion, and even dismissal by mainstream algebraists. “For 

many of them, it was heresy; surely a computer cannot solve problems that were impenetrable to 

such great mathematicians as Abel and Liouville” (E.S. Cheb-Terrab, personal communication, 

November 2, 2008). Ironically, Cheb-Terrab’s censure by the research community came at a time 

when thousands of mathematicians, engineers, and physicists were already using his algorithms, 

and verifying the solutions obtained, in a variety of applications. It took four years, and a lengthy 

review process, to publish the findings (Cheb-Terrab & Roche, 2003).  

Cheb-Terrab has since developed innovative computer-based solutions to other long-

standing problems in algebra. Yet he regularly confronts obstacles to acceptance. As Cheb-

Terrab (personal communication, December 13, 2008) noted, “[m]athematicians have received 

with discomfort almost every algorithm that I developed which seemed to challenge ‘established 

truths’; but, in fact, these established truths were never anything more than incomplete truths 

holding back progress in their fields.”  

The issue of what constitutes acceptable mathematics innovation points to a prevalent 

orthodoxy among mathematicians around the question “What is mathematics?” Even though 

today’s digital technologies enable new mathematical understandings, many mathematicians are 

unwilling to accept computerized solutions as “real mathematics.” For them, the only true 

mathematics is that which manifests in the time-honoured mechanisms of formal proof. As 

Cheb-Terrab’s example illustrates, these mathematicians, in their strict conformity to traditional 

modes of mathematical knowledge production, may be stunting the evolution of mathematics 

and contributing to stagnation of mathematical research. 

Likewise, I believe that part of the blame for the current stagnation of mathematics 

education and pedagogy can be attributed to a shared orthodoxy among educators around the 

question, “What is mathematics?” From an evolutionary perspective, I understand the term 

“orthodoxy” as referring to rigid adherence to a particular worldview, and refusal to 

acknowledge and participate in the evolution of consciousness. Mathematics pedagogues often 

perceive mathematics as a treasured, monolithic, even sacred, body of knowledge, which must be 

preserved and passed on to future generations. This perception of mathematics often leads to a 

model of instruction that centers on transmission of stable knowledge.  
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This chapter explores the range of worldviews that respond to the question, “What is 

mathematics?” I will use integral theory to analyze the stages through which conceptions of 

mathematics have evolved to date, and where they are likely to evolve next. I examine barriers to 

the evolution of teachers’ views on mathematics, and some approaches to overcome these 

barriers. I conclude with a discussion of the implications that an evolutionary view of 

mathematics holds for pedagogy, and in particular the need for educators to balance stable and 

emergent dimensions of mathematics in their instruction.  

5.1	  	  Stages	  of	  Mathematics	  

Davis (1996) traced the history of mathematics, and proposed five major eras, or 

mentalities into which it may be divided: oral, pre-formalist, formalist, hyper-formalist, and 

post-formalist. Integral philosophy suggests that these mentalities may form a dialectic sequence 

of increasingly complex human conceptions of mathematics, that is, a stage model for 

mathematics. I will show in this section that the five mentalities are developmental stages, by 

correlating them with the broader structure-stages, or worldviews, used by integral writers (e.g., 

Wilber, 2006a; McIntosh, 2007) to describe the development of consciousness. The worldviews 

are: archaic, tribal, traditional, modernist, post-modern, and integral. I will also show that the 

mentalities satisfy the subject-object mutuality that characterizes developmental processes, as 

indicated by Kegan (1994).  

At each mentality, or stage, I explore these questions: 

1. How does this stage respond to the question, “What is mathematics?” 

2. What is the connection between mathematics and the natural world? 

3. How does this stage position the relationship between knowledge and knower? 

4. What mathematical technologies are used at this stage? 

5. How are mathematical truths validated? 

5.1.1	  	  The	  Oral	  Stage	  

This stage refers to societies that existed before the invention of writing in different parts 

of the world. In oral cultures, mathematics and mathematical meanings are found only in 

immediate experience and practical action. Mathematics is tightly bound to the knower’s 

immediate environment in the natural world. Mathematical objects are classified by practical 
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situation; numbers, for instance, are used as adjectives, rather than as nouns. Mathematical 

knowledge manifests in human processes, such as counting. The main technology of 

mathematics at this stage is oral narrative. The oral stage corresponds to the tribal stage of 

consciousness, in which tribal myths and immediate experience establish validity and truth.  

5.1.2	  	  The	  Pre-‐formalist	  Stage	  

The invention of writing brought mathematics into the visual-representational realm. In 

the process, mathematical knowledge was preserved in symbol systems that enabled it to be 

understood over time and distance, and so it attained a similar separation from its knowers as the 

textual inscriptions of natural languages. At this stage, mathematics is understood as a mode of 

reasoning about unchanging forms, or essences, in the natural world. Mathematical knowledge 

resides outside of the knower, and is discovered by empirical observation. The technology of 

writing accords mathematics an independent existence through abstract objects, such as numbers, 

abstract categories, and geometric forms. This stage corresponds to traditional consciousness, in 

which scriptures that express the universal mythic order are the standards of validity and truth. 

5.1.3	  	  The	  Formalist	  Stage	  

The formalist stage of mathematical history originally emerged briefly in Ancient Greece, 

but it came into full fruition only in the early modern European era of Newton and Descartes. 

Mathematics is a distinct discipline in the formalist stage, with a separate body of knowledge and 

knowledge-producing methodology. The methodology of formal logic applies strict derivation 

rules to fundamental propositions, or axioms, in order to produce new mathematical results. At 

this stage, mathematical axioms, such as Euclid’s Postulates, are framed in terms of observation 

from the natural world, though the description of the natural world is only one of several 

concerns of mathematics. The technologies of the formalist stage include the mechanism of 

formal proof, calculating devices, and formal mathematical representations, such as the Cartesian 

plane. This stage corresponds to modernist consciousness, in which reason is the standard of 

validity and truth. 
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5.1.4	  	  The	  Hyper-‐formalist	  Stage	  

The hyper-formalist stage arrived at the beginning of the 20th century, when the 

emergence of non-Euclidean geometries enabled mathematicians to manipulate the axioms of 

geometry. Mathematicians of the time, such as Hilbert and Russell, set out to reconstruct 

mathematics as a purely formal system with little or no correspondence to the natural world. 

Mathematical knowledge exists at this stage only to the extent that it can be derived within the 

logical parameters of a given formal system. The technologies of the hyper-formalist stage 

include non-standard logics and abstract grammars. The hyper-formalist stage is in a sense an 

extreme extension of formalist consciousness, as truth and validity are established solely by 

syntactic adherence to the rules of invented formal systems.  

5.1.5..The	  Post-‐formalist	  Stage	  

In the 1930s, Gödel’s proof of the incompleteness of formal systems challenged the 

hyper-formalist project, and cast mathematical certainty into doubt. The post-formalist stage 

regards mathematics as a socially-constructed interpretive discourse, rooted in our need to make 

sense of our environments and to construct our reality. Far from being separate from knowers, 

mathematical knowledge at this stage is embodied and enacted by both individual and collective 

knowers. The principal interpretive technology of this stage is deconstruction. This stage 

corresponds to the post-modern stage of consciousness, in which notions of validity and truth are 

themselves taken to be social and discursive constructions.  

In Table 3, I list the subject and object at each of the five stages described thus far. The 

subjects respond to the question, “what is mathematics?”, and the objects address the question, 

“what tools does mathematics use?”  
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Stage Subject 

(The nature of mathematics) 

Object 

(The tools of mathematics) 

Oral Human processes and interactions 

about immediate phenomena 

Objects in the environment 

Pre-formalist A mode of reasoning about essences Abstract mathematical objects 

Formalist A separate discipline with a formal 

mode of reasoning 

Rationality 

Hyper-formalist A formal system Formalism 

Post-formalist A socially-constructed interpretive 

discourse 

Discourse 

Table	  3.	  	  Subject-‐object	  mutuality	  in	  Davis'	  stages	  of	  mathematics	  

As can be seen in Table 3, the stages follow a pattern of subject-object mutuality, in 

which the subject of one stage of development becomes the object of the subject of the next stage 

of development. At the oral stage, mathematics consists of immediate experiences and human 

processes, such as counting. At the pre-formalist stage, the results of these processes are reified 

into abstract mathematical objects, such as numbers. Mathematics at this stage is a mode of 

reasoning that uses abstract objects to make sense of observed phenomena in the universe. At the 

formalist stage, the mode of reasoning itself is formalized into the mental construct that we know 

as “rationality.” Mathematics at this stage is the body of knowledge derivable by formal proof 

from initial axioms drawn from the natural world. At the hyper-formalist stage, the process of 

formalism itself is objectified, and formal proof is seen as one of many possible formal logical 
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systems. Mathematics at this stage consists of all results that can be derived by applying 

constructed logical rules to arbitrary initial axioms. Finally, at the post-formalist stage, both 

rationality and formalism are treated as discursive forms within a social matrix. Mathematics at 

this stage becomes a socially-constructed interpretive discourse. 

The subject-object mutuality observed over the history of mathematics appears to 

confirm that the different mentalities represent a coherent evolution of conceptions of 

mathematics. This evolution follows a dialectic pattern, and proceeds through distinct 

developmental stages. I will now proceed to use this evolutionary understanding of mathematics 

to examine the current prevailing conceptions of mathematics, and their impact on mathematics 

pedagogy. 

5.2	  	  Current	  Conceptions	  of	  Mathematics	  

Much of mathematics education practice of today seems to reside in the formalist and 

pre-formalist conceptions of mathematics. Mathematics educators often regard mathematics as a 

static body of knowledge that represents extra-human reality. As Ernest (1985) noted, this 

Platonic view of mathematics greatly constrains mathematics pedagogy.  

By locating the source of mathematics in a pre-existing static structure, Platonism results 

in a static body-of-knowledge view of mathematics. Platonism discounts both man as a 

creator of mathematics and the importance of dynamic processes in mathematics. In 

educational terms this corresponds with the view of mathematics as an inert body of 

knowledge which instruction transmits to the student. (p. 607) 

Ernest refers to an important connection between conceptions of mathematics and 

pedagogy. When mathematics is viewed as transcendent and essential, it follows that the 

teacher’s role is to be a faithful conduit and gatekeeper for the established knowledge that 

informs the subject. This view supports a transmissive pedagogical model, which measures 

success according to conformity with pre-determined results, and employs systems of evaluation 

and discipline that aim for methodological conformity. Ernest argues against this model from a 

post-formalist perspective that values the enacted, creative, and dynamic human dimensions of 

mathematics.   
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Ernest is not alone among mathematics education researchers in criticizing transmission 

pedagogy that is founded on Platonic conceptions of mathematics. In the past three decades, a 

significant number of researchers have promoted what we are calling a post-formalist perspective 

of mathematics in education. They include mathematicians (e.g., Davis & Hersh, 1981) who 

reframed mathematics as one of the humanities, philosophers of mathematics (e.g., Lakatos, 

1976) who analyzed the evolutionary dynamics implicit in mathematics production, and 

mathematics educators (e.g., Applebaum, 1995) who drew on cultural studies to resituate 

mathematics in social, ethical, and ideological terms. While these researchers have been 

instrumental in unearthing and elucidating some of the problematics of traditional and modernist 

education, postmodern thinking has gained little traction in the actual practice of mathematics 

education. Among all subjects in the school curriculum, mathematics seems most resistant to 

postmodern discourses of diversity and intersubjectivity. 

From an evolutionary perspective, the problem is one of stagnation, or arrested 

development. Even though there is no shortage of ideas about the directions in which 

mathematical pedagogy might evolve, most mathematics educators remain largely indifferent to 

innovation. Notions of pragmatics, diversity, subjectivity, and intersubjectivity inevitably come 

up against the limiting Platonic conceptions of mathematics, and must contend with the certitude 

of “2+2=4.”  I now proceed to explore the question, “What are some of the barriers to 

transcending Platonism?”  

5.3	  	  Barriers	  to	  Evolution	  

Modernist consciousness is characterized by rationality, and relies on the scientific 

method and objective reasoning for truth validation. For these reasons, mathematics has become 

the paramount technology of modernity. Without the tools of mathematics, neither physics, nor 

computers, nor stock markets would exist. The rapid pace of technological development in 

modern times would not have been possible without the time-honoured truths of arithmetic, 

algebra, and calculus. Nowadays, mathematics plays an increasingly vital role in areas such as 

genetics, neuroscience, and ecology. Its significance is so ascendant in the information age that 

Baker (2008) has proposed that the numerati have now overtaken the literati in the role of 

defining cultural possibility.  
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It is important to note that the advances of mathematics in modern times were achieved 

with a Platonic perspective in mind. In other words, Platonic mathematics has served humanity 

well for many centuries. Given this complex interplay of intellectual inertia, economic 

investment, and emotional commitment, it is not surprising that there is massive resistance to 

questioning, much less transforming the Platonic narrative. I often encounter individuals who 

argue passionately that mathematical truths, such as “2+2=4,” are as real in our world as 

material objects, such as trees. Indeed, the Platonist position holds that mathematical truths are 

“more real” than trees, since they represent ideal forms that transcend material existence. 

Modernist consciousness tends to regard mathematics as the guidebook to the phenomena of the 

physical world. This prevailing view of mathematics is not likely to change given the spectacular 

success of the present utilitarian conjunction between mathematics and scientific progress.  

Educators are generally better positioned than the public at large to appreciate the 

shortcomings of the Platonic view of mathematics, as the defects of present-day school 

mathematics can often be traced to educational purposes that are supported philosophically by 

this view. Yet, since educators operate within cultural and social structures that give rise to 

modern mathematics curricula, they are more likely to seek pragmatic instructional solutions 

than to deconstruct and revise their views on the subject matter. In my work, I have encountered 

many teachers who consider the question “what is mathematics?” as having little or no 

relevance to their practice. 

Educators who wish to consider alternatives to Platonic assumptions about mathematics 

have to contend with certain cognitive barriers. For example, post-formalist perspectives are 

concerned with issues of intersubjectivity, justice, equity, class, race, and gender in mathematics. 

As Table 3 shows, the objects of post-formalist mathematics are discursive formations; they are 

very different from the mathematical objects of previous stages—numbers, formal proofs, and 

abstract grammars. This qualitative difference manifests in the language of mathematics 

education practice and is very difficult to overcome. I regularly hear complaints from my pre-

service teacher education students that my classroom elaborations of post-formalist perspectives 

are “not mathematics,” and that they belong instead to the disciplines of the social sciences and 

the humanities. When I speak with practicing teachers, I often sense that my post-formalist 
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stance is removed from their daily experiences of prescribed learning outcomes, tests, marks, and 

correct answers.  

Transcending Platonic assumptions about the nature of mathematical truth and ontology 

requires not only a profound change in language, but also a negotiation of some very difficult 

philosophical questions: Is mathematics discovered or invented? What is the role of formal 

mathematics? What is truth? Can 2+2 equal anything other than 4? If so, what are the 

implications for our understanding of the natural world? The absence of clear answers to these 

questions makes the certitude of Platonic mathematics all the more appealing to the average 

teacher.  

Two accounts from the history of mathematics illustrate the staying power of the 

assumptions of Platonism in education. The New Math reforms of the 1960s sought to introduce 

a hyper-formalist perspective through a curriculum that included set theory, number bases other 

than 10, and Boolean algebras. New Math challenged the long-standing correspondence between 

school mathematics and phenomena in the natural world. In brief, these reforms failed within a 

few years, largely in response to complaints that this approach to mathematics was removed 

from the students’ everyday experiences, and that many teachers and parents did not understand 

it fully. In 1989, the publication of NCTM’s Standards heralded the introduction of an equity 

agenda that called for “mathematics for all.” From an epistemological standpoint, the Standards 

challenged the traditional view of mathematics as a fixed body of knowledge, by focusing on 

four strands: mathematics as problem solving, mathematics as communication, mathematics as 

reasoning, and mathematical connections. The implementation of reforms in California in the 

mid-1990s which were based on the Standards led to full-scale math wars (cf. Schoenfeld, 2004) 

that divided the educational community across the United States for the better part of a decade.   

Integral philosophers (e.g., Wilber, 2006a) assert that new worldview systems emerge 

only when previous ones become insufficient for dealing with the problematics created by 

changing life conditions. As Dewey (1910) similarly said of the transition from one worldview to 

another, “We do not solve them, we get over them” (p. 18). A critical mass of disorienting events 

or cognitive dissonances is required to move thinking to a new vantage point from which new 

aspects of reality can be seen. From my earlier discussion, it appears that the critical mass 

required to transcend Platonism is still building toward transition. Yet it strikes me that, given 
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the immense benefits that Platonic mathematics has brought to humanity, opposing the material 

achievements that are commonly linked to it would be counter-productive to the project of 

evolving mathematics. An approach that values and integrates the different stages is likely 

needed. I will now proceed to explore what such an approach might entail.      

