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Abstract 

This work focuses on the attenuation of Mo and Zn in neutral pH drainage from waste rock at 

the Antamina mine in Peru. The study was designed to test the hypothesis that Mo or Zn 

containing leachate from one waste rock type can be attenuated when allowed to contact a 

different waste rock type. Mixed material stacked field cells and humidity cells connected in 

series, where leachate from a Mo or Zn - releasing waste rock type flowed through a second 

waste rock material type, were used to test this hypothesis. Both of these were new methods, 

which had not before been reported in the peer reviewed scientific literature related to the 

study of waste rock geochemistry.  

Results from both the humidity cells (laboratory conditions) and field cells (field conditions) 

showed the same general attenuation patterns. When drainage from Mo-releasing waste rock 

flowed through Pb-rich black marble waste rock, Mo was removed from solution. Mo 

attenuation was not observed when the order of the waste rock materials was reversed such 

that drainage from Pb-rich material flowed through Mo-releasing intrusive rock. As, also 

released from the same Mo-releasing intrusive rock, showed the same attenuation pattern as 

Mo. Geochemical modeling suggested that wulfenite precipitation was responsible for the 

observed attenuation of Mo. Zn was removed from leachate both by contact with Mo-

releasing intrusive rock and by contact with calcite-rich grey hornfels material. Like Zn, Cd 

was removed from solution by contact with calcite-rich grey hornfels. Results from 

geochemical modeling in PHREEQC suggested that precipitation of Zn carbonate, or Zn 

hydroxide minerals could not explain the observed attenuation. Scanning Electron 

Microscopy (SEM) suggested that Zn may have been incorporated into the crystal structure 

of phyllosillicate clay minerals; however, further work is needed to confirm this mechanism.  
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Insufficient data were available to develop a hypothesis as to the specific attenuation 

mechanisms responsible for removing Cd and As from solution. 

In addition to shedding light on the geochemical processes controlling Mo and Zn in neutral 

mine drainage, this research also demonstrated the effectiveness of stacked field cells and 

humidity cells connected in series for the study of metal attenuation by waste rock mixing.  
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Preface 

A version of chapter 2 will be submitted for publication with Roger D. Beckie, K. Ulrich 

Mayer, Sharon R. Blackmore, Leslie Smith, Bernhard Klein,
 
Celedonio Aranda, Luis A. 
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Chapter  1: Introduction 

The contamination of natural waters by acid mine drainage has received attention in the 

scientific literature for many decades (Colmer and Hinkle, 1947; Carpenter et al., 1983; 

Sullivan et al., 1988; Webster et al., 1998; Benner et al., 1999; Johnson, 2003). A common 

strategy for mitigating the effects of acid mine drainage is to neutralize drainage with lime or 

another acid neutralizing material at or near the mine site, a process which immobilizes many 

of the toxic metals dissolved in drainage (Johnson and Hallberg, 2005; Robinson-Lora and 

Brennan, 2009). In mines that exploit ore deposits hosted in carbonate-rich country rock, 

acid-consuming waste rock can be strategically mixed with acid-generating waste rock to 

limit acid release, a strategy that has been explored extensively at the Grasberg Mine in 

Indonesia (e.g. Andrina et al., 2006; Rusdinar, 2006). Research at the Grasberg Mine was 

carried out using an instrumented waste rock pile, where distinct waste rock blending 

techniques were applied to different sections of the pile to determine the most effective 

mixing style to reach the goal of acid neutralization on site (Andrina et al., 2003). 

Although neutralization of mine drainage is a common strategy for mitigating its negative 

effects, neutral mine drainage itself is by no means benign. Many toxic metals can 

contaminate neutral mine drainage, including Ni, Mo, Se, Zn, and As (Lupankwa et al., 2006; 

Heikkinen et al., 2009; Plante at al. 2011a). This thesis forms a part of the UBC-Antamina-

Teck Antamina ‘Weathering of Alkaline Waste Rock project’, which is dedicated to 

improving scientific understanding of neutral mine drainage systems. This thesis’ 

contribution to the research project is to explore the possibility of attenuating metals by waste 

rock mixing in neutral mine drainage systems.  
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1.1 Significance of research 

Zn and Mo are essential nutrients; however, in high enough concentrations they can have 

adverse environmental effects. In the case of Zn, concentrations of 0.3 mg/L have been 

shown to be toxic to some aquatic animals (Muyssen et al., 2006). In addition to having a 

negative effect on aquatic life in high concentrations, Mo can be toxic to livestock (Alloway, 

1973; O’Connor et al., 2001; CCME, 2007). Many residents of the rural areas around the 

Antamina Mine depend on ranching for their livelihoods, therefore ensuring the safety of soil 

and water resources in the area of the mine is of the utmost importance. By improving 

scientific understanding of Mo and Zn mobility in neutral mine drainage waste rock systems, 

this research will aid in the development of tools and methodologies to predict the 

concentrations of these elements in mine drainage. Results from this study on waste rock 

mixing may also be used to design waste rock mixing schemes at mines as a means to 

remove these from their drainage before they are released into the environment. 

In addition to improving scientific understanding of the geochemistry of neutral mine 

drainage, this study also introduces new approaches for researching attenuation by waste 

rock mixing. Few researchers have examined metal attenuation reactions in waste rock at the 

sub-pile scale. The few related studies in the literature researched the effects of mixing 

leachate or a leachate-like solution with waste rock, rather than directly mixing leachate from 

two different waste rock lithologies from the same mine site (Smart et al., 2010; Plante et al., 

2011b). This research employs a modified version of humidity cell and field cell leaching 

experiments for the purpose of studying the effect of waste rock mixing on metal release. The 

application of field cells and humidity cells to waste rock mixing is unprecedented in the 

scientific literature, as discussed in chapter 2.  
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1.2 Site description 

The Antamina mine is located approximately 270 km northeast of Lima, at an average 

elevation of 4,300 m above sea level (Antamina, 2011). The mine produces copper and zinc, 

along with smaller quantities of molybdenum and lead, from a skarn deposit formed by a 

series of quartz monzonite intrusions into carbonate country rock (Redwood, 1999; Love et 

al., 2004). Antamina mills on average 104,000 tonnes of ore and about 340,000 tonnes of 

waste rock daily, and is expected to close in 2029 (Klohn Crippen Berger Ltd, 2010). The 

mine’s waste rock dumps´ location at the top of the watershed and proximity to permeable 

karst features makes metal leaching a concern at the site (Evans et al., 2005). Antamina 

receives ~1,200 mm precipitation per year, most of which falls as rain during the region´s six 

or seven month wet season. Very little precipitation occurs in the dry season between May 

and September. Antamina’s mean annual temperature ranges between 5.4 and 8.5 °C (Klohn 

Crippen Berger Ltd, 2010). More detailed information on the study site and the other 

components of the research project completed up to this point can be found in Bay et al. 

(2009). 

1.3 Study background 

The portion of this study focused on Mo attenuation through waste rock mixing was 

motivated by observations from two distinct experiments related to Antamina’s waste rock. 

Single material field cell experiments demonstrated that some waste rock types from the 

mine produced leachate with Mo concentrations of over 30 mg/L (Golder Associates, 2010). 

These concentrations are more than 300 times higher than the CCME Mo guideline for the 

protection of aquatic life of 0.073 mg/L (CCME 2007). Conlan et al.’s (2012) laboratory 

studies showed that the addition of lead (Pb) to neutral pH Mo-rich solutions caused 
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wulfenite (PbMoO4) precipitation, thereby reducing aqueous Mo concentrations. Some 

Antamina waste rock contains significant quantities of Pb-minerals, though Pb and Mo do 

not occur in the same rock type. Pb and Mo-bearing rocks are co-mingled in the East Dump 

at Antamina, making it possible that wulfenite precipitation may lead to the reduction of Mo 

concentrations.  

The portion of this study focused on Zn attenuation was motivated by a desire to predict the 

long-term quality of drainage from Antamina’s Tucush waste rock dump. When this study 

was designed in 2009, Antamina had begun to place Zn-bearing moderately reactive waste 

rock in the Tucush dump, which had previously been reserved solely for low reactivity waste 

rock material. Mechanisms for Zn attenuation in the Tucush dump and the degree to which 

Zn would be attenuated by contact with non-reactive waste rock were unknown at the time. 

The Zn portion of the study was designed to improve understanding of Zn’s fate in the 

Tucush dump. 

1.4 Experimental approach   

The full-scale waste rock dumps at Antamina are extremely heterogeneous, consisting of 

dozens of different lithologies, without any particular internal order (Figure 1.1 left panel). 

This study seeks to improve understanding of geochemical processes that may occur in the 

full scale dumps by focusing on attenuation reactions that occur when two distinct waste rock 

lithologies are mixed together. The study is designed such that leachate from one waste rock 

lithology (unmixed leachate) can be sampled prior to contact with the second. Leachate 

samples are also available after contact with both waste rock types has occurred (mixed 

leachate). The comparison of mixed and unmixed leachate allows for the detection of 

attenuation reactions that remove Zn, Mo, or other metals from solution. The parallel waste 
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rock mixing experiments in this study were run on two different scales: 2 m tall stacked field 

cells were installed at the mine site and exposed to natural precipitation (Figure 1.1, middle 

panel), and 30 cm tall humidity cells run in laboratory conditions at UBC (Figure 1.1, right 

panel). The humidity cells are connected in series such that the leachate from the first cell 

can be sampled, and then used to flush the second cell. The specific waste rock materials 

used in this study were chosen based on their previous inclusion in the associated waste rock 

piles, availability at the time the study was initiated, and the occurrence of elements of 

interest (e.g. Pb, Zn, Mo) in leachate from their single field cells at the Antamina Mine. 

Detailed information on the materials installed in each stacked field cell can be found in 

Appendix A2 of this thesis. 

 Figure 1.1    A conceptual model for the experiment, where specific material combinations from a 

heterogeneous waste rock pile (left) are combined in a stacked field cell experiment (middle) to react at 

ambient conditions. The same materials are examined in the laboratory in humidity cells connected in 

series, such that leachate from the top material in the stacked field cell is poured over the second field 

cell, as indicated by the red arrow (right). 

 

1.5 Research objectives 

The principal objectives of this thesis are to: 

 Evaluate the effectiveness of stacked field cells and humidity cells connected in series for 

the study of metal attenuation by waste rock mixing 



 6 

 Test the hypothesis that Pb could limit aqueous Mo concentrations through the 

precipitation of wulfenite (PbMoO4) under field conditions at neutral pH 

 Assess the degree to which Zn could be attenuated by contact with non-reactive hornfels 

or limestone material in neutral pH conditions 

 Identify the mechanism(s) responsible for Zn attenuation 

Secondary objectives are to: 

 Determine if any other elements (aside from Zn and Mo) are attenuated in the studied 

waste rock mixing regimes 

 Understand the hydrologic behavior of stacked field cells 

1.6 Thesis structure 

This thesis is written in a paper-based format. It consists of a total of five chapters: an 

introduction, three papers, and conclusions. The three papers are self-contained – each with an 

introduction, methods, and results/discussion sections. The first paper (Chapter 2) discusses in 

detail the methods employed in this study while describing the attenuation of As in one of the 

stacked field cells. The second paper (Chapter 3) describes the attenuation of Mo and Zn in two 

distinct stacked field cells and outlines hypotheses as to the probable mechanisms behind their 

attenuation. The third paper (Chapter 4) provides further background on metal attenuation 

observed in the study, while exploring flow in the stacked field cells. Finally, the appendices 

provide detailed descriptions of the materials and methods employed in this study.  
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Chapter  2: A novel approach to studying geochemical attenuation in mine 

waste rock: stacked field cells and humidity cells connected in series
1
 

 

2.1 Introduction  

Integrated waste-management strategies are becoming increasingly important to minimize 

liability and environmental impact of the mining industry (Kwong, 2003; Kalin, 2004). An 

understanding of the local environmental geochemical conditions, both in the mine itself, and 

the natural baseline in the surrounding area, can aid in the safe disposal of mine waste (Odor 

et al., 1999). One strategy that can be developed based on this understanding the mixing of 

different rock types to facilitate metal attenuation reactions in the waste rock dump itself. 

The idea of mixing different waste rock types to generate favorable geochemical conditions 

for metal attenuation has been studied in an acid mine drainage (AMD) context at the 

Grasberg mine in Indonesia (Andrina et al., 2006; Rusdinar, 2006). Andrina et al. (2006) 

used fully-instrumented experimental waste rock piles to assess different methods of 

blending carbonate-rich and acid-generating waste rock together to increase leachate pH. In 

this study we present the use of smaller-scale, more cost-effective field (stacked field cells) 

and laboratory (humidity cells connected in series) kinetic leaching tests to study the 

geochemical effects of waste rock mixing.  

Field cell or humidity cell scale kinetic leaching tests are common tools for predicting the 

long-term water quality of mine drainage from waste rock dumps (e.g. Sapsford et al., 2009). 

Whether these tests are carried out in large-scale waste rock piles, smaller field cells, or 

                                                 

1
This chapter will be submitted as a paper with the following authors list D. Trevor Hirsche, Roger D. Beckie, 

K. Ulrich Mayer, Sharon R. Blackmore, Leslie Smith, Bernhard Klein,
 
Celedonio Aranda, Luis A. Rojas 

Bardón, Raúl Jamanca Castañeda    
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humidity cells in the laboratory, they tend to focus on the rates and mechanism of sulfide 

oxidation and metal release from single rock types (Strömberg and Banwart, 1999; Frostad et 

al., 2002; Benzaazoua et al., 2004; Blowes et al., 2007, Sapsford et al., 2009; Aranda et al., 

2009). Attenuation reactions such as secondary mineral precipitation and adsorption onto 

iron hydroxides can also be very important controls on the concentrations of metals in 

heterogeneous waste rock dumps and the surrounding environment (Gupta et al., 1987; Odor 

et al., 1999; Webster et al., 1998; Trivedi and Axe, 2000; Plante et al., 2011b; Conlan et al., 

2012); however, these processes are not assessed in standard kinetic leaching procedures.  

To our knowledge, the only example in the scientific literature of the modification of a field 

cell kinetic leaching procedure to investigate attenuation reactions is the study of blending 

apatite with acid-generating waste rock as a means of mitigating AMD (Fyson et al., 1995; 

Kalin, 2004; Kalin and Harris, 2005). Kalin and Harris (2005) installed a series of 70 L 

barrels of acid-generating sulfidic waste rock at a mine site in northern Quebec, allowing the 

waste rock to react with natural precipitation under ambient conditions, and analyzing its 

effluent regularly over a period of several years. To demonstrate the utility of apatite 

blending in AMD-mitigation, they installed some barrels with pure waste rock, and others 

with a waste rock/apatite-bearing rock mixture, then compared the leachate pH and chemical 

composition between these cells.  

The current study is similar to that of Kalin and Harris (2005) in that it uses barrel-sized field 

experiments to assess geochemical attenuation promoted by mixing different rock types 

together. The field cell component of this study is distinct from the work of Kalin and Harris 

(2005) in several respects: waste rock from the same mine site, rather than imported material, 

is used as the attenuating material; the attenuating and releasing materials are layered rather 
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than blended; the experiment is carried out at a larger scale to better account for 

heterogeneity; and sub-lysimeters are installed in the field cells to directly compare leachate 

composition before and after attenuation.  

In addition to the field cell component, this paper introduces the use of humidity cells 

connected in series to study attenuation by waste rock mixing. Some humidity cell-like 

experimental designs have been previously used to study metal attenuation in waste rock in 

the laboratory (Smart et al., 2010; Plante et al., 2011b). These studies; however, involved 

application of a pre-prepared solution to waste rock material rather than mixing leachate 

from two different waste rock types at the humidity cell scale, which, to our knowledge, is a 

completely novel approach. The effectiveness of the approaches introduced in this study is 

demonstrated through the use of a case study involving arsenic attenuation in waste rock 

from the Antamina copper and zinc mine in Peru.  

Antamina is located at 4,300 m above sea level in a region with approximately 1,200 mm/yr 

precipitation and a four to five month long annual dry season. In spite of its tropical latitude, 

the cooling effect of its high elevation gives Antamina an average annual temperature of 

between 5 and 9
o
C (Klohn Crippen Berger Ltd, 2010). The mine produces copper and zinc, 

along with smaller quantities of molybdenum, bismuth, and lead, from a skarn deposit 

formed by a series of quartz monzonite intrusions into carbonate country rock (Redwood, 

1999; Love et al., 2004). Over the first 10 years of Antamina’s operations, the carbonate 

country rock has provided ample buffering capacity, preventing most leachate from turning 

acidic; however, several metals and metalloids including Mo, As, Zn, and Cu have reached 

high enough concentrations in neutral pH drainage to require attention (Bay et al., 2009; 

Aranda et al., 2009).  
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In this paper we demonstrate the utility of the stacked field cell and humidity cell connected 

in series methods to assess attenuation processes promoted by waste - rock mixing. We use 

these methods to investigate the use of black marble waste rock to attenuate As released from 

intrusive waste rock from the Antamina mine.    

2.2 Methods 

2.2.1 Field cells  

The field cell component of this experiment was initiated in 2006 (single material field cells) 

and 2009 (stacked field cells) and is currently ongoing. The single material field cells consist 

of 205 L plastic drums filled with coned and quartered waste rock material that was passed 

through a 10 cm mesh sieve (Figure 2.1). The plastic drums are open at the top allowing 

them to collect natural precipitation, and are fitted with a sloping bottom to direct basal 

drainage to a leachate sample collection system (Aranda et al., 2009). The sloping bottom is 

protected by a 10 cm thick layer of #60 mesh silica sand covered by a piece of Geotextile. 

Refer to Aranda (2009) for a more detailed description of the field cell design. Leachate from 

these field cells is sampled regularly, whenever sufficient volume for laboratory analysis is 

produced over the sampling interval.  Leachate samples from the field cells are analyzed for 

pH, conductivity, major ions, and trace metals. 

2.2.2  A novel stacked field cell design for the study of waste rock mixing 

Stacked field cells, where one rock type is placed above another, are used to study metal 

attenuation caused by waste rock mixing. The stacked field cells were constructed by placing 

a second barrel on top of a conventional barrel field cell used at the site to form a single, 1.8 

m tall (410 L) field cell. A wooden frame was constructed to hold the field cells in place and 

to prevent toppling (Figure 2.1). Distinct waste rock types were placed in the bottom and top 
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half of each stacked field cell, such that at the midpoint of the cell the two rock types were in 

direct contact with each other. This arrangement mimics the type of associations between 

distinct rock types in typical full scale waste rock dumps.   

 

Figure 2.1    UBC’s single field cells (left) and stacked field cells (right) installed at Antamina. Each 

barrel is 90 cm tall with a diameter of 48 cm. The buckets placed in front of the barrels collect leachate. 

Each stacked field cell contains 2 to 3 different material types arranged to approximate geochemical 

conditions in UBC’s experimental piles at Antamina, or the full-scale dumps themselves. The grey PVC 

tubes visible on the sides of the barrels channel drainage from the upper lysimeters. 

Drainage collected from the bottom of a stacked field cell has had contact with both rock 

types contained in the field cell. Samples representative of leachate from the material in the 

top material were collected using three mini-lysimeters installed at the contact between the 

two material types (Figure 2.2). The mini-lysimeters were made by cutting the bottoms out of 

1 L polyethylene sample bottles and covered a total of about 6.5% of the surface area of the 

field cells. All three mini-lysimeters drained to the same sample bucket. Holes were drilled 

into the sides of the plastic field cell barrels prior to the installation of the waste rock material 

to allow the mini-lysimeter drainage hoses to pass through the sides of the plastic barrels. 

These holes were sealed with silicone after the installation of the mini-lysimeters. 
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Figure 2.2    The upper lysimeters used to sample leachate from the top material (material 1) in the 

stacked field cells prior to mixing with the bottom material (material 2). The bucket “a” in the diagram 

indicates the bucket that collects water from the lysimeters, whereas “b” represents the bucket that 

collects water from the base of the field cell. The photograph to the right shows the upper lysimeters of a 

stacked field cell at Antamina during the installation of the second material type. 

2.2.3 Humidity cells 

A companion humidity cell experiment was established at the University of British Columbia 

in September 2010 to provide further confirmation of attenuation reactions observed in 

stacked field cell experiments, and to test whether the same attenuation could be replicated at 

a smaller scale and under laboratory conditions. To imitate the stacked field cell experiment, 

humidity cells were run in series, meaning that leachate from one humidity cell was collected 

(the leaching material), and then subsequently allowed to flow through a second humidity 

cell (the attenuating material). 

The humidity cell procedures employed in this study were based on the standard ASTM 

(1996) methodology, with some important modifications. One of the principal modifications 

of the ASTM (1996) method was the use of a ‘flood rinse’, where water is added to the 

column by pouring it over a period of less than a minute, rather than a ‘drip rinse’, where 

water is slowly drizzled onto the waste rock surface over a period of three days. Lappako and 

White (2000) found that this less labour-intensive flooding procedure made little difference 

to leachate composition when compared to the ASTM (1996) approach. The humidity cells in 
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this study were also subjected to passive oxidation and humidification, being installed in an 

enclosed chamber with abundant standing water without air pumped through the leaching 

chamber. Frostad et al. (2002) found that passive oxidation better simulates field leaching 

conditions than active oxidation.     

Waste rock material was placed into the humidity cells while still humid in an effort to 

maintain its original microbial community. The waste rock material installed in the humidity 

cells was sieved through a ¼” mesh. The sieved waste rock material was coned and quartered 

twice more in the laboratory prior to humidity cell installation in an effort to ensure that it 

was as homogeneous as possible. One kilogram of material was placed in each humidity cell. 

A total of 17 humidity cells were installed using 4 different material types. To demonstrate 

the usefulness of humidity cells for the study of attenuation, we focus on results from 8 

humidity cells in particular (Table 2.1).          



 14 

Table 2.1    Contents of 4 field cells installed to study metal attenuation at Antamina and 8 humidity cells 

installed at UBC for the same purpose. FC-black marble over intrusive and FC-intrusive over black 

marble are stacked field cells with two different material types, whereas UBC-1-3A and UBC-2-0A are 

single field cells. 

Field Cell 

Code 

Equivalent 

Humidity Cells 
Materials Used Purpose 

UBC-1-

3A 

HC-13-T1 Pb-bearing black marble waste rock – 

one of the material types used in FC-

black marble over intrusive and FC-

intrusive over black marble. 

Determine composition 

of leachate from Pb-

bearing black marble 

UBC-2-

0A 

HC-20-T1 Mo-bearing intrusive waste rock – 

one of the material types used in FC-

black marble over intrusive and FC-

intrusive over black marble. 

Determine composition 

of leachate from Mo-

bearing intrusive rock 

FC-black 

marble 

over 

intrusive 

HC-black marble 

over intrusive 

Pb-bearing black marble on top of 

Mo-rich intrusive rock 

Investigate possible Mo 

attenuation by co-

precipitation with Pb  

FC-

intrusive 

over black 

marble 

HC-intrusive over 

black marble 

Mo-rich intrusive on top of Pb-

bearing black marble 

Investigate possible Mo 

attenuation by co-

precipitation with Pb 

 

The humidity cells themselves were constructed out of acid washed plastic Nalgene bottles 

with their bases removed (Figure 2.3). The smaller of the two openings in the inverted 

Nalgene bottles was blocked by a drainage apparatus to hold water and waste rock material 

in place, and allow leachate to drain out of the humidity cell when desired. A fine nylon 

mesh was placed at the bottom of the cell to prevent waste rock material from washing out of 

the humidity cell and a plastic stopcock was installed on the outside of the drainage tube so 

that the humidity cell could be sealed to prevent drainage, if required.  

