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Abstract 

 This study examined the mathematical learning that grade 8 students demonstrated when 

they were given the opportunity to work collaboratively, with a teacher-assigned partner, on an 

in-class assessment. In addition to topic-specific concepts, skills, and procedures, mathematical 

learning also included more general abilities such as selecting strategies, developing plans, 

communicating ideas, and evaluating solutions. The primary sources of data for this study were 

the conversations and written papers of four “equal status” dyads as they worked on a problem-

solving assessment in which they were encouraged to discuss their ideas and submit a joint 

solution. Analysis indicated that most dyads worked collaboratively throughout the task and that 

both students were relatively equal contributors to the joint solution. Therefore, while 

collaborative assessment reduced the ability to hold individual students accountable for what 

they had learned, it appeared to be an accurate reflection of most students’ mathematical 

knowledge and ability. One dyad, however, remained committed to working independently; the 

partners rarely discussed their ideas with each other and both students created their own 

solutions.  

 During their discussions, students who collaborated were more likely to discuss various 

calculations related to the problem, rather than discuss potential strategies or solutions. Students 

interacted comfortably and informally with each other and asked questions if they did not 

understand, but did not often critically challenge their partner’s suggestions or provide 

justification for their own ideas. As a result, students did not always make reasoned choices 

when approaching the problem or evaluate the appropriateness of their strategy or solution. 
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1 Introduction 

 Within the purview of mathematics education, cooperative learning is an increasingly 

common classroom practice. Presented as a way to help students construct mathematical 

knowledge, participate more fully in the discipline, and provide opportunities to interact with 

others, it is a required component of many curricula (National Mathematics Advisory Panel, 

2008; Qualifications and Curriculum Authority, 2007) and often encouraged as a recommended 

teaching practice (Ontario Ministry of Education, 2004). Cooperative learning is a broad 

category, to which a multitude of classroom practices can be assigned. From the five minute 

think-pair-share tasks designed to frontload learning to the well-known long-term group project 

in which emphasis is placed on students working together towards the creation of an end product, 

cooperative learning forefronts the social interactive nature of knowledge acquisition and of our 

society. 

 Collaborative learning, loosely defined as a partnership or group of people working 

together to accomplish a task or to increase understanding (Schmitz & Winskel, 2008), is often 

used synonymously with cooperative learning. However, I distinguish between the two and 

consider collaborative learning a smaller sub-category of cooperative learning. In this paper, I 

use the latter term to refer to any situation where students work with their peers, including 

activities such as ‘jigsaw’, where students maintain individual responsibilities within the group1. 

I reserve the term collaborative for circumstances in which the students work together 

throughout the entire task and are not held individually accountable for specific aspects (Damon 

& Phelps, 1989). It is collaborative learning, with its potential for the symbiotic development of 

new understandings, that most interests me and that I explore with this research.  

                                                
1 When referring to the research of others, I use the term they most commonly employed. So, if a researcher termed 
their work cooperative, I referred to it as such, even if it fit my stricter definition of collaborative.  
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1.1 Rationale 

 Collaborative activities are most commonly used to help students develop specific skills 

or to provide students the opportunity to work with others. As such, there are many claims 

espousing collaboration’s potential affective benefits including increases in student self-esteem 

and tolerance of others, and improvements in prosocial behaviours, attitude towards school, and 

general classroom environment (Slavin, 1991).  

 Though comparatively fewer studies examine the nature of discipline-specific learning 

afforded by a collaborative situation, this field of research is growing. At the secondary level, 

Goos and Galbraith (Goos & Galbraith, 1996; Goos, Galbraith, & Renshaw, 2002) have 

investigated the metacognitive strategies students employ when problem solving in groups, while 

Mercer (Mercer, 1996; Mercer & Sams, 2006) has investigated the quality of talk elementary 

students use when working together in a variety of subjects, including mathematics.  

 However, research on collaborative assessment, with an emphasis on ascertaining what 

students have learned and understood in relation to what they have been taught, is rare. Some 

research exists on collaborative assessment with post-secondary students (Berry & Nyman, 2002; 

Klecker, 2000; Lambiotte, Dansereau, Rocklin, & Fletcher, 1987; Zimbardo, Butler, & Wolfe, 

2003), where its benefits and appropriateness were measured using summative test scores, 

researcher observations, and student self-reflection surveys. However, in-depth analyses of the 

learning that occurred during the assessments do not appear to exist. At the university level, 

collaborative assessment seems to benefit students in a variety of ways including increases in 

confidence, motivation, communication, and test scores (Berry & Nyman, 2002; Hancock, 

2007), but some studies with elementary and middle school students question the effectiveness 

and benefits of collaborative work (Mercer, 2008a; Stacey, 1992; Webb, 1995). 
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 Despite the potential benefits of collaboration, many of which I have experienced first-

hand, I remain skeptical regarding its use in the classroom. From my personal perspective as a 

middle school teacher and as a collaborator in various situations, I am aware that effective 

collaboration is a delicate balance between attaining group and personal goals, between 

compromising and retaining individual beliefs, and between challenging and accepting the ideas 

of others. Tensions inevitably arise and can be difficult to navigate, especially for young 

teenagers.  

 With group projects, students (and parents) frequently want assurances that the workload 

will be divided equally, that a student’s grade will not be affected negatively by lack of effort on 

the part of their group members, and that non-contributing students will not receive credit for 

work they did not do. As a teacher, I sympathise with these points, but am frustrated that they are 

driven by grade-focussed intentions. Collaborative assessment that takes place entirely within 

class time and under the supervision of the teacher seems likely to mitigate at least some of these 

concerns, while still affording students the benefits of working with their peers. 

 In addition, although I am comfortable with a classroom in which students talk, move 

about, and generally experience a fair amount of freedom, I am aware of the number of off-task 

conversations I have become accustomed to hearing. Juxtaposed against ever-present public cries 

for longer school days and a longer school year, and in light of the conflicting claims 

surrounding collaborative learning, I wonder about both the quality and quantity of learning that 

occurs when students work together. Yet, I also recognize that not all ‘off-task’ behaviours are 

disadvantageous, accept that few single classroom practices are either wholly positive or wholly 

negative, and readily admit that when collaboration ‘works’ the benefits to students and their 

learning are significant. 
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1.2 Purpose 

 As a teacher of collaborating students, I move from group to group, responding to 

questions and addressing concerns, but rarely have the opportunity to step back and observe the 

process as a whole. As a researcher, I have read widely on collaboration, assessment, problem 

solving, mathematics, and middle school students, but have not encountered a study that 

integrates all five components.  

 In this research, I intend to explore collaborative assessment in which individual 

accountability is not retained. Adhering to the belief that collaboration should enable students to 

‘do more’ or ‘do differently’ than they could alone, I examine the mathematical learning that 

middle school students demonstrated when they had the opportunity to collaborate with a 

teacher-assigned partner on an in-class assessment. Similar to Damon and Phelps (1989), I am 

interested in exploring the mathematical learning that was demonstrated when equally (or 

similarly) matched students worked together on challenging problems. As such, the assessment 

on which students collaborated was a problem-solving type investigation, rather than a 

traditional mathematics test and mathematical learning included more general mathematical 

skills such as selecting strategies, developing plans, communicating ideas, and evaluating 

solutions in addition to the depth and breadth of concept-specific skills and procedures. 

1.3 Research Question 

 What mathematical learning is demonstrated, verbally and on paper, during a 

mathematics assessment in which middle school students are given the opportunity to collaborate 

with a teacher assigned partner?  

1.4 Significance 

 For the last twenty years, trends in education have reflected a move away from more 

traditional exercise-book questions and teacher-centred lecture methods towards an increased 
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emphasis on student-centred problem solving (Goos, Galbraith, & Renshaw, 2002) and 

collaboration (Carter, Jones, & Rua, 2002). Although assessment philosophies are also changing 

in response and it is now commonly accepted that assessment serves multiple purposes (i.e. 

assessment of learning, assessment for learning, and assessment as learning), often 

simultaneously, people in many school communities are reluctant to use collaborative work as a 

summative assessment tool since they view collaboration as a form of cheating (Berry & Nyman, 

2002) and believe that only independently-completed tasks accurately reflect what a student 

knows (Jensen, Moore, & Hatch, 2002) and can do. Consequently, many assessments remain 

strikingly similar to those of the past, which can be frustrating to teachers who are implementing 

more collaborative learning activities in their classroom (Suurtamm, 2004). 

 I feel that alternative assessment practices need to be explored in order to increase 

alignment between teaching and assessment and to enhance post-assessment student learning. 

Collaborative tasks present a reasonable approach for meeting both of these goals (Suurtamm, 

2004; Webb, 1997). In addition, since there is a tendency to assess what is valued and, 

conversely, to value what is assessed, collaborative assessments have the potential to broaden the 

realm of mathematical learning considered important. By providing information on the 

mathematical learning students demonstrate during collaborative assessment, results from this 

research will help teachers better understand and justify what role, if any, collaborative 

assessment could play in their middle school classrooms  

 This study contributes to the current body of research on collaborative learning by 

specifically examining collaborative assessment in the middle school mathematics classroom. 

Although current research on collaborative assessment seems concentrated at the university 

level, I endeavour to investigate whether its use is also beneficial for younger students. Given the 

significant differences in maturity, schooling, life experiences, motivation and other factors 
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between university and middle school students, it is possible that the two groups will respond 

differently to collaborative assessment. In addition, since much of the cooperative learning 

research at the elementary and high school level focuses on the social benefits of cooperation or 

on the controversial effects for high-ability learners, this study contributes to our understanding 

of the mathematical learning that is demonstrated during equal-status collaborative situations. 

Finally, this study looks in more detail at the types of collaboration and learning that are 

demonstrated during assessment, rather than focussing on final assessment scores. 
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2 Literature Review 

2.1 Assessing Mathematical Learning 

 It is a premise of this study, and commonly accepted by many researchers, educators, 

parents, and students, that the main goal of assessment is to acquire information about students’ 

learning that is valid, reliable, and meaningful (Klecker, 2000). Yet gathering information is only 

the first step in the assessment process and subsequent steps require the interpretation of the 

acquired information, as well as further action (Wiliam & Black, 1996). Commonly, many 

formal assessments, including the task in this research, are considered summative. Their primary 

intent is to determine what a student knows, particularly with respect to pre-specified outcomes, 

and further action includes assigning a mark or a grade. While this (questionably) provides 

useful information to teachers, parents, schools, and districts, such grade-oriented assessment has 

been shown to have limited impact on the improvement of student learning (Black, Harrison, 

Lee, Marshall, & Wiliam, 2004).  

 Conversely, formative assessment, also known as assessment for learning (AfL), stresses 

the importance of useful feedback, student engagement, and effortful improvement and has been 

shown to measurably improve student performance (Black, Harrison, Lee, Marshall, & Wiliam, 

2004; Black & Wiliam, 2009; Wiliam & Black, 1996; Wiliam, Lee, Harrison, & Black, 2004). 

Although they are often perceived as separate and independent practices, it is possible for 

summative and formative assessment to coexist (Black, Harrison, Lee, Marshall, & Wiliam, 

2004). 

 One identified component of AfL that is particularly relevant to this study is the use of 

peer assessment (Black, Harrison, Lee, Marshall, & Wiliam, 2004). Peer assessment is not 

customarily considered a component of collaborative assessment. However, it is implicit in the 

collaboration process since students’ ideas and suggestions are continually open to exposure and 
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judgment from the peer(s) with whom they are working, which may provide immediate feedback 

(to the individual and to the group) throughout the task.  

 Before information on student learning can be analysed or used for any purpose, though, 

it must first be collected. This seemingly straightforward task of determining what a student 

knows about the subject is complex and deeply influenced by one’s beliefs regarding what it 

means to know, to learn, and to understand. In many classrooms, learning is conceived “as the 

individual mastering a predetermined body of knowledge and procedures" (Goos, Galbraith, & 

Renshaw, 1999, p. 37) and assessment is seen as a measure of “individual competence of 

students in their thinking skills and subject-matter knowledge and expertise” (Webb, 1995, p. 

240). 

 However, from a social constructivist viewpoint, the learning that students are on the 

cusp of demonstrating independently is also valued. Therefore, what students can do with others, 

in addition to what they can do alone, is relevant. Consequently, from within this framework, 

educators “may view the lack of collaboration as a more serious defect than its inclusion” 

(Wineburg, 1997, p. 64) since the scaffolding provided by peers is perceived not as cheating, but 

as providing students the opportunity to show their highest capabilities.  

 Mathematics educators recognise that students are not simply receptacles of knowledge, 

but are active creators of meaning who are affected by their personal identities and their 

immediate and wider environments. For example, students who believe the work they are 

undertaking is meaningful and who feel confident and in control of their learning are more likely 

to be motivated by a desire to learn and understand the topics being presented (Seifert & 

O'Keefe, 2001), which means they may be more likely to persist with difficult tasks and to 

explore various mathematical approaches and connections without specific direction from the 
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teacher. Particularly relevant to the middle school population is the observation that this type of 

motivation begins declining in grade 7 (Chouinard & Roy, 2008).  

 In addition, since learning is always contextualised, the learning a student demonstrates 

may vary with the environment in which it is requested.  For example, people are frequently able 

to perform mathematical calculations in one situation that they are unable to perform in a 

different setting (Kieran, Foreman, & Sfard, 2001; Lave, Murtaugh, & de la Rocha, 1984; Nasir, 

Hand, & Taylor, 2008; Wineburg, 1997). As learning is not a simple matter of skill acquisition, 

but a more complex process that is affected by myriad factors, it is difficult to confidently assert 

when a student has achieved a specific learning goal. 

 Accepting that assessment is more complicated than simply having students ‘show what 

they know’ acknowledges that different assessments will lead to the demonstration of different 

types of knowledge. For example, a multiple choice test usually enables students to demonstrate 

factual recall, while a problem solving situation offers greater potential for students to 

demonstrate their ability to select, apply, and possibly evaluate their approach(es) to a problem. 

Therefore, the type of assessment and the environment in which it is performed are likely to co-

influence the mathematical learning students demonstrate. In this study, I select a somewhat 

uncommon type of assessment (a single in-depth problem) and environment in which it is 

performed (with a partner), and examine the demonstrations of mathematical learning that ensue.

 Conceptual understanding, identified by the United States’ National Research Council 

(NRC) as one of the five components of mathematical proficiency, is defined as the 

“comprehension of mathematical concepts, operations, and relations” (Kilpatrick, Swafford, & 

Findell, 2001, p. 116). Students who possess a conceptual understanding of mathematics 

appreciate and draw upon the rich connections between various concepts. They view 

mathematics, not as a discrete collection of facts and algorithms, but as an interconnected web of 
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ideas and practices. Conceptual understanding must be developed within, rather than handed to, 

the student. According to the NRC, it is a necessary, though not sufficient, component of 

successful mathematics learning.  

 To me, conceptual understanding, as defined by the NRC, appears reminiscent of 

Skemp’s (1976) term relational understanding, which he used to indicate an understanding where 

one knows not only what to do, but why it makes sense to do so. He associated the alternative 

form of understanding, termed instrumental understanding, with rule following behaviours. 

Though instrumental understanding was, and still is, widely prevalent in mathematics classrooms 

and textbooks and is beneficial at times, Skemp argued that relational understanding is more 

conducive to the development of a positive attitude towards mathematics and is more useful in 

novel situations because of its flexibility. 

 In a related vein, Thompson, Philipp, Thompson, and Boyd (1994) proposed that students 

and teachers display either a conceptual orientation towards mathematics or a calculational one.  

Learners with a conceptual orientation recognise the contextual meaning of numerical values and 

mathematical procedures and desire to become skilled reasoners, rather than (or in addition to) 

skilled calculators. They explain their work by elucidating each variable’s meaning within the 

context of the problem and by providing justification for the appropriateness of their chosen 

strategies. In contrast, learners with a calculational orientation aim primarily to ‘get answers’. 

They focus on identifying and performing procedures and calculations and explain their solutions 

by describing, rather than justifying, what they have done. Just as Skemp favours the deeper 

why-oriented relational understanding, Thompson, Philipp, Thompson, and Boyd favour the 

more in-depth intricate conceptual orientation. As I explore the mathematical learning 

demonstrated by students in this study, I look for evidence of both procedural/ calculational and 
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conceptual/ relational understandings and orientations. To identify each, I use the characteristics 

suggested by the NRC, Skemp, and Thompson, Philipp, Thompson, and Boyd. 

2.2 Collaboration, Communication, and Understanding 

 Partnerships, like all forms of collaboration, “encourage students to discuss, debate, 

disagree, and ultimately to teach one another” (Slavin, 1991, p. 71). They provide students the 

opportunity to speak mathematically, which provides them the opportunity to think 

mathematically (Learner, 2001). Artzt and Armour-Thomas (1992) found that students who 

solve problems collaboratively tend to spontaneously verbalise their ideas, which exposes these 

ideas to critical examination from peers (Goos, Galbraith, & Renshaw, 2002). As a result, it 

becomes more likely that students will need to explain and justify their statements. The 

opportunity to communicate – to hypothesise, to discuss strategies, and to defend and justify 

their solutions – allows students to become participants, rather than just spectators and is 

paramount if students are to construct meaning, develop understandings of the relationships 

implicit in their mathematical knowledge (Steele, 2001), and become fluent in the mathematical 

discourses and cultures in which they participate. According to Vygotsky, 

students create their own knowledge and develop mathematical meanings as they learn to 

explain and justify their thinking to others. As they learn to speak the mathematical 

language, they transform their thinking of the mathematical concepts. The mathematical 

language comes from society, and thought (concept) comes from the individual. (as cited in 

Steele, 2001, pp. 404-405) 

This view reinforces that meaning cannot simply be transferred from one person to another. 

Students who focus only on memorising individual definitions, procedures, and algorithms will 

not develop the internalized understanding required to appreciate the connections between these 

components and other mathematical experiences (Steele, 2001). 



12 
 

 The level of collaboration afforded by a paired assessment situation provides a potential 

forum for students to think more critically than they would if working individually. The 

increased opportunity to grapple with ideas and prospective solutions may help students to define 

and communicate their own understandings more clearly. It is difficult to ascertain, however, the 

prerequisite precursors to successful collaboration. In general, studies on student collaboration 

focus on classrooms in which collaboration is valued and students are taught (explicitly or 

implicitly) to respect and value peer input. Though some researchers, including Webb (1997) and 

Lambiotte, Dansereau, Rocklin, and Fletcher (1987), recommend the direct teaching of 

collaboration skills, the specific levels and types of training and experience required for students 

to participate in effective collaboration are not clear.   

 Mercer (Mercer, 2008b; Mercer & Sams, 2006) argues that effective collaboration is a 

result of how successfully students critically examine their ideas during their quest for group 

consensus. His conclusions stem from large-scale in-depth studies with primary school children 

in England, including the SLANT (Spoken Language and New Technology) project and the 

Language, Thinking and ICT in the Primary Curriculum project. His earlier work, connected 

with SLANT (Mercer, 1996), focused on understanding how the dialogues between 9 and 10 

year old students were affected by the teacher and by specifically selected computer-based 

activities. His later work focused on the effects of teacher intervention programmes designed to 

enhance student communication and reasoning. Reporting on video data gathered from one 

classroom of 10 and 11 year olds, Mercer (2008a) used excerpts from teacher-led lessons and 

from triads attempting to solve computer-based mathematics problems requiring a single 

numeric answer. A separate study (Mercer & Sams, 2006) specifically examined the effect of 

‘Thinking Together’, a teacher intervention programme designed to improve Year 5 (9 – 10 year 

old) students’ language, reasoning, and discussion skills, and the effect the resulting 
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improvements would have during group tasks in mathematics. Data consisted of video 

recordings of teacher-led lessons and small group interactions, interviews with the teachers and 

students, and results from pre- and post- intervention tests measuring the students’ mathematics 

knowledge and understanding. 

