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Abstract

Abstract

This dissertation presents a probabilistic weather prediction system for operational (real-time) us-

age. The proposed system provides complete probability distributions for both continuous weather

variables, such as temperature, and mixed discrete-continuous variableslike precipitation accumu-

lations.

The proposed system decomposes the process of generating probabilistic forecasts into a series

of sequential steps, each of which is important in the overall goal of providing probabilistic fore-

casts of high quality. Starting with an ensemble of input predictors generatedby numerical weather

prediction models, the system uses the following four components: 1) correction; 2) uncertainty

modeling; 3) calibration; and 4) updating. The correction component bias-corrects the input predic-

tors. The uncertainty model converts these predictors into a suitable probability distribution. The

calibration component improves this distribution by removing any distributional bias. The update

component further improves the forecast by incorporating recently madeobservations of the true

state.

The system is designed to be modular. Namely, different implementations of each component

can be used interchangeably with any combination of implementations for the other components.

This allows future research into probabilistic forecasting to be focused onany one component and

also allows new methods to be easily incorporated into the system.

The system uses a number of existing correction and uncertainty models, butthe dissertation

also presents two new methods: Firstly, a new method for calibrating probabilistic forecasts is cre-

ated. This method is shown to improve probabilistic forecasts that exhibit distributional bias. Sec-

ondly, a new method for incorporating recently made observations to existingprobabilistic forecasts

is developed.

The system and its components are tested using meteorological data from dailyoperational runs

of ensemble numerical weather prediction models and their verifying observations from surface

weather stations in North America. Each component’s contribution to overall forecast quality is

analysed.
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Chapter 1: Introduction

Chapter 1

Introduction

1.1 The need for probabilistic forecasts

Weather forecasts are typically stated in deterministic form. That is, forecasts are given by a single

value representing the forecaster or model’s best estimate of the weather inthe future. An example

is “the overnight low temperature for tonight will be4 oC” (Figure 1.1).

However, no estimate is complete without an estimate of its error (Hirschberg etal., 2011). Even

after removing known systematic biases, deterministic forecasts are rarely perfectly accurate. The

accuracy of a deterministic weather forecast depends greatly on factors such as forecast lead-time,

location, season, and the availability of a dense observing network nearby. For example, the forecast

error of modern numerical weather prediction (NWP) models generally increases with increasing

lead-time to the point where the forecast no longer provides better guidancethan climatological

values (Figure 1.2).

Indicating the amount of forecast uncertainty is therefore important sinceit greatly affects the

end user’s confidence in, for example, the occurrence or non-occurrence of freezing temperatures

in Figure 1.1. Forecast uncertainty can be expressed by a probability distribution, which (unlike a

deterministic forecast) indicates the likelihood of occurrence of each temperature value.

For example, suppose an orchard owner learns the low is forecasted to be 4 oC overnight. The

owner might take no precautions, but could lose $200,000 in ruined fruit ifthe forecast is wrong

and the low is actually−1 oC. But suppose the owner could spend $2,000 running orchard fans,

smudge pots, or water sprays to prevent damage to the fruit crop. Should the owner spend the

$2,000 in preventative costs, knowing that there is a large chance that thelow temperature will

remain above freezing, but a small non-zero chance that the temperaturecould be below freezing?

This is the motivation for probability forecasts, which would allow the orchardowner to make cost-

loss decisions (Murphy, 1977; Richardson, 2000) that minimize her expenditures over the course of

many possible freeze events.

The move towards providing weather forecasts in probabilistic form is endorsed by the Amer-

ican Meteorological Society (AMS, 2008), and the potential value that these forecasts can provide

1



Chapter 1: Introduction

has been well documented (Richardson, 2000; Palmer, 2000; Zhu et al.,2002). In fact, probabilistic

weather forecasts have been applied in a wide variety of applications suchas hydroelectric power

management (McCollor and Stull, 2008b), road maintenance applications (Berrocal et al., 2010),

and visibility at airports (Chmielecki and Raftery, 2010).

This dissertation focuses on improving probabilistic forecasts that are based on the output of

NWP model runs.

1.2 Current probabilistic forecasting practices

In this section the current methods and approaches to probabilistic forecasting are reviewed, with a

focus on the use of statistical methods.

1.2.1 Statistical post-processing

It is important to note the distinction between physical and statistical researchin meteorology. Im-

provements in NWP forecasts typically result from research at two fronts: physical and statistical.

Physical improvements are due to the development of physics-based modelsthat better describe

how the atmosphere behaves. Statistical methods, which is the focus of this dissertation, improve

forecasts by recognizing statistical relationships between forecasts andobservations.

NWP models frequently exhibit biases due to the limited resolution of the discretized grid,

systematic errors in initialization and boundary conditions, or problems with the physical parame-

terizations used (Eckel and Mass, 2005). Models are often found to exhibit systematic biases for

certain locations or under certain weather conditions. For example, in a case study of forecasting

for the 2002 Winter Olympics, Hart et al. (2004) found that surface temperatures were consistently

overpredicted during cold-pool events, due to the model’s difficulty in simulating the strength of the

cold pools. Also, in mountainous terrain, the elevation of the observing stationmay be significantly

different than the modeled (smoothed) terrain height, resulting in surface-temperature biases.

These and other model biases can be corrected by employing statistical post-processing methods

such as model output statistics (MOS; Glahn and Lowry, 1972), Kalman filtering (Homleid, 1995),

neural networks (Yuval and Hsieh, 2002; Marzban, 2003), analogmethods (Delle Monache et al.,

2011), and gene-expression programming (Bakhshaii and Stull, 2009). These methods improve

forecasts by removing the systematic error based on historical comparisons between forecasts and

observations.
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1.2.2 Ensemble forecasting

NWP models stray from reality due to the limited resolving ability of the model (discretization er-

ror), errors in the initialization and boundary conditions, and error in the physics parameterizations

used. To specify forecast uncertainty one must account for these errors. For simple dynamical

systems, a specified error distribution can explicitly be evolved forward in timeby the continuity

equation for probabilities (Liouville equation; Ehrendorfer, 1994), forexample by using the stochas-

tic dynamic prediction approach of Epstein (1969).

However, evolving forward such a distribution is computationally prohibitivefor an NWP model

with millions of variables, and therefore ensemble methods (Leith, 1974) are used instead. Ensem-

ble forecasting samples the error distribution by using a finite number of ensemble members and

then evolves each of them forward in time. If the ensemble members are sampledfrom the true

probability density function (PDF) of the error distribution, then each memberrepresents an equally

likely evolution of the atmosphere. Provided also that enough ensemble members are used, the

spread (or disagreement) among the members is indicative of the uncertainty of the forecast.

Ensembles of NWP-model runs are typically created by perturbing initial conditions (Molteni

and Palmer, 1993; Toth and Kalnay, 1993), using several model runs with different model physics

(Krishnamurti et al., 1999), or some combination of both. Due to the chaotic nature of the atmo-

sphere (Lorenz, 1963), these initially similar ensemble members eventually diverge over time.

To get probability information from the ensemble, the binned probability ensemble (BPE) tech-

nique (Anderson, 1996) is often used (see for example Hamill and Colucci, 1998). When ensemble

members are assumed to be a random sample from the same distribution as the verifying observa-

tion, the cumulative probability for a given threshold can be determined by thefraction of ensemble

members that are below this threshold.

Ensemble forecasts often suffer from two major problems. Firstly, ensembles are often found to

be underdispersive (Hamill and Colucci, 1998; Buizza et al., 2005; Raftery et al., 2005). That is, the

observation verifies outside the ensemble range more often than would be expected of an ensemble

that samples the error distribution perfectly. Secondly, correctly sampling the error distribution

implies the existence of a spread-skill relationship. That is, the spread of the ensemble should be

related to the accuracy (or skill) of the mean of the ensemble. However, the value of the ensemble

spread as a predictor of forecast skill has been mixed, with some studies showing little or no value

(Hamill and Colucci, 1998; Stensrud et al., 1999) and others showing somevalue (Grimit and Mass,

2002; Stensrud and Yussouf, 2003; Scherrer et al., 2004).
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1.2.3 Probabilistic methods

These deficiencies of ensembles have led to the development of statistical methods that do not

require the ensemble members to sample the true PDF of errors. Instead, probability distributions

(such as a Gaussian distribution) are used, where the parameters of these distributions are adjusted

based on empirical relationships found between various attributes of the ensemble and the verifying

observations.

Ensemble MOS methods (EMOS; Gneiting et al., 2005) or moment-based methods (Jewson

et al., 2005) fit Gaussian distributions by performing linear regression onempirical moments of the

error of the ensemble mean. These methods can account for underdispersion or overdispersion of

the ensemble by adjusting the variance of the Gaussian distribution. They canalso account for the

strength of the spread-skill relationship, by using the coefficients foundfrom regression between

ensemble variance and ensemble mean error.

Another popular method is Bayesian model averaging (BMA; Hoeting et al., 1999), which has

been introduced in the weather prediction field by Raftery et al. (2005). BMA fits weighted distri-

butions to each ensemble member and combine these via Bayes theorem to form atotal distribution

(see Figure 1.3). BMA has been used successfully to produce probabilistic forecasts for a variety of

meteorological variables such as sea-level pressure (Raftery et al., 2005), precipitation (Sloughter

et al., 2007), surface temperature (Wilson et al., 2007), and recently visibility (Chmielecki and

Raftery, 2010).

Just like the deterministic post-processing methods of Section 1.2.1, these probabilistic methods

improve forecasts through statistical means, as opposed to through improved physical modeling.

1.2.4 Evaluating probabilistic forecasts

To evaluate probabilistic forecasts, the correspondence between forecasts and observations are in-

vestigated. A large variety of metrics are available, but for probabilistic forecasts, two commonly

used metrics include the ignorance score (Good, 1952; Roulston and Smith,2002) and the con-

tinuous ranked probability score (CRPS; Hersbach, 2000). The ignorance score uses the negative

logarithm of the PDF corresponding to the observation (Figure 1.4a) and therefore rewards forecasts

that place high probability density at the value of the observation. The CRPSis sensitive to the area

under the curve in Figure 1.4b, and rewards forecasts that are sharp(narrow) and are centred near

the observation.

The PIT-histogram (Gneiting et al., 2005) is another commonly used tool to assess the quality of

probabilistic forecasts, which looks at the statistical consistency between forecasts and observations.

The probability integral transform (PIT) value is the cumulative probability corresponding to the
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observation (Figure 1.4c). A flat PIT-histogram is indicative of evenly distributed PIT values and is

a desired attribute referred to as calibration (or reliability). These three metrics will be heavily used

to evaluate the probabilistic forecasts in this dissertation.

1.3 Dissertation contributions

The overall goal of this dissertation is to improve probabilistic weather forecasts through the use of

statistical methods. To achieve this, new methods are developed and evaluated. These contributions

are discussed in more detail next.

1.3.1 Probabilistic calibration

The first contribution of this dissertation is a new calibration scheme presented in Chapter 2.

Calibration refers to the statistical consistency between forecast probabilities and observations.

For example, if a set of events are predicted to have a20% probability of occurrence and20% of

observations confirm the occurrence of the event, the forecasts are said to becalibrated. Calibrated

probabilities are essential for making informed, risk-based decisions.

For ensemble forecasts, calibration refers to the case when an equal number of observations fall

between each pair of consecutive ensemble members. As ensembles typicallyare underdispersed,

probabilities produced by the BPE technique (as was described in Section 1.2.2) can be calibrated

by the weighted ranks (WR) method (Hamill and Colucci, 1998; Eckel and Walters, 1998), where

probabilities are adjusted based on the rank histogram (Anderson, 1996;Talagrand et al., 1997).

Calibration can also be achieved by altering the ensemble members, instead of altering the resulting

probabilities (Hamill and Whitaker, 2006; Hopson and Webster, 2010).

Raftery et al. (2005) suggested using BMA as a calibration method for underdispersed forecasts.

The variance of the BMA forecast is greater than the variance of the ensemble because, in addition

to the between-forecast variance provided by the spread of ensemble members, BMA includes a

within-forecast variance term in its formulation for each individual ensemble member (Raftery et al.,

2005).

The aforementioned calibration methods operate on a set of ensemble members. A new calibra-

tion method is devised in Chapter 2 that instead operates on existing probability distributions. The

method ensures calibrated results by removing any distributional bias that theexisting probabilistic

forecast may have. It is effective in cases such as when a Gaussian (i.e. not-skewed) distribution

model is used for cases where the actual error distribution is skewed. Calibrating probability distri-

butions instead of ensemble members has the advantage that it allows for the separation of modeling

uncertainty from the aspect of calibrating.
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The calibration method corrects probabilistic forecasts by ensuring the uniformity of verifying

PIT values (Gneiting et al., 2007), and is analogous to correcting non-uniform rank histogram of

ensemble forecasts by the WR method. As the calibration method operates only on the probability

distribution, it is therefore independent of the construction of the ensemble.

The calibration method is shown to generate uniform PIT-histograms for a variety of forecast

variables. In addition, as a byproduct of improving calibration, the calibration method is shown to

reduce the ignorance score for forecast distributions that exhibit distributional bias.

1.3.2 Statistical data assimilation for probabilistic forecasts

The second contribution of this dissertation is a new statistical data assimilation scheme for proba-

bilistic forecasts.

To avoid NWP models straying from reality over time, newly made observations must be used to

correct the model’s state. This is referred to as the data assimilation cycle, and involves the ingestion

of large amounts of observed data from remote sensors, such as satellite and radar, as well as in-situ

measurements from aircrafts, ships, buoys, ground-based stations, radiosondes, and dropsondes.

Observations are made continuously, but the data assimilation cycle is typically only performed

several times a day, such as every 6h for the global forecast system (GFS), but can be as frequent as

every hour as with the rapid update cycle (RUC; Benjamin et al., 2004).

There are several techniques used to assimilate observations into weathermodels, such as the

ensemble Kalman filter (EnKF; Evensen, 1994), variational data assimilation (Lewis and Derber,

1985), and Newtonian relaxation (Anthes, 1974). These methods alter themodeled state of the

atmosphere throughout the whole model grid and must ensure that the modelmaintains dynamic

balance, such that unrealistic instabilities are not created.

These assimilation methods provide updated initialization and boundary conditions for the NWP

model. The model must then be evolved forward in time again with this new data. Toacquire

updated probabilistic forecasts the following three-step process would berequired: assimilating

new observation data into the model initialization, rerunning the ensemble, and regenerating the

probabilistic forecasts. This is computationally very expensive and generally not worthwhile if only

small amount of new recent data is assimilated.

An alternative is to use only recent observations recorded at the forecast location of interest and

directly alter the forecast distribution, without simulating forward the ensemble. To my knowledge

there are no such methods currently developed for weather prediction purposes. In Chapter 3, I

present such a method, which relies on the verifying PIT values being correlated in time. For

example, if the observed state recently verified in the 20th percentile of the distribution, observations

in the near future are likely to continue to verify near this percentile. Thus, inthe short-term the
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forecast distribution can be sharpened significantly. This technique hasthe advantage that it is

computationally much less expensive than the conventional three-step process, and is also much

simpler to implement than complex data assimilation schemes.

The method improves the CRPS and the ignorance score of the probabilistic forecasts. Updating

probabilistic forecasts can therefore be considered to be another classof methods for improving

probabilistic forecasts.

1.3.3 Decomposition of the probabilistic forecasting process

The factors affecting weather are complex. To deal with this complexity, NWPmodels typically

separate various aspects of atmospheric modeling into independent components. Each component

can have several alternative implementations called schemes. For example, version 3 of the Weather

Research and Forecasting (WRF; Skamarock et al., 2005) model has four alternative shortwave ra-

diation schemes, three longwave radiation schemes, nine microphysics schemes, three surface layer

schemes, four land-surface schemes, four boundary layer schemes, and four cumulus parameteriza-

tion schemes.

With some exceptions, any combination of schemes for each physics category can be used

together to form a model configuration. The construction of the configuration is important as a

scheme is often optimized for a geographical region, for capturing specific weather phenomena, or

for computational speed.

This decomposition is useful for two important reasons: 1) It reduces complexity, as a scheme

needs only to model a small subset of atmospheric physics; 2) It allows combinations of schemes

to be used, so that the best combinations of schemes can be used for the user’s particular forecast-

ing purpose. This decomposition is enforced by the software framework (Michalakes et al., 1999;

Skamarock et al., 2005), which specifies the input and output requirements of each component.

Such a decomposition currently does not exist for generating probabilisticforecasts. The third

contribution of this dissertation is devising such a decomposition, which is presented in Chapter 4.

It conceptually represents a statistical analog to the physically-based decomposition used in NWP

modeling. The decomposition includes the two improvement methods from Chapter2 and Chap-

ter 3.

Chapter 4 will show how the process of producing probabilistic forecastscan be decomposed

into four independent components: 1) correction; 2) uncertainty model; 3) calibration; and 4) up-

dating. The correction component bias-corrects the ensemble forecasts. The uncertainty model

transforms this set of corrected ensemble members into a probability distribution. The calibration

component removes any distributional bias from this probability distribution. Finally, the updat-

ing component improves the calibrated distribution by incorporating informationfrom any recently
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made observations.