Humidity cells were housed in plastic storage bins with tight fitting lids. The lids on the bins 

were loose enough to allow for minor air circulation. The base of each bin was covered in a 
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layer of standing water (at least 1 cm deep) to ensure that the air on the inside of the bins 

remained at 100% relative humidity.  Leachate from the humidity cells was allowed to drain 

into a 500 mL Nalgene bottle for posterior sampling.  

 

Figure 2.3    The humidity cells experiment set up at UBC to study attenuation in the laboratory. Left: a 

conceptual diagram showing the manner in which leachate from one material type is poured onto the 

attenuating material. Right: the humidity cells as they were installed at UBC. The blue bin was sealed 

with water at the base to keep the relative humidity high.   

Humidity cells HC-32-T1, HC-32-T2, HC-20-T1, and HC-20-T2 were subjected to a 

modified ASTM humidity cell leaching procedure, in which 500 mL of distilled, de-ionized 

water was added to the cells on a weekly basis, and an hour of reaction time was allowed 

before the stopcocks were opened to allow water to drain from the humidity cells (ASTM, 

1996). 

Leachate samples were collected from humidity cells on a weekly basis throughout the first 

20 weeks of the laboratory experiment, although thereafter leaching continued to occur every 

week, although some humidity cell leachate samples were collected every two weeks. 

Leachate was filtered through a 0.45 µm filter membrane into a 30 mL HDPE sample bottle, 

which had previously been triple-rinsed with filtered sample. Samples for cation analysis 

were acidified to below pH 3 with nitric acid. Immediately after the collection of the water 

quality sample, a separate 25 mL sample was titrated using sulfuric acid for alkalinity 

determination. Water quality samples were stored in a refrigerator prior to analysis for major 

ions, trace metals, and elemental sulfur with a Varian ES-725 ICP-OES.  
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2.2.4 Humidity cells connected in series 

To evaluate attenuation by waste rock mixing, we developed a new protocol where leachate 

produced from a humidity cell containing a hypothesized releasing material was applied to a 

humidity cell containing a hypothesized attenuating material. This provided more 

representative water-to-rock ratio (compared to that in the field cells) and allowed more 

reaction time in the (second) humidity cell with the attenuating material, so that secondary 

mineral formation was not kinetically limited. A water-to-rock ratio typical of the stacked 

field cells was approximated by adding 230 mL of distilled water each week to the four 

humidity cells with metal releasing materials. The stopcock was left closed for 1 hour before 

the humidity cell was allowed to drain for one week. An 80 mL subsample was removed 

from the leachate from the first (metal releasing) humidity cell was retained for chemical 

analysis, and the remaining 150 mL of leachate to be passed through the second (metal 

attenuating) humidity cell. The stopcock at the base of the second (attenuating) humidity cell 

was left closed for a full 24 hours instead of just 1 hour as dictated by the standard ASTM 

(1996) procedure.  

While maintaining water-saturated conditions at the bottom of the humidity cell for a longer 

period of time than proscribed in the ASTM (1996) procedure limits sulfide oxidation by 

restricting the supply of oxygen, it provides longer time to facilitate dissolution and re-

precipitation of secondary minerals and kinetically limited adsorption reactions. 

2.2.5 Illustrative example of experimental approaches: materials used 

We demonstrate the stacked field cell and humidity cells connected in series protocols using 

waste rock from the Antamina mine site. The waste rock was selected based on three criteria: 

propensity to leach metals of interest, the hypothesized ability to attenuate metals of interest, 
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and previous use in UBC’s experimental waste-rock piles (Bay et al., 2009). We focus on 

results from field cells containing two distinct materials: Pb-bearing black marble, UBC-1-

3A; As-bearing intrusive, UBC-2-0A. A conventional single material field cell containing 

Pb-bearing black marble was installed in August 2006 and a different single field cell 

containing As-bearing intrusive rock was installed in October 2007. Additional samples of 

these waste rock types were stored at ambient temperatures in plastic bags under a roof or 

tarps until June 2009, 33 and 19 months after they were mined, when they were placed in the 

stacked field cells FC-black marble over intrusive and FC-intrusive over black marble (Table 

2.1). Approximately 350 kg of each rock type was placed in the top and bottom half the 

stacked field cell.  

2.2.6 Data processing procedures  

Leachate chemistry data from the first two rainy seasons after installation are presented for 

all field cells, starting at 10 days before the first samples were collected from each cell. Data 

from single field cells are included on the graphs for comparison with data from the stacked 

field cells, given that the mini-lysimeters from the stacked field cells produced insufficient 

solution for chemical analysis. The time (horizontal) axis dry seasons were removed from 

field cell graphs to ease comparison between stacked and single field cell data, and also to 

remove gaps from the data series in the graphs, since water samples were not available 

during these times.  

2.3 Performance 

2.3.1 Geochemical attenuation of As 

We use the example of arsenic attenuation by contact with Pb-bearing black marble to 

illustrate the usefulness of stacked field cells and humidity cells connected in series. Arsenic 
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leached from the base of FC-black marble over intrusive, reaching 0.18 mg/L seventeen 

weeks after initial flow from the field cells, and fluctuating between 0.15 mg/L and 0.2 mg/L 

for the remainder of the study period (‘Stacked (base)’ in top right graph, Figure 2.4).  

Arsenic concentrations in the black marble single field cell were consistently below 0.03 

mg/L (‘Single’ in top right graph, Figure 2.4). The As concentration in the single sample of 

leachate available from the top lysimeter in FC-black marble over intrusive was 0.009 mg/L 

(‘Stacked (Top)’ in top right graph, Figure 2.4). The pH of basal leachate dipped to 6.7 

shortly after installation, before stabilizing between 7.5 and 8 for most of the experimental 

period (‘Stacked (base)’ in bottom right graph, Figure 2.4). Leachate from the top lysimeter 

rose gradually over time from 7.5 before remaining relatively stable near 7.8 for the duration 

of the experiment (‘Stacked (top)’ in bottom right graph, Figure 2.4). Insufficient flow from 

the upper lysimeters in FC-black marble over intrusive led to a lack of pH data during the 

second year of the experiment.  

Arsenic concentrations in the associated humidity cells connected in series (HC-black marble 

over intrusive), where leachate flowed through black marble, before making contact with 

intrusive material, showed similar trends to in stacked field cell FC-black marble over 

intrusive. As concentrations in leachate from the second humidity cell in series fluctuated 

between 0.1 and 0.3 mg/L in the first half of the experiment, reaching maximum of 0.39 

mg/L in week 21 and exceeding 0.3 mg/L for the final 10 weeks of sampling (‘Second cell’ 

top left graph, Figure 2.4). Very little arsenic leached from the black marble waste rock, 

since As concentrations never exceeded the detection limit of 0.09 mg/L (‘First Cell’, top left 

graph, Figure 2.4). Leachate pH from HC-black marble over intrusive fluctuated between 7 

and 8 (Bottom left graph, Figure 2.4). During the last 20 weeks of the experiment leachate 
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pH from the second cell in HC-black marble over intrusive tended to be 0.2-0.6 pH units 

higher than that of leachate pH from the first cell in HC-black marble over intrusive, 

suggesting that pH was increased by contact with intrusive material. 
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Figure 2.4    As-concentrations (middle) and leachate pH (bottom) as a function of time  since the 

initiation of flow in stacked field cell FC-black marble over intrusive (right column) and corresponding 

humidity cells HC-black marble over intrusive (left column). The upper diagrams show the configuration 

of waste rock material in this stacked field cell and its corresponding humidity cells. The vertical red 

dashed line with an arrow on the field cell graphs indicates the position of the data gap at end of the first 

rainy season in the stacked field cell data, while the dashed blue line without the arrow indicates the end 

of the first rainy season on the single field cell series. 

Results from the FC-intrusive over black marble revealed that contact with black marble 

removed As from leachate (Figure 2.5). Arsenic concentrations in the leachate from the base 
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of FC-intrusive over black marble were consistently below 0.01 mg/L (‘Stacked (base)’, top 

right graph, Figure 2.5). Typical As concentrations in leachate from the intrusive rock at the 

top of FC-intrusive over black marble ranged from 0.15 mg/L to 0.4 mg/L (‘Single’ top right 

graph, Figure 2.5). The As concentration in the sample from the upper lysimeter in FC-

intrusive over black marble was 0.28 mg/L, suggesting that similar quantities of arsenic were 

also being released from the intrusive material at the top of the stacked field cell (‘Stacked 

(top)’, top right graph, Figure 2.5). Leachate pH from the base of FC-intrusive over black 

marble dipped to 6.7 before gradually increasing over several weeks to 7.5 to 7.7 (‘Stacked 

(base)’, bottom right graph, Figure 2.5). Towards the end of the study time, the pH of basal 

leachate from FC-intrusive over black marble exceeded 8. The pH of leachate from the upper 

lysimeter showed a very similar trend to that of basal leachate, although it was often 0.1 to 

0.3 pH units higher (‘Stacked (top)’, bottom right graph, Figure 2.5).  

Data from humidity cells in series HC-intrusive over black marble, where leachate from 

intrusive waste rock was run through black marble, demonstrated that As attenuation also 

occurred under laboratory conditions. Arsenic concentrations in the leachate from As-

releasing intrusive material rose from around 0.17 mg/L near the beginning of the experiment 

to 0.4-0.5 mg/L during its final 20 weeks (‘First Cell’, top left graph, Figure 2.5). Arsenic 

concentrations in the same leachate were reduced to below detection limit after passing 

through the black marble in HC-intrusive over black marble (‘Second Cell’, top left graph, 

Figure 2.5). Leachate pH ranged between 7 and 8 throughout the entire duration of the 

experiment (Bottom left graph, Figure 2.5). Contact with the black marble appeared to 

increase leachate pH, making leachate from the second cell in HC-intrusive over black 

marble 0.2 to 0.6 pH units higher than leachate that had only passed through the first cell.  
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Figure 2.5    As-concentrations (middle) and leachate pH (bottom) as a function of time  since the 

initiation of flow in stacked field cell FC-intrusive over black marble (right column) and corresponding 

humidity cells HC-intrusive over black marble (left column). The upper diagrams show the configuration 

of waste rock material in this stacked field cell and its corresponding humidity cells. The vertical red 

dashed line with an arrow on the field cell graphs indicates the position of the data gap at end of the first 

rainy season in the stacked field cell data, while the dashed blue line without the arrow indicates the end 

of the first rainy season on the single field cell series. 
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2.4 Discussion  

2.4.1 Example application: arsenic attenuation 

Arsenic concentrations in leachate from the intrusive rock used in this study usually ranged 

between 0.15 and 0.4 mg/L in field cell leachate. More than 94% of this As was removed by 

contact with black marble, decreasing As concentrations to below 0.01mg/L at the base of 

mixed material stacked field cell FC-intrusive over black marble. Arsenic concentrations in 

leachate from the base of FC-black marble over intrusive, where black marble was placed on 

top of As-releasing intrusive rock exhibited similar concentrations to those found in leachate 

from the unmixed single field cell of intrusive waste rock. The stacked field cells method was 

able to demonstrate that the order in which the waste rock was placed determined the degree 

of attenuation. 

In spite of the differences in grain size distribution, flow regime, temperature, and 

experimental scale between the humidity cells and the stacked field cells, the same pattern of 

As attenuation was observed for both methods. As was the case in the humidity cells, arsenic 

was only removed from leachate when direct contact occurred between the leachate and the 

attenuating material (i.e. when the leachate passed through the As-releasing intrusive rock 

prior to making contact with the black marble). The ICP-OES method used to analyze 

samples from the humidity cell experiment was not as sensitive as the method employed by 

ALS laboratories in Lima to analyze chemistry samples from the stacked field cells, therefore 

a comparison of removal efficiencies at the different scales is not feasible. Arsenic 

concentrations were reduced to below the detection limit (0.09 mg/L) in all samples that had 

passed through black marble. Given that maximum As concentrations in leachate from the 
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first HC-intrusive over black marble cell were 0.47 mg/L, at least 80% of As was removed 

after contact with black marble in the humidity cell experiment.  

2.4.2 Insight into attenuation mechanism 

The methods presented here can provide opportunities to identify the attenuation mechanism. 

This has been done for Zn in a different field cell (Chapter 3), however was not possible in 

the case of As because if its low leachate concentration. Many researchers have identified co-

precipitation with secondary iron minerals like jarrosite, or adsorption onto iron-oxide, or 

oxy hydroxide surfaces as important mechanisms for As attenuation in mine drainage 

systems (e.g. Smedley and Kinniburgh 2002; Fukushi et al., 2003 and references therein). 

Dixit and Hering (2003) ran batch experiments mixing As(V) containing solutions with 

amorphous iron oxy hydroxide solid phases and found that circum-neutral pH adsorption 

removed nearly all of the As from a solution that initially contained 0.7 mg/L. If such 

adsorption mechanisms were responsible for the attenuation of As in this study it is unclear 

why As was released from intrusive material in the first place, given that these secondary 

iron oxy hydroxide mineral phases commonly occur in waste rock and tailings due to the 

precipitation of iron from pyrite oxidation at circum-neutral pH (Smedley and Kinniburgh, 

2002).  

An alternative explanation for the pattern of As attenuation observed in this study is the co-

precipitation of As and Pb in a secondary minerals such as schultenite (PbHAsO4), mimetite 

Pb5(AsO4)3Cl, or hydroxymimetite (Pb5(AsO4)3OH) (Villalobos et al., 2010). Co-

precipitation with Pb would explain the observation that mixing the As-bearing leachate with 

Pb-bearing led to a marked decline in dissolved As concentrations. In this geochemical 

system Pb is likely released into solution by galena (PbS) oxidation, and immobilized by the 
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precipitation of cerrusite (PbCO3) (Chapter 3). Lead’s low mobility in this system is 

potentially responsible for this study’s observation that As is only removed from solution 

when As-bearing leachate comes in direct contact with Pb-bearing black marble. We 

hypothesize that as arsenic-bearing leachate enters the zone of active galena oxidation in this 

experiment, As reacts with the newly released Pb to form schultenite, mimetite or 

hydroxymimetite before cerrusite precipitation can occur. Further research, such as the 

identification of As secondary minerals in the attenuating material, is needed to identify the 

mechanism behind As attenuation in this study.  

2.4.3 Stacked field cell performance 

The results of this study provided an opportunity to evaluate the performance of the stacked 

field cells as means of collecting data on the geochemical attenuation potential due to waste 

rock mixing. One important issues was the performance of the upper lysimeters, since they 

provided a direct means of comparison between pre-mixing leachate chemistry and the mixed 

leachate that flows out of the base of the field cell. The stacked field cells were designed such 

that just over 6% of the total flow would be intercepted by the upper lysimeters. During the 

first two rainy seasons after their installation, 1.3% of the total flow was captured by the 

upper lysimeters in FC-intrusive over black marble, whereas only 0.3 % of the total flow was 

captured by FC-black marble over intrusive’s upper lysimeters. The low number of data 

points from the upper lysimeters was not just a result of the low water volume that the upper 

lysimeters captured. A second factor limiting the amount of chemistry data that could be 

collected from the upper lysimeters was that the commercial laboratory where the samples 

were analyzed required at least 1L of sample for their analysis to comply with QA/QC 

procedures. In the third year of this experiment, a different laboratory was chosen for 
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leachate chemical analysis, allowing the sampling procedure to be modified to require less 

leachate. This change in sampling procedures has allowed for the collection of more leachate 

samples from the upper lysimeters in FC-intrusive over black marble, but as of the time of 

publication, data from these samples were not yet available.  

The scarcity of leachate samples from the upper lysimeters meant that data from the single 

field cells was essential for interpreting the results of this study. We believe that the single 

field cell leachate results are valid surrogates for the upper lysimeters of the stacked field 

cell, since they were composed of the same homogenized waste rock. Data from this study 

indicate that the use of single field cell data as surrogates for data from the top of the stacked 

field cell has some limitations, especially when working with highly heterogeneous waste 

rock, it is generally satisfactory. 

2.5 Conclusions and recommendations 

This study leads to four important conclusions that have implications for waste rock 

management in neutral drainage systems: 1) Stacked field cells and humidity cells installed 

in series can both be used to study attenuation reactions 2) results between the methods are 

comparable, despite the differences in scale, 3) in addition to obtaining quantitative 

information on metal attenuation, the experiments are useful to develop hypothesis and guide 

follow-up research on metal attenuation mechanisms, and 4) Simply putting the two rock 

types in contact is not enough to ensure attenuation; the metal-rich leachate must have 

physical contact with an attenuating material to sequester as the metal.  

Single field cells also allow for a better understanding of the pre-mixing leachate 

composition from the material in the bottom of the stacked field cell. While it is important to 

have separate single material field cells installed in conjunction with the stacked field cells, it 



 27 

is also important to have functioning upper lysimeters in the stacked field cells to help 

account for waste rock heterogeneity.  

This investigation has demonstrated that both stacked field cells and humidity cells 

connected in series can be used to study attenuation in waste rock. Some advantages of the 

stacked field cells are that their larger volume and larger grain size allows them to better 

account for sample heterogeneity and waste rock texture, and that they operate under ambient 

field conditions, and therefore give more representative reaction rates. Disadvantages of the 

stacked field cell technique include the risk of malfunctioning upper lysimeters, the extra cost 

associated with the implementation of their more complex design. The major advantages of 

the humidity cell approach are the ease of installation and sampling, the ability to control 

leaching conditions, the ease with which unmixed leachate from the releasing material can be 

sampled, and the fact that they accelerate the reactions involved with leaching and 

attenuation, and therefore could be used to help predict the long-term behavior of the system. 

Disadvantages of using humidity cells to study attenuation are that they are too small to 

adequately account for geochemical heterogeneity in waste rock, and do not leach under 

ambient field conditions. Both methods yielded similar results in this study, and further 

comparison between the two methods in this in Antamina waste rock suggest that running 

humidity cells in series can be used to reliably assess attenuation reactions due to waste rock 

mixing (Chapters 3 and 4). 
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Chapter  3: A study of Zn and Mo attenuation by waste rock mixing in 

neutral mine drainage from the Antamina mine in Peru using stacked field 

cells and humidity cells
2
 

3.1 Introduction 

Mine managers are increasingly aware of the importance of understanding the geochemical 

characteristics of ore deposits and their surrounding host rock when developing waste-rock 

management or mine closure plans (Kwong, 2003). Mixing different waste rock materials 

from the same mine site may help mitigate the environmental consequences of mine 

drainage. Such strategic mixing is often used in conjunction with application of off-mine 

amendments such as ash, lime, or alkali phosphate-bearing rock (Mehling Environmental 

Management, 1998; Morin and Hutt, 2000; Bertocchi et al., 2006; Hakkou et al., 2009; 

Robinson-Lora and Brennan, 2009). An extensive research program has been conducted at 

the Grasberg mine in Indonesia to examine the effectiveness of different schemes for mixing 

limestone and acid generating material in an effort to mitigate acid mine drainage without 

relying on amendments from outside the mine site (Miller et al., 2003; Andrina et al., 2006; 

Smart et al., 2010). Like the Grasberg mine project, most research on waste rock mixing has 

focused upon mixing of acid producing and neutralizing materials for the purpose of 

maintaining a neutral pH.  In contrast, we explore the attenuation of aqueous Mo and Zn that 

has been released into neutral pH drainage from one waste rock type when it is mixed with a 

second waste rock type from the same mine.   

The Antamina copper and zinc mine in the Peruvian Andes, extracts material from a Cu- and 

Zn-rich skarn deposit in limestone-rich country rock, which provides abundant natural 

                                                 

2
 A version of this chapter will be submitted for publication with D. Trevor Hirsche, Roger D. Beckie, 

and K. Ulrich Mayer
 
as authors 
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neutralization potential (Love et al., 2004). Even though drainage from Antamina’s waste 

rock is circum-neutral, certain metals, like Cu and Zn, and metalloids, including Mo and As, 

may reach high enough concentrations to require treatment (Bay et al., 2009; Aranda et al., 

2009). Although both of these species are mobile in neutral conditions, they exhibit distinct 

chemical behaviors given that Mo occurs as an oxyanion (MoO4
2-

), whereas Zn
2+

 is a weakly 

hydrolyzing cation (Langmuir, 1997, p. 98).  

Molybdenite (MoS2) oxidation in tailings and waste rock is an important source of Mo in 

mine drainage systems (e.g. Borden, 2003), and the abundance of molybdenite in the waste 

rock at Antamina suggests that it is the major source of Mo in this study. Mo’s mobility is 

limited by adsorption onto Al and Fe oxides below pH 5; however this mechanism is much 

less effective in circum-neutral pH conditions (Goldberg et al., 1996; Gustafsson et al., 

2003). In circum-neutral conditions, Mo concentrations are controlled by the precipitation of 

minerals like wulfenite (PbMoO4) and powellite (CaMoO4) (Vlek and Lindsey, 1977). 

Laboratory experiments with artificial materials demonstrated that the precipitation of both 

of these minerals could play an important role in reducing Mo mobility in conditions 

representative of mine drainage from Antamina (Conlan et al., 2012).  

Sphalerite (ZnS) is a common Zn mineral in skarn deposits, such as that mined by Antamina 

(Love et al., 2004; Chang and Meinert, 2008). Sphalerite oxidizes when waste rock is 

exposed to the atmosphere, releasing Zn into solution (Borden, 2003). Once mobile in a 

circum-neutral solution, Zn may be: taken up by phyllosilicate minerals (Manceau et al., 

2000), precipitated as a hydroxide or carbonate secondary mineral (Gupta et al., 1987), or 

adsorbed on to an iron or aluminum oxides or oxy hydroxides (Trivedi and Axe, 2000).  
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Our research examines the geochemical attenuation of Zn and Mo through the layering of 

different types of waste rock from the Antamina mine. Attenuation mechanisms are 

investigated using stacked field cells installed in ambient conditions at the mine site. The 

study also includes a laboratory experiment using humidity cells connected in series such that 

the leachate from one material type flows through a second humidity cell with a distinct 

material type. More specifically, the experiments in this study were designed to determine if 

contact with carbonate-rich hornfels waste rock can reduce Zn concentrations, or if lead from 

black marble waste rock can control Mo concentrations through wulfenite precipitation.     

3.2 Methods 

This study used field cells, 205-L plastic barrels filled with waste rock and left exposed to 

ambient atmospheric conditions at the Antamina mine (Figure 3.1), and humidity cells - 1 kg 

samples of the same waste rock material in a laboratory at the University of British Columbia 

(Figure 3.2). In both the laboratory and field components of this study, the experiment was 

designed such that water from a Zn or Mo releasing material would have contact with 

another material hypothesized to be capable of reducing metal concentrations through 

geochemical attenuation. In the field-cell experiment, this was accomplished by placing 

waste rock in stacked field cells (Figure 3.1), two different waste rock materials were layered 

such that they had direct contact with each other.  In the humidity cell experiment, leachate 

from the metal releasing material was poured onto the top of the attenuating material at the 

end of each weekly leach cycle. The current study focuses on results from three stacked field 

cells, six humidity cells, and four single field cells (Table 3.1).  
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Figure 3.1    The stacked field cells referred to in this study (left) with a schematic diagram of their 

internal structure (right). Each field cell contained 3 upper lysimeters installed at the contact between 

two material types, which were designed to sample leachate from the top material before it entered the 

second material. Drainage from the upper lysimeters all flowed into bucket a, whereas drainage that had 

been in contact with both material types flowed into bucket b. The total height of the stacked cells is 1.8 

m. 