5.4	  	  The	  Integral	  Perspective	  

Academic turf battles in mathematics education are the result of the attempts of the 

traditional, modernist, and postmodern consciousnesses to assert their perspectives in the field. 

The New Math reforms and the math wars of the 1990s are two examples of such battles. As we 

have seen, when it comes to perspectives on subject matter, the two main camps consist of those 

who view mathematics as transcendent and stable, and those who view it as embodied and 

emergent. While educators (Ball et al., 2005) agree that the disputes within the discipline do not 

serve the needs of students, there is little agreement on how to reconcile the seemingly opposed 

claims of the different camps within mathematics education. My preceding analysis of the 

evolution of mathematics, combined with insights of integral philosophy, may offer one starting 

point for reconciliation.  

Integral thinking highlights the importance of the evolutions of consciousness and culture 

to global well-being. Integral writers (e.g., Gebser, 1984; Wilber, 2006a) pointed to the 

emergence of a new stage of consciousness, or epistemological interpretive framework, which 

they called “integral consciousness.” In contrast to mental-rational consciousness that precedes 

it, integral consciousness is multi-perspectival, that is, characterized by lack of attachment to 

monological perspectives. Since all preceding structures of consciousness in the spiral are 

transparent to integral awareness, it is able to integrate them and “live through” them, rather than 

be controlled by any one of them. While the integral structure does not come with a ready-made 

set of values, it seeks to solve problems by bringing as many perspectives as possible to bear on 

given situations in order to arrive at appropriate, yet never permanent, solutions.  

Integral consciousness seeks to promote the health of the entire evolutionary spiral by 

acknowledging the dignities and contributions of every significant historical worldview—

including the traditional, modernist, and post-modern. Likewise, it seeks to overcome 

constructively the limitations of these worldviews. Doing so requires the emergent capacity of 
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vision-logic, which Kegan (1994) described as “the capacity to see conflict as a signal of our 

overidentification with a single system” (p.351). Vision-logic is network logic. It is the ability to 

see how different elements of an evolutionary system work together dialectically, to “live 

through” their different perspectives, and to harmonize them by valuing each element for its 

contribution to the entire system.  

From an integral perspective, the question of whether mathematics is Platonic or 

embodied, stable or emergent, is founded on false dichotomies. Mathematics is all of these things 

and more. Every conception of mathematics has developed in response to a different set of life 

conditions, and its values and practices have their appropriate applications under these life 

conditions. The evolution of new conceptions, or stages, does not negate earlier ones, but rather 

exhibits a dialectic pattern of transcendence and inclusion. In this pattern, new stages retain the 

robust structures of earlier stages, while complexifying them into higher-order unities. In other 

words, mathematics is both Platonic and embodied, stable and emergent, objective and socially-

constructed, fixed and enacted, a science and a branch of the humanities. The observer’s vantage 

point and context determine which aspect of mathematics is revealed at any given moment. 

With this understanding in mind, we can see that formal mathematics is a narrative that 

captures and codifies the more stable dimensions of mathematics. It does so by turning human 

processes and thought patterns into abstract discursive objects which, over time, take on 

transcendent, universal qualities. In her analysis of the development of mathematical discourse, 

Sfard (2008) explained that the process of objectification is indispensible, as it provides 

mathematical discourse with its principal advantage—the ability to represent complex ideas with 

concision and compactness. By eliminating the temporal dimension of phenomena, 

objectification also helps users of mathematics cope with the fluidity of human experience.  

From a post-formalist perspective, Platonic conceptions of mathematics often appear to 

be wrongheaded and even dangerous. Postmodern critiques (e.g., Appelbaum, 1995; Walshaw, 

2004) have deconstructed Platonism, and identified various problems that arise when formal 

mathematics is treated as the only “real” mathematics. Among these problems are: 

marginalization of other mathematics, hegemony of Western thought, inequitable access to 

mathematics, and alienation of knowers. However, from an integral perspective, Platonism 

should be valued for its appropriate contributions in certain contexts, just as post-formalist 
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perspectives ought to be honoured for their appropriate contributions in other contexts. One 

should not seek to defeat Platonism, but rather to harmonize the stability that it has conferred on 

mathematics with emergent and subjective potentialities. 

The difference between integral and post-formalist perspectives views on Platonism 

signals that the integral perspective may be a new stage in the evolution of mathematics that will 

succeed the post-formalist stage. As discussed earlier, at the post-formalist stage, mathematics is 

a socially-constructed interpretive discourse. The integral stage organizes interpretive discourses 

into evolving bio-psycho-social systems. At this stage, mathematics becomes an evolving system 

of interpretive discourses, or perspectives. As Table 4 shows, Kegan’s subject-object mutuality is 

again confirmed.  

	  

Stage Subject 

(The nature of mathematics) 

Object 

(The tools of mathematics) 

Post-formalist A socially-constructed interpretive 

discourse 

Discourse 

Integral An evolving system of interpretive 

discourses (perspectives) 

Interpretive discourses  

Table	  4.	  	  Subject-‐object	  mutuality	  in	  the	  latest	  two	  stages	  in	  the	  evolution	  of	  
mathematics	  

5.5	  	  Technologies	  of	  Mathematics	  
The integral perspective invites us to harmonize the Platonic conception of mathematics 

with emergent and embodied mathematics. As we embark on this project of integration, we 

accept that the practice of mathematics pedagogy has so far favoured Platonism almost 

exclusively over emergence-embodiment. So any intervention that would ease pedagogy’s 

pervasive bias toward Platonism is welcome.  
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I have searched for such interventions in my work with pre-service and practicing 

teachers, work which I conducted together with Brent Davis. At first, we opted for a 

philosophical approach, and asked our students to consider the question, “Is mathematics 

discovered or created?” Most of them appeared to be uninterested in this highly theoretical 

question, and even those who attempted to respond were soon tangled in abstractions. We 

concluded that concrete examples were needed to encourage meaningful debate around the topic.  

As we tried out different mathematical examples, we discovered that most of them led 

back to Platonic identifications held by the pre-service teachers; only a few examples prompted 

more emergent reactions. For instance, no teacher in the class was willing to believe that the 

equation 2+2=4 is a human construction. The students argued, with considerable conviction and 

passion, that this equation represents a universal truth that holds true for everyone, everywhere, 

and for all time. In fact, they argued, it would still hold true if there were no knowers in the 

universe to know it. On the other hand, when we introduced the abstract operator ‘↑’ as a ↑ b = 

2a – b, the students were unanimous in their agreement that the equation 3 ↑ 2 = 4 is a human 

construction. They explained that the abstract operator ‘↑’ had just been defined by us, and so it 

must be a human creation. When we suggested that the operator ‘+’ was also defined by humans 

some time in history, some students responded that ‘+’ is a “real” operator, while ‘↑’ is not.  

In general, we found that our students showed an emotional commitment to the 

transcendence and timelessness of the results of formal mathematics. The more elementary the 

result, the more committed students were to its permanent status. Wilber (2006a) referred to 

significations that have such transcendent status as Kosmic habits; in Foucauldian language they 

are called technologies. The older the habit or technology, the more self-evident and secure it is 

to those who participate in it. For example, while the rudimentary equation 2+2=4 was created 

by social agreement at some early point in human history, once it was formalized into language 

and conventional signs, it acquired an independent and objective existence beyond a series of 

historically determined symbols. With every new generation, the reality of 2+2=4 became more 

entrenched and transcendent. Some may go so far as to say that it has an ontological status apart 

from actual objects and significations within language. Likewise, many concepts of school 

mathematics have been in use for so long that they have attained fixed meanings that conceal the 

circumstances that gave rise to them over time. Yet teaching and learning of mathematics are in 
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fact heavily dependent on multiple meanings that emerge through interpretation. As fixed as 

2+2=4 may seem to us, as determiners of its metaphysical status, every pedagogical encounter 

enhances the collective meaning of 2+2=4 by occasioning unique subjective meanings.  

In order to reveal the constructed nature of mathematical technologies, we continued 

searching for examples of interpreted objects from school mathematics that are not as contrived 

as the abstract operator ‘↑’. In our search, we identified coordinate geometry as a useful example. 

Many of our students readily agreed that the invention of the coordinate plane by Descartes in 

1637 allowed mathematicians to conceive of geometric figures, such as circles, in a way that is 

radically different from that used by Greek geometers. We then probed further by asking, “What 

are circles?” Some of the teachers began to appreciate that rather than being pre-existing 

objects, circles are created through human interpretive frames.  

Logarithms turned out to be another good example, as the students realized that they were 

invented by Napier in 1614 as a technology for multiplying large numbers. We found that our 

pre-service teachers preferred the language of “technologies of mathematics” to that of 

“emergent mathematics.”  We suppose that their preference is attributable to their familiarity 

with the metaphors of technological development, and to persistent Platonic commitments to 

original meanings. 

Coordinate geometry and logarithms proved to be productive examples for our pre-

service teachers to consider because, from a historical perspective, the emergence of these 

concepts has provided new metaphors for pre-existing mathematical objects. As our experiences 

indicate, the emergent-embodied nature of mathematics can be disclosed by engaging concrete 

and familiar mathematical examples that lend themselves to interpretation through multiple 

images and metaphors. We will now proceed to describe an ongoing study that we have been 

conducting with a group of experienced teachers around the meanings of multiplication. 
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5.6	  	  Emergent-‐Embodied	  Mathematics	  in	  Action	  

Our study has unfolded over a period of two years. It involved a group of 11 experienced 

middle-school teachers who gathered in monthly concept-study meetings to discuss and 

deconstruct different curriculum topics. These ongoing meetings have been conceived as 

collective knowledge-producing occasions, through which mathematics educators identify, 

interpret, interrogate, invent, and elaborate images, metaphors, analogies, examples, exemplars, 

exercises, gestures, and applications that are invoked in efforts to support the development of 

students’ mathematical understandings. The concept of multiplication has received the most 

attention from the group. Indeed, discussions of other concepts have regularly gravitated to the 

subject of multiplication. 

We began with the direct question, What is multiplication? After the two most obvious 

answers— ‘repeated addition’ and ‘grouping’—were given, we asked, And what else? The rest 

of the morning was organized around discussions of pedagogical difficulties that crop up in 

teaching multiplication, investigations of when and how elaborations are introduced, and 

analyses of teaching resources for multiplication. The end result was a listing of metaphors, 

images, analogies, and applications, as shown in Figure 7. 
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Multiplication involves  

• repeated grouping 

• repeated addition 

• sequential folding 

• layering 

• the basis of proportional reasoning 

• grid-generating 

• dimension-changing 

• intermediary of adding and exponentiation 

• opposite/inverse of division 

• stretching or compressing of number-line 

• magnification 

• branching 

• rotating a number line 

• linear function 

• scaling 

• and so on … 

Figure	  7.	  	  A	  teacher-‐generated	  list	  of	  interpretations	  of	  multiplication	  

The teachers seemed surprised at the lengthy list of realizations of the signifier 

“multiplication” that they were able to generate. Their surprise was summarized by the comment, 

“Apparently we don’t have a good handle on what we know yet.” The teachers also recognized 

that the point of the list was not to provide an exhaustive summary of interpretations of 

multiplication, but rather to indicate the range of associations that were accessible to the group 

on this day. 

The next major development on the subject of multiplication took place several months 

later, when a few of the teachers urged the group to organize all of the realizations in the list 

according to grade levels and thematic categories. The resulting chart is shown in Figure 8 

.	  
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Figure	  8.	  	  An	  evolving	  landscape	  of	  the	  concept	  of	  multiplication	  

Upon examining their mapping, the teachers were surprised to realize that distinct and 

coherent strands of interpretation are systematically developed over the K–12 experience. The 

different realizations of multiplication, far from being random or isolated, were organized into 

grander interpretive structures. The teachers acknowledged that they had in fact participated in 

the systematic development of these structures prior to the study, without having reflected on 

their participation.  

The next development took place when the group tackled the question, Is 1 prime? The 

teachers began to explore the relevance and implications of different realizations of 

multiplication to the question. In the discussion, the teachers often framed their remarks as “If 

…, then …” statements, locating their comments within specific metaphorical domains. In other 

words, the teachers were consciously engaging in analogical, as opposed to logical, reasoning. 

Some of the results are presented in Figure 9. 
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Figure	  9.	  	  Some	  analogical	  implications	  of	  different	  realizations	  of	  multiplication	  

The teachers came to appreciate through first-hand experience that humans are not 

merely logical creatures, but association-making beings whose capacity for formal reason 

operates alongside their predisposition for making connections (cf. Lakoff & Johnson, 1999). 

This appreciation became the central point of the engagement, so much so that one of teachers 

remarked, “No wonder the kids find that so difficult.” 

A recent layer in the group’s ongoing concept study of multiplication is that of shared 

reconciliation of seemingly different realizations of multiplication into unified blends. The first 

blend was a grid-based representation of multiplication, shown in Figure 10, which pulls together 

several realizations—including repeated addition, array-making, and area-making—as it 

highlights procedural similarities in handling additive multiplicands across diverse number 

systems and algebraic applications.  
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Figure	  10.	  	  A	  grid-‐based	  blend	  that	  highlights	  the	  similarities	  of	  multiplicative	  

processes	  involving	  additive	  multiplicands	  
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Another blend was created when a teacher noted that the number-line-stretching 

interpretation could be combined with the mapping-function interpretation, as shown in Figure 11. 

This blend led directly to an intuitive graphical “proof” of the result that the product of two 

negative numbers must be positive. The teachers were very satisfied in having created new 

mathematics, which had not been previously encountered by anyone in the room. 

 
Figure	  11.	  	  A	  graph-‐based	  blend	  that	  combines	  linear	  models	  of	  multiplication	  

By opening up a familiar mathematical concept for hermeneutic questioning and 

elaboration, our concept study of multiplication underscored the dynamic, embodied, and 

enacted dimensions of mathematical knowledge. As the teachers explored tacit layers of 

mathematical knowledge, and as they constructed emergent knowledge through collaboration, 

their Platonic assumptions about the nature of mathematical knowledge were challenged. 

Reflecting on the group’s extended engagement with multiplication, some of the teachers said 

that they “have really been able to get inside the idea,” and to “feel as though [they’re] really 

contributing to how multiplication is understood.” Their understandings of multiplication stood 

in sharp contrast with their general conception of mathematics. As two of the teachers put it, “It 
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feels like it’s outside of us …”, and  “…we feel like we’re outside of it.” The teachers felt 

alienated from (Platonic) mathematics, yet inhabiting, and even responsible for, (participatory) 

multiplication. The contrast reflects the need for mathematics educators to transcend Platonism, 

and to develop a more participatory and generative pedagogy. 

5.7	  	  Living	  Mathematics	  Pedagogy	  

The integral perspective, which recognizes the systemic evolutionary dimensions of 

mathematics, calls on teachers to embody and enact a living pedagogy that promotes the 

evolution of culture and consciousness. To achieve this goal, educators should be aware of the 

structures of evolution in their field, pay attention to the evolutionary tensions among different 

perspectives on mathematics, and harmonize these tensions as they arise in pedagogical 

moments.  

As discussed previously, the evolution of mathematics is governed by a pronounced 

tension between stability and novelty. Stability manifests in conceptions of mathematics as 

Platonic, fixed, explicit, and formal. Novelty manifests in conceptions of mathematics as 

emergent, embodied, tacit, enacted, and participatory. The stable, transcendent conception of 

mathematics dominates mathematics teaching and learning at the moment. Therefore, educators 

who wish to promote cultural evolution in mathematics need to find and employ skillful means 

for transcending Platonism. In my work, I have identified several principles that may assist 

educators in this task. They are: elaborate the specific, encourage multiplicity, and use active 

language. I will examine each of these principles in turn. 

As the concept study of multiplication has shown, elaborative engagement with specific 

mathematical concepts can be an effective way to uncover emergent-embodied features of 

mathematics. My experience indicates that the more basic the mathematical concept under 

scrutiny, the more confidently participants engage with it .The process of elaboration reduces 

expectations for performative instrumentality, which are prevalent in current mathematics 

pedagogy. The focus of mathematical inquiry then shifts from the question “What is the correct 

answer?” to the question “What else is there to say about the mathematical situation?” The shift 

takes us from exclusive and fixed mathematical meanings to shared and subjective meanings. 

The activity of hermeneutic elaboration enables participants to enact, reflect on, and explicate 
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tacit and embodied knowings. In the process, participatory learning environments that can 

accommodate and encourage multiple opinions are created.  

Multiplicity is a crucial element of living pedagogy, since the “bumping together” of 

different ideas is essential for the emergence of novelty (cf. Davis and Sumara, 2006). 

Mathematics educators can promote multiplicity in teaching and learning in a variety of ways. 

