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Abstract

Abstract

This dissertation presents a probabilistic weather prediction system foatap®l (real-time) us-
age. The proposed system provides complete probability distributiongfordontinuous weather
variables, such as temperature, and mixed discrete-continuous vatikblpgecipitation accumu-
lations.

The proposed system decomposes the process of generating proiodbilecasts into a series
of sequential steps, each of which is important in the overall goal ofigiray probabilistic fore-
casts of high quality. Starting with an ensemble of input predictors gendsgitedmerical weather
prediction models, the system uses the following four components: 1)ctiome 2) uncertainty
modeling; 3) calibration; and 4) updating. The correction componentduagcts the input predic-
tors. The uncertainty model converts these predictors into a suitablelpligbéistribution. The
calibration component improves this distribution by removing any distributioral. bThe update
component further improves the forecast by incorporating recently rabdervations of the true
state.

The system is designed to be modular. Namely, different implementations loteagonent
can be used interchangeably with any combination of implementations for thecatin@onents.
This allows future research into probabilistic forecasting to be focusezhgrone component and
also allows new methods to be easily incorporated into the system.

The system uses a number of existing correction and uncertainty modelkebdissertation
also presents two new methods: Firstly, a new method for calibrating prolhatfitisecasts is cre-
ated. This method is shown to improve probabilistic forecasts that exhibit distrital bias. Sec-
ondly, a new method for incorporating recently made observations to exgibgbilistic forecasts
is developed.

The system and its components are tested using meteorological data froromadgional runs
of ensemble numerical weather prediction models and their verifying cdsemg from surface
weather stations in North America. Each component’s contribution to ovenatést quality is
analysed.
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Preface

With the exception of the introductory and concluding chapters, this disiseria composed en-
tirely of work from the following two published and one submitted journal maripts. The ma-
terial in these articles have been reformatted to conform to the dissertatioatfog requirements.
A small number of editing changes have also been made, but the contergnsisthunaltered.

Chapter 2

T. N. Nipen and R. Stull. Calibrating probabilistic forecasts from an NWReetde. Tellus
63:858-875, 2011. Copyright 2011 Swedish Geophysical Society, eoliby Blackwell Pub-
lishing.

The need for calibrating probabilistic forecasts was identified by Dr. Studl,the project was
collaboratively designed by T. N. Nipen and Dr. Stull. T. N. Nipen conedthe research, analysed
the results, and wrote the original journal manuscript, with editing provigedrb Stull. Research
funding for T. N. Nipen was provided by Dr. Stull.

The work in this paper started as an extension to T. N. Nipen’'s undergi@adhonours thesis
titled “A percentile calibration method for probabilistic weather forecasts”weler, the method
used and its evaluation differ substantially from the original work.

Chapter 3

T. N. Nipen, G. West, and R. Stull. Updating short-term probabilistic wedtitecasts of contin-
uous variables using recent observatioli¢dea. Forecasting24:564-571, 2011. Copyright 2011
American Meteorological Society.

T. N. Nipen identified the need for updating probabilistic forecasts, asijded the research
project with input from Dr. West. T. N. Nipen conducted the researnhlysed the research data,
and wrote the manuscript for publication, with editing provided by Dr. StudiBn West. Research
funding for T. N. Nipen and Dr. West was provided by Dr. Stull.

Chapter 4

T. N. Nipen and R. Stull. A modular operational probabilistic weather fateg system. Submit-
ted for publication on 20. Feb 2012.
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The co-author contributions were as follows: T. N. Nipen identified thelfieethis research
topic, with input from Dr. Stull. T. N. Nipen designed and conducted thears, analysed the
research data, and wrote the manuscript for publication, with editing prd\agl Dr. Stull. Research
funding for T. N. Nipen was provided by Dr. Stull.
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Chapter 1

Introduction

1.1 The need for probabilistic forecasts

Weather forecasts are typically stated in deterministic form. That is, fdseass given by a single
value representing the forecaster or model’s best estimate of the weatherfuture. An example
is “the overnight low temperature for tonight will k& C” (Figure 1.1).

However, no estimate is complete without an estimate of its error (Hirschbakg2011). Even
after removing known systematic biases, deterministic forecasts are ramédcty accurate. The
accuracy of a deterministic weather forecast depends greatly ondaztoh as forecast lead-time,
location, season, and the availability of a dense observing networkynéambexample, the forecast
error of modern numerical weather prediction (NWP) models generallyasas with increasing
lead-time to the point where the forecast no longer provides better guidhaoeclimatological
values (Figure 1.2).

Indicating the amount of forecast uncertainty is therefore important sirgreatly affects the
end user’s confidence in, for example, the occurrence or norderae of freezing temperatures
in Figure 1.1. Forecast uncertainty can be expressed by a probabilitipdi®n, which (unlike a
deterministic forecast) indicates the likelihood of occurrence of each tetnperalue.

For example, suppose an orchard owner learns the low is forecasted! tCbovernight. The
owner might take no precautions, but could lose $200,000 in ruined frtheiforecast is wrong
and the low is actually-1°C. But suppose the owner could spend $2,000 running orchard fans,
smudge pots, or water sprays to prevent damage to the fruit crop. Sheulaier spend the
$2,000 in preventative costs, knowing that there is a large chance thiivthiemperature will
remain above freezing, but a small non-zero chance that the tempecatudebe below freezing?
This is the motivation for probability forecasts, which would allow the orctwavder to make cost-
loss decisions (Murphy, 1977; Richardson, 2000) that minimize hemeljuees over the course of
many possible freeze events.

The move towards providing weather forecasts in probabilistic form is rseddoy the Amer-
ican Meteorological Society (AMS, 2008), and the potential value thaetfeecasts can provide
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has been well documented (Richardson, 2000; Palmer, 2000; Zhu29@g). In fact, probabilistic
weather forecasts have been applied in a wide variety of applicationsasutydroelectric power
management (McCollor and Stull, 2008b), road maintenance application®¢Beet al., 2010),
and visibility at airports (Chmielecki and Raftery, 2010).

This dissertation focuses on improving probabilistic forecasts that aedbas the output of
NWP model runs.

1.2 Current probabilistic forecasting practices

In this section the current methods and approaches to probabilistic $tiregare reviewed, with a
focus on the use of statistical methods.

1.2.1 Statistical post-processing

It is important to note the distinction between physical and statistical reseancbteorology. Im-

provements in NWP forecasts typically result from research at two frafitgsical and statistical.
Physical improvements are due to the development of physics-based rtuatetsetter describe
how the atmosphere behaves. Statistical methods, which is the focus of segalion, improve
forecasts by recognizing statistical relationships between forecastshaedvations.

NWP models frequently exhibit biases due to the limited resolution of the disategjrid,
systematic errors in initialization and boundary conditions, or problems withliisigal parame-
terizations used (Eckel and Mass, 2005). Models are often foundhibiegystematic biases for
certain locations or under certain weather conditions. For example, ineastady of forecasting
for the 2002 Winter Olympics, Hart et al. (2004) found that surface teatpees were consistently
overpredicted during cold-pool events, due to the model’s difficulty in sitmgadhe strength of the
cold pools. Also, in mountainous terrain, the elevation of the observing statyrbe significantly
different than the modeled (smoothed) terrain height, resulting in sutéamperature biases.

These and other model biases can be corrected by employing statisticplposssing methods
such as model output statistics (MOS; Glahn and Lowry, 1972), Kalmarirfidt@domleid, 1995),
neural networks (Yuval and Hsieh, 2002; Marzban, 2003), anadethods (Delle Monache et al.,
2011), and gene-expression programming (Bakhshaii and Stull, 2008se methods improve
forecasts by removing the systematic error based on historical compabsbween forecasts and
observations.
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1.2.2 Ensemble forecasting

NWP models stray from reality due to the limited resolving ability of the model (digext@on er-
ror), errors in the initialization and boundary conditions, and error in thesjgs parameterizations
used. To specify forecast uncertainty one must account for theses.erFor simple dynamical
systems, a specified error distribution can explicitly be evolved forward in liynde continuity
equation for probabilities (Liouville equation; Ehrendorfer, 1994) giesmple by using the stochas-
tic dynamic prediction approach of Epstein (1969).

However, evolving forward such a distribution is computationally prohibfiivean NWP model
with millions of variables, and therefore ensemble methods (Leith, 1974)sackinstead. Ensem-
ble forecasting samples the error distribution by using a finite number ofrdsisenembers and
then evolves each of them forward in time. If the ensemble members are safmptethe true
probability density function (PDF) of the error distribution, then each memd@esents an equally
likely evolution of the atmosphere. Provided also that enough ensemble nweareeused, the
spread (or disagreement) among the members is indicative of the uncertain¢yforecast.

Ensembles of NWP-model runs are typically created by perturbing initiaditons (Molteni
and Palmer, 1993; Toth and Kalnay, 1993), using several model ritinglifferent model physics
(Krishnamurti et al., 1999), or some combination of both. Due to the chadticenaf the atmo-
sphere (Lorenz, 1963), these initially similar ensemble members eventuatgdiaver time.

To get probability information from the ensemble, the binned probability enke{BBFE) tech-
nique (Anderson, 1996) is often used (see for example Hamill and Gpl828). When ensemble
members are assumed to be a random sample from the same distribution asfyirev@nserva-
tion, the cumulative probability for a given threshold can be determined biyabgon of ensemble
members that are below this threshold.

Ensemble forecasts often suffer from two major problems. Firstly, enssraldeoften found to
be underdispersive (Hamill and Colucci, 1998; Buizza et al., 20083eRadét al., 2005). That is, the
observation verifies outside the ensemble range more often than woulgéetes of an ensemble
that samples the error distribution perfectly. Secondly, correctly sampliagetior distribution
implies the existence of a spread-skill relationship. That is, the spreae @ntbemble should be
related to the accuracy (or skill) of the mean of the ensemble. Howeverathe of the ensemble
spread as a predictor of forecast skill has been mixed, with some stindiedng little or no value
(Hamill and Colucci, 1998; Stensrud et al., 1999) and others showing galone (Grimit and Mass,
2002; Stensrud and Yussouf, 2003; Scherrer et al., 2004).
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1.2.3 Probabilistic methods

These deficiencies of ensembles have led to the development of statisticaldmétiat do not
require the ensemble members to sample the true PDF of errors. Instelabifity distributions
(such as a Gaussian distribution) are used, where the parameterseoflisteibutions are adjusted
based on empirical relationships found between various attributes of skeendte and the verifying
observations.

Ensemble MOS methods (EMOS; Gneiting et al., 2005) or moment-based mefleodsof
et al., 2005) fit Gaussian distributions by performing linear regressiamgpirical moments of the
error of the ensemble mean. These methods can account for undesaispa overdispersion of
the ensemble by adjusting the variance of the Gaussian distribution. Theyswaaccount for the
strength of the spread-skill relationship, by using the coefficients fdtord regression between
ensemble variance and ensemble mean error.

Another popular method is Bayesian model averaging (BMA; Hoeting et &9)19vhich has
been introduced in the weather prediction field by Raftery et al. (2008)A Hts weighted distri-
butions to each ensemble member and combine these via Bayes theorem tddtahdistribution
(see Figure 1.3). BMA has been used successfully to produce plisbalforecasts for a variety of
meteorological variables such as sea-level pressure (Raftery ed@h),2recipitation (Sloughter
et al., 2007), surface temperature (Wilson et al., 2007), and recenthilitys(Chmielecki and
Raftery, 2010).

Just like the deterministic post-processing methods of Section 1.2.1, thésditisiic methods
improve forecasts through statistical means, as opposed to through idgioysical modeling.

1.2.4 Evaluating probabilistic forecasts

To evaluate probabilistic forecasts, the correspondence betweam$tseand observations are in-
vestigated. A large variety of metrics are available, but for probabilistiedasts, two commonly
used metrics include the ignorance score (Good, 1952; Roulston and 20M®) and the con-
tinuous ranked probability score (CRPS; Hersbach, 2000). Thedguerscore uses the negative
logarithm of the PDF corresponding to the observation (Figure 1.4a) anelftiie rewards forecasts
that place high probability density at the value of the observation. The GR$#Bsitive to the area
under the curve in Figure 1.4b, and rewards forecasts that are @tarpw) and are centred near
the observation.

The PIT-histogram (Gneiting et al., 2005) is another commonly used toos&sashe quality of
probabilistic forecasts, which looks at the statistical consistency betwesrseists and observations.
The probability integral transform (PIT) value is the cumulative probabildyresponding to the
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observation (Figure 1.4c). A flat PIT-histogram is indicative of evemdyrithuted PIT values and is
a desired attribute referred to as calibration (or reliability). These thredanetill be heavily used
to evaluate the probabilistic forecasts in this dissertation.

1.3 Dissertation contributions

The overall goal of this dissertation is to improve probabilistic weather &stsahrough the use of
statistical methods. To achieve this, new methods are developed and edaltase contributions
are discussed in more detail next.

1.3.1 Probabilistic calibration

The first contribution of this dissertation is a new calibration scheme presan@hapter 2.

Calibration refers to the statistical consistency between forecast plitibaland observations.
For example, if a set of events are predicted to ha6% probability of occurrence an20% of
observations confirm the occurrence of the event, the forecastaidrdecalibrated Calibrated
probabilities are essential for making informed, risk-based decisions.

For ensemble forecasts, calibration refers to the case when an equia¢naf observations fall
between each pair of consecutive ensemble members. As ensembles tygrieallyderdispersed,
probabilities produced by the BPE technique (as was described in Secti@hdaf be calibrated
by the weighted ranks (WR) method (Hamill and Colucci, 1998; Eckel anitey§a1998), where
probabilities are adjusted based on the rank histogram (Anderson, Ta@@rand et al., 1997).
Calibration can also be achieved by altering the ensemble members, instétadiod she resulting
probabilities (Hamill and Whitaker, 2006; Hopson and Webster, 2010).

Raftery et al. (2005) suggested using BMA as a calibration method fa@rdigphersed forecasts.
The variance of the BMA forecast is greater than the variance of thengnle because, in addition
to the between-forecast variance provided by the spread of ensembiberee BMA includes a
within-forecast variance term in its formulation for each individual endemtember (Raftery et al.,
2005).

The aforementioned calibration methods operate on a set of ensemble mefbevscalibra-
tion method is devised in Chapter 2 that instead operates on existing probaistiitpidions. The
method ensures calibrated results by removing any distributional bias thextitimg probabilistic
forecast may have. It is effective in cases such as when a Gaussiandt-skewed) distribution
model is used for cases where the actual error distribution is skewdidraZiamg probability distri-
butions instead of ensemble members has the advantage that it allows fqrdreties of modeling
uncertainty from the aspect of calibrating.
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The calibration method corrects probabilistic forecasts by ensuring thermmiif of verifying
PIT values (Gneiting et al., 2007), and is analogous to correcting nidoromrank histogram of
ensemble forecasts by the WR method. As the calibration method operatesiahby probability
distribution, it is therefore independent of the construction of the ensemble

The calibration method is shown to generate uniform PIT-histograms forietyaf forecast
variables. In addition, as a byproduct of improving calibration, the cdldomanethod is shown to
reduce the ignorance score for forecast distributions that exhibithistinal bias.

1.3.2 Statistical data assimilation for probabilistic forecasts

The second contribution of this dissertation is a new statistical data assimilatiemedor proba-
bilistic forecasts.

To avoid NWP models straying from reality over time, newly made observatiossimewsed to
correct the model’s state. This is referred to as the data assimilation cydlienatves the ingestion
of large amounts of observed data from remote sensors, such as satellisdar, as well as in-situ
measurements from aircrafts, ships, buoys, ground-based staidissandes, and dropsondes.

Observations are made continuously, but the data assimilation cycle is typiobllperformed
several times a day, such as every 6h for the global forecast sy&tEeS)(but can be as frequent as
every hour as with the rapid update cycle (RUC; Benjamin et al., 2004).

There are several techniques used to assimilate observations into weaithels, such as the
ensemble Kalman filter (EnKF; Evensen, 1994), variational data assimilatgwig and Derber,
1985), and Newtonian relaxation (Anthes, 1974). These methods altendbeled state of the
atmosphere throughout the whole model grid and must ensure that the maitghins dynamic
balance, such that unrealistic instabilities are not created.

These assimilation methods provide updated initialization and boundary cosdiiche NWP
model. The model must then be evolved forward in time again with this new datacdqure
updated probabilistic forecasts the following three-step process woutdduered: assimilating
new observation data into the model initialization, rerunning the ensemble egedarating the
probabilistic forecasts. This is computationally very expensive and giyapt worthwhile if only
small amount of new recent data is assimilated.

An alternative is to use only recent observations recorded at thesfgirlcation of interest and
directly alter the forecast distribution, without simulating forward the ensenTideny knowledge
there are no such methods currently developed for weather predictipogas. In Chapter 3, |
present such a method, which relies on the verifying PIT values beirrglated in time. For
example, if the observed state recently verified in the 20th percentile of tiibdion, observations
in the near future are likely to continue to verify near this percentile. Thutdrshort-term the

6
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forecast distribution can be sharpened significantly. This techniquehlkeaadvantage that it is
computationally much less expensive than the conventional three-stegsprand is also much
simpler to implement than complex data assimilation schemes.

The method improves the CRPS and the ignorance score of the probabilistiasts. Updating
probabilistic forecasts can therefore be considered to be anotheraflassthods for improving
probabilistic forecasts.

1.3.3 Decomposition of the probabilistic forecasting proess

The factors affecting weather are complex. To deal with this complexity, NW@Eels typically
separate various aspects of atmospheric modeling into independent camtgooBach component
can have several alternative implementations called schemes. For exagngien\d of the Weather
Research and Forecasting (WRF; Skamarock et al., 2005) modelurealtiernative shortwave ra-
diation schemes, three longwave radiation schemes, nine microphysioses;tiree surface layer
schemes, four land-surface schemes, four boundary layer schangsour cumulus parameteriza-
tion schemes.