Field cell leachate was collected weekly by mine site staff during the October – April wet 

season.  Leachate from field cells is sampled regularly throughout the wet season, provided 

sufficient volume for laboratory analysis is produced over the sampling interval. The volume 

of leachate produced, and the conductivity and pH of each sample is measured in the field. 

Water samples are collected in plastic bottles and taken to the laboratory at Antamina for 

filtration through 0.45 μm filter membrane. Trace metals and cation samples are acidified 

with nitric acid to below pH 3 for preservation. Samples are then stored below 4
o
C and 

shipped to ALS laboratories in Lima for chemical analysis using ICP-MS. 

  



 32 

Table 3.1    Contents of the 7 field cells installed to study Mo and Zn attenuation at Antamina and 6 

humidity cells installed at UBC for the same purpose. FC-black marble over intrusive and FC-intrusive 

over black marble are stacked field cells with two different material types, whereas UBC-1-3A and UBC-

2-0A are single field cells. 

Field Cell 

Code 

Equivalent 

Humidity 

Cells 

Materials Used Purpose 

UBC-1-3A N/A Pb-bearing black marble waste rock – 

one of the material types used in FC-

black marble over intrusive and FC-

intrusive over black marble. 

Determine composition 

of leachate from Pb-

bearing black marble 

UBC-2-0A N/A Mo-releasing intrusive waste rock – 

one of the material types used in FC-

black marble over intrusive and FC-

intrusive over black marble. 

Determine composition 

of leachate from Mo-

releasing intrusive rock 

UBC-4-5-1A N/A Relatively inert grey hornfels waste 

rock – one of the material types used 

in FC-exoskarn over grey hornfels. 

Determine composition 

of leachate from 

hornfels waste rock 

UBC-3-2A N/A Zn-rich exoskarn – one of the 

materials used in FC-exoskarn over 

grey hornfels 

Determine the 

composition of leachate 

from Zn-rich exoskarn 

rock 

FC-exoskarn 

over grey 

hornfels 

HC-exoskarn 

over grey 

hornfels 

Zn-rich exoskarn on top of grey 

hornfels. Only 33% of the mass of the 

material in the stacked field cell is Zn 

bearing intrusive rock, whereas the 

proportions of each material are 

roughly equal in the humidity cells. 

Determine if Zn is 

attenuated by contact 

with grey hornfels 

material. 

FC-black 

marble over 

intrusive 

HC-black 

marble over 

intrusive 

Pb-bearing black marble on top of 

Mo-rich intrusive rock 

Investigate possible Mo 

attenuation by co-

precipitation with Pb 

FC-intrusive 

over black 

marble 

HC-intrusive 

over black 

marble 

Mo-rich intrusive on top of Pb-

bearing black marble 

Investigate possible Mo 

attenuation by co-

precipitation with Pb 

 

Leachate collected at the base of the stacked field cell represents infiltration that entered in 

the upper cell and flowed through both materials and hence shows the post-mixing 
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composition. The leachate produced by the material in the upper cell of the stacked field cells 

was collected and sampled from three upper lysimeters located at the interface between 

material types. These upper lysimeters, open to about 6% of the cross-sectional area of the 

field cell, most often did not produce between sampling intervals the 1-L of leachate that 

mine-site protocols require for chemical analysis. Consequently, although upper lysimeters 

usually provided enough volume to allow the measurement field parameters, the chemistry of 

the upper-cell leachate was frequently not available. However, conventional single – material 

field cells, (“single field cells”), equivalent in volume to each cell of the stacked field cells, 

were earlier established with the same material types used in the stacked cells.  In the 

comparisons that follow, leachate chemistry from the single field cells containing the same 

material as the subject stacked field cell was considered representative of the upper cell and 

also compared to the post-mixing composition observed at the base of the stacked cell.  

The humidity cells were operated according to the ASTM (1996) procedure, except that they 

were subjected to a weekly “flood” irrigation (Lapakko and White, 2000; Sapsford et al., 

2009), and were not exposed to active air circulation (Frostad et al., 2002). Each week, the 

humidity cell containing the metal releasing material (analogous to the upper cell of a stacked 

field cell) was irrigated with distilled water. The leachate produced was then used to irrigate 

the humidity cells of the material hypothesized to contain the attenuating material (analogous 

to the lower cell of the stacked field cells – see Figure 3.2). Cation samples from the 

humidity cells were syringe filtered through a 0.45 μm, acidified to below pH 3 with nitric 

acid, and refrigerated in 30 mL PET sample bottles until they could be analyzed. Samples 

from the humidity cells were analyzed at UBC using ICP-OES.  A more detailed description 
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of the methods used in the field cell and humidity cell experiments can be found in Chapter 

2. 

 

 

Figure 3.2    A  schematic diagram of the humidity cells connected in series (left) demonstrating the 

manner in which leachate from the first humidity cell is poured directly into the second humidity cell. 

The humidity cell used in this study are shown on the right. 

Samples from both the Zn-releasing exoskarn (UBC-3-2A) and the Zn-attenuating hornfels 

(UBC-4-5-1A) were ground into a fine powder with a mortar and pestle for qualitative X-ray 

diffraction (XRD) analysis to identify the major rock forming minerals present in each 

sample. Weathered and un-weathered samples of the Zn-releasing exoskarn were analyzed 

separately to evaluate changes in mineralogy as a result leaching in the humidity cell 

experiment. A similar analysis was carried out with the Zn-attenuating hornfels material, 

except that a sample from HC-Zn-TL, which had been exposed to Zn-rich leachate through 

the duration of the humidity cell experiment, was also analyzed in the hopes of identifying 

any Zn-bearing secondary minerals that could account for the observed attenuation. These 

XRD analyses were carried out using a Brucker D8 Focus X-ray diffractometer at UBC. 

Mineral peaks were identified using the PDF-4+ 2011 RDB database in EVA 2.0.  

The Zn-attenuating hornfels material in this study was also analyzed with scanning electron 

microscopy (SEM). Prior to analysis, samples from this material were mounted on mineral 

stubs and carbon-coated for analysis in a Philips XL-30 scanning electron microscope at 
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UBC. A crushed, un-weathered sample, a sample that had been weathered during the 30 

week humidity cell experiment, but not exposed to Zn-bearing leachate, and a sample from 

the top surface of the attenuating material that had been in contact with Zn-bearing leachate 

throughout the 30 week humidity cell experiment were mounted on metal stubs and carbon 

coated SEM analysis. The samples from humidity cells were collected with a stainless steel 

spatula. Element maps revealed an apparent abundance of scattered Zn throughout the 

sample. Apparent Zn-rich areas that also coincided with the shape of mineral grains in the 

sample were selected for energy dispersion spectrometry (EDX) analysis in order to 

determine their elemental composition. 

The MINTEQ.V4 database in the aqueous chemical modeling program PHREEQC I version 

2.18.5570 was used to better understand the geochemical processes behind the observed 

attenuation. Saturation indices (SI) for all Zn- and Mo-containing minerals in the 

MINTEQ.V4 database were calculated using the leachate chemistry from the base of field 

cells FC-exoskarn over grey hornfels and FC-intrusive over black marble (Table 3.2). 

Minerals that were at or near saturation according to the initial SI calculations were allowed 

to precipitate in simple reactive transport models designed to simulate Mo and Zn attenuation 

in field cells FC-intrusive over black marble and FC-exoskarn over grey hornfels in an 

unsaturated system at equilibrium with atmospheric oxygen and carbon dioxide (see table 3.2 

for a list of phases and key parameters used in these models).  
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Table 3.2    The input parameters for the PHREEQC I models that were used simulate Zn and Mo 

attenuation in the basal material of stacked field cells FC-exoskarn over grey hornfels and FC-intrusive 

over black marble (respectively). Columns 2 and 3 (from left to right) refer to phases that were initially 

present in the simulated field cells, whereas column 4 lists the mineral phases that were allowed to 

precipitate out of solution in the simulated attenuating material. Columns 5 and 6 refer to the 

composition of the Mo or Zn bearing solution that was attenuated by contact with the field cells’ basal 

material. 

Modeled 

field cell 

Equilibrium 

phases 

present 

Kinetic 

phases 

present 

Phases allowed to precipitate 

Input Mo or 

Zn 

Concentration 

(mg/L) 

Input 

solution 

pH 

FC-

intrusive 

over black 

marble 

Calcite, 

oxygen, 

carbon 

dioxide 

(atmospheric) 

Pyrite, 

galena 

Cerrusite (PbCO3), Anglesite 

(PbSO4), Na2MoO4, Hinsdalite 

(PbAl3PO4SO4(OH)6),   

Wulfenite (PbMoO4), H2MoO4,  

FeMoO4, Powellite (CaMoO4),  

Pb3(AsO4)2,  Fe(OH)2, 

Ferrihydrite (Fe(OH)3), Goethite 

(FeOOH) 

4 (Mo) 7 

FC-

exoskarn 

over grey 

hornfels 

Calcite, 

oxygen, 

carbon 

dioxide 

Pyrite 

Fe(OH)2, Ferrihydrite (Fe(OH)3), 

Goethite (FeOOH), Zn(OH)2(beta)  

Zn(OH)2(epsilon),  Zn(OH)2(gamma),                           

Zn2(OH)2SO4,  Zn(OH)2(am),  

Zn(OH)2 , Zincosite (ZnSO4),                       

ZnCO3:1H2O,  Smithsonite 

(ZnCO3) 

30 (Zn) 7.2 

 

The model domain extended from the top of the attenuating material to the base of the 

stacked field cell for both FC-intrusive over black marble and FC-exoskarn over grey 

hornfels. The model was discretized into 9 cm long reaction cells. In both models a solution 

with a constant chemical composition representative of leachate from the Mo or Zn source 

material was allowed to flow through the attenuating material continuously at a rate of about 

3.5 x 10
-5

 m/s. The water was allowed to react with abundant calcite and pyrite in this 

simulation. Though this flow rate and the sulfide oxidation rates used in this modeling 

exercise are thought to be reasonably representative of conditions in the field cells, they are 
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approximations and intended to improve conceptual understanding of the system rather than 

precisely explain or predict geochemical behavior. 

3.3 Results 

3.3.1 Experimental data 

The climate at the Antamina mine is distinguished by a wet season, roughly October through 

April, and a dry season, May through September during which no flow is produced from the 

field cells.  Accordingly, these time periods of no flow were removed from the field-cell 

chemistry graphs presented in this study. Time gaps in the data series are represented by 

vertical dashed lines. The time scale in the horizontal axis of the chemistry graphs refers to 

weeks since the first leachate was collected after the field cell was installed (with the dry 

seasons removed). In contrast, humidity cells in lab were irrigated continuously during their 

operation and no gaps were removed from the plots. Single field cells were installed prior to 

their associated stacked field cells; however, the data from the first two rainy seasons after 

installation are shown in all cases.  

We first examine stacked field cell FC-black marble over intrusive where Pb-bearing black 

marble overlies Mo-releasing intrusive rock. The Mo concentration from the first leachate 

sampled from the base of field cell FC-black marble over intrusive was 10.2 mg/L. As the 

rainy season progressed, the Mo concentration leveled off at about 3.4 mg/L (‘Stacked 

(base)’ in Figure 3.3, top right graph). During the second rainy season, (week 22 onwards), 

Mo concentrations began at around 7.2 mg/L, then eventually leveled off near 2.3 mg/L as 

the rainy season progressed. The single data point available from the upper-lysimeters in the 

black marble had a Mo concentration of 0.036 mg/L, suggesting that nearly all of the Mo in 

drainage at the base of the stacked cell originated from the intrusive material at the bottom 
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(‘Stacked (top)’ in Figure 3.3, top right graph). Data from the single field cell with the 

identical Pb-bearing material (“Single” in Figure 3.3, top right graph) also indicated that very 

little Mo leached from the Pb-bearing top material: Mo concentrations never exceeded 0.03 

mg/L during the study. The pH of basal leachate fell between 7.5 and 8 for most of the 

experimental period (‘Stacked (base)’ in Figure 3.3, bottom right graph). The pH of leachate 

from the upper lysimeters rose gradually over time from 7.5 before remaining relatively 

stable near 7.8 (‘Stacked (top)’ in Figure 3.3, bottom right graph).  

Mo concentrations in leachate from humidity cells HC-black marble over intrusive showed 

very similar trends to the corresponding stacked field cells. Mo concentrations in the leachate 

from the first cell in HC-black marble over intrusive never exceeded the detection limit (0.09 

mg/L – ‘First cell’ in Figure 3.3, top left graph), however after passing through the Mo-rich 

intrusive rock in second cell they ranged from 2 mg/L to 11 mg/L (‘Second Cell’ in Figure 

3.3, top left graph). The Mo concentration of the first sample from the second cell of HC-

black marble over intrusive exceeded 10.7 mg/L and then dropped to below 4 mg/L by week 

ten of the experiment, before undulating between 2.5 and 4 mg/L for final 20 weeks. 

Leachate pH from HC-black marble over intrusive fluctuated between 7 and 8 (Figure 3.3, 

bottom left graph). During the last 20 weeks of the experiment leachate pH from the second 

cell tended to be 0.2-0.6 pH units higher than that of leachate from the first cell, suggesting 

that pH increased due to contact with Mo-rich intrusive material. 
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Figure 3.3    Mo-concentrations (middle) and leachate pH (bottom) as a function of time  since the 

initiation of flow in stacked field cell FC-black marble over intrusive (right column) and corresponding 

humidity cells HC-black marble over intrusive (left column). The upper diagrams show the configuration 

of waste rock material in this stacked field cell and its corresponding humidity cells. The vertical red 

dashed line with an arrow on the field cell graphs indicates the position of the data gap at end of the first 

rainy season in the stacked field cell data, while the dashed blue line without the arrow indicates the end 

of the first rainy season on the single field cell series. 

In FC-intrusive over black marble, the Mo-releasing intrusive rock was placed upstream of 

the Pb-bearing rock, so Mo-releasing leachate had direct contact with Pb-bearing material. 
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Indeed, compared to leachate from the base of FC-black marble over intrusive, leachate from 

FC-intrusive over black marble had very low Mo-concentrations, consistently less than 0.03 

mg/L (‘Stacked (base)’ in Figure 3.4, top right graph). The single sample available from the 

upper lysimeters had a concentration of 6.7 mg/L, confirming that the Mo-releasing intrusive 

material was indeed leaching Mo in the stacked field cell (‘Stacked (base)’ in Figure 3.4, top 

right graph). Mo concentrations in leachate from a single field cell containing the identical 

Mo-releasing intrusive material typically showed Mo concentrations between 1 and 4 mg/L, 

although Mo concentrations were as low as 0.24 mg/L shortly after installation (‘Single’ in 

Figure 3.4, top right graph). Leachate pH from the base of FC-intrusive over black marble 

dipped to 6.7 before gradually increasing over several weeks to 7.5 to 7.7 (‘Stacked (base)’ in 

Figure 3.4, bottom right graph). Towards the end of the study time, the pH of basal leachate 

from FC-intrusive over black marble exceeded 8. The pH of leachate from the upper 

lysimeters showed a very similar trend to that of basal leachate, although it was often 0.1 to 

0.3 pH units higher (‘Stacked (top)’ in Figure 3.4, bottom right graph).  

The corresponding humidity cells also showed attenuation of Mo to below detection. 

Leachate from the Mo-releasing material in humidity cell HC-intrusive over black marble 

contained up to 6.9 mg/L Mo, although concentrations were lower for most of the 

experiment, generally between 1 and 1.5 mg/L (‘First cell’ in Figure 3.4, top left graph). Mo 

was removed to below detection (<0.09 mg/L) when the same leachate was passed through 

the Pb-rich black marble in HC-intrusive over black marble (‘Second cell’ in Figure 3.4, top 

left graph). Leachate pH ranged between 7 and 8 throughout the entire duration of the 

experiment. Contact with the Pb-bearing black marble appeared to increase leachate pH, 

making leachate from the second cell in HC-instrusive over black marble 0.2 to 0.6 pH units 
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higher than leachate that had only passed through the first cell (Figure 3.4, bottom left 

graph).  

 

Figure 3.4     Mo-concentrations (middle) and leachate pH (bottom) as a function of time  since the 

initiation of flow in stacked field cell FC-intrusive over black marble (right column) and corresponding 

humidity cells HC- intrusive over black marble (left column). The upper diagrams show the 

configuration of waste rock material in this stacked field cell and its corresponding humidity cells. The 

vertical red dashed line with an arrow on the field cell graphs indicates the position of the data gap at end 

of the first rainy season in the stacked field cell data, while the dashed blue line without the arrow 

indicates the end of the first rainy season on the single field cell series. 
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Field cell FC-exoskarn over grey hornfels, where Zn-bearing exoskarn is placed on top of 

grey hornfels waste rock, was installed specifically to study Zn attenuation. Zn 

concentrations from the single field cell installed with the identical Zn-releasing exoskarn 

waste rock produced leachate with between 22 mg/L and 42 mg/L of Zn (‘Single’ in Figure 

3.5, top right graph). The single data point available from the upper lysimeters in the stacked 

field cell fell into this range with 33 mg/L Zn (‘Stacked (Top)’ in Figure 3.5, top right graph). 

Zn concentrations were much lower after contact with the hornfels waste rock at the bottom 

of the stacked field cell. The maximum Zn concentration of 0.5 mg/L in leachate from the 

base of the FC-exoskarn over grey hornfels stacked field cell was in the first available sample 

after the field cell was installed (‘Stacked (base)’ in Figure 3.5, top right graph). Subsequent 

Zn concentrations in basal leachate from FC-exoskarn over grey hornfels declined within two 

weeks to below 0.05 mg/L. Leachate pH from the upper lysimeter was constant throughout 

the experiment, ranging from 7.1 near the beginning of the experiment to 7.4 towards the end 

of the second rainy season after installation (‘Stacked (top)’ in Figure 3.5, bottom right 

graph). The pH of leachate from the base of FC-exoskarn over grey hornfels was generally 

higher, except the first leachate sample, which had a pH of 6.3. After the first week of 

leaching, the pH of basal leachate ranged from 7.1 to 8.0 (‘Stacked (bottom)’ in Figure 3.5, 

bottom right graph). For most of the experiment the pH of basal leachate was at least 0.5 pH 

units higher than the pH of upper lysimeter leachate. The basal leachate sample with the 

lowest pH also had the highest concentrations of Zn. 

Data from the corresponding humidity cells also showed that contact with grey hornfels 

removed Zn from leachate. Zn concentrations from the first humidity cell (Zn releasing) rose 

from 10.5 mg/L to a maximum of 24.6 mg/L in the third week of the experiment (‘First Cell’ 
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in Figure 3.5, top left graph). After the 6th week of leaching, Zn concentrations from the first 

humidity cell fell gradually to below 3 mg/L. Zn concentrations in leachate from the second 

humidity cell never contained more than 1.8 mg/L Zn during the course of this experiment 

(‘Second Cell’ in Figure 3.5, top left graph). By the final weeks of leaching Zn in leachate 

from the second humidity cell had fallen below 0.16 mg/L. The pH of leachate from the Zn-

releasing material in the first humidity cell varied from week to week; however, it showed a 

general increasing trend throughout the experiment, increasing from about 6.4 to 7.4 in 30 

weeks (‘First Cell’ in Figure 3.5, bottom left graph). Leachate pH from the second (Zn 

attenuating) humidity cell was generally 0.1-0.7 pH units higher than in leachate from the 

first humidity cell in the series (Figure 3.5, bottom left graph). The pH of leachate from the 

second humidity cell was generally above 7.5, although it dipped to below 6.9 in the last 

week of the experiment. 
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Figure 3.5    Mo-concentrations (middle) and leachate pH (bottom) as a function of time  since the 

initiation of flow in stacked field cell FC-intrusive over black marble (right column) and corresponding 

humidity cells HC- intrusive over black marble (left column). The upper diagrams show the 

configuration of waste rock material in this stacked field cell and its corresponding humidity cells. The 

vertical red dashed line with an arrow on the field cell graphs indicates the position of the data gap at end 

of the first rainy season in the stacked field cell data, while the dashed blue line without the arrow 

indicates the end of the first rainy season on the single field cell series. 

3.3.2 Geochemical modeling 

No Zn- containing minerals were in equilibrium in the leachate from the base of FC-exoskarn 

over grey hornfels. The only Mo-bearing mineral in PHREEQC’s MINTEQ.V4 database that 
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was supersaturated in leachate from the base of FC-intrusive over black marble (where Mo-

releasing intrusive was placed on top of Pb-bearing black marble) was wulfenite, which had 

an SI greater than 0 in all samples were Pb was detected. Leachate from the base of UBC-

Mo-T1L was also super-saturated with respect to wulfenite in the few samples that had 

detectable Pb. The same leachate was also consistently supersaturated with respect to 

Powellite (CaMoO4), and Ca usually was present at concentrations greater than 100 mg/L. 

ZnCO3:1H2O was close to saturation and in some cases supersaturated in samples from the 

single field cell containing Zn-bearing exoskarn.   

Results from a simple reactive transport model of Mo attenuation in the base of stacked field 

cell FC-intrusive over black marble demonstrated that it is thermodynamic plausible that 4 

mg/L of Mo could be attenuated in a solution in contact with oxidizing galena (PbS). 

Simulated Mo concentrations fell to below 0.0003 mg/L within 27 cm of initial contact with 

Pb-bearing black marble (Figure 3.6). The lowest Pb concentrations in the system, below 

0.0001 mg/L coincided with the highest Mo concentrations and occurred in the first 18 cm 

below the contact between both material types. The decrease in leachate Mo concentrations 

in the first 18 cm below the contact with attenuating material coincided with wulfenite 

(PbMoO4) precipitation. As expected, Pb was not very mobile in the simulated system, even 

in parts of the field cell where wulfenite was under saturated. Cerrusite (PbCO3) sequestered 

the vast majority of the Pb that was released by Galena oxidation when Mo concentrations 

were below 0.0003 mg/L (Figure 3.6). Once 0.08 moles of wulfenite had precipitated the Mo 

source was ‘turned off’ to evaluate whether wulfenite precipitation could be counted on as a 

long-term attenuation mechanism. Although wulfenite dissolution occurred in this scenario, 

Mo concentrations in basal leachate did not exceed 0.003 mg/L.  
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Figure 3.6    Plots of dissolved metal concentrations and solid phase mineral abundances (mmoles of each 

mineral in contact with 1 L of water) from a PHREEQC model of the attenuating (bottom) portion of 

FC-intrusive over black marble. The sketch to the left of the graphs shows the model domain. Note that 

depth refers to depth below the contact between the two rock types. These data were from a point in the 

study where 2.7 pore volumes of Mo-rich water had been flushed through the bottom field cell. 

The depth to which molybdenum could penetrate the Pb-bearing material in the stacked field 

cell was controlled by a combination of the rate of Mo loading from the top of the field cell 

and the rate of Pb release from galena oxidation in the attenuating material. Sensitivity 

analysis demonstrated that the Mo loading rate, as determined either by flow rate or initial 

Mo concentration, influenced depth of the boundary between the wulfenite precipitation zone 

and the cerrusite precipitation zone in the field cell. Doubling the flow rate or the initial Mo 

concentration both had the effect of allowing Mo to penetrate twice as far into the Pb-bearing 

material before its concentration decreased to 0.0003 mg/L. Decreasing galena oxidation rate 

by a factor of 12, while not allowing powellite (CaMoO4) to precipitate, led to a basal 

leachate Mo concentration of 2.7 mg/L because less Pb was available to remove Mo through 

wulfenite precipitation. To further explore the importance of Pb in controlling dissolved Mo 

concentrations, a simulation was run without galena dissolution, but allowing powellite to 

precipitate. Although a portion of the leachate Mo was removed through powellite 

precipitation, the Mo concentration of basal leachate, 0.5 mg/L, was higher in this scenario 

than when wulfenite was allowed to form.  
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The geochemical model designed to simulate Zn attenuation processes in the base of the FC-

exoskarn over grey hornfels field cell suggested that mineral precipitation reactions 

(especially ZnCO3:1H2O) exerted some control on leachate Zn concentrations. Leachate 

contained 30 mg/L Zn when it first made contact with the modeled attenuating material;, 

however, this concentration was reduced to 11.3 mg/L by the time it exited from the field 

cell’s base. A subsequent model run, which allowed for the adsorption of Zn onto iron 

oxides, resulted in a basal leachate Zn concentration of 0.14 mg/L. These results indicate that 

mineral precipitation alone could not account for all of the attenuation observed in the results 

from FC-exoskarn over grey hornfels. 