The advantage of viewing probabilistic forecasting in light of this decomposition is that it allows

improvement efforts to be focused into independent areas. Also, as with the WRF model, various

combinations of schemes can then be tested together to find the optimal combinationfor a particular

use case.

To test the usefulness of the decomposition, a probabilistic forecasting system is implemented,

which includes three correction schemes, nine uncertainty models, one calibration scheme, and

one update scheme. The implementation is based on an object-oriented programming approach,

enabling sufficient abstraction between the components and also allowing for the interchangeability

of schemes.

The contributions of the various components to probabilistic-forecast quality are evaluated using

the CRPS, the ignorance score, and the PIT-histogram. Forecast data from both short-range and

medium-range ensemble prediction systems (EPS) are used for evaluation.

1.4 Dissertation layout

This dissertation uses a manuscript-based format, where the three core chapters are published or

submitted journal manuscripts. The material in these articles have been reformatted to conform to

the dissertation formating requirements. With the exception of a few minor editing changes, the

content is otherwise unaltered.

Chapter 4 presents the proposed system for producing high-quality probabilistic forecasts for

operational use. This work has been submitted for peer-review. This system relies on two new

probabilistic methods: Chapter 2 presents a new calibration method for reducing distributional bias

of probabilistic forecasts, which has been published in Nipen and Stull (2011); Chapter 3 presents

a new method for updating probabilistic forecast given recently made observations, which has been

published in Nipen et al. (2011). Chapter 5 summarizes the contributions of this dissertation and

provides recommendations for future work.
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Figure 1.1: A sample weather forecasting scenario showing a deterministic forecast of4 oC
and probability distributions for one somewhat certain and one uncertain probabilistic
forecast.
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Figure 1.2: Mean absolute error for the bias-corrected NAEFS ensemble mean, averaged over
a collection of 15 stations in mountainous Western Canada for the time period 1 Nov
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Figure 1.3: Example probabilistic forecast produced by Bayesian model averaging, showing
individual member distributions (thin lines) and the total distribution (thick line).
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Figure 1.4: Example probabilistic forecast with an observation (diamond) of4 oC. a) Proba-
bility density plot showing the verification value used for the ignorance score (square).
b) Cumulative probability plot showing the area used in the calculation of the continu-
ous ranked probability score (gray shading). c) Cumulative probability plot showing the
corresponding probability integral transform (PIT) value for the observation (circle).
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Chapter 2

Calibrating probabilistic forecasts from

an NWP ensemble

2.1 Introduction

If forecasts were perfect, then we would not need probabilistic forecasts. For uncertain forecasts,

information on the probability of different forecast outcomes can allow endusers to make decisions

that optimize their budget and safety (AMS, 2008). But such optimization is possible only if the

probability information provided is useful. Developing methods for producing useful probabilistic

forecasts from an ensemble of weather forecasts is an area of active research.

Throughout this chapter we take the view that creating probabilistic forecasts follows a two-

step process, as shown in Figure 2.1. The first step takes an ensemble ofdeterministic forecasts

as input and models how this ensemble conveys forecast uncertainty. Thesecond step is a simple

post-processing step that ensures that the probabilistic forecast generated by the uncertainty model

exhibits the desirable statistical property of being calibrated.

The uncertainty model is an algorithm that prescribes probability density to each of the possible

values that the forecast variable can take. Ensemble uncertainty can be modeled in much the same

way that radiation or precipitation is modeled in a weather model. For example, wecould decide

to place more confidence where ensemble members are clustered, or we could decide to place most

of the confidence near the ensemble mean. The number of other algorithms for placing confidence

given a certain arrangement of the input forecasts is endless.

The uncertainty model will inevitably contain assumptions about how nature generates ensemble

members and the corresponding observation. For example, a Gaussian probability distribution could

be centered on the ensemble mean, where the spread of the distribution is a tuning parameter. When

the Gaussian assumption of uncertainty is valid we get calibrated (or reliable)forecasts. That is, a

weather event that is forecast to occur with probabilityp will indeed be observed a fractionp of the

time over many forecast periods.

However, in many cases the uncertainty model used can make assumptions that are not in line
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with how ensembles and observations are generated. In these cases, theuncertainty model may

produce uncalibrated probabilistic forecasts. In the previous example, ifthe observations are in

fact drawn from a non-Gaussian distribution, no value for the tuning parameter of the Gaussian

distribution will generate calibrated probabilistic forecasts. The calibration step can then be used to

remove this calibration deficiency thereby improving the probabilistic forecast.

Separating the tasks of determining an uncertainty model and ensuring probabilistic calibration

allows one to focus efforts to improve probabilistic forecasts. Perfecting the uncertainty model

helps concentrate probability mass in the correct area and perfecting the calibration step increases

the reliability of the forecast. Requiring a probabilistic method to model the uncertainty and ensure

probabilistic calibration simultaneously can therefore be avoided.

The goal of this chapter is to present a calibration scheme that takes an existing probability fore-

cast and ensures that it becomes calibrated regardless of the uncertainty model used and regardless

of whether or not this distribution accurately models the ensemble uncertainty.

The calibration method proposed relabels the cumulative probabilities of some initial proba-

bility distribution into calibrated cumulative probabilities that are based on how often and where

observations in the past verified on the initial probability distributions. As will be shown, the initial

probability distribution may very well be calibrated to begin with, in which case thecalibration

step is redundant. However, for cases where the uncertainty model used fails to generate calibrated

forecasts, the method can improve the probabilistic forecasts.

In this chapter, we consider both continuous meteorological variables (such as temperature)

and bounded mixed discrete-continuous variables (such as relative humidity) that can have finite

probability mass at one or both boundaries.

The remainder of the chapter is organized as follows: First, we summarize some of the ways

to represent uncertainty. Next, in Section 2.3, we discuss the metrics used toevaluate the quality

of probability forecasts — important for measuring if and by how much the calibration method can

cause improvement. In Section 2.4 we present the proposed calibration method. Section 2.5 de-

scribes case-study data from a four-year period with five forecast variables, a 14-member ensemble,

and1225 grid locations. Those case-study data will be used in Section 2.6 to evaluate the calibration

method for the uncertainty models from Section 2.2. Implications of this approach are summarized

in Section 2.7.

2.2 Methods for representing uncertainty

A number of methods have previously been devised with the goal of producing calibrated proba-

bilistic forecasts. Each of these methods, however, use widely differentways to describe how un-

12



Chapter 2: Calibrating probabilistic forecasts from an NWP ensemble

certainty is expressed by an ensemble. Different uncertainty descriptions arise because the methods

make different assumptions about how forecasts and observations arerealized.

To set up a framework for probabilistic forecasts, letft(x) be the forecast probability density

function (PDF) of a meteorological variablex for time t. The corresponding forecast cumulative

distribution function (CDF)Ft(x) is

Ft(x) =

∫ x

−∞
ft(s)ds. (2.1)

Thus,Ft(x) gives the probability that the meteorological variable is forecasted to have any value

less thanx.

Let the actual observed value of the variable at timet bext. The observed value can be repre-

sented by an observed CDFGt(x) that we model as a step function:

Gt(x) = H(x − xt), (2.2)

whereH(s) is the Heaviside function defined by:

H(s) =

{

1 s ≥ 0

0 s < 0
. (2.3)

That is, the observed distribution is an infinitesimally wide region of finite probability mass at the

observed value.

We denote an ensemble ofK forecasts of some meteorological variable asξt,k, wheret repre-

sents a time point andk is an index between1 andK. At time t, the ensemble mean is denoted by

ξ̄t and the ensemble variance is denoted bys2
t .

2.2.1 Binned probability ensemble

A very common way to model uncertainty is to assume that each ensemble member and the cor-

responding observation are realizations of the same unknown probability distribution. For this sit-

uation, the rank of the verifying observation when pooled with the ensemble should be a random

integer between1 andK + 1. Here rank is defined as the integer position of an element in a sorted

array of values. Thus, each bin has the same probability of capturing the observation, where a bin

is the region between two consecutive ensemble members. This is often referred to as the binned

probability ensemble (BPE) technique (Anderson, 1996).

To convert this description to a probabilistic forecast, one assigns a constant probability mass

(K + 1)−1 between each consecutive ensemble member. Ensemble members spread further apart
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will have a lower density between them compared to members that are closer together. The effect is

that an ensemble that has all of its members close together represents a more certain forecast than

one where all members are spread out.

The CDF values at each ensemble member location are set tok(K + 1)−1 wherek is the rank

of the ensemble member and is linearly interpolated between members.

The CDF below and above the ensemble must also be specified. For precipitation forecasts,

Hamill and Colucci (1998) used a linear function below the lowest ensemble member, and a Gumbel

distribution above in order to estimate extreme precipitation events. With this modification, the BPE

probabilistic forecastFt(x) becomes:

Ft(x) =











1
K+1A(ξt,1 − x) x ≤ ξt,1

k
K+1 + 1

K+1
x−ξt,k

ξt,k+1−ξt,k
ξt,k < x ≤ ξt,k+1

1 − K
K+1B(x − ξt,K) ξt,K < x

, (2.4)

whereξt,k represents thekth sorted ensemble member, andA(s) andB(s) are monotonic functions

equal to1 whens = 0, and drop off towards0 for high values ofs.

2.2.2 Method of moments

A Gaussian distributionN can be used to represent a probability distribution as follows:

Ft ∼ N (ξ̄t − µT , aT s2
t + bT ). (2.5)

The first parameter ofN represents the mean of the distribution, and corresponds to the bias-

corrected ensemble mean. The second parameter represents the spreadof the distribution, given

by a linear regression fit to the variance of the ensemble (s2
t ).

µT can be computed from the first moment of past forecast errors:

µT =
1

‖T ‖

∑

t∈T

(ξ̄t − xt). (2.6)

Here, T represents a set of time points over which the mean is computed, and‖T ‖ represents

the size of this set. Past values of the square of the error of the bias-corrected ensemble mean

(ξ̄t − µT − xt)
2 (for all t in training periodT ) is used to estimateaT andbT using least squares

linear regression. That is, the spread of the forecast distribution is dependent on the spread of the

ensemble (provided thataT 6= 0).

As historical moments of the forecast errors are used to generated the probabilistic forecasts,
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this method is often called the method of moments (MM; Jewson et al., 2005).

2.2.3 Bayesian model averaging

Another way to model the uncertainty is to assume that the true state is distributed according to one

of several candidate distributions, although it is not known which candidate is the true one. The

candidate distributions are formed by fixing ana priori specified probability distribution to each

ensemble member. The total distribution is the sum of each individual distribution, weighted by the

likelihood that each candidate distribution is the true one.

This technique is referred to as Bayesian model averaging (BMA, Hoetinget al., 1999). The use

of BMA was suggested by Raftery et al. (2005) as a method for producing calibrated probabilistic

weather forecasts. This method and variants thereof have been applied successfully for a number

of cases (Raftery et al., 2005; Sloughter et al., 2007; Wilson et al., 2007;Johnson and Swinbank,

2009). By training on data, BMA can weight the various candidate distributions based on their

performance in the past. If the underlying assumption is valid, then the predictive (weighted) BMA

distribution will converge to the true distribution, given a sufficiently large data set. For temperature

and sea-level pressure, a Gaussian distribution centered on the bias-corrected value of the ensemble

member has been used (Raftery et al., 2005).

Given a set of forecastsξt,k (wherek, unlike for BPE, no longer represents a sorted index), the

BMA predictive distribution is:

Ft(x) =
K

∑

k=1

wkFt,k(x), (2.7)

wherewk are non-negative weights andFt,k(x) are the predictive distributions for each ensemble

member given by:

Ft,k(x) ∼ N (ξt,k − µT ,k, σ
2
T ) (2.8)

µT ,k =
1

‖T ‖

∑

t∈T

(ξt,k − xt). (2.9)

As before,T represents the training period. Raftery et al. (2005) used a commonσT for all ensemble

members to reduce the number of parameters, and still found good results.µT ,k is a bias correction

term specific to each ensemble member.

To compute the weights and standard deviation, Raftery et al. (2005) use the expectation maxi-
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mization (EM) algorithm, an iterative process given by:

z
(j)
t,k =

w
(j−1)
k f

(j−1)
t,k (xt)

∑K
i=1 w

(j−1)
i f

(j−1)
t,i (xt)

(2.10)

w
(j)
k =

1

‖T ‖

∑

t∈T

z
(j)
t,k (2.11)

σ
2(j)
T =

1

‖T ‖

K
∑

k=1

∑

t∈T

z
(j)
t,k (xt − ξt,k − µT ,k)

2 (2.12)

f
(j)
t,k (x) ∼ N (ξt,k + µT ,k, σ

2(j)
T ), (2.13)

where(j) as a superscript represents the value after iterationj. This iteration is continued until the

parameters change by less than some small tolerance.z
(j)
t,k are intermediate values on the interval

[0, 1] that represent the extent to which memberk is the best member of the ensemble for timet.

2.2.4 Climatology

Finally, one can completely ignore the guidance of the ensemble and describethe uncertainty based

only on the distribution of past observations. This is referred to as a climatology forecast and can

be computed by:

Fclim(x) =
1

‖T ‖

∑

t∈T

H(x − xt). (2.14)

Thus the climatology forecast for a given threshold is the frequency of past observations that have

fallen below that threshold.

Climatology forecasts are independent of any NWP model output, and require only past obser-

vations. Therefore, we will use these probabilistic forecasts as a baseline against which the other

probabilistic forecasting methods will be compared.

The climatology forecast is heavily dependent on the definition ofT . A very coarse climatology

would defineT to be all days of the year. A more refined climatology would only include observa-

tions from days that are from roughly the same time of year as the desired forecast time point. We

will use this more refined climatology as our baseline.

2.2.5 Comparison of these uncertainty models

We have discussed four ways of representing uncertainty. These canbe summarized as follows:

• BPE: Fixing a constant probability mass between each pair of consecutiveranked ensemble

members.
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• MM: fixing a shape function to the bias-corrected ensemble mean.

• BMA: fixing a shape function to each bias-corrected ensemble member.

• Climatology: fixing a constant-in-time shape function directly onto forecast-variable x.

Figure 2.2 illustrates these different methods schematically. Each method behaves differently

depending on whether the ensemble spread is small (top row) or large (bottom row). The probability

density produced by BPE scales linearly with the spread of each pair of consecutive ensemble

members. Forecasts produced by MM also generally scale with the spread of the ensemble, however

they are independent of the particular way that ensemble members are organized. BMA, unlike MM,

is able to represent multi-modal distributions due to the individual Gaussian distributions, however,

compared to BPE, its peaks are less sensitive to the exact positions of the ensemble members.

2.3 Metrics of probabilistic-forecast quality

There are two performance characteristics of probabilistic forecasts that we will investigate. The

first, calibration, concerns the statistical consistency between the probabilistic forecasts and ob-

servations. The second, ignorance score, measures the extent to which probability has not been

concentrated in the correct areas.

2.3.1 Calibration deviation

Probabilistic calibration, or reliability (Murphy, 1973), is a measure of correspondence between

forecast probabilities and the frequency of occurrence of observed values. Events forecasted with

probabilityp should occur a fractionp of the time, when evaluated over a set of timesT . Here, an

event is defined as an observation being less than some threshold valuexa. The probability of this

event occurring is forecasted byF (xa).

Calibration can be assessed by checking the distribution of probability integral transform (PIT)

values (Gneiting et al., 2007). PIT valuespt are the values of the cumulative forecast distributionFt

corresponding to the observation; i.e.,pt = Ft(xt). Gneiting et al. (2007) define the set of forecasts

Ft(x) to be probabilistically calibrated relative toGt(x) for all t within T if

1

‖T ‖

∑

t∈T

Gt

(

F−1
t (p)

)

= p, (2.15)

where probabilityp is a real number between0 and1 andF−1
t is the inverse ofFt. Using the

definition of Gt in Eq. (2.2), Eq. (2.15) can be rewritten to show that probabilistic forecasts are

17



Chapter 2: Calibrating probabilistic forecasts from an NWP ensemble

calibrated if
1

‖T ‖

∑

t∈T

H
(

p − pt

)

= p. (2.16)

Thus, probabilistic calibration requires that, for a givenp on the interval[0, 1], a fractionp of the

PIT values lie belowp. Asymptotically over an infinite sample size, Eq. (2.16) can be shown to be

a necessary and sufficient condition for probabilistic calibration (Gneitinget al., 2007).

A forecast that is calibrated at all instances in time (i.e.,Ft(x) = Gt(x) for all t) is said to

exhibit complete probabilistic calibration (Gneiting et al., 2007). As pointed out by Hamill (2001),

uniformly distributed PIT values do not necessarily imply that the forecast exhibits complete prob-

abilistic calibration, because the forecast can have distributional bias during various subintervals of

T . For example, uncalibrated forecast distributions during the first half ofT and different uncali-

brated forecast distributions during the second half can cancel out when evaluated over the whole

time periodT . Furthermore, by defining the observational distribution to be a step function as in

Eq. (2.2),F can never exhibit complete probabilistic calibration unlessFt(x) = H(x − xt) for all

t, which is the case of a perfect deterministic forecast. Therefore, whenreferring to calibration, we

will always specify a time period over which the calibration is computed, and we will not require

the forecast to exhibit calibration at smaller timescales.