With some exceptions, any combination of schemes for each physics gatsgobe used
together to form a model configuration. The construction of the configurasiomportant as a
scheme is often optimized for a geographical region, for capturing speaftither phenomena, or
for computational speed.

This decomposition is useful for two important reasons: 1) It reduce®ptaxity, as a scheme
needs only to model a small subset of atmospheric physics; 2) It allowsicatigns of schemes
to be used, so that the best combinations of schemes can be used fagrtbgaricular forecast-
ing purpose. This decomposition is enforced by the software framewdidh@lakes et al., 1999;
Skamarock et al., 2005), which specifies the input and output requiterokeach component.

Such a decomposition currently does not exist for generating probabibisdcasts. The third
contribution of this dissertation is devising such a decomposition, which ismpies in Chapter 4.
It conceptually represents a statistical analog to the physically-basedgesition used in NWP
modeling. The decomposition includes the two improvement methods from Clzaptet Chap-
ter 3.

Chapter 4 will show how the process of producing probabilistic foreazmtshe decomposed
into four independent components: 1) correction; 2) uncertainty modlelal®ration; and 4) up-
dating. The correction component bias-corrects the ensemble forecestsuncertainty model
transforms this set of corrected ensemble members into a probability distribdti@ncalibration
component removes any distributional bias from this probability distributidnally, the updat-
ing component improves the calibrated distribution by incorporating informétion any recently

7
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made observations.

The advantage of viewing probabilistic forecasting in light of this decompagiithat it allows
improvement efforts to be focused into independent areas. Also, as wiWRF model, various
combinations of schemes can then be tested together to find the optimal combioidigarticular
use case.

To test the usefulness of the decomposition, a probabilistic forecastingrsigsieplemented,
which includes three correction schemes, nine uncertainty models, oneatialibscheme, and
one update scheme. The implementation is based on an object-orientechproggaapproach,
enabling sufficient abstraction between the components and also allowithg fimterchangeability
of schemes.

The contributions of the various components to probabilistic-forecasityjaee evaluated using
the CRPS, the ignorance score, and the PIT-histogram. Forecastaatdbdth short-range and
medium-range ensemble prediction systems (EPS) are used for evaluation.

1.4 Dissertation layout

This dissertation uses a manuscript-based format, where the three emtershare published or
submitted journal manuscripts. The material in these articles have beematfied to conform to
the dissertation formating requirements. With the exception of a few minor editiagges, the
content is otherwise unaltered.

Chapter 4 presents the proposed system for producing high-qualibalpiiistic forecasts for
operational use. This work has been submitted for peer-review. Thkigmgyrelies on two new
probabilistic methods: Chapter 2 presents a new calibration method foringdiistributional bias
of probabilistic forecasts, which has been published in Nipen and Stdlllf2Chapter 3 presents
a new method for updating probabilistic forecast given recently maden@ismns, which has been
published in Nipen et al. (2011). Chapter 5 summarizes the contributionssadidsertation and
provides recommendations for future work.
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Chapter 2

Calibrating probabilistic forecasts from
an NWP ensemble

2.1 Introduction

If forecasts were perfect, then we would not need probabilistic fetecdaor uncertain forecasts,
information on the probability of different forecast outcomes can allowusails to make decisions
that optimize their budget and safety (AMS, 2008). But such optimizationssiple only if the
probability information provided is useful. Developing methods for prodyciseful probabilistic
forecasts from an ensemble of weather forecasts is an area of agearch.

Throughout this chapter we take the view that creating probabilistic fetedallows a two-
step process, as shown in Figure 2.1. The first step takes an ensendatwhinistic forecasts
as input and models how this ensemble conveys forecast uncertaintgetbed step is a simple
post-processing step that ensures that the probabilistic forecasagghby the uncertainty model
exhibits the desirable statistical property of being calibrated.

The uncertainty model is an algorithm that prescribes probability densityctoafahe possible
values that the forecast variable can take. Ensemble uncertainty candedechon much the same
way that radiation or precipitation is modeled in a weather model. For exampleowd decide
to place more confidence where ensemble members are clustered, orldidetide to place most
of the confidence near the ensemble mean. The number of other algorithpladimg confidence
given a certain arrangement of the input forecasts is endless.

The uncertainty model will inevitably contain assumptions about how natmergies ensemble
members and the corresponding observation. For example, a Gaussiabifity distribution could
be centered on the ensemble mean, where the spread of the distributionirgggpanameter. When
the Gaussian assumption of uncertainty is valid we get calibrated (or relfabéepsts. That is, a
weather event that is forecast to occur with probabijlityill indeed be observed a fractignof the
time over many forecast periods.

However, in many cases the uncertainty model used can make assumptice® that in line
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with how ensembles and observations are generated. In these casescéh@inty model may
produce uncalibrated probabilistic forecasts. In the previous exampllee ibbservations are in
fact drawn from a non-Gaussian distribution, no value for the tuningmater of the Gaussian
distribution will generate calibrated probabilistic forecasts. The calibratiEmsan then be used to
remove this calibration deficiency thereby improving the probabilistic fotecas

Separating the tasks of determining an uncertainty model and ensurirgpjistic calibration
allows one to focus efforts to improve probabilistic forecasts. Perfectiagutitertainty model
helps concentrate probability mass in the correct area and perfectingltheaion step increases
the reliability of the forecast. Requiring a probabilistic method to model the taingr and ensure
probabilistic calibration simultaneously can therefore be avoided.

The goal of this chapter is to present a calibration scheme that takes tingegi®bability fore-
cast and ensures that it becomes calibrated regardless of the urigeriadel used and regardless
of whether or not this distribution accurately models the ensemble uncertainty.

The calibration method proposed relabels the cumulative probabilities of satiad pmoba-
bility distribution into calibrated cumulative probabilities that are based on héanaind where
observations in the past verified on the initial probability distributions. As weilshown, the initial
probability distribution may very well be calibrated to begin with, in which casecti@ration
step is redundant. However, for cases where the uncertainty modkfailseto generate calibrated
forecasts, the method can improve the probabilistic forecasts.

In this chapter, we consider both continuous meteorological variables @s temperature)
and bounded mixed discrete-continuous variables (such as relative ih)ritiét can have finite
probability mass at one or both boundaries.

The remainder of the chapter is organized as follows: First, we summarize ebthe ways
to represent uncertainty. Next, in Section 2.3, we discuss the metrics usedltate the quality
of probability forecasts — important for measuring if and by how much the i@lidn method can
cause improvement. In Section 2.4 we present the proposed calibrationdn&hotion 2.5 de-
scribes case-study data from a four-year period with five forecag&thles, a 14-member ensemble,
and1225 grid locations. Those case-study data will be used in Section 2.6 to evaleatithration
method for the uncertainty models from Section 2.2. Implications of this app@@csummarized
in Section 2.7.

2.2 Methods for representing uncertainty

A number of methods have previously been devised with the goal of pireglealibrated proba-
bilistic forecasts. Each of these methods, however, use widely differays to describe how un-

12
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certainty is expressed by an ensemble. Different uncertainty descegtime because the methods
make different assumptions about how forecasts and observatioreatired.

To set up a framework for probabilistic forecasts, fetr) be the forecast probability density
function (PDF) of a meteorological variablefor time ¢t. The corresponding forecast cumulative
distribution function (CDF)(z) is

Fi(z) = /_ " f(s)ds. 2.1)

Thus, F;(z) gives the probability that the meteorological variable is forecasted to haveadue
less thane.

Let the actual observed value of the variable at tinbe ;. The observed value can be repre-
sented by an observed COF, (z) that we model as a step function:

Gi(x) = H(z — z), (2.2)
whereH (s) is the Heaviside function defined by:

1 s>0

H(s){o o0 (2.3)
That is, the observed distribution is an infinitesimally wide region of finite poditya mass at the
observed value.

We denote an ensemble Af forecasts of some meteorological variableas, wheret repre-
sents a time point anklis an index betweeh and K. At time ¢, the ensemble mean is denoted by
¢ and the ensemble variance is denotedhy

2.2.1 Binned probability ensemble

A very common way to model uncertainty is to assume that each ensemble merdlibe aror-
responding observation are realizations of the same unknown probalslityodtion. For this sit-
uation, the rank of the verifying observation when pooled with the enserhblgld be a random
integer between and K + 1. Here rank is defined as the integer position of an element in a sorted
array of values. Thus, each bin has the same probability of capturingoesation, where a bin
is the region between two consecutive ensemble members. This is ofteredetferas the binned
probability ensemble (BPE) technique (Anderson, 1996).

To convert this description to a probabilistic forecast, one assigns d@ardnmobability mass
(K + 1)~! between each consecutive ensemble member. Ensemble members sgreachpart
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will have a lower density between them compared to members that are clostrdodrhe effect is
that an ensemble that has all of its members close together represents aenareforecast than
one where all members are spread out.

The CDF values at each ensemble member location are &éktor- 1)~ wherek is the rank
of the ensemble member and is linearly interpolated between members.

The CDF below and above the ensemble must also be specified. For ptemipitaecasts,
Hamill and Colucci (1998) used a linear function below the lowest ensembitgereand a Gumbel
distribution above in order to estimate extreme precipitation events. With this maidificékne BPE
probabilistic forecasE}(x) becomes:

7}(1114(&,1 - f) r <&
o
Ft(.%’) = K]j,-l + Ki—l 5t,k+1izt,k ft,k <z < gt,k+1 ) (24)

1- 24B@— &) &<z

where¢; , represents thg™" sorted ensemble member, ands) and B(s) are monotonic functions
equal tol whens = 0, and drop off toward$ for high values of.

2.2.2 Method of moments

A Gaussian distributioV" can be used to represent a probability distribution as follows:
Fi ~ N(& — pr,ars? + br). (2.5)

The first parameter of\" represents the mean of the distribution, and corresponds to the bias-
corrected ensemble mean. The second parameter represents thedpheadistribution, given
by a linear regression fit to the variance of the ensemifle (

17 can be computed from the first moment of past forecast errors:

pr = ”;” > (& - ). (2.6)
teT

Here, 7 represents a set of time points over which the mean is computed|| Af\depresents
the size of this set. Past values of the square of the error of the bietEa ensemble mean
(& — pr — x4)? (for all ¢ in training periodT) is used to estimater andbr using least squares
linear regression. That is, the spread of the forecast distribution isndiemt on the spread of the
ensemble (provided thatr # 0).

As historical moments of the forecast errors are used to generatedabahilistic forecasts,
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this method is often called the method of moments (MM; Jewson et al., 2005).

2.2.3 Bayesian model averaging

Another way to model the uncertainty is to assume that the true state is distrilootadiag to one
of several candidate distributions, although it is not known which catelidathe true one. The
candidate distributions are formed by fixing arpriori specified probability distribution to each
ensemble member. The total distribution is the sum of each individual distribwigighted by the
likelihood that each candidate distribution is the true one.

This technique is referred to as Bayesian model averaging (BMA, Hoetialg, 1999). The use
of BMA was suggested by Raftery et al. (2005) as a method for prodwzhibrated probabilistic
weather forecasts. This method and variants thereof have been appimsssfully for a number
of cases (Raftery et al., 2005; Sloughter et al., 2007; Wilson et al., Zabifison and Swinbank,
2009). By training on data, BMA can weight the various candidate distribsitimlsed on their
performance in the past. If the underlying assumption is valid, then the puvediweighted) BMA
distribution will converge to the true distribution, given a sufficiently larg@adat. For temperature
and sea-level pressure, a Gaussian distribution centered on theohiested value of the ensemble
member has been used (Raftery et al., 2005).

Given a set of forecasts ;, (wherek, unlike for BPE, no longer represents a sorted index), the
BMA predictive distribution is:

K
Fy(x) = wiFyi(), 2.7)
k=1

wherew;, are non-negative weights arfd ;. () are the predictive distributions for each ensemble
member given by:

Fp(m) ~ N(&k— prp,07) (2.8)
prk = > (& — ). (2.9)
77 2

As before,7 represents the training period. Raftery etal. (2005) used a comméar all ensemble
members to reduce the number of parameters, and still found good resujtss a bias correction
term specific to each ensemble member.

To compute the weights and standard deviation, Raftery et al. (2005) eigglectation maxi-
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mization (EM) algorithm, an iterative process given by:

) wy V f )
t

5y = (2.10)
S Vi w“ Vi (@)
() 1 )
w = Zy; (2.112)
g el pyd
Ugf(j) = Z Z t(j — &k — b1 k) (2.12)
et
ft(,Jk)(:E) ~ N (&g + pr g o2), (2.13)

where(j) as a superscript represents the value after itergtidrhis iteration is continued until the
parameters change by less than some small toleraaﬁf,ieare intermediate values on the interval
[0, 1] that represent the extent to which membés the best member of the ensemble for tiime

2.2.4 Climatology

Finally, one can completely ignore the guidance of the ensemble and deberinecertainty based
only on the distribution of past observations. This is referred to as a clinggtdtvecast and can
be computed by:

C|m H 2.14
i ||T|| 2 (2149)

teT
Thus the climatology forecast for a given threshold is the frequencysif gbservations that have
fallen below that threshold.

Climatology forecasts are independent of any NWP model output, andeeaaly past obser-
vations. Therefore, we will use these probabilistic forecasts as a basajainst which the other
probabilistic forecasting methods will be compared.

The climatology forecast is heavily dependent on the definitidh.oA very coarse climatology
would define7 to be all days of the year. A more refined climatology would only include olaser
tions from days that are from roughly the same time of year as the desneth&i time point. We
will use this more refined climatology as our baseline.

2.2.5 Comparison of these uncertainty models

We have discussed four ways of representing uncertainty. Thedsecsummarized as follows:

e BPE: Fixing a constant probability mass between each pair of consecatiked ensemble
members.
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e MM: fixing a shape function to the bias-corrected ensemble mean.
e BMA: fixing a shape function to each bias-corrected ensemble member.
¢ Climatology: fixing a constant-in-time shape function directly onto forecasalvie x.

Figure 2.2 illustrates these different methods schematically. Each methodekatifierently
depending on whether the ensemble spread is small (top row) or largenflottg. The probability
density produced by BPE scales linearly with the spread of each pairnsfecative ensemble
members. Forecasts produced by MM also generally scale with the sgrs@dmsemble, however
they are independent of the particular way that ensemble members anezedyaEBMA, unlike MM,
is able to represent multi-modal distributions due to the individual Gaussiaibdi®ns, however,
compared to BPE, its peaks are less sensitive to the exact positions ostdralda members.

2.3 Metrics of probabilistic-forecast quality

There are two performance characteristics of probabilistic forecadtsvéhavill investigate. The
first, calibration, concerns the statistical consistency between the pliebalforecasts and ob-
servations. The second, ignorance score, measures the extent to pubiiability has not been
concentrated in the correct areas.

2.3.1 Calibration deviation

Probabilistic calibration, or reliability (Murphy, 1973), is a measure of egpondence between
forecast probabilities and the frequency of occurrence of obderakies. Events forecasted with
probability p should occur a fractiop of the time, when evaluated over a set of tiffesHere, an
event is defined as an observation being less than some threshold:yalliee probability of this
event occurring is forecasted #y(z,).

Calibration can be assessed by checking the distribution of probability attegnsform (PIT)
values (Gneiting et al., 2007). PIT valuygsare the values of the cumulative forecast distributi¢n
corresponding to the observation; i.g.,= F;(z;). Gneiting et al. (2007) define the set of forecasts
F;(z) to be probabilistically calibrated relative & (x) for all ¢ within 7 if

LS G (W) =p (2.15)
7] 2

where probabilityp is a real number betweehand 1 and F[l is the inverse off;. Using the
definition of G, in Eq. (2.2), Eqg. (2.15) can be rewritten to show that probabilistic fotsca®
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calibrated if .

mzH(p*Pt) =D (2.16)

teT
Thus, probabilistic calibration requires that, for a giveon the interval0, 1], a fractionp of the

PIT values lie belowp. Asymptotically over an infinite sample size, Eq. (2.16) can be shown to be
a necessary and sufficient condition for probabilistic calibration (Gnedirad., 2007).

A forecast that is calibrated at all instances in time (ile(x) = G¢(z) for all ¢) is said to
exhibit complete probabilistic calibration (Gneiting et al., 2007). As pointed puddmill (2001),
uniformly distributed PIT values do not necessarily imply that the forecdsbis complete prob-
abilistic calibration, because the forecast can have distributional biagydwarious subintervals of
7. For example, uncalibrated forecast distributions during the first half ahd different uncali-
brated forecast distributions during the second half can cancel cen evaluated over the whole
time period7. Furthermore, by defining the observational distribution to be a step fumatan
Eq. (2.2),F can never exhibit complete probabilistic calibration unlégs:) = H(x — x) for all
t, which is the case of a perfect deterministic forecast. Therefore, wéferring to calibration, we
will always specify a time period over which the calibration is computed, and iVeet require
the forecast to exhibit calibration at smaller timescales.

To better visualize the degree of calibration using PIT, one can creatwgtais of PIT values.
For a perfectly calibrated forecast, each equally sized bin will contairetine sumber of PIT values
thereby giving a flat histogram. Deviations from a flat histogram can bd tesdiagnose problems
with calibration. For example, a U-shaped histogram indicates that thevaliserverifies low or
high on the CDF curve too often, an indication that the probability distributioroisiesrow.

A PIT histogram is the generalization of a rank histogram, the latter of whickad tor deter-
mining reliability when BPE is used to model uncertainty. The rank histograndésson, 1996;
Hamill and Colucci, 1997; Talagrand et al., 1997) shows the frequehttyeabservations taking
on various ranks when pooled with the ensemble, and the number of bishésuset+ 1. For a PIT
histogram the number of bins used can be arbitrary, since we are lodkingrdoers on the real line
as opposed to integers betweleand K + 1. For our PIT histogram, we separate the intefoal |
into 20 equally sized bins.

Denote byb; the bin count for bin, wherei is an integer betweehand the number of binB.