 As a result of his work, Mercer identifies three types of talk students exemplify when 

working together: disputational, cumulative, and exploratory. Disputational talk is characterized 

by the volley of ideas between partners. Instead of sharing ideas and jointly constructing 

solutions, students tend to offer assertions and counter-assertions and make individualized 

decisions regarding their work. In cumulative talk, students aim for consensus and joint 

understanding; they tend to build positively on each other’s ideas and suggestions, but do so 

uncritically without challenging or justifying reasons and opinions. Exploratory talk, which 

Mercer (1996) claims is “most effective for solving problems through collaborative activity” (p. 

370), is typified by its emphasis on all students reaching consensus through the joint construction 

of suggestions and reasoning that have been made visible and explicit through justification and 

exposure to questioning.  

2.3 Collaborative Assessment in Schools 

 Providing students with a variety of collaborative strategies, such as exploratory talk, and 

numerous opportunities to become active participants in, rather than passive recipients of, 

mathematics, supports multiple assessment practices and purposes. As previously discussed, 

assessment can be conceived as a measurement of student learning (assessment of learning) or as 

an inquiry during which knowledge is constructed (assessment for learning). When the primary 

purpose of an assessment is learning, its validity is based upon how well the assessment 

promotes further valuable learning, rather than upon how well it measures what students have 

already learned (Hargreaves, 2007). Owing to the potential for the joint construction of 
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knowledge, collaborative assessment is well-suited as an assessment for learning, which may 

explain why it is often used for project-based work. However, as investigated in this study, it can 

also be used as an assessment of learning.  

 As an assessment of learning, collaborative assessment takes many forms, each with its 

own degree of individual accountability. In some cases, such as the Connecticut Common Core 

of Learning Alternative Assessment in Science, students have the opportunity to work 

collaboratively on part of an activity before completing it individually (Webb, 1995; Webb, 

Nemer, & Zuniga, 2002). This is often seen in K-12 classrooms where students work with a 

partner on a science lab or brainstorm ideas for a story before completing the assignment 

individually. Such activities provide students many of the benefits of working with their peers, 

but maintain individual accountability. Similarly, in other situations, students have the option of 

working with a partner or group throughout the entire assessment. However, each student is 

responsible for submitting their own assessment (Klecker, 2000, 2003). Though individual 

accountability is maintained in the aforementioned circumstances, the assessments constitute 

collaborative work since students work together, rather than each taking responsibility for 

separate components of the task. In other cases, students complete the assessment collaboratively 

and submit a single assessment (Berry & Nyman, 2002; Hancock, 2007). As there is no option 

for individual work, students must agree on their responses. Though limited research seems to 

exist on this apparently uncommon type of collaborative assessment, most of it appears with 

university students. As the focus of this study, I aim to provide some preliminary findings 

regarding the use of this type of assessment, with pre-university students. 

2.4 High Achieving Students within a Collaborative Setting 

 Though critics of collaboration may acknowledge that collaborative test scores tend to be 

higher than individual scores (Webb, 1993; Zimbardo, Butler, & Wolfe, 2003), they claim this 
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occurs because the strongest student in the group carries and supports the weaker student(s). 

Because stronger students are often distributed amongst the groups, all students appear to do 

better than if they had been working individually. Webb’s findings (1995) that a group’s solution 

to a problem is sometimes no better than the solution provided by the strongest group member 

working alone further support this claim.   

 Critics are also concerned that collaboration disadvantages high-achieving students 

working in heterogeneous groups, a claim supported by Webb, Nemer, and Zungia’s (2002) 

findings that some high-ability students working in high-ability groups performed better than 

their high ability peers working in mixed-ability groups. Other research, however, indicates that 

collaboration is equally beneficial for all students (Slavin, 1991), an idea corroborated by the 

high-achieving undergraduates who felt “they learned a great deal from their interactions with a 

[lower-achieving] colleague during the [collaborative] examinations” (Hancock, 2007, p. 224).  

 Though results are inconclusive, it appears that group work may benefit the group as a 

whole and the majority of its members as individuals, but it does not necessarily improve the 

performance of the strongest participant(s). In competitive classrooms, where student success is 

dependent upon the failure of others, this may be an important concern. However, in classrooms 

where success is considered collectively, as well as individually, this concern becomes less 

important (Epstein, 2007). 

2.5 Zones of Proximal Development in Equal Status Partnerships 

 From a theoretical perspective, Vygotsky’s zone of proximal development (ZPD) can be 

used to explain why high-achieving students often score higher when they work with other high 

achieving students, but do not do any better than they would have done had they been working 

alone or with lower achieving students. Learning occurs in a student’s zone of proximal 

development, an area conceptualised “as a symbolic space involving individuals, their practices 
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and the circumstances of their activity. . . .  [Students] can be pulled into their ZPDs by a 

combination of the activity, the actors, and appropriate communication” (Lerman, 2001, p. 103).  

 In historical views of the zone of proximal development, the actors consist of an ‘expert’ 

who scaffolds learning for a ‘novice’. This situation is created when a high-achieving student 

works with a lower achieving student; the novice’s learning improves, but the expert’s remains 

relatively stable. However, two ‘equal status’ partners can also work together to simultaneously 

broaden their ZPDs (Goos, Galbraith, & Renshaw, 2002). Equal status seems to refer to 

partnerships in which the students possess relatively equal levels of expertise and experience, 

with the implicit assumption that this will create a fairly equal balance of power between the two 

partners. As Forman describes, equal status partners are in the unique positions of being “able to 

coordinate their different perspectives on a problem in order to achieve progress" (as cited in, 

Goos, Galbraith, & Renshaw, 2002, pp. 195-196). Consequently, both partners can contribute 

differently, but (nearly) equivalently, giving the partnership the potential to demonstrate greater 

learning than either student could show individually (Goos, Galbraith, & Renshaw, 2002). In 

other words, when two high-achieving students work together an equal-status partnership 

develops whereby each student contributes to the other’s learning. Hence, the group result is 

stronger than what either individual could have accomplished alone.  

 Equal-status relationships may be more likely to yield higher results in open-ended 

situations such as problem solving tasks because students develop a deep understanding of basic 

concepts as they experiment with and examine their own ideas and assumptions (Phelps & 

Damon, 1989). In such situations, Zimbardo, Butler, and Wolfe (2003) found that the 

accomplishments of the group exceeded the accomplishments of any single individual and 

collaborative test-taking yielded higher scores than what either student could produce 

individually. In part, these results may be possible because team members develop an 
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appreciation of each other’s strengths (Berry & Nyman, 2002) and can use these strengths to 

scaffold their own learning. Further, since solutions to open-ended tasks are less likely to depend 

upon a discrete set of knowledge-facts, the probability that one student tells the correct solution 

to the other(s) is reduced. 

 According to Granott (1993), collaboration in equal status partnerships is “characterised 

by shared activity, a common goal, continuous communication, and co-construction of 

understanding” (as cited in Goos, Galbraith, & Renshaw, 2002, p. 196). This collaboration seems 

evident during paired assessment at the university level, as students contributed equally to the 

test and worked collaboratively to generate solutions (Berry & Nyman, 2002; Ewald, 2005; 

Hancock, 2007). However, ‘equal status’ is a tenuous term. Taking Damon and Phelps’ (1989) 

definition of equality as an engagement in which both students take suggestions and ideas from 

each other, as opposed to a situation where one student guides the other, pairing students on 

(perceived) mathematical capability does not necessarily lead to an equal status partnership since 

the role of other factors including students’ abilities to work collaboratively, explain their 

solutions, and argue for answers they believe are correct are ignored. These other factors did not 

seem to affect collaboration during paired assessment at the university level (Berry & Nyman, 

2002; Ewald, 2005; Hancock, 2007), but it is unclear if similar results will be seen with middle 

school students. Possibly, younger students will collaborate as effectively as older students. 

However, this cannot be assumed based on work with older students, since, as Mercer’s work 

(discussed earlier) shows, younger students do not always possess the skills to communicate and 

reason effectively during group work. In addition, as will be discussed in the following section, 

students may not possess the same maturity levels as older students, which may leave them 

struggling.  
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2.6 Concerns Regarding Collaboration 

 In compulsory education, concerns exist regarding the negative peer influences that may 

be exerted during collaborative activities. At the elementary level, Webb (1997) is disquieted 

about the potential diffusion of responsibility that may occur if students allow other group 

members to take responsibility for completing all the work (which has been termed “social 

loafing”). In response, the students who have been doing all the work may stop doing so in order 

to avoid being taken advantage of (which has been termed the “sucker effect”). In either case, the 

final product is not likely to represent the collaborative effort of the entire group.  

 In addition, as Stacey (1992) found with 12 – 14 year olds, some groups have a tendency 

to favour simple solution strategies, whether or not they will lead to a correct answer. Her study 

was developed in response to data obtained during a larger project in which students in some 

classes took a problem solving test individually while students in other classes took it with a 

partner or small group. The test consisted six ‘real world’, non-routine problems which the 

students had 45 minutes to complete. Surprisingly, group performance was slightly, though not 

statistically significantly, worse than individual performance, which prompted further 

investigation. As a result, seven teacher-recommended high-ability triads were videotaped as 

they worked on problems that were similar to those in the test. Analysis showed that in most 

groups, at least one correct solution method and one incorrect solution method was proposed 

during the discussion. However, many proposed ideas were not discussed or acknowledged and 

some groups opted for simpler solution methods, which led to incorrect answers.  

 These scenarios may be especially likely if either or both of the partners are motivated by 

work-avoidance (Seifert & O'Keefe, 2001) and are more focussed on finishing the assignment 

rather than on understanding and applying the mathematics involved. While these effects were 

noticeably absent with university students in these studies, middle school students may be more 
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susceptible to peer pressure and impulse decision making, which could render them more 

prevalent and powerful in a middle school classroom. The current study seeks to explore if that is 

the case.  

2.7 A Review of Collaborative Assessment Studies with University Students 

 Within the domain of mathematics, Berry and Nyman (2002), who studied a university 

level ‘cooperatively-taught / cooperatively-tested’ mathematics modelling course, extol the many 

advantages afforded students working together. Based on student post-test survey responses, they 

found that team members engaged in discussion and explained their responses to each other 

during the test. The opportunity for students to discuss, explore, explain, and do mathematics, 

helps students come to see the subject as an active, rather than passive, discipline. Working with 

their peers also helps students to see that even ‘good’ mathematics students struggle with 

challenging problems (Zimbardo, Butler, & Wolfe, 2003) and need to put in considerable 

thought, time, and effort in the quest for an appropriate solution. 

 Lambiotte, Dansereau, Rocklin, and Fletcher (1987), also working with university 

students, explored the impact of collaborative learning (i.e. studying together) and collaborative 

testing in a pseudo-classroom environment. Even though students were assigned the partner with 

whom they would study for a reading passage test and/or take a reading passage test, they rated 

the cooperative test-taking as a favourable experience. In addition, students who studied together 

recalled information more accurately, whereas those who tested together recalled more (in terms 

of quantity) details. 

 Further work with college students in an introductory psychology class was completed by 

Zimbardo, Butler, and Wolfe (2003) who allowed students to work independently or to self-

select the partners with whom they would take their test. Students working together earned 

higher test scores than those working alone and reported a variety of benefits including reduced 
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test anxiety, more confidence, and an increased enjoyment of the topic. Since students knew their 

partner ahead of time, they could choose to split the studying between them. However, teams that 

did so seemed to lose the benefits that came from discussing and debating answers.  

 Hancock (2007) investigated the effect cooperative testing had on the motivation of 

graduate students in a research methods course. Students were paired in high performer/ low 

performer partnerships for three examinations (a multiple choice, a short answer, and an essay 

question). He found that paired students were more motivated than individual test-takers, 

achieved better exam scores, and felt competition within the class was reduced.  

 In summary, university participants responded positively to the opportunity to work 

collaboratively during assessments (Berry & Nyman, 2002; Lambiotte, Dansereau, Rocklin, & 

Fletcher, 1987; Zimbardo, Butler, & Wolfe, 2003) and claimed that it reduced test anxiety 

(Hancock, 2007; Zimbardo, Butler, & Wolfe, 2003). Given that many middle school students 

contend with mathematics angst, limited self-confidence, and general frustration with the 

discipline, these findings are encouraging and worthy of further investigation.  

Although the research is limited, preliminary indications suggest the benefits are evident 

regardless of the type of partnership, form of test, or level of individual accountability. 

Therefore, tailoring collaborative assessments to the unique needs of younger students, as I have 

done with this research, may yield similar favourable outcomes. 

2.8 Individual Learning and Accountability 

 In collaborative situations, both group and individual learning is valued. However, Webb 

(1995) and Slavin (1991) argue that individual learning is impeded in collaborative situations in 

which the emphasis is on a final goal, such as performing well on an assessment. According to 

Slavin, unless students are held individually accountable for their work they will learn that taking 

the time to give and receive assistance may reduce the group’s overall performance. 



21 
 

Consequently, individual learning may be sacrificed for the greater benefit of the group. More 

directly, 

when the group task is to do something, . . . the participation of less able students may be 

seen as interferences rather than help. It may be easier in this circumstance for students to 

give each other answers than to explain concepts or skills to one another. (Slavin, 1991, 

p. 77) 

In other words, in an assessment situation, there is the potential for partnerships to simply choose 

the best person for the task so as to ensure the highest mark. As a result, a situation may develop 

where the submitted assessment represents the work of one individual, rather than the 

collaborative effort of the dyad. Consequently, in this study, but also in everyday classroom 

practice, one motivation for selecting equal status partners and for providing an open-ended task 

is to avoid a situation where answers can be easily given from one student to another.   

 Various other strategies are sometimes employed to help increase or ensure individual 

accountability (and, hence, individual learning) is maximised. As discussed earlier, some 

teachers will require each student to submit their own assessment. Another strategy, used by 

Hancock (2007) and Klecker (2003), involves randomly assigning partners on the day of the 

exam, thus preventing students from ‘splitting the studying between them’. 

 Alternatively, teachers can choose to reduce the emphasis on individual accountability 

which may enable the development of a more collaborative and less competitive learning 

community. Contrary to Slavin’s (1991) and Webb’s (1995) expectations that individual 

(assigned) responsibility is a prerequisite for individual learning, university students “interacted 

extensively” (Hancock, 2007, p. 218) with their partners and worked collaboratively to generate 

solutions (Berry & Nyman, 2002), even when individual accountability was forsaken.  
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 In my mind, the comparison between Slavin and Webb, on the one hand, and Klecker, 

Hancock, and Berry and Nyman, on the other is interesting. Slavin and Webb focussed their 

work with elementary students in the early to mid 1990s, whereas the other researchers worked 

with university students approximately ten to fifteen years later. Therefore, the researchers’ 

approaches to individual accountability may differ as a result of cultural differences between the 

two decades and/or as a result of the differing ages of the students in their studies. As a 

researcher working with middle school students in 2010, I feel partially aligned with both sides. 

Like the latter researchers, I believe that individual accountability is not a prerequisite to 

individual learning. However, like Slavin and Webb, I appreciate that younger students 

sometimes need more direction and explicit responsibilities, which can be accomplished by 

assigning individual tasks. This study provides an opportunity to explore how middle school 

students respond to the autonomy they are afforded in a collaborative assessment situation where 

they are expected to jointly create understanding and mathematical solutions.  
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3 Research Design 

 For this research, I worked with a grade 8 class and their teacher. The teacher and I 

developed a classroom assessment that students completed during a single 80 minute lesson. This 

assessment was integrated into the volume and surface area unit that students were studying and 

was a required component of the course. During the assessment, students worked with a teacher-

assigned partner. I video-taped four pairs of students as they worked on their assignment. I also 

collected the students’ work, including the self-reflections they completed after the task. Data 

analysis focussed on the qualitative nature of student interaction and on the mathematical 

learning students demonstrated (both on paper in the submitted assignment and orally during the 

assessment itself) when they were given this opportunity to collaborate with a teacher-assigned 

peer. 

3.1 Participants 

 Participants in this study came from a grade 8 mathematics class at a coeducational 

independent K – 12 school.  

3.1.1 Recruitment of Participants 

 Initially, I contacted the headmaster of the independent school where I planned to 

complete my research. After he consented to the study, I contacted the mathematics teacher. 

Once she consented to the research, the mathematics teacher introduced the study to her class 

and distributed guardian consent forms and student assent forms, which she later collected. The 

consent and assent letters explained that the paired assessment task and the associated written 

reflection constituted part of the regular mathematics class. As such, all students would complete 

them with a teacher-assigned partner, whether or not they chose to participate in the research and 

consent to the use of their data. The letters further explained I would collect all consenting 

groups’ written work, but only record some of the groups while they were working. After 
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students had received this initial introduction to the study, I visited the classroom as a 

participant-observer. On the day of the assessment task, I verbally reaffirmed student assent.  

3.1.2 The Teacher  

 I chose to work with this classroom teacher because I knew she supported and 

encouraged collaborative work (though not usually collaborative assessment) as well as the type 

of concept-driven problem-based assessment task I used in this research. She was an experienced 

teacher, though this was her first year teaching at this school. Unfortunately, on the day of the 

assessment the teacher was absent due to illness. However, the substitute teacher was willing to 

allow the research to proceed and consented to participate, as well.  

3.1.3 The Students 

 Fourteen students (6 males, 8 females) consented to participate; I collected written work 

from all participating students and video recorded four of the partnerships, as they worked on the 

assessment. The classroom teacher paired the students the day before the day of the task. Her 

decisions were based on her professional knowledge of the students, acquired during the 

previous six months, rather than on their academic scores. After she briefly described to me her 

justification for the ‘equal- status’ pairing of each duo, I selected four partnerships to video 

record. My in-class observations of these students made during lessons prior to the assessment 

corroborate the teacher’s interpretation of the students’ behaviour and mathematical ability. 

My selection of which partnership to video was based on two criteria: 

1) I chose partnerships that were equal status, in terms of both academic ability and social 

power within the classroom. 

2) I chose a variety of equal status partnerships such that differences in mathematical 

competencies, friendship levels, and social behaviours were represented.  

 The partnerships I selected are described below. 
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 Partnership 1: Jesse** and Rebecca. According to the teacher, Jesse and Rebecca are both 

considered fairly strong students who tend to do well in mathematics. Rebecca, an ESL student, 

is very quiet and rarely voices her views when working with others. However, she is comfortable 

with Jesse who listens to what she has to say, which is why they were partnered together.  

 Partnership 2:  Melvin and Christina. Melvin and Christina are both considered weak in 

mathematics and frequently stay together after class for extra help. Though they seem to have 

difficulty understanding many concepts, they can both be earnest students. In some situations, 

Christina has a tendency to be distracted. However, in the past she has worked well with Melvin. 

 Partnership 3: Tidus and Alexandra. Like Jesse and Rebecca, both Tidus and Alexandra 

tend to do well in mathematics. They are both interested in understanding the concepts behind 

the procedure, voluntarily participate in discussions, and are relatively confident in their ability 

to ask questions and seek clarification.  

 Partnership 4: Rodriguez and Fergus. Rodriguez and Fergus are good friends who are 

easily distracted and who have a tendency to socialise with each other and with their classmates. 

They are fairly weak in mathematics and often rely on algorithmic procedures. 

3.1.4 The Classroom Context 

 Throughout this research, the students were studying a three week unit on the volume and 

surface area of prisms, pyramids, and cylinders. The teacher expressed a desire to help the 

students develop conceptual understandings of the significant concepts involved with these 

topics, while also acknowledging the external expectations that students’ success would be 

measured primarily by their ability to use the required formulae. To meet the required objectives 

of drawing and constructing nets for 3-D objects; determining the surface area of right 

rectangular prisms, right triangular prisms, and right cylinders; and developing and applying 

                                                
** This and all names are pseudonyms.  
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formulae for determining the volume of right prisms and right cylinders (Ministry of Education, 

2008) she used a mix of tasks she designed herself and traditional textbook questions. (See 

Appendix A for a more complete description of the objectives.) 

 During the first lesson I observed, the students worked with partners to create all possible 

rectangular prisms that could be formed using 64 one-centimetre multilink cubes. As students 

worked on this task, they recorded the length, width, and height dimensions of each prism they 

found. This data served as an introduction to the idea that multiple objects could have the same 

volume and to the formula Vrectangular prism= l x w x h = area of base x h.  