To better visualize the degree of calibration using PIT, one can create a histogram of PIT values.

For a perfectly calibrated forecast, each equally sized bin will contain the same number of PIT values

thereby giving a flat histogram. Deviations from a flat histogram can be used to diagnose problems

with calibration. For example, a U-shaped histogram indicates that the observation verifies low or

high on the CDF curve too often, an indication that the probability distribution is too narrow.

A PIT histogram is the generalization of a rank histogram, the latter of which is used for deter-

mining reliability when BPE is used to model uncertainty. The rank histogram (Anderson, 1996;

Hamill and Colucci, 1997; Talagrand et al., 1997) shows the frequency of the observations taking

on various ranks when pooled with the ensemble, and the number of bins used isK + 1. For a PIT

histogram the number of bins used can be arbitrary, since we are looking at numbers on the real line

as opposed to integers between1 andK + 1. For our PIT histogram, we separate the interval[0, 1]

into 20 equally sized bins.

Denote bybi the bin count for bini, wherei is an integer between1 and the number of binsB.

Bin frequencies are then given bybi‖T ‖−1. We use the standard deviation of the bin frequencies as

a summary metric for the reliability of a forecast. Low variability in the bin frequency is indicative
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of a PIT histogram that is flat. The calibration deviation metric is computed as follows:

D =

√

√

√

√

1

B

B
∑

i=1

(

bi

‖T ‖
−

1

B

)2

. (2.17)

Low values ofD are preferred.

Sampling error will cause even perfectly calibrated forecasts to exhibit calibration error (Br̈ocker

and Smith, 2007; Pinson et al., 2010). That is, PIT values from a perfectly calibrated system will

likely not generate a perfectly flat PIT histogram. The bin countsbi of a perfectly calibrated fore-

casting system will be multinomially distributed with variance‖T ‖B−1(1 − B−1). The expected

value of the calibration deviationDperfectof perfectly calibrated forecasts is therefore:

E[Dperfect] =

√

1 − B−1

‖T ‖B
. (2.18)

2.3.2 Ignorance score

A forecast must be more than just calibrated in order to be useful. For example, a vague climatology

forecast can be perfectly calibrated, but might lack the desired concentration of probability needed

to make informed decisions.

The ignorance score (Roulston and Smith, 2002), originally defined as thelogarithmic score by

Good (1952), is a metric that measures the extent to which a probabilistic forecast is not concen-

trated in the correct areas. The ignorance score is defined as follows:

IGN = −
1

‖T ‖

∑

t∈T

log2(ft(xt)), (2.19)

Lower values of the ignorance score are desired. The ignorance score rewards forecasts that places

high confidence in regions where the verifying observation falls and disregards the probability den-

sity placed elsewhere.

Due to the use of the logarithm in the definition of the ignorance score, arithmeticdifferences

between two ignorance scores is more relevant than the ratio of the scores. A change of units in the

forecast variable for example, will cause scores to be changed by an additive constant.

The ignorance score has a very natural interpretation in estimating expected gambling returns.

When placing bets on the future outcomext, the optimal strategy for distributing one’s current

wealth is to distribute wealth to each possible outcome weighted by the probability density. Users
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with forecasts that have lower ignorance scores than their betting competitorcan expect to increase

their wealth in the long run.

Given a probabilistic forecast A and a reference forecast with ignorance scores IGNA and

IGNref respectively, users of forecast A can expect to double their wealth against a user of the

reference forecasts inNbetsbets, whereNbets is computed by:

Nbets=
1

IGNref − IGNA

, (2.20)

provided that IGNA < IGNref. Nbets gives a more intuitive feel for the quality of the probability

forecast than numeric values of the ignorance score. SmallerNbetsvalues are better.

2.4 Calibration method

Section 2.2 identified four ways to create probabilistic forecasts. In many cases, the forecasts pro-

duced by these methods are already calibrated. Calibration deficiencies can arise, however, when the

underlying assumption of how uncertainty is represented by the ensemble is not in line with how

nature generates ensemble members and observations. For these situations, a calibration method

may be used to adjust the forecasted distributions such that they are calibrated. Such a calibration

method is presented next.

2.4.1 Basic principles

We propose a calibration method that takes an existing probability distributionFt(x) and relabels

the CDF values to form a new distribution̂Ft(x). The relabelling is done by a calibration function

Φ as follows:

F̂t(x) = ΦT

(

Ft(x)
)

. (2.21)

ΦT is based on the distribution of past PIT values from the set of time pointsT . For example,

if 30% of past PIT values have values less than25%, then it seems natural that we should relabel

future25% CDF values to be30% instead. For the purposes of this chapter, we termFt(x) theraw

distribution, andF̂t(x) thecalibrateddistribution.

For the set of probabilistic forecastŝFt(x) (for all t ∈ T ) to be calibrated, Eq. (2.16) requires

thatΦT (p) be generated as follows:

ΦT

(

p
)

=
1

‖T ‖

∑

t∈T

H
(

p − Ft(xt)
)

. (2.22)

20



Chapter 2: Calibrating probabilistic forecasts from an NWP ensemble

This equation states thatΦT (p) is the empirical cumulative frequency distribution of the PIT values

Ft(xt). This calibration function would generate perfectly reliable forecasts since we have invoked

the definition of calibration directly in its formulation. However, sincext is unknown to us when

forecastingF̂t(x), we must approximateΦT (p) based on data accumulated during some previous

time periodT ′, known as the training period.

The approximationΦT ≈ ΦT ′ is valid as long as the statistical properties ofF do not change

much betweenT andT ′ (i.e., between the actual forecast period and the training period); namely,

the statistics are stationary.

We will denoteraw PIT values originating from a raw forecast aspt andcalibrated PITvalues

from a calibrated forecast aŝpt = F̂t(xt). If the calibrated forecasts have been properly calibrated,

the sorted̂pt values will be distributed evenly on the interval[0, 1].

Combining Eq. (2.1) and Eq. (2.21) and using the chain rule, gives the following property for

the calibrated PDF:

f̂t(x) = ΨT

(

Ft(x)
)

ft(x), (2.23)

where we have definedΨT (p) to be the derivative of the calibration functionΦT (p):

ΨT (p) =
dΦT (p)

dp
. (2.24)

ΨT (p) acts as an amplification function to the raw PDF. The calibrated PDF will have higher density

in regions whereΨT (Ft(x)) > 1 and lower density whereΨT (Ft(x)) < 1.

Note thatΨT (p) is also the probability density function for observing a raw PIT value ofp if

the distribution of raw PIT values is stationary over time. This has the consequence that future PIT

values are more likely to occur where the probability density of the calibrated forecast has been

increased compared to the raw.

The basic calibration principles described above can be applied directly to unbounded contin-

uous variables such as temperature. These same principles can be used for bounded variables, as

described next.

2.4.2 Bounded mixed discrete-continuous distributions

Some variables, such as relative humidity, are bounded; that is, there areminimum and/or maxi-

mum values that the variables can take. Relative humidity for example has a minimumof 0 % and
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maximum of100 %.1

Often these bounds represent values that have discrete probability. That is, they are values

that can have non-zero probability within an infinitesimally narrow region. The finite probabilities

at these points are called probability mass instead of probability density. Thus, variables such as

relative humidity are best modeled by mixed discrete-continuous probability distributions where

finite probability masses are used at the bounds, and probability densities are used elsewhere.

Mixed discrete-continuous distributions can be devised that model this behaviour. Sloughter

et al. (2007), for example, showed how mixed discrete-continuous distributions can be forecasted

within the BMA framework (by separately modeling the discrete part and the continuous part of the

distribution).

An alternative to modeling these boundaries is to use the aforementioned uncertainty models to

generate CDFs that naturally spill over the boundaries. These distributions can be truncated at the

boundaries so that the CDF is0 below the bottom boundary and the probability mass at the lower

boundary is set to the original CDF at the lower boundary. A similar treatmentis performed on the

upper boundary. The lower and upper boundaries are denoted byxmin andxmax respectively. The

truncated CDFsF (x) can be created from the original non-truncated distributionF ∗(x) as follows:

F (x) =











0 x < xmin

F ∗(x) xmin ≤ x ≤ xmax

1 xmax < x

. (2.25)

The PDF becomes:

f(x) =































0 x < xmin

F ∗(xmin) x = xmin

f∗(x) xmin < x < xmax

1 − F ∗(xmax) x = xmax

1 xmax < x

, (2.26)

where the values at the boundaries are probability masses and the rest are densities.

This treatment of the boundaries may result in raw forecasts that are uncalibrated. However,

by using the calibration method proposed in Section 2.4.1, the CDF can be adjusted so that even

the CDFs that frequently lie on the boundaries become calibrated. In this sense, the calibration

method can be used to create calibrated forecasts without having to determinea suitable model for

1Temperature is technically speaking also a bounded variable with a minimum of 0K, but the commonly occurring
temperature values are so far away from the boundary that it can be treated as an unbounded variable.
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the boundaries.

When generating the calibration functionΦ for mixed discrete-continuous variables, care must

be taken when the verifying value equalsxmin or xmax, since the PIT value is not uniquely de-

fined. We follow the approach of Sloughter et al. (2007) by picking a random value on the intervals

[0, F (xmin)] and[F (xmax), 1] for each of these cases, respectively.

2.4.3 Implementation approach

There are a few issues that must be addressed when implementing the proposed calibration scheme.

Firstly, the distribution of past PIT values is subject to sampling errors. These sampling errors

cause problems when evaluatingΨ, which is required when computing the PDF. The sampling

errors are especially troublesome because a derivative is computed. For example, when two PIT

values coincidentally are very close to one another, an unrealistic spike appears inΨ. We have

therefore used a smoothing technique on the calibration curveΦ. Greater smoothing reduces the

chance of spikes inΨ due to sampling, however increases the risk of removing real features in the

calibration curve.

Cubic splines with nine points were used as this represents a good balance between representing

features and smoothing out noise. An example of an initial cumulative distribution of 365 past PIT

values from the MM method are shown in Figure 2.3a. The points used for thespline were the

lowest and highest PIT values as well as seven intermediate values distributed as evenly as possible

through the sample.

Calibration curves for the BPE method often have sharp changes wherep = (K + 1)−1 and

p = K(K+1)−1, as these correspond to the lower and upper boundary of the ensemble respectively.

To preserve this feature, a concatenation of three splines were used for calibrating BPE, where the

slope of the splines are no longer forced to be continuous at the two boundary points between the

three splines (Figure 2.3b).

Other options for smoothing the calibration curve exist (such as simply resampling the curve

combined with linear interpolation) and will in general produce similar results. We chose the ap-

proach based on splines as we found this to be stable way to generate a curve with continuous

derivatives for a wide range of forecast variables.

A sliding window on the past data was used to empirically estimate the calibration curveΦ. For

any given forecast day at a given location, all dates with available forecast and observation pairs for

that location from the previous 365 days comprised the training periodT ′.

Picking the training period for calibration should be a trade-off between capturing calibration

deviations that vary in the short-term and having enough data to robustly create the calibration.

However, we have opted for a longer training period of 365 days as we found calibration curves
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based on much shorter training periods tended to overfit the calibration deviation. The optimal

training period will likely depend on the application it is used for, but we havefound that in general

the performance is not very sensitive to its length provided that the training period consists of at

least on the order of 100 past PIT values.

Figure 2.4 illustrates how a probabilistic temperature forecast is calibrated. The raw forecast

(dashed line on the right) is adjusted to a calibrated forecast (thick solid line on the right) according

to the calibration curve shown on the left.

2.4.4 Impact of calibration on verification metrics

Here we discuss the expected impact of the calibration scheme as evaluated using the metrics dis-

cussed in Section 2.3. First, the calibration scheme relabels CDF values suchthat future calibrated

PIT values will be evenly distributed. We therefore expect the scheme to lower the calibration

deviationD down to that expected for perfectly reliable forecastsE[Dperfect].

Second, calibrating a forecast can also have benefits in terms of the ignorance score. Using

Eq. (2.23), the ignorance score of a set of raw forecastsf = {ft for all t ∈ T } can be decomposed

into two terms as follows:

IGN(f) = IGN(f̂) +
1

‖T ‖

∑

t∈T

log
(

Ψ(pt)
)

. (2.27)

The first term on the right is the ignorance score of perfectly calibrated forecastsf̂ , and the second

term on the right is the extra ignorance caused by the lack of calibration. When a raw forecast

is uncalibrated, and if the distribution of PIT values is stationary over time, thenthe right-most

term will be positive. That is, the raw forecast will have a higher (worse) ignorance score than the

calibrated forecast. This is because, as mentioned earlier, PIT values are more likely to fall where

Ψ(p) is greater than 1, sinceΨ(p) is also the probability density function for raw PIT values.

Reducing the ignorance score off can be done by: (1) improving the quality of the ensemble

forecasts or using a more suitable uncertainty model, thereby reducing the first term on the right

hand side; (2) calibrating the forecast in a post-processing manner such as the calibration scheme

presented, thereby reducing the last term.

For variables that are mixed discrete-continuous, one must compute the ignorance score dif-

ferently for the discrete parts than for the continuous part. The probabilitymass is used in the

calculation for the discrete parts, whereas the probability density is used for the continuous part. An

overall ignorance score can still be computed as the sum of the discrete and the continuous igno-

rance scores, even though these represent the ignorance score for different probability entities. This
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may seem unintuitive at first, but since the score is logarithmic, any arbitraryweighting between the

probability entities will factor out as an additive constant. This additive constant cancels out when

differences between ignorance scores are used.

2.4.5 Comparison with other calibration schemes

The BPE method by itself often produces unreliable probabilistic forecasts when the ensemble mem-

bers and the observation are not drawn from the same distribution. Hamill and Colucci (1998)

suggested a calibration scheme where the probability mass between each pairof consecutive en-

semble members is adjusted by the frequency of historical observations falling in each bin. Eckel

and Walters (1998) referred to this as the weighted ranks (WR) method. The CDF at each ensemble

member is shifted to the frequency of historical observations that fall belowthat ensemble member

rank. This WR calibration scheme is relevant only for the BPE uncertainty model as it makes adjust-

ments based on ensemble counts and not on probabilities. The calibration scheme presented in this

chapter is a generalization of the WR scheme for any system that generatesforecast probabilities,

regardless if these were determined by ensemble ranks or otherwise.

Quantile-to-quantile mapping (Hopson and Webster, 2010) and similarly the bias-corrected rel-

ative frequency technique (Hamill and Whitaker, 2006) have been usedto calibrate ensemble fore-

casts. Here, the value of each ensemble memberξt,k is adjusted to new valueŝξt,k, based on past

statistics as follows:

ξ̂t,k = G−1
(

Fk(ξt,k)
)

. (2.28)

G andFk are historical CDFs of the observations andkth ensemble forecasts respectively given by:

G(x) =
1

‖T ‖

∑

t∈T

H(x − xt) (2.29)

Fk(x) =
1

‖T ‖

∑

t∈T

H(x − ξt,k), (2.30)

where againT represents the training period, and where appropriate smoothing must be performed

on G in order to make it invertible. The calibrated ensemble members will then have the same cli-

matology as the observation and can then be used as input to a probabilistic method. The calibration

method proposed in this chapter differs from the quantile-to-quantile correction method in that it

adjusts probabilities (output of an uncertainty model) instead of adjusting forecast values (inputs to

an uncertainty model).

Finally, the concept of relabelling probabilities based on Eq. (2.21) has been used in other fore-

casting studies (see for example Bremnes, 2007; Nielsen et al., 2006). The relabelling approach
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taken here differs in that sorted historical PIT values are used to createa non-parametric calibra-

tion curveΦ instead of using separate regression equations to calibrate each quantile of the forecast

distribution.

2.5 Case-study data

To test the four different uncertainty models (BPE, MM, BMA, and climatology) and the effect of

the calibration method, we use data from the reforecast dataset described in Hamill et al. (2006).

This includes the forecasts from a 15-member ensemble using the NCEP Medium Range Forecast

(MRF) model as well as verifying analyses. The control forecast wasremoved and the remaining

14 bred members (which are assumed to be equally skillful) were used. We used an excerpt from

the global grid centered on North America with 25 north-south points and 49 east-west points for a

total of 1225 grid points, as shown in Figure 2.5. The model was initialized at 00 UTC and forecasts

for the 48-hour offset were used. These were verified against the analysis valid at that time.

Five meteorological variables (with their abbreviations and units) were used: 2-m temperature

(T2M, oC), mean sea-level pressure (PRMSL,Pa), 10-m u-component of wind (U10M,m s−1),

precipitable water (PWAT,kg m−2), and 70-kPa relative humidity (RHUM,%). We tested the raw

versions of BPE, MM, BMA, and climatology, as well as BPE, MM, and BMA after the calibration

scheme was applied. Daily data from runs initialized on 1 January 2001 through 31 December 2004

were used.

