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Abstract

A recent robust multiple-elimination technique, based on the underlying principle

that relates primary impulse response to total upgoing wavefield, tries to change

the paradigm that sees surface-related multiples as noise that needs to be removed

from the data prior to imaging. This technique, estimation of primaries by sparse

inversion (EPSI), van Groenestijn and Verschuur; Lin and Herrmann, proposes an

inversion procedure during which the source function and surface-free impulse re-

sponse are directly calculated from the upgoing wavefield using an alternating op-

timization procedure.

EPSI hinges on a delicate interplay between surface-related multiples and pri-

maries. Finite aperture and other imperfections may violate this relationship. In

this thesis, we investigate how to make EPSI more robust by incorporating curvelet-

domain matching in its formulation. Compared to surface-related multiple removal

(SRME), where curvelet-domain matching was used successfully, incorporating

this step has the additional advantage that matches multiples to multiples rather

than predicated multiples to total data as in SRME.
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i.e. the multiples estimation d) Final estimated source wavelet

(Q̂) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



Acknowledgments

I would like to thank my supervisor Felix Herrmann for his continuous support and

encouragement, and creative ideas without which this thesis would not be possible.

I would like also to thank all slim members for their support in filling the gaps

in my Geophysical background.

I am very fortunate to have Michael Bostock and Eldad Haber as part of my

supervisory committee. I thank Michael for his two insightful courses and Eldad

for the few lectures I attending during his course last fall.

I would like also to thank my management at Saudi Aramco for giving me the

opportunity to study at UBC and for their support and funding during my studies.

A special thank goes to my wife Sakeel for her encouragement and patient

during my research period especially after the twins came in board.

Thank you all.

x



Dedication

To my parents,

my wife Sakeel,

my daughters Zahraa and Zainab

xi



Chapter 1

Introduction

In early nineteenth century, searching for oil was very simple, easy and straight-

forward. People were looking for oil seepages at the surface near oil springs. Back

then, the demand for oil was limited and oil was mainly used for medical pur-

poses (Gadallah and Fisher, 2005). But the situation has changed since then, many

objects around us are made from oil or made by machines that use energy from

oil and gas. The paper used to print this thesis was manufactured using oil energy.

The ink itself is an oil product. The demand for oil has changed dramatically and

so do procedures to search for oil.

The objective of the seismic survey is to reveal the subsurface geology. It is a

very costly and complicated procedure. On land, dynamite (impulsive source) or

Vibroseis (trucks that propagate energy into the earth over an extended period of

time), sources send energy into the subsurface. Some of this energy is reflected at

the boundaries between rocks layers back to the surface where it is recorded by an

array of geophones. The same procedure applies at sea but the seismic source is

now an air gun and the receivers are hydrophones. Figure 1.1 illustrates the seismic

survey on land.

Most seismic imaging algorithms assume that the reflected energy recorded by

geophones at surface has reflected only once in the subsurface (Verschuur, 2002),

as shown by the solid line in Figure 1.2. However, in practice, this assumption is

not true. Some of the energy we send bounce between rocks layers before being

recorded by geophones as shown by the dashed lines in Figure 1.2. As a result

1



Figure 1.1: An illustration of land seismic survey. A seismic source sends
energy into the earth. Some of this energy is reflected back to the sur-
face at rocks layers discontinuities. This energy is then recorded by
geophones at the surface.

multiple reflections events occur. These events are usually considered as undesired

events that need to be removed from the seismic data before processing to avoid

confusion during the interpretation of seismic images. The success of multiple-

removal or multiple-suppression methods can make the difference between hitting

the target and making profit or missing the target and losing millions of dollars.

One way to categorize multiples is by the interface where they have their shal-

lowest downward bounce. The first downward bounce for the green dashed line

in Figure 1.2 happens at the surface. Hence it is called a surface-related multiple

while the first downward bounce for the red dashed line happens at an internal

interface and so it is called an internal-multiple (Verschuur, 2002).