 During a different lesson, the students presented their ‘dream house’ projects which 

entailed designing their own personal dream space and calculating the cost of furnishing it 

including flooring and wall coverings. To complete this project successfully, students needed to 

use their knowledge of surface area in context and in conjunction with other mathematical 

understandings.   

3.2 Method 

3.2.1 Preparation for the Task 

 I spent three lessons in the classroom during the middle of the unit. My primary role 

during these lessons was that of participant-observer. I also answered students’ questions about 

the research and gave assistance if needed. My goal during these lessons was to develop an 

understanding of how mathematics was taught in the classroom and the types of skills, 

knowledge, and concepts that had been introduced. The observations also helped me to better 

understand the students and how they interacted with each other. This helped me to appreciate 

how and why the teacher paired the students for the assessment task and also enabled me to tailor 

the assessment task to the students. I kept a reflective journal of my observations.  
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 During this time, I also worked with the teacher to select a relevant assessment task and 

related self-reflection. Decisions regarding the administration of the task were made in 

consultation with the teacher. This was important since the teacher possessed a clearer 

knowledge of various situational factors that could have affected how such an assessment would 

be perceived by students, parents, and school administrators. For example, we decided that all 

students would be required to work with a teacher-assigned partner, whether or not they 

participated in the research. Before the research began, I decided that students would work in 

dyads, not larger groups, since smaller groups tend to work more cooperatively (Alencar, de 

Oliveira Siqueira, & Yamamoto, 2008; Hamburger, Guyer, & Fox, 1975) and draw reluctant 

participants into discussions more frequently (Jorgensen, 1973). Also, I believe dyads are more 

manageable within the middle school classroom, will enable students to stay more focussed, and 

offer the greatest possibility for all students to participate actively. The teacher did not express 

any concern about the students working in dyads. 

 We also decided that students would submit a single assessment, as this provides an 

impetus for individuals to explain, justify, and defend their solutions in order to reach a 

consensus.  

3.2.2 Selecting the Assessment Task 

 Although the type of assessment task used in this research was different from the 

conventional tests found in many mathematics classrooms, it was familiar to this classroom 

teacher. In lieu of numerous ‘surface’ questions that could be solved by remembering specific 

formulae or procedures, this task presented a problem that required students to explore a concept 

in more depth and to consider a variety of possible strategies, solutions, and factors. The goal 

was to provide a problem that was conducive to collaboration and to the creation of a learning 
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space “rich in mutual discovery, reciprocal feedback, and frequent sharing of ideas” (Damon & 

Phelps, 1989, p. 13). 

 When developing the assessment task for this research, I felt it was important to work 

with the classroom teacher in order to ensure the task would be fully integrated into the 

classroom curriculum and would not be seen as an add-on or something extra that students must 

complete. In addition, since the purpose of this research is to explore paired assessments within 

the classroom, it was important that the teacher believe the selected task was appropriate for her 

students. 

 After speaking with the teacher and developing an understanding of her goals and plan 

for the unit, I prepared a number of possible tasks. Since the students were studying surface area 

and volume of three-dimensional shapes, this topic needed to constitute the main focus of the 

assessment. I began by selecting six possible problems which I gathered from past resources I 

had in my teaching files and from the support and resource materials available to IBO teachers 

on the International Baccalaureate Organization’s Online Curriculum Centre 

(http://occ.ibo.org/ibis/occ/guest/home.cfm). When selecting the possibilities, I looked for 

problems that would meet the following criteria: 

• have multiple entry and exit points -- stronger students needed an opportunity to 

showcase their strengths and sophistication, while weaker students needed to be able to 

work on the problem (successfully) without teacher assistance 

• take around 60 minutes to complete 

• address a ‘big idea’ in mathematics related to volume and/or surface area 

• provide a forum that would encourage discussion 

 Four problems became main contenders:  
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 1.  Enlarging a 3D shape. In this problem, students start by calculating the volume and/or 

surface area of a given cuboid. They are then directed to calculate its volume and/or surface area 

after it has been enlarged by a factor of two. Finally, students must develop and test a hypothesis 

that states a general rule relating the scale factor to the increase in volume and/or surface area 

(i.e. as a 3D shape is enlarged by a factor of n, the volume increases by n3 and the surface area 

increases by n2). I was drawn to this question because, in my experience, these relationships are 

ones that many students fail to appreciate, yet they are at the centre of many scientific 

explanations. Further, I felt this question provided the potential for the demonstration of a wide 

range of non-topic specific skills such as making an organised table, formulating justification for 

a hypothesis, and generating and applying a general rule. My concern with this problem was that 

it would not be a ‘problem’ for any students who already knew the relationship under 

investigation. While I could offer an alternative problem or focus these students on their 

application and explanation of their understanding of the relationship, I did consider this a 

drawback. The teacher and I were also concerned that many students did not have enough 

experience generating a general rule, which due to the required marking scheme would have 

been an expected part of this assessment.  

 2. Volume and/or surface area of the balloon. In this task, students are shown a 

photograph of a hot air balloon or a bouncy castle. Their task is to estimate the volume of air in 

the balloon/bouncy castle and/or the amount of fabric used in the object’s construction. Students 

are directed to use the people in the photograph to give them an idea of scale. I felt this problem 

would enable students to explore the idea of composite shapes as well as to consider notions of 

accuracy and estimation. I was also drawn to this problem because it was very clear and students 

would be able to understand easily what was expected of them. In addition, this task offers 

various opportunities for students to show a sophisticated level of understanding of volume by 
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allowing them to choose which shapes to use to make up the whole (i.e. estimating the volume of 

the hot air balloon using a rectangular prism, a cylinder, or an octagonal prism; recognising that 

different levels of accuracy are associated with different estimates).  

 3. Icing the Cake. In this question, students are given photographs of a container of icing 

and a round layer cake. They are given the height and radius of each object and asked to 

determine how many containers of icing are needed to make the cake. Like possibility number 

two, this question seemed easily understandable by all students and would encourage students to 

consider a variety of factors in addition to which formula to use. It offers the somewhat 

challenging task of determining the surface area of a cylinder and, since it addresses notions of 

conservation of volume, it encourages students to appreciate how information can be represented 

in different forms. There is also a unique interplay between volume and surface area in this 

question as students must look at the volume of icing, even though the icing essentially relates to 

the surface area of the cake.  

 4. The Cheese Problem. In this problem, students must determine how to slice a block of 

cheese, such that the exposed surface area is minimised. In many ways, it only requires students 

to perform the (relatively) simple tasks of determining the surface area of rectangular and 

triangular prisms. However, since some sides are exposed to air, while others remain protected 

by wax, students must visualise and determine which surfaces need to ‘be counted’. One benefit 

of this problem is that, to complete it fully, students will need to employ the Pythagorean 

Theorem, which helps students see the ways various components of mathematics link together. I 

was concerned that this problem may be too lengthy for students to complete in the required 

time. This problem also helps students to understand that the relationship between volume and 

surface area is not always constant – even though all sliced pieces of cheese have the same 

volume, they do not have the same surface area. 
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3.2.3 The Assessment Task and Reflection 

 The task selected for this research was Icing the Cake (see Appendix B). Though the 

teacher and I seriously considered a modified version of Enlarging a 3D shape (see Appendix 

C), we were concerned that the students would need a lot of front-loading in order to grasp the 

concept of a general rule and that they would not be able to finish in a single period. In addition 

to being more accessible to the students, we felt Icing the Cake successfully integrated the 

concepts of volume, surface area, and nets and addressed the big idea of conservation of volume. 

In hindsight, and arguably of greater relevance to these students, it is apparent the significant 

concepts ‘What is volume?’ and ‘What is surface area?’ were also addressed.  

 We believed students would be able to partake in this assessment with limited guidance 

from the teacher. Struggling or hesitant dyads could begin by determining the volume of the 

icing can, a task similar to questions they had previously seen. Alternatively, pairs could begin 

by considering the amount of icing on the cake. Groups could successfully solve the problem in a 

relatively straight-forward manner by assuming the icing thickness was 1 cm, effectively making 

the volume of icing needed equal to the area of cake covered by icing. However, students 

looking to stretch themselves could attempt to accurately estimate the thickness of the icing 

using concepts of scale and ratio or opt to verify their results using an alternative method. We 

discussed the possibility of using a square cake, but felt that simplified the problem too much. 

Keeping the round cake afforded greater opportunity for discussion and challenge since cylinder 

nets tend to be trickier than cuboid nets, owing to the understanding that is needed to appreciate 

the role of the circumference of the base of the cake. 

 Before beginning this task, students had experience moving between 2D and 3D 

representations of cylinders and had calculated volume and surface area, but they had not 

encountered problems such as this where the ‘surface area’ had a volume. I expected most 
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groups would solve this problem dividing the amount of icing needed by the volume of icing in 

the can. To find the amount of icing needed, I expected students to use surface area of a cylinder 

and area of a circle formulae. I believed that some groups would quickly attain a rough estimate 

and would have time to refine the amount of icing found on the cake.   

 During the task, students worked with a teacher-assigned partner. Students knew ahead of 

time with whom they were partnered and had worked with these partners on a previous task 

during this unit. When assigning partners, the teacher endeavoured to pair students in ‘equal 

status’ relationships (Goos, Galbraith, & Renshaw, 2002), in which both partners possessed 

similar levels of relevant knowledge and power. The teacher recognised that students with equal 

(or similar) mathematical backgrounds would not necessarily share power equally. Therefore, in 

addition to mathematical ability, she also considered pro-social skills, mathematics anxiety, 

friendship pairings, and English language confidence when choosing partners.  

 Though the students were familiar with and comfortable working in groups I (because the 

classroom teacher was absent) reviewed the established norms for working cooperatively before 

the assessment began. These included listening to each other and speaking respectfully. Partly to 

encourage positive social interactions, but also to encourage the deep level of mathematical 

thought that comes when students challenge and defend mathematical ideas (Maher, Powell, 

Weber, & Lee, 2006), I also encouraged students to actively discuss and debate the problem with 

their partner. During these pre-task instructions, I also ensured students understood that their 

marks for this assessment would be based on the mathematics they demonstrated on the paper 

they submitted, rather than on their discussion or how well they worked together.  

 During the assessment, paired students interacted freely with their partner, but were 

discouraged from discussing the problem with other groups. Students were able to use 

calculators, notes, and textbooks throughout the assessment. In addition, the substitute teacher 
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and I offered some suggestions and guidance, though this was more to encourage students to 

reflect on their strategies rather than point out what to do. For example, we encouraged students 

to consider the thickness of the icing, the icing layers, and the reasonableness of their solutions. 

Immediately following the task, the students completed a brief guided reflection about the task, 

which took about ten minutes. Students understood that their responses were not anonymous and 

would be seen by the teacher, but not shared with other students. Students were encouraged to be 

honest, but kind. The reflection asked students to consider how they believed the assessment 

reflected their mathematical learning as well as to consider any situational factors that may have 

influenced the learning they demonstrated (see Appendix C reflection questions).  

3.3 Data Collection 

 Data was collected from a variety of sources including video of the students working on 

the task, written work submitted by the students, and field notes. Video and written work was 

collected during a single 80 minute mathematics lesson near the end of the research, whereas the 

field notes were collected over a five week period during January and February. Figure 1 

provides an overview of the data collected.  

 

Figure 1: Overview of data collected. 
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3.3.1 Recordings of Partners Working on a Task 

 I video-taped four of the partnerships as they worked on the task, which enabled me to 

closely examine individual dyads, while still exploring a variety of equal status relationships (i.e. 

pairs with a strong/weak mathematics background; pairs with strong/weak collaborative skills; 

friendship pairings). Since the problem was a paper-and-pencil task, audio recording would have 

sufficed. However, the room was fairly loud and video recordings provided better sound quality. 

Video cameras were placed on the desks of four partnerships. The students were aware of the 

video cameras, but most groups tended to ignore them for the majority of the class. The 

exception to this was Rodriguez and Fergus who frequently and easily became distracted by the 

camera. As Fergus stated in his reflection, “Cameras make Rodriguez/ myself go crazy”. These 

recordings provided an opportunity to examine the students’ interactions throughout the entire 

time they were working on the problem, thereby allowing me to document the ways in which 

students interacted at different points in the problem solving process. Videotapes were only 

intended to record sound and images of the task on which students were working, not the 

students themselves. However, since some students were curious about the cameras, they 

occasionally filmed themselves, as well.  

3.3.2 Assessments Submitted by Students 

 The completed assessments of all 14 participants were collected and photocopied before 

they had been marked by the teacher. These papers served as written documents of demonstrated 

learning. In addition, they offered insight into decisions that were made (i.e. consensus that was 

reached and then recorded on paper), allowed the teacher and researcher to see any individually 

attempted student work, and provided information regarding which students took responsibility 

for writing and how this affected the direction of the discussions and the work that was recorded 

on paper. Since this task was marked by the teacher and returned to the students, I only retained 
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photocopies of the work. In the analysis, I only used the written work of the four dyads I had 

videotaped since, as I began to analyse the data, I realised that I wanted to focus on the interplay 

between the discussion and the written work. 

3.3.3 Brief Written Reflections  

 At the end of the assessment, each student individually wrote a brief (approximately 10 

minutes) guided reflection about the mathematical learning they felt they demonstrated during 

the task (See Appendix D). Student reflections served two purposes. First, they provided students 

an opportunity to self-assess their work, a practice which is encouraged at this school. Second, 

they enabled me to understand how students believe paired assessment affected the mathematical 

learning they demonstrated. This was important as the students’ perceptions of demonstrated 

learning sometimes differs from adults’ perceptions. Reflections were not shared with other 

students. 

3.3.4 Field Notes from Class Observations and Discussions with Classroom Teacher 

 Classroom behaviours are influenced by the expectations, strategies, and philosophies of 

the teacher, which in turn affect myriad factors including students’ beliefs regarding 

mathematics, cooperative work, alternative assessments, and the value of student contributions. 

Therefore, I felt it was important that I understand the context in which this research was 

conducted since it could impact the mathematical learning that students demonstrated during the 

paired assessment. To familiarize myself with the classroom context and the development of the 

mathematics unit for which the paired assessment was a culminating task, I observed the teacher 

and students on three occasions. I used a reflective journal to record my observations about the 

classroom learning environment. I also kept field notes of my formal and informal discussions 

with the teacher as we prepared for the assessment. Though I had intended to take field notes 

during the assessment itself, I did not because I was more occupied with the students than I had 
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intended due to the teacher’s absence. Instead, I recorded my observations in my reflective 

journal immediately following the lesson.  

3.4 Data Analysis  

 To prepare the data for analysis, I examined each pair’s written work and wrote a brief 

description of what I believed to be their strategies, approaches, and calculations. For Rodriguez 

and Fergus, who each completed their own written work, I analysed each paper separately. With 

the students’ oral work, I transcribed the complete video recording of each dyad’s discussion. 

After the initial transcription, I confirmed the data by listening to the recording in its entirety, 

comparing it to the transcription, and making changes when necessary. At times, I used the 

students’ written work to help clarify their conversation and vice versa. I used the written 

transcriptions as the basis for data analysis. Occasionally, I re-examined the original recordings 

in order to verify a student’s comment, intonation, or expression. For the interested reader, a 

complete transcript of one pair’s dialogue and their written work are available in Appendices E 

and F.  

  Initially, I attempted to code the students’ conversations based on the mathematical 

learning that they demonstrated during the paired assessment. The codes I developed were 

influenced by the students’ conversations and by previous studies I had read (Denessen, 

Veenman, Dobbelsteen, & Van Schilt, 2008; Fuchs, Fuchs, Hamlet, & Karns, 1998; Powell, 

Francisco, & Maher, 2003). They included: suggesting a suitable idea; suggesting an 

inappropriate idea; expanding on an idea; questioning an idea; defending an idea; repeating what 

was being written down; and non-relevant comments. As I coded the transcripts, I continually 

revised my codes in response to the data. However, many comments were difficult to code and 

the micro-analysis made it difficult to appreciate the flow and themes of the students’ 

conversations.  
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 By the time I accepted that coding individual comments would not provide appropriate 

insight into the research questions, I had become thoroughly acquainted with the data. I had 

spent many hours attempting to determine students’ intentions, follow their lines of reasoning, 

and decipher their mathematical approaches. As I began to focus on extrapolating emerging 

themes, I continued to read and reread the transcripts. I started to recognise the prevalence of 

certain events and topics including formula-centred discussions, the use of colloquial language, 

and students’ willingness to ask and respond to questions. I had no strict criteria for what I 

considered prevalent, but in general, prevalent meant that it occurred often enough, between 

dyads or within a single dyad, to stand out to me. I made a list of these ‘prevalent events’.  

 Based on loose connections I recognised between the prevalent events and the literature, I 

began to more clearly identify the emerging themes, which included the types of mathematical 

learning demonstrated (calculational and conceptual), the students’ interactions with each other, 

and the partners’ demonstrated ability to plan and check their solutions. I then focussed on each 

theme individually by reading the transcripts and written work with the intention of developing 

and clarifying the theme. For example, I read each transcript specifically looking for examples of 

calculational and conceptual understandings in order to learn more about when, why, how, with 

whom, and in which circumstances each one was likely to occur. When necessary, I referred to 

the students’ written reflections and my field notes in order to augment my interpretation of the 

data.  

 At times, I returned to the literature to learn more about the existing research in an area, 

which I then used to help clarify my understanding of the data. For example, once I connected 

students’ apparent lack of pre-planning their solutions to research I had read about students’ use 

of the problem solving cycle, I sought various studies which explored novices’ abilities to plan 

during problem-solving tasks. I used the main ideas presented in these studies to further inform 
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and develop my understanding of the themes. In this way, I moved between the data, the themes, 

and the literature, using each to refine and inform the other, until I felt further work would be 

redundant (See Figure 2). 

 In addition to the thematic analysis, I estimated the amount of time each group spent on-

task by roughly determining the number of minutes they spent working on the problem compared 

with the total length of time they took to complete the assessment (minus time taken for teacher 

instructions). I also roughly estimated each individual’s quantitative verbal contribution to the 

problem by counting the number of words spoken by each student and expressing it as a 

percentage of the total number of words spoken by the partnership. The word counts for this 

second estimation only included on-task comments.  

 

Figure 2: Overview of data analysis. 

3.5 Ethical Concerns 

 This research was reviewed and approved by the Behavioural Research Ethics Board at 

UBC. In addition, the Headmaster of the school where this research was conducted gave his 

support and approval before I began. The teacher in the study provided free and informed 

consent and participated collaboratively with classroom decisions related to this research. The 

substitute teacher who was present on the day of the task also provided free and informed 

consent and was informed of the special nature of the lesson before he agreed to take the class. 



39 
 

Signed consent was collected from the parents or guardians of students and the students provided 

their signed and verbal assent. I maintained student confidentiality by ensuring that pseudonyms 

were used for participants and the school.  

 I protected the rights of students who did not wish to participate in this study by ensuring 

that videotapes only record pairs of consenting/assenting students and the task on which they are 

working. Students without consent/assent were not video-taped. Students who refrained from 

participating in the study were not excluded from participating in the paired assessment. 

 One of the concerns with asking middle-schools students to work cooperatively is that 

they have not always developed the social skills required to interact in a kind respectful manner 

with people who are not their friends. Throughout this research, I wanted to ensure that students 

did not become ostracized or targets for bullying because of collaboration. For this reason, the 

teacher assigned partners. In addition, since I worked with students who were familiar with 

group work, they had already had the experience of working with their classmates and mitigating 

difficulties as they arose. I also ensured that guidelines for collaborative work were discussed 

and reviewed. The teacher and I were prepared to pro-actively address conflicts if they arose, 

however, none did. Finally, student reflections were kept confidential and students were 

encouraged to be ‘honest, but kind’ when writing about their partners.  
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4 Findings 

 The aim of this research is to explore the mathematical learning that students demonstrate 

when they are given the opportunity to work collaboratively on an open-ended assessment task. 

Recognising that the learning demonstrated is always influenced by the context of the problem, 

as well as the dynamic between the participating students, I endeavour to acknowledge the 

uniqueness of each partnership while drawing out salient themes of a broader nature. I begin with 

a brief introduction to each pair of students and the strategies they used as they attempted to 

determine the number of cans of frosting that were required to ice the four-layer cake. I then 

concentrate in more depth on commonalities in the dyads’ partner interactions and in the content 

and style of their discussions.  