We used a 40-day sliding window to train the parameters for MM and BMA distributions, with

each window ending prior to each forecast date. The parameters were computed separately for

each grid location. Training periods of similar lengths have been used in other studies of BMA

probabilistic forecasts (Raftery et al., 2005; Sloughter et al., 2007). For the calibration curve, raw

PIT values from the365 days prior to the forecast date were used. The 40-day sliding window and

the 365 days of calibration required a warm-up period of405 days, before the first forecasts for

evaluation could be computed. A total of1039 days of probabilistic forecasts for evaluation were

produced.

Both MM and BMA bias correct the ensemble based on the training period. Toget a fairer

comparison, we also bias corrected each ensemble member for BPE using thesame bias-correction

method and sliding window approach as for BMA (see Eq. (2.9)).

For RHUM, to ensure that the bias correction in MM, BMA, and BPE did not create impossible

values, we truncated the values to be within0 % and100 %. Too low values were assigned the value

0 %, and too high values were assigned100 %. Also, values above99.9 % were rounded to100 %

and values below0.01 % were rounded to0 %.
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As suggested by Hamill (2007), BMA weights for ensemble members that are assumed to be

equally skillful can be constrained to be equal. This changes the weightswk in Eq. (2.7) and

Eq. (2.11) to beK−1, but leaves the rest of the expectation maximization (EM) steps as is. The EM

iteration was stopped when the largest change in the standard deviationσT was less than a tolerance

of 10−4, which resulted in around20 iterations on average.

The “refined” climatological forecasts for a given day were based on analyses that were within

15 days of the same day-of-year as the forecast day. For example the climatology for 15 April 2003

includes analyses from all of April 2001, 2002, 2003, and 2004. Thismeans the climatology was

produced in-sample, but since climatology is only used as a reference forecast to gauge the other

methods, we hypothesize that this is acceptable. Separate climatologies were produced for each

forecast grid point. The climatology was implemented by spreading a fixed Gaussian distribution

across the range of the variable and then using the calibration method to adjust the probabilities.

This was done to smooth the climatology, as the climatology is based on a finite sample of past

values. Different smoothing approaches would likely give similar results.

For the BPE method, we used Gaussian distributions forA(s) andB(s) in Eq. (2.4), with mean

0 and variance computed by:

σ2
T =

1

‖T ‖

∑

t∈T

(ξ̄t − µT − xt)
2, (2.31)

whereµT is computed by Eq. (2.6). That is, we have used the second (central) moment of the

forecast error of the bias-corrected ensemble mean to determine the dropoff in probability outside

the ensemble. The Gaussian distributions must be multiplied by a factor of2, so thatA(0) andB(0)

are1. By using a function that stretches as the ensemble stretches forA(s) andB(s) we maintain

the perfect spread-skill assumption that BPE already has for the interiorof the ensemble.

With these data, we next evaluate the quality of the raw and calibrated probabilistic forecasts

using the metrics from Section 2.3.

2.6 Results and analysis

2.6.1 General effects of the calibration

Figure 2.6 shows the calibration deviation for each variable (shown by different panels) and each

uncertainty model (shown by each set of bars). Calibration deviation forthe raw forecasts are shown

by white bars, whereas those for which the calibration step has been applied are shown by black

bars. The calibration deviation was computed for the1039 forecast days separately for each grid
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location, and then averaged. The solid horizontal line indicates the expected deviation for perfectly

calibrated forecasts as given by Eq. (2.18). The figure shows that theraw forecasts have calibration

deviations that are above that expected of perfectly calibrated forecasts. The calibration method

reduces this deviation in all cases down to the level expected for perfectlycalibrated forecasts.

Also, the calibration deviation is much greater for the raw BPE forecasts thanfor MM and BMA.

These results are evident for all five variables.

Figure 2.7 shows how the calibration method improves the ignorance score when the raw fore-

cast exhibits calibration deviation. For cases where the calibration deviationof the raw forecast is

high, the calibration method reduces the ignorance score significantly, as predicted by Eq. (2.27).

However, the calibration method actually increases the ignorance score slightly when the calibration

deviation of the raw forecast is near that of perfectly calibrated forecasts (as seen by the dots below

the horizontal line that are also close to the vertical line). This is because in these cases there is no

calibration deficiency in the raw forecast for the calibration method to correct. The correction is then

based on a calibration curve that has been fitted to a noisy signal of past PIT values. Ignorance is not

reduced in this case, despite Eq. (2.27), because the assumption of stationary PIT statistics no longer

holds. For BPE, all variables show large potential for reducing the ignorance score through calibra-

tion. For MM, RHUM shows the greatest potential, and for BMA PRMSL, PWAT, and RHUM all

have great potential for reducing the ignorance score via the proposed calibration method.

Figure 2.8 shows the average difference of the ignorance score of theuncertainty models com-

pared to climatology. Positive values indicate that the probabilistic forecast has a lower (better)

ignorance score than climatology. White bars show the difference of the raw forecasts to clima-

tology whereas the black bars show the difference for calibrated forecasts. The figure shows that

BPE yields smaller improvements over climatology when compared to MM and BMA. This is true

for both the raw and calibrated forecasts. Black bars that are taller than their corresponding white

bars indicate that the calibration method improved the ignorance score overall. For BPE, this is

the case for all variables. Although improvements in the ignorance score were noted in Figure 2.7

for MM and BMA for cases with high calibration deviation, the increase in the ignorance score for

near-calibrated raw forecasts caused the average improvement of the ignorance score to be roughly

negligible.

The use of the calibration method then relies ona priori identifying locations where calibra-

tion deficiencies are known to be present. For locations where the forecasts are already close to

calibrated, the raw forecasts are best left unadjusted. We speculate that an alternative to using the

calibration method for MM and BMA for cases with calibration deficiencies would likely be to

find a non-Gaussian distribution that fits better. This distribution would also betuned based on

past statistics. However, the appropriate distribution would have to be determined for each location
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separately since different locations may have different types of calibration deficiencies. The cali-

bration method on the other hand automatically determines a suitable fit to each location through

the calibration curve.

2.6.2 Performance of BPE

A striking feature of Figure 2.8 is that BPE gave forecasts with markedly larger ignorance scores

than MM and BMA. Investigating the forecast PDFs reveals that BPE produces spikes of probability

where two ensemble members are close in value. For example, Figure 2.9 shows PDF forecasts for

temperature on 3 January 2003 for location “A” in Figure 2.5. Large spikes in the BPE forecast are

located where ensemble members are close for both raw (dashed lines) andcalibrated (solid line)

forecasts. These spikes are not present in MM and BMA.

The problem is that two close ensemble members are close only by coincidenceand not because

there is higher probability of observing a value in that region. That is, the spikes are unlikely to have

any physical meaning and are purely a product of having a finite number of ensemble members that

inadequately sample the true distribution.

This flaw can be traced to an underlying assumption behind BPE — that the observation rank

is a random number between1 andK + 1. This assumption is valid only prior to the instant when

values of the ensemble are revealed. As soon as these values are known, however, the rank is no

longer a random number. In general, members that are spacedfarther apart will more likely capture

the verifying value.

To test this assertion, the capture fractions of different pairs of ordered ensemble members

for T2M as a function of their separation distance are shown in Figure 2.10. Data from all grid

locations and all available days were pooled together. BPE predicts a constant capture fraction of

(K +1)−1 for every bin, shown by the horizontal line. However, the plot clearly shows that capture

fraction increases with bin width. That is, when two ensemble members are spaced further apart,

the likelihood of the analysis falling between them is higher. This causes the BPE technique to

produce greater ignorance scores since narrow bins are given too high probability density despite

their low probability of capture. Similarly, wider bins are given too low a probability density. Since

the ignorance score is a proper skill score (Gneiting and Raftery, 2007), issuing a probability that

we knowa priori is biased will result in greater ignorance scores.

The calibration method lowers the calibration error compared to the raw BPE forecasts and

thereby significantly improves the ignorance score. BPE exhibits calibrationdeficiencies in general

because the analysis does not fall evenly between the ensemble members. However, further reduc-

tion in the ignorance score, closer to that of MM and BMA, is not possible since the calibration

method cannot remove the spikes that BPE produces. For spikes to be removed, they would have to
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appear frequently enough in the same ensemble bin, such that the calibrationfunction could identify

that the CDFs associated with that bin happened too frequently.

2.6.3 Examples of large calibration deviations

Figure 2.11 shows the spatial pattern of average calibration deviation of raw and calibrated forecasts

from MM for precipitable water. Figure 2.12 shows the same information for BMA. For a significant

portion of the area, the calibration deviations for the raw forecasts are small, however there are large

regions of large calibration deviation as shown by the darker colors. Thecalibration deviation for

the calibrated forecasts are all low. Both MM and BMA have large calibrationdeficiencies at the

location marked by “B”, in the Northwest Territories, Canada.

The reasons for this can be diagnosed in Figure 2.13, which shows PIT histograms for location

“B”. The raw BPE forecasts give distributions that are underdispersed as indicated by the high bin

counts at the extremes. The raw MM forecasts have too many counts at the extremes and the middle,

suggesting the Gaussian distribution with its one spread parameter cannot model a distribution with

thicker tails, a taller middle, and reduced probabilities elsewhere. The raw BMA forecasts have the

same issue. The calibrated forecasts have smaller calibration errors, close toE[Dperfect] = 0.0068.

Figure 2.14 shows precipitable water PDF forecasts for 2 July 2002 for the same location as

the PIT histogram in Figure 2.13. The calibration method alters the shape of theraw PDF for both

MM and BMA to be taller in the middle, have thicker tails, and have lower probabilities elsewhere

to correct the calibration deficiency. For BPE, the calibration increases the width of the tails and

lowers the density in the middle.

Figure 2.15 shows relative humidity PDF forecasts for 16 May 2004 for thePacific Ocean

location marked by “C” in Figure 2.5. The probability mass at the boundaries are shown by the

white bar for the raw forecast and by the black bar for the calibrated forecast, and uses the scale on

the right hand side. We again see that the calibration function changes the shape of the raw forecast

distribution, including the probability mass at the upper boundary.

2.6.4 Comparison between BMA and MM

MM uses a simpler method to represent uncertainty than BMA. Unlike BMA, MM does not allow

for multi-modal probability distributions. Despite this, we found no large differences in the over-

all performance of these two methods. We speculate that the ability of the ensemble to correctly

identify cases where multi-modal uncertainty is appropriate was weak enough that BMA could not

take advantage of it. This may not necessarily be the case for other ensemble systems or forecast

variables.
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2.7 Conclusions and further work

We have presented a general approach for calibrating probabilistic forecasts of continuous variables

and tested it on a dataset with 5 variables, 1225 grid locations, and an ensemble of 14 members

that are assumed to be equally skillful. When trained with appropriate data, thismethod produces

calibrated forecasts regardless of the underlying assumption of the uncertainty of the ensemble.

The method relabels the CDF values of an existing probability distribution according to Eq. (2.21).

The relabeling is done by the calibration curve given by Eq. (2.22), whichis based on which CDF

values the past observations verified on. The calibration curve must be appropriately smoothed,

such as by spline interpolation.

The method reduces calibration deviation down to the level expected by perfectly calibrated

forecasts. When the deviation of the raw forecasts are large, the method significantly reduces the

forecasts’ ignorance score. The method can therefore yield benefits inboth calibration and igno-

rance when the forecast location is known to have calibration deficiencies. Benefits in terms of

calibration are due to adjustments made by the calibration curveΦ and benefits in terms of the ig-

norance score are due to adjustments made by the amplification factorΨ. When the uncertainty

model already produces calibrated forecasts, the redundant calibration step actually increase the ig-

norance score slightly due to the added overhead. In these cases, the original forecasts are best left

unadjusted.

The quality of probabilistic forecasts is not only a function of the quality of theensemble fore-

cast used, but also a function of what uncertainty model is used. We found that, in general, BMA

and MM produced forecasts with comparable ignorance scores, but both significantly outperformed

forecasts produced by BPE, which is due to what we believe is a flaw in the uncertainty assumption

in BPE.

Future work includes finding and evaluating new uncertainty models — not discussed here.

Also, better smoothing mechanisms for the calibration curve may help reduce overfitting of the

calibration method when the raw forecasts are already nearly calibrated. Finally, investigating the

performance of the different uncertainty models for ensembles with members of unequal skill would

be interesting.
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Figure 2.1: A two-step process of generating probabilistic forecasts from an ensemble of fore-
casts. A set of deterministic forecasts from weather models feed into a system that mod-
els how uncertainty is conveyed by the ensemble. The resulting probabilistic forecast is
fed to a calibration scheme that generates calibrated probabilistic forecasts.

BPE MM BMA Climatology

Figure 2.2: Schematic PDF diagram of four methods for representing ensemble uncertainty.
Here probability density curves for binned probability ensemble (BPE), method of mo-
ments (MM), Bayesian model averaging (BMA), and climatology are shown for an en-
semble of size five, with the variable of interest in the abscissa and the probability density
in the ordinate. Circles represent the five ensemble member forecasts. Thetop and bot-
tom rows represent two different forecast times having different ensemble distributions.
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Figure 2.3: Sample calibration curve for MM and BPE. Dashed lines show the actual cumu-
lative distribution of PIT values, whereas the solid represent the smoothedcurve using
cubic splines. The circles represent the interpolation points for the splines. Three sepa-
rate splines were used for BPE, where the separation is shown by the two vertical lines.
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Figure 2.4: Illustrative example of the calibration of a probabilistic forecast by the method
presented in the text. The figure shows a probabilistic temperature forecast created us-
ing MM. The left half shows the calibration curve (solid line) and a one-to-one line
(dash-dotted line). The right half shows the raw forecast (dashed line) and the calibrated
forecast (solid line). The cumulative probabilities0.3 and0.6 are adjusted as shown by
the thin solid lines and arrows. The horizontal dotted lines show the forecast without
calibration adjustment.
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C

Figure 2.5: Geographical locations of the 1225 grid locations used in the study. Point Arep-
resents the grid point nearest Vancouver, Canada, point B represents a grid point in the
Northwest Territories, Canada, and point C represents a grid point at the Gulf of Alaska
in the Pacific Ocean.
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Figure 2.6: Calibration deviation is shown for 5 forecast variables. Deviation of raw forecasts
is shown by white bars, and deviation of calibrated forecasts is shown by black bars. The
solid horizontal line shows the expected deviation of a perfectly calibrated forecast. T2M
is 2-m temperature, PRMSL is mean sea-level pressure, U10M is the 10-m u-component
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Figure 2.7: The difference of ignorance scores between raw and calibrated forecasts is shown
as a function of the calibration deviation of the raw forecast. Positive ignorance score
differences indicate that the calibration method improves the ignorance score. Each dot
represents a separate grid point from Figure 2.5. Each row represents a variable and each
column represents an uncertainty model. The vertical solid line represents the expected
calibration deviation of perfectly calibrated forecasts. The dashed box inthe left-most
column shows the scale of the axes for the other two columns.
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to climatology are shown for raw forecasts (white bars) and calibrated forecasts (black
bars).
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Figure 2.9: Temperature PDF forecast for the Vancouver location for 3 Jan. 2003for BPE,
MM, and BMA uncertainty models. The raw forecast is shown by the dashed lines and
the calibrated by the solid lines. Circles represent the bias-corrected ensemble members.
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Figure 2.10: Fraction of verifying temperature analyses captured by an ensemble bin asa func-
tion of bin width is shown for four different bins. The predicted capture fraction by BPE
is shown by the horizontal solid line. The ticks along the horizontal line show the sep-
arations used when binning the bin widths.
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Figure 2.11: Spatial pattern of calibration deviation for raw and calibrated forecasts from MM
for precipitable water. Smaller calibration deviation is better. The letter “B” is centered
on the Northwest Territories location identified in Figure 2.5.

40



Chapter 2: Calibrating probabilistic forecasts from an NWP ensemble

Figure 2.12: Same as Figure 2.11 except for BMA.
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Figure 2.13: PIT histogram of precipitable water forecasts for the Northwest Territories loca-
tion evaluated for all1039 forecast days. The calibration deviation score is indicated in
the top of each histogram.D values of0.0068 represent the expected level of calibration
deviation for perfectly calibrated forecasts.
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Figure 2.14: Same as Figure 2.9 except for precipitable water and for the Northwest Territories
location for 2 Jul. 2002.
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Figure 2.15: Same as Figure 2.9 except for relative humidity and for the Pacific Ocean lo-
cation for 16 May 2004. White bars represent the probability mass assigned by the
raw forecasts at100% relative humidity, and black bars represent the same quantity for
calibrated forecasts.
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Chapter 3

Updating short-term probabilistic

weather forecasts of continuous variables

using recent observations

3.1 Introduction

Correctly predicting forecast uncertainty can bring significant economicbenefits to many decision

makers (AMS, 2008). Unlike a deterministic forecast, which supplies only theexpected weather

outcome, a probabilistic forecast gives the likelihood of occurrence of all outcomes. Decisions

are based on combining the relative risks of various weather outcomes with the costs and losses

corresponding to those outcomes. Thus, probabilistic forecasts are naturally preferred for economic

decision making.