1.1 Theme
The main theme of this thesis is to extend a recent robust multiple-elimination

technique that estimates primaries by sparse inversion, EPSI (van Groenestijn and

Verschuur, 2009; Lin and Herrmann, 2009). This technique proposes an inversion

procedure during which the source function and surface-free impulse response are

2



Figure 1.2: An illustration that shows a primary and two types of multiples.
The solid blue line has only one upward reflection, so it is a primary
reflection. The green dashed line has more than one upward reflection
and it has its shallowest downward reflection at the surface, hence, it is
a surface-related multiple. Finally, the internal-multiple, the red dashed
line, has its shallowest reflection at an internal rock layer and it has more
than one upward reflection.

directly calculated from the upgoing wavefield using an alternating optimization

procedure. We propose to incorporate a curvelet-domain matched-filtering step

into this optimization procedure to mitigate possible adverse effects that stem from

amplitude mismatches that vary smoothly as a function of position and dip along

the predicted wavefronts of the current estimate for the surface-free data. The

implementation and the different parameters affecting this matched-filtering step

are investigated.

1.2 Objectives
This thesis aims to incorporate a matched-filtering operator into the formulation of

EPSI. This operator will be able to absorb amplitude errors of non-ideal reflections

at the surface, finite-aperture, and other unknown effects.

3



1.3 Outline
Chapter 2 introduces primary-multiple separation followed by an explanation of

the theory underlying the model behind surface-related multiple removal, SRME

(Verschuur et al., 1992), and primary estimation by sparse inversion, EPSI (van

Groenestijn and Verschuur, 2009). Finally, we discuss the theory behind curvelet-

domain matched-filtering.

In Chapter 3, we introduce estimation of primaries by sparse inversion, before

incorporating a matching step into the convexified EPSI procedure.

Chapter 4 studies the factors affecting the outcome of incorporating a matched-

filtering step into EPSI. We conclude this chapter by presenting our results.

We will conclude our research in chapter 5 by a summary and suggested future

work.

The last section of this chapter introduces the curvelet transform and highlights

its importance as a sparsifying domain to the success of the matched-filtering pro-

cedure.

1.4 Theoretical background
The ability of the transform to handle seismic data with conflicting dips and to min-

imize the overlap between the primary and multiples coefficients in the transform

domain is significant to the success of the primary-multiple separation algorithms

(Herrmann, 2008b). In this section, we show that the curvelet transform (Candes

et al., 2006) addresses these issues by efficiently representing seismic data sparsely

and by its ability to handle conflicting dips.

Curvelet transform was first introduced in Candes and Donoho (2000). Curvelet

transform is a localized, multiscale, multi-directional and redundant transform.

Curvelets are oscillatory in one direction and smooth in the perpendicular direc-

tion. They resemble a windowed sinusoid in the oscillatory direction and a very

smooth Gaussian window in the other direction, see Figure 1.3. Each curvelet is

spatially localized in the spatial domain and has a compact support in the frequency

domain. In spatial domain, its amplitude decays rapidly outside a certain region.

Curvelets obey the parabolic scaling principle with length ≈ width2 (Neelamani

et al., 2008).
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The curvelet transform computational complexity of data of size N is O(NlogN)

which is not an issue. However, the curvelet transform demands memory; it is an

overcomplete transform, i.e. the resulting transform coefficients are more than the

image coefficients. It is about 8 times redundant for the 2D curvelet transform and

24 times redundant for the 3D case.

Figure 1.4 shows a few curvelets of different scales and angles with a rapid

amplitude decay in the spatial domain and a compact support in the frequency

domain and Figure 1.5 shows a decomposition of a shot gather at different scales

and angles.

Curvelet correlate very well locally with wavefronts of the same direction and

frequency contents, see Figure 1.6. This permits the curvelet transform to rep-

resent seismic data sparsely as a small set of significant coefficients which are

location, scale, and dip dependent. This sparse representation of seismic data helps

in mapping the different seismic events to different coefficients and that will make

the overlap of the primaries and multiples coefficients minimal and hence leads to

a successful separation.