Bin frequencies are then given by||7||~!. We use the standard deviation of the bin frequencies as
a summary metric for the reliability of a forecast. Low variability in the bin frequyeis indicative
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of a PIT histogram that is flat. The calibration deviation metric is computed asvi&llo

1 &/ b 1\2
D=,= L (2.17)
52 (771 5)

Low values ofD are preferred.

Sampling error will cause even perfectly calibrated forecasts to exhillitation error (Bibcker
and Smith, 2007; Pinson et al., 2010). That is, PIT values from a pgriedibrated system will
likely not generate a perfectly flat PIT histogram. The bin cobptsf a perfectly calibrated fore-
casting system will be multinomially distributed with variantg||B~—!(1 — B~!). The expected
value of the calibration deviatioPperect Of perfectly calibrated forecasts is therefore:

[1—-B-1

A forecast must be more than just calibrated in order to be useful. For@raa vague climatology
forecast can be perfectly calibrated, but might lack the desired ctratien of probability needed
to make informed decisions.

The ignorance score (Roulston and Smith, 2002), originally defined dsghdgthmic score by
Good (1952), is a metric that measures the extent to which a probabilistzakiris not concen-
trated in the correct areas. The ignorance score is defined as follows:

2.3.2 Ignorance score

IGN = > loga(fi(x)), (2.19)

1
7] 2

Lower values of the ignorance score are desired. The ignorance sewards forecasts that places
high confidence in regions where the verifying observation falls aneégisds the probability den-
sity placed elsewhere.

Due to the use of the logarithm in the definition of the ignorance score, arithdigcences
between two ignorance scores is more relevant than the ratio of the séorkange of units in the
forecast variable for example, will cause scores to be changed byditiva constant.

The ignorance score has a very natural interpretation in estimating eggetebling returns.
When placing bets on the future outcomg the optimal strategy for distributing one’s current
wealth is to distribute wealth to each possible outcome weighted by the probabiigitydeUsers
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with forecasts that have lower ignorance scores than their betting competit@xpect to increase
their wealth in the long run.

Given a probabilistic forecast A and a reference forecast with igreeascores IGlY and
IGN,..; respectively, users of forecast A can expect to double their wealimstga user of the
reference forecasts iNpetsbets, whereVpesis computed by:

1

_ 2.20
IGNref— IGNA’ ( )

N bets =

provided that IGN, < IGNrt. Npets gives a more intuitive feel for the quality of the probability
forecast than numeric values of the ignorance score. Smiijlggvalues are better.

2.4 Calibration method

Section 2.2 identified four ways to create probabilistic forecasts. In masgscéhe forecasts pro-
duced by these methods are already calibrated. Calibration deficienciags®, however, when the
underlying assumption of how uncertainty is represented by the ensemleiis lime with how
nature generates ensemble members and observations. For these sjtaat@iitsration method
may be used to adjust the forecasted distributions such that they are teglib&ich a calibration
method is presented next.

2.4.1 Basic principles

We propose a calibration method that takes an existing probability distribétian and relabels
the CDF values to form a new distributidn(z). The relabelling is done by a calibration function
o as follows:

Fy(z) = 7 (Fy(z)). (2.21)

®7 is based on the distribution of past PIT values from the set of time p@int§or example,
if 30% of past PIT values have values less tl2af, then it seems natural that we should relabel
future25% CDF values to b&0% instead. For the purposes of this chapter, we téf(x) theraw
distribution, andF’, (2) the calibrateddistribution.

For the set of probabilistic forecasfé;(x) (for all t € T) to be calibrated, Eq. (2.16) requires
that®(p) be generated as follows:

7 (p) = [y 2o H (0~ Falan)). (2.22)
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This equation states thét; (p) is the empirical cumulative frequency distribution of the PIT values
Fy(x;). This calibration function would generate perfectly reliable forecastesiechave invoked
the definition of calibration directly in its formulation. However, singeis unknown to us when
forecastingﬁt(x), we must approximat@(p) based on data accumulated during some previous
time period7’, known as the training period.

The approximationbs ~ &4 is valid as long as the statistical propertiesfofio not change
much betweer? and7” (i.e., between the actual forecast period and the training period); namely,
the statistics are stationary.

We will denoteraw PIT values originating from a raw forecast gsandcalibrated PITvalues
from a calibrated forecast as = Ft(:zrt). If the calibrated forecasts have been properly calibrated,
the sorted; values will be distributed evenly on the interyal 1].

Combining Eqg. (2.1) and Eq. (2.21) and using the chain rule, gives thevialjpoproperty for
the calibrated PDF:

fi(@) = Vg (Fy()) fe(z), (2.23)
where we have definedl 7 (p) to be the derivative of the calibration functidn-(p):

_ d®r(p)

Vr(p) dp

‘ (2.24)

Ur(p) acts as an amplification function to the raw PDF. The calibrated PDF will habe hitensity
in regions wherel' 7 (F;(z)) > 1 and lower density wher& 7 (F;(z)) < 1.

Note that¥(p) is also the probability density function for observing a raw PIT valug df
the distribution of raw PIT values is stationary over time. This has the coeseguhat future PIT
values are more likely to occur where the probability density of the calibratextést has been
increased compared to the raw.

The basic calibration principles described above can be applied directhbmunded contin-
uous variables such as temperature. These same principles can bersedrided variables, as
described next.

2.4.2 Bounded mixed discrete-continuous distributions

Some variables, such as relative humidity, are bounded; that is, themiiraum and/or maxi-
mum values that the variables can take. Relative humidity for example has a mirofriLi7h and
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maximum of100 %.%

Often these bounds represent values that have discrete probabiligit isTithey are values
that can have non-zero probability within an infinitesimally narrow regiore fithite probabilities
at these points are called probability mass instead of probability density., Vartables such as
relative humidity are best modeled by mixed discrete-continuous probabilitybdisons where
finite probability masses are used at the bounds, and probability denséiaseat elsewhere.

Mixed discrete-continuous distributions can be devised that model thivibeiha Sloughter
et al. (2007), for example, showed how mixed discrete-continuous distiis can be forecasted
within the BMA framework (by separately modeling the discrete part and theéramus part of the
distribution).

An alternative to modeling these boundaries is to use the aforementionetiaimgyemodels to
generate CDFs that naturally spill over the boundaries. These distrisutambe truncated at the
boundaries so that the CDF(sbelow the bottom boundary and the probability mass at the lower
boundary is set to the original CDF at the lower boundary. A similar treatisgrérformed on the
upper boundary. The lower and upper boundaries are denotegikyandzmax respectively. The
truncated CDF¢'(z) can be created from the original non-truncated distribufitiz) as follows:

0 T < Tmin
F(r)=q F*x) Zmin <2< Tmax - (2.25)
1 Tmax < T
The PDF becomes:
0 T < Tmin
F*(xmin) L = Tmin
f(l‘) = f*(x> Tmin < T < Tmax (226)

1—F* (mmax) L = Tmax

1 Tmax < T

where the values at the boundaries are probability masses and theerdshaities.

This treatment of the boundaries may result in raw forecasts that ardihrated. However,
by using the calibration method proposed in Section 2.4.1, the CDF can béeadfasthat even
the CDFs that frequently lie on the boundaries become calibrated. In thége,stre calibration
method can be used to create calibrated forecasts without having to detarsuitable model for

YTemperature is technically speaking also a bounded variable with a minirhGri obut the commonly occurring
temperature values are so far away from the boundary that it candiedras an unbounded variable.
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the boundaries.

When generating the calibration functidnfor mixed discrete-continuous variables, care must
be taken when the verifying value equalg;, Or xmax, Since the PIT value is not uniquely de-
fined. We follow the approach of Sloughter et al. (2007) by picking doamvalue on the intervals
[0, F(zmin)] @and[F (zmax), 1] for each of these cases, respectively.

2.4.3 Implementation approach

There are a few issues that must be addressed when implementing thequt@pdibration scheme.
Firstly, the distribution of past PIT values is subject to sampling errors.sdlsampling errors
cause problems when evaluatidg which is required when computing the PDF. The sampling
errors are especially troublesome because a derivative is computeéxdmaple, when two PIT
values coincidentally are very close to one another, an unrealistic spgeaepin?. We have
therefore used a smoothing technique on the calibration crv&reater smoothing reduces the
chance of spikes i# due to sampling, however increases the risk of removing real features in th
calibration curve.

Cubic splines with nine points were used as this represents a good batweehb representing
features and smoothing out noise. An example of an initial cumulative distnibafiB65 past PIT
values from the MM method are shown in Figure 2.3a. The points used fapliree were the
lowest and highest PIT values as well as seven intermediate values didrdsievenly as possible
through the sample.

Calibration curves for the BPE method often have sharp changes wheré/K + 1)~! and
p = K(K+1)~!, asthese correspond to the lower and upper boundary of the ensesyetively.
To preserve this feature, a concatenation of three splines were usealifating BPE, where the
slope of the splines are no longer forced to be continuous at the two doupdints between the
three splines (Figure 2.3b).

Other options for smoothing the calibration curve exist (such as simply rdsmnipe curve
combined with linear interpolation) and will in general produce similar results.cfAbse the ap-
proach based on splines as we found this to be stable way to generateeandtlr continuous
derivatives for a wide range of forecast variables.

A sliding window on the past data was used to empirically estimate the calibratiea®ufFor
any given forecast day at a given location, all dates with available#&steand observation pairs for
that location from the previous 365 days comprised the training périod

Picking the training period for calibration should be a trade-off betwe@tuciag calibration
deviations that vary in the short-term and having enough data to robustyecthe calibration.
However, we have opted for a longer training period of 365 days asowedf calibration curves
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based on much shorter training periods tended to overfit the calibratigatidev The optimal
training period will likely depend on the application it is used for, but we Hauad that in general
the performance is not very sensitive to its length provided that the trairériggpconsists of at
least on the order of 100 past PIT values.

Figure 2.4 illustrates how a probabilistic temperature forecast is calibratied.raw forecast
(dashed line on the right) is adjusted to a calibrated forecast (thick solidritieearight) according
to the calibration curve shown on the left.

2.4.4 Impact of calibration on verification metrics

Here we discuss the expected impact of the calibration scheme as evalsiaigthe metrics dis-
cussed in Section 2.3. First, the calibration scheme relabels CDF valuethatifliture calibrated
PIT values will be evenly distributed. We therefore expect the scheme ter ltve calibration
deviationD down to that expected for perfectly reliable forecaB{®perfeci -

Second, calibrating a forecast can also have benefits in terms of theungeoscore. Using
Eq. (2.23), the ignorance score of a set of raw forecAsts{ f; for all t € 7} can be decomposed
into two terms as follows:

IGN(f) = IGN(f > " log(( (2.27)
HTH =

The first term on the right is the ignorance score of perfectly calibrateetastsf, and the second
term on the right is the extra ignorance caused by the lack of calibrationenVelhraw forecast
is uncalibrated, and if the distribution of PIT values is stationary over time, themight-most
term will be positive. That is, the raw forecast will have a higher (wpigeorance score than the
calibrated forecast. This is because, as mentioned earlier, PIT vakiesoae likely to fall where
U(p) is greater than 1, sinc&(p) is also the probability density function for raw PIT values.

Reducing the ignorance score pfcan be done by: (1) improving the quality of the ensemble
forecasts or using a more suitable uncertainty model, thereby reducingghg&fim on the right
hand side; (2) calibrating the forecast in a post-processing mannierasuthe calibration scheme
presented, thereby reducing the last term.

For variables that are mixed discrete-continuous, one must compute thangeaoscore dif-
ferently for the discrete parts than for the continuous part. The probahilitgs is used in the
calculation for the discrete parts, whereas the probability density is usdtefoontinuous part. An
overall ignorance score can still be computed as the sum of the discethe@gontinuous igno-
rance scores, even though these represent the ignorance sodiféefent probability entities. This
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may seem unintuitive at first, but since the score is logarithmic, any arbitreighting between the
probability entities will factor out as an additive constant. This additive teori€ancels out when
differences between ignorance scores are used.

2.4.5 Comparison with other calibration schemes

The BPE method by itself often produces unreliable probabilistic forecdmsta the ensemble mem-
bers and the observation are not drawn from the same distribution. HardilCatucci (1998)
suggested a calibration scheme where the probability mass between eaohqmisecutive en-
semble members is adjusted by the frequency of historical observationg falleach bin. Eckel
and Walters (1998) referred to this as the weighted ranks (WR) meth@lCDi at each ensemble
member is shifted to the frequency of historical observations that fall bdatvensemble member
rank. This WR calibration scheme is relevant only for the BPE uncertaintyehasdt makes adjust-
ments based on ensemble counts and not on probabilities. The calibrationesphesented in this
chapter is a generalization of the WR scheme for any system that genferatesst probabilities,
regardless if these were determined by ensemble ranks or otherwise.

Quantile-to-quantile mapping (Hopson and Webster, 2010) and similarly thecbreected rel-
ative frequency technique (Hamill and Whitaker, 2006) have beentosealibrate ensemble fore-
casts. Here, the value of each ensemble mergiheis adjusted to new valueﬁgk, based on past
statistics as follows:

ét,k: =G (Fu(&p))- (2.28)

G and.F;, are historical CDFs of the observations aftlensemble forecasts respectively given by:

G(z) = IITII;H (2.29)
F = 2.30

where agair? represents the training period, and where appropriate smoothing mustfoerp
on & in order to make it invertible. The calibrated ensemble members will then havaithe di-
matology as the observation and can then be used as input to a probabilisticniEtle calibration
method proposed in this chapter differs from the quantile-to-quantile a@@remethod in that it
adjusts probabilities (output of an uncertainty model) instead of adjustiegdst values (inputs to
an uncertainty model).

Finally, the concept of relabelling probabilities based on Eq. (2.21) hexs beed in other fore-
casting studies (see for example Bremnes, 2007; Nielsen et al., 2008)relBEbelling approach
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taken here differs in that sorted historical PIT values are used to caead@-parametric calibra-
tion curve® instead of using separate regression equations to calibrate each qufahiéléarecast
distribution.

2.5 Case-study data

To test the four different uncertainty models (BPE, MM, BMA, and climatg)aand the effect of
the calibration method, we use data from the reforecast dataset delsicribamill et al. (2006).
This includes the forecasts from a 15-member ensemble using the NCEPriViBdinge Forecast
(MRF) model as well as verifying analyses. The control forecastreamved and the remaining
14 bred members (which are assumed to be equally skillful) were used. &leansexcerpt from
the global grid centered on North America with 25 north-south points anégBweest points for a
total of 1225 grid points, as shown in Figure 2.5. The model was initialize@ BTIC and forecasts
for the 48-hour offset were used. These were verified againsindlgsas valid at that time.

Five meteorological variables (with their abbreviations and units) werd: usen temperature
(T2M, °C), mean sea-level pressure (PRM323), 10-m u-component of wind (U10Mp s—1),
precipitable water (PWATkg m~2), and 70-kPa relative humidity (RHUM}). We tested the raw
versions of BPE, MM, BMA, and climatology, as well as BPE, MM, and BM#eathe calibration
scheme was applied. Daily data from runs initialized on 1 January 2001gih@LiDecember 2004
were used.

We used a 40-day sliding window to train the parameters for MM and BMA digtdhs, with
each window ending prior to each forecast date. The parameters werguted separately for
each grid location. Training periods of similar lengths have been used in stindies of BMA
probabilistic forecasts (Raftery et al., 2005; Sloughter et al., 2007)tHeocalibration curve, raw
PIT values from th&65 days prior to the forecast date were used. The 40-day sliding winddw an
the 365 days of calibration required a warm-up periodi@$ days, before the first forecasts for
evaluation could be computed. A total 139 days of probabilistic forecasts for evaluation were
produced.

Both MM and BMA bias correct the ensemble based on the training periodgefa fairer
comparison, we also bias corrected each ensemble member for BPE ussagriééias-correction
method and sliding window approach as for BMA (see Eq. (2.9)).

For RHUM, to ensure that the bias correction in MM, BMA, and BPE did meate impossible
values, we truncated the values to be withiit and100 %. Too low values were assigned the value
0 %, and too high values were assigngid %. Also, values abové9.9 % were rounded td 00 %
and values below.01 % were rounded t0 %.
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As suggested by Hamill (2007), BMA weights for ensemble members thatsatemed to be
equally skillful can be constrained to be equal. This changes the weighia Eq. (2.7) and
Eqg. (2.11) to bl !, but leaves the rest of the expectation maximization (EM) steps as is. The EM
iteration was stopped when the largest change in the standard deviativas less than a tolerance
of 10~4, which resulted in aroung0 iterations on average.

The “refined” climatological forecasts for a given day were basednatyaes that were within
15 days of the same day-of-year as the forecast day. For exampléntiagotogy for 15 April 2003
includes analyses from all of April 2001, 2002, 2003, and 2004. fri@ans the climatology was
produced in-sample, but since climatology is only used as a referermeagirto gauge the other
methods, we hypothesize that this is acceptable. Separate climatologiesroguwequ for each
forecast grid point. The climatology was implemented by spreading a fixedg@audistribution
across the range of the variable and then using the calibration method t¢ thaéjysobabilities.
This was done to smooth the climatology, as the climatology is based on a finite sanpalst o
values. Different smoothing approaches would likely give similar results.

For the BPE method, we used Gaussian distributionslfe) and B(s) in Eq. (2.4), with mean
0 and variance computed by:

teT

where 7 is computed by Eq. (2.6). That is, we have used the second (central) rhoirie
forecast error of the bias-corrected ensemble mean to determine theffinogprobability outside
the ensemble. The Gaussian distributions must be multiplied by a fac2psofthat4(0) andB(0)
arel. By using a function that stretches as the ensemble stretche §prand B(s) we maintain
the perfect spread-skill assumption that BPE already has for the intdriloe ensemble.

With these data, we next evaluate the quality of the raw and calibrated jlisti@lforecasts
using the metrics from Section 2.3.