Let ft(x) be the forecasted probability density function (PDF) of a continuous meteorological

variableX (such as temperature) valid for timet. One can generateft(x) from an ensemble of

numerical weather prediction (NWP) models by using methods such as Bayesian model averag-

ing (BMA; Raftery et al., 2005), the binned probability ensemble technique (Anderson, 1996), the

method of moments (Jewson et al., 2005), or local quantile regression (Bremnes, 2004).

Let Ft(x) denote the forecasted cumulative distribution function (CDF) given by:

Ft(x) =

∫ x

−∞
ft(s)ds. (3.1)

Let xt denote the observed state ofX at timet. Let pt denote the CDF value corresponding to the

observed state:

pt = Ft(xt). (3.2)

pt is often called the probability integral transform (PIT) value corresponding to the observation.

We will assume an operational ensemble forecasting system initialized at timet = 0 that gives
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hourly forecasts out to timet = T . At times t, where0 ≤ t ≤ T , hourly observations from

observing stations are made available, but the models do not incorporate these observations until

the next forecast cycle starts.

Figure 3.1a shows a sample temperature CDF forecast for a single location produced from an

ensemble. At the time the figure was produced, observations up to 1000 UTCwere available. What

is clear from the figure is that the CDF value that the observation verifies on(PIT value) is highly

correlated in time (Figure 3.1c). Given that the most recent PIT value (at 1000 UTC) is0.75, the

next PIT value (at 1100 UTC) will likely be near0.75.

The probability distribution can therefore be refined to take into account thisnew information

that was not available at the time the model was initialized. The effect of the mostrecent observation

will diminish for longer lead times. The updated probability distribution will therefore be narrow

near the time of the observation and widen back to the original distribution for times in the future

(Figure 3.1b).

The goal of this chapter is to present a method for producing an updated probabilistic forecast

F̂t(x) by mapping the original CDFFt(x) by a functionΦ as follows:

F̂t(x) = Φ
(

Ft(x)
)

. (3.3)

The mapping will concentratêF in a narrower range with the hope of improving short-term verifi-

cation scores. End-users in need of rapidly-updating probabilistic short-term forecasts at very low

computational costs can benefit from this update method.

Post-processing weather forecasts is commonly done to increase the correspondence between

forecasts and observations. For deterministic forecasts, methods such as model output statistics

(Glahn and Lowry, 1972), Kalman filtering (Homleid, 1995), and analog methods (Delle Monache

et al., 2011) are commonly used to reduce forecast error. On the other hand, methods such as ensem-

ble calibration (Hamill and Colucci, 1998) and BMA (Raftery et al., 2005) canbe used to improve

probabilistic forecasts from an ensemble of deterministic forecasts. The method presented here also

aims to improve probabilistic forecasts, but differs in that it is only invoked once observations are

available after the raw forecasts are created. It is therefore of most use for operational short-term

forecasts.

This chapter is organized as follows: the method for updating probabilistic forecasts is pre-

sented in Section 3.2, the data set and verification metric used for testing the method is described in

Section 3.3, the performance of the method is evaluated in Section 3.4, and conclusions are drawn

in Section 3.5.
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3.2 Method

Assume that for a given forecast day,T + 1 hourly probabilistic forecastsFt(x) (where0 ≤ t ≤

T ) are produced. Lettobs denote the time at which the most recent observation was made. This

observation is then used to update all hourly forecasts that are still in the future (that is where

tobs < t ≤ T ).

The probabilistic forecastn hours aftertobs, that is for timet = tobs + n, can be updated

according to:

F̂tobs+n(x) = Φn

(

Ftobs+n(x)
)

, (3.4)

whereΦn(p) will in general be different for each value ofn and can be constructed based on forecast

and observation data prior to the timetobs. Φn(p) is the probability function that the verifying PIT

value of the original forecast will be less thanp.

Combining Eq. (3.1) and Eq. (3.4) and using the chain rule gives the following for the updated

PDF:

f̂tobs+n(x) = Ψn

(

Ftobs+n(x)
)

ftobs+n(x), (3.5)

whereΨn(p) is the derivative ofΦn(p), and acts as an amplification factor for the original PDF.

Ψn(p) increases probability density in regions where the PIT value is more likely to occur given the

recent observation. That is,Ψn(p) is also the probability density ofp being the verifying PIT value

of the original forecast.

3.2.1 PIT values as a random walk in time

We model the time-sequence of verifying PIT values within one forecast cycle as a random walk

in time. Mirror barriers at0 and1 are used to handle the fact that PIT values are bounded on the

interval [0, 1]. That is, any random steps across the boundaries are reflected backinto the domain

(Figure 3.2). Mirror barriers are commonly used to describe stochastic processes in other areas of

modeling (Karlin and Taylor 1981; See also Rose 1995 for applications in economics).

Let ptobs
be the PIT value of the most recent observation, and letΨn(p) be the probability

density function of the verifying PIT value beingp atn hours aftertobs. Whenn = 0, the PIT value

is fully known and can therefore be described by:

Ψ0(p) = δ(p − ptobs
), (3.6)
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whereδ is the Dirac delta function defined by:

δ(s) =

{

+∞, s = 0

0, s 6= 0
(3.7)

∫ ∞

−∞
δ(s)ds = 1. (3.8)

Let S(p, q) represents the probability density of arriving at a PIT value of p, giventhat the

previous PIT value was q. Since our stochastic model for PIT values is a first-order Markov model,

the probability of a certain PIT at timen can be found from all transitions to that PIT from time

n − 1. The probability density after a transition can therefore be determined by thefollowing

recursive equation:

Ψn(p) =

∫ 1

0
S(p, q)Ψn−1(q)dq (3.9)

3.2.2 Determining the transition function

We assume that the step-length from one PIT to the next is Gaussian distributed with mean0 and

varianceσ2. That is, the transition functionS can be constructed as follows:

S(p, q) = φ(p; q; σ2) + φ(−p; q; σ2) + φ(2 − p; q; σ2) + ... (3.10)

=

+∞
∑

i=−∞

[φ(p + 2i; q; σ2) + φ(−p + 2i; q; σ2)], (3.11)

whereφ(x; µ; σ2) is a Gaussian PDF with meanµ and varianceσ2. The first term in Eq. (3.10)

comes from steps within the domain, the second comes from steps reflected across0, and the third

term comes from steps reflected across1. Eq. (3.11) includes all possible steps, including steps that

cross both boundaries one or more times.

A transition function that combinesn number of steps can also be constructed, and is denoted

by Sn. The variance of multiple steps (under the assumed model) increases linearlywith time and

Sn can therefore be computed by:

Sn(p, q) =
+∞
∑

i=−∞

[φ(p + 2i; q; nσ2) + φ(−p + 2i; q; nσ2)], (3.12)

Sinceσ is small in our study (around0.15), and we use values ofn no larger than24 we restrict the

summation toi ∈ [−10, 10]. A wider range fori may be required for largeσ andn values.

48



Chapter 3: Updating short-term probabilistic weather forecasts of continuous variables using recent observations

ConstructingSn allows us to simplify Eq. (3.9) to the following:

Ψn(p) =

∫ 1

0
Sn(p, q)Ψ0(q)dq (3.13)

= Sn(p, ptobs
), (3.14)

where againptobs
is the verifying PIT value at timetobs. This simplification avoids the need to

recursively computeΨn (as in Eq. (3.9)). Note that for forecast variables that require a non-Gaussian

transition function, it is possible that Eq. (3.12) cannot be constructed analytically in which case the

above simplification may not be possible.

Figure 3.3 shows an example sequence ofΨn(p) for various values ofn. The PIT value distri-

bution clearly widens as time goes on, indicative of the disappearing effectof the last observed PIT

value.

3.2.3 Parameter estimation

In order to create the updated forecasts, an estimate ofσ2 is needed by Eq. (3.12). The variance of

the step sizes of past PIT values (σ2
0) can be used:

σ2
0 =

1

|T |

∑

i∈T

(

pt+1 − pt

)2
, (3.15)

whereT represents a set of time points from past forecast cycles comprising the training period,

and where|T | is the size of this training set.σ2
0 will in general underestimateσ2 since some steps

will appear to be short steps when in fact they are longer steps that havereflected across a boundary.

For a givenσ, the expected value ofσ0 can be computed by the integral over all possible PIT

transitions fromp to q:

σ2
0 =

∞
∑

i=−∞

∫ 1

0

∫ 1

0
[φ(p + 2i; q; σ)(p − q)2 + φ(−p + 2i; q; σ)(p − q)2]dpdq. (3.16)

Solving this equation forσ (as required by Eq. (3.12)) was not possible analytically. We found

through trial and error that the following is a good approximation forσ in terms ofσ0:

σ ≈ tan(3.5σ0)/3.5, (3.17)

where the input to the tangent function is in radians. This approximation has errors of less than

3.4 % for σ0 values up to 0.3 (Figure 3.4).
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A summary of the process of updating a probabilistic forecast goes as follows: the variance of

past PIT transition distances (σ0) is computed by Eq. (3.15), which is used to approximateσ in

Eq. (3.17);σ is then used in Eq. (3.12) to compute the transition function (Sn); The transition func-

tion, combined with the latest available verifying PIT value is used to calculate thePIT distribution

(Ψn) by Eq. (3.14), which is used to update the original probabilistic forecastthrough Eq. (3.5).

3.3 Operational test case

3.3.1 Model data and configuration

Hourly surface temperature forecasts from the Mesoscale CompressibleCommunity [MC2, Benoit

et al. (1997)] model, the Penn State/NCAR Mesoscale Model [MM5, Grell et al. (1994)], and the

Weather Research and Forecasting [WRF, Skamarock et al. (2005)] model were used for the case

study period: 0000 UTC 1 Sep. 2005 to 2300 UTC 1 Feb. 2008. Two runsfor the WRF model were

used: one using GFS initialization (WRFG) and the other using NAM initialization (WRFN), while

MC2 and MM5 both used NAM initialization. The MC2 and MM5 runs had outer domains with

108-km grid spacing, and inner 36-, 12-, and 4-km nested domains. The WRF runs were similar,

but did not contain the 4-km nested domain. These domains comprised our 14-member ensemble.

The models were initialized once per day at 0000 UTC, and hourly forecast output to 60 hours

was available. Probabilistic forecasts were generated for the same time period.

The model runs and probabilistic forecasts were generally completed by 0600 UTC, after which

we used the latest observation to update the probabilistic forecasts valid forthe subsequent 24 hours.

The update process was repeated each hour as a new observation became available. This was done

until 0600 UTC the next day, when the probabilistic forecasts from the next forecast cycle were

used. This means that for each forecast cycle 24 24-h updated forecasts were produced, yielding

576 forecasts per day.

We tested the method on temperature probabilistic forecasts and observationsfor the following

five airport stations in British Columbia, Canada: Vancouver InternationalAirport station (CYVR),

Abbotsford International Airport (CYXX), Victoria International Airport (CYYJ), Kamloops Air-

port (CYKA), and Kelowna Airport (CYLW), which provided a geographically diverse sample from

within our smallest model domain.
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3.3.2 Original probabilistic forecasts

We used the method of moments to produce the original probabilistic forecast from the forecast

ensemble. The PDF using this method is computed by:

ft(x) = φ(x; ξt + µ; s2), (3.18)

where againφ is a Gaussian PDF,x is a temperature value,ξt is the ensemble mean at timet, µ is a

bias-correction term for the centre of the distribution, ands2 is the variance of the distribution.

The last two parameters are determined by the forecast errors during thetraining periodT :

µ =
1

|T |

∑

i∈T

xi − ξi (3.19)

s2 =
1

|T |

∑

i∈T

(xi − µ − ξi)
2, (3.20)

Note that the spread in this case is independent of the ensemble spread.

The parametersµ ands were computed separately for each station and separately for each of

the24 forecast hours. They were computed from a 40-day sliding window thatended the day before

the forecast was initialized. A training period of 40 days is a compromise between the need to use

statistics that adapt quickly to seasonal changes and the requirement to have enough data to robustly

estimate the parameters. Similar training lengths have been used to produce probabilistic forecasts

using Bayesian Model Averaging (Raftery et al., 2005; Sloughter et al.,2007).

The spread parameterσ0 (and consequentlyσ) was also computed separately for each station

using a 40-day sliding window, however all 24 forecast offsets for a given station were pooled

together to give a more robust estimate.

3.4 Analysis

3.4.1 Ignorance score

We use the logarithmic score of Good (1952), which has gained popularity over the last decade and

has been referred to as “Ignorance” score owing to its ties with informationtheory (Roulston and

Smith, 2002). It is defined as follows:

IGN(f) =
1

|T |

∑

t∈T

−log2

(

ft(xt)
)

. (3.21)
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IGN rewards forecasts that place high confidence in the value where theobservation falls. Low

ignorance scores are desired.

The total ignorance scores of the original probabilistic forecasts were computed by averaging

ignorance scores over all forecast cycles, and forecast hours,but separately for each station and each

value ofn in order to see how far into the future a recent observation can improve theignorance

score.

Figure 3.5a shows theimprovementin ignorance score provided by the updated probabilistic

forecast as a function of time from the most recent observation. The updated forecasts at0 h after

an observation has been made has an ignorance score of−∞ since the true state is fully known.

However, this update forecast is of no value since it is only available afterthe observation has been

made. As time since most recent observation increases, the improvement in theignorance score

reduces down toward0.

3.4.2 Continuous ranked probability score

We also computed the continuous ranked probability score (CRPS) to further evaluate the quality of

the probabilistic forecasts. It is defined as:

CRPS(F ) =
1

|T |

∑

t∈T

∫ +∞

−∞
[Ft(x) − H(x − xt)]

2dx, (3.22)

whereH(s) is the Heaviside function defined by:

H(s) =

{

1 s ≥ 0

0 s < 0
. (3.23)

Low values of CRPS are preferred.

Figure 3.5b shows the percentage improvement due to the updated forecast relative to the origi-

nal raw forecast. This is defined as:

% improvement=
CRPS(Fraw) − CRPS(Fupdated)

CRPS(Fraw)
× 100%. (3.24)

Results for CRPS show a similar pattern as for the ignorance score, with the update method

providing less improvement as the time since the most recent observation increases. The average

CRPS of the 5 stations was1.50 oC and the update method brought the value down to1.06 oC and

1.27 oC at3 and6 hours respectively.
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3.4.3 Reliability

A probabilistic forecast is reliable (or calibrated) when the PIT values areuniformly distributed

between0 and1 (Gneiting et al., 2007). This can be diagnosed by a simple histogram of verifying

PIT values as reliable forecasts will give a flat histogram.

Figure 3.5c shows the histogram of PIT values from all forecast hours, forecast cycles, stations,

and values ofn. The update method does not appear to degrade or improve the reliability of the

original forecasts in any significant way.

3.4.4 Mean absolute error

A probabilistic forecast can also provide a best deterministic estimate, by using the median of the

probability distribution (as shown by the50 % lines in Figure 3.1a and Figure 3.1b). We used the

mean absolute error (MAE) as a verification measure of this deterministic forecast:

MAE(f) =
1

|T |

∑

t∈T

∣

∣xt − F−1
t (0.5)

∣

∣, (3.25)

whereF−1
t is the inverse ofFt giving the temperature value corresponding to a nominal proportion

of 0.5.

The MAE of the deterministic forecast (Figure 3.5d) showed a similar pattern tothe igno-

rance score and CRPS, with the update method improving MAE from2.07 oC down to1.42 oC

and1.73 oC at 3 and6 hours respectively. Improvements in MAE suggest that the update method

improves the central tendency of the probabilistic forecasts.

3.5 Conclusions

We have presented a method to update probabilistic forecasts of continuousvariables based on re-

cent observations, which should prove useful for a variety of nowcasting purposes. An alternative

to this is to use data assimilation after new observations are available in order to create new initial-

izations for the ensemble, followed by a complete rerun of the ensemble. This isconsiderably more

expensive from a computational point of view, and may be infeasible for many operational systems.

The method improves the ignorance score and CRPS of the probabilistic forecasts, and improves

the MAE of the median of the distribution significantly for forecasts up to six hours after a recent

observation, while not affecting reliability negatively.