4.1 Melvin and Christina 

 Throughout the task, Melvin and Christina worked earnestly, if somewhat haltingly. They 

frequently commented that the task was difficult and they were unsure of what to do. Yet they 

seemed committed to trying hard, voicing comments such as, “We’re trying to do it” and “I 

already tried my best”. They had a tendency to hold brief off-topic discussions, but one of the 

students, usually Melvin, would quickly refocus their attention. It is unclear whether or not 

Melvin and Christina had a clear conceptual understanding of the problem since they spent most 

of their time attempting various calculations. By the end of lesson, they appeared tired and no 

longer had the energy to continue working on the problem.   

 The students began the task by determining the volume of the frosting can. This was quite 

challenging for them as each step in the calculation, V = π r2 h, required considerable thought 

and discussion2. It took multiple attempts, using a calculator and referring to the textbook, for 

them to determine the values of r, r2, π r2, and, finally, π r2 h. Once they had ascertained the 

                                                
2 Sections of this conversation are discussed in Section 4.6. 
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volume of the frosting can, they decided to calculate the volume of the cake, which went much 

more smoothly. These two calculations took approximately 20 minutes, after which Melvin and 

Christina declared, as I walked by, that they were stuck. We had a conversation (see Figure 3) 

that explored the meaning of volume and surface area and they acknowledged that determining 

the cake’s surface area would be more helpful than determining its volume.  

194. Researcher: And what’s the other volume that you calculated? 
195. Melvin: This one. 
196. R: The volume for the cake? 
197. M: Yes. 
198. R: And what’s that going to tell me? 
199. M: How much stuff can go inside the cake. 
200. R: Yeah and is that what you want to know for the icing? 
201. M: No . . . 
202. R: I need to know the volume of that [icing can] because that tells me how much 

icing is in a can. But what do I want to know [about the cake]? 
. . .  

207. M: Oh, the surface area. 
208. R: How do you know it’s surface area?  
209. M: Because you need the surface, like, the area around it. 
Figure 3: Volume or surface area? 

 Both students, however, were still unsure of how to use surface area to help them. 

Christina, who with the assistance of her father, had completed the previous night’s homework 

on using nets to determine the surface area of cylinders, spent nearly ten minutes attempting to 

explain her understanding to Melvin and relating it to their problem. As can be seen from her 

drawing of the cake’s net (see Figure 4), she was able to correctly diagram the cake’s height of 

20 cm and its diameter of 20 cm. The radius of the base is also labelled correctly as 10 cm. The 

two additional circles on each side of the rectangle were used to estimate the length of the 

rectangle using 2π r ≈ 3d, which the students had discussed in class3. 

                                                
3 During a previous lesson, the classroom teacher taught the students to find the surface area of a cylinder using a 
two dimensional representation of the object. Students learned that the circumference of the base (2 π r) was equal to 
the length of the rectangle in the two-dimensional drawing and that they could estimate this measurement using 3d, 
rather than 2 π r.  To illustrate this concept, the teacher repeated the two-dimensional representation of the base three 
times along the length of the rectangle. In Christina’s net (see Figure 4), she has drawn this equivalence along both 
sides of the rectangle, hence the six circles, instead of the cylinder net’s traditional two.   
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Figure 4: Christina’s drawing of the cake’s net. 

 In their ensuing discussion (see Figure 5), it is clear that despite Christina’s 

confusion between radius and diameter [lines 254 – 256], she understood that the length of 

the rectangular portion of a cylinder’s net can be estimated using three times the diameter 

of the base [line 257]. In addition, she recognised that the area of the bases were important 

to the total surface area of the cylinder [line 259]. However, she was less clear about how 

to determine the area of the bases [lines 259 and 261] or what to do with the 

measurements.  

249. Christina: Okay, dude, so listen, okay, so listen. You’ve got 10, right?  
250. Melvin: Yup. 
251. C: 3 tens, right.  
252. M: Yup. 
253. C: Right, you can fit 3 tens, so all 10s, right. And then, so all’s first. 
254. M: They’re all 20. 
255. C: They’re all 20? 
256. M: Yup, because 10 is half of it. 
257. C: Oh, okay. Yeah, so they’re all 20s. So, then you have three 20s and you get 60, 

right? So you go 60 multiplied by 20 and then you get the area of the rectangle . . .  
258. M:. . . 1200 is the answer [to the surface area of the net].    
259. C: Ok, no, no, it’s not it yet, though. And then you— but then it’s these two and then 

you— You got to find these two [indicating the circles representing the base]. These 
two together. If, ah, 4, ah, 40 because there’s two 20s—  

260. M: Ok. 
261. C: Yeah, 40. So it’s 20, I think it’s times radius, is it 20? Oh it’s 20. Okay, okay, 40 

and then you get 40 and then you get 1200 and then you get 40 and then multiply— 
262. M: What? . . .  
Figure 5: Christina attempts to explain how to find the cake’s surface area. 
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 The students spent the remainder of their time referring to their homework questions and 

attempting to use them as templates for determining the surface area of the cake. Despite their 

focus, however, they were unable to do more than Christina’s initial drawing of the cake’s net 

(see Figure 4).  

 Near the end of the task, Melvin and Christina discussed how they could have improved 

their answer. Christina’s response, while acknowledging their difficulties, captured the unique 

blend of frustration and light-heartedness they demonstrated throughout this problem:   

“Oh, ah, [we could have improved] by knowing the formulas (laughing). We know some, 

it’s just that we don’t really know how to finish it, you know— We did it half way, but 

then we didn’t know how to finish it. My head’s hurting.” 

This comment also demonstrated the formula-driven calculation orientation motivating this 

group. Echoing Christina’s thoughts, Melvin’s written reflection comment, “. . . we forgot which 

formula to use and how to completely do them. If we had time to study we would have been able 

to remember them more” also emphasised the primary importance the students placed on 

remembering the formulae, rather than on understanding them and how they could relate to the 

problem. 

4.2 Alexandra and Tidus 

 Alexandra and Tidus were focussed throughout most of the task, performed many 

calculations easily, and seemed to possess a conceptual understanding of how to approach the 

problem. For example, they understood that the icing covered the outside of the cake and the 

three layers, but not the bottom of the cake, and they knew that the number of cans needed would 

be equal to the amount of icing needed divided by the volume of icing in one can. As is 

explained in more detail in later sections of the data analysis, they frequently discussed various 

aspects of the problem, including the number of layers of icing (see Figure 30), the missing piece 
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of cake (see Figure 29), and the meaning of the surface area of the cake (see Figure 9). In 

addition, they consistently rounded their numbers showing an implicit understanding of the 

estimation nature of this problem. However, they also had a tendency to make algorithmic errors 

with the formulae and their conceptual discussions often resulted in confusion and 

misunderstanding.   

 From their conversations both before and after their initial calculation (see Figure 6), it is 

clear that Alexandra and Tidus intended to begin the problem by finding the surface area of the 

cake. However, although their calculations were correct, they incorrectly used the formula for 

volume. They then used V = [π]r2h to find the volume of the frosting can, but forgot to multiply 

by π. Using these two calculated values – what they believed to be the surface area of the cake 

and the volume of the can – they estimated the number of cans needed by dividing surface area 

by volume to get an answer of 29 cans. 

12. Alexandra: What are we trying to find out? 
… 

13. Tidus: The surface area. 
14. A: The surface area. 

***** 
43. T: So we found the surface area. Okay. 
44. A: So this is for the cake.  
Figure 6: Alexandra and Tidus want to find surface area of the cake. 

 After obtaining a preliminary answer of 29 cans, they focussed on the layers of icing in 

the cake, which involved determining how many layers of icing existed, as well as the area of a 

single layer. While both students agreed that they needed to find the area of the base of the cake 

(see Figure 7, lines 114, 118, and 126) in order to find the area of a layer, they had difficulty 

determining which formula to use, even with the help of the textbook (lines 127 - 131).  

114. Alexandra: . . . We need to figure out the surface, the base area, do you know what I 
mean? No? 

115. Tidus: Isn’t pi r? Or, 2 pi r? 
116. A: Did you find that— Isn’t that the circumference? 
117. T: Circumference? Circumference is all around, which is— 
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118. A: No, but we want to find the surface area of only the base.  How do you find the 
surface area of a circle? 
. . . (side conversation ). . .  

126. A: Okay. So, to find the surface area of a circle what do you— 
127. T: I’ll check my textbook. 
128. A: Are we allowed? 
129. T: I think it’s 2 pi, it’s pi r or is it 2 pi r — 2 pi r is diameter right? 
130. A: No 
131. T: (looking in text) Here, area of a circle. It’s right here. Area of a circle is 2 pi r. 
Figure 7: Alexandra and Tidus try to select the formula for the area of a circle. 

 It is possible part of this confusion arose because the students had different intentions 

and, therefore, lacked a common understanding of what they were doing or attempting to do. 

But, since their discussion became convoluted and challenging to follow (see Figure 8), this is 

speculation. Possibly, Tidus and/or Alexandra intended to calculate the area of the cake’s side 

using 2π r h, which could explain his references to the area of a rectangle [line 134] and height 

[lines 134, 148, and 158] and her references to the circumference [line 135]. Alternatively, 

Tidus’ desire to multiply by height may indicate he planned to calculate volume, but had 

genuinely confused the formulae for area and circumference. Despite Alexandra’s willingness to 

use circumference, she seemed confident they should be calculating the area of a circle [lines 155 

and 157], and appeared to use Abase = π2 r = (10)(10) = 100 cm2  4 to do so. Tidus, on the other 

hand, seemed to calculate Abase = r2 = (10)(10) = 100 cm2 . Regardless of their undisclosed 

intentions and their seemingly different calculations, both students accepted that the area of a 

layer was equal to 100 cm2 [lines 157 and 158]. Even though they were aware of their confusion 

[lines 138; 150 - 154] and Alexandra returned to the text and identified the appropriate formula 

as Acircle = π r2 [line 154], they never followed through with this, partially because Tidus said 

they had already calculated π r2 [line 156] (which they had, earlier) and partially because they 

                                                
4 Frequently in their oral discussion, and occasionally in their written work, students did not include any units or 
included incorrect units. For readability purposes, I have included the correct units with all calculations.  
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became preoccupied with discussing the missing piece of cake. Therefore, in later calculations, 

they used 100 cm2 as the calculated area of the base. 

134. Tidus: . . . We already found the area of a circle is 2 pi r. Area of a rectangle 
is— Oh, so we didn’t— No, so we just found the area of a circle because if we 
want to find out how much is its inside it’s 2 pi r times height, so it’s —   

135. Alexandra: Yeah. 2 pi r is the circumference, right? Yeah, It’s— so we have to 
do the circumference, 2 times pi, pi, pi times pi, right?  

136. T: yeah 
137. A: times radius, so what’s the radius, the radius is 10 
138. T: I’m really confused 
139. A: So, pi —Where’s your pi button on here (referring to calculator)? pi times 

pi, delete, pi times pi  
140. T: Yup. 
141. A: And then?  
142. T: Umm, what is it? 
143. A: So these—9.8  
144. T: So just round it to 10  
145. A: 10, okay and then so we go 10 times 10  . . . is 100  
146. T: 10 squared,  no never mind, never mind, never mind  
147. A: No its 100 
148. T: So it’s 100 times height, didn’t we just do that?  
149. A:  No we don’t want to times height. . .because that would equal these two 
150. T: Uh oh , no, no, 
151. A Yeah, yeah we’re about— 
152. T: Ummm— 
153. A: Let’s see, we’re having some troubles. 
154. T: Ah. 
155. A: Hold on. Okay. Area of a circle is pi r squared (from text). . .    
156. T: . . . Look we already did that though,  
157. A: Ok . . . so 100 is the area of the surface, surface area [top of the cake] 
158. T: Yeah, it’s 100 times 20 [height] 
Figure 8: Area of the base of the cake. 

 The conversation then focussed on the number of layers of frosting in the cake. 

Alexandra eventually convinced Tidus that their ‘surface area’ calculation included both the top 

and bottom bases of the cake. Since the bottom of the cake was not iced, they agreed to subtract 

the area of the base to account for this. They then added three times the area of the base, for the 

area of the three layers of icing, to determine the overall area of the cake to be iced (Acake to be iced 

=  SAcylinder – Abottom of cake + 3(A one layer of icing)). To calculate the number of cans of frosting 
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needed, they divided the area of the cake to be iced by the volume of the frosting can. Like 

before, this gave an answer of 29 cans.   

 At this point, the teacher came by and expressed concern that 29 cans might be an 

unreasonable response. Alexandra and Tidus re-examined their work, determined they forgot to 

multiply by π when calculating the volume of the frosting can, and correctly recalculated the 

can’s volume. Eventually they also correctly recalculated the area of the base of the cake using 

πr2, which they then used to redetermine the total amount of icing needed for the cake. However, 

as before, this was a lengthy discussion laden process, fraught with more confusion and 

miscommunication (See Figure 9). Some of the confusion arose because, by this time, the 

students had agreed the area of the cake’s base was 314 cm2, yet Alexandra reverted to using 

their previously calculated value of 100 cm2 [lines 349 and 365]. Finally, using the then-correct 

values, they recalculated the area of cake to be iced and the number of cans of frosting needed. 

Though they had successfully identified two of their previous miscalculations, they continued to 

calculate the surface area of a cylinder using the formula for volume.  

349. Alexandra: . . .Hold on. We have to minus 100 because we don’t ice the bottom 
of the cake.  

350. Tidus: (inaudible) 
351. A: But that’s still surface area. 
352. T: 6280 is the surface area [of the whole cake]. 
353. A: Of the entire thing, right? Of this, right, so— 
354. T: Subtract. 
355. A: To ice it. 
356. T: No, we have to subtract the bottom. Yeah, so we have to subtract 100. 
357. A:Okay, so—  But subtract [inaudible]. Yes. 
358. T: No, the 314? Because the area of the circle is pi r squared. 
359. A: Yeah. 
360. T: So subtract. So 6280 subtract three fourteen so it’s 6280— 
361. A: Why pi? Why are we subtracting?  
362. T: We’re not subtracting pi, 
363. A: We’re subtracting. 
364. T: We’re subtracting the area of the circle. 
365. A: Right, which is 100.  
366. T: Yeah, times pi. Because 100 is only the radius, so to find the area— 
367. A:Yeah the area because —all of it. 



48 
 

368. T: No, it’s radius squared  . . . 10 is the— [radius] 
369. A: pi r squared— Yes, I see, I see the— it’s— Yes, your right. 
370. T: So instead now, it’s radius equals to 10, squared 
371. A: 10 centimetres 
372. T: Centimetres squared. And then you have to multiply that by pi . . to find the 

area so it— 
373. A: Then you minus that from 6280? 
374. T: 5966 cm squared, right? 
375. A:Yes. 
Figure 9: Alexandra and Tidus fluctuate between using 314 cm2 and 100 cm2. 

4.3 Jesse and Rebecca 

 In this partnership, the two girls usually worked well together. In their reflections, they 

commented that they were able to “help each other” and “discuss it [the problem] together”. 

Early on, they seemed to establish a system whereby Jesse did most of the recording and 

Rebecca did most of the calculator work. Though Jesse tended to be more verbal, Rebecca did 

voice disagreement later in the task including when she felt they needed to account for the 

missing piece of cake. At times Rebecca seemed to have a hard time understanding parts of the 

problem, but Jesse usually took the time to explain concepts (with varying degrees of success) 

and elicit Rebecca’s opinion. Near the very end of the task, perhaps because there was less time 

remaining, Jesse stopped collaborating with Rebecca and began to work more independently.    

 Rebecca and Jesse started the problem by calculating the volume of a can and the cake. 

However, Jesse realized, somewhat spontaneously, that the cake’s surface area would be a more 

useful measurement than its volume (See Figure 10). 

55. Jesse: Each [icing] can holds[699 cm3]— right — Okay, then, what? How big is the 
cake, right? 

56. Rebecca: The cake. The volume is 6280. The total volume. 
57. J: Let me write that down. No, don’t we need the outside? 
58. R: What do you mean the outside? 
59. J: We do surface area because you only ice the outside of the cake so we do surface 

area—Ahhhh (erasing)! 
Figure 10: Jesse realises that the cake’s surface area is more useful than its volume.  
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 They then calculated (correctly) the surface area of the cake using the side and top of the 

cake and used these two measurements to determine the number of cans of icing needed. 

Throughout this task, the girls revised their estimate of the required amount of icing. However, 

they always returned to the same formula – volume of icing needed ÷ volume of the frosting can 

– to determine the number of needed cans. At this point the girls felt they were finished, but 

realised they still had at least 20 minutes left to work on the problem. Rebecca’s question, “What 

else can we do?” and Jesse’s eventual proposal, “Let’s do it with the whole cake, even the 

bottom,” seemed to indicate that the girls understood that more could be done with this problem, 

even if they were unsure of what this ‘more’ included. Calculating the surface area of the cake, 

as though the bottom were iced, seemed to fulfill the need to ‘do something’ rather than serve as 

a logical next step. When I suggested they consider the thickness of the icing and the layers of 

icing instead of assuming the bottom of the cake was iced, they successfully determined the area 

of the three layers of icing, but had difficulty determining how to account for the icing’s 

thickness. Though their work is unclear, it appears they interpreted the icing’s thickness as an r 

value (see Figure 11). In their final written solution, they included the iced bottom of the cake, 

Figure 11: Rebecca and Jesse’s thickness calculations. 
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which I speculate was an oversight on their part, since their initial calculation of the cake’s 

surface area did not include an iced bottom. 

4.4 Rodriguez and Fergus 

 Unlike the other three groups, Rodriguez and Fergus worked independently on most 

aspects of the problem, were easily distracted, spent half their time discussing mutual interests 

unrelated to the task, and submitted work that contained an assortment of errors related to the 

formulae used. Because they worked independently they spent more of their time writing, rather 

than discussing, their solutions. Each student submitted their own paper and made no attempt to 

ensure consistency with their partner’s paper. The students seemed to understand that the 

intention was for them to work together (See Figure 12). However, they referred to their work as 

‘my answer’ and ‘your answer’ and rarely discussed their strategies or calculations in any depth. 

58. Rodriguez: . . . Shouldn’t we be doing this together, Fergus? 
59. Fergus: What? 
60. R: Shouldn’t we be doing this together? 
61. F: Yeah, okay. 
Figure 12: Shouldn't we be doing this together? 

 At the very beginning Fergus proposed that the number of frosting cans needed was equal 

to the diameter of the cake divided by the diameter of the can. Later, Rodriguez and Fergus 

mentioned both volume and surface area, but there was no sustained discussion regarding either. 

As Rodriguez worked on the problem, he developed a good conceptual understanding of it (see 

Figure 13 and 14), including both the layers and the thickness of the icing. His written work 

includes a descriptive explanation that is nearly identical to the very succinct one he offered 

Fergus: 

Okay, so . . .  we found the volume of the cake. But really the whole cake isn’t filled 
with frosting. So what we have to do is find the surface area, and then half a 
centimetre around it in volume, to find the icing and then whether or not we want to 
make it a layer cake, . . . get it?  
Figure 13: Rodriguez’s expresses conceptual understanding of the problem.  
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However, he seems unable to follow through with his ideas, use appropriate calculations, or 

remember what the question is asking. His final answer appears to represent the volume of icing 

needed, rather than the required number of icing cans (see Figure 14). 

 

Figure 14: Rodriguez's written work. 

 Fergus’s written work (see Figure 15), on the other hand, shows a different understanding 

of the problem. Although it contains a sentence incorporating Rodriguez’s ideas about layers, 

thickness, and surface area, it appears his comprehension of why they were relevant was limited 

since, unlike Rodriguez, he does not seem to use them in his calculations or his diagrams. 

However, his final solution, the volume of the cake divided by volume of the can, shows an 

understanding of the need to determine the required number of icing cans. It should be noted that 

the typed comments in Figure 15 were added to aid the reader in deciphering Fergus’s writing,   
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Figure 15: Fergus’s written work that incorporated Rodriguez’s ideas. 
 