3.3.3 XRD and SEM analysis 

XRD analysis of un-weathered Zn-releasing skarn material revealed that its most abundant 

minerals were andradite, pyrite, sphalerite, diopside, and orthoclase, with possible 

occurrences of vesuvianite and biotite. The most abundant minerals detected in the Zn-

attenuating grey hornfels material were calcite, quartz, anorthite, biotite, and clinochlore. A 

comparison of pre- and post-weathering X-ray diffractograms did not reveal any noticeable 

changes in the mineralogy in exoskarn or hornfels waste rock materials as a result of leaching 

during the humidity cell experiment. Furthermore, no mineralogical differences were 

observed between un-weathered hornfels material, and hornfels material that had been 

exposed to Zn-rich leachate during the humidity cell experiment.  

In most cases EDX spectra revealed that Zn was not actually present in detectable quantities. 

In a few cases the presence of Zn was confirmed by EDX analysis, as evidenced by energy 

peaks at 1 and 8.6 KeV. The peak at 8.6 KeV on the EDX spectra was taken to be more 

diagnostic of the presence of Zn, given that the 1 KeV peak is also associated with sodium. 
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The distinctive x-ray dispersive spectrography (EDX) energy signature for Zn was 

encountered in some flaky or platy mineral grains in samples of grey hornfels (attenuating 

material) that had been exposed to zinc-rich leachate (Figure 3.7). The 8.6 KeV peak reached 

1 to 3 CPS/KeV above the local baseline in mineral grains from the attenuating material in 

humidity cell HC-Zn-TL after the completion of the leaching experiment (Figure 3.8). These 

Zn peaks are associated predominantly with oxygen, magnesium, silicon, and aluminum, 

with less abundant calcium and iron. Zn was also encountered in a sample of the same Zn-

attenuating grey hornfels material that had not been exposed to Zn-rich leachate, meaning 

that some Zn was present in the attenuating material before waste rock mixing occurred. In 

this case Zn occurred in a clearly defined mineral grain dominated by zinc and sulfur (Figure 

3.9). More than 40 spot scans were performed in the attenuating material that had not been 

exposed to Zn; however, and none of these showed as strong an association between Zn and 

Si, Mg, Al, Ca and Fe as had been observed in samples that had been exposed to Zn-rich 

leachate. 

 

Figure 3.7    Two back-scattered SEM images of apparent Zn-bearing secondary minerals in hornfels 

waste rock material (Zn-attenuating) that had been exposed to Zn-rich leachate in humidity cell HC-

exoskarn over grey hornfels. The red scale bar on the image to the left is 50 µm, whereas the red scale bar 

on the image to the right has a length of 20 µm.  



 49 

 

Figure 3.8    Energy dispersive x-ray micro-analysis (EDX) spectrographs from point scans taken in two 

distinct apparent Zn-rich secondary minerals in hornfels waste rock material that had been exposed to 

Zn-rich leachate in humidity cell HC-exoskarn over grey hornfels.  

 

 

 

Figure 3.9    A back-scattered SEM image of a probable sphalerite grain (the lightest grey grain in the 

center of the image) in hornfels waste rock material (Top). The red scale bar on the image to the left is 50 

µm. Two Energy dispersive x-ray micro-analysis (EDX) spectrographs from point scans on ZnS-

dominated mineral grains in Zn-attenuating hornfels material (bottom – note that the one on the right is 

from the mineral grain pictured above). 
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3.4 Discussion 

3.4.1 Molybdenum attenuation 

Results from the first two rainy seasons after the installation of the stacked field cells 

demonstrated that Mo attenuation occurred in FC-intrusive over black marble, where Mo-rich 

intrusive waste rock was placed on top of Pb-rich black marble. Considering that typical Mo 

concentrations in leachate from the Mo-rich intrusive single field cell were between 1 and 4 

mg/L in the first two years after its installation and the basal leachate from FC-intrusive over 

black marble was less than 0.03 mg/L, it appears that at least 97% of the Mo in the leachate 

from the intrusive rock was removed before it reaches the base of the stacked field cell. The 

Mo removal efficiency may have been as high as 99%, given that the single available 

leachate sample from the Mo-rich intrusive rock in the stacked field cells contained 6.7 mg/L 

Mo. 

As was the case in the field cells, Mo was only removed from humidity cell leachate when 

direct contact occurred between the Mo bearing leachate and the Pb-rich attenuating material. 

Molybdenum concentrations were reduced to below the detection limit (0.09 mg/L) in all 

samples that had passed through Pb-rich black marble. Given that maximum Mo 

concentrations in leachate from the first cell in HC-instrusive over black marble were 6.9 

mg/L at least 98.5% of Mo was removed after contact with Pb-rich black marble in the 

humidity cell experiment.  

Although evidence from FC-intrusive over black marble and corresponding humidity cells 

demonstrated that reactions with Pb-rich black marble removed Mo from waste rock 

leachate, these attenuation reactions depended on the order in which the waste rock was 

placed. Mo concentrations in leachate from the base of FC-black marble over intrusive 
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generally ranged from 2 to 4 mg/L for most of the experiment, indicating that minimal, if 

any, attenuation took place in this stacked field cell. The lack of Mo attenuation when the Pb-

rich black marble was placed on top of the Mo-rich intrusive rock could be explained by the 

low mobility of lead in this stacked field cell. Lead concentrations from the base of FC-

intrusive over black marble and from the lysimeter in FC-black marble over intrusive were 

both less than 0.03 mg/L. This low concentration implies that virtually no lead from the top 

half of the FC-black marble over intrusive field cell had contact with the Mo-rich intrusive 

material at the base of the cell.  

Modeling results showed that Mo may have been attenuated by powellite precipitation; 

however, that this process alone could not account for the low Mo concentrations observed at 

the base of FC-intrusive over black marble. Furthermore, Conlan et al.’s (2012) work showed 

that powellite formation was kinetically limited in Mo attenuation experiments carried out in 

neutral pH settings. The observation from this study that Mo is only attenuated when it 

makes direct contact with Pb-bearing rock provides strong evidence that wulfenite 

precipitation is the main mechanism for attenuating Mo in this system. Results from 

geochemical modeling suggested that Pb is highly immobile in this geochemical system due 

to cerrusite precipitation (PbCO3). In the presence of Mo, however, modeling results 

suggested wulfenite precipitation to be a more thermodynamically favorable than cerrusite 

precipitation, allowing wulfenite to act as a sink for both Mo and Pb. These modeling results, 

along with Conlan et al.’s (2012) findings that wulfenite formed as a secondary mineral when 

Mo and Pb were co-mingled in both lab experiments suggest that when Mo came in direct 

contact with a zone of galena oxidation in FC-intrusive over black marble, wulfenite 

precipitation out competed cerrusite precipitation for the Pb released by the oxidation of 



 52 

galena. On the other hand, modeling results suggest that the lack of Mo attenuation in FC-

black marble over intrusive could be explained by cerrusite precipitation removing most of 

the Pb from leachate shortly after galena was oxidized, leaving insufficient aqueous Pb to be 

transported into the lower material in the stacked field cell and react with the Mo that was 

being released by molybdenite oxidation in the lower cell.  

In addition to shedding further light on the Mo attenuation mechanism in this system, 

geochemical modeling results provided insight into the long-term fate of Mo sequestered by 

wulfenite precipitation. Results suggested that should the Mo source become exhausted prior 

to the Pb source, wulfenite dissolution would occur, remobilizing Mo into solution. The low 

solubility of wulfenite, however, would mean that a comparatively modest dissolved Mo 

concentration (0.003 mg/L) would result. This result implies that Mo attenuation through 

wulfenite precipitation will be long-lasting under these pH conditions. 

3.4.2 Zn attenuation 

Leachate from the exoskarn in UBC-3-2A, the material installed in the top of FC-exoskarn 

over grey hornfels contained between 20 and 42 mg/L of Zn (33 mg/L in the sample from the 

upper stacked field cell), while Zn concentrations in FC-exoskarn over grey hornfels’s basal 

leachate were usually below 0.05 mg/L, implying that over 99% of the Zn in leachate was 

removed after contact with hornfels rock. Zn removal efficiency was not as high in the 

laboratory humidity cells as it was in the field cell portion of the study. The hornfels material 

in humidity cell HC-exoskarn over hornfels removed approximately 94% of Zn from leachate 

that passed through it. The lower removal efficiency of the humidity cell as compared to the 

equivalent stacked field cell could be related to the higher proportion of Zn attenuating 

material in the stacked field cell. The field cell contained 25% Zn releasing material and 75% 
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Zn attenuating material, whereas the humidity cell experiment contained an equal proportion 

of both materials. 

Although Zn attenuation in the stacked field cell coincided with an increase in pH, 

geochemical modeling demonstrated that precipitation of zinc carbonate or hydroxide 

minerals could not account for all of the attenuation observed. When adsorption onto iron 

oxy hydroxides was included in the PHREEQC geochemical model, Zn was attenuated to 

much lower levels. This result is consistent with the assertions of several authors who have 

reported adsorption onto metal oxides can be an important mechanism for Zn attenuation 

(e.g. Trivedi and Axe 2000 and references therein).  

The observation from this study’s SEM-EDX analysis that attenuated Zn in the hornfels 

material co-existed with iron and oxygen, along with Ca, Mg, Al, and Si could be consistent 

with adsorption onto an iron oxide that had precipitated on the surface of a silicate mineral. 

In interpreting the co-occurrence of Zn and Fe, which would be expected if Zn were simply 

adsorbed onto an iron oxide mineral, along several other elements it is important to consider 

that the SEM electron beam excites atoms below the mineral surface. Exciting atoms below 

the mineral grain surface generates an EDX spectrum for a particular mineral grain that is 

representative of both its surface and its internal structure. It is therefore difficult to assess 

whether Fe and Zn are part of a surface coating, or incorporated in the crystal structure of the 

mineral itself on the basis of SEM/EDX analysis alone.     

Although geochemical modeling at representative pH conditions suggests that adsorption 

onto iron oxy hydroxides may play an important role in attenuating Zn, three lines of 

evidence suggest that this is not the case. Firstly, the same hornfels material that attenuated 

Zn in this study also released As into solution. The mobility of As in the attenuating material 
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is surprising given that geochemical modeling predicted that As would be removed from 

solution by adsorption onto iron oxides in this geochemical system. Given that the adsorption 

of both As and Zn are thermodynamically favorable at typical pH values for this study, it is 

unclear why Zn would be adsorbed in this material but As would not. A second line of 

evidence suggesting that adsorption onto iron oxides is not responsible for Zn attenuation in 

the hornfels material is related to the abundance of pyrite in the Zn releasing material. The 

oxidation of this pyrite in neutral pH conditions would lead to the precipitation of iron oxide 

minerals, which would provide plentiful adsorption sites for Zn. It is unclear why Zn would 

be immobilized by adsorption onto iron oxides in the hornfels attenuating material, but not in 

the Zn-releasing exoskarn. The third line of evidence suggesting that adsorption onto iron 

oxides was not responsible for Zn attenuation was that several red, iron-containing, grains 

from the attenuating material that had been exposed to Zn-rich leachate in the humidity cell 

HC-Zn-TL were not found to be associated with Zn.   

Another possible Zn attenuation mechanism in this system based on the work of Manceau et 

al. (2000) in neutral-pH soils and Dold and Fonboté (2001) in mine tailings is the integration 

of Zn into pre-existing aluminosilicate clay minerals through a form of cation exchange. 

XRD analysis identified clinochlore ((Mg,Fe)5Al(Si3Al)O10(OH)8) as one of the principle 

minerals in the hornfels material. Given the occurrence of Zn in platy grains containing Si, 

Al, Mg, and Fe, Zn attenuation could be explained by the substitution of Zn
2+

 for Mg
2+

 or 

Fe
2+

 in clinochlore. The relative abundance of clinochlore in the hornfels material compared 

to the Zn-releasing exoskarn helps explain why contact between leachate and a second waste 

rock material was necessary for Zn attenuation.  
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Further research is needed to test the hypothesis that cation exchange in clay minerals is 

responsible for Zn attenuation mechanisms in the hornfels material. A potential next step in 

the experiment would be to subject hornfels that has been exposed to Zn-rich leachate 

(possibly from the top of the hornfels attenuating material in stacked field cell FC-exoskarn 

over grey hornfels) to a sequential leaching procedure designed to target exchangeable Zn. 

Dold (2003) presented one such procedure for use in mine tailings that may be appropriate 

for this application. A comparison of the results from extractions performed on weathered 

hornfels material that had been exposed to Zn-rich leachate, and weathered hornfels material 

that had no contact with extra Zn could quantify the mass of Zn removed by cation exchange 

in clays.  

3.4.3 Summary 

The use of stacked field cells and humidity cells connected in series has provided insight into 

the mechanisms controlling the mobility of Zn and Mo in neutral mine systems. Between this 

work and the laboratory experiments by Conlan et al. (2012), we can state with some 

confidence that Mo is attenuated by wulfenite precipitation in this system. Its low solubility 

means that even if wulfenite were to become under saturated, Mo concentrations would 

remain much lower than they would otherwise be in non-attenuated leachate. The attenuation 

of Mo via wulfenite precipitation may be applicable in other mines that extract ore from 

skarn deposits, given that galena and molybdenite both tend to occur in these geologic 

settings (e.g. Chang and Meinert, 2008).  

Zn is not attenuated by the same mechanism as Mo in this study. Evidence from geochemical 

modeling, has suggested that the precipitation of Zn secondary minerals cannot explain the 

degree of attenuation observed in this study. XRD and SEM/EDX analysis of the attenuating 
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hornfels material demonstrated that Zn may have been attenuated by becoming incorporated 

into clay minerals, however more research is needed to confirm this mechanism and predict 

whether Zn becomes re-mobilized again as geochemical conditions change with time. The 

results of this study suggest that layered deposition of the appropriate materials in waste rock 

dumps can control leachate Zn and Mo concentrations at Antamina and other mines that 

generate neutral mine drainage.     
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Chapter  4: Field cell hydrology, geochemistry, and directions for future 

research 

4.1 Introduction 

Chapters 2 and 3 of this thesis focused on the use of stacked field cells and humidity cells 

connected in series to explore As, Mo, and Zn attenuation; however, the research yielded 

several other results that can serve to deepen understanding of metal leaching and attenuation 

in neutral mine drainage. This chapter presents a collection of selected geochemistry and 

field cell results that offer further context to chapters 2 and 3, and provide direction for future 

research. The specific topics in this chapter include: cases where As and Mo were not 

attenuated by waste rock mixing, attenuation of Zn in FC-black marble over intrusive and 

FC-intrusive over black marble, the attenuation of other metals and metalloids (Ni, Cd, Cr, 

Cu, Sb, Sn, Se, Ni, Li, and Pb) by waste rock mixing, prospects for long-term leaching and 

attenuation in stacked field cells, along with field cell hydrology and implications for sulfate 

release rates. 

Although the focus of this work has been on attenuation, cases where it did not occur in spite 

of waste rock mixing can also be useful in developing a holistic understanding of the 

geochechmical processes responsible for controlling metal concentrations in neutral mine 

drainage systems. To this end, the first results sub-section in this chapter explores the case 

where As was not attenuated in stacked field cell UBC-5A-T, and the case where Mo was not 

attenuated in stacked field cell UBC-5C-T. The pattern of Zn attenuation in FC-black marble 

over intrusive and FC-intrusive over black marble and associated humidity cells is discussed 

in the second results subsection, whereas the third results subsection assesses the attenuation 

of other metals and metalloids. Similar to the process used for studying Mo, As, and Zn, the 

attenuation of these elements was explored by comparing concentrations of each element in 
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leachate from the base of stacked field cells to leachate from their associated single field 

cells. 

The results presented in chapters 2 and 3 of this thesis are based on the first two years of 

leaching from field cells at Antamina, and 30 week long humidity cell experiments. 

According to an estimate presented later in this chapter, the 30 week humidity cell 

experiment can be taken to approximate 120 weeks (less than 2.5 years) of leaching in the 

field cells. The application of the results from this study to mine closure planning would 

require that they be extrapolated many years into the future and scaled up from the laboratory 

scale to the full waste rock dump scale. The fourth results sub-section in this chapter explores 

the prospects of extrapolating the Zn, As, and Mo leaching and attenuation results into the 

future based on the solid phase elemental composition of the waste rocks studied. 

Hydrology plays a critical role in determining the composition of leachate in waste rock 

systems both because the oxidation of sulfide minerals is kinetically limited, and thereby 

dependent on residence time, and because the degree of saturation strongly influences air 

flow through the system, thereby affecting oxidation rates (e.g. Fala et al., 2005). Kinetic 

limitations on sulfide oxidation imply that decreasing the flow rate, and in turn increasing 

contact time with oxidizing sulfide minerals, would likely increase the concentrations of 

sulfate and associated metals in the resultant leachate. The fifth sub-section of results 

presented in this chapter discusses a preliminary tracer test that was carried out on some of 

the field cells associated with the stacked field cells. The sixth and final sub-section of this 

chapter also deals with a leaching rate comparison – this time in the context of the single 

field cells and two different humidity cells methods used in this study.  
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4.2 Methods 

4.2.1  Cases where Mo and As were not attenuated by waste rock mixing 

The stacked and single field cells mentioned in this chapter were installed and sampled in the 

same way as those mentioned in chapter 2. This chapter focuses primarily on stacked field 

cells UBC-5A-T and UBC-5C-T (Table 4.1).  

Table 4.1    Contents of the 5 field cells discussed in this chapter but not previously mentioned in chapters 

2 and 3. UBC-4-5-5A, UBC-5-4A, and UBC-5-6A are single field cells. 

Field Cell 

Code 
Materials Used Purpose 

UBC-4-5-

5A 

Hornfels/marble waste rock, one of 

the materials used in UBC-5A-T and 

UBC-5C-T. 

Determine composition of 

unmixed leachate from 

hornfels/marble. 

UBC-5-4A Hornfels waste rock – one of the 

material types used in UBC-5A-T. 

Determine composition of 

unmixed leachate from 

hornfels material 

UBC-5-6A Instrusive waste rock used in UBC-

5C-T. 

Determine composition of 

unmixed leachate from 

intrusive material 

UBC-5A-T 470 Kg of UBC-4-5-5A on top of 160 

Kg of UBC-5-4A. 

Simulate geochemical 

conditions above lysimeter 5A 

in UBC experimental waste 

rock pile. 

UBC-5C-T 355 Kg of 5-6A on top of 280 kg of 

4-5-5A 

Simulate geochemical 

conditions above lysimeter 5C 

in UBC experimental waste 

rock pile. 

 

4.2.2 Prospects for future As, Zn, and Mo leaching and attenuation stacked field cells 

For each sampling session, the mass of Zn, As, or Mo released from the field cells was 

calculated by multiplying the concentration by the volume of water. The individual masses 

from each sampling event were used to calculate a cumulative running total mass, as well as 



 60 

a total mass released through the first two rainy seasons. The total mass of each element 

available to leach in the field cell was calculated by multiplying the solid phase concentration 

of the element of interest by the mass of waste rock in the field cell in question. The solid 

phase composition of the waste rock was determined through acid digestion and ICP-MS 

analysis at ACME laboratories in Vancouver, BC.  

4.2.3 Field cell hydrology and implications for sulfate leaching 

A tracer test was initiated on January 24 and 25, 2010 by adding 7.12 L of 1 g/L Cl solution 

to the upper surface of selected field cells. The tracer (LiCl) solution was poured evenly onto 

the waste rock´s surface using a plastic camping shower consisting of a 10 L bag and a small 

shower head. Samples were collected as soon as water began to flow from the base of the 

field cells. During the first 48 hours after the tracer test´s initiation, samples were collected 

directly from the drainage spout at the base of the field cells (instantaneous samples), 

however, the rest of the test samples were collected on a weekly or bi-weekly basis from the 

field cells’ sample collection buckets (composite samples). The instantaneous samples were 

analyzed for chloride with ion chromatography at UBC. The composite samples were 

analyzed by ALS laboratories in Lima, Peru. 

Given that the application of tracer occurred at the height of the rainy season, and in some 

cases the tracer was applied during natural precipitation events, the results of this study 

represent an extreme precipitation event and faster than average flow conditions. Two 

challenges rendered it impossible to carry out quantitative analysis of the tracer test data: the 

loss of field notes and; imprecise water volume measurements, making it impossible to 

collect a reliable mass flux for chloride. In spite of these challenges, a qualitative 

interpretation of the tracer test data is presented in this chapter to provide a general 



 61 

understanding of the field cells´ hydrologic behavior. For the purposes of comparing release 

rates between the single field cells and the two different humidity cell methods used in this 

study, mass loadings were calculated using Equation 1.  

Equation 1:  Mass loadings (mg/kg/week) = VC/mt 

Where: 

V = Volume of water in sample (L) 

C = Concentration (mg/L) 

m = mass of waste rock in field cell or humidity cell (kg) 

t = time since last sample was collected (weeks) 

4.3 Results and discussion 

4.3.1 Cases where Mo and As were not attenuated by waste rock mixing 

Data from UBC-5A-T provide an example of As-releasing material placed on top of another 

type of waste rock that was not capable of providing substantial attenuation. Arsenic 

concentrations in leachate from the single field cell corresponding to the As-releasing 

material ranged from 0.5 to 22 mg/L; however, they usually fell between 6 and 15 mg/L 

(Figure 4.1). The two data points available from the upper mini-lysimeters that sampled 

leachate from the top material type prior to mixing contained 10.2 mg/L in week 20 of the 

experiment and 10 mg/L As at week 35. Leachate from the base of the stacked field cell 

contained 5 mg/L to 18.6 mg/L of As, and its concentration generally declined as the 

experiment progressed. Leachate from the releasing material (UBC-4-5-5A) and the base of 

the stacked field cell had a similar range of As concentrations, suggesting that As was not 

attenuated by contact with the hornfels material (UBC-5-4A) at the base of UBC-5A-T.  
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Figure 4.1     Dissolved As concentrations in leachate from stacked field cell UBC-5A-T (Right) 

demonstrating a lack of As attenuation due to contact with hornfels material, presented along side a 

schematic diagram of stacked field cell UBC-5A-T (Left). ‘Stacked (Base)’ series leachate that has come 

in contact with both material types in the field cell, whereas the ‘Stacked (Top)’ data points show As 

concentration in upper lysimeter samples, prior to contact with the bottom material in the stacked field 

cell.  As concentrations from the single field cell of the As-releasing material are shown in the ‘Single’ 

data series. Since there was no flow from the field cells in the dry season, time is shown as weeks since the 

initiation of flow in each field cell. The pink vertical dashed line shows the timing of the end of the first 

rainy season in ‘Stacked (Base)’ data and the green dashed lines show the beginning of the second and 

third rainy seasons in the ‘single’ series. The schamtic diagram includes As-releasing hornfels/marble 

material (1), and basal hornfels material (2), along with the sample collection bucket for unmixed 

leachate from the top material (a), and leachate which has had contact with both material types (b). 