Some of them are: employing a multiplicity of mathematical metaphors and images to 

understand a mathematical concept, assessing a multiplicity of approaches to solving a given 

problem, and engaging a multiplicity of curricular and non-curricular topics in instruction. It is 

hoped that students who are exposed to multiplicity and plurality in classroom discourse will be 

open to the multiple meanings and different interpretation of mathematical concepts.    

The language that educators choose to use may either enable or constrain students’ 

interpretive possibilities. For example, the instructions “find the correct answer” and “think of 

different ways in which you may approach this mathematical situation” may initiate different 

learning processes. Platonic mathematics is characterized by a comprehensive, fully-alienated 

discourse about mathematical objects. Educators who would like to approach mathematics 

differently should strive to alter their discursive practices by replacing some references to objects 

with descriptions of human actions. For example, a teacher may define a triangle by saying, “A 

triangle is a 3-sided polygon,” or alternatively by saying, “We shall call any 3-sided polygon a 

triangle.” The latter utterance reminds learners that the human act of naming is co-implicated in 

every mathematical definition. Admittedly, altering the well-rehearsed alienated discourse of 

Platonic mathematics is no small task. However, engaging in this project can sharpen 

pedagogues’ sensitivities to the subtle ways in which discourse shapes conceptions of 

mathematics in their classes.  

Educators who adopt the three principles—elaborate the specific, encourage multiplicity, 

and use active language—will be providing some of the necessary conditions for emergence of 

novelty (cf. Davis & Sumara, 2006) and dialogue (cf. Sidorkin, 1999) in their classes. These 

educators should be ready to receive the new mathematical meanings that are sure to appear. 

Students today are exposed to vast amounts of mathematical information through television, 

video games, and the Internet. This information provides numerous living contexts for novel 

constructions of mathematical meanings. When these contexts come up in classroom 
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interactions, teachers ought to take interest in them, since they are the learners’ true lived 

experience. Teachers should be willing to investigate these contexts together with their students, 

explicate the mathematics that emerges, and connect this new mathematics to pre-existing 

mathematical results.  

An integral living pedagogy offers educators the opportunity to teach an ever-evolving 

and innovative subject matter. Teachers who are aware of the dialectic processes of evolution 

may negotiate the rich stability of formal mathematics with the refreshing novelty of their 

students’ emergent interpretations. Teachers and students co-create mathematics by elaborating, 

deconstructing, and infusing mathematical concepts with new layers of meaning. The integral 

perspective views both pre-established and emergent contexts, the past and the present, as 

valuable sources of inspiration for hermeneutic elaboration. 

Living mathematics pedagogy situates teachers as vital participants in the creation of 

mathematical possibilities. Far from being peripheral agents who passively transmit established 

results of mathematics, teachers give shape and substance to cultural mathematics. An integral 

pedagogy of life stands to breathe new life into school mathematics and cultural mathematics, 

just as Edgardo Cheb-Terrab’s computer tools breathe new life into long-standing problems of 

research mathematics.  
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Teaching	  Interlude	  4:	  Do	  Circles	  Exist?	  	  
 

Our investigations into the question of how many sides a circle has took many 

unexpected turns. Quite early on, we discovered the need to be very precise about our 

terminology and the ways in which we use terms. What is meant by “side”? Must a side be 

straight? If not, in what sense does a triangle have three sides?  

 

When the students researched these questions on the Internet, they came across some 

different, and occasionally conflicting, answers. Since the terms “polygon” and “vertices” were 

used in some of the answers, the class had to incorporate them into the discourse. They also 

came upon new and unusual mathematical figures: the digon, a two-sided polygon on a spherical 

space, and the apeirogon, an open polygon with infinitely many sides. All these discoveries 

brought up even more questions. Is a circle a polygon? What makes an octagon an octagon– its 

eight vertices, its eight sides, or both? Can a polygon cross itself? Does a polygon need to be 

closed? 

 

 
Figure	  12.	  	  Unusual	  polygons:	  a	  digon,	  an	  apeirogon,	  and	  a	  polygon	  that	  crosses	  itself	  

The students became aware that mathematical terms have contested meanings and that 

language plays an important role in humans’ construction of mathematics. In this context, one 

student brought up an interesting perspective to bear. 

-‐ There is no such thing as a circle. 

-‐ Why are you saying that? 
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-‐ When you draw a circle with a pencil, the tip of the pencil has a certain thickness. Every 

time you move the tip, you create a very short side. So even though it looks like a circle, it is 

really a polygon with lots of sides. 

Another student responded: 

-‐ But we know what a circle is. A circle is a collection of points, and points have no 

thickness. So, if we can think about a circle, it must exist, even though we cannot draw it 

accurately. 

The students looked puzzled. 

-‐ What does it mean when we say that something “exists?” Does it need to exist physically 

or only in our minds? 

 

The students were looking at me, hoping that I would sort this out for them – one of the 

biggest questions of philosophy no less. What aspect of teacher preparation, I wondered, should 

have prepared me for this moment?	  
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CHAPTER	  6	  

AN	  OPEN	  WAY	  OF	  BEING:	  INTEGRAL	  RECONCEPTUALIZATION	  OF	  

MATHEMATICS	  FOR	  TEACHING	  
Building on last chapter’s developmental analysis of mathematics, this chapter studies 

teachers’ mathematical knowledge as a source of life in the mathematics classroom. If mathematics 

manifests differently at different levels of consciousness, then the mathematics that teachers need 

to know in order to teach mathematics is necessarily multi-layered as well. I use a comprehensive 

AQAL analysis to correlate evolution of teachers’ knowledge in all quadrants in order to reveal 

emergent dimensions of mathematics for teaching. 

The chapter was published in Integral education: New directions for higher learning 

(Esbjörn-Hargens, Reams, & Gunnlaugson, 2010), the first academic book to contemplate integral 

education. Unlike the other chapters in the dissertation, which were written mainly for mathematics 

educators, this chapter is meant to introduce issues of mathematics education to a largely integral 

audience. Its strong analytical orientation would not therefore be unfamiliar to its intended 

readership. 

 

Mathematics for Teaching (MfT) is a burgeoning branch of mathematics education 

research framed by the question, What mathematics do teachers need to know in order to teach 

mathematics? Here I offer a genealogy of the field by correlating the evolutions of the objective, 

subjective, interobjective, and intersubjective strands of MfT. In the process, I point to multiple 

evolutionary tensions, including stability versus novelty of mathematical knowledge, school 

math versus grander mathematics, mathematics as a science versus mathematics as a humanity. I 

argue that teachers’ mathematical knowledge should be understood as an open disposition – that 

is, as a pedagogical readiness to recognize evolutionary tensions as they arise and to harmonize 

them dialectically. This open disposition infuses the teaching of mathematics with meaning and 

life, and promotes cultural evolution.  
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6.1	  	  What	  is	  “Mathematics	  for	  Teaching”?	  –	  Four	  Answers	  

Mathematics for teaching is an area of mathematics education research that studies 

connections between teaching and the subject matter of mathematics. Research in this area is 

organized around the primary question, “What mathematics do teachers need to know in order to 

teach mathematics?”  

For much of the 20th century, answers were taken to be self-evident. It was assumed that 

knowledge of advanced mathematics was required in order to teach grade school mathematics. 

This assumption is still enacted in the vast majority of teacher education programs today. Pre-

service teachers are typically required to obtain college credits in post-secondary mathematics, 

and prospective secondary teachers are often required to complete university degrees in 

mathematics prior to enrolling in education. However, contrary to this line of reasoning, as Begle 

(1979) showed, there is little or no correlation between teachers’ college credits in mathematics 

and the performance of their students.  

Interest in MfT arose in the late 1990s in response to this worrisome finding. At that time, 

most researchers (e.g., Ball & Bass, 2000) framed their work in terms of Shulman’s (1986) 

notion of Pedagogical Content Knowledge (PCK). PCK is a specialized type of teachers’ 

knowledge that links content and pedagogy. It includes, for example, familiarity with certain 

forms of abstract representation that a teacher might use to help students better comprehend 

complex mathematical ideas. Developing this notion in the context of mathematics, Ma’s (1999) 

study of contrasts between Chinese and American teachers provided evidence of highly 

specialized knowledge in elementary mathematics teaching. Ma used the term Profound 

Understanding of Fundamental Mathematics (PUFM) to refer to this knowledge, and described 

it as a broad awareness of the horizontal and longitudinal connections among the concepts that 

comprise grade-school mathematics curricula. This contribution triggered a revision of the 

orienting question of MfT among researchers, as they began to ask, “What specialized 

mathematics (i.e., PCK) do teachers need to know in order to teach mathematics?” 

But the answers remained elusive. It was not clear what set of specialized concepts and 

results could constitute a body of mathematics useful for teaching. Oriented by this problematic, 

Ball and Bass (2003) suggested a new vantage point by pointing out that the mathematical 
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knowledge of teachers is not static, and that it should be thought of as knowledge-in-action. In 

their view, mathematics teaching is a form of mathematical practice that includes interpretation 

and evaluation of students’ work, correlation of students’ mathematical results with the processes 

of their production, construction of meaningful explanations, and assessment of curriculum 

materials. Ball and Bass called for a practice-based theory of MfT that focuses on the specific 

knowledge that teachers use in their daily work. As might be expected, they also proposed an 

updated framing question for the study of MfT: “What mathematical knowledge is entailed by 

the work of teaching mathematics?”  

Ball and Bass’s preliminary research focused attention on a key process of teachers’ 

mathematical practice that they called unpacking. Unpacking is the prying apart and explicating 

of mathematical ideas to make sense of their constituent images, analogies, and metaphors. 

Whereas mathematicians often convert their ideas into highly condensed representations to 

facilitate mathematical manipulation, teachers employ the reverse process of unpacking ideas to 

reveal and explain the meanings of mathematical constructs. Adler and Davis (2006) have also 

studied unpacking, along with other aspects of teachers’ mathematical work. Their somewhat 

worrisome findings indicated that mathematical ideas addressed in teacher education courses in 

South Africa are predominantly compressed, not unpacked.  

The three framings of MfT noted above share one key quality: they are constrained in 

scope to the immediate worlds of teachers and their students. Davis and Simmt (2006) critiqued 

this limitation. Drawing on a complexity framework, they argued that teachers’ knowledge of 

established mathematics is inseparable from knowledge of how mathematics is established. Any 

distinction between the two is inherently problematic since it ignores the similar non-linear 

dynamics that underlie categories of both knowledge and knowing. Davis and Simmt broadened 

the notion of MfT to include multiple nested systems: 

Mathematical knowing is rooted in our biological structure, framed by bodily 

experiences, elaborated within social interactions, enabled by cultural tools, and part of 

an ever-unfolding conversation of humans and the biosphere. (p. 315) 

Using this expanded view of mathematics, Davis and Simmt explored various complex 

phenomena to reveal some essential aspects of MfT. According to their analysis, teachers must 



 

101	  

	  

have access to the interconnected images and metaphors that underlie mathematical concepts, 

and must also be skilled at translating among different mathematical representations. Acquiring 

and enacting such skills requires a strong disciplinary background, including familiarity with the 

interrelationships of mathematical ideas, and the histories of their emergence. Teachers should be 

aware of the recursive, non-linear processes by which mathematical concepts are elaborated, 

especially through a curriculum. Teachers should also recognize the crucial importance of 

collectivity for knowledge production, and be adept at engaging and mobilizing social groupings.  

As this brief overview of MfT shows, four key answers have been offered to the question 

of what constitutes mathematical knowledge for teaching. They are: 

1) teachers need to know more advanced math than the math they are teaching; 

2) teachers need to know specialized mathematics (i.e. PCK);  

3) teachers’ mathematical knowledge is enacted in their daily work and must be unpacked; 

and 

4) teachers’ mathematical knowledge is embodied in multiple, nested, co-implicated 

systems of cultural mathematics, institutionalized education, and personal learning. 

Each of the answers suggests a different research question for the field. The four research 

questions, respectively, are: 

1) How much advanced mathematics do teachers need to know? 

2) What specialized mathematics do teachers need to know? 

3) What mathematics is entailed in teachers’ daily work? and 

4) How do complex dynamics shape teachers’ mathematical knowledge? 

Examination of the four answers reveals a clear pattern in which successive answers offer 

increasingly expansive interpretations of mathematical knowledge. The trends are from 

knowledge as static to knowledge as dynamic, from knowledge as Platonic to knowledge as 

embodied, and from knowledge as pre-established to knowledge as emergent. These trends 

suggest that the answers are not random, and that the field of MfT is on an evolutionary path. 

What may this evolution signal for the future MfT research? Do the four answers 

contradict one another, or can they perhaps be integrated into a coherent whole? In the remainder 

of this chapter, I will use the AQAL framework to investigate these questions.  
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6.2.	  Quadrants	  of	  MfT	  

The four quadrants of the AQAL map are four major dimensions of being in the world, 

and represent the interior and exterior of individual and collective experience. They provide four 

fundamental perspectives on every complex evolving phenomenon. If we accept that MfT is 

evolving, then it is open to elucidation through the four-fold lens of the quadrants (see fig. 13).  

 
Figure	  13.	  	  Quadrants	  of	  MfT:	  AQAL	  and	  process	  views	  

The common reference point that is perhaps easiest to identify is the objective dimension 

of mathematics as a representational system. There is little question that MfT includes the 

objects of mathematics – fractions, Pythagoras’ theorem, logarithms, formal proofs, and the like. 

These objects populate the long lists of prescribed learning outcomes. Indeed, mathematics 

education as it is practiced today is focused to a large extent on training students’ proficiencies in 

manipulating mathematical objects. 

Since teachers are entrusted with promoting and assessing their students’ mathematical 

proficiencies, it seems reasonable to require them to be proficient in manipulating mathematical 

objects. In other words, a teacher should be able to do well on a trigonometry test as a 

qualification for teaching trigonometry to his or her students. It may well follow from this that 

the more adept mathematics teachers are in manipulating mathematical objects, the better 

equipped they will be to teach mathematics in their classrooms. But Shulman’s (1986) notion of 
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pedagogical content knowledge revealed that effective teaching is dependent not only on how 

much mathematics teachers know, but also on how they know mathematics. The subjective 

interpretations that teachers attach to mathematical objects play an important role in their 

teaching. 

An examination of the subjective dimension of MfT highlights the importance of the 

subjective meanings that both teachers and learners access while engaging with mathematics. 

Learners of mathematics often appear to be guided by the goal of sufficiency; that is, they access 

only as many representations as are needed to make sense of a mathematical object in order to 

meet the desired learning outcomes. Skilled teachers, on the other hand, are guided by the goals 

of depth and inclusivity. They employ multiple representations, images, and metaphors to 

maneuver among the numerous diverse meanings that arise in pedagogical encounters. The 

difference between teachers’ and learners’ modes of access to networks of mathematical 

meanings may provide a clue as to why, as Begle (1979) discovered, proficiency in advanced 

mathematics does not necessarily contribute to better teaching. When future teachers study 

advanced mathematical topics, such as calculus and linear algebra, they approach them as first-

time learners, and are likely guided by sufficiency considerations (i.e., the upcoming college 

test). Perhaps incoming teachers stand to benefit more from re-examining elementary 

mathematics from an advanced standpoint. Such a study would allow these teachers to re-

examine familiar mathematical topics, such as arithmetic and algebra, and to become acquainted 

with the multiplicities of meanings that inhere in even the most rudimentary mathematical object.  

The subjective dimension of MfT includes not only mathematical meanings, but also 

attitudes and affect in both teachers and learners. So we may ask: What emotions does 

mathematics evoke in teachers and learners? What aspects of mathematics enliven the learning 

process and pique learners’ interests, and what aspects lead to boredom and disengagement? 

Why do so many children, and later many adults, fear mathematics as they seem to do? Lastly, 

what might teachers do to mitigate the distress experienced by some students when they try to 

learn mathematics? These questions are commonly asked by mathematics teachers at all levels 

of instruction, and are therefore rightly considered part of MfT.  

Shifting focus to the intersubjective dimension of MfT, we note that most teaching and 

learning of mathematics take place in communal settings. That is, the notion of collectivity is 
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central to the practice of mathematical education – a detail that has been recognized in a large 

literature developed around socio-cultural theories (e.g., Bruner, 1996).  

Intersubjectivity refers to the shared meanings and values of the learning collective. It is 

the cultural substrate that underlies the teaching and learning of mathematics. Intersubjectivity is 

realized when a group of students comes to a shared agreement that degrees are easier to 

manipulate than radians, and when students believe that “doing math is good for you because it 

makes you think,” and when someone is considered “smart” because he can solve mathematics 

problems. Easy to overlook, intersubjectivity is the often-transparent “the way things are.” 

Sidorkin (2002) suggested that community and fellowship are the strongest attractors that 

schools offer to children. If that is the case, then teachers of mathematics should take great 

interest in the ways that the subject matter of mathematics promotes the formation of 

communities. A teacher who can deconstruct collective meanings and effect changes in shared 

values has the potential to have a profound influence on students. In what ways can mathematics 

contribute to intersubjective relationality? Conversely, how can human relationality in the 

classroom be channelled to bring about lively engagement with mathematics? These questions 

belong to the epistemological field of MfT.  