4.5 Interaction Between Partners 

 In this study, three of the four partnerships spent at least 80% of their time working on 

the assessment and engaged in collaborative discussion throughout this time. Though they were 

occasionally distracted by the video camera or held conversations about what they were doing 

after school, their main focus was the problem. In two of these groups, the talking time was split 

relatively equally between the two students. With both Tidus and Alexandra, who had a 

comparatively strongly grasp of the problem, and Christina and Melvin, who struggled to 

conceptualise it and to perform relatively basic calculations, the partners contributed fairly 

equally to the discussion, both in terms of quality and quantity. In Rebecca and Jesse’s group, 

Jesse spoke almost three times as much as Rebecca. However, Rebecca’s contributions were 

sometimes silent (i.e. she would show Jesse the answer on the calculator, rather than reading it 

aloud) and Jesse sometimes answered her own questions if Rebecca did not respond 

immediately. The written work submitted by each of these three groups reflected the outcomes of 

their discussions and joint decisions and was a reflection of both people’s contributions. 

 On the other hand, one dyad, Rodriguez and Fergus, did not work collaboratively during 

their assignment. This group was unique in a myriad of ways: they spent only about 50% of their 

You must cover 20 cm, and 3 layers. Each layer is ½ a cm. 

no bottom  icing 
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time on task and much of their on-task time was spent working silently and independently; they 

submitted two separate final solutions; they were the only group to suggest determining the 

number of cans by dividing the diameter of the cake by the diameter of the can; they submitted 

work with more calculation errors than the other groups; and, of all the students, Rodriguez 

seemed to have the strongest conceptual understanding of the relevance of the icing’s thickness 

(see Figure 13). However, contrary to what might be expected from groups who fail to 

collaborate, neither student appeared unwilling to work on the problem or with their partner. Nor 

did their conversation resemble the “competitive and uncooperative argumentation” (Mercer, 

2008a, p. 51) that Mercer terms disputational talk. Instead, it appeared that these two students 

were not interested in, or did not know how, to coordinate their mathematical efforts.  

 When students engaged in collaborative work, many of their conversations centred on the 

calculations they performed as they worked on the problem, rather than on strategies they were 

considering. Students often dictated calculations to their partner or repeated them aloud as they 

entered them into the calculator or wrote them down. It some cases, one student guided 

mathematical thinking while the other followed along or performed calculations as directed by 

their partner. As Jesse and Rebecca determined the volume of the frosting can (see Figure 16), it 

was, as usual, Jesse who took the lead, even when she was unsure of what to do (lines 3; 23-25). 

Though Jesse was the more vocal student, her leadership may have emerged because Rebecca 

had a difficult time expressing herself quickly [lines 4, 6, and 24]. In addition, Rebecca’s 

quietude does not necessarily indicate she is dependent upon Jesse’s instruction. Rebecca seems 

to calculate easily what is requested and assists Jesse at times [lines 6 and 24 - 26]. 

3. Jesse: Okay, I’ll calculate that – frosting!  
4. Rebecca: First thing 
5. J: How do you find the area, again (laughing), no how do you find the volume, 

no find the [base] area first, right?  
6. R: Area of the circle— of the—  
7. J: pi r squared times—, no plus—, no, how do you find the area of the circle, 
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8. R: Oh, um (pointing to paper) 
      . . . 
13.  J: (laughs) Okay, 3.14 , what’s 4.5 times 4.5? 
14. R: It’s (working on the calculator) 20.25. 

. . . 
19. J: Okay, that is what? 
20. R: (inaudible) equals 63 and [585]. 
21. J: cm.  
22. R: cm.  
23. J: cm2. Okay, what’s— what’s the— how do you do volume again?  
24. R: Well, it’s, it’s —  
25. J: (interrupting) It’s this [63.585] time height, right?  
26. R: Yup. 
27. J: 63.585 x 11 (as she writes). 
28. R: Equals 699.435. 
29. J: 699 point what (looking over at calculator)? 
30. R: 699.435. 

Figure 16: Jesse takes the lead with finding the area.  

 In the other two collaborative groups, where both students were equally comfortable 

speaking, both partners tended to lead the discussion, at different times. In the first section of the 

excerpt below (See Figure 17), Tidus repeated and affirmed Alexandra’s statements, while in the 

second section it is Alexandra who affirmed Tidus’ statements. In these partnerships, the 

‘following’ student also tended to verbally clarify or enhance the ‘leader’s’ comments. For 

example, Tidus restated 4.5  4.5 as 4.52 [line 55], clarified that 11 indicated the height of the 

icing can [line 59], and provided the units [line 61], while Alexandra provided the units [line 

327] and clarified the meaning of their calculation [line 329] in the second example. 

54. Alexandra: 4.5. So, this is frosting. 4.5 equals the radius. 4.5 times 4.5 
equals—  

55. Tidus: (working on the calculator) 4.5 squared—  20.25. 
56. A: So you round it to 20. 
57. T: You round it to 20. 
58. A: 20 times 11. 
59. T: Yup, times height, so 20 times 11, 2 hundred — 
60. A:  220. 
61. T: cm squared. 
********************************************* 
320. Tidus: Multiply that [63] by height [11]. 
321. Alexandra: that [63]?  
322. T: Yup. 
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323. A: Times 11. 
324. T: Yup, so it’s 63 times 11. 
325. A: 63 times 11. 
326. T: equals 693. 
327. A: cm cubed. 
328. T: That’s volume. 
329. A: Here, so this [the can] equals 693 cm cubed . . . so we found the volume of 

that [can]. 
Figure 17: Alexandra and Tidus take turns leading the discussion. 

 In some cases, there was no clear leader of the discussion. As Alexandra and Tidus 

identified the height and radius of the icing can, in preparation to calculate its volume (see Figure 

18), both contributed equally meaningful pieces of information: Alexandra identified the height 

[line 305] and diameter [line 307] and Tidus provided the radius [lines 310 and 312]. 

305. Alexandra: . . . So this [height of the icing can] is 11. 
306. Tidus: 11 
307. A: And this [diameter of the icing can] is 9. 
308. T: Yes. 
309. A: Yup. So what’s the— 
310. T: We need to find the radius. 
311. A: So 
312. T: 4.5 
313. A: So 9 divided by 2 is 4.5. . . . 
Figure 18: Co-constructing the measurements needed to calculate volume. 

 When Melvin and Christina were determining the volume of the cake (see Figure 19), 

Melvin suggested the initial idea [line 132] and the calculation for determining the radius [line 

136], but it was Christina who corrected Melvin’s calculation of π times 10 [line 143] and, later, 

understood to multiply π by r2 [line 145]. In addition, it is clear both students made their own 

calculations, rather than just echoing each other, since Christina responded with “Yeah, I get 

[emphasis added] 10,”  [line 139] rather than ‘Yeah, I agree with your suggestion of 10,’ when 

Melvin suggested the radius was 10 cm [line 138].  

132. Melvin: [We found the] volume of the icing. Okay, now, find the volume of the 
cake, so we go, we have to do the radius. 

133. Christina: Okay (pause) okay. 
134. M: So it’s— 
135. C: 3.14. Wait, first I’ll find the radius. 
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136. M; Yup, so go 20 [diameter of can] divided by 2.  
137. C: Yeah. 
138. M: 10.  
139. C: (working on the calculator) Yeah, I get 10 and then—  
140. M: And then—  
141. C: Yeah and then—  
142. M: Pi, pi times 10.  
143. C: No 10 times 10. 
144. M: Oh yeah, yeah— 10 times 10. 
145. C: 100, and then you multiply [pi] by a hundred. . .  
Figure 19: Christina and Melvin co-constructing the volume of the cake. 

 Throughout the discussions, students appeared comfortable working with and relying on 

their partners. There are many instances of one student asking for a specific piece of information 

that, had they been working alone, they probably could have accessed independently using a 

calculator or a textbook. The information sought was often of the ‘easily forgettable’ nature, such 

as a specific formula, hence Alexandra’s question “How do you find the surface area of a 

circle?”, or of the ‘calculation nature’ such as Jesse’s question “What’s 60 times 20?”.  

 Within their dyads, some students, especially Alexandra, frequently checked their work 

with their partner by phrasing suggestions and answers in a manner that required their partner to 

acknowledge that the solution or suggestion was correct and appropriate. “Should we round?” 

(Alexandra); “It’s this time height, right? (Jesse); “That’s eight, isn’t it?” (Alexandra); and “It’s 

63.58, right?”(Christina) are examples of the different ways students sought confirmation from 

their partner. It is difficult to determine if students using this communication approach were 

unsure of themselves, and thus seeking encouragement, or if they were consciously attempting to 

ensure their partner remained aware of the work they were completing.  

 When students were confused, they were not reticent about asking their partner for 

assistance or clarification. At times their queries were articulate and specific such as “Are we 

getting the volume or the surface area?” (Rebecca) or “Why 4.5?” (Christina). However, the 
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simple, yet rather vague, “What?” was also common. Whether the question required a simple 

response or a more complex one, students almost always took the time to help their partner.  

 When both students clearly and consistently contribute to the developing solution, it can 

be difficult to separate the joint construction of knowledge from either parallel working or from a 

novice/expert situation. Certainly, there were occasions when the students used each other to 

verify their work and when one student guided the other. However, within the collaborative 

groups, student roles appeared flexible and both partners shared and explained their 

understanding of the problem and knowledge of its related calculations. The students appeared to 

have developed a trust and confidence in their partners, as evidenced by the ease with which they 

asked questions, which may have freed them from the need to do everything themselves. As 

such, they were able to tread the same path, rather than individual ones, as they worked towards 

a solution. The co-construction of knowledge they demonstrated, whether during a formulaic 

calculation or during a conceptual discussion, was evident throughout their work and is better 

appreciated as a characteristic of the entire process rather than of a single excerpt. 

4.6 Discussing Calculations  

 For the three partnerships who worked collaboratively on this problem, they maintained 

near-continuous dialogue throughout the task. As previously mentioned, much of their discussion 

centred on the calculations they were performing; comparatively fewer segments focussed on 

strategy or problem solving approach, though these will be discussed later in section 4.7. 

Calculation-focussed discussions afforded students the opportunity to reaffirm their use of 

selected formulae or values to themselves and to their partners, and to detect and correct errors in 

their partner’s work.  

 In many cases, students not only stated what they were doing, but often, consciously or 

unconsciously, provided justification by stating the connections between their calculations, the 
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formula, and the values from the problem. Though there are numerous unfinished thoughts in the 

following dialogue (see Figure 20), Tidus and Alexandra seemed to follow each other’s thinking 

as they calculated π r2 h (r = 10 cm; h = 10 cm). Tidus moved comfortably between r2 = 102 = 

100, but twice confirmed why the answer was 100 cm2. His first justification, seemingly more 

for himself, occurred in line 29 with the statement “R squared is— so it’s 100.”  The second 

justification, “because the radius squared is 10 [squared]—” [line 31], was a direct response to a 

question from Alexandra. In addition, both Alexandra and Tidus justified the decision to 

multiply by 20 by reaffirming that 20 cm was the height of the cake [lines 37 and 38].  

25. Tidus: . . .  10 squared 
26. Alexandra: 100, no? So the diameter— 
27. T: So the radius is equal to— 
28. A: Why don’t you just? Do you want me to? Don’t you? 
29. T: R squared is— So it’s 100, so it’s pi times 100 is— (working on calculator) 

Three hundred—   
30. A: So, 100 times pi? 
31. T: Pi, yeah, because the radius squared is 10 [squared]—  
32. A: Equals 
33. T:  314.15 
34. A: 314.15. Should we round? 
35. T: Times that [20] 
36. A: Should we round? 
37. T: Round it, yeah, so 314. Okay, times height, times 20 equals 
38. A: 314 times 20, which is the height. 
Figure 20: Alexandra and Tidus justify their work, despite their numerous unfinished thoughts. 

 As Christina and Melvin tackled π r2 (r = 4.5 cm), they struggled to interpret the formula 

and enter the values into the calculator (see Figure 21). It took multiple attempts before they 

determined the correct answer of 63.585 cm2. Throughout the process, Christina verified that r2 

meant to multiply the radius value by itself [lines 81 and 105], which resulted in the calculation 

of 4.5  4.5 [lines 85, 93, and 105]. She and Melvin justified their use of 3.14 by referring back 

to the formula [lines 88 and 89]. 

81. Christina: So multiply that by pi because it’s r squared, squared, which means 
we have to multiply it twice by itself. 

. . .  
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85. C: Okay, so you got 4.5, right? So if we get 4.5 (working on the calculator)—  
You get 4.5. You got to multiply it by 4.5. So we got 20.25. We got to multiply 
it, multiply it— 

. . . 
88. Melvin: Ahh, pi. Wait, no, because it’s pi r squared, not just r squared— 
89. C: Yeah, I know, but if it’s pi — If it’s pi r squared, this is telling you you’ve 

got to multiply. You’ve first got to multiply 3.14.  
90. M: Ohh, I get it. 
91. C: By this. 
92. M: I get it. 
93. C: And you get, wait, what did we have? We have 4.5 multiply by 3.14 by 4.5 

and after you get, wait, wait, (going for calculator)— Whoa, we multiply— 
What the heck? 

… 
103. C: No, dude, we did something wrong here. 
… 
105. C: No, no, no, dude, because, because— We got to multiply the radius twice So 

we first go 4.5 multiplied by 4.5 and we get . . . 20.25 and then we multiply 
20.25 multiplied by 3.14 and we get 63.585.  

Figure 21: Christina and Melvin justify their work. 

 Students’ justifications were often part of the give and take of the conversation and the 

problem solving process and seemed to occur as students worked through their thought processes 

aloud. However, at times a student would supply an explanation (albeit incomplete at times) in 

response to a direct question such as when Christina thought they should multiply by 9 cm, the 

diameter, instead of 4.5 cm, the radius. Like most of the students’ discussions, including 

Alexandra and Tidus’ previous one with unfinished thoughts (see Figure 20), this conversation 

(see Figure 22) demonstrates the ‘shorthand’ that was often evident in their discussions; many 

concepts and statements were never fully stated, but were implied and assumed to be understood.  

31. Christina: Multiplied— Ahh— By 9,  
32. Melvin: 4.5 
33. C: Wait, why 4.5?  
34. M: Because that’s half of nine. 
35. C: Ah, yeah, right. 
Figure 22: Melvin explains why the radius is 4.5 cm. 

 As students discussed their calculations, they often detected and corrected errors in their 

work. This was especially true for Melvin and Christina. In Figure 22, Melvin corrected 
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Christina’s incorrect use of the diameter while [line 32], in Figure 23, Christina reminded Melvin 

that their calculation for volume was not complete until they had multiplied by the height of the 

frosting can [line 115 and 117]. 

114. Melvin: That’s [63.585] the volume of the icing [can]. So now we need to find the 
volume of this [cake], Christina. 

115. Christina: Okay Melvin,— I know, but we still, we didn’t finish it [volume of the icing 
can] yet. 

116. M: Oh. 
117. C: Because we only multiplied the radius and then we, and then we state the— that’s 

not the —  
118. M: Yeah, and then we find the — 
119. C: Times it by 11 [height of the icing can]. 
Figure 23: Christina points out the need to multiply by height. 

 In many ways, the students framed their mathematical learning around the formulae 

which were available to them. It is, therefore, understandable why many of their discussions 

focussed on their calculations. However, this approach limited the students’ interpretations of the 

problem and their ability to focus on the meaning of the variables within each formula. In 

addition, since few students worked fluidly with A = π r2, SA = 2π r h, and V = π r 2 h, their 

difficulties were further compounded.  

4.7  Discussing Strategies and Approaches 

 During this task, students seldom discussed critically a general plan or considered 

different potential approaches to the problem. Rather, for any given part of the problem, the 

partners tended to accept, and then build upon, the first voiced suggestion or strategy. At times, 

the suggestion was appropriate. However, at other times the lack of questioning resulted in the 

acceptance of incorrect or inappropriate ideas (see Figure 24) such as calculating the volume of 

the cake (Melvin and Christina), using circumference to find the area of the icing layers 

(Alexandra and Tidus), and assuming that r2 = 2r = d (Rodriguez and Fergus). 

132. Melvin: . . . Okay, now find the volume of the cake. 
133. Christina: Okay. 

***** 
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97. Alexandra: I think that, now, no, we have to find— Is it the circumference?  Of the 
base thing, like of the top and the bottom. 

98. Tidus: Yeah.  
***** 

62. Rodriguez: . . .pi r squared times height. So 3.14 times, what’s the radius?  
63. Fergus: Ah. 
64. R: Oh, but wait a sec, do the diameter instead of [r] times 2.  
65. F: Okay. 
Figure 24: Students agree to their partner's suggestions, without question. 

 Because students often agreed with their partner’s proposal to use a specific formula, 

procedure, or approach without questioning it, most ideas were not discussed, unless, after the 

calculations had been completed, the students believed that they had made a mistake. After Jesse 

and Rebecca determine the volume of the icing can, Jesse asked Rebecca for the cake’s 

measurement (see Figure 10). Neither girl considered the appropriateness of this suggestion. 

However, it appeared to be an easy calculation for Rebecca and she quickly responded. It was 

only then that Jesse contextualized (perhaps intuitively?) the calculation, questioned the need to 

find the volume of the cake, and proposed that it was the ‘outside’ they needed (see Figure 25, 

line 59). Rebecca was initially confused by this new suggestion [line 60], but after a brief 

explanation [line 63], she accepted it [line 64].  

59. Jesse: We do surface area because you only ice the outside of the cake so we do 
surface area—Ahhhh (erasing)! 

60. Rebecca: Are we getting the volume or the surface area? 
61. J: The surface area. 
62. R: What? 
63. J: Surface area because you do the outside, surface area is—  
64. R: Area, then. 
Figure 25: We need the surface area. 

 In most dialogues, the students did not offer a reason for their acquiescence, which makes 

it difficult to know why students readily accepted many of the ideas their partners proposed. 

Occasionally, students may have ‘agreed’ to something they did not fully understand (see Figure 

26). When Melvin checked with Christina to see if she also determined the volume of the cake to 

equal 6280 cm3, she affirmed his answer [lines 160 and 161]. However, when pressed, Christina 
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was unable to explain why she agreed with him [lines 162 - 165]. It is also possible that students 

actually disagreed with some suggestions, but were hesitant to voice their concern. However, this 

seems unlikely to me given students’ apparent comfort disagreeing with each other and asking 

for clarification, when needed. In my opinion, it seems more likely that the students did not 

consider the possibility that their initial idea might be incorrect.  

160. Melvin: 6280. Is that what you got?  
161. Christina: (nodding yes) 
162. M:  Christina, what did you get for the formula?  
163. C: What do you mean? 
164. M: What did you do to get that number? 
165. C: Oh, I—  
Figure 26: Christina agrees, but she may not be sure what she has agreed to. 

 There are two dialogues (see Figures 27 and 28) in which a student clearly explains why 

she accepted her partner’s suggestion. Interestingly, both appear post-initial suggestion and post-

contextualization of the answer. After calculating the volume of the frosting, Christina, who 

mistakenly interpreted the answer to represent the number of frosting cans needed, ‘had a 

feeling’ their answer was incorrect [Figure 27, line 51]. However, because she could not think of 

an alternative strategy, she conceded to Melvin’s suggestion [Figure 27, line 53]. 

45. Christina: Really, dude, you’ve got to be kidding me . . .Ahh! 699 cans to make one 
cake! 
. . .  

51. Christina: Melvin, I think we’re doing it wrong, I just think, I have a feeling. 
52. Melvin: Okay, what’s your idea then? 
53. C: Ahh, I already showed you my idea, but that’s the area [of a triangle] so, let’s go 

with this idea. 
Figure 27: Christina accepts Melvin's idea because she can't think of an alternative. 

 In the second case, Jesse made a reasoned decision to accept her partner’s proposal. 

When determining the area of the cake’s base, Jesse realised that she could take the time to 

verify the answer herself or she could accept Rebecca’s assertion that it was correct.  
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73. Jesse: . . . 314. Are you sure? 
74. Rebecca: Yeah I’m sure. 
75. J: Okay, then. . .  
Figure 28: Rebecca convinces Jesse that she is correct. 