The two data points from unmixed leachate from the top of the field cell averaged 10.1 mg/L 

As, whereas the average As concentration in leachate from the base of the UBC-5A-T was 

7.4 mg/L. The lower As concentrations in the base of the stacked field cell suggest that some 

attenuation may have occurred; however, given the variabilty of As concentrations in the 

single field cell of the releasing material, more samples from the upper lysimeters would be 

needed to make this assessment. In any case, the removal effeciency of As is much lower in 

this stacked field cell than in FC-intrusive over black marble. Given that there were only 163 

kg of UBC-5-4A at the base of the stacked field cell, it is possible that some attenuation did 

occur, but that the attenuating material’s attenuation capacity was not sufficient to remove 

such high As concentrations from leachate.  

Apart from FC-black marble over intrusive and FC-intrusive over black marble, another 

stacked field cell in this study provided an opportunity to gain insights into Mo attenuation in 
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waste rock: UBC-5C-T, where Mo-bearing intrusive material was installed on top of a 

hornfels/marble waste rock. Mo concentrations from a single field cell with the intrusive 

material varied widely, from 0.08 mg/L to more than 6.45 mg/L, however, concentrations 

were generally greater than 2 mg/L (Figure 4.2). The presence of Mo in leachate from the 

same material in the top of UBC-5C-T was confirmed by the single sample available from 

the upper lysimeters, which had a Mo concentration of 3.3 mg/L.  

 

Figure 4.2    Dissolved Mo concentrations in leachate from stacked field cell UBC-5C-T (Right) 

demonstrating a lack of attenuation by contact with hornfels/marble material, along with a schematic 

diagram of the materials installed in UBC-5C-T (Left). The ‘Stacked (Base)’ series shows leachate that 

has come in contact with both material types in the field cell, whereas the Stacked (Top) data point shows 

the Mo concentration in upper lysimeter samples, prior to contact with the bottom material in the 

stacked field cell. Since there was no flow from the field cells in the dry season, time is shown as weeks 

since the initiation of flow in each field cell. The pink vertical dashed line shows the timing of the end of 

the first rainy season in ‘Stacked (Base)’ data and the green dashed lines show the beginning of the 

second and third rainy seasons in the ‘single’ series. The schamtic diagram includes Mo-releasing 

instrusive (1), and basal hornfels/marble material (2), along with the sample collection bucket for 

unmixed leachate from the top material (a), and leachate which has had contact with both material types 

(b). 

Little to no Mo attenuation occurred in this stacked field cell, given that basal leachate Mo 

concentrations were generally higher than 1 mg/L, sometimes reaching as high as 4.4 mg/L. 

At first glance, this lack of attenuation is surprising, since co-precipitation with Pb is 

hypothesized to limit Mo concentrations, and the material in the base of UBC-5C-T (UBC-4-

5-5A) contained 180 ppm of Pb (Table 4.2). A closer comparison between stacked field cells 

FC-intrusive over black marble and UBC-5C-T reveals that this lack of attenuation does not 
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necessarily contradict the hypothesis that wulfenite precipitation is an important Mo sink. 

Sensitivity testing carried out in PHREEQC in chapter 2 of this thesis suggested that 

increasing the Mo loading rate by a factor of 4 could overwhelm the black marble’s capacity 

to attenuate Mo. The Mo loading rate into the attenuating material appears to have been 

similar in UBC-5C-T and FC-intrusive over black marble however, in comparison to the 

attenuating material in FC-intrusive over black marble, the total mass of Pb was only 1/6 of 

the Pb mass in basal material of UBC-5C-T. The lower mass of Pb in UBC-5C-T 

corresponds to a lower surface area of exposed galena, and therefore a slower release of Pb 

into solution, as compared to the attenuating material at the base of FC-intrusive over black 

marble. It is likely that wulfenite precipitation is occurring in this field cell, but that its rate is 

limited by low galena surface area for reaction, and therefore Mo concentrations are not 

markedly decreased.  

 There may be a connection between Mo attenuation and As attenuation given that the same 

Pb-bearing marble responsible for attenuating Mo in the FC-intrusive over black marble 

stacked field cell also attenuated arsenic. Data from stacked field cell UBC-5C-T connection 

between As attenuation and Mo attenuation, given that the material at the base of UBC-5-T, 

which failed to attenuate Mo, also released 3-15 mg/L of As. In chapters 2 and 3 it was 

hypothesized that both Mo and As could be attenuated through distinct co-precipitation 

reactions involving Pb. If co-precipitation with Pb were indeed responsible for the 

attenuation of both As and Mo, then it might be the case that the vast majority of the Pb in 

the base of UBC-5C-T was immobilized by reactions with As before it could form wulfenite.  
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Table 4.2    A comparison of the Mo and As leachate concentrations along with the Pb solid phase mass 

and concentration associated with field cells FC-instrusive over black marble and UBC-5C-T. The 

comparison is presented to help explain the lack of significant Mo attenuation through wulfenite 

precipitation in stacked field cell UBC-5C-T in spite of the presence of Pb in its attenuating waste rock. 

The averages shown in this table refer to average concentrations per sample over the first two rainy 

seasons that the field cells were installed at the Antamina mine. 

   Field cell 

Mass of 

attenuating 

material (kg) 

Solid phase Pb 

concentration 

(ppm) 

Total mass 

of Pb (g) 

Avg  [Mo]  

(mg/L) from 

releasing 

material 

Avg  [As]  

(mg/L) from 

releasing 

material 

Avg  [As]  

(mg/L) from 

base 

FC intrusive 

over black 

marble 

349 867 302.6 1.75 0.27 0.004 

UBC-5C-T 284 181 51.4 2.75 0.39 7.8 

4.3.2 Zn attenuation in FC-black marble over intrusive and FC-intrusive over black 

marble and associated humidity cells connected in series 

Stacked field cells FC-black marble over intrusive and FC-intrusive over black marble and 

their associated humidity cells connected in series provided the opportunity to study As 

attenuation (Chapter 2), Mo attenuation (Chapter 3), and Zn attenuation. As was discussed in 

chapters 2 and 3, both As and Mo were removed from leachate by contact with Pb-bearing 

black marble. Attenuation of As and Mo did not occur in FC-black marble over intrusive, 

where As and Mo releasing intrusive material was installed below the Pb-bearing black 

marble attenuating material. Zn, on the other hand, was released by the Pb-bearing black 

marble responsible for As and Mo attenuation. This Zn was attenuated by contact with Mo-

releasing intrusive waste rock.  Drainage from the Pb-bearing black marble single field cell 

showed Zn concentrations ranging from 1.4 to 14 mg/L (Figure 4.3). The single data point 

from the upper lysimeters of the stacked field cell FC-black marble over intrusive confirmed 

the presence of Zn (1.6 mg/L) in leachate. Leachate from the base of this stacked field cell; 

however, did not contain more than 0.5 mg/L Zn. After the 15th week of flow through the 
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field cell, Zn concentrations from the base of FC-black marble over intrusive did not exceed 

0.1 mg/L. 

 Data from the HC-black marble over instrusive humidity cells also showed that contact with 

Mo-releasing intrusive rock reduced Zn concentrations in leachate, at least initially (Figure 

4.3). Leachate from the first (Zn-releasing) humidity cell contained 1.3 mg/L during the first 

two samples sessions of the experiment, before its Zn concentration dropped to below 0.09 

mg/L Zn in the 5th week of the experiment, and remained below detection for the rest of the 

experiment. The first leachate available from the second humidity cell (the Mo-containing 

and Zn-attenuating intrusive material) had a Zn concentration of 0.16 mg/L, later rising to a 

maximum concentration of 0.3 mg/L, before falling to around 0.09 mg/L. The intrusive 

material in the second cell continued to leach detectable zinc for the final 15 weeks of the 

experiment. 

 

Figure 4.3    Dissolved Zn concentrations in leachate from stacked field cell FC-intrusive over black 

marble(right) and humidity cells HC-black marble over intrusive connected in series (left) demonstrating 

attenuation by contact with hornfels waste rock from the Antamina mine. The ‘Stacked (Base)’ series 

leachate that has come in contact with both material types in the field cell, whereas the Stacked (Top) 

data point shows the Zn concentration in upper lysimeter samples, prior to contact with the bottom 

material in the stacked field cell. Zn concentrations from the single field cell of the Pb-bearing black 

marble material are shown in the ‘Single’ data series. Since there was no flow from the field cells in the 

dry season, time is shown as weeks since the initiation of flow in each field cell. The red vertical dashed 

line shows the timing of the end of the first rainy season in ‘Stacked (Base)’ data and the blue dashed line 

shows the beginning of the second and third rainy seasons in the ‘single’ series. Data from the associated 

humidity cell experiment are also shown (left). The ‘First Cell’ series shows Zn concentrations in leachate 

prior to contact with the attenuating material, whereas the ‘Second Cell’ series shows Zn concentrations 

after contact with the attenuating material. 
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Stacked field cell FC-intrusive over black marble, where Zn-releasing Pb-bearing black 

marble was installed below Mo-releasing intrusive waste rock did not show evidence of Zn 

attenuation. Typical Zn concentrations in leachate from the single field cell of Mo-rich 

intrusive material installed in FC-intrusive over black marble ranged from 0.07 mg/L to 0.63 

mg/L (Figure 4.4). The Zn concentration of leachate from the single sample available from 

the upper lysimeters fell within this range, at 0.19 mg/L. Leachate Zn concentrations were 

generally higher in leachate from the base of FC-intrusive over black marble, reaching a 

maximum value of 1.4 mg/L after 11 weeks of flow through the stacked field cell, before 

declining gradually to below 0.5 mg/L after 19 weeks of sampling. The minimum Zn 

concentration from the base of FC-intrusive over black marble was 0.12 mg/L.  

The associated humidity cells connected in series, HC-intrusive over black marble, also 

demonstrated that Zn was not attenuated. The first (intrusive) cell released some Zn over the 

first six weeks of the experiment, with concentrations ranging from 0.09 to 0.029 mg/L 

(Figure 4.4). Zn concentrations increased markedly after the leachate from the Mo-releasing 

intrusives made contact with the Pb-bearing black marble material in HC-Mo-T2L. Leachate 

from HC-Mo-T2L contained a maximum of 1.6 mg/L Zn in the 6
th

 week of the experiment, 

thereafter Zn concentrations fell to 0.16 mg/L in the 15
th

 week and remained below 0.3 mg/L 

for the remaining leach cycles. 
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Figure 4.4    Dissolved Zn concentrations in leachate from stacked field cell FC-intrusive over black 

marble(right) and humidity cells HC-intrusive over black marble series (left) demonstrating attenuation 

by contact with hornfels waste rock from the Antamina mine. The ‘Stacked (Base)’ series leachate that 

has come in contact with both material types in the field cell, whereas the Stacked (Top) data point shows 

the Zn concentration in upper lysimeter samples, prior to contact with the bottom material in the stacked 

field cell.   concentrations from the single field cell of the Zn-releasing material are shown in the ‘Single’ 

data series. Since there was no flow from the field cells in the dry season, time is shown as weeks since the 

initiation of flow in each field cell. The red vertical dashed line shows the timing of the end of the first 

rainy season in ‘Stacked (Base)’ data and the blue dashed line shows the beginning of the second and 

third rainy seasons in the ‘single’ series. Data from the associated humidity cell experiment are also 

shown (left). The ‘First Cell’ series shows Zn concentrations in leachate prior to contact with the 

attenuating material, whereas the ‘Second Cell’ series shows Zn concentrations after contact with the 

attenuating material. Note that the detection limit in the left hand graph is 0.09 mg/L, but since 

concentrations appeared to be well below detection the points were graphed as though the concentration 

were 0 mg/L. 

 

Leachate from the black marble single field cell associated with FC-black marble over 

intrusive contained between 1 and 14 mg/L (1.6 mg/L in the sample from the upper stacked 

field cell), while FC-black marble over intrusive’s basal leachate contained less than 0.1 

mg/L, indicating a Zn removal efficiency of 94-99%. Similar to the Mo attenuation 

mechanism discussed in chapter 3, Zn attenuation occurred only when the Zn-rich leachate 

had direct contact with the attenuating material, and not when the attenuating material was 

placed above the Zn-releasing material. This observation suggests that attenuation depended 

on a surface reaction, or on co-precipitation with species that are immobile in this 

geochemical system. 
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About 88% of the Zn in leachate from black marble was initially removed by reactions with 

intrusive waste rock material in humidity cell HC-Mo-T1L. This humidity cell experiment 

provided a contrast to the equivalent stacked field cell because the Zn concentration in 

leachate from the releasing material dropped off sharply three weeks into the experiment. 

This decline in aqueous Zn concentration appeared to lead to a remobilization of Zn that had 

previously been attenuated. Although 0.6 mg of Zn was removed from Zn-bearing leachate 

by contact with intrusive material in the second (attenuating) cell of HC-exoskarn over 

horfnels in the first 4 weeks of the experiment, all of this Zn had been released from the 

attenuating material by the end of the experiment. The maximum Zn concentration in 

leachate from the Zn-attenuating material was 0.3 mg/L, much less than the 1.2 mg/L 

initially released from the Pb-bearing demonstrating that although the Zn attenuation reaction 

in this cell was reversible, it still served to reduce Zn concentrations to some extent.   

4.3.3 Attenuation of other metals and metalloids by waste rock mixing  

In most cases the concentrations of Ni, Cd, Cr, Cu, Sb, Sn, Se, Ni, Li, and Pb were below 

detection limit, indicating that they were either not released in the first place, or were 

attenuated prior to mixing with another waste rock material. In several other cases, one or 

more of these elements was detected in leachate from at least one of the constituent single 

field cells, but attenuation was not observed given that it occurred in similar concentrations 

in leachate from the base of the stacked field cell.  

In some cases, the field cell study provided inconclusive evidence for attenuation. The 

clearest example of inconclusive evidence for attenuation occurred in stacked field cell FC-

black marble over intrusive, where Pb and Cu concentrations in leachate from the base of the 

stacked field cell were much lower than they were in leachate from the UBC-1-3A (black 
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marble) single field cell. Data from the single leachate sample from the upper lysimeters in 

FC-black marble over intrusive did not support the occurrence of attenuation, however, since 

it also showed low Pb and Cu concentrations. This apparent discrepancy in leachate 

composition between the single field cell and the stacked field cell could indicate that Pb or 

Cu were not actually leached from the top material in FC-black marble over intrusive, and 

therefore that attenuation did not occur. More leachate from the upper lysimeters would need 

to be analyzed prior to determining whether or not attenuation occurred in this case. 

Cadmium is the only metal or metalloid aside from Zn, As, and Mo that was verifiably 

attenuated in this study (Figure 4.5). In addition to leaching zinc, the single field cell of the 

same Zn-bearing exoskarn material leached between 0.04 and 0.15 mg/L of Cd. The single 

data point from the upper lysimeter in FC-exoskarn over grey hornfels confirmed that Cd 

also leached from the exoskarn installed in the stacked field cell, given that its leachate Cd 

concentration was 0.11 mg/L. The highest Cd concentration in basal leachate from FC-

exoskarn over grey hornfels, 0.007 mg/L, occurred in the first available sample. For the rest 

of the experiment, Cd concentrations from basal leachate never exceeded 0.001 mg/L. These 

results suggest that as much as 99% of the Cd in leachate was removed by contact with the 

same hornfels material responsible for Zn attenuation in FC-exoskarn over grey hornfels. 

Data from the exoskarn over hornfels humidity cell also demonstrated evidence for 

attenuation. Eleven of the first 12 samples of leachate from the first field cell in the series 

(HC-Zn-T1U) had detectable Cd (above 0.09 mg/L), with a maximum concentration of 0.2 

mg/L. After contact with the grey hornfels in HC-Zn-T1L, the Cd was consistently below 

detection (0.09 mg/L).  Given that Cd is also a divalent cation, it is possible that it was 
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attenuated by a similar mechanism to that which removed Zn from solution when it made 

contact with the hornfels material 4-5-1A.  

 
Figure 4.5    Dissolved Cd concentrations in leachate from stacked field cell FC-exoskarn over grey 

hornfels (right) and humidity cells HC-exoskarn very grey hornfels (left) demonstrating attenuation by 

contact with hornfels waste rock from the Antamina mine. The ‘Stacked (Base)’ series leachate that has 

come in contact with both material types in the field cell, whereas the Stacked (Top) data point shows the 

Cd concentration in upper lysimeter samples, prior to contact with the bottom material in the stacked 

field cell.  Cd concentrations from the single field cell of the Zn-releasing material are shown in the 

‘Single’ data series. Since there was no flow from the field cells in the dry season, time is shown as weeks 

since the initiation of flow in each field cell. The pink vertical dashed line shows the timing of the end of 

the first rainy season in ‘Stacked (Base)’ data and the green dashed lines show the beginning of the 

second and third rainy seasons in the ‘single’ series. Data from the associated humidity cell experiment 

are also shown (left). The ‘First Cell’ series shows Cd concentrations in leachate prior to contact with the 

attenuating material, whereas the ‘Second Cell’ series shows Cd concentrations after contact with the 

attenuating material. Note that the detection limit in the left hand graph is 0.09 mg/L, but since 

concentrations appeared to be well below detection the points were graphed as though the concentration 

were 0 mg/L. 

 

4.3.4 Prospects for long-term As, Zn, and Mo leaching and attenuation stacked field 

cells. 

The As release rate from the base of UBC-5A-T was fairly constant throughout the first two 

rainy seasons, averaging about 66 mg/week (Figure 4.6). After two rainy seasons a total of 

less than 4 g of As had been released from the stacked field cell, amounting to just over 5% 

of the total mass of As present in UBC-5A-T’s As-releasing material. The constant release 

rate during the rainy seasons was also observed in for Mo and As in stacked field cell FC-

black marble over intrusive and Zn in single field cell FC-exoskarn over grey hornfels. 
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Figure 4.6    The cumulative mass of As relased from  waste rock from the UBC-5A-T stacked field cell 

over the course of the first two two rainy seasons after its installation at the Antamina mine. The same 

data are presented with a linear y-axis (left) and a logarithmic y-axis (right). The horizontal red line on 

the diagram to the right shows the total As mass in the stacked field cell’s As-releasing hornfels/marble 

waste rock. Since there was no flow from the field cells in the dry season, time is shown as weeks since the 

initiation of flow in the field cell. The dashed red lines show the timing of the end of the first rainy season.  

Less than 2% of the total Mo in FC-black marble over intrusive had been released from the 

base of the FC-black marble over intrusive by the end of the second rainy season (Table 4.3). 

Less than 0.2% of the available Zn was released from FC-exoskarn over grey hornfels and 

from FC-intrusive over black marble in the first two rainy seasons. A similarly low 

percentage of the total As had been released from the base of FC-black marble over intrusive. 

In all of the above-listed cases, the small percentage of the total Mo, As, or Zn mass that had 

been released from the field cells suggest that leaching could continue for several decades to 

centuries without exhausting the source of Mo, As, or Zn.  

Table 4.3    A summary of the total amount of As, Zn, and Mo available to leach from various field cells 

installed at Antamina, presented alongside the mass that was released through leaching during the first 

two rainy seasons after the field cells were installed. The ‘% Released’ column shows the percentage of 

total solid phase As, Zn, or Mo that was leached through the duration of the first two rainy seasons. All of 

the data presented, except those from UBC-3-2A are from stacked field cells.    

Field cell Element 

Total 

Mass 

(g) 

Mass 

released (g) 

% 

Released 

UBC-5A-TU As 66.2 3.6 5.4 

UBC-3-2A Zn >3332 7.5 <0.2 

FC-black 

marble over 

intrusive 

Mo 106 1.7 1.6 

UBC-Mo-T1L As 53.9 0.05 0.09 

UBC-Mo-T2L Zn 524 0.25 0.05 
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The elemental composition and total mass of waste rock, together with an understanding of 

the attenuation stoichiometry can be used to make a first order prediction of a system’s 

attenuation capacity. Assuming that Mo is indeed attenuated by wulfenite precipitation in 

FC-intrusive over black marble, then such a prediction is possible, given that each mole of 

wulfenite precipitated removes a mole of Mo and a mole of Pb from solution (Conlan et al., 

2012). According to the available data on solid phase composition, there are 0.93 moles (89 

g) of Mo in the releasing material and 1.5 moles (303 g) of Pb the attenuating material in this 

stacked field cell. The surplus of Pb suggests that the black marble in this field cell has 

adequate capacity to attenuate the Mo that may be released in stacked field cell FC-intrusive 

over black marble. Unfortunately, similar calculations will not be possible for FC-exoskarn 

over grey hornfels until the Zn attenuation mechanism is better understood.  

Although useful as a first order approximation, the simplistic calculation discussed in the 

previous paragraph cannot be relied upon for developing a waste rock mixing strategy to 

attenuate Mo. A more realistic estimate of the attenuation capacity would need to consider 

kinetics and take into account the fact that much of the Pb released during galena oxidation 

would likely re-precipitate as cerrusite before it comes in contact with Mo, possibly making 

it unavailable for reaction with Mo (Chapter 3). Armoring of galena and molybdenite, a 

process where secondary minerals accumulate on their surfaces, rendering them less reactive, 

would also need to be accounted for in predicting the long-term behavior of a waste rock 

system (Holtzen and Smith, 1998). 

4.3.5  Field cell hydrology and implications for sulfate leaching 

Within only a few hours of tracer application, Cl was already detected at full concentration in 

instantaneous samples from the UBC-4-5-5A and UBC-5-4A single field cells (Figure 4.7). 
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In the case of UBC-5-4A the Cl concentration increased from baseline 1 mg/L at the time of 

the first sample after tracer application to 1,000 mg/L in only 40 minutes. Within a few hours 

of reaching full tracer concentration (1,000 mg/L), the concentrations of the 2
nd

 and 3
rd

 

instantaneous samples dropped to below 300 mg/L in both field cells. The first composite 

sample, taken a few days after the tracer experiment, fell within the same concentration 

range. Within 40 days of the initiation of the tracer experiment, concentrations in both field 

cells had fallen to near baseline levels.  

  
Figure 4.7    Evidence for preferential flow in breakthrough curves showing chloride concentrations in 

basal leachate vs. time after the application of a LiCl tracer solution to single field cells at the Antamina 

mine. The data are from field cells UBC-5-4A (left) and UBC-4-5-5A (right). The empty shapes show data 

from instantaneous samples, whereas the solid shapes show data from composite samples (See section 4.2 

for an explanation of those terms).    

Field cells UBC-4-4B, UBC-2-0A, UBC-3-2A, and UBC-1-3A showed similar trends, with 

maximum tracer concentrations occurring only a few hours after the initiation of the test, and 

several weeks to months passing before additional chloride was flushed from the field cells 

and Cl concentrations returned to normal levels (Table 4.4). The breakthrough curves 

demonstrated in the single field cells, with very early, high-concentration peaks, and long 

tails are indicative of preferential flow, where some tracer passes very quickly through 

macro-pores in the waste rock and ends up immobilized in low permeability parts of the 

material and slowly diffuses out (Eriksson et al., 1997). The implication of these preferential 

flow paths is that residence time in the field cells is highly variable, depending on the flow 
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path that water takes through the cell. It is probable that during high precipitation events, a 

significant portion of precipitation may pass through preferential flow paths and have very 

little time to react with waste rock.      