If values and shared meanings represent the interiority of collectives, then systems and 

institutions represent their exteriority. Every culture finds external expression in the social 

systems it creates. We shift our focus to the interobjective dimension of MfT.  

When students ask, “but when will I ever use this?” they are referring to a mathematical 

object’s external utility. The value of the object is seen to derive from its usefulness for larger 

systems. Textbooks often use applications of mathematics to broaden the scope of mathematical 

concepts. Indeed, external utility can act as a powerful motivator when students take interest in 

the external applications in which the mathematics is embedded. As a teacher, I have yet to meet 

a student who wasn’t at least a bit interested in the mathematics of personal wealth creation. This 

monetary motive for learning mathematics illustrates how interwoven mathematics and its 

teaching are with a host of different social systems, including those of science, technology, and 

economics. 

Of all such external systems, schooling systems appear to exert the most profound 

influence on MfT. One can hardly think about arithmetic, algebra, and geometry without 
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simultaneously conjuring images of drills, textbooks, tests, and marks. A teacher who navigates 

the interobjective dimension of MfT skillfully, and who possesses a healthy critical awareness of 

the institutional dimensions of school mathematics would be able to utilize external systems to 

stimulate student interest in mathematics.  

Our four-quadrant survey revealed four fundamental dimensions of MfT. The objective 

(exterior-singular) dimension deals primarily with the objects of mathematics. The subjective 

(interior-singular) dimension deals with personal meanings, emotions, and attitudes associated 

with the teaching of mathematics. The intersubjective (interior-plural) dimension deals with 

shared meanings and values. And the interobjective (exterior-plural) dimension deals with 

external systems that enfold and are enfolded in mathematics and teaching.  

Awareness of the four quadrants and their underlying dynamics can greatly broaden a 

teacher’s field of vision. When a class is struggling with quadratic equations, for example, the 

teacher might study the underlying algebra to identify different types of equations and suitable 

methods for solving each type. She might also explore individual and collective meanings that 

students attach to the equations in an effort to better anticipate potential sources of difficulty. 

When she inquires about how students feel about the subject matter, she may well find that they 

are not much interested in it. Moreover, she may realize that the quiz scheduled for the following 

day is causing the students a great deal of anxiety. She may then consider ways in which to 

engage the network of intersubjective relationships in the classroom to create a collective ethos 

that is more conducive to the study of algebra. She may also choose to bring in an interesting 

optimization problem from the area of personal finance. 

The important point in this example is that the mathematical knowledge required by the 

teacher is not limited to understanding quadratic equations. Educators who choose to privilege 

one quadrant to the exclusion of all others may be thought of as quadrant absolutists. For 

instance, a teacher who believes that good learning hinges on proficiency in algebra absolutizes 

the exterior-singular quadrant. This teacher’s view may be too narrow to notice or include 

personal meanings and shared values. When a researcher asserts that all knowledge is socially 

constructed, he likewise absolutizes the interior-plural quadrant and may fail to take notice of 

objective realities or personal constructions of mathematical meanings. 

This is not to say that educators should feel compelled to examine every occasion of MfT 
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painstakingly from all four perspectives. Clearly each event requires its own balance of 

emphases, and each teacher brings her own strengths and preferences. Still, a quick check of all 

four bases is likely to promote more creative paths to engaging with the event. 

6.3	  	  Waves	  of	  MfT:	  Correlating	  the	  Evolutionary	  Strands	  

A process view of the four quadrants (Roy, 2006) reveals them to be non-dualistic. As 

shown in figure 13, every occasion is governed by a tension along the interior/exterior axis, and 

by a tension along the singular/plural (whole/part) axis. These dynamic tensions combine to 

produce the primary structures that are the quadrants of MfT.  

The quadrants themselves are not static but rather evolving complex structures. In the 

context of MfT we discern four interrelated strands of evolution: 

1) the evolution of mathematics; 

2) the evolution of subjective cognition; 

3) the evolution of collective values and conceptions of teaching; and  

4) the evolution of systems in which mathematics and teaching are embedded.  

Integral philosophy adds that these evolutions move through increasingly complex 

structure-stages. Each successive structure-stage both transcends and includes the patterns of its 

predecessors. My goal in this section is thus to identify a series of structure-stages that reflects 

the evolution of MfT, by examining some of the evolutionary strands of MfT – mathematics, 

teaching, and cognition – in greater detail.  

In his examination of the evolution of mathematics, Davis (1996) outlined five stages: 

oral, pre-formalist, formalist, hyper-formalist, and post-formalist. In the pre-formalist stage, 

mathematics attains independent existence through abstract objects (e.g., number) and a distinct 

mode of reasoning. At this stage mathematics is seen as describing essential, unchanging forms 

in the natural world. In the formalist stage, mathematics becomes a distinct discipline with a 

rigorous methodology for knowledge production. This methodology, embodied in the “formal 

proof,” begins with axioms that are believed to represent unshakeable truths (e.g., 2 parallel lines 

will never meet), and derives new truths through deductive reasoning. The hyper-formalist stage 

does away with the need for truths to correspond to the material world, seeking only internal 

coherence among propositions. Finally, the post-formalist stage conceives of mathematics as a 
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socio-cultural interpretive system that is rooted in human construction of reality.  

In another study, Davis (2004) traced a genealogy of teaching. He identified eight 

principal stages in the history of teaching: mystical, religious, rationalist, empiricist, structuralist, 

poststructuralist, complex, and ecological. Each of these has a distinct conception of knowledge, 

and hence assigns different meanings and purposes to the activity of teaching. For instance, the 

religious stage conceives of the universe as complete and unchanging, and of divine knowledge 

as being revealed by a higher authority. It follows that teaching at the religious stage seeks to 

induct the learner into revealed truths. The structuralist stage, on the other hand, regards the 

universe as emergent and continuously changing. Personal learning and collective knowledge are 

framed in terms of embodiment and social agreement. It follows that structuralist teaching seeks 

to enculturate the learner by facilitating personal interpretation and construction of meaning. 

When it comes to cognitive development, the early stages are very familiar. They are Piaget’s 

stages of cognitive development in children: sensorimotor, preoperational, concrete operational, 

and formal operational. The formal operational mind’s capacity to take third-person perspectives 

enables the emergence of perspectival rationality, scientific objectivity, and world-centric 

judgments of fairness and care. Subsequent research in developmental psychology (e.g., 

Commons, Richards, & Armon, 1984; Cook-Greuter, 2005; Kegan 1982, 1994) has pointed to 

the existence of postformal stages of development in adults. Since the postformal mind is able to 

take even more perspectives (fourth- and fifth-person perspectives) than the formal operational 

mind, it is open to what Gebser called integral-aperspectival awareness – the bringing together of 

multiple perspectives and contexts without unduly privileging the monological perspective of the 

subject. Wilber (2000b) used the term vision-logic to refer to postformal cognition, and 

distinguished at least two stages of postformal development. In the early vision-logic stage, the 

learner moves into a cognition of dynamic relativism and plurality. In the mid- and late vision-

logic stages, the learner enacts a cognition of dynamic dialecticism and holism. 

I next proceed to elucidate stages in the evolution of MfT by correlating the stages of 

MfT’s various evolutionary strands. My synthesis is summarized in figure 14.  
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Figure	  14.	  	  Correlation	  of	  the	  evolutionary	  	  strands	  of	  MfT	  

Integral philosophy offers an instructive perspective on possible interrelations of these 

disparate evolutions. Gebser (1949/1984) posited that the stages of development in human 

consciousness mirror epochal stages in human history. Each stage of consciousness is a coherent 

system for sense-making, a natural epistemology that arises from the need of societies and 

individuals to respond to external life conditions in a specific period. Each stage of 

consciousness brings forth a value-based worldview that organizes individuals’ perceptions and 

interpretations of reality. Graves (1970) referred to the dialectic pattern of the emergence of 

worldviews as the spiral of development. McIntosh (2007) developed this notion through a list of 

eight stages of consciousness development: archaic, tribal, warrior, traditional, modernist, 

postmodern, integral, and postintegral. Some of the stages are historical, some are current, and 

some can only be anticipated. The three stages most commonly found in the developed world are 

traditional, modernist, and postmodern. I examine some of their characteristics, and consider 

how the stages of MfT may be conceptualized through them. 

It bears mention that my discussion of the stages of consciousness is necessarily broad 
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and framed in general terms. The stages of consciousness mentioned thus far do not correspond 

to types of people or to particular individuals. The reference is to categories of consciousness 

within people that manifest through groups of people, entire societies, or phases of history. Since 

consciousness is comprised of numerous developmental lines (e.g., cognition, ego, needs, 

morals, values), its stages are never entirely fixed or rigid in their scope and application. Wilber 

(2000b) used the term waves of consciousness to point out that the stages of consciousness are 

fluid and overlap one another, much as bands of colour coincide in the visible spectrum. Keeping 

in mind this understanding of the terms used in this discussion, we may proceed to look at MfT 

as seen through the traditional, modern, and postmodern waves of consciousness.  

6.3.1	  	  The	  Traditional	  Wave	  	  

The traditional wave of consciousness is ethnocentric and conformist. Individuals 

operating within its pattern seek belonging in a reference group and are willing to submit to the 

group’s centralized authority. This wave usually draws on foundational scriptures for truth 

validation. In the traditional wave, mathematics is seen as an ideal form within creation. Its 

definite structures and unquestionable truths appeal to traditional consciousness. Teaching in this 

frame seeks to induct students into a set of authorized texts, be they religious scriptures or texts 

of mathematics. Success is measured according to conformity with pre-determined results. 

Traditional teaching correlates primarily with Davis’s religious stage of teaching, and its control 

structures persist into Davis’s rationalist and empiricist stages. Mathematics lends itself to 

traditional teaching practices more readily than do some other school subjects, as evidenced, for 

example, in blind acceptance of recondite rules (e.g. “invert and multiply”).  

MfT, as viewed by traditional consciousness, is primarily concerned with teachers’ 

proficiency in transmitting incontrovertible truths. Guardians of the discipline, teachers are to be 

faithful conduits of established knowledge. They must be masters of the subject matter. The 

more mathematics teachers know, the more ready they are to indoctrinate others.  

How teachers know mathematics is of little interest in the traditional wave because there 

is only one mathematics to know in the first place. According to this way of thinking, individuals 

who have the university credentials to prove their proficiency in mathematics should make fine 

teachers. Indeed, the best mathematics teachers should be expert mathematicians. For many 
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years, this view of MfT afforded mathematicians the status of ultimate authorities on matters of 

mathematics education. Different versions of this view still prevail in higher education, where a 

PhD in mathematics is often the sole credential for instructing university-level courses. 

6.3.2	  	  The	  Modernist	  Wave	  	  

The modernist wave of consciousness is characterized by individuality and rationality. 

Individuals operating within its pattern seek to achieve personal autonomy, status, and material 

wealth, usually through competition with peers. Since this wave appeals to the scientific method 

and to objective reasoning for truth validation, mathematics has become its quintessential 

technology. Its tools are critical for physics, computers, and stock markets. Correspondingly, its 

methods of formal proof and rigorous logic are prevalent in the discourses of the exact and social 

sciences. Correlating with formalist and hyper-formalist stages of mathematics evolution, the 

modernist view of mathematics promotes the discipline to top-tier status among school subjects. 

Every child is required to study mathematics in each grade of K-12. 

Teaching in the modernist wave seeks to help learners construct logically coherent 

understandings. It offers systematic progress through the subject matter by employing linear 

curricular structures. In fact, modernist schooling practices draw explicitly on efficiency-oriented 

industrial processes, treating students and curricula as inputs and final grades as outputs. Hence 

frequent assessments (i.e., quality controls) play a key role in the process of learning. 

Examinations and grade promotion create a meritocratic environment in which learners often 

compete for preferred standings along a bell-curve of achievement. Mathematics fits well in the 

project of assessing and ranking students for placement in a stratified society, serving as both 

milieu and means of sorting. Its apparent neutrality appeals to the modernist sense of objective 

fairness. Modernist teaching thus correlates with rationalist and empiricist stages of teaching. 

MfT, as viewed by modernist consciousness, is primarily concerned with teachers’ 

proficiency in providing clear instruction. Since learners are regarded as rational beings, 

subjective sense-making is a central focus of the modernist wave of MfT. Not only must teachers 

be well versed in results of arithmetic, algebra, and geometry, they must also be aware of the 

multiple ways in which learners make, connect, and apply multiple meanings of mathematics. 

Moreover, since teachers are expected to train students to “think mathematically” and to 



 

111	  

	  

“problem solve,” teachers also need to be able to analyze learners’ thinking patterns, distinguish 

valid thought processes from erroneous ones, and understand the sources of students’ errors.  

6.3.3	  	  The	  Postmodern	  Wave	  	  

The postmodern wave of consciousness is pluralistic and inclusive. It is characterized by 

sensitivity to others, especially those marginalized by dominant discourses. Appealing to local 

and subjective determinations of truth, postmodernity deconstructs Western mathematics to 

reveal the ways in which it has been used to dominate other ways of knowing. It also 

deconstructs school mathematics to reveal that, far from being an objective medium of pure 

rationality, mathematical discourse has a part in producing the disparities of power that prevail in 

modern societies. This view correlates with the post-formalist stage of mathematics 

development. 

The postmodern wave of teaching regards learning as an ongoing construction of 

meanings that give shape to learners’ subjective worlds. Here teachers provide suitable contexts 

for students’ constructions, facilitating the complex, non-linear, recursively elaborative process 

of learning. Postmodern educators prefer formative assessments that help guide the learning 

process to summative assessments that are used to compare and rank.  

Of all school subjects, mathematics is the least open to the advances of postmodern ideas. 

Of all the school subjects, mathematics often serves as the exemplar of stable and universal 

truths: “2+2 equals 4. It always has been and always will be.” The postmodern view of 

mathematical results is that they are dependent on human subjects who construct their meanings, 

and thus mathematical results are regarded as collective constructions. Mathematical symbols are 

afforded meaning by people who interpret and enact them. So, in the postmodern view, what 

matters most is not whether 2+2 equals 4, but rather the constellation of contexts, uses, and 

discursive conventions that bring forth and perpetuate such “truths.” As non-Euclidean 

geometries and abstract grammars show, mathematical boundaries are subject to the rules of the 

discourses in which they are situated.  

MfT, as viewed by postmodern consciousness, is primarily concerned with the multiple 

co-implicated networks that embody mathematics. This wave sees mathematical knowledge as 

enabled by biology, conditioned by culture, and situated in social experience. Thus it extends 
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MfT’s reach to include psychology, sociology, cultural studies, history, philosophy, and other 

co-evolving spheres of human activity. The postmodern wave of MfT also highlights the 

collective dimension of mathematical knowledge production. Postmodernist viewpoints tend to 

promote an egalitarian attitude that seeks to include all learners in the production of diverse 

interpretations and multiple meanings. When a learner claims that “2+2 equals 5,” traditional 

and modernist consciousness would call this an error. Postmodern consciousness would frame it 

as an issue of relative fit that provides an opportunity for deepening of meaning and for the 

emergence of mathematical novelty – for all participants in the mathematical conversation. 

 

My examination of MfT through traditional, modernist, and postmodern lenses reveals 

three distinct waves of MfT: transmission, reasoning, and embodiment. The first wave, 

transmission, is concerned with perpetuation of established mathematical truths. It focuses on the 

extent and depth of teachers’ formal disciplinary knowledge. The second wave, reasoning, is 

concerned with learners’ rational engagement with mathematics. It focuses on the ways in which 

teachers know the mathematics entailed in their work. And the third wave, embodiment, is 

concerned with the collective networks that embody and enact mathematics. Its focus on the 

network dynamics that enable the emergence of mathematical knowledge in the classroom 

reflects a recognition of the emergent nature of mathematical knowledge. Recall that these are 

the same foci that we encountered in the survey of the history of MfT. We can now see that this 

history represents movement along the spiral of development: from the traditional, to the 

modernist, and on to the postmodern wave of consciousness.  

It may seem a little surprising that the field of MfT has experienced such rapid evolution 

in its short history. But since it is situated at the intersection of mathematics and teaching, two 

fields which already possess rich evolutionary histories of their own, it is not surprising that 

researchers drew on existing insights from these fields to conceptualize MfT. In the process, 

MfT’s evolutionary timeline was abbreviated.  

The history of MfT also represents a step-wise movement among the quadrants. The first 

stage, transmission, focuses primarily on the exterior-singular quadrant of mathematical objects. 