Future work includes investigating the benefits of using a higher-order Markov model for mod-

eling PIT transitions. In addition to accounting for hour by hour correlationof PIT values, a

higher-order Markov model can also incorporate any diurnal correlation of PIT values that may
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exist thereby allowing for the potential to improve forecasts for24 h after a recent observation.
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Figure 3.1: (a) A sample probabilistic temperature forecast initialized at 0000 UTC. Fore-
casted cumulative probability values are shown by lines. Observations areshown by
solid dots. (b) The updated probabilistic forecast (solid lines) based on the most recent
observation. The original forecast is shown by dashed lines. (c) Theprobability integral
transform values of the original forecast corresponding to the observations.
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Figure 3.2: (a) A hypothetical time-series of verifying PIT values (solid line). Mirror barriers
at 0 and1 reflect any steps back into the domain. The dashed line shows the PIT time-
series without reflections. The transition from time3 to 4 involves a reflection across1
as shown by the arrows. (b) The probability density function (thick solid line) of the PIT
value for time9, given that the PIT value at time8 was 0.80. The dashed line shows the
probability of the Gaussian distribution that has been reflected back into the domain.
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Figure 3.3: An example sequence of probability density functions of PIT values for different
number of hours (n) after an observation has been made. In this case atn = 0, the PIT
value is fully known to be0.7.
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Figure 3.4: Standard deviation of PIT step sizes used in the transition function as a function
of the measured standard deviation of step sizes of past PIT values (solidline) and the
approximationσ = tan(3.5σ0)/3.5 (dashed line)
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Figure 3.5: Verification statistics for the probabilistic forecasts used in the study. (a) Reduc-
tion (improvement) of the ignorance score by the updated probabilistic forecast relative
to the original probabilistic forecast. Each of the five lines represents the score for a
different station. (b) Percentage improvement in the continuous ranked probability score
by the updated probabilistic forecast. (c) PIT histogram of the updated forecasts (black
bars) and the original forecasts (white bars), indicating the reliability of theforecasts. (d)
Percentage improvement in mean absolute error of the median of the updated probability
distributions relative to the median of the original distribution.
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Chapter 4

A modular operational probabilistic

weather forecasting system

4.1 Introduction

Weather-forecast providers are increasingly being requested to provide forecasts in probabilistic

form (AMS, 2008). A deterministic forecast provides a single estimate of a weather variable in

the future. Probabilistic forecasts complement this information with an estimate of the prediction’s

uncertainty by indicating the probability of occurrence of all weather outcomes. Uncertainty in-

formation is especially useful for forecast users who make decisions based on balancing the risks

and costs associated with weather outcomes (Murphy, 1977; Richardson, 2000; Palmer, 2000; Zhu

et al., 2002). By knowing the likelihood of the occurrence of disastrous events, these users can ad-

equately protect their weather-affected operations (see McCollor and Stull 2008b for an application

in hydroelectric power management). Improving the quality of probabilistic forecasts is currently

an active area of research.

Ensemble methods (Leith, 1974) are typically used as the basis for generating probabilistic

forecasts. Ensembles aim to sample the probability density function (PDF) of the true error dis-

tribution, but are frequently found to be underdispersive (Hamill and Colucci, 1998; Buizza et al.,

2005; Raftery et al., 2005). Also, the spread-skill relationship of ensembles is often found to be

non-existent or weak (Hamill and Colucci, 1998; Stensrud et al., 1999),although stronger relation-

ships have been found in some cases (Grimit and Mass, 2002; Stensrud and Yussouf, 2003; Scherrer

et al., 2004). This has led to the development of statistical methods, which instead of assuming that

the ensemble perfectly samples the true error PDF, assigns a probability distribution based on vari-

ous attributes of the ensemble. Methods such as ensemble model output statistics (EMOS; Gneiting

et al., 2005) and Bayesian model averaging (BMA; Hoeting et al., 1999; Raftery et al., 2005) are

frequently used. The focus of our work is on such statistical methods forgenerating and improving

probabilistic forecasts.
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4.1.1 Notation

We focus our study on continuous weather variables (such as temperature) and mixed discrete-

continuous variables (such as precipitation amount). Given a weather variable X, a probabilistic

forecast for timet can be given by a cumulative probability distribution (CDF)Ft(x), giving the

probability thatX takes on a value less thanx. This distribution can be created in many ways,

but will generally be based on output from numerical weather prediction (NWP) model runs. Also

useful is the PDF given by:

ft(x) =
dFt(x)

dx
, (4.1)

which indicates the relative likelihoods of various values ofX.

4.1.2 Verification

The observed state ofX at timet is denoted byxt. These observations are used to determine the

quality of the probabilistic forecasts. The continuous ranked probability score (CRPS; Hersbach,

2000) is a metric commonly used to evaluate the performance of probabilistic forecasts and is de-

fined as:

CRPS=
1

|T |

∑

t∈T

∫ ∞

−∞

[

Ft(x) − H(x − xt)
]2

dx, (4.2)

whereT represents a set of time points used for evaluation,|T | is the size of this set, andH(s) is

the Heaviside function defined by:

H(s) =

{

1 s ≥ 0

0 s < 0
. (4.3)

The CRPS is the integral of the Brier Score (BS; Brier, 1950) over all values ofX. The CRPS

rewards probabilistic forecast distributions that are narrow and centred around the observed state. A

low CRPS value is preferred.

The logarithm score (Good, 1952), often known as the ignorance score (Roulston and Smith,

2002), is also commonly used and is defined by:

IGN =
1

|T |

∑

t∈T

−log2

[

ft(xt)
]

. (4.4)

The ignorance score rewards forecasts that prescribe high probability density at the variable value

that is verified. Low ignorance scores are preferred.

The CDF value corresponding to the verifying observation is commonly referred to as the prob-
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ability integral transform (PIT) value and is denoted bypt:

pt = Ft(xt). (4.5)

A set of probabilistic forecasts are probabilistically calibrated ifpt values are uniformly distributed

on the interval[0, 1] (Gneiting et al., 2007).

4.1.3 Mixed discrete-continuous variables

An added complication occurs for any variable that has discrete probabilitymass in parts of the

variable’s domain. Quantitative precipitation rate, for example, can have a finite probability mass at

X = 0 mm corresponding to the probability of no precipitation. Following Sloughter et al. (2007),

we separate the distribution into a discrete and a continuous part:

F (x) =

{

P x = 0 mm

P + Fc(x)(1 − P ) x > 0 mm,
(4.6)

whereP is the probability mass of the discrete part, andFc(x) is the probability distribution for

the continuous part. The normalization by(1 − P ) allows us to define the range ofFc(x) to be the

interval [0, 1].

When computing the CRPS for this mixed distribution, the lower bound of integration in Eq. (4.2)

becomes0 mm. When computing the ignorance score for precipitation, we use the probability mass

Pt for those cases when no precipitation was observed:

IGN =
1

|T | + |T0|

(

∑

t∈T

−log2

[

ft(xt)
]

+
∑

t∈T0

−log2

(

Pt

)

)

, (4.7)

whereT represents cases where precipitation was observed andT0 represents cases where no pre-

cipitation was observed.

Evaluating the performance of the discrete part by itself can also be useful and for this we use

the Brier Score with a threshold of0 mm:

BS(0 mm) =

{

(1 − Pt)
2 xt = 0 mm

P 2
t xt > 0 mm

. (4.8)
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We define an analogous metric for the ignorance score of the discrete part:

IGN(0 mm) =

{

−log2(Pt) xt = 0 mm

−log2(1 − Pt) xt > 0 mm
, (4.9)

which is the ignorance score for a binary random variable.

4.1.4 Goals

Generating probabilistic weather forecasts has been well studied and a large number of methods and

models have been developed to improve verification scores. The goal of this chapter is to present

a probabilistic forecast system that can combine these techniques to find combinations that work

particularly well. This is done by separating the process of probabilistic forecast generation into

a series of sequential components, each of which has a specific role. This separation allows each

component to be researched and improved independently of the other components.

The forecast system and its components are described in Section 4.2, a software approach for

implementing the system is presented in Section 4.3, the functionality of the system istested on a

temperature and precipitation case study in Section 4.4, and conclusions aredrawn in Section 4.5.

4.2 System description

We decompose the process of generating probabilistic forecasts into a series of steps originating

with a set of input predictors (Figure 4.1). Before a probabilistic forecast can be disseminated, the

predictors pass through each of these steps (termedcomponents). The proposed system contains

correction, uncertainty, calibration, and update components, each of which serve a very special

purpose in the overall aim of producing high-quality probabilistic forecasts.

Each component can be defined and implemented in a number of different ways, and we call a

specific implementation ascheme. This idea is analogous to the modular approach taken by some

community-developed NWP models, such as the Weather Research and Forecasting (WRF; Ska-

marock et al., 2005) model, where the development of different microphysics, radiation, surface,

and boundary layer schemes can be done relatively independently of therest of the model provided

the scheme conforms to the requirements imposed by the software framework.Instead of having

physically-based components, the proposed probabilistic system has a number of statistically-based

components. A user of the system selects one scheme for each component, which defines aconfig-

urationof components.

The system defines a set of input and output requirements for each component. Provided that

a scheme conforms to these requirements, the scheme can be used in conjunction with any com-
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bination of schemes for the other components. This setup easily allows improvement efforts to be

focused into specific areas, and allows the research to be done independent of the other components.

The components included in the decomposition were selected to allow us to includethe majority of

commonly used probabilistic methods found in NWP. We are unaware of any other studies that use

such a decomposition approach.

Each component uses the output from the previous component as well asa set of parameters

θt to generate output for the next component. In an operational setting, thesescheme-specific

parameters can vary with time because they can be continuously trained usingnew observations as

they become available.

The components of the system are discussed next. An illustration of the schemes that we have

implemented for each component for our case study are summarized in Figure4.2.

4.2.1 Predictors

The output from NWP model runs usually provides the basis for probabilistic weather forecasts. In

many cases the output will be in the form of an ensemble of forecasts, although a single deterministic

forecast could also be used. We term these forecastspredictorsand theN predictors are denoted by

ξ1, ξ2, ..., ξN .

The above specification does not prevent us from using an ensemble ofpast verifying observa-

tions as our predictors. These “predictors” form the basis for climatological forecasts, which can be

used as a baseline against which to evaluate probabilistic-forecast skill based on NWP runs.

Although not investigated in this chapter, an ensemble of past analogs (Hamilland Whitaker,

2006; Delle Monache et al., 2011) or any other variables that have predictive capabilities could also

be used.

4.2.2 Correction

The output from NWP models often exhibit biases that can be removed by post-processing. Post-

processing uses the past behaviour of the predictors in order to correct for any systematic errors.

A large variety of post-processing methods used for NWP exists, such asmodel output statistics

(MOS; Glahn and Lowry, 1972), Kalman filtering (Homleid, 1995), neuralnetworks (Yuval and

Hsieh, 2002; Marzban, 2003), analog methods (Delle Monache et al., 2011), and gene-expression

programming (Bakhshaii and Stull, 2009).

The requirement of the correction component is that it takes the set of predictors{ξ1, ξ2, ..., ξN}

and produces a corrected set{ξ̂1, ξ̂2, ..., ξ̂N}. An implementation of a correction scheme needs not

concern itself with how the inputs were created, only that there areN available members. Similarly,
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how the corrected members will be used later on is also not of concern.

As an example for our case study, we use two simple algorithms for correctingthe input predic-

tors for temperature. The first method removes a common bias termµ from each ensemble member:

ξ̂i = ξi − µ, (4.10)

whereµ is determined from past performance of the ensemble. A second method removes a separate

bias term from each ensemble member:

ξ̂i = ξi − µi. (4.11)

The two above correction methods cause problems for correcting precipitation variables as it

can generate negative precipitation amounts. Instead of improving the amount of precipitation, for

the purposes of this chapter we focus on improving the ensemble’s ability to distinguish between the

occurrence and non-occurrence of precipitation. The number of ensemble members predicting an

occurrence of precipitation can be useful for gauging the probability ofprecipitationP . However,

we found from the data set used in our case study that the ensemble often produces too many small,

but non-zero ensemble members when evaluated against the observations. This had the effect that

the ensemble could not resolve days with low chance of rain from those with ahigh chance since

for the most part the number of non-zero ensemble members was always very high or very low.

To correct this problem, a cut-off valueǫ can be used to define the minimum accumulation amount

needed for a forecast to be considered an occurrence of precipitation:

ξ̂i =

{

0 mm x ≤ ǫ

ξi x > ǫ
. (4.12)

This allows the ensemble to better differentiate between low and high probability days.

4.2.3 Uncertainty model

An ensemble of corrected predictors does not by itself comprise a probabilistic forecast. Before

a full probability distributionF (x) can be constructed, a suitable interpretation of how the set of

predictors represents forecast uncertainty must be chosen. We term this an uncertainty model. The

uncertainty model prescribes a probability distribution based on the arrangement of the (corrected)

input predictors.

There are several common ways to prescribe probability given an ensemble of forecasts (see

discussion in Chapter 2), such as the binned probability ensemble (BPE; Anderson, 1996) technique,
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BMA, moment-based methods (Jewson et al., 2005), and EMOS. Common to these models is that

they prescribe probability based on both the central tendency of the predictors as well as the level

of disagreement among the predictors.

Temperature variables

For temperature variables, we have restricted our study to models using Gaussian distributions. The

probability distribution is created by centering a Gaussian distribution on the corrected ensemble

mean, and adjusting its variance appropriately. That is:

F (x) = φ
(

x; ξ̂; σ2
)

, (4.13)

whereφ is a Gaussian CDF for some variable valuex, ξ̂ is the corrected ensemble mean, andσ2

is the distribution variance. The variance is the one free parameter and effectively determines the

uncertainty of the forecast.

There are a number of ways to fix the variance of this distribution (Jewson et al., 2005; Gneiting

et al., 2005):

σ2 = a (4.14)

σ2 = bσ2
ξ̂

(4.15)

σ2 = a + bσ2
ξ̂
, (4.16)

whereσ2
ξ̂

is the ensemble variance anda andb are constants. Eq. (4.14) refers to a model where

the spread of the distribution is independent of the ensemble spread (e.g. Gaussian constant spread

model in Figure 4.2). The ensemble spread can be used as a gauge for uncertainty, since the dis-

agreement among the ensemble members suggests a general difficulty in determining the future

state. Eq. (4.15) uses only the ensemble spread, with a scaling factor to account for under or over-

dispersion of the ensemble (e.g. ensemble spread model) and Eq. (4.16) combines both (e.g. full

regression model). Linear regression between the squared ensemble mean error(ξ̂t − xt)
2 and the

ensemble spreadσ2
ξ̂

can be used to determine parametersa andb.

Precipitation

For precipitation, we need a separate model for each ofP andFc(x). Logistic regression is com-

monly used forP (Sloughter et al., 2007) as this forcesP to be restricted to the interval(0, 1).

Logistic regression in this case uses linear regression to fit the logarithm ofthe ratio of odds of no
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precipitation to precipitation:

logitP = log

(

P

1 − P

)

. (4.17)

We investigate three regression equations, which use the cubic root of precipitation (Sloughter et al.,

2007) as a variate:

logitP = c0 + c1
3

√

ξ̂ (4.18)

logitP = c0 + c1δ (4.19)

logitP = c0 + c1
3

√

ξ̂ + c2δ, (4.20)

whereδ is the fraction of ensemble members predicting no precipitation. Eq. (4.18) is referred to as

the ensemble mean model in Figure 4.2, Eq. (4.19) as the ensemble fraction model, and Eq. (4.20)

as the combined model. For climatological predictors, the empirical fraction of ensemble members

predicting no precipitation can be used:

P = δ. (4.21)

The continuous part of the precipitation distribution is often modeled using a gamma distribution

(Hamill and Colucci, 1998; Sloughter et al., 2007):

Fc(x) = Γ
(

x; α; β
)

, (4.22)

whereΓ is a gamma CDF,α is its shape parameter andβ is its scale parameter. The shape and scale

parameters as a function of the distribution’s meanµ and varianceσ2 are:

α =
µ2

σ2
(4.23)

β =
σ2

µ
. (4.24)

Sloughter et al. (2007) used

µ = c0 + c1
3

√

ξ̂ (4.25)

σ2 = c2 + c3ξ̂, (4.26)

wherec0, c1, c2, andc3 are constants. We had difficulty getting stable solutions using the adaptive

method described in Section 4.3.3, since this model has four free parameters. We therefore use the
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following model as it had one fewer free parameter:

µ = c0 + c1
3

√

ξ̂ (4.27)

σ2 = c2µ, (4.28)

wherec0, c1, andc2 are constants. Contrary to temperature variables, precipitation uncertaintyhas

been found to be better explained by the ensemble mean than the ensemble spread (Hamill and

Colucci, 1998), which is why ensemble spread does not appear in these equations.

We found that when using climatological predictors, the empirical moments of theensemble

gave a good fit:

µ = ξ̂ (4.29)

σ2 = σ2
ξ̂
, (4.30)

whereσ2
ξ̂

is the variance of the climatological predictors.

4.2.4 Calibration

In some cases, the probability distribution produced by the uncertainty component may exhibit cali-

bration deficiencies when the subsequent observations do not fit the assumptions used. For example,

if a Gaussian distribution is used for cases where the distribution of observations is non-Gaussian,

the resulting forecasts will exhibit distributional bias. The calibration component is the distribu-

tional analogy of the bias-correction performed by the correction component on the deterministic

predictors.

Calibration deficiencies can be corrected by a calibration method that maps probability values

F to calibrated probabilitieŝF by using a calibration functionΦ as follows:

F̂ (x) = Φ[F (x)]. (4.31)

Calibration in the form of Eq. (4.31) can be implemented in a number of ways (see for example

Bremnes, 2007, or Chapter 2). For precipitation, we use separate calibration functions for the

discrete and continuous parts:

F̂ (x) =

{

Φ0

(

P0

)

x = 0 mm

Φ0

(

P0

)

+ Φ
[

Fc(x)
][

1 − Φ0

(

P0

)]

x > 0 mm
. (4.32)
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4.2.5 Updating

In the time between when a forecast is first produced and when the next forecast cycle starts, new

observations may become available. The original probabilistic forecast can in general be improved

by statistically assimilating this observation (Chapter 3). This component uses the fact that the PIT

values are highly correlated in time. For example, when a forecast verifiesin the 20th percentile, it

will likely continue to do so for the next few hours. A probabilistic forecastF̂t(x) valid for time t

can be updated by a recent PIT valuept−n n hours prior (i.e.pt−n = F̂t−n(xt−n)). The updating is

performed by an update functionU as follows:

F̂t|t−n(x) = U
[

F̂t(x), pt−n

]

, (4.33)

where time indices refer to time points within the same forecast run.