Table 4.4    A summary of key results for the tracer tests carried out in field cells at the Antamina mine in 

Peru. All concentrations (conc.) mentioned are in mg/L. The time is measured in days since the initiation 

of the tracer test. The * symbol indicates that the time includes a 150 day dry season where very little 

flow occurred in the field cell. UBC-5A-TL indicates data from the basal leachate of stacked field cell 

UBC-5A-T, and UBC-5A-TU shows data from its upper lysimeters. 

Field Cell 

Code 

Highest Cl 

conc. 

Last inst. 

Conc. 

Last Jan. 2010 

Composite Cl 

Conc. 

Days before Cl 

drops below 50 

mg/L 

Days until 

Cl flushed 

UBC-1-3A 1000 268 n/a 17 275* 

UBC-2-0A 1000 192 219 24 110 

UBC-3-2A 1000 209 174 71 67 

UBC-4-4B 1000 232 176 78 274* 

UBC-4-5-5A 1000 291 310 33 59 

UBC-5-4A 1000 278 257 64 59 

UBC-5A-TL 43 43 269 35 47 

UBC-5A-TU 242 242 n/a n/a n/a 

Although instantaneaous samples were not available for the Li that was added to the field 

cells during the tracer test, it appears to have followed a similar pattern to that of Cl, showing 

the same signs of preferential flow (Figure 4.8). An important difference between Cl and Li 

in this tracer test is that Li took much longer to flush out of the system. In all field cells Li 

concentrations were below 1 mg/L, but still well above pre-tracer test baseline levels at the 

end of the 2010/2011 rainy season, more than a year after the test was conducted. The fact 

that Li takes much longer to flush from the field cells than Cl, indicates that Li is retarded by 

adsorption onto waste rock surfaces. 
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Figure 4.8     Evidence for preferential flow in a typical breakthrough curve showing lithium 

concentrations in basal leachate vs. time after the application of a LiCl tracer solution to a single field 

cells at the Antamina mine. The data are from field cell UBC-4-5-5A, but are representative of all other 

single field cells in the tracer test, and all data points are from composite samples (See section 4.2 for an 

explanation of those terms).  

Only one of the stacked field cells, UBC-5A-T, was included in the tracer test. It was 

included together with its associated single field cells UBC-5-4A and UBC-4-5-5A, since 

both of these rock types are included in the stacked field cell. UBC-5A-T was compared with 

its associated single field cells to explore any differences in flow between stacked and single 

field cells containing the same materials.  Tracer was sampled from both the upper lysimeters 

and the stacked field cell base, generating two distinct curves. Unlike the single field cells, 

none of the instantaneous samples taken from the stacked field cell within the first 48 hours 

after the tracer was applied reached maximum tracer concentrations (Figure 4.9). The higher 

concentrations in samples from the upper lysimeters in the hours after the tracer was applied 

suggest that tracer plumes center of mass had not yet reached the base of the field cell 48 

hours after it was applied to the field cell’s top surface. By the time the first composite 

sample was taken a few days later, the concentration at the base of the stacked field cell was 

similar to those observed in the single field cells at the same time. Another similarity with the 

tracer test results from the single field cells, was that Cl concentrations had decreased to near 

pre-tracer test levels within 40 days of tracer application. The results from the stacked field 
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cell still show characteristic signs of preferential flow, with high early time tracer 

concentrations, and along trail off before all the tracer is flushed out, however, preferential 

flow appears to be less dominant in stacked field cells than it is in single field cells.  

 
Figure 4.9    Evidence for preferential flow in a composite breakthrough curve showing chloride 

concentrations in basal and upper lysimeter leachate vs. time after the application of a LiCl tracer 

solution to stacked field cell UBC-5A-T at the Antamina mine. The red series shows data from the upper 

lysimeters installed at the contact between waste rock types and the blue series shows data from basal 

leachate. The empty shapes show data from instantaneous samples, whereas the solid shapes show data 

from composite samples.  

The data from the tracer tests carried out in UBC-5A-T and its companion field cells give the 

impression that preferential flow is less dominant in the stacked field cells than in single field 

cells. The amount of sulfate released per kg of waste rock material was compared in four 

different stacked field cells and their constituent single field cells in order to evaluate the 

effects of distinct flow regimes on the chemical composition of leachate. Given that the 

waste rock material in both the stacked and single field cells had been well-mixed it was 

expected that the amount of sulfate leached per kg of waste rock material in the single field 

cells would be comparable to that of the associated stacked field cells. All single field cells 

and stacked field cells leached between 0.15 and 0.95 g of sulfate per kg of waste rock during 

the course of the first two rainy seasons (Table 4.5). UBC-5A-T released only half the sulfate 

per kg of material as single field cell UBC-4-5-5A, even though the material from UBC-4-5-
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5A composed well over half of the waste rock in the stacked field cell. The difference 

between stacked field cells and associated single field cells was even more substantial in FC-

black marble over intrusive and FC-intrusive over black marble, although in this case the 

stacked field cell released much more sulfate than the associated single field cells. The 

stacked field cell FC-exoskarn over grey hornfels released a similar amount of sulfate to 

UBC-3-2A (exoskarn), even though the material from UBC-3-2A made up only 24% of the 

mass in the stacked field cell. Based on the results presented in this section, it is very difficult 

to predict the sulfate release rate of a stacked field cell based on that of its companion single 

field cells. Some of the difference in sulfate release between stacked field cells and their 

associated single field cells is likely related to the difference in hydrologic behaviour 

discussed in this section. These differences in hydrologic behavior and sulfide leaching raise 

some doubts as to the effectiveness of chemistry data from a single field cell as a surrogate 

for the composition of unmixed leachate from the upper material in a stacked field cell.   
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Table 4.5    The mass of sulfate released during the first two rainy seasons after installation per kg of 

waste rock in four selected field cells and their associated single field cells. UBC-5A-T, FC-black marble 

over intrusive, FC-intrusive over black marble, and FC-exoskarn over grey hornfels are stacked field 

cells. Single field cells are shaded the same color as their associated stacked field cells. 

Field cell 

code 

Sulfate 

Released 

(g/kg) 

UBC-4-5-5A 0.29 

UBC-5-4A 0.21 

UBC-5A-T 0.15 

UBC-2-0A 0.33 

UBC-1-3A 0.14 

FC-black 

marble over 

intrusive 

0.45 

FC-intrusive 

over black 

marble 

0.51 

UBC-3-2A 0.95 

UBC-4-5-1A 0.15 

FC-exoskarn 

over grey 

hornfels 

0.85 

 

4.3.6 Comparison of leaching rates from different approaches used in this study 

The current study employed three different leaching regimes: the standard ASTM humidity 

cell leaching method, a modified ASTM method that was used in the humidity cells 

connected in series to study attenuation, and field cells leached under ambient temperature 

and precipitation conditions at Antamina. Release rates of As, Mo, and sulfate from intrusive 

rock under each of these distinct leaching regimes were compared to understand how 

differences in temperature, water to rock ratio and grain size distribution affected 

experimental results (Figure 4.10). Mo release rates were highest during the first few weeks 

of the experiment in both ASTM and non-ASTM humidity cells, starting at 2 mg/kg/week in 

the second week of the experiment, before stabilizing at close to 0.3 mg/kg/week for the final 

twenty-two weeks of leaching. The non-ASTM humidity cell tended to release Mo at a 

marginally higher rate than the ASTM humidity cell in this experiment. The equivalent field 

cell released Mo at a much lower rate, generally ranging from 0.05 to 0.15 mg/kg/week 
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during the first two rainy seasons after it was installed. The As leaching rate from the ASTM 

humidity cell increased steadily during the first 10 weeks of the experiment before levelling 

off near 0.3 mg/L. The non-ASTM humidity cell released As at a lower rate than its ASTM 

equivalent, averaging about 0.1 mg/kg/week for most of the experiment. Arsenic leaching 

occurred at the lowest rate in the field cell, where it ranged from 0.01 to 0.03 mg/kg/week 

during the first two rainy seasons after it was installed. The highest sulfate release rate, a 

surrogate for sulfide mineral oxidation in mine drainage systems, occurred in the non-ASTM 

humidity cell for most of the experiment. Near the beginning of the experiment the non-

ASTM intrusive material humidity cell leached sulfate at more than 600 mg/kg/week. The 

release rate dropped over several weeks before stabilizing for most of the experimental 

duration at around 20 mg/kg/week. Release rates from the ASTM humidity cell showed a 

similar pattern to those of the non-ASTM humidity cell, although they were generally lower 

for the past 20 weeks, averaging about 10 mg/kg/week. The sulfate release rate from the field 

cell during the first two rainy seasons was highly variable, but like the ASTM humidity cell it 

generally leached close to 10 mg/kg/week. 
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Figure 4.10   A comparison of As (top left), Mo (top right) and sulfate (bottom) release rates from an 

intrusive Mo-bearing material installed in humidity cells with a standard ASTM leaching procedure 

(HC-ASTM series), a modified humidity cell leaching procedure (HC-Non ASTM series) and a field cell 

installed at Antamina mine in Peru (FC series) plotted against time since installation. The vertical axis in 

the sulfate graph has a logarithmic scale. The field cell data series has had its dry seasons removed to 

facilitate comparison with the more continuous humidity cell data.   

The release rates of Mo, As, and sulfate per unit mass of waste rock material were higher 

from the humidity cells than they were from the field cells used in this study. The higher 

release rates from humidity cells was not unexpected given that their small grain size allowed 

for more mineral surface area for oxidation reactions and the higher temperatures in the 

laboratory setting likely hastened the rate of kinetic reactions. The non-ASTM cell leached 

Mo, and sulfate at an even higher rate than the ASTM humidity cell, perhaps because its 

lower water to waste rock ratio facilitated the aeration of material in the cell, thereby 

enhancing sulfide oxidation. It is unclear why As was released more rapidly from the ASTM 

humidity cell in this experiment.  

Although figure 5 demonstrates that the intrusive material releases sulfate twice as rapidly 

(per kg of material) than the field cells, this is likely an underestimate, given that the field 
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cells only have substantial water flow for about twenty weeks a year. Taking this into 

account, a week of leaching in the non-ASTM humidity cell is equivalent to at least 4 weeks 

of leaching in field cells under ambient conditions. 

4.3.7 Summary and future research 

While the data presented and discussed in this chapter provide some further insight into the 

processes controlling metal release and attenuation in the field cells, they also highlight some 

areas where further research is required. The following points highlight the key findings 

presented in the chapter: 

 As was not strongly attenuated by contact with fornfels UBC-5-4A.   

 Mo was not strongly attenuated by contact with UBC-4-5-5A (marble/hornfels) even 

though UBC-4-5-5A contained Pb. Given relatively small amount of Pb in the 

attenuating material it is possible that its attenuation capacity was overwhelmed.  

 Zn is attenuated by contact with intrusive material in the FC-black marble over 

intrusive field cell and associated humidity cells. The lack of attenuation in the FC-

intrusive over black marble field cell suggests that a surface reaction is responsible 

for removing Zn from solution. 

 Aside from As, Mo, and Zn, Cd is the only element for which conclusive evidence 

for attenuation was found, like Zn it was removed by contact with hornfels material 

in FC-exoskarn over grey hornfels. 

 It appears that Mo, Zn, and As will continue to be released from field cells for many 

years, based on the small percentage of their overall mass that has been released from 

field cells so far.   
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 FC-black marble over intrusive seems to contain enough Pb to attenuate the Mo that 

may leach from its Mo-releasing material.  

 Preferential flow occurs in both stacked and single field cells, however it appears to 

be a more dominant mechanism in single field cells. 

  The slower release of Li, relative to Cl, after the tracer test suggests that Li may be 

retarded to some extent by adsorption.   

 Differences in flow characteristics between stacked field cells and their associated 

single field cells may help explain the difficulty in predicting stacked field cell 

sulfate release rates based on single field cell sulfate release rates.  

 The differences in flow and sulfate loading between stacked field cells and associated 

single field cells highlight a downside of relying on data from single field cells as a 

surrogate for pre-mixing leachate composition. The challenges associated with using 

single field cell leachate as a surrogate for unmixed single field cell leachate 

highlight the importance of data from upper lysimeters for determining unmixed 

leachate composition in stacked field cells. 

 The FC humidity cell leaching procedure yields higher chemical release rates than 

the ASTM humidity cell leaching procedure, which in turn leads to faster leaching 

than the field cells. 

The following key areas of uncertainty were identified and may require further research: 

 Little information is currently available on hornfels UBC-5-4A’s solid phase 

composition, so it is unclear why so little As attenuation occurred due to contact with 

this material. 
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 The lack of data on the chemical and mineralogical composition of UBC-4-5-5A may 

provide further insight as to whether the lack of Mo attenuation by this material is 

related to its low Pb content, or wulfenite (PbMoO4) precipitation is limited by some 

other factor.   

 If whole rock composition is to be used to predict the attenuation potential of a given 

material, it will be important to account for the effects of armoring by secondary 

minerals that form on sulfides or other mineral surfaces. 

 Future tracer tests should focus on FC-exoskarn over grey hornfels, FC-black marble 

over intrusive, FC-intrusive over black marble and their associated single field cells 

since these stacked field cells are the most interesting in terms of geochemical 

attenuation, and their hydrologic behavior is not yet well understood. 

 The lack of quality flow volume data complicates quantitative analysis of tracer test 

data and makes it difficult to estimate residence time in the field cells. 
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Chapter  5: Conclusion 

This chapter will review the key findings presented in the thesis, highlight their potential 

implications for Antamina and for the mitigation of neutral mine drainage in general, and 

highlight uncertainties and areas where further research is still required. 

5.1 Summary of key findings 

As outlined in the introduction, the principal objectives of this research were: 

 To evaluate the effectiveness of stacked field cells and humidity cells connected in series 

for the study of metal attenuation by waste rock mixing 

 To test the hypothesis that Pb could limit aqueous Mo concentrations through the 

precipitation of wulfenite (PbMoO4) under field conditions at neutral pH 

 To assess the degree to which Zn could be attenuated by contact with non-reactive 

hornfels or limestone material in neutral pH conditions 

 To identify the mechanism(s) responsible for Zn attenuation 

This section of the conclusion chapter will review the key findings related to each of the four 

principal research objectives. 

5.1.1 Effectiveness of stacked field cells and humidity cells connected in series 

This thesis has presented the results of two hitherto untested methods for the study of metal 

attenuation by waste rock mixing. Both experimental methods were proven capable of 

detecting attenuation reactions by allowing the comparison of pre-mixing and post-mixing 

chemical compositions of leachate from waste rock. Furthermore results from both 

experiments were generally consistent. Data from the stacked field cells demonstrated five 

distinct attenuation reactions: Zn and Cd were both attenuated by contact with calcite rich 

hornfels waste rock in FC-exoskarn over grey hornfels, Zn was attenuated by contact with 
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Mo-releasing intrusive material in FC-black marble over intrusive, and both Mo and As were 

attenuated by contact with Pb-bearing black marble waste rock in FC-intrusive over black 

marble. The same metals were attenuated by the same materials in the associated humidity 

cells. Both stacked field cells and humidity cells connected in series also demonstrated that 

Zn, Mo, and As were not attenuated when the releasing material was installed below (down 

flow from) the attenuating material – demonstrating further consistency between the distinct 

experimental approaches. The largest difference between the experimental approaches was 

observed with respect to Zn attenuation, given that a higher percentage of Zn was removed 

from leachate in the stacked field cell experiments than in the associated humidity cell 

experiments. Overall, in spite of the difference in grain size distribution, experimental scale, 

and climate between the stacked field cells and humidity cells operated in series, the smaller-

scale and more cost-effective humidity cell version of the experiment appears to be a 

reasonable method for identifying attenuation reactions that may occur in waste rock dumps. 

The inadequate data from the upper lysimeters in the stacked field cells were supplemented 

by relying on single field cells as surrogates, however this approach had limitations. 

Generally the single field cell surrogate approach worked quite well, however, in some cases 

(e.g. Pb and Cu leaching from black marble in UBC-3-2A, but not leaching from identical 

material in FC-black marble over intrusive and FC-intrusive over black marble) the same 

waste rock material leached metals in the single field cell that it appeared not to leach in the 

associated stacked field cell. It seems likely that this sort of discrepancy was caused by 

heterogeneities in the waste rock material, however it may also be related to the different 

flow behavior between stacked field cells and single field cells, as mentioned in chapter 4.  
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One possible flaw in the upper lysimeter design is that they were not tall enough, and that the 

formation of a perched water table at the lysimeters’ bases caused unfavorable hydraulic 

gradients, leading flow to bypass them (Figure 5.1, Ayres et al., 2003). The second factor 

was eventually addressed by sending 30 mL samples to Canada for chemical analysis instead 

of relying on ALS laboratories in Lima. This change in sampling procedure yielded samples 

from the upper lysimeters in the third rainy season, although these samples were not yet 

analyzed at the time of publication.  

 

Figure 5.1    A schematic diagram demonstrating how inadequate lysimeter depth can cause water flow 

(represented by blue arrows) to bypass lysimeters in unsaturated conditions by leading to a situation 

where suction along the outside of the lysimeter is much stronger than inside it (modified from Ayres et 

al., 2003).  

5.1.2 Attenuation of Mo through wulfenite precipitation 

Conlan et al. (2012) laid the groundwork for this portion of the thesis by establishing that 

wulfenite precipitation could play an important role in controlling Mo concentrations in 

geochemical conditions similar to those found in Antamina waste rock. This study’s principal 

contribution was to demonstrate that Pb can play an important role in attenuating Mo in 

actual waste rock from the mine and under field conditions rather than under more carefully 

controlled laboratory experiments. Results from stacked field cell FC-intrusive over black 

marble and associated humidity cells connected in series proved that Pb-bearing marble 

waste rock from Antamina was capable of removing aqueous Mo from leachate.  Based on 
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the work of Conlan et al. (2012), and the observation that attenuation only occurred when Mo 

leachate had direct contact with Pb-bearing waste rock, and geochemical modeling, it appears 

that wulfenite precipitation was responsible for the removal of Mo from solution. Given that 

galena is the most likely source of Pb in the waste rock, the degree of Mo attenuation is 

limited by a kinetically controlled oxidation reaction (Figure 5.2). In spite of Pb’s low 

mobility at typical pH values for Antamina waste rock, geochemical modeling suggests that 

wulfenite precipitation out occurs more readily than cerrusite precipitation when Mo makes 

close contact with an oxidizing galena mineral grain. 

 

Figure 5.2    Diagram of Mo from molibdenite dissolution (red arrows) being attenuated near the top of 

the Pb-bearing black marble layer in FC-intrusive over black marble (left). Panel 1 on the right shows 

the attenuation at the scale of a single pore, where MoO4
2-

 is intercepted by Pb
2+

 (blue arrows) from 

galena (G) oxidation. Pb
2+

 that does not come in contact with MoO4
2-

 reacts with HCO3
-
 in solution. In 

panel 2 PbMoO4 precipitates as wulfenite and PbCO3 precipitates as cerrusite on the surfaces of nearby 

grains of waste rock material  

The results presented in chapters 3 and 4 also demonstrate that merely mixing Pb-bearing 

waste rock with Mo-releasing material is not sufficient to guarantee precipitation. Layering 

Pb-bearing waste rock on top of Mo-releasing waste rock does not appear to have any 

significant attenuating affect, likely because Pb is immobilized by cerrusite precipitation 

before it can react with Mo to form wulfenite.   
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Even if Pb-bearing material is placed below (downstream of) Mo-releasing waste rock, as 

was the case in field cell UBC-5C-T, Mo attenuation will not necessarily occur. Given the 

lower concentration of Pb in UBC-5C-T as compared to FC-intrusive over black marble, and 

by extension lower galena surface area in the attenuating material, it is likely that the Mo 

loading rate exceeded the field cell’s capacity to release Pb for wulfenite precipitation. 

Conlan et al. (2012) identified powellite as another potential sink for Mo in neutral drainage 

conditions, however, noted that its formation was kinetically limited. SI calculations 

performed on leachate from the field cells in this study supported this hypothesis, given that 

powellite was supersaturated in leachate from Mo-releasing field cells (UBC-2-0A, and FC-

black marble over intrusive). This result suggests that kinetic limitations on powellite 

precipitation prevent it from playing an important role in controlling Mo concentrations in 

Antamina waste rock, at least at the time scale of the stacked field cell experiments.  

It was hoped that Mo attenuation mechanism could be confirmed by solid phase analysis of 

the attenuating waste rock material after several months of exposure to Mo-bearing leachate. 

Unfortunately, this was not possible in the humidity cells because the miniscule mass of Mo 

that was attenuated led to an insufficient solid phase concentration of these metals in the 

attenuating material. Given that the aqueous concentration of Mo was higher in the field cells 

than in the humidity cells, an attempt was made to sample waste rock from the upper 

boundary of the attenuating material in stacked field cells FC-intrusive over black marble. 

This attempt at sampling was unsuccessful, however, because miscommunication with field 

staff at the Antamina mine led to the retrieval of samples from the base of the attenuating 

material, where solid phase concentrations of Mo would have been at their lowest, and no 

Mo was found.  
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5.1.3 An assessment of Zn attenuation by contact with non-reactive hornfels 

 Field cell experiments revealed that more than 99% of Zn was removed from leachate that 

passed through calcite rich hornfels material. A lower percentage of Zn was attenuated by 

contact with the same material in the humidity cell version of the experiment. This lower 

removal percentage may have been related to a relative lack of reaction sites or a lower 

residence time (if the reaction were kinetically limited) in the humidity cell in comparison 

with the stacked field cell. 

5.1.4 The mechanism responsible for Zn attenuation in hornfels  

A review of the scientific literature (summarized in Chapter 3) suggested that there are 3 

principal mechanisms by which Zn could have been attenuated in this system: 1) 

precipitation as a Zn-carbonate or Zn-hydroxide mineral; 2) adsorption on to oxide mineral 

surfaces; 3) or incorporation into the inter-layer of a phyllosilicate clay mineral. Geochemical 

modeling cast doubt on the importance of Zn-carbonate or Zn-hydroxide precipitation for 

attenuating Zn, as none of the modeled Zn-bearing phases in the MINTEQ.V4 database were 

insoluble enough to account for the degree of attenuation observed in the study. The 

likelihood that adsorption onto iron or aluminum oxide minerals could have been responsible 

for Zn attenuation was low, since iron oxide minerals are a product of pyrite oxidation and 

would be present in both the releasing and the attenuated material. Furthermore, SEM 

analysis did not find evidence of Zn associated with iron oxide surfaces in the hornfels Zn-

attenuating material from the humidity cell experiment, despite its having been exposed to 

Zn-bearing leachate for 30 weeks.  
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On the other hand, several lines of evidence from SEM and XRD analyses of attenuating 

material from the humidity cells connected in series suggested that phyllosilicate clays 

played an important role in attenuating Zn. SEM /EDX analysis consistently showed an 

association between Zn and fine-grained, platy, clay-like minerals that were rich in Al, Mg, 

Si, O, and Fe. XRD analysis demonstrated that clinochlore, a phyllosilicate clay mineral 

composed of Al, Mg, Si, O, and Fe, was quite abundant in the Zn-attenuating material, but 

not in the Zn-releasing material. The abundance of clinchlore in the Zn-attenuating material 

relative to the Zn-releasing material provides a likely explanation as to why waste rock 

mixing was necessary to facilitate Zn attenuation in this case – the releasing material did not 

contain enough clinochlore clay to provide sufficient exchanges sites to remove Zn from 

solution. Based on the evidence presented in chapter 3, it is hypothesized that Zn
2+

 is 

attenuated by replacing Mg
2+

 or Fe
2+

 in the interlayer of clinochlore clays (Figure 5.3).  