The second stage, reasoning, focuses primarily on the interior-singular quadrant of subjective 

meanings. The third stage, embodiment, focuses primarily on the interior-plural quadrant of 
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intersubjective networks and the exterior-plural quadrant of interobjective systems. Sfard (2005) 

detected a similar pattern in her survey of mathematics education research. She noted that the 

1960s and 1970s were the era of the curriculum, the 1980s and 1990s were almost exclusively 

the era of the learner, and the first years of the 2000s were the era of the teacher. It appears that 

each new wave of consciousness dialectically opens up and draws attention to a new quadrant. 

6.4	  	  Integral	  MfT	  

So far I have referred to the spiral of development in tracing the past and present of MfT. 

We can also use it to anticipate what might lie ahead – and so I turn now to the next wave of 

consciousness in the spiral, the integral wave. 

Before proceeding, a qualification is in order. I am not attempting to predict the future of 

MfT with any degree of certainty. The waves of consciousness are dynamically evolving patterns 

of organization that arise from human activity in response to lived conditions. And so there is no 

telling what emergent forms MfT may take during the integral wave. However, the contours of 

the integral wave that are manifest in other areas of human activity might help to anticipate what 

eventual directions MfT might take.  

The integral wave of consciousness is an emergent wave that succeeds the postmodern. 

As such it responds dialectically to the apparent failings of postmodern thinking: its inability to 

solve current global crises, its value relativism, and its uncompromising rejection of the 

traditional and modernist worldviews. The integral wave also responds to the culture wars that 

divide the traditional, modernist, and postmodern worldviews, as each tends to discount the 

contributions and values of the others. The integral worldview recognizes the importance of the 

evolution of consciousness and culture to global wellbeing. It is therefore committed to the 

health of the entire evolutionary spiral. Integral consciousness acknowledges the contributions of 

every significant historical worldview. At the same time, it recognizes and rejects pathological 

aspects of these worldviews.  

Just as the modernist wave gave rise to the epistemological capacity of reason, the 

integral wave employs a new emergent capacity, called vision-logic. Vision-logic is the ability to 

see how different elements of an evolutionary system work together dialectically, to experience 

their different perspectives from within, and to harmonize them by valuing each element for its 
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contribution to the entire system. Wilber (2000a) described it as follows: 

The point is to place each proposition alongside numerous others, so as to be able to see, 

or “to vision,” how the truth or falsity of any one proposition would affect the truth or 

falsity of all the others. Such panoramic or vision-logic apprehends a mass network of 

ideas, how they influence each other, what their relationships are. (p. 288) 

Vision-logic is network logic. It is aperspectival and stands in contrast to the commitment 

of earlier waves to monological perspectives. Mathematics education is a field marked by 

academic turf battles that result from the attempts of traditional, modernist, and postmodern 

consciousnesses to impose their monological perspectives on education. The math wars 

(Schoenfeld, 2004) that raged in the United States in the 1990s have left the field divided and 

polarized. While educators (e.g., Ball et al., 2005) agree that these disputes within the discipline 

do not serve the needs of students, there is little agreement on how to reconcile the seemingly 

opposed claims of different camps.  

The three waves of MfT – transmission, reasoning, and embodiment – also represent 

seemingly irreconcilable perspectives on the relationship between mathematics and teaching. Is 

school mathematics pre-established or emergent? Should teachers be committed to the 

curriculum, to rationality, or to the creativity of students? Should students be assessed on the 

basis of the final answer, the logic of its derivation, or their committed engagement? These 

questions divide math education practice and research. This is where integral awareness may 

offer a starting point for reconciliation. It can promote cultural evolution by valuing the three 

waves of MfT for the contributions that they make in various contexts, and by disposing of their 

respective weaknesses. Doing so requires the open attitude enabled by vision-logic. 

6.5	  	  Between	  Agency	  and	  Communion:	  Evolutionary	  Tensions	  of	  MfT	  

What are some of the main points of disagreement among the transmission, reasoning, 

and embodiment waves? The three perspectives diverge over these questions: 

1) Is mathematical knowledge stable or emergent? 

2) Is mathematical knowledge Platonic or embodied? In other words, does mathematics 

manifest in mathematical objects or in enacted subjective meanings?  
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3) Who is the learner – an individual or the collective? 

4) What is the subject matter – school math or accumulated cultural mathematics? 

5) Should mathematics be taught as a science or as humanity? 

These questions seem to represent a set of irreconcilable dualities. However, the integral 

wave casts them as necessary, inescapable, and dynamic tensions, which are necessary for the 

evolution of MfT. Theorists have argued that evolution proceeds through the complementary 

processes of differentiation and integration (e.g., Laszlo, 1996; Wilber, 1995). Differentiation is 

the tendency of every complex system to push outwards and participate in a level of organization 

more complex than its own. Integration points to the competing tendency of every organizational 

level to pull inwards toward self-unity and wholeness. Each of the five questions cited above is a 

particular instance of the interplay between agency and communion within the field of MfT.  

Mathematical knowledge for teaching, as viewed by the integral wave, entails an 

awareness by teachers of the tensions that shape cultural evolution in their field, and the 

capability to harmonize these tensions dialogically in pedagogical contexts. I will now examine 

the five types of tensions more closely, in order to see how teachers might translate them into 

practice. 

Two of the tensions are already familiar: the interior-exterior tension between 

mathematics as Platonic and mathematics as embodied, and. the singular-plural tension between 

mathematics as individual and mathematics as collective. As discussed, these tensions combine 

to form the axes of the epistemological field that we call the quadrants of MfT. We have already 

seen how awareness of the four quadrants can enhance teachers’ ability to respond to 

pedagogical situations skillfully. Next, I will examine the remaining tensions: stability versus 

novelty, math versus mathematics, and mathematics as science versus mathematics as a branch 

of the humanities. 

6.5.1	  	  Stability	  versus	  Novelty	  of	  Mathematical	  Knowledge	  

One of the main tensions among the transmission, reasoning, and embodiment stages of 

MfT revolves around conceptualizations of mathematics. The first sees mathematics as inherent 

in nature and transcendent; the second sees it as manifest in rational structures; the third sees it as 

emergent and socially constructed. In an integral perspective, all are partially correct. 
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Mathematical truths are emergent, as shown by the fact that there was a time in human 

history when “2” carried no meaning. Of course, pairs of objects existed, but encounters with 

quantities were not interpreted numerically. At some point, humans began to notice the 

“twoness” of different sets of objects, and found ways to signal, retain, and generalize their 

experiences of “two.” Lodged in collective situations, the initial meaning of “two” was 

constituted in social action. But once 2 was formalized through shared signs, it began an 

inexorable evolution from a situation-dependent adjective (two somethings) to an objective and 

independent noun (a two). With every new generation that signified the number two, the reality 

of “two” became more entrenched and transcendent. 

Wilber (2006a) refers to significations that have such transcendent status as Kosmic 

habits. The older the habit, the more self-evident and secure its rehearsed meanings come to be 

for those who participate in it. Many concepts of school mathematics have been in use for so 

long that school mathematics often appears to embody unitary meanings. Yet teaching and 

learning of mathematics are in fact heavily dependent on multiple meanings that emerge through 

interpretation. As fixed as “two” may seem to us, as determiners of its metaphysical status, every 

pedagogical encounter enhances the collective meaning of “two” by occasioning unique 

subjective meanings.  

This brings us to the question of radical novelty. How realistic is it to expect brand new 

results of formal mathematics to emerge in the classroom? It is doubtful that something as 

momentous as a new conceptual representation of the number two might come from any given 

elementary school classroom. But provided the right environment, students can take unorthodox 

approaches to mathematical problems, and do produce unexpected results. From my own 

experiences as a teacher, I have noticed that when I open up the environment to discussion that 

allows novelty, my students often surprise me with new mathematical insights. They arrive at 

insights by intuition, or through pictures, or by thinking about video games. They rarely arrive at 

them by strict application of logical rules to initial axioms. It frequently seems that I am learning 

new mathematics from my students as they build their understandings.  

The integral wave of MfT recognizes that school mathematics is both stable and 

emergent. Once teachers become conscious of the dynamic interplay between stability and 

novelty in the mathematics classroom, they can derive much interest and satisfaction from it. 
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Sensing and responding to the dynamism of each mathematical context is part of a teacher’s 

daily work, and is essential when selecting appropriate pedagogical responses. 

6.5.2	  	  “math”	  versus	  Mathematics	  

Not many people use the phrase “school mathematics.” For most, it is simply “math” 

(with a small “m”). From the standpoint of most children, math is likely to be identical with 

invert-and-multiply, quizzes, sohcahtoa, and the myriad of other situation-specific fragments of 

mathematics education. When a child protests that she “hates math,” her aversion often stems 

from some central aspect of mathematics education practice, such as rote memorization, 

repetitive exercises, or high-stakes testing. Yet the same child might use different forms of 

mathematics outside of the classroom without being particularly aware that she is doing 

mathematics, nor resenting it in the least. She may enjoy solving Sudoku puzzles, playing card 

games, or following the standings in a tennis tournament, for example. It is likely that she would 

not resent these mathematical engagements because she would not identify them with small-m 

math.  

Many teachers choose mathematics as their discipline because they see themselves as 

mathematical. Yet once they enter their practice in the classroom, many switch perforce to 

teaching the orthodoxies of school math. They direct their instruction to prescribed outcomes, 

teaching to tests, meeting grade-level expectations, and insisting that students “show all their 

work.” The integral wave recognizes that the practice of teaching mathematics is provided with 

coherence as a discipline, and attains a uniform professional identity, by enforcing these 

orthodoxies. However, the profession’s general adherence to such practices robs mathematics 

education of life and dynamism, and disconnects school mathematics from children’s lived 

experience. What is more, this tendency can dilute the mathematical interests of teachers to the 

point that they forget what it was that made them choose teaching mathematics as their vocation.  

Integral teachers are conscious of the interplay between “math” and mathematics. They 

continuously strive to find ways to enliven curriculum by connecting it to what we term “grander 

mathematics.” This may be as simple as starting the lesson with an intriguing puzzle, or making 

a reference to an interesting statistical item from the news, or talking to the students about what 

the exchange rate of the dollar actually means to their buying power. Such little sidetracks are 
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part of teachers’ tools of the trade, and they serve to broaden mathematics and keep it 

meaningful for both the students and themselves.  

6.5.3	  	  Mathematics	  as	  a	  Science	  versus	  Mathematics	  as	  a	  Humanity	  

The practices of mathematics education not only distance school math from informal 

mathematics used outside of the classroom, they also determine which human engagements are 

considered to be properly mathematical. These early determinations carry through to the 

perceptions of adults, setting up rather rigid distinctions between mathematical and non-

mathematical engagements. For example, many people would agree that a Sudoku puzzle is a 

mathematical activity, since it involves numbers. But fewer people are liable to view a cryptic 

crossword as a mathematical activity. Yet the thinking processes of solving cryptic crosswords – 

the decomposition of words, methodical analysis of clues – are akin to mathematical thinking. 

While it does not much matter if people see cryptic crosswords as mathematical, the common 

inability to perceive mathematical aspects of serious issues of public concern can be very 

consequential. 

Consider the question of what mathematics might have to do with the debate on global 

warming. Some people may see little connection between the melting of the polar ice caps and 

small-m math. Issues of global warming may be discussed in social studies or science classes, 

but typically not in mathematics classes, which focus on procedures that isolate mathematics as a 

formal, abstract and value-neutral form of knowledge. As a result, mathematical meanings are 

often absent from discussions of pressing issues such as global warming, except perhaps when 

the citation of statistics is called upon to support a given interpretation of the problem. 

Yet our collective understandings of global warming have everything to do with 

mathematics. Comprehending the magnitude of the problem requires that vast orders of 

magnitude be reduced to the scale of individual experience. Logarithms, for example, provide a 

mathematical way to understand very large and very small numbers. Unfortunately, formal 

instruction of logarithms in schools focuses on manipulations of abstract expressions, and 

essentially achieves the opposite of providing students with the tools for active sense-making 

when they are confronted with the possible causes and consequences of global warming. 

Davis and Hersh (1986) cautioned against the loss of meaning that results from this 
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manner of mathematical abstraction: “The spirit of abstraction and the spirit of compassion are 

often antithetical” (p. 290). MfT, as seen by the integral wave, includes an awareness of the 

unseen ways in which mathematics is implicated in the human sphere, and is mindful of the 

consequences of excessive abstraction. 

6.6	  	  Conclusion:	  MfT	  as	  an	  Open	  Way	  of	  Being	  

In this chapter, I used complexity science and integral philosophy to trace the evolution 

of MfT. In the process, I identified three waves of MfT: transmission, reasoning, and 

embodiment. I then sought to anticipate what the future of MfT may hold at the integral wave.  

I find that mathematical knowledge for teaching is not a fixed set of mathematical results 

and processes, but rather an open way of being with mathematics in different educational 

contexts. What is called for is a broad awareness of the dynamic evolutionary tensions that are at 

play during each pedagogical encounter with mathematics. MfT at the integral wave must 

include a willingness to “live in” these tensions dialogically, not privileging either one of their 

dual ends. Living in dynamic evolutionary tensions also requires teachers to be open to the many 

perspectives through which pedagogical occasions may be interpreted and engaged. The best 

pedagogical responses, according to an evolutionary understanding of MfT, are those that 

promote cultural evolution and life in the classroom.  

How can this open attitude be cultivated among teachers? The short answer is to increase 

awareness. Awareness of the manifold evolutions that underlie mathematics education can 

empower teachers to participate in them in a thoughtful way. Recognition that seemingly 

irreconcilable dualities in mathematics education are in fact productive evolutionary tensions can 

encourage teachers to become less committed to monological perspectives. For example, once a 

teacher recognizes that mathematics is simultaneously stable and emergent, she no longer needs 

to commit to a single perspective. By taking this step, she would be freer to explore the lively 

interplay between stability and novelty in her mathematics classroom. 

In order to live in the evolutionary tensions, teachers of mathematics should know about 

and live through the opposing perspectives in their discipline. Each of the four historical answers 

to the question “What mathematics do teachers need to know in order to teach mathematics?” 

addresses certain perspectives in this opposition, but not others. Studies in advanced 
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mathematics, for example, deepen teachers’ perspectives on established mathematics, while 

pedagogical content knowledge enhances teachers’ awareness of how subjective meaning-

making takes place. Since there will always be new perspectives to know and to harmonize, no 

closed, static body of knowledge can ever be the whole of a teacher’s mathematical knowledge.  

MfT, when understood as an open way of being, asks teachers to always remain curious 

about mathematics and the ways in which it connects to human experience. The career of a 

mathematics teacher offers a path of growth and deepening through encounters with new 

perspectives and the ongoing process of harmonizing evolutionary tensions. Being skilled at 

negotiating the tensions of MfT in the moment is the teacher’s true wisdom of practice. 
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Teaching	  Interlude	  5:	  Are	  Circles	  Efficient?	  	  

How are circles different from squares? Let’s think about adjectives that describe circles 

and others that describe squares. 

There was a big show of hands. The students described circles as “circular, curvy, perfect, and 

infinite” and squares as “jaggedy, edgy, and straight.” 

These are rather predictable descriptions. Let’s go deeper. For example, which is blue and 

which is red? 

A quick survey showed that over two thirds of the students thought that circles were blue and 

squares were red. 

OK. Try this then. Which of them is sad? 

The students were far less certain about this one, although generally they thought that circles 

were sadder than squares. I then asked them to get into groups and generate lists of adjectives 

under the headings “circles” and “squares.” We then summarized the results. 

Circles: happy, thoughtful, wise, soft, realistic, feel better, warmer, life affirming, 

transparent, dynamic, sleepy. 

Squares: heavy, masculine, nerdy, deadly. 

 

– It appears that you associated many positive adjectives with circles and negative ones 

with squares. Why? 

– It’s because circles are perfect. They cannot be criticized.  

– What makes circles perfect? 

– They have no beginning and no end. 

– Is it good to be perfect? Are you perfect? 
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The students thought about this question for a while. After some discussion, they agreed that 

imperfection is one of the essential traits of being human, and that humans are beautiful in their 

imperfection. 

 

– What shape is this classroom? 

– A rectangle. 

– How about the school? 

– It’s rectangular too. 

– If we feel so good about circles why do we build our school in the shape of a rectangle? 

Can you imagine what this class would look like if it were in the shape of a circle? 

The students clearly disapproved of this suggestion. 

– It would feel weird. 

– Could you build the entire school in the shape of a circle? Would it be good to do so? 

Again, the students clearly disliked the idea. 

– It would be very inefficient to build a circular school.  

– In what sense? 

– It would not use space well. There would be gaps between the classes. There will be 

unused space. 

– According to this logic, flowers should also be square, in order to maximize efficiency. 

How many of you would like flowers to be square? 

The students did not think this would be a good idea. 

– Who decides what is efficient and what is not? Isn’t it a value judgment that we humans 

impose?   