2.6 Results and analysis

2.6.1 General effects of the calibration

Figure 2.6 shows the calibration deviation for each variable (shown bgrdiit panels) and each
uncertainty model (shown by each set of bars). Calibration deviatichémaw forecasts are shown
by white bars, whereas those for which the calibration step has beendcappdieshown by black

bars. The calibration deviation was computed for 1689 forecast days separately for each grid
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location, and then averaged. The solid horizontal line indicates the edpgmietion for perfectly
calibrated forecasts as given by Eqg. (2.18). The figure shows thadthforecasts have calibration
deviations that are above that expected of perfectly calibrated fasec@ibe calibration method
reduces this deviation in all cases down to the level expected for perfealityrated forecasts.
Also, the calibration deviation is much greater for the raw BPE forecastsftlidiiM and BMA.
These results are evident for all five variables.

Figure 2.7 shows how the calibration method improves the ignorance sceretivh raw fore-
cast exhibits calibration deviation. For cases where the calibration deviatitie raw forecast is
high, the calibration method reduces the ignorance score significantlyedieted by Eq. (2.27).
However, the calibration method actually increases the ignorance scortysilen the calibration
deviation of the raw forecast is near that of perfectly calibrated fatsdqas seen by the dots below
the horizontal line that are also close to the vertical line). This is becausesa tases there is no
calibration deficiency in the raw forecast for the calibration method to coriiée correction is then
based on a calibration curve that has been fitted to a noisy signal oflpasilBes. Ignorance is not
reduced in this case, despite Eq. (2.27), because the assumption obsyafibhstatistics no longer
holds. For BPE, all variables show large potential for reducing the g score through calibra-
tion. For MM, RHUM shows the greatest potential, and for BMA PRMSL, AW#nd RHUM all
have great potential for reducing the ignorance score via the prdmagiration method.

Figure 2.8 shows the average difference of the ignorance score ohdegtainty models com-
pared to climatology. Positive values indicate that the probabilistic foreeastHower (better)
ignorance score than climatology. White bars show the difference of thdorcasts to clima-
tology whereas the black bars show the difference for calibrateddetec The figure shows that
BPE vyields smaller improvements over climatology when compared to MM and BMA.i3 true
for both the raw and calibrated forecasts. Black bars that are taller tearnctirresponding white
bars indicate that the calibration method improved the ignorance scordloveoa BPE, this is
the case for all variables. Although improvements in the ignorance scorenveéed in Figure 2.7
for MM and BMA for cases with high calibration deviation, the increase in thelignce score for
near-calibrated raw forecasts caused the average improvement ohtitange score to be roughly
negligible.

The use of the calibration method then reliesaopriori identifying locations where calibra-
tion deficiencies are known to be present. For locations where the &iseaee already close to
calibrated, the raw forecasts are best left unadjusted. We speculagnthbernative to using the
calibration method for MM and BMA for cases with calibration deficiencies ldidikely be to
find a non-Gaussian distribution that fits better. This distribution would alstuted based on
past statistics. However, the appropriate distribution would have to bendatst for each location
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separately since different locations may have different types of cdbbrdeficiencies. The cali-
bration method on the other hand automatically determines a suitable fit to eatitbridbaough
the calibration curve.

2.6.2 Performance of BPE

A striking feature of Figure 2.8 is that BPE gave forecasts with markedlefdgnorance scores
than MM and BMA. Investigating the forecast PDFs reveals that BPEjoexispikes of probability
where two ensemble members are close in value. For example, Figure 2.9 BBdwlorecasts for
temperature on 3 January 2003 for location “A” in Figure 2.5. Large spike¢he BPE forecast are
located where ensemble members are close for both raw (dashed linesgldmdted (solid line)
forecasts. These spikes are not present in MM and BMA.

The problem is that two close ensemble members are close only by coincal@hoet because
there is higher probability of observing a value in that region. That is,flies are unlikely to have
any physical meaning and are purely a product of having a finite nunfleeisemble members that
inadequately sample the true distribution.

This flaw can be traced to an underlying assumption behind BPE — that tkeevabien rank
is a random number betwedérand X + 1. This assumption is valid only prior to the instant when
values of the ensemble are revealed. As soon as these values are kiogvener, the rank is no
longer a random number. In general, members that are satbdr apart will more likely capture
the verifying value.

To test this assertion, the capture fractions of different pairs of etlensemble members
for T2M as a function of their separation distance are shown in Figure ZDEda from all grid
locations and all available days were pooled together. BPE predicts tanboapture fraction of
(K +1)~! for every bin, shown by the horizontal line. However, the plot clearyshthat capture
fraction increases with bin width. That is, when two ensemble members atedspather apart,
the likelihood of the analysis falling between them is higher. This causes tEet&Pnique to
produce greater ignorance scores since narrow bins are givengbaiobability density despite
their low probability of capture. Similarly, wider bins are given too low a piulig density. Since
the ignorance score is a proper skill score (Gneiting and Raftery,)2@®0ing a probability that
we knowa priori is biased will result in greater ignorance scores.

The calibration method lowers the calibration error compared to the raw BRIEdsts and
thereby significantly improves the ignorance score. BPE exhibits calibrdéficiencies in general
because the analysis does not fall evenly between the ensemble membeesek further reduc-
tion in the ignorance score, closer to that of MM and BMA, is not possibleesihe calibration
method cannot remove the spikes that BPE produces. For spikes to beegriiey would have to
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appear frequently enough in the same ensemble bin, such that the califwatiton could identify
that the CDFs associated with that bin happened too frequently.

2.6.3 Examples of large calibration deviations

Figure 2.11 shows the spatial pattern of average calibration deviatiow@afird calibrated forecasts
from MM for precipitable water. Figure 2.12 shows the same information fABFor a significant
portion of the area, the calibration deviations for the raw forecasts ark fimaever there are large
regions of large calibration deviation as shown by the darker colors.c@ligration deviation for
the calibrated forecasts are all low. Both MM and BMA have large calibratificiencies at the
location marked by “B”, in the Northwest Territories, Canada.

The reasons for this can be diagnhosed in Figure 2.13, which showsiftbgtams for location
“B”. The raw BPE forecasts give distributions that are underdisgeaseindicated by the high bin
counts at the extremes. The raw MM forecasts have too many counts atréres and the middle,
suggesting the Gaussian distribution with its one spread parameter canreltanttistribution with
thicker tails, a taller middle, and reduced probabilities elsewhere. The ra Bkécasts have the
same issue. The calibrated forecasts have smaller calibration erroest@BEDpertec{ = 0.0068.

Figure 2.14 shows precipitable water PDF forecasts for 2 July 2002 éosdime location as
the PIT histogram in Figure 2.13. The calibration method alters the shape @wheDF for both
MM and BMA to be taller in the middle, have thicker tails, and have lower probalsilélsewhere
to correct the calibration deficiency. For BPE, the calibration increasewitith of the tails and
lowers the density in the middle.

Figure 2.15 shows relative humidity PDF forecasts for 16 May 2004 forP@eific Ocean
location marked by “C” in Figure 2.5. The probability mass at the boundarestzown by the
white bar for the raw forecast and by the black bar for the calibrateztfmst, and uses the scale on
the right hand side. We again see that the calibration function changdsaipe sf the raw forecast
distribution, including the probability mass at the upper boundary.

2.6.4 Comparison between BMA and MM

MM uses a simpler method to represent uncertainty than BMA. Unlike BMA, MiMsdnot allow
for multi-modal probability distributions. Despite this, we found no large déffiees in the over-
all performance of these two methods. We speculate that the ability of thenblesto correctly
identify cases where multi-modal uncertainty is appropriate was weak artbagBMA could not
take advantage of it. This may not necessarily be the case for other desgmtems or forecast
variables.
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2.7 Conclusions and further work

We have presented a general approach for calibrating probabilisticests of continuous variables
and tested it on a dataset with 5 variables, 1225 grid locations, and amlagesef 14 members
that are assumed to be equally skillful. When trained with appropriate datan#tieod produces
calibrated forecasts regardless of the underlying assumption of thetainte of the ensemble.

The method relabels the CDF values of an existing probability distribution dicgpio Eq. (2.21).
The relabeling is done by the calibration curve given by Eq. (2.22), wisitiased on which CDF
values the past observations verified on. The calibration curve mugpgremiately smoothed,
such as by spline interpolation.

The method reduces calibration deviation down to the level expected bgcggrEalibrated
forecasts. When the deviation of the raw forecasts are large, the mathficantly reduces the
forecasts’ ignorance score. The method can therefore yield benefitshincalibration and igno-
rance when the forecast location is known to have calibration deficien&egefits in terms of
calibration are due to adjustments made by the calibration cbraed benefits in terms of the ig-
norance score are due to adjustments made by the amplification factévhen the uncertainty
model already produces calibrated forecasts, the redundant calibsétjo actually increase the ig-
norance score slightly due to the added overhead. In these casesgthal dorecasts are best left
unadjusted.

The quality of probabilistic forecasts is not only a function of the quality ofeahsemble fore-
cast used, but also a function of what uncertainty model is used. Wi filat, in general, BMA
and MM produced forecasts with comparable ignorance scores, thusigmificantly outperformed
forecasts produced by BPE, which is due to what we believe is a flaw imitertainty assumption
in BPE.

Future work includes finding and evaluating new uncertainty models — notiskgd here.
Also, better smoothing mechanisms for the calibration curve may help redacétiivg of the
calibration method when the raw forecasts are already nearly calibraiteallyFinvestigating the
performance of the different uncertainty models for ensembles with membengqual skill would
be interesting.
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Figure 2.1: A two-step process of generating probabilistic forecasts from an ensafiore-
casts. A set of deterministic forecasts from weather models feed into arstrsie mod-
els how uncertainty is conveyed by the ensemble. The resulting probabitisticafst is
fed to a calibration scheme that generates calibrated probabilistic forecasts

BPE MM BMA Climatology

Figure 2.2: Schematic PDF diagram of four methods for representing ensemble unterta
Here probability density curves for binned probability ensemble (BPE), odedti mo-
ments (MM), Bayesian model averaging (BMA), and climatology are shawari en-
semble of size five, with the variable of interest in the abscissa and thelyilithdensity
in the ordinate. Circles represent the five ensemble member forecastsopraed bot-
tom rows represent two different forecast times having differentieime distributions.
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Chapter 3

Updating short-term probabilistic
weather forecasts of continuous variables
using recent observations

3.1 Introduction

Correctly predicting forecast uncertainty can bring significant econdmiefits to many decision
makers (AMS, 2008). Unlike a deterministic forecast, which supplies onlexipected weather
outcome, a probabilistic forecast gives the likelihood of occurrencdl aduticomes. Decisions
are based on combining the relative risks of various weather outcomes witto#ts and losses
corresponding to those outcomes. Thus, probabilistic forecasts aralhapueferred for economic
decision making.

Let f;(z) be the forecasted probability density function (PDF) of a continuous natgpcal
variable X (such as temperature) valid for timte One can generaté (z) from an ensemble of
numerical weather prediction (NWP) models by using methods such as iBayesdel averag-
ing (BMA,; Raftery et al., 2005), the binned probability ensemble technigmelérson, 1996), the
method of moments (Jewson et al., 2005), or local quantile regressiom(@sg 2004).

Let F;(x) denote the forecasted cumulative distribution function (CDF) given by:

Fiw) = [ fs)ds. (3.1)

Let z; denote the observed state Kfat timet. Let p, denote the CDF value corresponding to the
observed state:

pt = Fi(2). (3.2)

pe is often called the probability integral transform (PIT) value correspantb the observation.
We will assume an operational ensemble forecasting system initialized at tintethat gives
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hourly forecasts out to time = T. At timest, where0 < ¢ < T, hourly observations from
observing stations are made available, but the models do not incorporagedhgervations until
the next forecast cycle starts.

Figure 3.1a shows a sample temperature CDF forecast for a single locatiducpd from an
ensemble. At the time the figure was produced, observations up to 100@veneCavailable. What
is clear from the figure is that the CDF value that the observation verifi€®ldnvalue) is highly
correlated in time (Figure 3.1c). Given that the most recent PIT valued@Q@ WTC) is0.75, the
next PIT value (at 1100 UTC) will likely be ne&r75.

The probability distribution can therefore be refined to take into accounnthvisinformation
that was not available at the time the model was initialized. The effect of thereuesit observation
will diminish for longer lead times. The updated probability distribution will therefbe narrow
near the time of the observation and widen back to the original distribution fostimthe future
(Figure 3.1b).

The goal of this chapter is to present a method for producing an updedbdlplistic forecast
F}(z) by mapping the original CDFF}(x) by a functiond as follows:

A

Fy(z) = ®(Fy(x)). (3.3)

The mapping will concentrat®' in a narrower range with the hope of improving short-term verifi-
cation scores. End-users in need of rapidly-updating probabilisti¢-stron forecasts at very low
computational costs can benefit from this update method.

Post-processing weather forecasts is commonly done to increase thspmrdence between
forecasts and observations. For deterministic forecasts, methods sunhdel output statistics
(Glahn and Lowry, 1972), Kalman filtering (Homleid, 1995), and analog au=tt{Delle Monache
etal., 2011) are commonly used to reduce forecast error. On the @héyimethods such as ensem-
ble calibration (Hamill and Colucci, 1998) and BMA (Raftery et al., 2005) mamised to improve
probabilistic forecasts from an ensemble of deterministic forecasts. Th@dptbsented here also
aims to improve probabilistic forecasts, but differs in that it is only invokecdeoobservations are
available after the raw forecasts are created. It is therefore of medbusperational short-term
forecasts.

This chapter is organized as follows: the method for updating probabilistec#ésts is pre-
sented in Section 3.2, the data set and verification metric used for testing thedmsetlescribed in
Section 3.3, the performance of the method is evaluated in Section 3.4, atldsions are drawn
in Section 3.5.
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3.2 Method

Assume that for a given forecast d&dy,+ 1 hourly probabilistic forecast;(z) (where0 < ¢ <
T) are produced. Let,,, denote the time at which the most recent observation was made. This
observation is then used to update all hourly forecasts that are still in theef(that is where
tops <t < T).

The probabilistic forecast hours aftert,, that is for timet = ¢, + n, can be updated
according to:

Ftostrn(x) =0, (Ftob5+n(x))’ (3.4)

where®,, (p) willin general be different for each value nfand can be constructed based on forecast
and observation data prior to the timg,. ®,(p) is the probability function that the verifying PIT
value of the original forecast will be less than

Combining Eqg. (3.1) and Eg. (3.4) and using the chain rule gives the folipfeinthe updated
PDF:

ftob.q+n(x) =1, (Ftob.§+n($)) ftopatn (), (3.5)

where ¥, (p) is the derivative ofb,,(p), and acts as an amplification factor for the original PDF.
U, (p) increases probability density in regions where the PIT value is more likelydior@iven the
recent observation. That i¥,,(p) is also the probability density @fbeing the verifying PIT value
of the original forecast.

3.2.1 PIT values as a random walk in time

We model the time-sequence of verifying PIT values within one forecad¢ @s a random walk
in time. Mirror barriers ab and1 are used to handle the fact that PIT values are bounded on the
interval [0, 1]. That is, any random steps across the boundaries are reflecteéthbatie domain
(Figure 3.2). Mirror barriers are commonly used to describe stochasioepses in other areas of
modeling (Karlin and Taylor 1981; See also Rose 1995 for applicationimoagics).

Let p;,,. be the PIT value of the most recent observation, andllgtp) be the probability
density function of the verifying PIT value beipgatn hours aftett,,s. Whenn = 0, the PIT value
is fully known and can therefore be described by:

Wo(p) = 0(p = Ptoys): (3.6)
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where/ is the Dirac delta function defined by:

5(s) = {—l—(;)o :8 3.7)

/OO d(s)ds = 1. (3.8)

Let S(p, q) represents the probability density of arriving at a PIT value of p, givet the
previous PIT value was . Since our stochastic model for PIT valuesrist-afder Markov model,
the probability of a certain PIT at time can be found from all transitions to that PIT from time
n — 1. The probability density after a transition can therefore be determined bfotlogving
recursive equation:

1
W, (p) = /0 S(p. q) W01 (q)dg (3.9)

3.2.2 Determining the transition function

We assume that the step-length from one PIT to the next is Gaussian distnitititenean0 and
variances?2. That is, the transition functiofi can be constructed as follows:

S(p.q) = op;q;0°) + d(—p;q;0°) + ¢(2 — pig;0°) + ... (3.10)
+oo
= Z [6(p + 2i;¢;0%) + $(—p + 2i;¢;07)], (3.11)

where¢(z; i1; 02) is a Gaussian PDF with meanand variancer2. The first term in Eq. (3.10)
comes from steps within the domain, the second comes from steps reflegiesla@nd the third
term comes from steps reflected acrbsgq. (3.11) includes all possible steps, including steps that
cross both boundaries one or more times.

A transition function that combines number of steps can also be constructed, and is denoted
by S,,. The variance of multiple steps (under the assumed model) increases liwgartyme and
S, can therefore be computed by:

+o0
Su(pq) = Y [6(p + 2i; g;n0?) + (—p + 2i; ¢ n0?))], (3.12)

1=—00

Sinceo is small in our study (aroundl.15), and we use values afno larger thar24 we restrict the
summation ta € [—10, 10]. A wider range fori may be required for large andn values.
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ConstructingsS,, allows us to simplify Eq. (3.9) to the following:

1
V() = /0 Su(p, ) Polg)dg (3.13)
= Sn(Ds Py, )s (3.14)

where agairp;,,. is the verifying PIT value at time,,,. This simplification avoids the need to
recursively computd,, (as in Eq. (3.9)). Note that for forecast variables that require a®anssian
transition function, it is possible that Eq. (3.12) cannot be constructalgitazally in which case the
above simplification may not be possible.

Figure 3.3 shows an example sequenc&gfp) for various values of.. The PIT value distri-
bution clearly widens as time goes on, indicative of the disappearing effént last observed PIT
value.