Chapter 3 used a reflected Gaussian distribution forU with a single fitting parameterσ deter-

mined by how correlated in time the PIT values are. Updating in this form can be auseful alternative

to a computationally expensive full data assimilation followed by a re-initialization of the models

driving the ensemble. Since the correlation of a recent PIT value vanishes quickly with time, this

component is most useful for probabilistic nowcasting purposes.

At this point, the initial predictors have undergone several transformations and improvements,

and are now ready to be disseminated and verified.

4.3 Implementation

The software strategy used to implement the system must aim to achieve the goalof modularity

described earlier. Not only must schemes be interchangeable, but adding a new scheme should

only require the developer to write code that directly defines the scheme, witha minimal amount

of additional code to be added elsewhere in the framework. Finally, computationally efficiency is

also important for operational purposes, as potentially thousands of locations and many weather

variables must be processed every day.

4.3.1 Approach

An object oriented (OO) software approach is used here, as this allows the components to be easily

modularized by exploiting polymorphism and function inheritance features ofOO. Each component

is defined by an abstract class that specifies what functionality must be implemented by a candidate

scheme. Provided that a scheme implements all functions of its parent class, this scheme can be

used by the system in combination with any scheme of any other component.
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Code abstraction is important in this system. A developer of a calibration scheme, for example,

should be insulated from code elsewhere in the framework. Any calibrationimplementation relies

only on a CDF value provided by the uncertainty model, and need not concern itself with how that

output was created. This simplifies the task of writing a scheme since only the input and output

specifications must be dealt with.

We have made extensive use of function inheritance. For example for ourcase study, the three

logistic regression models need only to specify what regression variablesto use and how these are

combined to predict the log odds ratio. These three classes only involve computer code that directly

implements Eq. (4.18)-Eq. (4.20). Adding a new regression model is as simpleas creating a new

class that specifies the variables needed and implementing a log odds ratio function. Functionality to

estimate the parameters of the model is inherited from the maximum-likelihood class (Figure 4.2).

The maximum-likelihood class adaptively finds the optimal parameters for the model by relying on

its subclasses to implement the likelihood function corresponding to those parameters.

Even though the goal of the discrete uncertainty class is to output a value for P , none of the

three logistic regression schemes directly need to implement code that computesP . Thus, function

inheritance greatly reduces duplication of code, and the adding of new schemes generally only

requires the implementation of code that directly defines its core behaviour.

4.3.2 System outputs

Users of the system are interested in CDFs, PDFs, and in some cases in inverse CDFs (e.g. to com-

pute a confidence interval). Instead of requiring all components to be ableto provide functionality

to compute all three types of output, we focus on producing a CDF. That is,from the uncertainty

component and onward, a probability distribution described by a CDF is passed between the compo-

nents. The PDF can then be computed by polling the CDF and computing the derivative numerically.

To compute the inverse CDF, the system uses a simple iterative approach by polling the CDF for

different values ofx until one that gives an̂F (x) that is close to the desired inverse value.

4.3.3 Adaptive parameter estimation

Each scheme of the system can make use of a set of stored parametersθ. To achieve the goal

of computational efficiency for operational (real-time) forecasts, we require all scheme parameters

to be computed adaptively. This reduces the computational requirements since only the previous

estimate of the parameter must be retrieved, instead of a long history of past data.

The best estimate of a parameterθ at timet is denoted byθt. Let θ∗t represent the parameter

computed solely by the information provided by the observation at timet. The parameter can then
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be updated to a new valueθt+1 based on the recursive equation:

θt+1 =
τ − 1

τ
θt +

1

τ
θ∗t , (4.34)

whereτ > 0 is a unitless time scale corresponding to how quickly the effect of new information

vanishes over time. Large values ofτ will causeθ to adapt slowly to new information.θt+1 is a

weighted average of the previously best estimate and the current evidence.

To update the parameters, each scheme must define howθ∗t is determined. For example, the

parameterµ in Eq. (4.10) can be updated as follows:

µt+1 =
τ − 1

τ
µt +

1

τ

(

ξ̂t − xt

)

. (4.35)

The parameterǫ in Eq. (4.12) can be updated as follows:

ǫt+1 =

{

τ−1
τ

ǫt + 1
τ
ξ̂t x = 0 mm

ǫt x > 0 mm
. (4.36)

That is, over time,ǫ approaches the average value of the ensemble mean when there is no observed

precipitation.

The regression parameters used to compute parametersa andb in Eq. (4.14)-Eq. (4.16) can be

updated in a similar fashion.

For maximum-likelihood methods in the uncertainty component, we use the parameterestima-

tion technique employed by Pinson and Madsen (2009). Here a vector of parametersθ is determined

simultaneously using:

θt+1 = θt +
1

τ
R

−1
t

∇L(θt, xt)

L(θt, xt)
, (4.37)

whereL(θt, xt) is the likelihood function for the parametersθt with verifying observationxt, and

where the covariance matrixRt is defined as:

Rt+1 =
τ − 1

τ
Rt +

1

τ

(

∇L(θt, xt)

L(θt, xt)

)(

∇L(θt, xt)

L(θt, xt)

)T

. (4.38)

The estimation method requires any scheme inheriting this class to define the likelihood function

L, which for logistic regression is the solution toP in Eq. (4.17), and for the gamma model is the

gamma PDF corresponding to Eq. (4.22).

The calibration method defined in Chapter 2 uses a large collection of past PIT values to calibrate
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the probability distribution. Instead of storing individual PIT values, an adaptive alternative to this

is to only use a few calibration pointsΦp corresponding to several values ofp and adaptively move

these calibration points to approximately match the distribution of past PIT values. These points

can then be updated as follows:

Φp,t+1 =
τ − 1

τ
Φp,t +

1

τ
H(p − pt), (4.39)

wherept is the PIT value corresponding to the verifying observation. We used9 evenly distributed

calibration points on the interval[0, 1] for our case study as this balances the need to resolve patterns

and smoothing out noise in the data (Chapter 2).

We chose to not create a calibration functionΦ0 for the discrete part, by reasoning that the

probability model for the discrete part has several parameters to determinea single point, whereas

the model used for the continuous part must fit to the entire distribution. Thus, the model for the

discrete part should already create probabilities that do not have an overall tendency to under or

overpredict probability of no precipitation.

For the update scheme, the single parameterσ can be updated adaptively as follows:

σ2
t+1,t̂

=
τ − 1

τ
σ2

t,t̂
+

1

τ
(pt,t̂+1 − pt,t̂)

2, (4.40)

wheret represents different days the input predictors are initialized andt̂ represents two different

time points within the same forecast run. That is,pt,t̂ andpt,t̂+1 represent two consecutive PIT

values for a certain forecast run.

For all corrector schemes, the update scheme, and uncertainty models (other than maximum-

likelihood methods) we used a dimensionless time-scale ofτ = 30 iterations, as similar time-scales

(in the form of window lengths) have been determined to be suitable for suchmethods (Raftery

et al., 2005; Sloughter et al., 2007; McCollor and Stull, 2008a). The maximum-likelihood method

required a longer time-scale since several parameters are estimated simultaneously. For these we

usedτ = 60 iterations. PIT-based calibration requires on the order of 100 data-points to be effective

(Chapter 2) and therefore we usedτ = 90 iterations for the calibration component.

4.3.4 Bypass schemes

When using the system, the correction, calibration, and update components are optional. For each

of these we create a scheme that bypasses the component for cases where these methods are not

required or wanted. The bypass scheme simply provides an output that is an unaltered version of its

input.
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The correction, calibration, and update bypass schemes implement respectively:

ξ̂i = ξi, (4.41)

F̂t(x) = Ft(x), and (4.42)

F̂t|t−n(x) = F̂t(x). (4.43)

Note that the predictor component is a required component because without it the forecast chain

cannot be started and the uncertainty model is required because without itthe predictors cannot be

converted to probabilistic form.

4.3.5 Verification

Two verification metrics were mentioned in Section 4.1. Although not part of producing a proba-

bilistic forecast, the same modular approach used for the probabilistic forecast system can be used

to implement the verification of the forecasts. We again define an interface for verification that takes

as input a probabilistic forecast and a corresponding observation, and outputs a verification score.

The verification scheme can rely on the probabilistic forecast providing a CDF, PDF, and inverse

CDF. If desired, an adaptive verification can be utilized that does not require the saving of a large

array of past historical values, although we did not do this for our casestudy.

A side-effect of restricting the verification component to only take as inputthe forecast and

corresponding observation, and not any information about the strategytaken by to produce the

probabilistic forecast, is that all scores will be in accordance with Dawid’sprequential principle

(Dawid, 1984).

4.4 Case study

4.4.1 Data set

The goal of this section is to show how the proposed system can be used to gain insight into which

combination of components provide the best probabilistic forecasts of surface weather. We tested

the system on two ensemble prediction systems (EPS). Medium-range forecasts from the North

American Ensemble Forecast System (NAEFS; Toth et al., 2006) were used for 24-h minimum

temperature (MINT), 24-h maximum temperature (MAXT), and total 24-h precipitation (PCP). We

used 42 members of the NAEFS ensemble: 21 members produced by the U.S. National Weather

Service and 21 members produced by the Meteorological Service of Canada. Two of these members

were control runs. MINT was taken from the 12UTC model output and MAXT was from 00UTC,
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corresponding to night and day times in the domain of interest. PCP was computed by the total

precipitation accumulation from 00UTC to 00UTC the next day. Data from 1 Sep 2010 to 31 Aug

2011 were used, with lead times between 1 and 15 days.

The UBC short-range ensemble forecasts (UBC-SREF) were also tested. This 20-member

multi-model, multi-resolution ensemble consists of hourly forecasts from four NWP models includ-

ing the Mesoscale Compressible Community (MC2; Benoit et al., 1997) model, thePenn State/N-

CAR Mesoscale Model (MM5; Grell et al., 1994), and versions 2 and 3 of the Weather Research and

Forecasting (WRF; Skamarock et al., 2005) model. All models used initializations from the North

American mesoscale (NAM) model and in addition the global forecast system(GFS) was used to

initialize a second run of WRF version 2. Horizontal grid spacing ranging from 108-km to 1.3-km

were used. The models were initialized once per day at 0000 UTC. We looked at hourly surface

temperatures (THOUR) with lead-times up to 60 hours for the time period from 1 Jan. 2009 to 31

Dec. 2010. The first 10 forecast hours for this variable were discarded as this was generally the

time required for the forecasts to complete after model initialization.

A large number of configurations of components were tested, as summarizedin Table 4.1. These

were based on schemes that were appropriate for each variable. The configurations used for the

climatological baseline forecasts are summarized in Table 4.2.

Observations from 15 stations located in southern British Columbia, Canada (Figure 4.3) were

used to train and evaluate the proposed probabilistic system. Probabilistic forecasts were con-

structed for each of the configurations of components, and were computed separately for each

station and forecast offset. An example probabilistic forecast for THOUR as it passes through

the components of the system is shown in Figure 4.4.

In the next subsections, we highlight how each component contributes to overall forecast quality.

4.4.2 Comparison of uncertainty models

We first look at how the choice of uncertainty model affects the overall quality of the resulting

probabilistic forecasts. We found that this was dependent on which ensemble system used. What

worked with one EPS did not necessarily work with the other.

For the temperature variables of the NAEFS ensemble (i.e. MINT and MAXT),the ensemble

spread was found to be a useful variable in determining uncertainty. As seen in Figure 4.5a,c,

the full-spread regression model [Eq. (4.16)] gave ignorance scores that were better than using a

constant spread model [Eq. (4.14)]. This was especially true for lead-times greater than day5. This

model remained skillful (i.e. beating climatology) 3 days longer for MINT and 2days longer for

MAXT.

To determine the cause of this, we show ignorance scores as a function ofthe error of the median
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of the forecast distribution (Figure 4.6a,c). The improvements in ignorancescore arise due to poorer

ignorance scores for forecasts with large errors. This is because thefull-spread regression model

is able to discriminate between days with low and high uncertainty. The lowest possible ignorance

score for a Gaussian distribution with a fixed absolute error is one where the standard deviation

matches the absolute error (dashed lines). The performance of the full-spread regression model is

much closer to this minimum than the constant spread model.

The same corresponding improvement is much less evident in the CRPS (Figure 4.5b,d and

Figure 4.6b,d). This is because CRPS is not sensitive to small probability values in the tails of the

distribution. The difference of integratingF (x) values of0.001 or 0.01 is negligible [Eq. (4.2)].

However, the difference between ignorance scores forf(x) values that are different by a factor

of two is much larger. In fact, CRPS does not greatly penalize the occurrence of events deemed

impossible by the forecast, whereas this would result in an infinitely large ignorance score. Accurate

probability estimates in the tails of the distribution are important to users adverse toextreme weather

conditions, and we therefore focus more on the conclusions provided bythe ignorance score.

The ensemble spread model [Eq. (4.15)] proved to be less useful for lead-times of less than

5 days when evaluated by the ignorance score. However, for longer lead-times, the performance

matched that of the full regression. This is likely because the ensemble spread has no skill as an

uncertainty predictor for short lead times because an artificial spread is often imposed to create the

initial ensemble states. This model then incorrectly responds to a noisy signal.

For THOUR, the full-spread regression model did not lead to any gains over the constant spread

model (Figure 4.5e,f and Figure 4.6e,f). There are two possible explanations for this: 1) the UBC-

SREF is a short-range system and ensemble spread is less useful at these lead-times, which also

was the case for the NAEFS ensemble. 2) The UBC-SREF is a multi-model and multi-resolution

ensemble, thereby being more heterogeneous than NAEFS, which only hastwo models each of

which have constant grid resolution. This may mean that the spread-skill relationship of the UBC-

SREF cannot be captured by a simple linear relationship.

The choice of discrete uncertainty model had an effect on PCP (Figure 4.5g,h). The full logis-

tic regression model [Eq. (4.20)] performed best, however the ensemblemean model [Eq. (4.18)]

performed only slightly worse. These two models outperformed the ensemble fraction model

[Eq. (4.19)] mainly because of their ability to differentiate days with extreme precipitation events

(Figure 4.7). These results suggest that the ensemble mean of precipitationwas the strongest predic-

tor of P and that the fraction of ensemble members predicting the non-occurrence of precipitation

was less significant.

Another overall finding is that precipitation-probability forecasts are skillful out to only 5 to 6

day lead time, while temperature-probability forecasts are skillful out to 11 to 12 day lead times, for
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these stations in mountainous western Canada.

4.4.3 Effect of correction and calibration

Temperature variables

We found that for the three temperature variables, applying a correction method significantly re-

duced the ignorance score (Figure 4.8) and CRPS (Figure 4.9) of the resulting probabilistic fore-

casts. The effect was investigated by running a configuration with different correction schemes for

particular uncertainty models without using calibration and updating. For NAEFS (i.e. for MINT

and MAXT), whether a common bias term [Eq. (4.10)] or a member-specific term [Eq. (4.11)]

was used made little difference. This was also true for THOUR for the constant spread model

[Eq. (4.15)], since a common and member-specific correction will give identical results, as the

ensemble mean of the corrected predictors are identical in both cases. However, the choice of cor-

rection method did influence the performance of the two ensemble spread based methods [Eq. (4.15)

and Eq. (4.16)], as seen in Figure 4.8h,i. This is likely due to the fact that each NWP model and grid

resolution in the UBC-SREF has different biases. The member-specific correction method affected

the ensemble spread in a way that benefited the full regression model [Eq.(4.16)], but caused lower

performance for the ensemble spread model [Eq. (4.15)] when compared to the ensemble mean

correction method.

We generally found that using a Gaussian model for temperature produced calibrated or near-

calibrated forecasts provided the input predictors were corrected. However, for some stations, the

PIT-histogram indicated skewness. This is an effect that cannot be corrected by increasing or de-

creasing the spread of the probability model, but rather is evidence that a Gaussian distribution is

not a perfect fit. Calibration can correct for this distributional bias.

To investigate the effect of correction and calibration, we use the PIT-based decomposition of

the ignorance score (Chapter 2). The ignorance score can be decomposed into an uncalibration

component IGNuncal and a base potential ignorance component IGNpot:

IGN = IGNpot + IGNuncal. (4.44)

IGNpot is the lowest ignorance score possible if all calibration deficiencies are removed and IGNuncal

represents the added ignorance score due to deviations from a calibrated (i.e. flat) PIT-histogram.

We used PIT-histograms with 10 equally sizes bins to compute the decomposition.