 Though students rarely discussed their strategies unless difficulties became apparent, 

some students – mainly Alexandra and Tidus, but also Rebecca and Jesse – occasionally 

discussed conceptual aspects of the problem. This usually occurred when the partners disagreed, 

which placed them in a situation that required them to defend their ideas and produce acceptable 

justifications. Unlike the justifications students gave while performing calculations, students 

could not rely predominantly on the authority of the formula or isolated values within the 

problem. Instead, they also needed to rely on their perception of the problem within its context 

and the interaction between the context and the aforementioned mathematical factors. As Tidus 

tried to convince Alexandra that 1/6 of the cake had been cut away, it was her visual markings on 

the cake that finally enabled him to understand that he was incorrect (See Figure 29). (It is also 

worth noting that although Alexandra believed determining the size of the missing piece is 

irrelevant to their problem [line 161], she was drawn into the discussion by Tidus.)  

160. Tidus: Well, you know, but it’s missing a chunk. 
161. Alexandra: Oh, we can just pretend it’s not there she [the researcher] said, wait, as 

if it was full 
162. T: Because it’s like 1/6. 
163. A: Yeah. 
164. T:Yeah, yeah (dividing the cake diagram into slices equal to the size of the missing 

piece). 
165. A Are you positive? 
166. T: Yeah, . . . , look at this, it’s 1, 2, so there’s 1 piece, 1 piece, then there’s another 

piece right here and another piece right here (drawing on diagram). 
167. A: That’s eight, isn’t it? 
168. T: No, it’s 1, 2, 3, 4, 5, 6. 
169. A: 1, 2, 3, 4, 5, 6, 7, 8. 

. . .  
172. J: Okay. 
Figure 29: Tidus and Alexandra discuss the missing piece of cake. 
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 As a disagreement progressed, the students’ justifications necessarily became more 

sophisticated. In Figure 29, Alexandra relied on visual justification to support her statement. In 

another discussion (See Figure 30) these same students tried to determine whether to account for 

the icing in the layers by multiplying the base area of the cake by three (Alexandra’s opinion) or 

four (Tidus’ opinion). The students’ justification progressed from repeating their initial statement 

to providing a well-reasoned articulated argument.  

208. Alexandra: No, you times it by 3 because there’s 3 layers. 
209. Tidus: Right. No, you times it by 4. 
210. A: No, 3. 
211. T: Because there’s 1 layer, 2 layers, 3 layers, 4 layers that’s how it works . . .  

 
And later  

 
230. T: No, it’s times 4. Alexandra, look, see this is—. This top part it’s 100. This layer’s 

200, this one’s 300, and this layer’s 400.  
231. A: No, but, we already figured this [the top of the cake] out then we figured out the 

entire cake. We figured out the top, the cylinder part, and the bottom,  
232. T: Oh.  
Figure 30: Alexandra and Tidus' justifications become more reasoned. 

 Detecting conceptual errors seemed difficult for students, though, and often required 

adult assistance. In this first case (See Figure 31), I have a discussion with Melvin and Christina 

about why they calculated the volume of the cake and what that meant in terms of the problem.  

191. Melvin: We’re stuck here now. Okay, so we’ve gotten the two volumes for each 
thing. Now we’re stuck.  

192. Researcher: Okay, so you have the volume for this (the icing). 
193. Christina: Yup. 
194. R: And what’s the other volume that you calculated? 
195. M: This one (pointing to the cake). 
196. R: The volume for the cake? 
197. M: Yes. 
198. R: And what’s that going to tell me? 
199. M: How much stuff can go inside the cake. 
200. R: Yeah and is that what you want to know for the icing? 
201. M: No, you only really want to know that one (can?). 
202. R: I need to know the volume of that (icing can) because that tells me how 

much icing is in a can. But what do I want to know? 
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. . . 
207. M: Oh, the surface area. 
Figure 31: What does the volume tell us? 

 In the following case (See Figure 32), the instructor spoke with Tidus and Alexandra 

about the reasonableness of their initial answer, inducing them to re-examine their work.  

264. Tidus: . . . That’s our estimation, we found 29. 
265. Instructor: Oh, okay, so let’s just pretend if it is 29 cans, right, think about the 

size of the cans. What’s 9 by 11 roughly? That would look like— a can would 
be like?  

266. Alexandra: Ahhhh. 
267. I: About 11 cm high is about how high? About that high? And width is almost 9 

cm so it’s sort of like this, right? And if you need 28 cans about this size to 
make a cake that’s only this high and this wide— You need 28 of those cans? 

268. A: No. 
269. I: Look at the icing on the cake, too, the picture that they give you. Is there 

icing all inside the whole cake? 
. . .  

277. T: So we need the volume of this (pointing to the can) and the surface area of 
this (pointing to the cake). 

Figure 32: A discussion with the instructor causes Alexandra and Tidus to re-examine their work. 

 When an adult discussed aspects of the problem with a dyad, the adult was able to use 

their mathematical knowledge of the problem to tailor the discussion to meet the specific needs 

of a group. For example, when I realised Melvin and Christina had calculated the volume of the 

cake, I could guide the discussion to the differences between volume and surface area [Figure 31, 

lines 194-198]. When the instructor realised that Tidus and Alexandra believed 29 cans to be an 

appropriate estimate, he could help them understand why it might be unreasonable. In addition to 

guiding the discussion, the adults were likely to repeat [Figure 31, lines 200 and 202] or rephrase 

[Figure 32, lines 264 and 266] what they were saying and were willing to continue the 

conversation until they appeared to believe the students understood what they were saying.  

4.8 Communication 

 It is possible for students to evaluate, question, and discuss their ideas effectively. In 

many circumstances, a student successfully explained a calculation or procedure to their partner. 
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When this happened, the dialogue served to clarify the partner’s understanding of what was 

occurring or of conceptual aspects of the task. It also helped the students to establish a common 

ground upon which the further co-construction of knowledge could occur. However, there were 

also instances when a student’s explanation did not seem helpful.  

 Sometimes confusion occurred if the students offering the explanation did not clearly 

articulate their knowledge. Christina understood that the length of the rectangle in a cylinder net 

could be approximated using three times the diameter of the cylinder’s base (2π r ≈3d). 

However, her explanation (see Figure 33), which lacked precision and clarity, left Melvin, and 

possibly any listener, very confused. 

247. Christina: . . . I’ll just explain. We find these two, which is exactly these two, first, 
and after this— we got to— and after we find that we need to do the side. We have to 
find the area of this, so if there’s three can fit in— so if three of the circles fit into 
one of side, then that means it’s 6. So 6 multiplied by— yeah, so it’s 6. So 3 times 3 
equals 6, and then you multiply 6 by 6. 

248. Melvin: I have no idea what you’re saying. 
Figure 33: Christina's explanation is not clear to Melvin. 

 Another potential source of miscommunication was the students’ use of informal 

language and ‘shorthand’. As was appropriate for the situation, students related to each other in a 

relaxed manner, rather than a formal academic one. They frequently used ‘this’ and ‘that’ in 

place of specific values, concepts, or measurements. In addition, they only occasionally used 

units and summary statements to confirm the meaning of their calculations. However, given that 

students likely also relied on gestures, written work, shared contexts, and familiarity with each 

other, this style of communication was often successful and the students usually understood each 

other.  

 At times, however, the lack of precision may have indicated, or contributed to, confusion. 

Tidus and Alexandra had numerous conversations in which they discussed how to find the 

surface area of the cake. Even during their third attempt to find the area of cake’s base (see 
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Figure 34), they believed they were communicating clearly and sharing information, even though 

it appears they were not. They began with π r2 [line 223], an appropriate choice since the base of 

the cake was round, and both seemed content with their answer of 100 cm2. However, 

unbeknownst to either of them, they appeared to arrive at this answer in different ways. 

Alexandra calculated π2  10 [lines 223 and 225], which could be interpreted as either (π2)2 or 

π2r, whereas Tidus seemed to think they calculated r2 [line 226]. Interestingly, both agreed to the 

other’s logic during the discussion. Tidus, in line 224, appeared to accept Alexandra’s proposal 

of π2 as part of the equation. Later, in line 227, Alexandra seemed to accept Tidus’ assertion that 

they were calculating 10  10 in order to determine r2 [line 226]. 

223. Alexandra: Okay, let’s do it again. Okay to find the surface area: pi r squared. 
So 3 times 3, or pi times pi, is 9.9. So we round that to 10. 

224. Tidus: Oh right. 
225. A: So then we squared that, so it’s 10 times 10, which equals 10— [squared] 
226. T: Right and 10 times 10 is the radius squared.  
227. A: Yup. 
228. T: So it’s radius squared— so to find it, it’s pi r squared. 
229. A: pi r— So it’s 100, pi r squared. Yep. . .  
Figure 34: Alexandra and Tidus use different approaches to find surface area. 

 In all mathematical forums, clear communication is important. However, in collaborative 

situations it is essential; its absence renders students unable to create, maintain, and develop a 

space of mutual understanding. Although mathematical communication necessarily encompasses 

the specialized lexicon, symbolic notation, and visual representations of the discipline, these 

devices are not integral to all rich mathematical discussions. For these students, their quotidian 

vocabulary and style of interaction did not prohibit discussion regarding the problem or their 

approach to solving it. Though I, as an outsider to the discussion, often struggled to make sense 

of what was being said, students’ language, gestures, and actions seemed sufficient to create at 

least a partial shared understanding.  
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4.9 Summary of Findings 

 The mathematical learning demonstrated during the collaborative assessment has 

grounded these findings. In summary: (1) although many students collaborated throughout the 

task, their focus on calculations and their tendency to work the problem without planning or 

reflecting on their solutions, may have affected their success; (2) students commonly employed a 

relaxed, informal, accepting, and descriptive style of communication, which often enabled 

mathematical discussions that led to increased shared understanding; (3) student disagreement 

and adult questioning were sometimes the catalyst needed for students to justify their ideas or re-

evaluate their solutions. 
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5 Discussion 

 The dual focus of this study was collaborative activity and mathematical learning within 

an assessment situation. In the discussion I examine both of these components and explore how 

these students’ demonstrated behaviour can inform our understanding of collaborative 

assessment, including prospective paths for future research and practice in the area. In addition, I 

briefly discuss the potential benefits and one commonly quoted drawback of collaborative 

assessment and the roles equal status partnerships and classroom context played in this study. 

Though I have grounded this discussion in the current findings and in the related literature, it has 

been influenced by my experiences while teaching middle school mathematics. 

 As this exploratory study was designed to investigate the practice of collaborative 

assessment and its potential for use in the middle school mathematics classroom, I have tried to 

balance the need for a variety of student perspectives with the need for depth and close analysis 

of individuals’ and pairs’ experiences. Therefore, I chose to focus on the nuances that may have 

been overlooked in a larger study, while simultaneously anchoring my attention on mathematical 

learning rather than on mathematical affect or social factors within the classroom. Any 

conclusions drawn from this study are done so with the understanding that different students 

respond differently to similar situations and that each class creates a unique subculture, which 

influences how collaborative assessment is perceived and enacted.  

5.1 Collaborative Activity  

 Though collaborative activity takes many forms, it is defined in this study by the 

engagement of students in a common task, with a joint goal that all participants strive towards 

together. Communication is essential to negotiating a shared understanding of the problem, 

critically analysing potential strategies and solutions, and overcoming differences that arise.  
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 In this study, three of the four dyads consistently demonstrated behaviours characteristic 

of collaboration and produced work that was the combined effort of both partners. While all 

students were given the common task of determining the necessary number of cans of icing, the 

pairs who collaborated each produced a single jointly-constructed solution to the problem. At 

times their shared understanding was implied or nearly-implied, as evidenced by the 

conversations that took place in ‘shorthand’. At other times the shared understanding was made 

more explicit and was created through discussion regarding the problem and the students’ 

strategies for solving it (see Figure 9). In addition, there were occasions when students disagreed, 

but were able to develop a shared understanding because of their willingness to discuss their 

differing views and reach a consensus built not on compromise, but on reasoning (see Figure 

30).  

 Essential to the pairs’ collaboration was their ability to communicate. Necessarily, the 

students entered the task with a degree of common ground, including some understanding of 

volume, surface area, and the context of the problem. It is important to recognise the pre-existing 

commonalities since there can be no discussion in the complete absence of shared ground (Cobb, 

Yackel, & Wood, 1992). Discussion, though, is imperative to the expansion of the students’ 

shared understanding. While more discussion does not directly extend the boundaries of common 

understanding, it does lead to more possibilities for extension. Similarly, lack of discussion 

reduces the opportunities available to extend these boundaries. For the three collaborative dyads 

in this study, their near continuous communication seemed to provide numerous opportunities to 

develop and enhance their collective understanding of the problem. At times, this enabled them 

to build on each other’s suggestions and refine their approach. Thus, as Fernadez, Wegerif, 

Mercer, and Rojas-Drummond (2001) explain, for these pairs: 
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the correct solution, then, is a joint achievement, generated by the collective thinking activity 

of the . . . participants. We might therefore say that we are observing a conversation situated 

in a joint Zone of Proximal Development, in which language is enabling them to provide 

mutual intellectual support or ‘scaffolding’.  (p. 51)  

 For the non-collaborative dyad, however, their lack of mathematical communication 

resulted in separate experiences; upon completion of the assessment their common understanding 

of the problem was similar to what it had been at the beginning of the task, as evidenced by the 

different solutions each student submitted. Had they followed instructions and submitted a single 

assignment, even after working independently, it would have been interesting to see the results. 

Would Rodriguez have taken the time to more fully explain his understanding of the problem to 

Fergus? Would Rodriguez have forgone the effort an explanation required and have accepted 

Fergus’s solution? In either case, the results would have provided insight as to what can occur 

when students with a tendency towards, or preference for, individual work are denied the 

opportunity of completing their own assessment. As it is, this pair’s response suggests that not all 

groups collaborate when provided the opportunity to do so.  

 Though the other groups collaborated more consistently than Rodriguez and Fergus, their 

interaction did not always lead to mathematical insight or success with the problem. For the most 

part, students in this class worked nicely together; they shared ideas, asked questions, and 

encouraged each other. As such, they most often demonstrated what Mercer terms cumulative 

talk, talk in which “speakers build positively but uncritically on what the other has said” 

(Mercer, 1996, p. 369).  To me they appeared happy, engaged, and cooperative, though not 

necessarily as effective as possible.  

 Past research, though often vague, has acknowledged the need to instruct students how to 

work collaboratively. As I did in this study, instruction often focussed on directing students to 
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respect each other, to participate, and to ask questions when needed. Most students in this study 

demonstrated each of these characteristics, yet the groups still struggled to collectively evolve 

their understanding of the problem and their strategies for approaching it. Given that these 

students already enjoyed pleasant working relationships with each other, this finding suggests 

that such instruction does not necessarily ensure effective collaboration amongst grade 8 

students.  

 In examining students’ talk, it is important to differentiate between quality and quantity. 

More does not necessarily equate to better: by some measures, American students talk more than 

their Japanese counterparts, but it is the Japanese students who are more likely to discuss, 

explain, and justify their mathematical reasoning (Sfard, Nesher, Streefland, Cobb, & Mason, 

1998). Mercer’s recent work (Mercer, 2008a, 2008b; Mercer & Sams, 2006) further supports the 

need to emphasise quality, rather than quantity, claiming “if teachers provide children with an 

explicit, practical introduction to the use of language for collective reasoning, then children learn 

better ways of thinking collectively and better ways of thinking alone” (Mercer & Sams, 2006, p. 

525). Simply stated, Mercer believes that increasing the level of exploratory talk between 

students increases their ability to solve problems successfully. Exploratory talk is rare amongst 

British primary children (Mercer, 2008a), a phenomenon that seems to be partially replicated 

here, given that these students sporadically, and usually only in response to difficulty or dispute, 

questioned each other’s suggestions or provided coherent reasoning for their own. 

 Interestingly, students in this study rarely displayed the type of talk Mercer refers to as 

disputational. At one point, Alexandra and Tidus engaged in a classic ‘I’m right’ / ‘No, I’m 

right’ debate regarding the number of icing layers but eventually, perhaps because they realised 

the counter-productiveness of the discussion, they switched to a more exploratory style of talk in 

which they offered justification for their reasoning (see Figure 30). In class discussions, students 
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will provide more justification for their work when their ideas or solutions are questioned 

(Maher, Powell, Weber, & Lee, 2006); possibly, the same is true in a collaborative assessment 

situation.  

 An apparent advantage of exploratory talk is that student explanations, because of the 

working-together-on-a-common-task context in which they are obtained, are essentially different 

from teacher explanations. Supposedly, these explanations enable students to support each other 

and make further progress than they would have individually (Fernandez, Wegerif, Mercer, & 

Rojas-Drummond, 2001). In this study, students felt comfortable asking their partner direct 

questions and often benefited from the explanations provided. However, the benefits of student 

explanations may depend upon the student’s ability to elucidate their reasoning and provide a 

coherent explanation. When students were confused, frustrated, or otherwise unable to articulate 

their thoughts (see Figure 33), the explanations did not appear immediately helpful, nor did they 

appear to further their understanding or the understanding of their partner. However, this is 

difficult to assess with this study since increased understanding is not always apparent forthwith; 

often, a comment or conversation is the trigger for learning that is not apparent until a (much) 

later point in time. 

 Effective student explanations are not necessarily qualitatively different from those which 

the teacher would have provided, however teacher explanations are likely imbued with more 

authority (Amit & Fried, 2005), which may change how students perceive them. For example, in 

this study, students would challenge a peer’s explanation, but not an instructor’s or researcher’s. 

Similarly, when students questioned their partner there appeared an implicit acceptance that their 

partner may not know the answer and they would work through the solution together. However, 

when an adult was questioned, the expectation was that an answer would be forthcoming.  
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 While the authority of the teacher did not fall under the initial scope of this study, it 

became relevant since both the teacher and I interacted with the students throughout the 

assessment. While the effect of this interaction is difficult to measure, I believe it is fair to 

conclude that it affected the mathematical learning demonstrated. For example, when Christina 

suggested to Melvin that they had made a mistake because 699 cans of frosting was an 

unreasonable answer (see Figure 27), Melvin acknowledged the statement, but neither student 

appeared to take it seriously and both students quickly gave up on the idea of finding an 

alternative strategy. However, when the instructor suggested to Alexandra and Tidus that 29 cans 

might be unreasonable (see Figure 32), both students accepted that they had made a mistake and 

became committed to finding it. 

5.2 Approaches to Mathematical Learning  

 In this task, students initially seemed to approach the problem with a calculational, as 

opposed to conceptual, orientation (Thompson, Philipp, Thompson, & Boyd, 1994); they often 

selected and performed calculations without considering the context or applicability of a formula 

or procedure. For example, all groups determined the volume of cake, a step that was neither 

needed nor useful, given the context of the problem and the students’ approach to solving it. In 

addition, the students seemed to focus on obtaining an answer, rather than on considering the 

meaning of the answer obtained, which may explain why 29 cans did not strike Alexandra and 

Tidus as an inappropriate solution and why Christina expressed concern that they were “doing it 

wrong” when a volume calculation correctly yielded a large value. 

 Students seemed both accustomed to and relatively successful working from a 

calculational orientation. They could often identify, discuss, and overcome calculational 

difficulties that arose and, at least in Melvin and Christina’s case, they attributed their inability to 
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solve the problem to their difficulty selecting and applying the appropriate formula(e), rather 

than to understanding the problem (see Section 4.1). 

 Though discussions regarding calculations and procedures appeared to dominate the 

conversations, students occasionally, and with varying degrees of success, displayed a 

conceptual orientation by exploring the problem, their calculations, and their answers within the 

context provided. For example, although Christina did not focus on the meaning of her selected 

formula, she did appreciate the meaning of her answers. Her concern with large numbers 

stemmed from her (incorrect) belief that the volume calculations indicated the number of icing 

cans needed and she readily appreciated the absurdity of requiring hundreds of cans “to make 

one little cake”. Students who modified their surface area calculations to account for the un-iced 

bottom of the cake were also demonstrating an understanding that the problem occurred within a 

given context and could not be solved by applying the standard surface-area-of-a-cylinder 

formula.  