3.2.3 Parameter estimation

In order to create the updated forecasts, an estimaié &f needed by Eq. (3.12). The variance of
the step sizes of past PIT valueg) can be used:

08 = |,21—| Z (pt+1 - Pt)Q, (3.15)
ieT
where7 represents a set of time points from past forecast cycles comprisingathagy period,
and wherg7| is the size of this training set:2 will in general underestimate? since some steps
will appear to be short steps when in fact they are longer steps thatéfiaeted across a boundary.
For a giveno, the expected value efy can be computed by the integral over all possible PIT
transitions fronp to g¢:

0 1 1
o=y /U /0 [6(p + 2i54;0)(p — @)* + ¢(—p + 2i5.¢;0) (p — 9)°]dpdg. (3.16)

1=—00

Solving this equation for (as required by Eq. (3.12)) was not possible analytically. We found
through trial and error that the following is a good approximationdan terms ofog:

o ~ tan(3.50¢)/3.5, (3.17)

where the input to the tangent function is in radians. This approximation mas @f less than
3.4 % for o¢ values up to 0.3 (Figure 3.4).
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A summary of the process of updating a probabilistic forecast goes awfolthe variance of
past PIT transition distances() is computed by Eq. (3.15), which is used to approximate
Eq. (3.17);0 is then used in Eq. (3.12) to compute the transition functiy);(The transition func-
tion, combined with the latest available verifying PIT value is used to calculatelihdistribution
(¥,,) by Eq. (3.14), which is used to update the original probabilistic forabastigh Eq. (3.5).

3.3 Operational test case

3.3.1 Model data and configuration

Hourly surface temperature forecasts from the Mesoscale Compre€sibienunity [MC2, Benoit
et al. (1997)] model, the Penn State/NCAR Mesoscale Model [MM5, Grell. €1994)], and the
Weather Research and Forecasting [WRF, Skamarock et al. (20088Imere used for the case
study period: 0000 UTC 1 Sep. 2005 to 2300 UTC 1 Feb. 2008. Twofantse WRF model were
used: one using GFS initialization (WRFG) and the other using NAM initializatioRIPW), while
MC2 and MM5 both used NAM initialization. The MC2 and MM5 runs had outandms with
108-km grid spacing, and inner 36-, 12-, and 4-km nested domains WIRF runs were similar,
but did not contain the 4-km nested domain. These domains comprised-ougrer ensemble.

The models were initialized once per day at 0000 UTC, and hourly farec#ysut to 60 hours
was available. Probabilistic forecasts were generated for the same timd.perio

The model runs and probabilistic forecasts were generally completeddfy\W6C, after which
we used the latest observation to update the probabilistic forecasts vatie feubsequent 24 hours.
The update process was repeated each hour as a new observatiorel®@ilable. This was done
until 0600 UTC the next day, when the probabilistic forecasts from the foe@cast cycle were
used. This means that for each forecast cycle 24 24-h updatech$tsamere produced, yielding
576 forecasts per day.

We tested the method on temperature probabilistic forecasts and obserfatitiresfollowing
five airport stations in British Columbia, Canada: Vancouver Internatidimpbrt station (CYVR),
Abbotsford International Airport (CYXX), Victoria International Airpo(CYYJ), Kamloops Air-
port (CYKA), and Kelowna Airport (CYLW), which provided a geogtzically diverse sample from
within our smallest model domain.
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3.3.2 Original probabilistic forecasts

We used the method of moments to produce the original probabilistic forecasttiie forecast
ensemble. The PDF using this method is computed by:

fr(x) = o5& + s 82), (3.18)

where again is a Gaussian PDE, is a temperature valug; is the ensemble mean at timeu is a
bias-correction term for the centre of the distribution, ahds the variance of the distribution.
The last two parameters are determined by the forecast errors duritrgithieg period? :

1
po= mzfvi—&' (3.19)
€T
1
s = m2<xi—u—@>2, (3.20)
€T

Note that the spread in this case is independent of the ensemble spread.

The parameterg and s were computed separately for each station and separately for each of
the24 forecast hours. They were computed from a 40-day sliding windowetided the day before
the forecast was initialized. A training period of 40 days is a compromise leetive need to use
statistics that adapt quickly to seasonal changes and the requiremewe tertoaugh data to robustly
estimate the parameters. Similar training lengths have been used to prodbabilistc forecasts
using Bayesian Model Averaging (Raftery et al., 2005; Sloughter 2@0.7).

The spread parametey (and consequently) was also computed separately for each station
using a 40-day sliding window, however all 24 forecast offsets foivargstation were pooled
together to give a more robust estimate.

3.4 Analysis

3.4.1 Ignorance score

We use the logarithmic score of Good (1952), which has gained populagtytioe last decade and
has been referred to as “Ignorance” score owing to its ties with inform#tieory (Roulston and
Smith, 2002). It is defined as follows:

IGN(f) = ’;’ S ~logs (). (3.21)

teT
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IGN rewards forecasts that place high confidence in the value wherebervation falls. Low
ignorance scores are desired.

The total ignorance scores of the original probabilistic forecasts wargated by averaging
ignorance scores over all forecast cycles, and forecast Hautrseparately for each station and each
value ofn in order to see how far into the future a recent observation can improviglogance
score.

Figure 3.5a shows thienprovemenin ignorance score provided by the updated probabilistic
forecast as a function of time from the most recent observation. Thategdorecasts dth after
an observation has been made has an ignorance scereco$ince the true state is fully known.
However, this update forecast is of no value since it is only available thitesbservation has been
made. As time since most recent observation increases, the improvementigmangnce score
reduces down toward.

3.4.2 Continuous ranked probability score

We also computed the continuous ranked probability score (CRPS) torfesthleiate the quality of
the probabilistic forecasts. It is defined as:

+oo
Z/ [Fy(z) — H(z — x,))?da, (3.22)

teT

CRP F
) =17

whereH (s) is the Heaviside function defined by:
1 >
H(s) = { s20 (3.23)

Low values of CRPS are preferred.
Figure 3.5b shows the percentage improvement due to the updated foetatige to the origi-
nal raw forecast. This is defined as:

CRPgFraw) - CRPgFupdatec)

[ =
% improvemen CRPS Fro)

x 100%. (3.24)

Results for CRPS show a similar pattern as for the ignorance score, wittpttateumethod
providing less improvement as the time since the most recent observatioadasreThe average
CRPS of the 5 stations wds50 °C and the update method brought the value downh.@6 °C and
1.27°C at3 and6 hours respectively.
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3.4.3 Reliability

A probabilistic forecast is reliable (or calibrated) when the PIT valuesuaitormly distributed
betweer) and1 (Gneiting et al., 2007). This can be diagnosed by a simple histogram of imgrify
PIT values as reliable forecasts will give a flat histogram.

Figure 3.5¢ shows the histogram of PIT values from all forecast héanecast cycles, stations,
and values ofi.. The update method does not appear to degrade or improve the reliabilitg of th
original forecasts in any significant way.

3.4.4 Mean absolute error

A probabilistic forecast can also provide a best deterministic estimate, by themedian of the
probability distribution (as shown by thH# % lines in Figure 3.1a and Figure 3.1b). We used the
mean absolute error (MAE) as a verification measure of this deterministicaste

MAE(f) = ;‘ S | — F(0.5)], (3.25)
teT

whereF;1 is the inverse of; giving the temperature value corresponding to a nominal proportion
of 0.5.

The MAE of the deterministic forecast (Figure 3.5d) showed a similar pattethedgno-
rance score and CRPS, with the update method improving MAE #6m°C down to1.42°C
and1.73°C at3 and6 hours respectively. Improvements in MAE suggest that the update method
improves the central tendency of the probabilistic forecasts.

3.5 Conclusions

We have presented a method to update probabilistic forecasts of contivarialses based on re-
cent observations, which should prove useful for a variety of netiung purposes. An alternative
to this is to use data assimilation after new observations are available in ordeate new initial-
izations for the ensemble, followed by a complete rerun of the ensemble. Toiss&lerably more
expensive from a computational point of view, and may be infeasible foyroperational systems.

The method improves the ignorance score and CRPS of the probabilista$tseand improves
the MAE of the median of the distribution significantly for forecasts up to sixhaifter a recent
observation, while not affecting reliability negatively.

Future work includes investigating the benefits of using a higher-ordekdtanodel for mod-
eling PIT transitions. In addition to accounting for hour by hour correlatériPIT values, a
higher-order Markov model can also incorporate any diurnal cdrogleof PIT values that may
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exist thereby allowing for the potential to improve forecast2bh after a recent observation.
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Figure 3.1: (a) A sample probabilistic temperature forecast initialized at 0000 UTC.-Fore
casted cumulative probability values are shown by lines. Observationshaven by
solid dots. (b) The updated probabilistic forecast (solid lines) basedeomdtst recent
observation. The original forecast is shown by dashed lines. (cpidigability integral
transform values of the original forecast corresponding to the ghgens.

55



Chapter 3: Updating short-term probabilistic weather forecasts of cantgwariables using recent observations

a) b)

Boundary

0.81 D

0.6} 4

0.4

Verifying PIT
Next PIT value

0.2

Boundary

-0.2

0 2 4 6 8 0 1 2 3
Time Probability density

Figure 3.2: (a) A hypothetical time-series of verifying PIT values (solid line). Mirrariers
at0 and1 reflect any steps back into the domain. The dashed line shows the PIT time-
series without reflections. The transition from tihi¢o 4 involves a reflection acrosis
as shown by the arrows. (b) The probability density function (thick solid kifi¢he PIT
value for time9, given that the PIT value at tirtewas 0.80. The dashed line shows the
probability of the Gaussian distribution that has been reflected back intamthaid.
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Figure 3.3: An example sequence of probability density functions of PIT values féereift
number of hours:() after an observation has been made. In this case-at0, the PIT

value is fully known to bé).7.
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Figure 3.5: Verification statistics for the probabilistic forecasts used in the study. (du&e
tion (improvement) of the ignorance score by the updated probabilisticdstreelative
to the original probabilistic forecast. Each of the five lines representsdbie or a
different station. (b) Percentage improvement in the continuous rankédlpility score
by the updated probabilistic forecast. (c) PIT histogram of the updateddsets (black
bars) and the original forecasts (white bars), indicating the reliability ofdtexasts. (d)
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distributions relative to the median of the original distribution.
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Chapter 4

A modular operational probabilistic
weather forecasting system

4.1 Introduction

Weather-forecast providers are increasingly being requested tadpréorecasts in probabilistic
form (AMS, 2008). A deterministic forecast provides a single estimate otather variable in
the future. Probabilistic forecasts complement this information with an estimate pfédliction’s
uncertainty by indicating the probability of occurrence of all weather aug Uncertainty in-
formation is especially useful for forecast users who make decisicsedban balancing the risks
and costs associated with weather outcomes (Murphy, 1977; Richa@&B@dy Palmer, 2000; Zhu
et al., 2002). By knowing the likelihood of the occurrence of disastreests, these users can ad-
equately protect their weather-affected operations (see McCollor @mtid?808b for an application
in hydroelectric power management). Improving the quality of probabilistiedasts is currently
an active area of research.

Ensemble methods (Leith, 1974) are typically used as the basis for gegepatibabilistic
forecasts. Ensembles aim to sample the probability density function (PDF} dfu error dis-
tribution, but are frequently found to be underdispersive (Hamill anii€bd, 1998; Buizza et al.,
2005; Raftery et al., 2005). Also, the spread-skill relationship of mires is often found to be
non-existent or weak (Hamill and Colucci, 1998; Stensrud et al., 18@®pugh stronger relation-
ships have been found in some cases (Grimit and Mass, 2002; StendrMdssouf, 2003; Scherrer
et al., 2004). This has led to the development of statistical methods, whichdrstassuming that
the ensemble perfectly samples the true error PDF, assigns a probabilityudistr based on vari-
ous attributes of the ensemble. Methods such as ensemble model outputS{&Eit2S; Gneiting
et al., 2005) and Bayesian model averaging (BMA; Hoeting et al., 1988ef et al., 2005) are
frequently used. The focus of our work is on such statistical methodgsioerating and improving
probabilistic forecasts.
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4.1.1 Notation

We focus our study on continuous weather variables (such as tem@@rand mixed discrete-
continuous variables (such as precipitation amount). Given a weathablak , a probabilistic
forecast for timet can be given by a cumulative probability distribution (CDF)x), giving the
probability thatX takes on a value less than This distribution can be created in many ways,
but will generally be based on output from numerical weather predichW ) model runs. Also

useful is the PDF given by:
folw) = ===, (4.1)

which indicates the relative likelihoods of various valuesyof

4.1.2 \Verification

The observed state of at timet is denoted byr;. These observations are used to determine the
quality of the probabilistic forecasts. The continuous ranked probabildyes(CRPS; Hersbach,
2000) is a metric commonly used to evaluate the performance of probabilisticafets and is de-
fined as:

CRPS= 17 Z;/_Z [Fy(e) — H(x — a0 da, (4.2)

where7 represents a set of time points used for evaluati@h,s the size of this set, anH (s) is
the Heaviside function defined by:

1 s>0
H(s)_{o co0 4.3)
The CRPS is the integral of the Brier Score (BS; Brier, 1950) over dllesaof X. The CRPS
rewards probabilistic forecast distributions that are narrow and atatmind the observed state. A
low CRPS value is preferred.
The logarithm score (Good, 1952), often known as the ignorance gBmulston and Smith,
2002), is also commonly used and is defined by:

IGN = > —loga[fi(xy)]. (4.4)
7l

The ignorance score rewards forecasts that prescribe high pligbdbnsity at the variable value
that is verified. Low ignorance scores are preferred.
The CDF value corresponding to the verifying observation is commonlyregféo as the prob-
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ability integral transform (PIT) value and is denotedihy
Pt = Ft(xt). (45)

A set of probabilistic forecasts are probabilistically calibrategl ifalues are uniformly distributed
on the interval0, 1] (Gneiting et al., 2007).

4.1.3 Mixed discrete-continuous variables

An added complication occurs for any variable that has discrete probaiiliss in parts of the
variable’s domain. Quantitative precipitation rate, for example, can hawie firobability mass at
X = 0mm corresponding to the probability of no precipitation. Following Sloughtet.€2807),
we separate the distribution into a discrete and a continuous part:

P r = 0mm

F(z) = { (4.6)
P+ F.(x)(1-P) z>0mm,

where P is the probability mass of the discrete part, afidx) is the probability distribution for
the continuous part. The normalization fly— P) allows us to define the range 6f(z) to be the
interval [0, 1].

When computing the CRPS for this mixed distribution, the lower bound of integratigg. (4.2)
become® mm. When computing the ignorance score for precipitation, we use the glitpaiass
P, for those cases when no precipitation was observed:

1
IGN = <Z —loga[fi(xy)] + ) —logs (Pt)>, (4.7)
71 +1%l\ iz T
0
where7 represents cases where precipitation was observed@raepresents cases where no pre-
cipitation was observed.
Evaluating the performance of the discrete part by itself can also bel @asefdor this we use

the Brier Score with a threshold 6fimm:

(1-P)? z¢=0mm

. 4.8
P? r; > 0mm (48)

BS(0mm) = {
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We define an analogous metric for the ignorance score of the discrete par

—loga(Py) x; = 0mm (4.9)

IGN(Omm) = )
( ) { —loga(1 — P;) x> 0mm

which is the ignorance score for a binary random variable.

4.1.4 Goals

Generating probabilistic weather forecasts has been well studied anptanlanber of methods and
models have been developed to improve verification scores. The goas ahtipter is to present
a probabilistic forecast system that can combine these techniques to firdnations that work
particularly well. This is done by separating the process of probabilistectst generation into
a series of sequential components, each of which has a specific rakeséparation allows each
component to be researched and improved independently of the otheoenis.

The forecast system and its components are described in Section 4fByars@pproach for
implementing the system is presented in Section 4.3, the functionality of the systesteid on a
temperature and precipitation case study in Section 4.4, and conclusiahswarein Section 4.5.

4.2 System description

We decompose the process of generating probabilistic forecasts inttea sesteps originating
with a set of input predictors (Figure 4.1). Before a probabilistic fosecan be disseminated, the
predictors pass through each of these steps (tewoetbonenis The proposed system contains
correction, uncertainty, calibration, and update components, eachiohwhrve a very special
purpose in the overall aim of producing high-quality probabilistic forexas

Each component can be defined and implemented in a number of differgat avad we call a
specific implementation scheme This idea is analogous to the modular approach taken by some
community-developed NWP models, such as the Weather Research acddtiog (WRF; Ska-
marock et al., 2005) model, where the development of different microgdyadiation, surface,
and boundary layer schemes can be done relatively independentlyrestiaf the model provided
the scheme conforms to the requirements imposed by the software framewstiad of having
physically-based components, the proposed probabilistic system hasbenof statistically-based
components. A user of the system selects one scheme for each compdriehtd@fines aonfig-
uration of components.

The system defines a set of input and output requirements for eaclooemtp Provided that
a scheme conforms to these requirements, the scheme can be used inteaomjwith any com-
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bination of schemes for the other components. This setup easily allows impeovefforts to be
focused into specific areas, and allows the research to be done ingepenthe other components.
The components included in the decomposition were selected to allow us to itictucajority of
commonly used probabilistic methods found in NWP. We are unaware of aay sitidies that use
such a decomposition approach.

Each component uses the output from the previous component as veeleisof parameters
6, to generate output for the next component. In an operational setting, sohsene-specific
parameters can vary with time because they can be continuously trainechesirapservations as
they become available.

The components of the system are discussed next. An illustration of thenestikat we have
implemented for each component for our case study are summarized in Bigure

4.2.1 Predictors

The output from NWP model runs usually provides the basis for probtabiigather forecasts. In
many cases the output will be in the form of an ensemble of forecasts, aftlaaiggle deterministic
forecast could also be used. We term these foregastiictorsand theN predictors are denoted by
1,82, &N

The above specification does not prevent us from using an ensenydestoferifying observa-
tions as our predictors. These “predictors” form the basis for climatadddpcecasts, which can be
used as a baseline against which to evaluate probabilistic-forecastedeiilon NWP runs.