The effect of correction and calibration schemes on the components of ignorance can be shown

schematically as in Figure 4.10. Two sample stations requiring calibration (panels a and b) and two
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stations that do not (panels c and d) are shown. The forecasts without correction and calibration

have high ignorance scores due to high values of IGNuncal. The correction component removes

most of IGNuncal, as the correction centres the Gaussian distribution properly by removing bias.

This is seen by the improvement moving along lines of constant potential ignorance, approaching

the calibration deviation expected by a perfectly calibrated forecast. SincePIT-histograms are based

on a limited sample of PIT values, even a perfectly calibrated set of forecasts is expected to have

some small amount of calibration deviation. This amount is indicated by the gray vertical lines in

Figure 4.10.

For YXJ and YXS, the correction did not remove all of IGNuncal because it could not correct

for skewness, as seen by the characteristic deviations in the PIT-histogram (Figure 4.10e-f). The

calibration component completes the improvement. As noted in Chapter 2, calibrating models that

are already nearly calibrated increases ignorance very slightly due to overfitting, which is seen for

stations COQ and YVR. The corresponding PIT-histograms become flatter (i.e. better) after each

type of correction.

Precipitation

For PCP, the rounding correction method [Eq. (4.12)] affects the logistic regression part of the uncer-

tainty model, since it changes the number of predictors that forecast no precipitation. The correction

had a favourable effect on the ensemble fraction discrete model [Eq. (4.19)] in both ignorance scores

and CRPS, but a much smaller effect on the full regression [Eq. (4.20)]and ensemble mean models

[Eq. (4.18)], as seen in Figure 4.8j-l and Figure 4.9j-l. The correction allowed the ensemble fraction

model to better resolve cases of high probability of precipitation from caseswith low probability.

Despite correction, the gamma model defined by Eq. (4.27) and Eq. (4.28),created forecasts

with slight calibration deficiencies, regardless of the discrete model used (Figure 4.11). The non-

flat PIT-histograms (Figure 4.11d-f) suggest that this model places too much confidence in lower

precipitation values and too little in higher values. To alleviate this problem, a bettergamma model

could be devised using a different set of parameters, or the calibration method could be applied. The

calibration method removed the remaining calibration deviation.

The ignorance decomposition also confirms that the correction improved the resolving abili-

ties of the ensemble fraction model as the improvement in the ignorance score came solely from

improved potential ignorance and not from reduced calibration deviation (Figure 4.11c).
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4.4.4 Updating

As the observation reporting frequency of the UBC-SREF is higher than the frequency of NWP

model initialization, statistical data assimilation of recent observations could be used to improve the

THOUR forecasts (Figure 4.12). On an ignorance decomposition diagram,the updating improves

the potential ignorance while remaining calibrated. It is interesting to note that even after applying

the updating method, the ensemble spread model [Eq. (4.15)] still producedworse ignorance scores

than the two other Gaussian models [Eq. (4.14) and Eq. (4.16)].

4.5 Conclusions

We have presented a system for creating and improving probabilistic forecasts. The modular sys-

tem separates the major aspect of probabilistic forecast generation allowing research efforts to be

focused into independent areas. The system is extendible such that newprobabilistic forecasting

models and methods can easily be added without affecting the rest of the system.

Each component serves a specific purpose to help improve forecast metrics. The correction

and calibration schemes reduced the calibration component of ignorance,whereas better predictors,

uncertainty models, and update schemes reduce potential ignorance. Theimplemented schemes are

all adaptive, which is efficient for operational daily forecasts.

We anticipate that further improvements are possible by including more advanced correction

schemes such as MOS, neural networks, analog methods, and genetic schemes, and more advanced

uncertainty models such BMA. Also, other parameter estimation techniques commonly used for

probabilistic weather forecasts such as expectation maximization (Dempster etal., 1977; Raftery

et al., 2005), or CRPS minimization (Gneiting et al., 2005) could be incorporated.

In addition, the decomposition used in this study uses four components, however there are likely

other components that could be added. As an example, a selection component could be added

between predictors and corrector, which serves to select a set of the ensemble predictors (see for

example Garaud and Mallet, 2011). This way, potentially low-quality ensemble members can be

removed before the next stage, potentially resulting in better probabilistic forecasts.
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Figure 4.1: Schematic diagram of the components of the forecasting system. Input and outputs
are shown by mathematical symbols and a delay in signals reaching componentsare
shown by circles. Namely, parameter values used in the current time step arecalculated
using observations and predictors from the previous step.

Figure 4.2: Inheritance hierarchy of the implemented schemes in the system as illustrated for
our case study. Instantiable classes are shown in white and abstract classes (i.e. not
instantiable) are shown in gray.
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Figure 4.3: Case study observation stations in Southern British Columbia, Canada with their
corresponding station code. Station codes starting with “Y” are for airport weather sta-
tions with ICAO designations that imply a prefixed “C” (e.g., YVR = CYVR = Vancouver
International Airport). Station codes not starting with “Y” are operated byBC Hydro.
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Figure 4.4: The state of the forecasts after passing different stages in the system for hourly
temperature for station YXS (Prince George) for the forecast runs initialized on 00 UTC
Jul 1, 2010. Ensemble members (dots), probabilistic forecasts for cumulative probabili-
ties10% to 90% with 10% increments (solid lines), and verifying observations (squares)
are shown. a) Raw predictors; b) After the member-specific correction has been applied
to the predictors; c) Forecast in probabilistic form after the constant spread uncertainty
model has been applied; d) After calibration has been applied; e) After updating the
forecast with the observation from 18 UTC Dec 31, 2010 (circled square).
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Figure 4.5: Overall verification scores for the forecast variables in the case study. Each row
shows the scores for a particular variable, and each column shows a different a verifi-
cation statistic. Scores for different uncertainty models are shown using rounding cor-
rection for PCP and member specific correction for temperature variables,except for
THOUR Ensemble spread, which uses ensemble average correction. ThePIT-based cal-
ibration scheme and no updating scheme were used. Smaller scores are better.
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Figure 4.6: Ignorance and CRPS as a function of the absolute error of the median of the prob-
ability distributions. Each row represents one forecast variable and each column repre-
sents one verification statistic. For MINT and MAXT, averages for day 6-10 (circles) and
day 11-15 (diamonds) are shown. For THOUR, averages over forecast hours 10-60 (cir-
cles) are shown. Smaller scores are better. Member-specific correctionbut no calibration
and update scheme were used.
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Figure 4.7: Similar to Figure 4.6 but for PCP and for the ignorance and Brier scores with
thresholds of0 mm. Smaller scores are better. Rounding correction but no calibration
and update scheme were applied.
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Figure 4.8: The effect of correction methods on the ignorance score of differentvariables (each
row) and different uncertainty models (each column). No calibration and update schemes
were used. For figures where the mean bias (solid line) is not visible, it coincides with
the line for member bias. Smaller scores are better.
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Figure 4.9: Similar to Figure 4.8 but for CRPS.
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Figure 4.10: a-d) Ignorance decomposition graph for 4 stations for 24-h minimum tempera-
ture. Ignorance scores (IGN) and ignorance due to calibration deviation (IGNuncal) is
shown for the forecasts with different schemes enabled for the Constant spread uncer-
tainty model. Each line represents a different lead-time, with short lead-times generally
having lower ignorance scores. The expected calibration deviation of perfectly cal-
ibrated forecasts are shown by vertical gray lines. Diagonal lines represent lines of
constant potential ignorance (IGNpot). Corr refers to the Member specific correction
technique. Smaller IGN and IGNuncal values are better. e-h) PIT-histograms for the
raw (black), corrected (gray), and corrected/calibrated (white) areshown. YXJ= Fort
St. John, BC; YXS= Prince George, BC; COQ= Coquitlam, BC; YVR= Vancouver.
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Figure 4.11: Similar to Figure 4.10 but for 24-h accumulated precipitation. Three discrete
uncertainty models are shown: a) Ensemble mean, b) full-spread regression, and c)
ensemble fraction. The gamma model was used for the continuous uncertaintymodel.
The points are averages over all 15 stations and each line represents a different lead-
time, with short lead-times generally having lower ignorance scores.
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Figure 4.12: Similar to Figure 4.10 but for THOUR. Three uncertainty models are shown: a)
Constant spread, b) Full regression, c) and Ensemble spread. The points have been
averaged over all 15 stations and over forecast offsets 10h-60h. Smaller ignorance and
calibration deviation are better.
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Component THOUR MINT MAXT PCP

Predictors UBC-SREF NAEFS NAEFS NAEFS

Correction Ensemble average Ensemble average Ensemble average Rounding
Member specific Member specific Member specific

Continuous Ensemble spread Ensemble spread Ensemble spread Gamma (ML)
Uncertainty Constant spread Constant spread Constant spread

Full regression Full regression Full regression

Discrete Ensemble mean
Uncertainty Ensemble fraction

Full regression

Calibration PIT-based PIT-based PIT-based PIT-based

Updating PIT-based

Table 4.1: Combinations of schemes from Figure 4.2 used in the case study for hourly tem-
perature (THOUR), 24-h minimum temperature (MINT), 24-h maximum temperature
(MAXT), and 24-h accumulated precipitation (PCP). ML = Maximum likelihood.

Component THOUR MINT MAXT PCP

Predictors Climatology Climatology Climatology Climatology

Correction

Continuous Ensemble spread Ensemble spread Ensemble spread Gamma (MM)
Uncertainty

Discrete Empirical ens. frac.
Uncertainty

Calibration

Updating

Table 4.2: Similar to Table 4.1, but for climatological baseline forecasts. MM = Method of
moments.
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Chapter 5

Conclusions

The goal of this dissertation was to improve probabilistic forecasts for operational use. This has been

achieved through the development of new methods and approaches to probabilistic forecasting.

5.1 Summary of methods and procedures

The dissertation proposed a four-stage decomposition process for generating probabilistic weather

forecasts, as was presented in Chapter 4. This decomposition contains thefollowing components: 1)

correction; 2) uncertainty model; 3) calibration; and 4) updating. This allows research to be focused

into specific areas, each of which help improve the overall quality of the resulting probabilistic

forecast.

The decomposition was implemented in a probabilistic forecasting system using anobject-

oriented software strategy. This strategy insulates a developer of a particular scheme from the im-

plementation details of the other components, and also allows for the interchangeability of schemes.

The decomposition resulted in the development of a number of other new methods:

• A new calibration method for probabilistic forecasts was presented in Chapter 2. This method

takes as input a full probability distribution, and removes any distributional bias the distri-

bution may have. The calibration is based on the distribution of past verifyingprobability

integral transform (PIT) values.

• A new statistical updating scheme for probabilistic forecasts that incorporates recently made

observations was presented in Chapter 3. The method improves probabilisticforecasts in the

short-term by relying on verifying PIT values being correlated in time. The method mod-

els the sequence of PIT values as a first-order Markov process, using a reflected Gaussian

transition function.

• A new decomposition of the ignorance score was presented in Eq. (2.27).This decomposition

separates the ignorance score into a component related to the amount of distributional bias and

a remaining component related to the base resolving ability of the forecast. The ignorance

91



Chapter 5: Conclusions

decomposition identifies how a certain statistical method affects the overall ignorance score,

as shown in Chapter 4.

5.2 Summary of findings

A number of findings were made from the evaluation of the probabilistic forecast system and its

components:

• The schemes that work well for one set of input predictors did not necessarily work well for

another. The performance of various methods depended in part on howthe ensemble of inputs

was constructed.

– For temperature forecasts, the spread of an ensemble of predictors wasfound to be a

useful predictor of forecast uncertainty in the medium-range. This was seen for days 6-

15 for the North American Ensemble Forecasting System (NAEFS). Using theensemble

spread produced lower ignorance scores than using a constant spread mainly due to

lower ignorance scores for events with large forecast errors.

– For temperature forecasts in the short-term, little or no improvement was seen when us-

ing the ensemble spread. The effect was weak for days 1-5 for the NAEFS ensemble and

non-existent for all forecast offsets for the University of British Columbia short-range

ensemble forecasts (UBC-SREF). For the 48-h forecasts from the reforecast dataset

(Chapter 2), Bayesian model averaging (BMA), which accounts for spread-skill rela-

tionships, did not provide any benefit over a constant spread model suggesting again

that for the short-term the disagreement between members did not provide any skill in

predicting uncertainty.

– For the NAEFS precipitation forecasts, the strongest factor for determining probability

of precipitation was the ensemble mean. A small overall improvement was foundwhen

the fraction of ensemble members forecasting the non-occurrence of precipitation was

also included.

– The binned probability ensemble technique generally produced probability forecasts

with high ignorance scores (Section 2.6.2). This was attributed to the nature inwhich

the method distributes probability mass between consecutive ensemble members and

also due to its assumption of a perfect spread-skill relationship (Figure 2.10).

• Gaussian distributions (used for either the method of moments or BMA) generally produced

calibrated forecasts for temperature variables. When Gaussian distributions were used in
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cases where a skewed distribution was more appropriate, the calibration method improved

the resulting forecast (Section 2.6.1).

• The correlation in time of PIT values is strong enough that it can be exploited toproduce im-

proved probabilistic forecasts for surface temperature in the short-term(Chapter 3). Modeling

PIT values as a first-order Markov process resulted in improved ignorance scores, continu-

ous ranked probability scores (CRPS), and mean absolute error, and did not further degrade

reliability (Section 3.4).

• The CRPS and ignorance score will in some cases yield different conclusions about which

probabilistic methods are best. This is due to their different treatment of probabilities in

the tail of the forecast distribution (Chapter 4). For example, when the ensemble spread was

found to be a useful predictor of uncertainty by evaluating with the ignorance score, the utility

was found to be much lower when evaluated by the CRPS.

5.3 Potential applications

Parts of the probabilistic forecasting system presented are currently used in real-time by the Weather

Forecast Research Team at UBC. Products in the form of cumulative probability plots are being used

by BC Hydro to aid in medium-range planning of weather-affected activities.

The system presented here could be used by any forecasting centre interested in improved prob-

abilistic forecasts. It allows centres to further implement new methods and determine what combi-

nations of methods yield the highest quality probabilistic forecasts. These improved forecasts can

form the basis for better decision making by any business, organization, or individual with weather-

affected operations.

5.4 Limitations and recommendations for further work

I have analysed the performance of a small set of relatively simple methods within the proposed

system. Although more advanced methods, such as BMA, was tested within the context of calibra-

tion in Chapter 2, it was not tested within the framework of the proposed system. It would be of

great interest if such methods were added to the system, especially for evaluating the performance

of medium-range forecasts, where spread-skill relationship may be stronger.

Also, the evaluation of more advanced correction schemes such as model output statistics,

Kalman filtering, neural networks, analog methods, and gene-expression programming would be

beneficial, provided adaptive parameter estimation algorithms can be devisedfor these methods.
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The system itself could also be extended in many ways. Firstly, the decomposition used in

this dissertation uses four components. There are likely other components that can be added to

this decomposition. As an example, a selection component could be added between predictors and

corrector, which serves to select a set of the ensemble predictors. Thisway, potentially low-quality

ensemble members can be removed before the next stage, potentially resultingin better probabilistic

forecasts.

Secondly, the system treats each forecast location independently. An alternative is to pool pa-

rameters between stations for potentially more robust results (see for example Raftery et al., 2005).

This affects only the parameter estimation part of the system and does not affect the decomposition

itself.

Thirdly, some applications require joint probability distributions. An example is winter road

maintenance (Berrocal et al., 2010) where the joint distribution of precipitation and temperature

is required. These forecasts consider multiple variables, which is currently not considered by the

decomposition. A solution to this would be relax the output requirement of the uncertainty model,

thereby requiring multivariate calibration and update methods.

Lastly, for computational efficiency, an adaptive approach was used toupdate the parameters

of the schemes. This may limit which candidate schemes can be implemented, since itmay be

difficult to cast the parameter estimation part of a scheme into adaptive form. Asolution to this

would be to sacrifice computational efficiency by allowing methods to retrieve large sets of historical

performance statistics.

The main limitation of the calibration method presented in Chapter 2 is the slight increase

in ignorance score seen when the input probability distributions are already calibrated, or nearly

calibrated. This was attributed to overfitting, as the calibration method attempts to calibrate based

on a noisy distribution of verifying PIT values. Even perfectly calibrated forecasts are expected to

exhibit some noise in the distribution of PIT values due to sampling errors. Smoothing was applied

to the PIT values to reduce noise, but overfitting still occurred.

One solution to this problem is to use a method that detects when a set of forecasts are already

nearly calibrated. When the uniformity of past PIT values are above a certain level, the calibration

method would not attempt to calibrate, but instead would use the original probability distribution.

Thus, calibration would only be attempted for variables that exhibit sufficient distributional bias.

This could vary from stations to station, or even from season to season.

The updating method of Chapter 3 was found to work well for temperature variables, as a

Gaussian distribution described the PIT transitions well. However, such a transition function may

be inappropriate for other variables, in particular precipitation. Precipitation changes much more

abruptly and irregularly than temperature and may therefore require an alternative model.
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One solution to this would be to investigate other, more complex transition functions. Another

improvement could result from the use of a higher-order Markov model. Instead of only using the

most recent verifying PIT value, the method could use several recent PIT values.
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