Another divalent cation, Cd
2+

, was also attenuated by contact with the same hornfels 

material, suggesting that it may have been subject to a similar attenuation mechanism. 

 

Figure 5.3    A schematic diagram showing the Zn
2+

 replacing an Mg
2+

 ion in the interlayer of a clay 

mineral. The triangles are alumino-silicate tetrahedral. Figure modified from Dold and Fonboté, 2001. 

It should be noted that some Zn was detected by SEM/EDX in a similar mineral phase in 

weathered attenuating material that had not been exposed to Zn-rich leachate. This is not 

entirely unexpected, given that some Zn-bearing sphalerite is also present in the attenuating 
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material and Zn from the weathering of this sphalerite would probably be attenuated by the 

same mechanism. A sample from the attenuating material in FC-exoskarn over grey hornfels 

was taken for solid phase analysis in the hopes that the higher aqueous Zn concentrations in 

the field cells would yield higher solid phase Zn concentrations and facilitate the 

identification of Zn-bearing secondary phases. As was the case for samples from FC-

intrusive over black marble, field staff at Antamina took the sample from the base of the 

stacked field cell rather than the upper boundary of the attenuating material, resulting in very 

low solid phase Zn concentrations.  

5.1.5 Summary of metal attenuation reactions presented in this study 

Five distinct metal attenuation reactions have been identified in this study. In each case an 

attenuation mechanism has been postulated, however the degree of confidence in the 

mechanism varies widely (Table 5.1). Mo attenuation is the best understood of the four 

metals that were attenuated in this research, due to Conlan’s (2009) previous investigation on 

the topic. The work in this thesis has led to the development of a hypothesis as to the fate of 

attenuated Zn, however, more work is needed to confirm the proposed mechanism and 

predict Zn’s long-term fate. The mechanisms behind As and Cd attenuation are still less well 

understood than the Zn attenuation mechanism, and much more research would be needed to 

confirm them. The degree of certainty in the attenuation mechanism must be considered 

when applying the findings of this research to the prediction of drainage quality or the 

strategic layering of waste in waste rock dumps.  
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Table 5.1    A summary of the 5 different attenuation reactions observed in the stacked field cells installed 

at the Antamina mine site. The ‘references from the literature’ column refers to papers or theses where 

the proposed mechanism is described. 

Stacked 

field cell 

Metal 

attenuated 

Proposed 

mechanism 
Evidence from this study 

References 

from 

literature 

Degree 

of 

certainty 

FC-

intrusive 

over black 

marble 

Mo 
Wulfenite 

precipitation 

Association with Pb 

bearing waste rock in field 

cells and humidity cells, 

geochemical modeling 

Conlan et al., 

2012; 

Lindsay and 

Vlek, 1977 

High 

FC-

exoskarn 

over grey 

hornfels 

Zn 

Incorporation 

into clay 

minerals 

SEM/EDX work, 

geochemical modeling  

Manceau et 

al., 2000; 

Dold 2003 

Medium-

high 

FC-black 

marble 

over 

intrusive 

As 

Co-

precipitation 

with Pb 

Association with Pb 

bearing waste rock in field 

cells and humidity cells 

Villalobos et 

al., 2010 

Medium-

low 

FC-

exoskarn 

over grey 

hornfels 

Cd 

Incorporation 

into clay 

minerals 

Also divalent cation, 

attenuated in same material 

as Zn 

Barbier et al., 

2000 

Medium-

low 

FC-black 

marble 

over 

intrusive 

Zn 

Co-

precipitation 

with Mo 

Attenuation in Mo-

releasing material 
Conlan, 2009 Low 

 

5.2 Research implications 

This section of chapter 5 will highlight and discuss the importance and potential applications 

of the research to the Antamina mine and to the mining industry in general. 

5.2.1 Implications for the Antamina mine  

As is the case with UBC’s entire Antamina waste rock project, this research was initiated to 

assist the Antamina mine in understanding hydrological and geochemical processes that 

occur in their waste rock to aid in the development of their plans for waste rock disposal and 

mine closure. Specifically, this research sought to confirm that Mo could be attenuated by 

wulfenite attenuation due to contact with Pb under conditions representative of the mine’s 

waste rock dumps. The observed attenuation of Mo by contact with Pb-bearing waste rock 
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suggests that wulfenite precipitation could be included in models of sections of the East 

Dump where Mo- and Pb-bearing waste rock is intermingled. It also may help explain the 

low Mo concentration in leachate from the East Dump in spite of the high Mo concentrations 

leached from some waste rock materials that are deposited there. Another factor likely 

contributes to Mo attenuation in leachate from the East Dump, is that some parts of the 

leachate have turned acidic, allowing Mo to be removed by sorption.  

The stacked field cell experiment was designed to determine whether there are any 

mechanisms by which non-reactive waste rock material could attenuate Zn. At the time of 

study design this issue was particularly relevant given that some moderately reactive Zn-

releasing materials were being disposed of in the class C dominated Tucush Dump at 

Antamina. Results from this study provide strong evidence that the attenuation of Zn by non-

reactive waste rock at Antamina is possible. The hypothesized Zn attenuation mechanism 

may be useful in predicting the degree to which Zn attenuation will occur in the Tucush 

dump once it has been confirmed. Given the possibility that adsorption or cation exchange is 

responsible for Zn attenuation, it is possible that the capacity of the attenuating material will 

run out before the Zn-leaching ceases.  

The attenuation of Mo, Zn, Cd, and As observed in this study points to reactions that should 

be taken into account for understanding and modeling the behavior the full scale waste rock 

dumps. These reactions, however, occurred in stacked field cells that were designed to 

answer specific research questions related to Antamina’s full scale piles and not UBC’s 

experimental piles. On the other hand, stacked field cells UBC-5C-T, UBC-4B-T, and UBC-

4C-T were designed to mimic the geochemical conditions directly overlying specific small 

sub-lysimeters (5C, 4B, and 4C, respectively) in UBC’s experimental piles 4 and 5. The lack 
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observed attenuation of Mo, Zn, As, Ni, Cd, Cr, Cu, Sb, Sn, Se, Ni, Li, or Pb in these field 

cells suggests that attenuation reactions do not play an important role in these sections of 

UBC’s experimental waste rock piles. 

5.2.2 Implications for waste rock management  

The study presented in this thesis has provided evidence that strategically mixing waste rock, 

especially placing attenuating material beneath  metal releasing material, can attenuate Mo, 

Zn, and other metals of concern in neutral mine drainage. Even in cases where strategically 

layering waste rock is not feasible, the attenuation mechanisms explored in this study will aid 

in predicting drainage chemistry in mines where Mo and Zn cause concern. The stacked field 

cell and humidity cells connected in series approaches to the study of attenuation by waste 

rock mixing are relatively low-cost options and can be useful in the design of waste rock 

layering schemes, or prediction of contaminant behavior in waste rock dumps at other mines.    

5.3 Directions for future research 

The work presented in this thesis touches on three related topics in the study of the 

hydrologic and geochemical behavior of waste rock: the detection of metal attenuation by 

waste rock mixing, the mechanisms behind metal attenuation in waste rock, and the effects of 

experimental scale in comparing results from humidity cells, field cells, and experimental 

waste rock piles. This section of Chapter 5 will present potential future research topics in 

each of these 3 topics.  

5.3.1 Detection of metal attenuation reactions by waste rock mixing 

Overall, this aspect of the study was very successful, given that five different attenuation 

reactions were confirmed or identified. Section 4.3.2 describes an exception to this success: 

the case of unconfirmed Cu and Pb attenuation in stacked field cell FC-black marble over 
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intrusive. The following steps are recommended to better understand the behavior of Cu and 

Pb in FC-black marble over intrusive and research other attenuation reactions in the future:   

 Submit samples from humidity cells HC-black marble over intrusive for ICP-MS analysis 

to determine whether or not Cu and Pb was leached from 1-3A and attenuated in the 

humidity cells connected in series 

 Results of a detailed solid phase analysis of the UBC-1-3A material from the stacked field 

cell could be compared to those already performed on UBC-1-3A to determine if there is a 

mineralogical explanation for the apparent lack of Pb and Cu leaching in stacked field 

cells FC-black marble over intrusive and FC-intrusive over black marble 

 Other suspected attenuation reactions should be confirmed using humidity cells connected 

in series or stacked field cells as they are identified. 

The following suggestions may improve the performance of stacked field cells in future 

applications: 

 Future stacked field cells should have taller upper lysimeters to avoid the sample by-pass 

problem described in section 5.1.1. 

 Arrangements for chemical analysis from upper lysimeters should be made beforehand to 

account for the low sample volume that will be collected form these samples. 
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5.3.2  Identification of metal attenuation mechanisms 

Five distinct metal attenuation stories were described in this thesis. In each of the five cases, 

some uncertainty exists with regards to the exact mechanism of metal attenuation. The 

following courses of action are recommended to improve understanding of attenuation 

mechanisms in neutral drainage: 

 Samples of waste rock should be taken from the top of the attenuating materials in field 

cells FC-exoskarn over grey hornfels, FC-black marble over intrusive and FC-intrusive 

over black marble where aqueous Zn and Mo attenuations are highest. 

 Samples from the top of the attenuating material in the field cells should be subjected to 

SEM/EDX, MLA, or other solid phase analysis to identify Mo or Zn bearing secondary 

mineral phases attenuating materials. 

 Mineralogical analysis of UBC-4-5-5A should be carried out to better understand why Mo 

is not strongly attenuated by this material even though it contains Pb. As discussed in 

chapter 4, the current hypothesis is that Pb is simply not abundant enough, or released into 

solution quickly enough to attenuate Mo in field cell UBC-5C-T.  

 The hypothesis the Zn is attenuated by incorporation into phyllosilicate clay minerals may 

be tested by carrying out a sequential leaching procedure such as that described by Dold 

(2003) on a hornfels material that has been exposed to Zn-bearing leachate.  

 In the case of Cd and As, given the low aqueous concentrations in field cell leachate it 

may be necessary to expose sediments to artificially high As or Cd concentrations in 

laboratory experiments in order to produce enough secondary As or Cd phases to allow 

solid phase analysis. 
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5.3.3   Scale effects 

An understanding of the effects of different experimental scales is essential for applying 

results from this experiment to the full scale waste rock dumps at Antamina. In spite of 

differences in grain size, residence time, temperature and sulfate release rates, stacked field 

cells and humidity cells connected in series have identified the same attenuation reactions in 

this study. Stacked field cells UBC-5C-T, UBC-4B-T, and UBC-4C-T provide an opportunity 

to make comparisons between the stacked field cell and experimental pile scales. To facilitate 

the comparison of results across different experimental scales, however, a more detailed 

understanding of flow and residence times in the stacked field cells is required. The following 

courses of action may improve understanding of attenuation across different scales: 

 A tracer test should be carried out on stacked field cells UBC-5C-T, FC-black marble over 

intrusive, FC-intrusive over black marble, UBC-Zn-T and their associated single field 

cells to develop a better understanding of how water flows through waste rock in the field 

cells. Special care should be taken to accurately measure water volumes in this case, so as 

to calculate mean residence times in each field cell 

 Chemistry results from UBC-5C-T, UBC-4B-T and UBC-4C-T and their associated single 

field cells should be compared with those of corresponding sub-lysimeters in experimental 

waste rock piles 4 and 5 to determine if any attenuation reactions occur in the piles that 

have not been captured in the field cell experiment. Special attention should be paid to Mo 

in lysimeter C of pile 5 and its comparison with data from UBC-5C-T.  
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Appendices 

Appendix A  Detailed stacked field cell construction and installation procedure 

A.1 Support structure construction 

The field cell study of metal attenuation at Antamina required the installation of stacked field 

cells, with a total height of about 1.8 m. A wooden frame was constructed to hold these field 

cells in place to prevent them from toppling during the course of the experiment. Eucalyptus 

wood was chosen for the frame, given its local availability and the frame was coated in a 

preservative to in order to enhance its durability. Construction of the frame was carried out 

by a Peruvian company called MECOMA over the last two weeks of May 2009. 

The first step in the construction process was to dig eight 50 cm deep and 80 cm long 

trenches, which served as the structure’s foundations. Sixteen 2.95 m long pieces of 4” x 4” 

wooden posts, and eight 0.8 m long pieces of 6” x 6” wooden posts were then installed in the 

foundational trenches and cemented in place and concrete pad was poured at the base of the 

structure, filling the foundational trenches and creating a concrete pad to maximize stability 

(Figure A1 shows the process of digging and filling the structure’s foundation). Next, eight 

68cm  long 4” x 4” wooden posts were used as horizontal cross-beams to connect the 2.95 m 

long vertical 4” x 4” wooden posts near their base. Later on, four 5.56 m long 2” x 4” 

wooden planks were set on their side and hammered into the 6” x 6” wooden pieces. All parts 

of the base were fastened together using 4” long metal bolts which had been custom made 

out of rebar in a welding shop in Huaraz, Peru. Several 2” x 4” pieces of wood were then 

added to the structure to create a crib for each of the seven stacked field cells that were to be 

installed, as well as a platform with safety railings, which could serve to assist in the process 

of filling the field cells, as well as for easy inspection of the waste rock materials’ upper 
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surface (Figures A2 and A3 show a detailed design of the structure). Wooden planks (2” x 

12”) were used for the structure’s stairs and platform.  

 

Figure A1: A MECOMA working stabilizing the field cell support structure prior to pouring the concrete 

in the structure’s foundation (left), and the process of pouring concrete to fill the foundation (right). Note 

that the structure was composed of 8 identical vertical wooden frames, which were connected together by 

horizontal planks. 

 

Figure A2: Schematic diagram showing the stacked field cell support structure from above (top) along 

with two photographs showing the structure from above after the field cells had been installed (bottom). 

The red rectangles in the diagram are planks of 2”x 4” wood, whereas the yellow rectangles are planks of 

2” x 12” wood.  
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Figure A3: Schematic diagrams showing the stacked field cell support structure from the front (top row) 

and side view (bottom left) along with two photographs showing the structure from the front (middle 

row) and side (bottom right – note that this diagram also shows the depth of the wooden posts). The red 

rectangles in the diagram represent planks of 2”x 4” wood, the yellow rectangles represent planks of 2” x 

12” wood, white rectangles represent 4” x 4” posts, and blue rectangles represent 6” x 6” posts.  
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A.2 Stacked field cell construction and installation 

The methods section of Chapter 2 described the materials used for the stacked field cell 

construction. The purpose of this appendix is to provide more detail as to how the stacked 

field cells and their upper lysimeters were installed.  Unlike the single field cells described by 

Aranda (2009), the drainage apparatus in the stacked field cells was installed at its base, in an 

effort to reduce the amount of standing water at the bottom of the stacked field cell (Figure 

A4). The drainage apparatus itself consisted of a hose connecter held in place by a reducing 

bushing (With the exception of the plastic barrels themselves, and the sample bottles used for 

the lysimeters, all of the hoses, hose connectors, and buckets mentioned in this section were 

purchased at SODIMAC home and garden stores in Lima, Peru).  As in the single material 

field cell, geotextile was used to cover the hose connector inside the field cell. A layer 5cm 

of sand was placed on top of the geotextile, followed by another layer of geotextile. The 

stacked field cells were installed with finer sand in this layer (#60 mesh) than were the single 

material field cells at Antamina (#30 mesh). Apart from the position of the drainage aparatus 

in the field cell, and the grain size of the sand, the stacked field cell was identical to that 

described by Aranda (2009) for the single material field cells.  
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Figure A4: A photograph of the drainage apparatus installed in the base of the stacked field cell (left), 

with a diagram of the interior of the field cell (right) showing the depth of standing water during field cell 

operation. 

The stacked field cells were designed to hold twice as much material as a single material 

field cell. As described in chapter 2, two stacked field cells were cut and stuck together such 

that they effectively formed a single, 180 cm tall field cell. The plastic barrels used for the 

field cells came with a built in base and top. The top half of the stacked field cell was formed 

by opening both ends of the barrel with a saw, whereas only the top of the bottom barrel was 

removed. Both top and bottom barrels were cut such that a ledge was left at the interface 

between the two barrels (Figure A5). This ledge was coated in silicone and left to dry to seal 

the two barrels together.   

2.5cm 
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Figure A5: A schematic diagram of the process of preparing the stacked field cell (left) and a close up 

photograph of the ledge that is used to seal the two plastic barrels together. Note that on the figure to the 

left, the black circle with a blue edge is a view of the bottom barrel from above. 

As chapter 2 described, three simple lysimeters were fabricated from 1 L plastic bottles. They 

consisted of a hose connector inserted into the opening of the sampling bottle. The base of 

the bottle was cut off with a saw in order to collect leachate solution from the top material in 

the field cell. Each upper lysimeter contained a circular piece of geotextile to prevent its 

drainage hose from clogging. This was covered by a 2 cm thick layer of sand, followed by a 

second layer of geotextile (Figure A6). The hose connector was attached to the bottle using 

PVC cement.  



 114 

 

 

Figure A6: A schematic diagram of an upper lysimeter (top left) and a series of 4 photos showing various 

stages of its assembly (top right, bottom row). The black circles in the diagram and in the photos are the 

layers of geotextile. The vertical blue line in the diagram represents the side of the field cell barrel. 

A total of seven stacked field cells were installed for this study. Results from five stacked 

field cells were discussed in the body of the thesis, however, two stacked field cells did not 

contribute significantly to developing a better understanding of attenuation reactions. Each 

stacked field cell was designed to investigate the attenuation of a particular metal, or to 

simulate the geochemical conditions above a specific sub-lysimeter in one of UBC’s 

experimental waste rock piles (Table A1). 
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Table A1: Contents of the 7 stacked field cells. Note that direct contact exists between each material type. 

Waste rock masses are corrected for their moisture content. 

Stacked Field 

Cell Code 
Materials Used Purpose 

UBC-5A-T Class C hornfels and marble (471.4 kg 

of UBC-4-5-5A on top of 161.5 kg of 

class C hornfels UBC-5-4A) 

Intended to simulate 

sub-lysimeter A in pile 

5, but 5-4A was 

erroneously installed 

UBC-5C-T 342.3 kg of Class A (UBC-5-6A - 

intrusive) on top of 280.6 kg of Class C 

(UBC-4-5-5A – hornfels and marble) 

Mimic geochemical 

conditions above sub-

lysimeter C in Pile 5 

UBC-4C-T 157.3 kg of Class B (UBC-4-4B – black 

and white marble) on top of 511.5 kg 

class C (330.5 kg of UBC-4-3A – black 

and white marble and 175.9 kg of UBC-

4-5-5A – grey/brown hornfels) 

Mimic geochemical 

conditions above sub-

lysimeter C in Pile 4 

UBC-4B-T 274.3 kg of Class B (UBC-4-2A – 

grey/brown hornfels) on top of 331.9 kg 

of Class C (174 kg of UBC-4-3A and 

162.8 kg of UBC- 4-1A, both are 

grey/brown hornfels) 

Mimic geochemical 

conditions above sub-

lysimeter B in Pile 4 

UBC-Zn-T Zn-rich Class A (161.2 kg of UBC-3-

2A – exoskarn class A) on top of Class 

C (511.8 kg of 4-5-1A – grey hornfels) 

Investigate possible Zn 

attenuation by class C 

material 

UBC-Mo-T1 Pb-rich Class B material (385.3 kg of 

UBC-1-3A – black marble) on top of 

Mo-rich class A material (299.2 kg of 

UBC-2-0A - intrusive) 

Investigate possible Mo 

attenuation by co-

precipitation with Pb  

UBC-Mo-T2 Mo-rich Class A material (321.7 kg of 

UBC-2-0A - intrusive) on top of Pb-rich 

Class B material (UBC-1-3A 345.7 kg – 

black marble) 

Investigate possible Mo 

attenuation by co-

precipitation with Pb 
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The names of the field cells and humidity cells were modified in this thesis in order to 

improve the clarity of the text. The following table (Table A3) presents a summary of the 

names that were used at the mine site and the names that were used in this thesis and related 

publications. 

Table A2: The names of the stacked field cells and humidity cells in series used in the thesis with those 

used in the lab notes or field cell labels. FC indicates stacked field cells and HC indicates humidity cells in 

series.  

Field cell or humidty cell code 

used at Antamina or in lab 

notes 

Name used in thesis 

UBC-5A-T FC-hornfels/marble 

over hornfels 

UBC-5C-T FC-intrusive over 

hornfels/marble 

UBC-Zn-T FC-exoskarn over 

grey hornfels 

UBC-Mo-T1 FC-black marble 

over intrusive 

UBC-Mo-T2 FC-instrusive over 

black marble 

HC-Mo-T1U/HC-Mo-T1L HC-black marble 

over intrusive 

HC-Mo-T2U/HC-Mo-T2L HC-intrusive over 

black marble 

HC-Zn-TU/HC-Zn-TL HC-exoskarn over 

hornfels 
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Prior to being loaded into the stacked field cells, the waste rock material was stored in sealed 

plastic bags at Antamina. Each of these bags weighed 20-30 kg. Once the barrels were in 

place, with their drainage apparatuses installed, the bags of waste rock were dumped into the 

barrels (Figure A7). The bags were weighed with a balance immediately prior to dumping 

them into the stacked field cells, and a tally was recorded to measure the total mass of each 

material in each stacked field cell. The upper lysimeters were held in place and sealed with 

duct tape while the first waste rock type was installed in the stacked field cells. After the 

installation of the first rock type, the tape was removed so that the second (top) rock type 

could be placed inside the upper lysimeters. Care was taken to fill the upper lysimeters with 

finer than average particles, in an effort to prevent capillary breaks.  

 

Figure A7: Photos of the process of weighing (top left) and loading waste rock into the stacked field cells 

installed at the Antamina mine. 
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Two handfuls of waste rock were taken from each bag that was loaded into the stacked field 

cells to measure the material’s humidity content. The samples placed on trays, weighed, put 

in an oven in Antamina’s metallurgical laboratories at 45
o
C for 24 hours, and then weighed 

again. The humidity content of each waste rock type was usually less than 4% (Table A3).   

Table A3: The humidity content of each of the samples used in the stacked field cells.  

Sample 

Initial 

(humid) 

weight (g) 

Dry Weight 

(g) includes 

tray 

Mass 

lost (g) 

Humidity 

(%) 

1-3A 8193.3 9386.1 76.9 0.94 

3-2A 6122.3 7228 124.3 2.03 

2-0A 5751.7 6824.2 155.0 2.69 

5-4A 6585.8 7736.8 82.0 1.25 

4-3A 4264.2 5454.3 38.7 0.91 

5-6A 5852.7 6869.1 217.8 3.72 

4-5-5A  10887.9 11982.1 128.6 1.18 

4-2A 5361 6555.3 32.7 0.61 

4-3B 5110 6250.3 81.9 1.60 

4-4B 8826.7 9712.9 333.4 3.78 

4-5-1A 8035.6 9245.5 11.0 0.14 

 

The five stacked field cells that were discussed in this study contained a total of seven 

different rock types. The elemental composition of 5 of the seven rock types was analyzed at 

ACME laboratories in Vancouver. A summary of some of the elements of interest for each of 

the 5 samples is presented below (Table A4).  
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Table A4: The elemental composition of the materials used in the 5 stacked field cells that formed the 

focus of this study, and their associated humidity cells. Samples that are marked with asterisks were not 

originally important in this study and were not analyzed for elemental composition prior to publication. 