Although not investigated in this chapter, an ensemble of past analogs (HaillvVhitaker,
2006; Delle Monache et al., 2011) or any other variables that havécfivedcapabilities could also
be used.

4.2.2 Correction

The output from NWP models often exhibit biases that can be removeddiyppacessing. Post-
processing uses the past behaviour of the predictors in order tactéoreany systematic errors.
A large variety of post-processing methods used for NWP exists, sunfpdsl| output statistics
(MOS; Glahn and Lowry, 1972), Kalman filtering (Homleid, 1995), newmeatworks (Yuval and
Hsieh, 2002; Marzban, 2003), analog methods (Delle Monache et all),28nd gene-expression
programming (Bakhshaii and Stull, 2009).

The requirement of the correction component is that it takes the setditpes{¢1, &, ..., En }
and produces a corrected g&t, &, ..., x }. An implementation of a correction scheme needs not
concern itself with how the inputs were created, only that theréVaagailable members. Similarly,
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how the corrected members will be used later on is also not of concern.
As an example for our case study, we use two simple algorithms for correéhtrigput predic-
tors for temperature. The first method removes a common biagtérom each ensemble member:

& =& — u, (4.10)

wherey is determined from past performance of the ensemble. A second methodeemseparate
bias term from each ensemble member:

~

& =& — M (4.11)

The two above correction methods cause problems for correcting préicipitariables as it
can generate negative precipitation amounts. Instead of improving the aofqamecipitation, for
the purposes of this chapter we focus on improving the ensemble’s abilitytitogissh between the
occurrence and non-occurrence of precipitation. The number @nelnle members predicting an
occurrence of precipitation can be useful for gauging the probabilirecipitation”. However,
we found from the data set used in our case study that the ensemble itielc@s too many small,
but non-zero ensemble members when evaluated against the observatiankad the effect that
the ensemble could not resolve days with low chance of rain from those wiidffhachance since
for the most part the number of non-zero ensemble members was alwgyhighk or very low.
To correct this problem, a cut-off valuecan be used to define the minimum accumulation amount
needed for a forecast to be considered an occurrence of precipitatio

. 0 <
{ = e (4.12)

S = & x>e€

This allows the ensemble to better differentiate between low and high probalaiity d

4.2.3 Uncertainty model

An ensemble of corrected predictors does not by itself comprise a piistialforecast. Before
a full probability distributionF'(z) can be constructed, a suitable interpretation of how the set of
predictors represents forecast uncertainty must be chosen. We feramtbncertainty model. The
uncertainty model prescribes a probability distribution based on the amaewgt of the (corrected)
input predictors.

There are several common ways to prescribe probability given an etes@afforecasts (see
discussion in Chapter 2), such as the binned probability ensemble (BRErgon, 1996) technique,
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BMA, moment-based methods (Jewson et al., 2005), and EMOS. Common ¢antloeels is that
they prescribe probability based on both the central tendency of thecfmexdas well as the level
of disagreement among the predictors.

Temperature variables

For temperature variables, we have restricted our study to models usisgi@adistributions. The
probability distribution is created by centering a Gaussian distribution on tlreated ensemble
mean, and adjusting its variance appropriately. That is:

F(z) = ¢(2:¢;0%), (4.13)

where¢ is a Gaussian CDF for some variable vahueé is the corrected ensemble mean, artd
is the distribution variance. The variance is the one free parameter saadieffy determines the
uncertainty of the forecast.

There are a number of ways to fix the variance of this distribution (Jewtsaln 005; Gneiting
et al., 2005):

o2 = a (4.14)
o2 = bag (4.15)
o? = a—i—bag, (4.16)

Whereog is the ensemble variance ancandb are constants. Eq. (4.14) refers to a model where
the spread of the distribution is independent of the ensemble spread éigsién constant spread
model in Figure 4.2). The ensemble spread can be used as a gaugeddainty, since the dis-
agreement among the ensemble members suggests a general difficulty midieggithe future
state. Eq. (4.15) uses only the ensemble spread, with a scaling factootmaéar under or over-
dispersion of the ensemble (e.g. ensemble spread model) and Eq. (4xiléihes both (e.g. full
regression model). Linear regression between the squared ensemmemaraft — x;)? and the
ensemble spreadg can be used to determine parameteendb.

Precipitation

For precipitation, we need a separate model for each ahd F.(x). Logistic regression is com-
monly used forP (Sloughter et al., 2007) as this forcésto be restricted to the intervaD, 1).
Logistic regression in this case uses linear regression to fit the logarittine e&tio of odds of no
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precipitation to precipitation:

P

We investigate three regression equations, which use the cubic roaadpipation (Sloughter et al.,
2007) as a variate:

logitP = %+QV§ (4.18)

logitP = «¢o+ c10 (4.19)
. 3/ L2

logitP = c¢o+c1 \/g + 20, (4.20)

whered is the fraction of ensemble members predicting no precipitation. Eq. (4.18isaé to as
the ensemble mean model in Figure 4.2, Eq. (4.19) as the ensemble fractiol amodgq. (4.20)
as the combined model. For climatological predictors, the empirical fractionsgreble members
predicting no precipitation can be used:

P=54. (4.21)

The continuous part of the precipitation distribution is often modeled usinghangedistribution
(Hamill and Colucci, 1998; Sloughter et al., 2007):

Fo(z) = T(z;0; 3), (4.22)

wherel is a gamma CDFy is its shape parameter afds its scale parameter. The shape and scale
parameters as a function of the distribution’s m@eand variancer? are:

2

o« = E (4.23)

(o

2
B = I (4.24)

I

Sloughter et al. (2007) used

nw = cotc f/g (4.25)
o2 = co+ csé, (4.26)

wherecy, ¢, c2, andes are constants. We had difficulty getting stable solutions using the adaptive
method described in Section 4.3.3, since this model has four free paranWeetserefore use the
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following model as it had one fewer free parameter:

no= co—l—cli/g (4.27)
o2 = cp, (4.28)

wherecy, ¢1, andcs are constants. Contrary to temperature variables, precipitation uncettaisty
been found to be better explained by the ensemble mean than the enseméde (sfzmill and
Colucci, 1998), which is why ensemble spread does not appear in theatans.

We found that when using climatological predictors, the empirical moments aéritkemble
gave a good fit:

u o= ¢ (4.29)
o = o2 (4.30)

whereag is the variance of the climatological predictors.

4.2.4 Calibration

In some cases, the probability distribution produced by the uncertainty aenpmay exhibit cali-
bration deficiencies when the subsequent observations do not fitili@psons used. For example,
if a Gaussian distribution is used for cases where the distribution of cdis@ms is non-Gaussian,
the resulting forecasts will exhibit distributional bias. The calibration corepbis the distribu-
tional analogy of the bias-correction performed by the correction comypanethe deterministic
predictors.

Calibration deficiencies can be corrected by a calibration method that malpahility values
F to calibrated probabilitie#” by using a calibration functiof® as follows:

F(z) = ®[F(2)). (4.31)

Calibration in the form of Eg. (4.31) can be implemented in a number of wagS¢sexample
Bremnes, 2007, or Chapter 2). For precipitation, we use separateat@libfunctions for the
discrete and continuous parts:

2 { <I>0(P0) z = 0mm (4.32)

Do (Py) + @ [Fo(2)][L — ®o(P)] = >0mm
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4.2.5 Updating

In the time between when a forecast is first produced and when thearexakt cycle starts, new
observations may become available. The original probabilistic forecashageneral be improved
by statistically assimilating this observation (Chapter 3). This component uséactithat the PIT
values are highly correlated in time. For example, when a forecast varftae 20th percentile, it
will likely continue to do so for the next few hours. A probabilistic forecast:) valid for time¢
can be updated by a recent PIT vapye,, n hours prior (i.ep;_, = Ft,n(xt,n)). The updating is
performed by an update functidn as follows:

~

Ft|t—n(x) =U [Ft(x)>pt—n]7 (433)

where time indices refer to time points within the same forecast run.

Chapter 3 used a reflected Gaussian distributiorUravith a single fitting parameter deter-
mined by how correlated in time the PIT values are. Updating in this form camubefal alternative
to a computationally expensive full data assimilation followed by a re-initializatfdheomodels
driving the ensemble. Since the correlation of a recent PIT value vandgliekly with time, this
component is most useful for probabilistic nowcasting purposes.

At this point, the initial predictors have undergone several transformatod improvements,
and are now ready to be disseminated and verified.

4.3 Implementation

The software strategy used to implement the system must aim to achieve thef goadiularity
described earlier. Not only must schemes be interchangeable, bugaaldiew scheme should
only require the developer to write code that directly defines the schemeawtimimal amount
of additional code to be added elsewhere in the framework. Finally, cotqmady efficiency is
also important for operational purposes, as potentially thousands dfdosand many weather
variables must be processed every day.

4.3.1 Approach

An object oriented (OO) software approach is used here, as this alleveothponents to be easily
modularized by exploiting polymorphism and function inheritance featur€fEach component
is defined by an abstract class that specifies what functionality must benaipled by a candidate
scheme. Provided that a scheme implements all functions of its parent ciasschibme can be
used by the system in combination with any scheme of any other component.
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Code abstraction is important in this system. A developer of a calibration s¢lfi@nesxample,
should be insulated from code elsewhere in the framework. Any calibratipfementation relies
only on a CDF value provided by the uncertainty model, and need not ooitself with how that
output was created. This simplifies the task of writing a scheme since only thednd output
specifications must be dealt with.

We have made extensive use of function inheritance. For example faaserstudy, the three
logistic regression models need only to specify what regression variablese and how these are
combined to predict the log odds ratio. These three classes only involvautenepde that directly
implements Eq. (4.18)-Eq. (4.20). Adding a new regression model is as sasmesating a new
class that specifies the variables needed and implementing a log odds ratiorfuRunctionality to
estimate the parameters of the model is inherited from the maximume-likelihood clgase(B.2).
The maximume-likelihood class adaptively finds the optimal parameters for thel impdelying on
its subclasses to implement the likelihood function corresponding to thoseetenzs.

Even though the goal of the discrete uncertainty class is to output a valug foone of the
three logistic regression schemes directly need to implement code that compitkeas, function
inheritance greatly reduces duplication of code, and the adding of neenss generally only
requires the implementation of code that directly defines its core behaviour.

4.3.2 System outputs

Users of the system are interested in CDFs, PDFs, and in some casesse iG@Fs (e.g. to com-
pute a confidence interval). Instead of requiring all components to be@plevide functionality
to compute all three types of output, we focus on producing a CDF. Thibig,the uncertainty
component and onward, a probability distribution described by a CDF sepdsetween the compo-
nents. The PDF can then be computed by polling the CDF and computing thatidernumerically.
To compute the inverse CDF, the system uses a simple iterative approaciiibyg the CDF for
different values of: until one that gives ai'(x) that is close to the desired inverse value.

4.3.3 Adaptive parameter estimation

Each scheme of the system can make use of a set of stored parathefBrssachieve the goal
of computational efficiency for operational (real-time) forecasts, weire all scheme parameters
to be computed adaptively. This reduces the computational requiremergsositycthe previous
estimate of the parameter must be retrieved, instead of a long history ofgiast d

The best estimate of a paramefeat timet is denoted by,. Let §; represent the parameter
computed solely by the information provided by the observation at tinfdie parameter can then
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be updated to a new valde,; based on the recursive equation:

T—1

0111 = 0 + %0;*, (4.34)
wherer > 0 is a unitless time scale corresponding to how quickly the effect of new intimma
vanishes over time. Large valuesofwill causeé to adapt slowly to new informatiord,; is a
weighted average of the previously best estimate and the current egidenc

To update the parameters, each scheme must definghavdetermined. For example, the
parametey in Eq. (4.10) can be updated as follows:

= O (4.35)

I
u

The parameter in Eq. (4.12) can be updated as follows:

(4.36)

%71615 + %ft z = 0mm
€+1 = .
€t z > 0mm

That is, over time¢ approaches the average value of the ensemble mean when there is medbse
precipitation.

The regression parameters used to compute parameterdb in Eq. (4.14)-Eq. (4.16) can be
updated in a similar fashion.

For maximum-likelihood methods in the uncertainty component, we use the parastiesn-
tion technique employed by Pinson and Madsen (2009). Here a vectaraohpter# is determined
simultaneously using:

1 VL(Ot, %t)

L(00,20) (4.37)

1
011 =0; + ;Rt

whereL(6,, z;) is the likelihood function for the parametefs with verifying observation:;, and
where the covariance matrR; is defined as:

B T—1 1 VL(Ot,IEt) VL(Ht,xt) T
Rt+1 a T Rt + ’T< L(Ot,mt) )( L(Ot,:z:t) ' (438)

The estimation method requires any scheme inheriting this class to define the likelivaxion
L, which for logistic regression is the solution foin Eq. (4.17), and for the gamma model is the
gamma PDF corresponding to Eq. (4.22).

The calibration method defined in Chapter 2 uses a large collection of jaghlks to calibrate
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the probability distribution. Instead of storing individual PIT values, aapdige alternative to this
is to only use a few calibration poinfs, corresponding to several valuespind adaptively move
these calibration points to approximately match the distribution of past PIT valitlesse points
can then be updated as follows:

T—1

1
q)p,H-l = q)p,t + ;H(p - pt)a (439)

wherep; is the PIT value corresponding to the verifying observation. We Qsmgnly distributed
calibration points on the intervé, 1] for our case study as this balances the need to resolve patterns
and smoothing out noise in the data (Chapter 2).

We chose to not create a calibration functidp for the discrete part, by reasoning that the
probability model for the discrete part has several parameters to deteansingle point, whereas
the model used for the continuous part must fit to the entire distribution. , Thesnodel for the
discrete part should already create probabilities that do not have aallaemdency to under or
overpredict probability of no precipitation.

For the update scheme, the single parametesin be updated adaptively as follows:

2 T—1, 1 2

Op1i = - T T ;Q’t,fﬂ —Pyi)s (4.40)

wheret represents different days the input predictors are initializedtaegresents two different
time points within the same forecast run. Thatpgs; andp, ;,, represent two consecutive PIT
values for a certain forecast run.

For all corrector schemes, the update scheme, and uncertainty modelstfath maximum-
likelihood methods) we used a dimensionless time-scate-ef30 iterations, as similar time-scales
(in the form of window lengths) have been determined to be suitable for swthods (Raftery
et al., 2005; Sloughter et al., 2007; McCollor and Stull, 2008a). The maxitikatihood method
required a longer time-scale since several parameters are estimated sinudtgn€or these we
usedr = 60 iterations. PIT-based calibration requires on the order of 100 datdsgoibe effective
(Chapter 2) and therefore we used-= 90 iterations for the calibration component.

4.3.4 Bypass schemes

When using the system, the correction, calibration, and update componemigtanal. For each
of these we create a scheme that bypasses the component for caseshe@se methods are not
required or wanted. The bypass scheme simply provides an output timaiigbered version of its
input.
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The correction, calibration, and update bypass schemes implementtiesigec

& = & (4.41)
Fi(z) = Fy(x), and (4.42)
Fipn(z) = FEla). (4.43)

Note that the predictor component is a required component because witlh@uforecast chain
cannot be started and the uncertainty model is required because witttwaipitedictors cannot be
converted to probabilistic form.

4.3.5 \Verification

Two verification metrics were mentioned in Section 4.1. Although not part @dlycing a proba-
bilistic forecast, the same modular approach used for the probabilisticafgiregstem can be used
to implement the verification of the forecasts. We again define an interfageritication that takes
as input a probabilistic forecast and a corresponding observatidguwputs a verification score.
The verification scheme can rely on the probabilistic forecast providin@B, €DF, and inverse
CDF. If desired, an adaptive verification can be utilized that does goinethe saving of a large
array of past historical values, although we did not do this for our sassy.

A side-effect of restricting the verification component to only take as itipaitforecast and
corresponding observation, and not any information about the straddgy by to produce the
probabilistic forecast, is that all scores will be in accordance with Dawidsgjuential principle
(Dawid, 1984).

4.4 Case study

4,41 Data set

The goal of this section is to show how the proposed system can be usaid iogight into which
combination of components provide the best probabilistic forecasts afcauvieather. We tested
the system on two ensemble prediction systems (EPS). Medium-rangesfsréwan the North
American Ensemble Forecast System (NAEFS; Toth et al., 2006) wetefas@4-h minimum
temperature (MINT), 24-h maximum temperature (MAXT), and total 24-fipigation (PCP). We
used 42 members of the NAEFS ensemble: 21 members produced by the tiddaN@/eather
Service and 21 members produced by the Meteorological Service ofl@amao of these members
were control runs. MINT was taken from the 12UTC model output andWAvas from OOUTC,
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corresponding to night and day times in the domain of interest. PCP was cahiputée total
precipitation accumulation from OOUTC to OOUTC the next day. Data from@d284.0 to 31 Aug
2011 were used, with lead times between 1 and 15 days.

The UBC short-range ensemble forecasts (UBC-SREF) were also .te$teid 20-member
multi-model, multi-resolution ensemble consists of hourly forecasts from foMPNnodels includ-
ing the Mesoscale Compressible Community (MC2; Benoit et al., 1997) modd?etine State/N-
CAR Mesoscale Model (MM5; Grell et al., 1994), and versions 2 aniti3eoWeather Research and
Forecasting (WRF; Skamarock et al., 2005) model. All models used initializatiom the North
American mesoscale (NAM) model and in addition the global forecast sy&&#t8) was used to
initialize a second run of WRF version 2. Horizontal grid spacing rangiognf108-km to 1.3-km
were used. The models were initialized once per day at 0000 UTC. Wedaatkeourly surface
temperatures (THOUR) with lead-times up to 60 hours for the time period froam12009 to 31
Dec. 2010. The first 10 forecast hours for this variable were dithas this was generally the
time required for the forecasts to complete after model initialization.