The class then launched into a conversation about individual and collective values, and 

how they constrain our choices. We explored how adjectives, such as beautiful or efficient, 

mediate the ways in which we interact with our environment. Some students who were so 

inclined then drew renditions of circular schools.  

 



 

123	  

	  

	  

Figure	  15.	  	  A	  student	  rendition	  of	  a	  circular	  school	  
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CHAPTER	  7	  	  

MATHEMATICS	  FOR	  LIFE:	  SUSTAINABLE	  MATHEMATICS	  EDUCATION	  
 

The last chapter described the integral wave as an emergent wave that responds 

dialectically to the failures of the preceding waves to solve current global problems. Without a 

doubt, achieving ecological sustainability in technologically advanced societies of the present and 

future is the greatest challenge facing humankind and the planet itself. In this chapter, I explore 

connections between mathematics education and ecological sustainability.  

In AQAL terms, this chapter is located primarily in the interobjective (LR) quadrant of 

systems. It considers how mathematics education is implicated in natural systems, and how it can 

become part of society’s transformation to sustainable living. The chapter goes beyond life in 

mathematics classes to study the co-creative relationship between mathematics and the natural 

world. It calls for sustainable mathematics education, which is a tangible and urgent expression of 

the more general purpose of healing the world (Chapter 3). I use a developmental model to 

contemplate how mathematics educators might respond to this call.  

The chapter was recently published as an article in the journal For the Learning of 

Mathematics (Renert, 2011). I hope that its publication initiates a productive conversation among 

mathematics educators about sustainability.  

	  

We live in troubling times. The ecological systems that sustain life on earth are stressed 

gravely and degrading rapidly. History tells of several societies – the Mayans, Easter Islanders, 

and Sumers – whose inability to shift course, even when they recognized the harm caused by 

their unsustainable practices, led to their demise (Wright, 2004). Humans today are confronted 

by the challenge of managing multiple large-scale ecological problems simultaneously, including 

climate change, loss of biodiversity, and depletion of natural resources (IPCC, 2008; Millennium 

Ecosystems Assessment, 2005). 

As a mathematics teacher and researcher, I am experiencing a growing disconnect 

between the preoccupations of my professional life and the increasingly loud calls around me to 

attend to the problems of ecological sustainability. For years it was easier to busy myself with 
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metaphors of multiplication than to contemplate imminent environmental catastrophes. But over 

time, I have realized that I cannot be a genuine educator and also avoid the greater challenges 

that will confront my students in the future. Yet, it has been quite difficult to conceive of how my 

practice should change in order to respond appropriately to the challenges that we all face. I 

believe that many other mathematics educators are also facing these critical questions. And so I 

wonder: how should we reconcile the urgent need to act for the future with the practices of 

mathematics education of today?  

This chapter is an initial attempt to answer this question in my own practice. I write it in 

the hope that it contributes to a much-needed sustaining conversation among mathematics 

educators about reorienting our shared practice. I begin by examining the role that sustainability 

has played in education in general and in mathematics education in particular. I present a model 

of possible responses to sustainability in mathematics education and apply the model to two 

extended examples: large numbers and chaos. Finally, I reflect on the two examples to outline 

some possible features of sustainable mathematics education. 

7.1	  	  Ecological	  Sustainability	  and	  Mathematics	  Education	  

Ecological sustainability is a broad term with multiple contested meanings. As Esbjörn-

Hargens and Zimmerman’s (2009) survey shows, numerous approaches to ecology exist, many 

of which are at odds with each other. These approaches are enacted simultaneously at various 

scales – the biological, the personal, the cultural, the social, the economic, and the biospheric.  

The term sustainability generally refers to the ability of living systems to endure over time; since 

the 1980s, it has been widely used to describe humans’ long-term survival and wellbeing (cf., 

WCED, 1987).  

Although environmental issues have attracted considerable attention in education since 

the 1960s, ecological sustainability became a major focus of education only in the 1990s 

(Palmer, 1998). Following the 1992 UN Conference on Environment and Development, 

environmental education assumed a more activist and future-oriented stance, as evidenced by the 

rise of education for sustainable development (Hopkins & McKeown, 1999), transformative 

education (O’Sullivan, 1999), futures education (Hicks & Slaughter, 1998), and sustainable 

education (Sterling, 2004). These trends share a common critique of the ways in which current 
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educational systems perpetuate an unsustainable industrial/modernist model of growth (see Orr, 

2004).  

School mathematics has traditionally organized some of its applications around the needs 

of the moment. This is why examples drawn from commerce, such as giving change and buying 

carpet, are so common in classroom teaching. Occasional references to the environment can also 

be found in past and present curriculum documents (e.g., Ontario Department of Education, 

1951, p. 144). But by and large, ecology has played only a negligible role in mathematics 

pedagogy. Sustainability has likewise attracted little attention in mathematics education research. 

Why is this so? I believe that it is the legacy of Platonism. Mathematics is popularly conceived 

of as a pure body of knowledge, independent of its environment, and value-free (e.g., Hardy, 

1940). From the Platonist perspective, connections between global warming and the topics found 

in mathematics textbooks, such as fractions or quadratic equations, are not readily apparent.  

In the past two decades, social constructivist readings (e.g., Ernest, 1998) and critical 

mathematics education (Skovsmose, 1994) have challenged Platonic assumptions about 

mathematics by underscoring the political and sociological dimensions of its teaching and 

learning. The Rethinking Schools movement (Gutstein and Peterson, 2006), for instance, has 

been instrumental in raising awareness about the ways in which mathematics pedagogy is 

implicated, both culturally and ethically, in issues of social justice, such as racism, equity, 

gender, and democracy. A critical stance could also be constructive for mathematics educators 

who wish to approach issues of the environment, such as climate change (Barwell, 2010).  To 

date, however, these issues have not been a major focus of critical mathematics education.  

And so ecological sustainability and mathematics education remain largely unconnected 

in the research literature. Yet, many connections can be made, as the following statement about 

food production illustrates: 

The efficiency with which various animals convert grain into protein varies widely. With 

cattle in feedlots, it takes roughly 7 kilograms of grain to produce a 1-kilogram gain in 

live weight. For pork, the figure is over 3 kilograms of grain per kilogram of weight gain. 

For poultry it is just over 2, and for herbivorous species of farmed fish (such as carp, 
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tilapia, and catfish), it is less than 2. As the market shifts production to the more grain-

efficient products, it raises the productivity of both land and water. (Brown, 2009, p. 226) 

This statement is qualitatively different from examples about giving change or buying 

carpet in that it could implicate learners in responsibility for the earth and compel them toward 

an ethic of conservation. It discloses the reality that a bite of beef stresses the earth’s limited 

agricultural resources 3.5 times more than does a bite of chicken. It suggests that a diet of 

vegetables and herbivorous fish may provide a ready solution for eliminating over 65% of the 

pollution caused by protein production.  

Like most other information communicated about the environment, the statement relies 

on mathematical reasoning and numbers. Making sense of it requires some sophistication in 

proportional reasoning—a major strand of school mathematics.  

The mathematics is not simple and any conclusions need to be worked out in larger 

systemic contexts that include science and society. Issues of sustainability call for an 

interdisciplinary conversation. Mathematics educators can bring important perspectives to bear 

on this conversation, due to their familiarity with the vast network of metaphors, exemplars, 

applications, and algorithms that underlie proportional reasoning (see Confrey, Maloney, 

Nguyen, Mojica, & Myers, 2009). 

Integrating the environment into the discourse of the mathematics classroom signals the 

possibility of a more genuine mathematics education – one that is not so much about acquiring 

certain competencies but about noticing the world differently, seeing proportional reasoning in 

multiple contexts, making connections, and moving to ethical action as a result of increased 

awareness.  

7.2	  	  Educational	  Approaches	  to	  Sustainability	  

Given the imperatives of sustainability, how might mathematics educators react to this 

call for change? Judging from the track record of environmental education outside mathematics – 

which runs the gamut from avoidance to transformation – a developmental stage model may be 

useful for anticipating the responses to sustainability in mathematics education. The model that I 

propose adapts two existing stage models of approaches to sustainability to settings of 

mathematics education.  
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The first stage model is Sterling’s (2004) model of educational responses to 

sustainability. It derives from Bateson’s (1972/2000, p. 279) logical categories of learning: first-

order learning, which proceeds within agreed boundaries and does not challenge basic values; 

second-order learning, which reflects critically on the assumptions that govern first-order 

learning; and third-order learning, which involves a creative shift of consciousness made 

possible by deep awareness of alternative worldviews. Sterling’s model consists of three broad 

stages: accommodation, reformation, and transformation.  

The second of the stage models is Edwards’ (2010) model of organizational approaches 

to sustainability. It applies to contexts of organizational transformation in general, rather than to 

educational contexts in particular. It employs a developmental lens to identify seven narrower 

stages: subsistence, avoidance, compliance, efficiency, commitment, local sustaining, and global 

sustaining.     

Table 5 shows my combined reading of both models as applied to contexts of 

mathematics education. In comparing the two models, I found that their stages correlate quite 

easily, and that the two models are complementary. Sterling’s focus on education and 

educational biases clarifies how knowledge about sustainability is interpreted by educators at 

different stages. Edwards’ focus on organizational change reveals stakeholders’ power positions 

and worldviews on sustainability at different stages.
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Table	  5.	  	  A	  stage	  model	  of	  approaches	  to	  sustainability	  in	  mathematics	  education

Type of Educational Response (Sterling) Stages of Organizational 
Sustainability (Edwards) 

Description 

 Subsistence 
 

Sustainability is considered only as it relates to survival of current educational 
practices. Stakeholders are concerned solely with perpetuating current practices (e.g., 
“Don’t bother me. I have to prepare these students for the SAT.”) 

Accommodation = Education about 
sustainability 
• Has a content/knowledge bias. 
• Can be assimilated easily within existing  
       educational paradigms. 

Avoidance Sustainability is seen as an attack by opposition groups on the status quo. 
Stakeholders exhibit ignorance and apathy towards the negative impact of current 
educational activities on the environment (e.g., “Math has nothing to do with 
sustainability. It’s the science teacher who should be thinking about it.”) 

• Assumes that knowledge about 
sustainability is uncontested and can be 
codified and transmitted 

Compliance Sustainability is seen as an imposition. Stakeholders conform to traditional 
ethics, and comply grudgingly with top-down regulation as a way of circumventing 
more demanding regulation (e.g., “If I solve a couple of mathematical problems about 
population explosion, then perhaps no one will bother me.”) 

Reformation = Education for sustainability 
• Includes a values and capability bias. 

Efficiency Sustainability is considered to be a source of potential profit/benefit (e.g., “I 
can use examples drawn from sustainability to motivate my students to learn about 
logarithms”.)   

• Involves some reformation of the 
existing  paradigm, but essentially leaves 
it intact. 

• Still assumes that we know the 
values/knowledge/skills needed for 
sustainability, but includes critical 
thinking. 

Commitment Sustainability is valued for balancing educational, social, economic, and 
environmental concerns. Schooling is seen as connected with the outside community in 
a societal network. Stakeholders are committed in principle and go beyond regulatory 
compliance. (e.g., “Sustainability is the most important issue that our society faces. 
Topics of sustainability should be a large part of the curriculum in my math class.”) 

 
Transformation = Education as sustainability 
• Knowing is seen as approximate, 

relational, and provisional. 
• Involves a transformative epistemic 

learning response by the educational 

Local Sustaining Sustainability is valued as a way of developing education into the future. 
Stakeholders devise and implement transformational strategies for moving towards 
goals that support host communities (e.g., “Mathematics education itself is a living 
complex system. We should promote maximum vitality in the system for the benefit of 
students and their communities.”) 

paradigm. 
• The process of sustainable development 

is essentially one of learning, while the 
context of learning is essentially that of 
sustainability. 

Global Sustaining Sustainability is embodied within all aspects of the educational process and is 
seen in global and intergenerational terms. Stakeholders make connections between 
multiple layers of purpose that include: physical, economic, environmental, emotional, 
social, and spiritual. (e.g., “Based on my understanding at this moment, I would like to 
reshape mathematics education as an integral project which addresses every student’s 
body, mind, and spirit, for the benefit of society and the planet at large. However, I 
realize that my actions might actually exacerbate problems of sustainability in ways I 
cannot see or understand. ”) 
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One practical difficulty that follows from Table 5 is that is not easy to imagine how 

mathematics education might be enacted beyond one’s present stage. In my case, for example, I 

could not quite see how the Local Sustaining level would be enacted. What would it mean for a 

mathematics educator to “value sustainability as a way of developing education into the future” 

and to “devise and implement transformation strategies for moving towards goals that support 

host communities”? These words were just abstractions until I shifted my thinking to specific 

examples. I will next discuss how mathematics teachers might approach two examples – large 

numbers and chaos – through the model’s interpretive lenses of accommodation, reformation, 

and transformation.  

7.3	  	  Large	  Numbers	  

Humans emit 29 trillion (2.9×1013) kilograms of carbon to the atmosphere each year. 

Like most other numbers that describe ecological quantities, it is a large number. But how much 

carbon is this? We cannot readily imagine this amount, let alone have a felt bodily sensation of 

it. This quantity is an abstraction that we put into the category of large numbers. 

Barrow (1992) distinguished between the notion of counting and the notion of quantity. 

Whereas number sense refers to humans’ ability to transact numbers appropriately, quantity 

sense refers to humans’ ability to comprehend magnitude and size. When it comes to large 

numbers, our number sense is almost entirely divorced from any quantity sense.  Humans’ ability 

to count – that is, to use numbers as symbolic representations of quantities – provides us with a 

powerful mechanism for storing, recalling, and manipulating cultural information. But humans’ 

inability to feel large numbers is very problematic in our dealings with ecology and the 

environment.  

Emotions play a crucial role in decision-making and human action (Damasio, 1994). If 

we do not feel numbers, then our emotional access to the physical phenomena they represent is 

much diminished. The emphasis on number sense in mathematics education has led Wagner and 

Davis (2010) to caution that current curricular and pedagogical methods may exacerbate 

students’ deficit in comprehending quantities. They called for “mathematics classroom 

experiences that can help students feel the weight of number” (p. 48). Their call becomes all the 
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more urgent in the context of sustainability. Mathematics educators can respond to it through 

accommodation, reformation, or transformation. 

An accommodating response might be to include a new unit of study in the curriculum, 

under the heading Orders of Magnitude. Middle-school students would be taught and then tested 

on the use of small integers to describe the sizes of large numbers. For example, the number 

1,250,000,000 is of order 9. Note that this educational response does not overcome the separation 

of number sense from quantity sense. The students are still engaging in activities that develop 

their number sense only. 

A reforming response might recognize that much of our appreciation of scale is processed 

through our visual system and devise suitable experiential classroom activities. The film Powers 

of Ten (Eames and Eames, 1977), for instance, tries to impart a sense of the scale of the universe 

through a series of images. Wagner and Davis (2010) described how they used grains of rice in 

various containers to represent numbers of various magnitudes. Chemist Nate Lewis offered a 

particularly effective analogical account of carbon pollution: 

Imagine you are driving in your car and every mile you drive you throw a pound of trash 

out your window. And everyone else on the freeway in their cars and trucks is doing the 

exact same thing, and people driving Hummers are throwing two bags out at a time – one 

out the driver-side window and one out the passenger-side window. How would you feel? 

Not so good. Well, that is exactly what we are doing; you just can’t see it. Only what we 

are throwing out is a pound of CO2 – that’s what goes into the atmosphere on average, 

every mile we drive. (Friedman, 2008, p. 34) 

Lewis’s analogy is powerful because it compares one type of pollution with another, one 

pound of carbon with one pound of trash. The image of freeways piled up with garbage arouses a 

physical sense of disgust, and is likely to open up an opportunity for critical discussion of carbon 

pollution among students.  

A transforming response subsumes the accommodating and reforming responses and 

goes beyond them. It will see the value in learning about orders of magnitude, while discounting 

the strong focus on computational accuracy. It will embrace teachers’ ingenuity at devising 

meaningful experiential activities that open up a space for critique. But it will also recognize that 
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teachers are not the only source of ingenuity in mathematics classrooms, and that deconstruction 

and critique ought to be followed by innovation and transformation.  

One transformative approach to the problem of feeling large numbers is to pose it directly 

to students as an intractable problem in mathematics. A generative prompt might be: “Many 

adults are having a hard time comprehending large numbers and as a result find it difficult to 

relate to issues of the environment. How would you explain the meaning of some large numbers 

(for example, the number of kilograms of carbon emitted daily into the atmosphere) to adults in 

your life in order to move them to action?”  

This prompt suggests a new kind of school mathematical problem solving. Most 

mathematical problem solving in today’s classrooms relies on the unchallenged assumptions that 

each problem has one correct answer and that the teacher knows this answer. Students’ creativity 

is therefore limited to replicating solutions that are already known by an adult. In contrast, the 

solutions to many problems of sustainability are not known a priori, and in some cases there is 

no certainty that solutions can be found at all. A different order of ingenuity is required to 

approach these problems, one that we may call radical creativity. The prompt also shifts the 

responsibility of knowledge production from the teacher to the entire classroom collective. It 

connects knowledge with political action and can empower students to act locally to bring about 

change in their own communities.  