Field cell 

and 

Position 

Material 

code 
Lithology 

As 

(ppm) 

Pb 

(ppm) 

Mo 

(ppm) 

Zn 

(ppm) 

Cu 

(ppm) 

Cd 

(ppm) 

S 

(%) 

UBC-5A-T, 

Base 

UBC-5-

4A* 
Hornfels N/A N/A N/A N/A N/A N/A N/A 

UBC-5A-T, 

Top; UBC-

5C-T, Base 

UBC-4-

5-5A 

Hornfels 

and 

Marble 

185 181 3 227 103 1 0.4 

UBC-5-6A, 

Top 

UBC-5-

6A* 
Intrusive N/A N/A N/A N/A N/A N/A N/A 

UBC-Zn-T 

(FC-

Exoskarn 

over Grey 

Hornfels), 

base 

UBC-4-

5-1A 

Grey 

Hornfels 
168 82 5 173 51 1 0.5 

UBC-Zn-T 

(FC-

Exoskarn 

over Grey 

Hornfels), 

Top 

UBC-3-

2A 
Exoskarn 51 242 45 >10000 9919 103 8.5 

UBC-Mo-

T1/T2 (FC 

Black 

Marble over 

Intrusive/ 

Intrusive 

over Black 

Marble), 

Top/Bottom 

UBC-1-

3A 

Black 

Marble 
32 869 71 1516 763 4 1.3 

UBC-Mo-

T1/T2 (FC 

Black 

Marble over 

Intrusive/ 

Intrusive 

over Black 

Marble) 

Bottom/Top 

UBC-2-

0A 
Intrusive 140 34 275 189 3484 <0.1 0.6 
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A.3 Materials needed to make a similar apparatus 

This list of materials is given per field cell with the associated support structure. 

 Duct tap 

 Markers 

 Balance 

 Waste rock (at least 2 types) 

 0.9 m tall x 0.5 m diameter barrels (2) 

 Hack saw 

 Measuring tape 

 Drill 

 1” drill bits 

 Geotextile 

 Grey silicone 

 PVC cement 

 1/4” hose connectors (3) 

 ½” hose connector (1) 

 20 L bucket with lid 

 ½” ID garden hose (2m) 

 Wood 

 Nails 

 Gravel 

 Sand 

 Cement 

 Zip ties 

 Hammers 

 Saws 
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Appendix B  Assembly, installation, and sampling for humidity cells connected in series 

B.1 Apparatus design and assembly 

The humidity cell apparatus used in this study was modified slightly from apparatus that 

were designed and assembled by four Applied Science undergraduate students as a part of 

their honors theses (Edgar, 2009; Moug 2009; Joiya 2009; Yu 2009). Given that their theses 

are not widely available, the following modified excerpt taken from the methods section and 

appendices of Joiya (2009) will serve to explain the assembly, leaching, and sampling, and 

analysis procedures in more detail than the methods section of Chapter 2.   

18 Nalgene bottles (1L) served as the humidity cell containers in this experiment. The 

bottoms of 18 1 L Nalgene bottles were machine cut and the top caps were removed. Another 

18 Nalgene bottles (500 mL) were used to collect leachate samples. PVC pipe holding cells 

provided support to the humidity cells, and prevented them from toppling. These PVC pipe 

holding cells were secured onto the acrylic plastic base using zap straps (Figure B1). 

 

Figure B1: the PVC pipe holding cells for the humidity cell experiment attached to their base (left), and 

holding a humidity cell (right). The humidity cell to the right is held in place by a piece of steel wire, 

however they rested directly on top of the leachate sample bottle during the experiment. 

The humidity cells (1 L Nalgene bottles with their base removed) were stored with the open 

end facing upwards. Rubber stoppers, which were fitted to polyethylene tubing were used to 

prevent waste rock from falling out of the mouth of the Nalgene bottles. These stoppers 

helped form the drainage apparatus. Nylon mesh, with a 37 micron mesh size, (ordered from 
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Smallparts.com – part number B000FMWTL0610) was used to prevent particles from 

washing out of the field cell with leachate. In practice, some small particles still washed out 

of the humidity cells, therefore a finer mesh, or filter membrane is recommended for future 

experiments. Opposite the nylon mesh, on the other side of the rubber stopper, the remainder 

of the drainage apparatus consisted of a Luer lock (Ordered from Cole-Parmer, part number: 

R-45510-05) attached to a stopcock (Ordered from Cole-Parmer, Part number: R-30600-00). 

This drainage apparatus was designed to easily stop the flow of water from the 1L humidity 

cell into the 500 mL leachate container when necessary (Figure B2).  All components of the 

apparatus that had contact with waste rock or leachate samples were submerged in a 10% 

HNO3 acid bath, for at least 1-2 hours, then soaked and rinsed with distilled & de-ionized 

water.  

  

Figure B2: Rubber stopper showing draining apparatus and mesh (left). The same drainage apparati are 

shown at the base of the Nalgene bottles that were later used to hold the waste rock samples in the 

humidity cells. 

The humidity cells were stored in Rubbermaid containers with sealed lids to provide dark 

conditions and minimize exposure to contamination (Figure B3). The containers were filled 

with 8 L of water, which served as a source of passive humidification.  
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Figure B3: The Rubbermaid containers in which the humidity cells were stored during the experiment, 

showing all 17 humidity cells after installation. 

B.2 Waste rock sample selection and humidity cell installation 

The material installed in the humidity cells was derived from bags of waste rock that had 

been stored in the field cell area at the Antamina mine in Peru. This material was left over 

after the installation of the field cells and had been coned and quartered to ensure that it was 

well-homogenized. In August 2010 portions of materials UBC-1-3A, UBC-2-0A, UBC-3-

2A, and UBC-4-5-1A were quartered and sieved through a ¼” mesh until a few kg of -1/4” 

material had been collected. Once at UBC, this material was coned and quartered again, then 

loaded into the humidity cells (Figure B4).     

 
Figure B4: waste rock material being coned and quartered in the lab prior to humidity cell installation. 

 

The waste rock material was not dried prior to humidity cell installation and was transported 

in sealed plastic bags. The decision to not dry the waste rock was made in an effort to not 

unduly affect its natural microbial community, which would have been harmed by 
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desiccation. Its moisture content was likely similar to the moisture content of the materials 

that were installed in the stacked field cells (see appendix A), albeit higher because the finer 

grains tended to retain moisture more than the larger grains. The four waste rock materials 

from stacked field cells UBC-Mo-T1, UBC-Mo-T2, and UBC-Zn-T, were used in the 

humidity cell version of the experiment. The specific waste rocks used where Pb-bearing 

black marble (UBC-1-3A), Mo-leaching intrusive (UBC-2-0A), Zn-leaching exoskarn (UBC-

3-2A), and Zn-attenuating hornfels (UBC-4-5-1A) (Table B1). A table spoon was used to 

scoop the waste rock material into a beaker for weighing. A tally was made of each beaker’s 

weight to determine the mass of waste rock in each humidity cell. After weighing, each 

beaker was dumped into the humidity cell. 

B.3 Detailed leaching and sampling procedure 

From the installation of the humidity cells, to the collection of the last samples, this 

experiment lasted a total of 32 weeks. The experiment was initiated in late September, 2010 

and concluded in late April 2011. Many details of the sampling procedure, including the 

distinction between ASTM and Field Cell leaching methods are included in chapter 2. The 

humidity cells were leached by gently pouring distilled and de-ionized water (prepared in the 

UBC hydrogroup lab - with a resistivity of at least 17.6 MΩ/cm) onto the waste rock’s 

surface with a 500 mL graduated cylinder. The leaching procedure for the ASTM humidity 

cells (UBC-32-T1, UBC-20-T1, UBC-13-T1, UBC-451-T1, UBC-32-T2, UBC-20-T2, UBC-

13-T2, UBC-451-T2) was straightforward. An empty humidity cell (installed the same way 

as the others, but with no waste rock material) was leached and sampled in the same way as 

the ASTM cells to detect contamination from the apparatus. With the stopcock closed on the 

training apparatus, 500 mL was added each to each cell on a weekly basis. After 1 hour, the 
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stop cock was opened so that the leachate could drain from the humidity cell. Approximately 

80 mL of leachate from these cells was set aside for chemical sampling and analysis, whereas 

the rest was discarded.  
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Table B1: The contents, leaching regime, and purpose of each of the humidity cells in the experiment. 

The number in the humidity cell code corresponds to the waste rock material used in the humidity cell 

(HC-13-T1 contains UBC-1-3A material, etc.).  The three to four digit number in brackets in the 

humidity cell code column corresponds to mass of waste rock in the cell (including water content). 

Humidity Cell 

Code 
Purpose 

Leaching 

Regime 
Other comments 

HC-13-T1 (961), 

HC-20-T1 (1005), 

HC-451-T1 (1177), 

HC-32-T1 (1071) 

Determine 

composition of 

leachate under 

ASTM leaching 

protocol 

ASTM N/A 

HC-13-T2 (1054), 

HC-20-T2 (957), 

HC-451-T2 (1097), 

HC-32-T2 (1052) 

Duplicates to 

assess 

heterogeneity 

ASTM N/A 

HC-Mo-T1U 

(UBC-1-3A, 1067) 

HC-Mo-T1L 

(UBC-2-0A, 1070)  

HC version of 

field cell UBC-

Mo-T1  

Field 

Cell 

These were connected in 

series such that leachate 

from HC-Mo-T1U was 

poured through HC-Mo-T1L 

HC-Mo-T2U 

(UBC-2-0A, 1034) 

HC-Mo-T2L 

(UBC-1-3A, 1042)  

HC version of 

field cell  UBC-

Mo-T2 

Field 

Cell 

These were connected in 

series such that leachate 

from HC-Mo-T2U was 

poured through HC-Mo-T2L 

HC-Zn-TU (UBC-

3-2A, 1071 ), HC-

Zn-TL (UBC-4-5-

1A, 1121) 

HC version of 

field cell UBC-

Zn-T 

Field 

Cell 

These were connected in 

series such that leachate 

from UBC-Zn-TU was 

poured through UBC-Zn-TL 

HC-Zn-TU (UBC-

3-2A, 1078), HC-

Zn-TL (UBC-4-5-

1A, 932) 

Assess the 

effects of a ´dry 

season´ on Zn 

release and 

attenuation 

Field 

Cell 

These were connected in 

series, as described above, 

but in this case the leach 

cycles ceased for 3 months, 

and then returned to normal 

in order to simulate a dry 

season 

HC-451-T3 (1106) 

Determine 

composition of 

leachate under 

Field cell 

leaching 

protocol 

Field 

Cell 
N/A 
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Humidity cells HC-Mo-T1U, HC-Mo-T2U, HC-Zn-TU, HC-ZnD-TU and HC-451-T3 were 

all leached according to the field cell leaching procedure. In the field cell leaching procedure, 

230 mL of distilled de-ionized water was applied to each humidity cell on a weekly basis. 

The stop-cock in these humidity cells was left shut for 1 hour, and then the humidity cell was 

allowed to drain. 80 mL of leachate from the above-listed humidity cells was taken for pH, 

alkalinity, and chemistry samples. In all but HC-451-T3, the remaining leachate was then 

applied to the second humidity cell in series.  

HC-Mo-T1L, HC-Mo-T2L, HC-Zn-TL, and HC-ZnD-TL were the ‘bottom’ humidity cells 

connected in series and were rinsed on a weekly basis with 150 mL of leachate from the ‘top’ 

humidity cells connected in series: HC-Mo-T1U, HC-Mo-T2U, HC-Zn-TU, HC-ZnD-TU, 

respectively. Instead of allowing 1 hour for reaction between leachate and the humidity cell 

material, the stop-cocks on the four ‘bottom’ humidity cells connected in series were left 

closed for 24 hours prior to allowing them to drain. After drainage their leachate was 

analyzed for the same parameters as leachate from all of the other humidity cells in the 

experiment. It should be noted that very little leachate drained from the ‘upper’ humidity 

cells in the first leach cycle, meaning that the ‘bottom’ humidity cells were not rinsed until 

the second leach cycle, and did not drain enough leachate to allow for sampling until the 

fourth leach cycle.  

The same sampling technique was used for each sample from each humidity cell. A 60 mL 

Luer lock graduated plastic disposable syringe (Henke-Sass-Wolf) was used in conjunction 

with a Millipore Millex® 0.45 µm syringe filter membrane to filter 25 mL of leachate into a 

glass graduated cylinder. The leachate’s electrical conductivity was then measured in the 

graduated cylinder using an Oakton Con 6 Acorn Series hand held conductivity meter.  
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Leachate was then poured into a graduated cylinder for an alkalinity titration, using an 

Oakton pH 11 series pH/mV/
o
C hand held meter. A new 60 mL sample of leachate was then 

filtered into two 30 mL polyethylene sample bottles for posterior chemical analysis. The 

cation samples were acidified to below pH 3 using nitric acid. The sample bottles were new 

and were triple rinsed with sample prior to filling them. All surfaces and instruments that 

came in contact with multiple samples were triple rinsed with distilled, de-ionized water prior 

to making contact with the next leachate sample. 

The exact amount of time between leaching sessions varied somewhat throughout the 

experiment. Leaching took place each Thursday, however, depending on the week, the leach 

time varied by up to 12 hours in the first 20 weeks of the experiment. After 20 weeks, the 

ASTM humidity cells were leached every week, but were only sampled every two weeks. 

During the second last week of sampling, the ‘bottom’ humidity cells were only allowed 1 

hour of contact time with waste rock prior to drainage. Leach cycles 29 and 30 were each 10 

days long. 

B.4 Chemical analysis 

Alkalinity was determined at the time of leachate sampling by titrating leachate with a 0.019 

N H2SO4 solution.  Acid was added to the leachate sample with an Eppendorf pipette, and the 

pH was recorded for each volume added. The pH and volume data was used to generate Gran 

plots in order to determine the equivalence point of the titration (the X intercept on the Gran 

plots). The Gran Plot represents the Gran Function (Y-axis) with respect to the volume of 

acid added (X-axis). The Gran Function is determined by the following equation:  

Gran Function = (Volume of Sample + Volume of Acid Added) x 10
-pH 
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A trend line was fit to the linear portion of the graph and the line’s equation was used to 

solve for 0.  This solution referred to the amount of acid required to reach the equivalence 

point.  The x-intercept was then used to find alkalinity.  

Alkalinity = (Normality of Acid x Vequivelnce)/Volume of Sample 

Humidity cell leachate samples were poured into 10 mL acid washed test tubes and analyzed 

for cations and Sulfur using the Varian ES-725 ICP-OES in the department of Earth and 

Ocean Sciences at UBC (Figure B5). The ICP-OES was equipped with ICP Expert II 

software to assist in calibrating the instrument and processing the data. The ICP analysis 

required a set of chemical standards for calibration purposes. A PlasmaCal Multi-Element 

Standard (including B, Be, Co, Cd, K, V, Ti, Mo, Ag, Pb, Ti, Sb, Cu, Mo, Zn, Cr, As, Ba, Ni, 

S, Se, Al, Ca, Mg, Mn, Na, Si) was used for total metals along with a Single-Element 

Calcium and Sulfur standards (Table B2).  Standards were mixed with nitric acid to ensure 

that they had the same matrix as the samples and diluted to desired concentrations with the 

same distilled de-ionized water that was used to leach the humidity cells.   

Table B2: A summary of the standards used for the ICP-OES analysis. n/a means that the element was 

not included in the standard. K was 10x more concentrated than the other elements in the standard. 

Standard # 

Concentration 

(mg/L) 

Blank   

Total Metals Standard 1 0.09 

Total Metals Standard 2 0.19 

Total Metals Standard 3 4.9 

Total Metals Standard 4 19.9 

Total Metals Standard 5 99.3 

Ca-S Standard 6 S: 196.6 Ca: n/a 

        Ca-S Standard 7 S: 298 Ca: 301.8 

Ca-S Standard 8 S: 500 Ca: 402.4 

Ca-S Standard 9 S: 983.33 Ca: n/a 

Ca-S Standard 10 S: n/a Ca: 989.2  
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Given the large range of concentrations used in the standards, some calibration curves fit 

much better at low concentrations than at high concentrations or vice versa. To achieve the 

best results for the typical concentration range each element, the calibration curves were re-

calculated in Microsoft Excel (ICP Expert II calibration equations were not used to determine 

the elemental concentrations presented in this study). It should also be noted that the ICP-

OES detected several wavelengths of light associated with each element. The best 

wavelength for each element was chosen and used throughout the experiment based on 

having a low detection limit and a high R
2 

on the calibration curve’s line of best fit. 

 

Figure B5: The Varian ICP-OES used to analyze the chemistry samples in this study with its autosampler 

in the foreground. 

 

B.5 QA/QC 

The following steps were taken to ensure that data from the humidity cell experiment were 

accurate and representative: 

 pH probes were calibrated with pH 4, 7, and 10 buffers prior to each sampling session 

 The calibration of EC probes was checked before each session in order to ensure that 

no drift occurred 

 Lab blanks were taken and analyzed 

 Equipment blanks were analyzed 

 Standards with known concentrations were re-analyzed several times to check for 

precision 

 Duplicate chemistry samples were analyze 
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The full results of QA/QC can be found in the supporting information on the compact disc 

that accompanies this thesis. Data from duplicate samples of As, Zn, and Mo are presented to 

provide a brief assessment of data quality (Table B3). Although some duplicates varied by as 

much as 30% the average difference between duplicates was less than 15%. As discussed in 

chapters 2 and 3, attenuation reactions normally remove more than 90% of the metals of 

interest. The relatively small degree of variation between duplicate samples supports the fact 

that attenuation is actually occurring in the field cells, and that differences between pre- and 

post-attenuation leachate composition are not artifacts of analytical error. 



 132 

Table B3: A summary of duplicate samples for elements of interest in humidity cells from the Antamina 

study. 

Humidity 

cell Week Element 

Conc. 

(mg/L) 

% 

Difference 

HC-20-T1 5 Mo 0.99 
0.3 

HC-20-T1 5 Mo 1.00 

HC-20-T1 12 Mo 0.31 
32.3 

HC-20-T1 12 Mo 0.46 

HC-20-T2 7 Mo 3.94 
2.6 

HC-20-T2 7 Mo 3.84 

HC-20-T2 8 Mo 4.00 
0.4 

HC-20-T2 8 Mo 3.98 

HC-20-T2 14 Mo 0.42 
11.6 

HC-20-T2 14 Mo 0.47 

HC-20-T2 15 Mo 0.46 
7.9 

HC-20-T2 15 Mo 0.50 

HC-20-T2 16 Mo 0.56 
4.0 

HC-20-T2 16 Mo 0.58 

HC-20-T2 17 Mo 0.50 
22.0 

HC-20-T2 17 Mo 0.39 

HC-20-T2 19 Mo 0.54 
6.4 

HC-20-T2 19 Mo 0.51 

HC-20-T2 20 Mo 0.48 
25.0 

HC-20-T2 20 Mo 0.39 

HC-20-T1 12 As 0.65 
1.6 

HC-20-T1 12 As 0.64 

HC-20-T2 7 As 0.50 
10.4 

HC-20-T2 7 As 0.56 

HC-20-T2 8 As 0.61 
6.6 

HC-20-T2 8 As 0.57 

HC-20-T2 14 As 0.61 
7 

HC-20-T2 14 As 0.57 
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Table B3: Continued 

Humidity 

cell Week Element 

Conc. 

(mg/L) 

% 

Difference 

HC-20-T2 15 As 0.56 
7.8 

HC-20-T2 15 As 0.61 

HC-20-T2 16 As 0.56 
4.1 

HC-20-T2 16 As 0.53 

HC-20-T2 17 As 0.61 
11 

HC-20-T2 17 As 0.68 

HC-20-T2 19 As 0.58 
5.3 

HC-20-T2 19 As 0.56 

HC-20-T2 20 As 0.59 
11.9 

HC-20-T2 20 As 0.66 

HC-20-T2 21 As 0.57 
7.5 

HC-20-T2 21 As 0.61 

HC-20-T2 23 As 0.59 
3.1 

HC-20-T2 23 As 0.57 

HC-32-T1 3 Zn 10.89 
2.7 

HC-32-T1 3 Zn 11.20 

HC-32-T1 4 Zn 10.61 
1.15 

HC-32-T1 4 Zn 10.49 

HC-32-T1 9 Zn 5.72 
31.4 

HC-32-T1 9 Zn 8.34 

HC-32-T2 8 Zn 6.17 
0.26 

HC-32-T2 8 Zn 6.19 

HC-32-T2 11 Zn 3.13 
24.4 

HC-32-T2 11 Zn 2.37 

HC-32-T2 12 Zn 2.12 
12.5 

HC-32-T2 12 Zn 1.85 

HC-451-T1 6 Zn 0.09 
22.1 

HC-451-T1 6 Zn 0.12 
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B.6 List of materials used 

- 1L Nalgene Bottle (18) 

- 500ml Nalgene Bottle (18) 

- #6 Rubber Stopper (18) 

- Low density polyethylene tubing - 1/4 inch OD 0.17 inch ID  

- Tygon tubing 

- Nylon mesh 

- Zap Straps – Marr Multipurpose Ties 1/16” – ¾” diameter.  

- Stop cocks (18) 

- Luer locks (18) 

- PVC pipes – 10-4” ID, 10- 3 ¼” ID  

- Acrylic Plastic  

- 2 Rubbermaid containers   

- Utility knife 

- Measuring Tape 

- Sharpie Pen 

- Syringe 

- Syringe filters 

- ICP Varian 725-ES 

- Various Beaker sizes 

- Graduated Cylinders (500 mL and 50 mL) 

- pH meter 

- EC meter 
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Appendix C   Field cell tracer test 

An overview of the methods employed in the field cell tracer test is given in chapter 4 of the 

thesis. The purpose of this appendix is to provide more detailed information regarding the 

methodology and some of the problems that prevented an in-depth analysis of the tracer 

results. The field cell tracer test was carried out by Antamina technicians and contractors 

under the direct supervision of Dr. Roger Beckie. Tracer solution was prepared by adding 8.6 

g of LiCl to each 7.125 L of water (to simulate a 3 cm rain event). A plastic bag camp shower 

(purchased at Canadian Tire in Vancouver, Canada) was used to sprinkle tracer evenly over 

the top surface of each of the field cells that was involved in the test (Figure C1).  

 

Figure C1: The plastic camp shower used to sprinkle tracer onto the field cells (left) and an Antamina 

contractor initiating the tracer test on stacked field cell UBC-4A-T. 

The instantaneous samples mentioned in chapter two were collected directly from the 

drainage hose at the base of the field cells (i.e. before the water touched the inside of the 

sample bucket) in opaque 30 mL polyethelene sample containers. These samples were 

collected in next 48 hours or so after tracer application. Composite tracer samples were taken 

by Antamina staff for their regular chemical analysis of field cell leachate. These samples 

represented a composite Cl concentration over a 1 week period (Figure C2). In the confusion 

of moving researchers and samples from Antamina back to UBC, the notebook that contained 
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the field notes for the study was lost at the mine site. Although the sample bottles’ labels 

identified the field cell from which they had been sampled and the time at which the samples 

were taken, it was unclear when the tracer test was initiated at each field cell. A short post-

sampling video noted that flow from UBC-3-2A was 10 mL/minute several hours after the 

initiation of the tracer test. Dr. Beckie also mentioned that since the tests were carried out at 

the height of the 2009/2010 rainy season and the waste rock was already near field capacity, 

meaning that drainage from the field cells’ bases began shortly after tracer application. 

 
 

Figure C2: The sample bucket (foreground) of field cell UBC-4-5-5A, from which composite samples 

were taken. 

 

A second barrier to the collection of high quality data from this tracer test was that the staff 

responsible for sampling from the field cells’ sample buckets did not consistently record the 

volume of water in the buckets at the time of sampling. In some cases water volumes were 

not recorded on dates when chemistry samples were available, meaning that the flow through 

the field cells is likely under-estimated. 