A large number of configurations of components were tested, as summarizzole 4.1. These
were based on schemes that were appropriate for each variable.omfigucations used for the
climatological baseline forecasts are summarized in Table 4.2.

Observations from 15 stations located in southern British Columbia, CaRaglad 4.3) were
used to train and evaluate the proposed probabilistic system. Probabiligzagts were con-
structed for each of the configurations of components, and were cothpefmrately for each
station and forecast offset. An example probabilistic forecast for TRGId it passes through
the components of the system is shown in Figure 4.4.

In the next subsections, we highlight how each component contributesitaliforecast quality.

4.4.2 Comparison of uncertainty models

We first look at how the choice of uncertainty model affects the overadlityuof the resulting
probabilistic forecasts. We found that this was dependent on whichmdnsesystem used. What
worked with one EPS did not necessarily work with the other.

For the temperature variables of the NAEFS ensemble (i.e. MINT and MAXE)ensemble
spread was found to be a useful variable in determining uncertainty. és iseFigure 4.5a,c,
the full-spread regression model [Eq. (4.16)] gave ignorance sdbed were better than using a
constant spread model [EqQ. (4.14)]. This was especially true fortiesab greater than day This
model remained skillful (i.e. beating climatology) 3 days longer for MINT ardbgs longer for
MAXT.

To determine the cause of this, we show ignorance scores as a functiwnesfor of the median
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of the forecast distribution (Figure 4.6a,c). The improvements in ignorscme arise due to poorer
ignorance scores for forecasts with large errors. This is becaudeltfspread regression model
is able to discriminate between days with low and high uncertainty. The lowssiigd® ignorance

score for a Gaussian distribution with a fixed absolute error is one wherstéimdard deviation

matches the absolute error (dashed lines). The performance of th@ifedesregression model is
much closer to this minimum than the constant spread model.

The same corresponding improvement is much less evident in the CRPSe(Bigir,d and
Figure 4.6b,d). This is because CRPS is not sensitive to small probabilitysvadiuhe tails of the
distribution. The difference of integrating(x) values of0.001 or 0.01 is negligible [Eq. (4.2)].
However, the difference between ignorance scoresffaf) values that are different by a factor
of two is much larger. In fact, CRPS does not greatly penalize the ocmaref events deemed
impossible by the forecast, whereas this would result in an infinitely largeagiee score. Accurate
probability estimates in the tails of the distribution are important to users advesseréme weather
conditions, and we therefore focus more on the conclusions providédwelgnorance score.

The ensemble spread model [Eq. (4.15)] proved to be less usefuldditimes of less than
5 days when evaluated by the ignorance score. However, for longéititeas, the performance
matched that of the full regression. This is likely because the ensembldspas no skill as an
uncertainty predictor for short lead times because an artificial spredtérsimposed to create the
initial ensemble states. This model then incorrectly responds to a noisy signal.

For THOUR, the full-spread regression model did not lead to any gaimstbg constant spread
model (Figure 4.5e,f and Figure 4.6e,f). There are two possible explasdtiothis: 1) the UBC-
SREF is a short-range system and ensemble spread is less usefuledetteimes, which also
was the case for the NAEFS ensemble. 2) The UBC-SREF is a multi-model dtiere@salution
ensemble, thereby being more heterogeneous than NAEFS, which ontywéasodels each of
which have constant grid resolution. This may mean that the spread-skilbreship of the UBC-
SREF cannot be captured by a simple linear relationship.

The choice of discrete uncertainty model had an effect on PCP (Figbgehd. The full logis-
tic regression model [Eq. (4.20)] performed best, however the ensemdda model [Eq. (4.18)]
performed only slightly worse. These two models outperformed the ensemduoh model
[Eqg. (4.19)] mainly because of their ability to differentiate days with extrenegipitation events
(Figure 4.7). These results suggest that the ensemble mean of precipitasidime strongest predic-
tor of P and that the fraction of ensemble members predicting the non-occurrépeecipitation
was less significant.

Another overall finding is that precipitation-probability forecasts are skibut to only 5 to 6
day lead time, while temperature-probability forecasts are skillful out to 12 tba¥ lead times, for
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these stations in mountainous western Canada.
4.4.3 Effect of correction and calibration

Temperature variables

We found that for the three temperature variables, applying a correctidmochaignificantly re-
duced the ignorance score (Figure 4.8) and CRPS (Figure 4.9) ofdhkimg probabilistic fore-
casts. The effect was investigated by running a configuration with diffexorrection schemes for
particular uncertainty models without using calibration and updating. ForP&\g&e. for MINT
and MAXT), whether a common bias term [Eq. (4.10)] or a member-specific [Eq. (4.11)]
was used made little difference. This was also true for THOUR for the aonstaead model
[Eqg. (4.15)], since a common and member-specific correction will giveticiEnresults, as the
ensemble mean of the corrected predictors are identical in both casesveéfpihe choice of cor-
rection method did influence the performance of the two ensemble spreadibathods [Eq. (4.15)
and Eq. (4.16)], as seen in Figure 4.8h,i. This is likely due to the fact tichti®&/P model and grid
resolution in the UBC-SREF has different biases. The member-speaifection method affected
the ensemble spread in a way that benefited the full regression mod¢4[E6)], but caused lower
performance for the ensemble spread model [Eq. (4.15)] when cothpartie ensemble mean
correction method.

We generally found that using a Gaussian model for temperature prddadibrated or near-
calibrated forecasts provided the input predictors were correctedietr, for some stations, the
PIT-histogram indicated skewness. This is an effect that cannotrbected by increasing or de-
creasing the spread of the probability model, but rather is evidence thatiss@n distribution is
not a perfect fit. Calibration can correct for this distributional bias.

To investigate the effect of correction and calibration, we use the Rd&ebdecomposition of
the ignorance score (Chapter 2). The ignorance score can be desedhmto an uncalibration
component IGN,,.,; and a base potential ignorance component J&sN

IGN = IGN,¢ + IGN ncar. (4.44)

IGN,, is the lowest ignorance score possible if all calibration deficiencies areved and IGN,,.;
represents the added ignorance score due to deviations from a caifirateflat) PIT-histogram.
We used PIT-histograms with 10 equally sizes bins to compute the decomposition.

The effect of correction and calibration schemes on the componentsarbigece can be shown
schematically as in Figure 4.10. Two sample stations requiring calibrationl§paaead b) and two
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stations that do not (panels ¢ and d) are shown. The forecasts witbwattton and calibration
have high ignorance scores due to high values of JGZN. The correction component removes
most of IGN,,..;, as the correction centres the Gaussian distribution properly by remoiasg b
This is seen by the improvement moving along lines of constant potential igr®rapproaching
the calibration deviation expected by a perfectly calibrated forecast. Bifiekistograms are based
on a limited sample of PIT values, even a perfectly calibrated set of faseisasxpected to have
some small amount of calibration deviation. This amount is indicated by the grégal lines in
Figure 4.10.

For YXJ and YXS, the correction did not remove all of IGN,; because it could not correct
for skewness, as seen by the characteristic deviations in the PIT-listdgigure 4.10e-f). The
calibration component completes the improvement. As noted in Chapter 2, tiatjom@odels that
are already nearly calibrated increases ignorance very slightly dueetitomg, which is seen for
stations COQ and YVR. The corresponding PIT-histograms become fla¢tebétter) after each
type of correction.

Precipitation

For PCP, the rounding correction method [Eq. (4.12)] affects the logegiession part of the uncer-
tainty model, since it changes the number of predictors that forecasenipfation. The correction
had a favourable effect on the ensemble fraction discrete model [H§)]4n both ignorance scores
and CRPS, but a much smaller effect on the full regression [Eq. (4aB@)Ensemble mean models
[Eq. (4.18)], as seen in Figure 4.8j-1 and Figure 4.9j-. The correctilowad the ensemble fraction
model to better resolve cases of high probability of precipitation from cagbhdow probability.

Despite correction, the gamma model defined by Eq. (4.27) and Eq. (4r28}ted forecasts
with slight calibration deficiencies, regardless of the discrete model #sgdré 4.11). The non-
flat PIT-histograms (Figure 4.11d-f) suggest that this model places tah @anfidence in lower
precipitation values and too little in higher values. To alleviate this problem, a lgetit@ma model
could be devised using a different set of parameters, or the calibratithrocheould be applied. The
calibration method removed the remaining calibration deviation.

The ignorance decomposition also confirms that the correction improveds$iodving abili-
ties of the ensemble fraction model as the improvement in the ignorance scoeesolely from
improved potential ignorance and not from reduced calibration devidiguie 4.11c).
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4.4.4 Updating

As the observation reporting frequency of the UBC-SREF is higher tharfréguency of NWP
model initialization, statistical data assimilation of recent observations coulddukta improve the
THOUR forecasts (Figure 4.12). On an ignorance decomposition diaghenupdating improves
the potential ignorance while remaining calibrated. It is interesting to note tkatafter applying
the updating method, the ensemble spread model [Eq. (4.15)] still prosiared ignorance scores
than the two other Gaussian models [Eg. (4.14) and Eq. (4.16)].

45 Conclusions

We have presented a system for creating and improving probabilisticafgisecThe modular sys-
tem separates the major aspect of probabilistic forecast generation @losgearch efforts to be
focused into independent areas. The system is extendible such thairolesbilistic forecasting
models and methods can easily be added without affecting the rest of teensys

Each component serves a specific purpose to help improve forecastanelhe correction
and calibration schemes reduced the calibration component of ignorainessas better predictors,
uncertainty models, and update schemes reduce potential ignorandepléeented schemes are
all adaptive, which is efficient for operational daily forecasts.

We anticipate that further improvements are possible by including more agidarmrection
schemes such as MOS, neural networks, analog methods, and gehetiees¢ and more advanced
uncertainty models such BMA. Also, other parameter estimation techniques auynosed for
probabilistic weather forecasts such as expectation maximization (Dempsier B977; Raftery
et al., 2005), or CRPS minimization (Gneiting et al., 2005) could be incorghrate

In addition, the decomposition used in this study uses four componentsyéictivere are likely
other components that could be added. As an example, a selection compouakhbe added
between predictors and corrector, which serves to select a set ohsieenéle predictors (see for
example Garaud and Mallet, 2011). This way, potentially low-quality ensemhbiebes can be
removed before the next stage, potentially resulting in better probabilisécdets.
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Figure 4.1: Schematic diagram of the components of the forecasting system. Inputigmdso
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shown by circles. Namely, parameter values used in the current time stepleméated
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Figure 4.4: The state of the forecasts after passing different stages in the systémuidy
temperature for station YXS (Prince George) for the forecast runs ingiclim 00 UTC
Jul 1, 2010. Ensemble members (dots), probabilistic forecasts for cuneupatbabili-
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84



Chapter 4: A modular operational probabilistic weather forecasting syste

a)

Ignorance score

Ignorance score

9)

Ignorance score

Ignorance score

MINT: Constant spread b) MINT: Full-spread regression ) MINT: Ensemble spread
4.5
-7 -
© o 4 ___-~
o o
I=3 o
@ @
8 8 35 /
c c
IS IS
2 2
5 5 3
— — —Raw
Mean bias
25 25 25 —=— Member bias
0 5 10 15 0 5 10 15 0 5 10 15
Forecast offset (days) Forecast offset (days) Forecast offset (days)
MAXT: Constant spread e) MAXT: Full-spread regression f) MAXT: Ensemble spread
45 45
o g
o o
o o
@ @
@ @
3] 3]
< <
I I
o o
< <
> k=4
— — —Raw
Mean bias
25 25 25 —=— Member bias
0 5 10 15 0 5 10 15 0 5 10 15
Forecast offset (days) Forecast offset (days) Forecast offset (days)
THOUR: Constant spread h) THOUR: Full-spread regression i) THOUR: Ensemble spread
4 4
-
\
~ /
I\ 7\ \
S // \\ ) AN 2N / N
VARRY o s / \ o N NN
35~ o\ </ N4 885, N~ - S 35 .7,
- 2 - n
M\/J{ﬁ\\/ 8 W 3
o o
= <
I I
3 g 3 g s
- - — — —Raw
Mean bias
—=— Member bias
25 25 25
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Forecast offset (hours) Forecast offset (hours) Forecast offset (hours)
PCP: Ensemble mean K) PCP: Full regression ) PCP: Ensemble fraction
3.3 3.3 3.3
3.2 3.2 3.2
3.1 ® 31 @ 31
7 8 S
3 o 3 o 3
8 8
2.9 £ 29 £ 29
28 g 28 g 28
27 27 27 E——
2.6 26 26 Rounding
0 5 10 15 0 5 10 15 0 5 10 15

Forecast offset (days)

Forecast offset (days)

Forecast offset (days)
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Figure 4.9: Similar to Figure 4.8 but for CRPS.
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Figure 4.10: a-d) Ignorance decomposition graph for 4 stations for 24-h minimum tempera
ture. Ignorance scores (IGN) and ignorance due to calibration davifBN,,,.q;) IS
shown for the forecasts with different schemes enabled for the Cdrsgieead uncer-
tainty model. Each line represents a different lead-time, with short lead-tievesgly
having lower ignorance scores. The expected calibration deviationrtgqplg cal-
ibrated forecasts are shown by vertical gray lines. Diagonal lineesept lines of
constant potential ignorance (IGN). Corr refers to the Member specific correction
technique. Smaller IGN and IG]\.; values are better. e-h) PIT-histograms for the
raw (black), corrected (gray), and corrected/calibrated (whiteshosvn. YXJ= Fort
St. John, BC; YXS= Prince George, BC; CO& Coquitlam, BC; YVR= Vancouver.
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Figure 4.11: Similar to Figure 4.10 but for 24-h accumulated precipitation. Three discrete
uncertainty models are shown: a) Ensemble mean, b) full-spread riegreaad c)
ensemble fraction. The gamma model was used for the continuous uncentaidégy.

The points are averages over all 15 stations and each line represdfiesentllead-
time, with short lead-times generally having lower ignorance scores.
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Component THOUR MINT MAXT PCP

Predictors UBC-SREF NAEFS NAEFS NAEFS

Correction  Ensemble average Ensemble average Ensemble averagedinigoun
Member specific ~ Member specific ~ Member specific

Continuous Ensemble spread Ensemble spread Ensemble spread Gamma (ML)
Uncertainty Constant spread Constant spread Constant spread

Full regression Full regression Full regression
Discrete Ensemble mean
Uncertainty Ensemble fraction
Full regression
Calibration PIT-based PIT-based PIT-based PIT-based

Updating PIT-based

Table 4.1: Combinations of schemes from Figure 4.2 used in the case study for hoomy te
perature (THOUR), 24-h minimum temperature (MINT), 24-h maximum temperatu
(MAXT), and 24-h accumulated precipitation (PCP). ML = Maximum likelihood.

Component THOUR MINT MAXT PCP
Predictors  Climatology Climatology Climatology Climatology
Correction

Continuous Ensemble spread Ensemble spread Ensemble spread Gamma (MM)
Uncertainty

Discrete Empirical ens. frac.
Uncertainty

Calibration

Updating

Table 4.2: Similar to Table 4.1, but for climatological baseline forecasts. MM = Method of
moments.
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Chapter 5

Conclusions

The goal of this dissertation was to improve probabilistic forecasts foatipeal use. This has been
achieved through the development of new methods and approachedabitistic forecasting.

5.1 Summary of methods and procedures

The dissertation proposed a four-stage decomposition process feragjeg probabilistic weather
forecasts, as was presented in Chapter 4. This decomposition contdioléotiveng components: 1)
correction; 2) uncertainty model; 3) calibration; and 4) updating. This ali@search to be focused
into specific areas, each of which help improve the overall quality of thaltneg probabilistic
forecast.

The decomposition was implemented in a probabilistic forecasting system usiobject-
oriented software strategy. This strategy insulates a developer of autartscheme from the im-
plementation details of the other components, and also allows for the inteestzlity of schemes.

The decomposition resulted in the development of a number of other new rsethod

e A new calibration method for probabilistic forecasts was presented in QHapidis method
takes as input a full probability distribution, and removes any distributioizea the distri-
bution may have. The calibration is based on the distribution of past verifyiioability
integral transform (PIT) values.

e A new statistical updating scheme for probabilistic forecasts that incagsracently made
observations was presented in Chapter 3. The method improves probafwlistiasts in the
short-term by relying on verifying PIT values being correlated in time. Théhotk mod-
els the sequence of PIT values as a first-order Markov procesg agieflected Gaussian
transition function.

e A new decomposition of the ignorance score was presented in Eq. (Z}&%)decomposition
separates the ignorance score into a component related to the amounilufititistal bias and
a remaining component related to the base resolving ability of the forecastigibrance
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decomposition identifies how a certain statistical method affects the overathigrescore,
as shown in Chapter 4.

5.2 Summary of findings

A number of findings were made from the evaluation of the probabilistic &stesystem and its
components:

e The schemes that work well for one set of input predictors did notssacidy work well for
another. The performance of various methods depended in part othe@msemble of inputs
was constructed.

— For temperature forecasts, the spread of an ensemble of predictofeuasto be a
useful predictor of forecast uncertainty in the medium-range. This e&s ®r days 6-
15 for the North American Ensemble Forecasting System (NAEFS). Usirgntsemble
spread produced lower ignorance scores than using a constaat spegnly due to
lower ignorance scores for events with large forecast errors.

— For temperature forecasts in the short-term, little or no improvement was esmnusg-
ing the ensemble spread. The effect was weak for days 1-5 for thd-SA&Bsemble and
non-existent for all forecast offsets for the University of British Gohia short-range
ensemble forecasts (UBC-SREF). For the 48-h forecasts from tbecoefst dataset
(Chapter 2), Bayesian model averaging (BMA), which accounts foragpskill rela-
tionships, did not provide any benefit over a constant spread modgesting again
that for the short-term the disagreement between members did not prowidsid in
predicting uncertainty.