7.4	  	  Chaos	  

Chaos theory and fractal geometry provide another ready way to connect mathematics 

education to the environment. Chaos theory is the mathematics of complex dynamic systems, 

and fractal geometry is often described as the geometry of the natural world. Between them they 

provide formal and visual metaphors for understanding the nonlinear dynamic patterns of living 

systems. 

Since the enlightenment, the way humans conceive of the world has been guided by the 

reductionist scientific paradigm, which maintains that complicated systems can be disassembled 

and reassembled at will. The mathematical equations of classical physics provide a fully 

dissociated description of nature and suggest that natural phenomena are predictable and can be 

controlled. Newton’s second law, F = ma, for example, predicts with complete certainty that if 
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the mass, m, is increased by a factor of 3, then the force, F, will also increase by a factor of 3. 

This linear mode of reasoning is at the basis of every mathematical equation that we teach at 

school. 

But complexity science, whose early roots can be traced to Poincaré and the invention of 

chaos theory (Waldrop, 1992) shows that complex systems are holistic, indivisible, and do not 

lend themselves to piecemeal analysis. They are open, evolving systems that maintain their 

identity in the face of constant environmental flux through the iterative processes of self-

organization (autopoiesis) and emergence. Autopoiesis employs two types of feedback: negative 

feedback regulates activity and keeps it within a set range, while positive feedback amplifies and 

can drive the system towards instability. Unstable systems far from equilibrium may reach 

bifurcation points at which new forms of organization emerge. We can think of the emergence of 

increasingly more complex novel structures as the creative dimension of living systems.  

Self-organization and emergence are nonlinear dynamic processes. While linear systems 

change smoothly in response to small influences, nonlinear systems can be very sensitive to 

initial conditions and tiny perturbations because of the amplifying effects of feedback. 

Nonlinearity places complex systems beyond human capacity to predict and control. As 

Meadows (2005) observed, the most we can do is try to encourage the structures that help 

complex systems run themselves.  

Complexity science sees nature as whole: interconnected, seamless, and organic. Current 

structures of school mathematics generally do not reflect or support this vision. The binary right-

or-wrong logic enacted repeatedly in school mathematical discourse presupposes absolute 

certainty. The overriding emphasis on quantification and measurement reinforces the belief that 

aspects of our world that can be quantified are more important than those that cannot (cf., Baker, 

2008). The systemic connections between the measurable and non-measurable – e.g., between 

rapid economic expansion and ecological values – are rarely made explicit. And since values 

themselves cannot be measured, mathematics comes to be regarded as value-free.  

Again, chaos can be taught through an accommodating, a reforming, or a transforming 

approach. 

Chaos theory derives from the study of nonlinear differential equations that is far beyond 

the level of high school mathematics. So any accommodating curriculum of chaos that focuses 
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primarily on the mathematics will have to treat the theme of chaos broadly, rather than 

emphasize mathematical detail. A good example of such treatment is provided by Burger and 

Starbird (2005), who present non-linearity through difference equations and Julia sets.   

The theme of chaos very much lends itself to a reforming approach that connects 

mathematics with the environment. Reforming teachers could critique linear notions about 

sustainability by explicating and elaborating the meanings of complex dynamics. For example, 

scientists warn that the earth will warm up by 1.1–6.4 degrees Celsius by the end of the century 

(IPCC, 2008). A common response to this warning is to dismiss it with the thought, “That’s not 

too bad. I actually prefer a slightly warmer winter.” This line of thinking is strictly linear in 

presuming that a small rise in the earth’s average temperature would lead to a small fluctuation 

in daily climate. Unfortunately it does not apply to the world’s nonlinear weather systems, since 

it does not take into account the greater extremes that increases in standard deviations bring. It 

also does not take into account the vast impact of wider climate fluctuations on ice sheets, 

oceans, storms, and crops. A surprising, yet telling, statistic is that the difference between the 

earth’s temperature today and in the last ice age is only 5–6 degrees Celsius. 

This example suggests that a descriptive modelling approach may be an effective means 

with which to explore chaos with our students. This approach would rely on technology to 

facilitate simulations of phenomena in multiple variables, such as weather patterns. [1] The 

models could accept probability distributions or even difference equations as inputs, and set in 

motion iterative simulations that employ a mix of stochastic and chaotic processes. Since 

multivariate models overcome the common restriction in school algebra of using only single-

variable functions, their descriptive power far exceeds that of algebraic equations.  

Descriptive modelling is a powerful problem-solving tool in cases where a single 

approximating formula does not suffice. It would support a problem-based pedagogy in which 

teachers and students search for the right mathematics required to make sense of real-life 

problems. The focus of teaching and learning would shift from prescribed lists of mathematical 

topics to identifying, selecting, using, and evaluating appropriate mathematical processes. The 

students’ toolbox would be extended beyond algebra and allow far greater versatility. It would 

include stochastic processes, which are arguably more suited to understanding natural 

phenomena than deterministic ones (Eigen and Winkler, 1993). Information within the models 
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would be represented both numerically and visually, and students would employ both 

quantitative and qualitative reasoning techniques to draw conclusions from it.  

A shift in mathematics education from algebraic equations to qualitative visual reasoning 

and descriptive analysis will clearly be transformative. At the same time, it is easy to think of 

other transforming opportunities that teaching chaos affords. Concepts such as nonlinearity, 

emergence, and wholeness carry deep metaphorical meanings that can reshape our understanding 

of causality, creativity and spirituality (Briggs and Peat, 2000; Juarrero, 1999). It is up to us, 

educators, to choose to what degree we are prepared to engage analogical reasoning to enable 

new understandings of humanity’s place within the environment.  

The metaphors of chaos show that humans, far from being separate life forms in a 

controllable universe, are systemically implicated at every level of life on earth (Briggs and Peat, 

2000). As an example of how these metaphors may transform human action, consider the 

common belief that ecological problems are just too great for any one person to do anything 

about. This belief is founded on a linear argument that proceeds by quantitative comparison: 

“The problem is very big. I am small. Big is greater than small. So there’s nothing I can do.” 

This line of reasoning may lead to resignation and inaction on the part of individuals. Chaos can 

help change the way we think about power and influence. It teaches us that complex systems 

cannot be controlled, but can be accessed and perhaps influenced through the myriad of feedback 

loops they contain. This notion has been illustrated by Lorenz’s (1972) metaphor of the butterfly 

whose flapping wings in Brazil could set off a tornado in Texas.  

The metaphor of butterfly power is very empowering. It suggests that each of us 

individually can make a difference, and that the consequences of our actions may be far more 

profound than we expect. Since the implications of our current actions cannot be predicted, 

butterfly power also calls on us to act with humility. And so, the mathematical notion of chaos 

gives rise to a new ethic: attentiveness to the present as a way to act right for an uncertain future 

(cf., Varela, 1999).  

7.5	  	  Sustainable	  Mathematics	  Education	  

The extended examples of large numbers and chaos allow us to discern some likely 

defining characteristics of sustainable mathematics education.  
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Sustainable mathematics education is the project of reorienting mathematics education 

towards environmentally-conscious thinking and sustainable practices. It is a change effort that 

we cannot afford to ignore. Even though sustainable mathematics education is motivated by 

urgent issues of survival, it need not adopt the pessimistic tone of many writings on ecology 

(e.g., Deffeyes, 2001). Dire projections are typically founded on the idea that humanity has 

already passed, or will soon pass, an ecological point of no return – a climate tipping point, peak 

oil, and the like. While pessimism may be an appropriate response to current conditions, it is 

neither helpful nor constructive for educators. Since school is a social institution situated at the 

intersection between present society and the promise of what society may become, educators are 

more likely to succeed in their work with messages of hope and possibility. Some writers (e.g., 

Hawken, 2007; Edwards, 2005) have suggested that humanity is at the threshold of a 

sustainability revolution no less significant than the Industrial Revolution. It will transform our 

unsustainable industrial practices and set humanity on a new course of ecological harmony for 

the future.  

The notion of transformation for sustainability provides mathematics education with a 

clear generative purpose. What are some pathways for mathematics educators into the 

sustainability revolution? Brown’s (2009) comprehensive survey of practical solutions to 

problems of sustainability serves as one example of a possible launching point for a sustainable 

mathematics curriculum of action and hope. Mathematics plays an integral role in many of these 

solutions: renewable power, smart energy grids, reforestation and carbon sequestering, changes 

in food production and consumption, and a cradle-to-cradle, zero-waste, new materials industry. 

The current lack of political will or urgency to implement sustainable solutions on a large scale 

can be understood, according to Sterling’s and Edwards’s stage models, as arrested development 

in the way we see nature and our role in it. I believe that this is where mathematics teachers can 

make a real difference. Sustainable mathematics education can help evolve the ways in which we 

see the world by evolving the ways in which we understand and use mathematics. 

Sustainable mathematics education is about seeing the world anew through renewed 

mathematics. It is concerned not only with feeling large numbers, but also with feeling the global 

situation. It trades linear metaphors of certainty and separation for complexity metaphors of 

possibility and connection. It helps us relinquish our desire for deterministic predictability and 
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embrace the contingency and stochastic probabilities of each living moment. It turns 

mathematics from a collection of objects, or a series of competencies, into an open-ended state of 

observing the world. It aims towards a more complete and appropriate mathematics, and from 

this position it calls on us to engage in ethical action for healing the world. 

Having been shielded by the perceived neutrality of our discipline, mathematics 

educators are latecomers to environmental education. One benefit is that we may sidestep 

mistakes made by those who preceded us. We can recognize from the start that what we are 

aiming for is a paradigm shift and that accommodating responses alone will not be enough: 

[T]he crisis/opportunity of sustainability requires second – and where possible – third 

order learning responses by cultural and educational systems. There is a double learning 

process at issue here: cultural and educational systems need to engage in deep change in 

order to facilitate deep change – that is, need to transform in order to be transformative. 

(Sterling, 2004, p. 15) 

Some mathematics educators are likely to adopt accommodating approaches at the start 

and they are to be welcomed for taking steps in the right direction. But in setting the more 

ambitious end goal of transformation early on, and in promoting awareness around it, we may 

create the conditions necessary for the emergence of second- and third-order learning responses.  

Sterling’s (2004) quote points to the interdependency of multiple co-implicated systems 

in sustainable mathematics education: learning systems, ecological systems, cultural systems, 

and systems of mathematics and science. The nested, self-similar nature of these systems 

suggests that we should promote maximal vitality and co-enact sustainable practices in all of 

them simultaneously. A paradigm shift of mathematics education, founded on metaphors of 

chaos and complexity, would recognize that the mathematics class itself is a living complex 

system, integrally embedded and open to exchanges with its environment (cf., Davis and Sumara, 

2006).  

Just as the borders between class, school, community, society, and ecology are likely to 

be continually challenged and blurred, so will the disciplinary boundaries between mathematics 

and other fields. The descriptive modelling approach described earlier, for instance, demands 

interdisciplinarity if its models are to be useful for the analysis of real-life phenomena. 
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Admittedly, many of today’s teacher education programs tend to favour disciplinary 

specialization and thus may leave classroom teachers poorly equipped to act as interdisciplinary 

authorities. Complexity thinking suggests that a new, and perhaps more effective, kind of 

interdisciplinarity is needed, one that does not depend on one individual to be knowledgeable in 

every field.  The new interdisciplinarity, which we may call transdisciplinarity, consists of 

decentralized networks of specialists who work in concert towards a common goal (Davis and 

Sumara, 2006). A joint collaboration of mathematics, science, and social studies teachers on a 

common modelling project would be an example of transdisciplinarity in a school environment. 

Transdisciplinarity is further enabled by network technologies, such as the Internet, which allow 

ready access to diverse communities of disciplinary experts. 

If mathematics education is to undergo transformation, we would be wise to start by 

transforming the way reform itself is done. One of the lessons of chaos is that creative 

emergence cannot be controlled top-down. It is a bottom-up project that involves the diverse 

contributions of many interacting participants. We are these participants – educators, researchers, 

and students who are passionate about mathematics and the role it can play in the world.  

A new ethic has presented itself to energize our practice with purpose and meaning – the 

ethic of mathematics for life.  
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Teaching	  Interlude	  6:	  Hermeneutic	  Circularity	  	  

At one point, I wanted to consolidate the class’ research on the question of how many 

sides a circle has. I asked the students to write answers that they had found on one board and any 

remaining questions on another board. There were two answers and over two dozen new 

questions. 

– Do you think that there is a definitive answer to the question of how many sides a circle 

has? 

– No. 

– Why can we not find a definitive answer? 

– It all depends on what you mean by “side.” You could be restricted to the Euclidean 

plane, or you could have it on a sphere. It is possible that the question doesn’t make 

sense. For example, if we say that a circle is not a polygon then it doesn’t make sense to 

count sides.   

– Suppose I invited a Geometry specialist from the university to visit our class, and tell us 

the answer to this question. Would you accept it as the definitive answer? 

– No. It’s just his opinion. 

– How many of you would like me to call the university and find such a person? 

All hands rose enthusiastically. 

The students were clearly comfortable with their constructed mathematics. They were 

also willing to defend it in the presence of an expert. I suggested that we keep revisiting the 

question in the future, as we continue to gain new perspectives from other studies in 

mathematics. 

There were no quizzes or tests, and no one felt the poorer for their absence. Instead, I 

asked students to work individually on a project called, “What is interesting for me about 

circles?” The projects are to be presented to the class at any time before the end of the school 

year. One of the students is currently studying circles in Shakespearean drama. Another is 
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studying vortices in black holes. Several students have been experimenting with subtractive 

fashion design, in which a one-piece garment is created by cutting circular holes into a large 

piece of cloth.  
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CHAPTER	  8	  

CONCLUDING	  THOUGHTS	  	  
 

Let us return now to the overall research question posed in Chapter 1: What does integral 

thinking disclose about life in mathematics classrooms? 

In this last chapter of the dissertation, I will draw from across the research work 

previously presented in order to identify common themes and conclusions elucidated by the 

integral perspective. I will begin by considering how the research chapters are unified by 

AQAL’s quadrants and levels views. The AQAL synthesis offers a new pedagogy of living 

mathematics education. I will describe characteristics of this of this new pedagogy and consider 

its feasibility. I will then close by contemplating the contributions of the dissertation and 

directions for future research.  

8.1	  	  Reflections	  on	  the	  Dissertation	  as	  a	  Whole	  

A new paradigm is powerful when it not only critiques prevailing paradigms but also 

makes us reconsider and reinterpret familiar phenomena in new ways. The AQAL framework, in 

providing an analytical space for integrating multiple perspectives, enables such a 

reconsideration of the phenomenon of life in mathematics education. 

In reflecting on the dissertation as a whole, I have come to appreciate that the different 

research chapters represent a step-wise traversal of the four quadrants of the AQAL matrix – 

objective (UL), intersubjective (LL), objective (UR), and interobjective (LR). Each chapter 

studies evolving phenomena in at least one of the quadrants. When the different evolutions are 

correlated, four levels of mathematics education become apparent – traditional, modernist, 

postmodern, and integral. By surveying all quadrants and all levels, the dissertation advances an 

integral grand narrative of evolution towards living mathematics education.  
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8.1.1	  	  Quadrant	  View	  of	  the	  Dissertation	  

As stated previously, the quadrants are four essential and irreducible perspectives on 

reality. As figure 16 shows, different quadrants are home to different likely sources of life in 

mathematics education.  

 

 
Figure	  16.	  	  Quadratic	  view	  of	  the	  research	  chapters	  

In Chapter 3, I revisited the continuing discussion of the purposes of mathematics 

education. These purposes are inner stories and rationalizations, both personal (UL) and 

communal (LL), which provide the teaching and learning of mathematics with their raison-

d’être. Given the complexity of challenges that global society faces, I proposed that evolving the 

purpose of mathematics education from individual utility to collective necessity is likely to fill 

the field with new life. In Chapter 7, I identified ecological sustainability as a ready domain in 

which mathematics for healing the world can make a difference. Since mathematics educators 

have been largely absent from the greater conversation about ecology, the chapter’s call for 

sustainable mathematics education is an attempt to connect mathematics pedagogy explicitly 
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with natural systems and the environment (LR). A mutually co-creative symbiosis between 

mathematics education and life is thus established. 

Mathematics education’s insularity from the natural environment is largely due to the 

pervasive legacy of Platonism. In Chapter 5, I studied the evolution of mathematics (UR) in 

order to identify approaches to overcoming the Platonic barrier. One successful approach 

described in the chapter is concept study, a novel integrative research methodology used to 

interrogate teachers’ mathematical knowledge. In Chapter 6, I kept exploring teachers’ 

knowledge of the subject matter as a possible source of life. The chapter offers an extensive 

integral reconceptualization of the familiar mathematics-for-teaching problem by correlating 

evolution in all four quadrants (UL, LL, UR, LR). The resulting synthesis reveals that at higher 

evolutionary stages, the practice of teaching becomes an open and lively improvisation.  