 Students’ conceptual orientations developed as they worked on the problem, often in 

response to difficulties that arose. As opposed to using a conceptual orientation to develop a plan 

or strategy, it was usually subsequent to performing their calculations that students reflected 

upon their answer and considered the implication and meaning of their solution (see section 4.2 

and Figure 10).  

 When conceptual difficulties arose students often struggled to navigate them 

successfully. Perhaps, the deep connected knowledge needed for conceptual understanding is 

difficult for novice learners to acquire which may explain why Christina finally abandoned her 

attempts to explain the connection between nets and surface area to Melvin and why Jesse had a 

difficult time explaining the icing thickness to Rebecca. Tidus and Alexandra successfully 
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resolved their conceptual difficulty regarding how many ‘layers’ of icing existed, but it required 

a lengthy roundabout conversation (see Figure 30 for an excerpt).  

 With this research, there are various potential explanations for students’ apparent 

dominant calculational orientation including the pervasive ethos of school mathematics, the 

teacher’s approach to the discipline, and the students themselves.  

 School mathematics is often regarded as a field in which the one right answer can be 

obtained quickly by correctly following the necessary algorithm. As early as kindergarten, many 

students begin to accept that mathematics is comprised of specific processes and right answers 

(Anderson & Gold, 2006). For students in this study, these beliefs are also reinforced by a 

provincial curriculum that prepares students for a mandatory grade 10 exam in which students 

have an average of two minutes per question. It is reasonable to conceive that embedded 

systemic expectations, which emphasise solution over process have, and will continue to have, 

influence on the students’ approach to problem solving.  

 Similarly, it is important to recognise the impact of the classroom teacher. From our 

discussions and from the lessons I observed, I believe that the classroom teacher felt it was 

important for students to understand the concepts behind the formulae they used. She prepared 

activities that would allow students to explore and experiment with developing ideas and 

understandings. However, she also responded to the school culture, which tended to favour more 

procedural knowledge. 

 Alternatively, the students’ calculational orientations may be indicative not of external 

factors, but of their novice problem solving skills. Thinking conceptually about a problem 

requires forethought and planning, two strategies these students rarely engaged. Instead, students 

in this study usually seemed to pursue the first idea suggested. This is typical of novice problem 

solvers who, compared with experts, are more likely to begin a problem by plugging numbers 
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into a formula rather than taking the time to understand it (Bransford, Brown, & Cocking, 2000). 

Also typical of novice problem solvers, these students appeared to try different operations on the 

numbers (e.g. by first calculating the volume of the cake, then its surface area) and did not 

consistently and independently conceptualise the problem within the context it was presented or 

consider the reasonableness of their answers (Muir, Beswick, & Williamson, 2008). A final 

difference between expert and novice problem solvers seems almost unworthy of mentioning 

since the observation that experts make better use of diagrams was based on a comparison 

between expert mathematicians and ‘novice’ undergraduates working on calculus problems 

(Stylianou & Silver, 2004). However, the novices’ interpretations of diagrams are relevant given 

that in this study, students did not seem to appreciate that valid information could be 

communicated via the picture of the cake. For example, students did not automatically include 

the icing in the layers in their calculations, nor did they automatically accept that the bottom of 

the cake was not iced, even though these pieces of information were apparent in the picture.  

 It is unknown whether the students’ novice problem-solving tendencies result from age, 

experience or, more likely, a combination of the two. In either case, with the exception of being 

unwilling to reflect on the appropriateness of their answers, these students seem remarkably 

similar to the grade 6 students Muir and Beswick (2005) asked to perform non-routine 

mathematical problems: 

Most students seemed not to monitor their progress, reflect on the appropriateness of the 

strategy they had chosen, or display any inclination to try an alternate strategy even when 

frustrated by their lack of progress. Students were similarly unwilling to reflect on the 

appropriateness of the answer they obtained or to attempt to confirm it using an alternate 

method. (p. 567)  
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 Up to this point, I have discussed the conceptual and calculational orientations 

demonstrated by the students as though they were separable and dichotomous. However, they 

may not be as polarised as Thompson, Philipp, Thompson, and Boyd (1994) suggest. Conceiving 

answer getting and meaningful discussion as mutually compatible, as two sides of the same 

problem solving coin, may help to extrapolate their interwoven connections and to clarify how 

students approached this assessment task.  

 Conceptual understanding, owing to its rich contextual and interconnected nature, 

arguably requires more time, effort, and practice to master than any algorithm, which can be 

memorised. To be done well, students must think abstractly, see the mathematical possibilities 

within a given situation, and “link related concepts and methods in appropriate ways” 

(Kilpatrick, Swafford, & Findell, 2001, p. 119). In this task, one might expect students with a 

strongly developed sense of conceptual understanding to appreciate that icing has a thickness, 

and thus is three-dimensional, which means its volume can be determined. Similarly, one might 

expect students’ two-dimensional representations of the surface area of the cake to include only 

one ‘base’ to account for the un-iced portion that is in contact with the plate.  

 However, it is difficult for students to successfully approach problems conceptually if 

they lack the co-requisite skills and methods such as selecting and applying an appropriate 

formula (for further discussion, see Wu, 1999). In North American style classrooms such as this, 

there is a tendency to dismiss the memorisation, skill work, and repetitive practice that, in other 

cultures, are considered prerequisites to developing a deep understanding of the underlying 

concepts (Leung, 2001). Consequently, students may not possess the necessary foundation on 

which to build the firm conceptual understandings beneficial to solving open-ended novel 

problems. 
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 The intricate links between the conceptual and the calculational were clearly evidenced 

by the dyads in this research who struggled with this task as a result of their inability to perform 

calculations correctly. Most notable was Alexandra and Tidus whose confusion over π r2 

contributed to their difficulties regarding the amount of icing on the cake (see Figures 8 and 34) 

and Rodriguez whose inability to work with the task’s variables and formulae potentially 

overshadowed his nuanced understanding of how to approach the problem conceptually (see 

Figures 13 and 14). 

 A polemic view of mathematical orientation induces a tendency to categorise actions and 

statements, rather than view them as development along a continuum. Though the students spent 

most of their time discussing calculations, it may be that, at times, they used the formula(e) to 

frame their understanding of the problem. For example, Christina and Melvin’s surface area 

discussion clearly focussed on determining the necessary measurements and calculations (see 

Figure 5). However, it also demonstrated they understood that the iced area of the cake could be 

represented as a two-dimensional sketch, rather than the three-dimensional object in the 

photograph.  

 Similarly, the students’ apparent lack of conceptual discussion does not necessarily 

indicate lack of conceptual thought. Although Jesse’s statement, “So, you can divide that by that 

. . . ”, was the most articulate explanation either of the girls offered for determining the number 

of frosting cans needed, this approach cannot be considered algorithmic given the unlikelihood 

that they had memorised a specific formula for determining the number of icing cans needed and 

instead were applying their conceptual understandings of division and amount to the problem. 

When students do not voice their conceptual understandings it is difficult to know if they 

considered the concepts too basic to require explanation or if they were not yet able to clearly 

describe the understanding they possessed (Kilpatrick, Swafford, & Findell, 2001).   
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5.3 Potential Benefits of Collaborative Assessment 

 Though this study did not specifically investigate the myriad potential benefits 

collaboration may afford students and researchers, it does offer some insight in these areas. 

Comments from the participants’ self-reports corroborate claims from previous studies (Berry & 

Nyman, 2002; Hancock, 2007; Lambiotte, Dansereau, Rocklin, & Fletcher, 1987; Zimbardo, 

Butler, & Wolfe, 2003) that students respond positively to the opportunity to work together on 

assessments: all but two of the students in this study would opt to work with a partner again if 

given the opportunity. Like university students, these middle-schoolers appeared to appreciate 

the various contributions of their partners, which included providing an alternative view point, 

assisting with and double-checking calculations, and helping to get ideas flowing.  

 For the majority of students who responded favourably to collaborative assessment, it 

seemed to provide a pleasurable working environment, in addition to the opportunity to engage 

with and discuss the problem in new ways. Having a partner who could lend support and 

assistance seemed a positive benefit of this task. In addition, some students claimed to enjoy 

collaboration, even though they could not clearly explain why. As one student said, “It is just 

fun. I know that is vague, but it is true”.  

 Though the benefits of collaboration are often framed in reference to the student, this 

format of work may also be helpful to teachers and researchers who are attempting to gain a 

more complete understanding of student knowledge and reasoning.  

 With written assessments, the teacher’s view of student comprehension is limited to what 

can be gleaned from the final product. However, the brief one to two pages of (mostly) 

calculations that students submitted for this task did not reflect the complexity of their thought 

and did not enable the teacher to know which ideas were discussed and discarded, which ones 

reverberated throughout the task, which ones students struggled to grasp, and which ones 
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students used fluidly. While it is unreasonable to expect the teacher to know what is taking place 

within each group at all times, listening to partial discussions may afford the opportunity to 

ascertain a more balanced view of the students’ mathematical learning. 

 In addition, the student talk required for collaborative work afforded the researcher the 

unique opportunity to observe the spiralling of student ideas and the amount of time students 

spent formulating and refining these ideas. Although written work tended to be organised and 

linear, analysis of the discussion showed that students revisited ideas and calculations. Since 

some ideas developed as the task progressed, there were numerous points in the conversation that 

could be used to determine a student’s level of understanding. Whereas written work may have 

indicated that a student did not understand a given concept, the discussion may have revealed a 

partial level of understanding or a particular misconception that was affecting a student’s 

progress.  

5.4 Potential Drawback of Collaborative Assessment 

 In theory, one potential drawback of collaborative assessment is that individual 

accountability is reduced or eliminated. Undoubtedly, when the students collaborated on the 

mathematical assessment in this study, teasing out their individual contributions would have 

been complex, time-consuming, and considerably subjective. Like many daily conversations, the 

students’ discussions ebbed and flowed, meandering and non-linear, from topic to topic. 

Individuals’ ideas were picked up, dropped, and then revisited, making it impossible to measure 

the impact of a single comment. Therefore, it would have been very difficult to assign individual 

marks based upon individual participation. 

 The primary dilemma with reduced individual accountability is usually one of perceived 

fairness: Is it fair for students in a group to receive the same mark or should an individual’s score 

reflect their personal contribution (Hunter, 2006)? Therefore, some educators who readily 
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acknowledge the benefits of collaboration are hesitant to allow it during assessment, especially if 

they feel they will face pressure from parents. When the principal of the school where I 

conducted the study heard about my research topic, this worry was his immediate response and 

his only concern.  

 Although, the fairness quandary can be sidestepped if summative individual tasks are 

used as assessments of learning while collaborative tasks are restricted to assessment for learning 

(Hargreaves, 2007), this study is premised on the stance that collaborative tasks can serve both 

assessment goals effectively. From the findings, it is clear that when students collaborate 

effectively a single score is a fair reflection of the joint work and ability of both students. In 

addition, I suggest that in the appropriate circumstances individual accountability may be less 

important to parents and students than some educators believe. For example, none of the students 

or parents in this study brought forth concerns regarding the collaborative nature of this 

assessment.  

5.5 Equal–status Partnerships 

 One significant aspect of this study that may have affected how students collaborated was 

the formation of dyads based on equal-status partnerships. Teachers consider a variety of 

variables when matching students for group work. At times a teacher may pair students randomly 

or based on a common interest, need, or learning style. At other times, a teacher may pair 

students so their strengths complement each other (i.e. pairing a student who follows directions 

closely with one who approaches the problem in a more holistic manner). In this study the 

specific goal was to pair students so they were equally matched, thus reducing any power 

differential that might exist between the partners. 

 In most cases, this approach appeared advantageous and provided an appropriate milieu 

in which joint problem solving construction could develop. However, what is good for most (or 
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even some) students is rarely the most appropriate option for everyone. Given the highly 

contextual and individual aspects of learning, it is worth examining the case in this study in 

which equally matched students did not work effectively together.  

 Rodriguez and Fernandez did not engage collaboratively on this task and the 

mathematical learning they demonstrated was a reflection of their individual efforts, which 

usurped any weak attempts either of them made at collaborating. However, even upon reflection, 

they appear well-matched on a variety of characteristics. The teacher perceived both students to 

be competent, but weak, in mathematics; this perception is at least partially supported by the 

students’ written work on the problem. And, though Rodriguez actually had a fairly sophisticated 

understanding of the problem, he had difficulty applying this knowledge and effecting an 

appropriate solution. The students were friends who listened, and responded, to each other’s 

comments. In addition, both students displayed a similar temperament, were easily distracted by 

near-by students, and appeared more interested in discussing common interests than in 

discussing the problem.  

 Despite the equal match, or possibly because of it, this group did not work effectively 

together; they did not engage collaboratively and the mathematical learning they demonstrated 

was a reflection of their individual efforts. While equally matched offers a variety of potential 

benefits, it also has potential drawbacks. One potential drawback of equally matching students is 

the possibility that some students would have been more focussed and demonstrated greater 

understanding if they had not been distracted by each other and had been given the opportunity 

to work independently or with another student who may have kept them more focussed. For 

example, unlike situations where the teacher pairs a student who is easily distracted with one 

who is more focussed, neither of these partners effectively regulated the group’s off-task 

behaviour, which likely influenced the quality of their work and the mathematical learning they 
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demonstrated. Even in equally-matched groups who are relatively focussed, there is the potential 

for one student to lead the other off-track, as Tidus did with Alexandra when he wanted to 

discuss the missing chunk of cake (See Figure 29). In the case of Rodriguez a more 

complimentary pairing may have been to partner him with a student possessing a strong 

background in calculational skills, thus allowing both students to benefit from the strengths of 

the other. However, for such a partnership to work, I suspect Rodriguez would need to 

communicate more openly with his partner. For example, although Fergus correctly understood 

the request to determine the number of icing cans needed, Rodriguez did not appropriate this 

notion in his final written solution.  

5.6 The Classroom Context  

 Much has been written about the unique qualities of school mathematics and the 

contrived nature of many ‘authentic’ problems (see Boaler, 1994; Palm, 2007, 2008). I did not 

choose this problem because I believed it to be authentic; I selected it because I believed it would 

provide a relatable context, within which students could apply their understanding of volume and 

surface area. It was designed to allow for the application of recently studied concepts in an open-

ended situation requiring the consideration of various variables.  

 However, students seemed to assume that a right answer and a right approach existed and 

were hindered by the school mathematics lens with which they consciously or unconsciously 

viewed the problem. Students questioned notions they may otherwise have considered obvious, 

such as whether or not to ice the bottom of the cake or include the layers of icing when 

estimating how much icing to buy. This diverted their focus and reduced the amount of time they 

had available to focus on other aspects of the problem. Their recent work with volume and 

surface area (correctly) informed their decisions to apply these formulae, yet it also seemed to 

prevent them from applying the formulae in novel and flexible ways.  
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5.7 Implications for Future Research and Practice 

 This study has established that it is possible for middle school mathematics students to 

work collaboratively on an in-class assessment task. In doing so, it has left me confident that 

collaborative assessment can adequately and concurrently function as both an assessment of 

learning (emphasis on what a student has already learned) and an assessment for learning 

(emphasis on what a student has yet to learn). As such, I can easily justify its use to myself and 

to others in my school communities. However, it has also established that effective collaboration 

requires more than a common task and a partner. I now better appreciate the diversity of student 

interactions that may occur during collaboration and, consequently, will be more likely to discuss 

with students the characteristics of effective collaboration as well as strategies for improving 

collaborative outcomes. 

 Further research that explores the quality of talk between partners, the factors affecting 

this talk, and the potential outcomes associated with different discourses may help students and 

teachers to maximise collaborative assessment time. In this study, it was difficult for students to 

detect conceptual misunderstandings without adult assistance (see Figures 31 and 32). Although 

its methods may need to be modified slightly for older students, direct instruction aimed at 

explicitly increasing exploratory talk (Mercer, 2008a) is one strategy worthy of investigation as it 

may help students and teachers conceive of collaboration as working together effectively, as 

opposed to working together nicely. In addition, teachers could emphasise the development of 

communication skills required to discuss a problem’s concepts, as well as its calculations. By 

giving instruction that focuses on pre-planning and evaluating mathematical solutions and on 

acknowledging, addressing, and overcoming mathematical difficulties, students may acquire the 

collective freedom to analyse tasks from multiple perspectives, thus enabling them to 
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deliberately select appropriate formulae based on how they understand the problem, rather than 

allowing the formulae they use determine how they conceive the problem.  

 Similarly, providing students the ability to develop and discuss their conceptual 

orientations proactively, rather than retroactively, may also be beneficial and may be especially 

relevant to middle school students since, in this study, the students showed an overwhelming 

tendency to accept their partner’s suggestions without discussion (see Figures 24, 26, 27, and 

28). 

 It is unknown if students can develop the skills needed to provide each other with the 

same level of direction and assistance that the teacher can provide. With this task, student pairs 

worked relatively independently, but adults occasionally highlighted specific considerations for 

individual groups, especially if they had clearly overlooked something. This served to redirect 

the students’ attention, reduce frustration that would have become counter-productive, and/or 

push students to consider the problem differently. Although not all assessment situations are 

flexible in this regard, reducing this additional level of support may impact the difficulty level of 

questions that can be reasonably considered for collaborative assessment.   

 In addition, future research in the area of collaborative assessment needs to examine 

factors other than the quality of student talk. Studies that focus on students who seem prone to 

struggle with or dislike collaborative activities are needed to better understand how these 

students respond to such an assessment. From a mathematical stance, further research could 

investigate how changes in behaviour, such as developing an initial problem solving plan or 

using precise vocabulary to clearly communicate conceptual understandings, can affect students’ 

abilities to collaborate effectively.  

 While single-time studies, such as this, provide some insight into collaborative 

assessment, longer studies in a variety of situations and with a variety of tasks are also needed. It 
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is possible that experience changes student interactions; students who frequently engage in 

collaborative assessment may, though practice, become more skilled at justifying their opinions 

and questioning their partner’s statements. Or, students who are consistently expected to 

participate in collaborative assessment may experience a decreased enjoyment of it, which may 

affect their willingness to invest fully.  

 In addition, considering different approaches to data collection and analysis may provide 

different insights. I believe an important consideration for any collaborative assessment study is 

the maintenance of ecological validity. However, more obtrusive methods of data collection, 

such as a researcher-observer or a greater number of video cameras that record not only student 

discussion, but also non-verbal communication and real time data of what the students write 

down, would provide a greater wealth of data on which to base claims and insights.  

 Collaborative activities are not the panacea many initially believed. To enhance students’ 

mathematical understandings and their ability to communicate these understandings, 

collaborative assessment must be used appropriately. Further research will help practitioners and 

researchers understand how best it can be implemented and help assuage concerns regarding 

reduced individual accountability. However, curriculum change is challenging for teachers to 

implement (Tirosh & Graeber, 2003); beneficial suggestions to improve classroom practice often 

remain unacknowledged. Therefore, future research will need to explore not only what is 

required for collaborative assessment to be most effective, but also what is required for teachers 

to begin implementing it.  
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Appendix A: Selected Grade 8 Shape and Space Objectives  
(Ministry of Education, 2008, pp. 67-68) 
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Appendix B: Icing the Cake 
 
 

 
 
 
 
 
 
 
 
 
 

 
Diameter of can = 9 cm 
Height of can = 11cm 

 
  Diameter of cake = 20 cm 
   Height of cake = 20 cm 

  
 
 

1. Estimate how many cans of this frosting are needed to make this cake. 
Justify your answer mathematically. 
 
2. Do you think your answer is reasonable and makes sense? Explain. 
 
3. Do you think your answer is accurate? Do you think it is ‘accurate enough’ for this 
problem? Explain. 
 
4. How could you have made your answer more accurate? 
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Appendix C: Enlarging a 3D Shape 
 

 
 
 
 
 
 
 
 
#1. If the dimensions of a 3D shape are doubled, what happens to the volume? Try to explain in 
words and using mathematical notation. 
 
#2. If the dimensions are tripled, what happens to the volume?  Try to explain in words and using 
mathematical notation. 
 