— For the NAEFS precipitation forecasts, the strongest factor for detergpriobability
of precipitation was the ensemble mean. A small overall improvement was foluei
the fraction of ensemble members forecasting the non-occurrenceapipréon was
also included.

— The binned probability ensemble technique generally produced probaluhegdsts
with high ignorance scores (Section 2.6.2). This was attributed to the naturgich
the method distributes probability mass between consecutive ensemble memdbers a
also due to its assumption of a perfect spread-skill relationship (Figu.2.1

e Gaussian distributions (used for either the method of moments or BMA) dneraduced
calibrated forecasts for temperature variables. When Gaussian distnidwtiere used in
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cases where a skewed distribution was more appropriate, the calibrationdrietproved
the resulting forecast (Section 2.6.1).

e The correlation in time of PIT values is strong enough that it can be exploifgathuce im-
proved probabilistic forecasts for surface temperature in the short{@hnapter 3). Modeling
PIT values as a first-order Markov process resulted in improved igiegeracores, continu-
ous ranked probability scores (CRPS), and mean absolute errorjéandtdurther degrade
reliability (Section 3.4).

e The CRPS and ignorance score will in some cases yield different cémsuabout which
probabilistic methods are best. This is due to their different treatment ofapilities in
the tail of the forecast distribution (Chapter 4). For example, when thenglole spread was
found to be a useful predictor of uncertainty by evaluating with the igreaore, the utility
was found to be much lower when evaluated by the CRPS.

5.3 Potential applications

Parts of the probabilistic forecasting system presented are currentlyrussal-time by the Weather
Forecast Research Team at UBC. Products in the form of cumulatibabpility plots are being used
by BC Hydro to aid in medium-range planning of weather-affected activities.

The system presented here could be used by any forecasting centestiedian improved prob-
abilistic forecasts. It allows centres to further implement new methods andrdetewhat combi-
nations of methods yield the highest quality probabilistic forecasts. Thesevegbforecasts can
form the basis for better decision making by any business, organizatiordieidual with weather-
affected operations.

5.4 Limitations and recommendations for further work

| have analysed the performance of a small set of relatively simple methods withproposed
system. Although more advanced methods, such as BMA, was tested withimtiegtaaf calibra-
tion in Chapter 2, it was not tested within the framework of the proposedmydtewould be of
great interest if such methods were added to the system, especially foatavg the performance
of medium-range forecasts, where spread-skill relationship may begsiron

Also, the evaluation of more advanced correction schemes such as mdgat etatistics,
Kalman filtering, neural networks, analog methods, and gene-expngssigramming would be
beneficial, provided adaptive parameter estimation algorithms can be désigkdse methods.
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The system itself could also be extended in many ways. Firstly, the decompasstal in
this dissertation uses four components. There are likely other componeantsatih be added to
this decomposition. As an example, a selection component could be addesktbgivedictors and
corrector, which serves to select a set of the ensemble predictorswahigpotentially low-quality
ensemble members can be removed before the next stage, potentially réaddgttgr probabilistic
forecasts.

Secondly, the system treats each forecast location independently. Amaglte is to pool pa-
rameters between stations for potentially more robust results (see for ExRafpery et al., 2005).
This affects only the parameter estimation part of the system and doedeawitthé decomposition
itself.

Thirdly, some applications require joint probability distributions. An exampleirgtev road
maintenance (Berrocal et al., 2010) where the joint distribution of pretipitaand temperature
is required. These forecasts consider multiple variables, which is dlyrmeot considered by the
decomposition. A solution to this would be relax the output requirement of tbertainty model,
thereby requiring multivariate calibration and update methods.

Lastly, for computational efficiency, an adaptive approach was usegdate the parameters
of the schemes. This may limit which candidate schemes can be implemented, sitee lie
difficult to cast the parameter estimation part of a scheme into adaptive forsolution to this
would be to sacrifice computational efficiency by allowing methods to retriege kets of historical
performance statistics.

The main limitation of the calibration method presented in Chapter 2 is the slight ggcrea
in ignorance score seen when the input probability distributions are gleadibrated, or nearly
calibrated. This was attributed to overfitting, as the calibration method attemptbit@tzbased
on a noisy distribution of verifying PIT values. Even perfectly calibramedasts are expected to
exhibit some noise in the distribution of PIT values due to sampling errors. thingavas applied
to the PIT values to reduce noise, but overfitting still occurred.

One solution to this problem is to use a method that detects when a set ofstsrammaalready
nearly calibrated. When the uniformity of past PIT values are abovetaicdevel, the calibration
method would not attempt to calibrate, but instead would use the original lmtipdistribution.
Thus, calibration would only be attempted for variables that exhibit suftidetributional bias.
This could vary from stations to station, or even from season to season.

The updating method of Chapter 3 was found to work well for temperatutiables, as a
Gaussian distribution described the PIT transitions well. However, su@nasition function may
be inappropriate for other variables, in particular precipitation. Precipitatfanges much more
abruptly and irregularly than temperature and may therefore require anatlte model.
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One solution to this would be to investigate other, more complex transition func#oraher
improvement could result from the use of a higher-order Markov modeitehd of only using the
most recent verifying PIT value, the method could use several re¢Emalfues.

95



Bibliography

Bibliography

AMS, 2008: Enhancing weather information with probability forecaBtdl. Amer. Meteor. Sog.
89, 1049-1053.

Anderson, J. L., 1996: A method for producing and evaluating prob#bifisecipitation forecasts
from ensemble model integratiork.Climate 9, 1518-1530.

Anthes, R. A., 1974: Data assimilation and initialization of hurricane predictiotetsal. Atmos.
Sci, 31, 702-719.

Bakhshaii, A. and R. Stull, 2009: Deterministic ensemble forecasts usirg@ression
programmingWea. Forecasting?4, 1431-1451.

Benjamin, S. G., et al., 2004: An hourly assimilationforecast cycle: The RULED. Wea. Rey.
132 495-518.

Benoit, R., M. Desgagne, P. Pellerin, S. Pellerin, Y. Chartier, and SaRss, 1997: The
Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric madetigor
finescale process studies and simulatidon. Wea. Rey125 2382—-2415.

Berrocal, V. J., A. E. Raftery, T. Gneiting, and R. C. Steed, 2010b&wiistic weather forecasting
for winter road maintenancd. of the American Statistical AssociatjdD5, 522-537.

Bremnes, J. B., 2004: Probabilistic forecasts of precipitation in terms aftidesusing NWP
model outputMon. Wea. Rey132 338-347.

Bremnes, J. B., 2007: Improved calibration of precipitation forecastguwsisemble techniques.
Part 2: Statistical calibration methods. Tech. rep., Norwegian Meteorealdgistitute, 1-34 pp.

Brier, G. W., 1950: Verification of forecasts expressed in terms of godiby. Mon. Wea. Rey78,
1-3.

Brocker, J. and L. A. Smith, 2007: Increasing the reliability of reliability diagsaWea.
Forecasting 22, 651-661.

Buizza, R., P. L. Houtekamer, G. Pellerin, Z. Toth, Y. Zhu, and M. Wed322® comparison of the
ECMWEF, MSC, and NCEP global ensemble prediction systéas. Wea. Rey133
1076-1097.

Chmielecki, R. M. and A. E. Raftery, 2010: Probabilistic visibility forecastiisgng Bayesian
model averagingvion. Wea. Rey139, 1626-1636.

96



Bibliography

Dawid, A. P., 1984: Statistical theory: The prequential approach (wittudigon).J. of the Royal
Statistical Society, Series 247, 278-292.

Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalmanrféied analog
schemes to post-process numerical weather predictidos. Wea. Rey139, 3554—-3570.

Dempster, A. P., N. M. Laird, and D. B. Rubin, 1977: Maximum likelihood frioicomplete data
via the EM algorithmJ. of the Royal Statistical Society, Serie3B, 1-38.

Eckel, F. A. and C. F. Mass, 2005: Aspects of effective mesosdade-sange ensemble
forecastingWea. Forecasting20, 328—-350.

Eckel, F. A. and M. K. Walters, 1998: Calibrated probabilistic quantitatireeipitation forecasts
based on the MRF ensemb\&ea. Forecastingl3, 1132-1147.

Ehrendorfer, M., 1994: The Liouville equation and its potential usefslfi@sthe prediction of
forecast skill. Part I: TheoryMon. Wea. Rey122, 703-713.

Epstein, E. S., 1969: Stochastic dynamic predictiailus 21, 739—759.

Evensen, G., 1994: Sequential data assimilation with nonlinear quasi-ggustmodel using
Monte Carlo methods to forecast error statistitsGeophys. Re99, 10 143-10 162.

Garaud, D. and V. Mallet, 2011: Automatic calibration of an ensemble foeni@iaty estimation
and probabilistic forecast: Application to air qualify.Geophys. Resl 16,
doi:10.1029/2011JD015780.

Glahn, H. and D. Lowry, 1972: The use of model output statistics (MO8bjeactive weather
forecastingJ. Appl. Meteor.11, 1203-1211.

Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic fasts; calibration and
sharpnessl. of the Royal Statistical Society, Serie6B, 243—-268.

Gneiting, T. and A. E. Raftery, 2007: Strictly proper scoring rulesdjmtéon, and estimationl. of
the American Statistical Associatich02 359-378.

Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005: Caldatgrobabilistic
forecasting using ensemble model output statistics and minimum CRPS estirhvdion/\Vea.
Rev, 133 1098-1118.

Good, I. J., 1952: Rational decisior¥s.of the Royal Statistical Society, SerieslB, 107-114.

Grell, G. J., J. Dudhia, and D. R. Stauffer, 1994: A description of theybtteration Penn
State/NCAR mesoscale model (MM5). Tech. Rep. TN-398+STR, Natiosatr€ for
Atmospheric Research, 122 pp.

Grimit, E. P. and C. F. Mass, 2002: Initial results of a mesoscale shoréemamgemble forecasting
system over the Pacific NorthwebdYea. Forecastingl7, 192—-205.

97



Bibliography

Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensenfibtecastsMon. Wea.
Rev, 129 550-560.

Hamill, T. M., 2007: Comments on "calibrated surface temperature foreqaststhe Canadian
ensemble prediction system using Bayesian model averadumyi. Wea. Rey135, 4226-4230.

Hamill, T. M. and S. J. Colucci, 1997: Verification of Eta-RSM short-rangseenble foecasts.
Mon. Wea. Rey125, 1312-1327.

Hamill, T. M. and S. J. Colucci, 1998: Evaluation of Eta-RSM ensemble bibiic precipitation
forecastsMon. Wea. Rey126, 711-724.

Hamill, T. M. and J. S. Whitaker, 2006: Probabilistic quantitative precipitativadasts based on
reforecast analogs: theory and applicatiblon. Wea. Rey134, 3209-3229.

Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts: An irtgpdrdataset for
improving weather prediction®ull. Amer. Meteor. Soc87, 33—46.

Hart, K. A., J. Steenburgh, D. J. Onton, and A. J. Siffert, 2004: Aaduation of
mesoscale-model-based model output statistics (MOS) during the 2002 Olgintpic
Paralympic Winter Game®\Vea. Forecastingl9, 200-218.

Hersbach, H., 2000: Decomposition of the continuous ranked probaluitte $or ensemble
prediction systems/Nea. Forecastingl5, 559-570.

Hirschberg, P. A., et al., 2011: A weather and climate enterprise strategdierimeptation plan for
generating and communicating forecast uncertainty informaBah. Amer. Meteor. Soc92,
1651-1666.

Hoeting, J. A., M. Madigan, A. E. Raftery, and C. T. Volinsky, 1999y8sian model averaging: A
tutorial. Statistical Sciencel4, 382—401.

Homleid, M., 1995: Diurnal correction of short-term surface temperdtnerasts using the
Kalman filter.Wea. Forecastingl0, 689—707.

Hopson, T. M. and P. J. Webster, 2010: A 1-10-day ensemble fimegacheme for the major
river basins of Bangladesh: Forecasting severe floods of 2003-Bydrometeoy.11, 618—-641.

Jewson, S., A. Brix, and C. Ziehmann, 200%eather Derivative ValuatiorCambridge University
Press, 373 pp.

Johnson, C. and R. Swinbank, 2009: Medium-range multimodel ensembl@rcation and
calibration.Quart. J. Roy. Meteor. SqQd 35, 777-794.

Karlin, S. and H. Taylor, 1981A second course in stochastic procesgesdemic Press, 582 pp.

98



Bibliography

Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. agaC. E. Williford,
S. Gadgil, and S. Surendran, 1999: Improved weather and seadiomatle forecasts from
multimodel superensembl8cience285 1548—-1550.

Leith, C. E., 1974: Theoretical skill of Monte Carlo forecas$tan. Wea. Rey102 409-418.

Lewis, J. M. and J. C. Derber, 1985: The use of adjoint equationdye aovariational adjustment
problem with advective constraintgellus 37, 130-141.

Lorenz, E. N., 1963: Deterministic non-periodic flalv.Atmos. Scj20, 130-141.

Marzban, C., 2003: Neural networks for postprocessing model auRPS.Mon. Wea. Rey.
131,1103-1111.

McCollor, D. and R. Stull, 2008a: Hydrometeorological accuracy eoéiarent via postprocessing
of numerical weather forecasts in complex terrdlea. Forecasting?3, 131-144.

McCollor, D. and R. Stull, 2008b: Hydrometeorological short-rangesiide forecasts in
complex terrain. Part II: Economic evaluatioltea. Forecasting?3, 557-574.

Michalakes, J., J. Dudhia, D. Gill, J. Klemp, and W. Skamarock, 1999gD&s a next-generation
weather research and forecasting modelvards teracomputingVorld Scientific, 117-124.

Molteni, F. and T. N. Palmer, 1993: Predictability and finite-time instability of thehson winter
circulation.Quart. J. Roy. Meteor. Sqd 19, 269-298.

Murphy, A. H., 1973: A new vector partition of the probability scadeAppl. Meteor.12,
595-600.

Murphy, A. H., 1977: The value of climatological, categorical, and prdlsic forecasts in the
cost-loss ratio situatioMon. Wea. Rey105, 803—-816.

Nielsen, H. A., et al., 2006: From wind ensembles to probabilistic informationtafoture wind
power production — results from an actual applicati@ih. International Conference on
Probabilistic Methods Applied to Power Systei@tockholm, Sweden.

Nipen, T. and R. Stull, 2011: Calibrating probabilistic forecasts from arF\NaN'sembleTellus
63, 858-875.

Nipen, T. N., G. West, and R. B. Stull, 2011: Updating short-term probébilieeather forecasts
of continuous variables using recent observatitksa. Forecasting?4, 564-571.

Palmer, T. N., 2000: Predicting uncertainty in forecasts of weather andteliRep. Prog. Phys.
63, 71-116.

Pinson, P. and H. Madsen, 2009: Ensemble-based probabilistic $tirecat Horns RewVind
Energy 12, 137-155.

99



Bibliography

Pinson, P., P. McSharry, and H. Madsen, 2010: Reliability diagramsfoiparametric density
forecasts of continuous variables: Accounting for serial correlatrart. J. Roy. Meteor. Sqc.
136, 77-90.

Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005n¢yBayesian model
averaging to calibrate forecast ensembblen. Wea. Rey133 1155-1174.

Richardson, D. S., 2000: Skill and relative economic value of the ECMWéemble prediction
systemQuart. J. Roy. Meteor. Sqd 26, 649-667.

Rose, C., 1995: A statistical identity linking folded and censored distributitmsnal of
Economic Dynamics and Contydl9, 1391-1403.

Roulston, M. S. and L. A. Smith, 2002: Evaluating probabilistic forecastgyuaformation
theory.Mon. Wea. Rey130, 1653—-1660.

Scherrer, S. C., C. Appenzeller, P. Eckert, and D. Cattani, 2004lysisaf the spreadskill
relations using the ECMWF ensemble prediction system over Euviipa. Forecastingl9,
552-565.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. \§/aand J. G. Powers,
2005: A description of the advanced research WRF version 2. Texh. RN-468+STR,
National Centre for Atmospheric Research, 88 pp.

Sloughter, J. M., A. E. Raftery, and T. Gneiting, 2007: Probabilistic titaive precipitation
forecasting using Bayesian model averagivign. Wea. Rey135, 3209-3220.

Stensrud, D. J., H. E. Brooks, J. Du, M. S. Tracton, and E. Ro@889: Using ensembles for
short-range forecastinylon. Wea. Rey127, 433-446.

Stensrud, D. J. and N. Yussouf, 2003: Short-range ensemble fioadiof 2-m temperature and
dewpoint temperature over New Englandion. Wea. Rey131, 2510-2524.

Talagrand, O., R. Vautard, and B. Strauss, 1997: Evaluation of pilidiiz prediction systems.
Proc. ECMWF Workshop on PredictabiljitReading, United Kingdom, ECMWEF, 1-25.

Toth, Z. and E. Kalnay, 1993: Ensemble forecasting at NMC: the ggoeraf perturbationsBull.
Amer. Meteor. Soc74, 2317-2330.

Toth, Z., et al., 2006: The North American Ensemble Forecast SystemFESAESth Conference
on Probability and Statistics in the Atmospheric Scienédiainta, GA, Amer. Meteor. Soc.

Wilson, L. J., S. Beauregard, A. E. Raftery, and R. Verret, 200Tib@ded surface temperature
forecasts from the Canadian ensemble prediction system using BayesiehaweragingMon.
Wea. Rey.135 1364-1385.

Yuval and W. W. Hsieh, 2002: An adaptive nonlinear MOS scheme fexipitation forecasts
using neural networkdVea. Forecastingl8, 303—-310.

100



Bibliography

Zhu, Y., Z. Toth, R. Wobus, D. Richardson, and K. Mylne, 2002: Té@nemic value of
ensemble-based weather forecaBtdl. Amer. Meteor. Soc83, 73-83.

101