In Chapter 4, I surveyed the literature on intersubjective dialogue (LL) and contemplate 

some integral connections with the subject matter of mathematics (UR). What sorts of human 

relations bring life to mathematical engagements, and what mathematics brings life to human 

interactions? My study of intersubjectivity in Chapter 4 illustrates an important advantage of 

AQAL’s quadrant view. It illumines overlooked quadrants and signals the need to make more 

connections.  

8.1.2	  	  Levels	  View	  of	  the	  Dissertation	  

As instructive as the quadrant view has been for this study, the evolutionary perspective 

of the levels view has proven even more so. I used the metatheoretical lens of development 

extensively in the dissertation to study the evolutions of phenomena in all four quadrants of 

mathematics education. However, my stage models should not be interpreted as rigid categorical 

imperatives. They are valuable inasmuch as they provide general orientating guidelines about the 

patterns and potentials of evolution.  
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Figure	  17.	  	  Correlation	  of	  the	  evolutionary	  strands	  of	  mathematics	  education	  

Figure 17 correlates the different stage models to reveal three broad extant worldviews on 

mathematics education – the traditional, the modernist, and the postmodern – and a fourth 

emergent perspective – the integral. These worldviews are natural epistemologies that arose 

dialectically in the course of history and that organize individuals’ interpretations of reality 

(Gebser 1949/1984, Kegan 1994). The traditional worldview is ethnocentric and conformist. The 

modernist worldview is individualistic and rational. The postmodern worldview is pluralistic and 

inclusive. The emergent integral worldview is aperspectival, and the first to recognize the 

systemic pattern that unifies the other worldviews.   

Different dimensions of the integral stage of mathematics education – dialogical classes, 

non-Platonic mathematics, an open way of teaching, the purpose of healing the world, and 

sustainable mathematics education – are worked out in the research chapters of this dissertation. 

As viewed by the integral wave, mathematics is a multifaceted system whose evolution co-

manifests in four quadrants. From this perspective, the purpose of teaching mathematics is to 
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promote the wellbeing of the entire evolutionary system depicted in figure 17. Integral teachers 

employ an expansive pedagogy that strives to continuously integrate further aspects of reality. As 

more perspectives are included, the boundaries of that which is deemed mathematical and that 

which is not recognized as such are blurred. Within an integral pedagogy, mathematics is 

regarded as inseparable from the environment. 

From a developmental perspective, the ongoing process of integration is the primary 

source of life in mathematics classrooms. Whether teachers integrate diverse purposes, 

conceptions of mathematics, or conceptions of teaching and learning, it is their responsiveness in 

the moment to living situations that infuses their practice with life. 

8.2	  	  Living	  Mathematics	  Education	  

8.2.1	  	  From	  Platonism	  to	  Living	  Mathematics	  

Persistent evolutionary challenges confront mathematics teachers who wish to enact the 

integral imperative in their pedagogy. Some of these challenges arise from the commitments of 

the traditional, modernist, and even postmodern worldviews. Many suffocating false dichotomies 

in mathematics education can be traced back to the Platonic barrier: stability vs. emergence in 

mathematical discourse, formal mathematics vs. cultural mathematics, the mathematical vs. the 

non-mathematical, and disciplinarity vs. transdisciplinarity. From an integral perspective, the 

Platonic barrier is a developmental pathology that stunts potential growth; mathematics 

education appears to be moribund because it suffers from a case of arrested development.  

Integral philosophy prescribes the remedy of skillful means. The term borrows from 

Buddhist teachings and refers to the adept use of discourses and practices to satisfy needs of 

stakeholders at different levels of the evolutionary spiral while advancing the movement of the 

spiral as a whole. In the case of mathematics education, overcoming the Platonic barrier and 

evolving mathematics to the embodied-enacted stage would require a strategic mix of old and 

new classroom vocabulary and practices. The application of skillful means should not be 

mistaken for clever rhetoric designed to convert unsuspecting Platonist practitioners into 

adherents of embodied mathematics. Rather, it is an integrative practice that sincerely values the 

contributions of all levels of the evolutionary spiral, including those of Platonism.  
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An evolution that transcends formal mathematics will necessarily also include it. Without 

a doubt, formal mathematics stands as a model of originality, sophistication, and beauty among 

human intellectual creations. It is also to be credited with many of the technological 

improvements in life conditions made possible by modernist progress. At the same time, formal 

mathematics does not hold exclusive claim to all that is mathematical. Many other and different 

mathematics reside outside of formal texts; they manifest in personal and collective 

interpretations, and in social and cultural practices.  

Integral thinking gestures towards the possibility of synthesizing Platonic and non-

Platonic mathematics to produce a grander mathematics that includes and transcends both 

paradigms. I call the resulting synthesis living mathematics. This term connotes both the life that 

abounds in mathematics when viewed through integral eyes, and the never-ending evolutionary 

process in which mathematics keeps reaching out to connect to even further aspects of reality. 

The pedagogy that responds to living mathematics and enacts its richness in mathematics 

classrooms is living mathematics education.  

8.2.2	  	  Living	  Mathematics	  Education	  in	  Action	  

Is the integral transformation possible within the context of today’s mathematics 

education? I am convinced that the answer is yes. Living mathematics education is already 

practiced, even if its practitioners do not necessarily call it by that name. Admittedly, I have met 

only a handful of educators who enact their pedagogy on such an extensive scale, but in each 

case the expansiveness of their vision was unmistakable. I report on two of these instances in the 

dissertation.  

The first instance is the account of the participatory research methodology of concept 

study (Chapter 5), pioneered by Brent Davis. At first glance, concept study appears similar to 

other techniques for surveying teachers’ mathematical knowledge. However, closer inspection 

reveals that something quite extraordinary happens in concept study groups. The process starts 

with the question “What is X?”, where X represents the mathematical concept under 

consideration. The first few answers are usually predictable and routine. They tend to be the 

Platonic textbook answers. Then comes the follow-up question “And what else is there?” As 

more and more answers are generated from the group members’ past experiences and elaborated 
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hermeneutically, the participants become aware that some of these answers cannot be found in 

any textbook. So what kind of mathematics are they dealing with? The shift to living 

mathematics begins from the moment that this question comes into play.  

As the teachers proceed to blend metaphorical meanings into new structures, even more 

new mathematics emerges. Over time, as teachers become comfortable with the process of 

generating new mathematics, their Platonic commitments are relaxed. A new openness emerges. 

How far a concept study might proceed and how much of reality is allowed to come into the 

conversation are determined by collective agreement.  

The second instance of living mathematics education is the account of the circles unit in a 

Grade 8 class. I was fortunate to co-teach this unit with Freddie Irani, an enlightened teacher who 

has taught me much about the boundless possibilities of integral teaching. The study of circles 

began with rather standard instruction: properties of circles, area, and circumference. We then 

asked the students to get into groups and discuss the question “What’s interesting about 

circles?” (teaching interlude 1). We preferred this question to its concept study counterpart, 

“What are circles?”, because it is less objectifying and invites personal preferences and value 

judgments. The class voted to study the question “Do circles have one side or infinitely many 

sides?”. It was a completely unexpected question, one to which neither of us co-teachers had a 

ready answer.  

The class then explored this question over four meetings. We used all resources at our 

disposal, from personal reflections to Google searches. Many of the explorations required 

calculations of areas of circles and polygons. The students were eager to use results of formal 

mathematics as a means to getting to the larger answers they were seeking. Emergent answers 

gave rise to even more questions (teaching interludes 4 and 6). We constantly came up against 

issues of language and definition and, at one time, we even grappled with some philosophical 

questions of existence (teaching interlude 4).  

Our progress was non-linear and we sometimes found ourselves stuck. I used these 

opportunities to direct the students’ attention to other interesting issues that involve circles. For 

example, a song about π led to explorations of self-identity (teaching interlude 2). The famous 

“rope around the equator” problem resulted in a brilliant and unexpected solution by one of the 

students (teaching interlude 3). Here was emergent mathematics at its finest.  
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At the end of the four meetings, general consensus was reached that no definitive answer 

to the question “Do circles have one side or infinitely many sides?” could be reached (teaching 

interlude 6). Any given answer would necessarily represent just one perspective and would be 

constrained by its author’s assumptions and use of language. The greater question of “What is 

interesting about circles?” was left open for further exploration. 

The examples of concept study and the circles unit demonstrate that living mathematics 

education is not only possible, but is not difficult to condition in ordinary educative situations. In 

both cases, all four quadrants and different levels were accessed, and integrative connections 

were made in many instances.  

8.2.3	  	  Practical	  Considerations	  

It is not easy to imagine how the project of integral mathematics education could be 

scaled up for wide use in the context of today’s school systems. The imperative to “include 

everything” represents a radical new pedagogy for which no instruction manual exists or could 

exist. It is also not clear to what extent mathematics educators would be willing or able to enact 

living mathematics education in their classrooms. At this point, it is useful to consider whether or 

not integral mathematics education is practical at all. 

My answer is that it is and it is not. Living mathematics pedagogy is not practical because 

we teach mathematics to every student at every grade level. Armies of teachers are needed to 

carry out instruction on this scale. Since it is nearly impossible to find so many people with a 

keen interest in the profession, mathematics is sometimes taught by teachers who do not have a 

particularly strong feel for it as a subject matter. It is one thing to ask teachers to teach 

Pythagoras’ Theorem by reading the textbook’s explanation out loud and following it up with a 

drill and a test. It is quite another to ask them to have an involved, lively interaction with their 

students around the question “What is interesting about right triangles?”. Teachers’ 

responsiveness and improvisational capacity depend to a large extent on their own degree of 

comfort with mathematics. The systemic shortage of human resources in mathematics education 

makes it unlikely that living mathematics education can be implemented everywhere. 

Living mathematics education is practical, on the other hand, because I have witnessed 

firsthand the transformative impact that it can have on teachers. Some of the teachers 
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participating in our concept study groups have already begun to broaden their instruction as a 

result of their participation. I predict that the pace of experimentation will accelerate as teachers 

gain more confidence in their improvisational skills. The AQAL directive “include everything” 

does not prescribe what should or should not be included at any particular moment; and so, 

teachers can enjoy considerable freedom as they try to figure out what works in their own 

situations. Even though not every teacher will embrace this approach, teachers who are 

deliberate about changing their pedagogical practices are likely to experience success and to reap 

the rewards of transformation. 

I believe that living mathematics education is practical also because I witness the daily 

struggles of my students, as they try to reconcile the incredible amount of information to which 

they are exposed through the Internet with the narrow foci of school instruction. The widespread 

networking of human knowledge, made possible by digital technologies in the last decade, is 

profoundly changing the ways in which children absorb and react to information. On the whole, 

my students are far more sophisticated, globally aware, and knowledgeable than those of 20 

years ago. As the trend towards greater complexity continues, I believe that many mathematics 

teachers would welcome living mathematics pedagogy as a way to keep growing professionally 

by staying relevant to their students. 

Finally, I answer that living mathematics education is practical because I believe that our 

society will face dramatic changes in the coming decades. The biggest of these is likely to be the 

transformation to sustainable modes of living. Sustainable mathematics education, with its 

metaphors of chaos and complexity, can become a catalyst for living mathematics pedagogy, as 

it reshapes our understanding of reality.  

8.3	  	  Reflections	  on	  Contributions	  to	  the	  Field	  and	  Future	  Research	  Directions	  

The main contribution of this dissertation is the new transcendent perspective on the field 

of mathematics education that it offers, and the new map that emerges to help navigate the field’s 

past histories and evolutionary potentials. As I argued in the Introduction, mathematics education 

is at a crossroads at which it would greatly benefit from a big-picture organizing map. My 

introduction of integral discourse to mathematics education has facilitated new readings of some 

longstanding quandaries: questions of purpose, ontological status of mathematics, teachers’ 
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knowledge of mathematics, classroom relations, and environment. In each case, integral theory 

has enabled a structured analysis of past epistemologies and suggested directions for conscious 

evolution.  

Since integral thinking is both connected and connecting, some of the research chapters 

have contributed to the field by building bridges between mathematics education and other 

discourses not typically associated with it. Specifically, Chapter 4 made new connections with 

intersubjective dialogue, especially as articulated by Buber, Bakthin, Sidorkin, and Noddings; 

Chapter 7 made new connections with the greater conversation on ecology and sustainability.  

As useful as the integral map might be in providing an organizing perspective, the 

territory it describes can only be enacted with lived experiences. The present dissertation has 

contributed to integral studies by providing a lived instance of integral principles in a hitherto 

unconnected field. I hope that educators in other disciplines would be inspired by this work to 

explore the evolutions of pedagogy in their respective areas of scholarship. 

In contemplating future research directions and paradigms, I am struck by the manner in 

which almost every chapter in this work opens up a new area of research in mathematics 

education. AQAL’s high-level metatheoretical gaze leaves a lot of room for future midlevel 

theory building and applications. Some chapters pose direct questions for future research: What 

subject matter promotes better human relations in the classroom?  How can mathematics 

pedagogy engage with ecological sustainability? Others outline new research possibilities by 

reframing existing questions. For example, what is the impact of our new understanding of 

mathematics-for-teaching as an open disposition on the training and professional development 

of mathematics teachers? 

Integral philosophy and metatheory building have just begun to enter academic discourse 

in the humanities and social sciences. As this philosophical orientation develops, more lenses 

will be available through which mathematics education might be analyzed. The systemic 

relationships among these lenses should also be further clarified. This dissertation made use of 

only two foundational epistemological lenses within Ken Wilber’s AQAL matrix: quadrants and 

levels. The use of just these two lenses resulted in an explosion of new ideas for evolving the 

field. I predict that future integral research in mathematics education will also activate AQAL’s 
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foundational lenses of lines, types, and states. Such research will investigate connections 

between mathematics education and feelings, aesthetics, beauty, and spirit.  

In my own work, I am excited to have identified research foci to keep me busy for at least 

a decade or more. I plan to continue researching the methodology of concept study with Brent 

Davis and to broaden its scope to include more aspects of the four quadrants, especially the 

subjective (UL) dimension. I am excited to continue working with Freddie Irani on projects of 

living pedagogy, similar to the circles unit, and to report on the mathematics and life that 

emerge. Our next project is to teach chaos to high school students. It will enable us to observe 

firsthand how students interpret and react to issues of sustainability. Above all, I am looking 

forward to developing a curriculum of living mathematics education for young children, grades 

K-3. Experience has taught me that the greatest impact in mathematics education is made in the 

earliest grades.  

8.4	  	  Concluding	  Remarks	  

When reflecting on the breadth and flexibility of living mathematics education, I am 

reminded of an integral science educator who once told me that, when it comes to science, he 

finds it difficult to know what to exclude. “Science is everything,” he said, as he stretched his 

arms as wide as possible to illustrate his point. It’s funny, because this is exactly how I feel now 

about mathematics. Mathematics is everything too. And if language is everything as well, and so 

are social studies and art, why do we need school disciplines at all?  

Integral thinking in education clearly indicates the need for interdisciplinarity and 

transdisciplinarity. And yet, I believe that each discipline still has its own perspective, its own 

special insights, and its own unique flavours to impart. I would not feel authentic in writing this 

dissertation from any other perspective but that of mathematics education. If disciplines are 

understood as lenses through which life is viewed and experienced, then mathematics is my lens. 

Life tastes different through it. 

As I bring my reflections on the research in this dissertation to a close, I am grateful to 

have found answers to so many of the questions, big and small, that arose at the start of my 

studies. 
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Why? Because life is interesting when I open up to it. Every moment carries the promise 

of development. 

Why teach (mathematics)? Teach in order to evolve. Teach because each moment of 

living (mathematics) education gives rise to new learning for everyone, including myself. Teach 

because it is interesting.  

How to teach logarithms better? Start by asking students, “What is interesting about 

logarithms?” Then listen carefully and respond in the moment to whatever comes back. Allow as 

many points of view to enter the dialogue and then integrate them. Take pleasure in improvising. 

 

My search for life in mathematics education has taken a circular path; it began with 

logarithms and ends with them too. In the process, I discovered that life manifests in four 

quadrants and multiple developmental scales. Logarithms are a primary mathematical lens 

through which humans can access and conceptualize the notions of scalability and nestedness. As 

such, they provide an excellent example of why mathematics will always remain interesting – it 

affords humans the opportunity to become more intimately acquainted with life. 

Living mathematics presents teachers with a generative global question for endless 

elaboration in localized educative settings: “What is interesting about mathematics?” Are we 

courageous enough to adopt it as our living pedagogy? Are we ready for the life that will erupt? 
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