#3. a) Find a rule that explains the general relationship between the increase in dimensions and 
the increase in volume. For example, if the dimensions are increased by a factor of x, what 
happens to the volume?  
 

• Show and organize all of your work. 
• How many (different) examples will you need to be convinced your rule works? 
• Try to explain in words and using mathematical notation.  

 
b) Explain WHY you think your rule works. 
 
#4. Use your rule to answer the questions below: 
 
a) A given object has a volume of 25cm3. Each of its dimensions is made 5 times bigger. What is 
the new volume? 
 
b) The diameter of the Earth is 8,000 miles. The diameter of the Sun is 1,000,000 miles. How 
many times bigger in volume is the Sun compared with the Earth. 

When a 3D shape is enlarged, both its dimensions and its volume 
increase.  

But, the dimensions and the volume don’t increase proportionately.  

For example, if the dimensions are doubled, the volume is NOT doubled. 
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Appendix D: After Task Reflection Questions 
 

• Do you think this assessment was a ‘true reflection’ of what you learned about volume and/or 
surface area during this unit? Does it fairly show what you know about the topic? Explain. 

• Do you think working with a partner helped you to do better on this assignment? Why or 
why not? 

• Do you think you helped your partner to do better on this assignment? Why or why not? 
• If you could do this assessment over, would you still choose to work with a partner? Why or 

why not? 
• What, if anything, did you learn (about mathematics or about something else) during this 

assessment? 
• Is there anything else you’d like to share about this experience? 
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Appendix E: Transcript of Rebecca and Jesse’s Dialogue 
 
1. Jesse: Okay, diameter of a can. This is— oh— I’m not supposed to draw this am I?  
2. Instructor: So if you need more scrap paper, just let me know. I’ll give you a couple of 

pages to start. 
3. Jesse: Okay, I’ll calculate that – frosting!  
4. Rebecca: First thing 
5. J: How do you find the area, again (laughing), no how do you find the volume, no find 

the [base] area first, right?  
6. R: Area of the circle— of the— 
7. J: Pi r squared times—, no plus—, no, how do you find the area of the circle, 
8. R: Oh, um. (pointing to paper) 
9. J: Is that on? (points to camera) 
10. R: Oh, um, um, yep.  
11. J: Bah. 
12. R: I can see you actually. 
13. J: (laughs) Okay, 3.14. What’s 4.5 times 4.5? 
14. R: It’s (working on the calculator) 20.25. 
15. J: No, no, no  (as R pushes the incorrect buttons on calc) 
16. R: Oh, 4. 
17. J: That’s not a 4. 
18. R: Oops, 20.25. 
19. J: Okay, that is what? 
20. R: (inaudible) equals 63 and [585]. 
21. J: cm.  
22. R: cm.  
23. J: cm2. Okay, what’s— what’s the— how do you do volume again?  
24. R: Well, it’s, it’s —  
25. J: (interrupting) It’s this [63.585] time height, right?  
26. R: Yup. 
27. J: 63.585 x 11 (as she writes). 
28. R: Equals 699.435. 
29. J: 699 point what (looking over at calculator)? 
30. R: 699.435. 
31. J: Now what? And this— what? Now we have to do cake. Oh my god! 
32. R: So, um, we need to estimate. 
33. J: Fine, okay, well that’s about, 20, 20, 10.  
34. R: So the r is 20 then? And, yeah— 
35. J: That’s like, like 10, 20, no 20, what 60?  
36. R: What? 
37. J: What’s 60 times 20? 
38. R: 60, oh, times 20, um 1200. 
39. J: 1200 right? (spoken the same time as R gives answer) So it’s about 2 cans of frosting – 

that’s my estimate. 
40. R: So now what? 
41. J: What’s your estimate?  . . . What? 
42. R: But this cake is cut in half so— anyway— (indicating the piece missing) 
43. J: It’s an estimate. 
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44. R: 1200  
45. J: No, how many things of this. (tapping the paper, on the can) 
46. R: Um. 
47. J: I think it’s two 
48. R: 5 times 65 
49. J: What? That’s a lie. 
50. R: I know, I know. 
51. J: No, it’s only like how many containers of icing are you needing for spreading like the 

outside of that.  
52. R: (inaudible) 
53. J: Is an estimate of nine a reasonable number? 
54. Researcher: You’re going to need to convince me mathematically that it makes sense. 
55. J: Each [icing] can holds [699cm3]— right — Okay, then, what? How big is the cake, 

right? 
56. R: The cake. The volume is 6280. The total volume. 
57. J: Let me write that down. No, don’t we need the outside? 
58. R: What do you mean the outside? 
59. J: We do surface area because you only ice the outside of the cake so we do surface 

area—Ahhhh (erasing)! 
60. R: Are we getting the volume or the surface area? 
61. J: The surface area. 
62. R: What? 
63. J: Surface area because you do the outside, surface area is—  
64. R: Area, then. 
65. J: Pi r squared. 
66. R: Pi r is— oh— 
67. J: Isn’t it just pi r squared? Yeah, just pi r squared. 
68. R: (inaudible, as she gets text book) 
69. J: 3.14 times (inaudible). Then what? 
70. R: 100 
71. J: Can I see— can I do it one more time?  
72. R: Good, 300— 
73. J: One more time. 314. Are you sure? 
74. R: Yeah I’m sure. 
75. J: Okay, then. That’s the area for 2. It’s 2 pi r h. 
76. R: Yup. 
77. J: So 2 times 3.14 times 10 times— times 20. . .  What’s that? 
78. R: 1256 
79. J: Okay, I’m going to do surface area is 1256 plus 314.  
80. R: No, no, is the outer, no never mind. 
81. J: I’ll be right back. (leaves desk)  
82. R: (takes paper and writes/ erases) 
83. J: (returns to desk, inaudible) 
84. R: Okay. 
85. J: (inaudible) You erased it? Okay. 
86. R: 1570. (showing J the calculator) 
87. J: 600. Goes into that [1570] like two and a half times. So my estimate— what’s your 

estimate? 
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88. R: My estimate? 
89. J: How many cans of icing do you think we need?  
90. R: Um  . .. 2 cans. 
91. J: I think 2 and a half because this [volume of the can] is like 700. 
92. R: Yeah. 
93. J:  So that’s 700 times 2 is 1400, but that’s not what that means. Yeah— oh— 
94. R: Well, isn’t 2 like almost— 
95. J: What?  
96. R: 2 cans is almost like get the whole— (makes motion of the top of the cake) 
97. J: Yeah, well almost. But that isn’t— um, it’s like two and a quarter. 
98. R: But we forget to, um, do something. 
99. J: Probably. What? 
100. R: We cut the cake out so the surface area— we should— 
101. J: We put the icing in the middle? I don’t get it. 
102. R: (drawing) Here  . .  . But then they cut it like a quarter of the cake so we don’t have all 

the—  
103. J: That’s hard. I know (turning to another group). Do we have to cut out the piece of the 

cake? (Other group responds that they don’t need to account for the missing piece.) 
104. J: Okay. 
105. R: We don’t.  
106. J: No. Okay, and then [question number] two because I said so— because — two 

because— what’s 2 times 699? 
107. R: (starts to read off numbers on the calc) 
(Jesse gets up to leave, R picks up pencil and looking at the calc, starts writing) 
108. J (coming back and sitting down): Okay, so, its 699. Oh. Okay. Pencil (taking pencil back 

from j and writing): Right? (typing into calculator)  Oh, it’s over, oh well. 
109. R: Well almost. 
110. J: Do you think your answer is accurate? Yes.  
111. R: Yes, because we used (inaudible) 
112. J: Okay, we don’t have to do the cut out piece do we? 
113. Researcher: No. 
114. J: I have a question for you – it says do you think your answer is accurate, what does that 

mean? 
115. Researcher: It means do you think your answer is right?  
116. J: Kind of. . . it’s accurate. 
117. R: The area—we cover  all the area of the— 
118. J: (interrupting) Because it’s more than enough. Yup . . .  because you can’t have two and 

a half cans, whatever. 
119. R: I mean— 
120. J: Because, because it covers— 
121. R: Well, you almost need extra, you know. 
122. J: Whoops. 
123. R: You cover more than enough. 
124. J: Enough what? 
125. R: Enough, uh, the total surface area of the cake. 
126. J: Whoops. (picking up eraser) How can you make your answer more accurate? Do you 

want to do that part? I don’t want to do that part. 
127. R: I can, I don’t know. 
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128. J: Just put [question number] 4. Somewhere. Oh, I already have so you just put 4 and it 
would be like, um, 1570, yes? 

129. R: Are we, like, do we copy down the question? 
130. J: No, like, to make it more accurate we can divide 699.435 um into— yeah, yeah, 

equals— (R: writing) oops, wrong ways [writing the division statement reversed] 
131. R: Um  4, 3,  point 5 
132. J: 2.354. Oh. (entering things on calculator) (pause) 2. 2446891. You don’t have to write 

all of them down.  
133. R: I know. 
134. J: It’s like 2 point, 2 point. Yeah, that’s it, that’s not a lot. 
135. R: Yeah, and then. 
136. J: Okay 
(working and writing) 
(unrelated conversation) 
(teacher interruption) 
137. J: We’re done. 
(unrelated conversation) 
138. J: Here we go. 
139. R: What else can we do? 
140. J: It’s [starts to spell out her name], recording our answers (show paper) 
141. R: Let’s see. 
142. J: It’s our awesome answers. 
143. R: I know. 
144. J: And then that this way. Okay, which way was it? Was it this way (putting camera 

back)? 
145. R: Uhh. 
146. J:  It was this way. Oh, bah! (watching camera) Okay, I’m going to go ask (gets up). 
147. Researcher: Have you looked at it on the back [where the assessment criteria are 

described]? 
148. J: Yeah. Why isn’t there any criterion B? 
149. Researcher: Because Criterion B is looking at patterns and we aren’t really looking at 

patterns here. So you’ve explained to [the teacher] what you’ve done? You’re pretty 
confident in your answer?  

150. J: Yeah. 
151. Researcher: Yup, you’ve talked about how maybe you could have made it more accurate 

and maybe given a couple of suggestions for each of those, not just one? 
152. J: For these [questions] ? 
153. Researcher: For these ones. What would be not just one answer, but a complete answer?  
154. R: Okay. 
155. J: Okay #2 again. Um, 699 is pretty much 700 there—and then— I don’t know— is it 

accurate because it covers more than enough? Doesn’t that sound right? You’re on the 
camera. 

156. R: Me? 
157. J: Yep. So you can divide that [1570] by that [699.435]and that equals [2.24] 
158. R: (working on the calculator) 
159. J: Use the calculator. 
160. R: Just add a sentence. (writing)  
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161. J: Yup. If it was 3, though, that would be too much. Let’s do it with the whole cake— 
yeah. 

162. R: What are you doing? 
163. J: Let’s do it with the whole cake, even the bottom. 
164. R: Okay (long pause) 
165. J: 2 times— 
166. R: 3.14 
167. J: 3.14 
168. R: Equals 1, 2, 5, 6 
169. J: 1, 2, 5, 6? (looking on previous page’s work) Oh you’re right— equals—okay, you’re 

turn. Then, it’s the same. 
170. R: (inaudible) 
171. J: What’s, um, 699? Yeah, what’s 699 divide by—or, 700— or, no— 
172. Researcher: Girls, I’m going to give you a little hint – have you thought about the 

thickness of the icing? 
173. J: No. 
174. Researcher: It might be something to think about— how that’s going to affect your 

answer. 
175. J: Okay. We should make icing this thick [indicating about a cm with her hands] then— 
176. R: What she say?  
177. J: What? I’m going to draw a cake here. That doesn’t look like a cake. Voila! Looks like 

that’s the cake. 
178. R: Um . . .(taking the pencil) 
179. J: Um,1 cm, um. If it was 1 cm thick though how would you do that? 
180. R: Oh. You—oh, I know— 
181. J: 1 cm  
182. R: So here (takes pencil). From here to here is the icing so the icing is 1 cm thick so—

write the end and then you use this to minus this, use this to minus this. 
183. J: I’m confused—No, no, the icing is thick like um, it’s um, it’s not like flat. It’s like that 

high, (showing with hands) 
184. R: Can you say it again? 
185. J: It’s like, say this is the icing, it’s higher so it’s thicker (using the eraser as an example). 

It’s not less icing. It’s like if this is piece of the cake missing, the icing is like to here 
because it’s thick (drawing on the diagram). It looks like a house (erasing). Ow, that hurt. 
What’s the formula? We don’t have the formula to get that then (to researcher). 

186. Researcher: What do you mean? You have all the information to get the formula I bet. 
187. J: But, um no. So like if we have cm thick icing around—she [R] didn’t get what I meant 

though. 
188. Researcher [speaking to R]: If this is my cake, how thick is the icing? Is it 1 cm? Is it 2 

cm? Is it half a cm? 
189. R: 1 cm. 
190. Researcher: So how do I know how much I need? 
191. R: Um, can we just guess the whole cake? 
192. Researcher: Sure. 
193. R: And not include the icing and then we get, um, the without the icing? 
194. Researcher: You can pretend, if you want, this cake is whole.  
195. J: Yeah, that’s what we did. 
196. Researcher: But keep in mind you might want to think about the inside layers, too. 



103 
 

197. J: Ohh 
198. R: It’s even harder. 
199. J:Yeah. Ok, well, I told you layers, how many, 1, 2, 3. 
200. R: 1, 2, 3.  
201. J:Okay, these are layers, layers on the cake, layers so —(writing) —so what’s the circle 

again? 
202. R: Um. 
203. J (writing) How’s that? (inaudible) Because its 3 layers. 
204. R: That means— (pointing to the paper). 
205. J: Because its 3 layers. 
206. R: So ok, then, what? (pointing) 
207. J: 3.14 times 100 (writing). 
208. R: (inaudible) 
209. J: No, I’m—  (writing) 900 that’s a lot more. So that would be, this, right? (writing) 

Right? So that would be, um, 188, I mean 1884,   
210. R: (inaudible) 
211. J: What? 
212. R: (inaudible)  
213. J: 1884 plus 942 plus, equals, ugh, 2826, so that’s the number— yeah (writing). That’s a 

lot more [icing that is needed].  
214. R: (inaudible) 
215. J: What? If you do the top of the cake and the bottom of the cake— 
216. R: Yeah. 
217. J: And that’s that. 
218. R: But, but, this is just icing. Then how can— how can the icing, like, be the whole cake?  
219. J: What? 
220. R: How can the—how can the icing be for the whole cake? 
221. J: No, no because I did layers in this one because of the layers— yeah (writing), 700 mL, 

of icing? Whatever. That means we need more than 4 cans of icing? (pause) Okay 
(talking to herself as she writing). 

222. J: Estimate. 
223. R: Um, 700 divided by— 
224. J: It’s the other way around [2826 ÷ 700, not 700 ÷ 2826]. That’s my estimate. 
225. R: Okay, let me see your estimate. 
226. J: No, no, 700. 
227. R: (shows calculator to J) 
228. J: Oh I rock! What is it? 
229. R: Um. 
230. J: 4.037 cans, woo hoo, cans, you would need because—  
231. R:  Because 
232. J: You, can’t buy a part of a can. 
233. R: Yup. 
234. J: Oh my gosh (starts erasing). 
235. R: You would need 5 cans. 
236. J: Ok, 5. (talking to herself as she writes) Oh, I can’t do this now. You can’t buy part of a 

can (as she writes).  
237. Researcher: You can do it, you know the information. 
238. J: Well, we did it with the layers, but we don’t know to do the thickness. 
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239. Researcher: Ok, what did you calculate for this? 
240. J: Well this one we did—  I don’t know— we just did it as if it would pretty much be flat. 
241. Researcher: Okay if it’s flat, it will just pretty much look like that, right? Does that have 

any thickness? 
242. J: No, well, kind of. 
243. Researcher: Kind of. If I was being super accurate in my measurements, it would. What 

do you think is the smallest thickness you think that icing can be? 
244. J: Probably 1 cm. 
245. Researcher: Okay, you’ve told me now it’s actually not totally flat, it’s actually 1 cm 

high. Right? And I know that this is a cylinder also, right? 
246. J: Oh, okay, come on help me. Say this is icing is, 1 cm high. 
247. R: 535 
248. J: No, but we’re here.  
249. R: Oh, the height? 
250. J: No, that’s the whole height because if you did the icing and it’s a cm thick it would be 

like that. 
(side conversation) 
251. J: Okay (pause) is 2 times 3.14 times (writing) times (pause) I forget, 2 times 3,14 times 

3.14 times 10 times 10. Oh my god. 
(side conversation) 
252. J: Okay, 2 times 3.14 times 10 times 20 is one thousand two hundred, I mean. 
253. R: Yeah. 
254. J: Yeah. 
255. R: Yeah, 1256. 
256. J: (writing) Okay, that is 2 times 3.14 plus 1256 (writing) this —what are you doing? 
257. R: I don’t know. 
258. J: (helping R with calculator) Okay, 2 times (inaudible), what’s that? 
259. R: Um, 1262.28, that’s—  
260. J: Okay. 
(side conversation) 
261. J: . . . . That is only the top, that’s 1, so that is 20, I just screwed up. (pause) Really, I 

don’t know. I screwed up. I forgot to find the radius. 
262. R: Right, the radius is 10. 
263. J: (erasing) This is 20 and this is 1.5— I mean 0.5. This is so hard. Okay, what’s 0.5 

times 0.5? What’s point 5 times point 5? 
264. R: (inaudible, appears to be giving the answer) 
265. J: And what’s that times pi? 0.785—point 7. So, okay. 
(teacher interruption) 
266. J: Oh no, I screwed up. Argh. Times— 
267. R: Times, um— 
268. J: Do we have to do this?  
269. R: We have to. 
270. J: Ah. 
271. R: (inaudible) 
272. J: Okay, I’m going to try this (laughing).  
273. R: Ok do this. 
274. J: What? And then— and, no, no, just no. What? No. 
275. R: (writing) What [pseudonym] do you want, anyways? 
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276. J: I don’t know, just leave it blank. 
277. R: Okay let’s change the names, then. 
278. J: What? No. 
279. R: Oh, I don’t know (distracted) 
280. J: I need to be left alone again. 
(pause) 
281. J: Oh I know – (in answer to another student’s question) Okay—oh, no. 
282. R: Okay, your name. We need to staple.  
283. J: Okay, wait, wait, what? No, no, no, wait. 
284. R: Wait, just— 
285. J: Ah, this isn’t easy. What? No? What? What? I think we’re wrong. 
286. R: Um, no. 
287. J: What I think— we—I think we have this part wrong. 
288. Instructor: Oh, so is this all the work you’ve done so far? 
289. J: Yeah, and this. 
290. Instructor: Oh, of course. 
291. J: We tried to do the thicker icing. 
292. Instructor: Oh, so you’ve estimated it different thickness of the icing based if it’s on the 

top or on the side. That’s cool. That’s pretty good if you, like, try to like— 
293. J: It was annoying. 
294. Instructor: It was annoying? It’s kind of hard, I know. You can only estimate by the 

picture, right of how much icing you think was there. What did you come up with in the 
end? Or you’re still not sure?  

295. J: We answered these questions, but, but we haven’t done— 
296. Instructor: That’s okay. 
(side conversation) 
297. R: No, can we do this. 
298. J: Okay, I give up. A circle. How big was the circle? 314 plus, what’s that? 942 plus 4 no, 

not point—that’s not there (erasing) 
299. R: Okay, are we finished? 
300. J: No, do that times 3, times 3. Ah, okay, that means, um, from 700 divided by 3019.11 

(writing).  
301. R: 700 divided by 3019. 
302. J: We did it [the division] wrong. 
303. R: No, don’t we—  
304. J: That was first. 
305. R: How did you (pointing to paper)— 
306. J: That was 3019.11 divided by 700. We might have gotten it, but I don’t know. 
307. Researcher: You know there is not one right perfect answer. 
308. R: 4.31, like estimate. 
309. J: What?  
310. R: Here. 
311. J: Oh, rounded. 
312. R: Yup, rounded so we finish. 
313. J: No: this is still about the height. Hey, I’m done.  
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