5



Figure 1.3: Mesh view of a 2D curvelet. Curvelets are oscillatory in one
direction, but smooth in the other. They resemble a windowed sinusoid
in the oscillatory direction and a very smooth Gaussian window in the
other direction.

Figure 1.4: Spatial (left) and frequency (right) representations of six
curvelets with different angles and scales. Notice how each curvelet
is localized in the spatial domain with a rapid decaying amplitude and
how it has a compact support in the frequency domain. Notice also the
90◦ rotation between any two correspondence representations in both
domains of each curvelet.

6



(a) (b)

Figure 1.5: a) Synthetic shot gather b) Curvelet decomposition of the shot
gather into different scales and angles. Five scales are shown here. No-
tice how the angles double every other scale and how the different parts
of the shot gather are decomposed at the various scales and angles. The
coarsest (center) scale shows the DC and low frequencies. The second
scale has 4 angles and the third and the fourth has 8. The fifth (finest)
scale has 16 angles.

Figure 1.6: Curvelet correlation with wavefronts. A large coefficient is yield
when the curvelet and the waterfront have locally the same direction and
frequency contents. Otherwise, a small coefficient is yielded.
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Chapter 2

Primary-multiple separation
techniques

In this chapter, we start briefly by categorizing the primary-multiple separation

techniques. Then, we introduce the model behind surface-related multiple removal

(SRME) and estimation of primaries via sparse inversion (EPSI). Finally, we layout

the theory behind the curvelet-domain matched-filtering.

2.1 Primary-multiple separation techniques
Multiples removal techniques can be categorized in two main classes:

• filtering methods based on move-out and dip discrimination.

• data-driven methods based on periodicity and predictability.

Filtering methods rely on the fact that multiple events traveled through different

rock layers. Hence, they traveled at an apparent different velocity or reflected at

different geological structures than the primary events, see Figure 2.1. These meth-

ods use a transform, e.g. F-K or Radon transform, to map the seismic data events,

primaries and multiplies, into different regions, i.e. mapping different frequency

contents or different dip angles into different regions. Then, they eliminate the

multiples events and transform the remaining events, the primaries, back to the

original time-offset domain (Verschuur, 2002).

8



Figure 2.1: Two reflection events: a primary (solid blue line) and a surface-
related multiple (dashed red line). Both events have similar arrival time
but have traveled different paths. The primary event has traveled deeper
into the subsurface and has seen higher velocity than the multiple event.
Therefore, it arrived with a smaller angle at the receiver.

Data-driven methods exploit the relation between primaries and multiples events

to suppress the repetitive patterns of multiples. These methods involve two steps: a

prediction and a subtraction step. First, multiples are predicted and then subtracted

through a matching procedure from total data, i.e. primaries, surface-related mul-

tiples and internal multiples. Assumptions are needed for both steps. For example

the energy after the subtraction step is assumed to be minimum (Verschuur, 2002).

2.2 Surface-related multiples model
This section discusses the model behind SRME and EPSI for 1D and 2D situation.

We discuss theoretical details for SRME and EPSI in Section 2.3 and Section 3.1,

respectively.
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2.2.1 Surface-related multiples formulation for normal-incidence
plane wave in a horizontally stratified medium

Consider a horizontal plane wave propagating in a laterally invariant earth. This

wave reflects at the subsurface geology to produce surface-free data p0, which

contains primaries and internal multiples but no surface-related multiples (blue

solid and red dashed lines in Figure 2.2a). At the surface, this surface-free data

acts as a new source of events that will feedback into the earth to produce first-

order multiples (green dashed lines). The first-order multiples will then feedback

into the earth again to produce higher order multiples. The feedback diagram in

Figure 2.2b illustrates this process.

We can express the surface-free data mathematically as

p0(t) = g(t)∗ s(t),

where p0 is the surface-free data, g is the surface-free impulse response, ∗ denotes

convolution, and s(t) is the source signature. The feedback diagram in Figure 2.2

permits us to formulate the total response with the surface related multiples p as

p(t) = g(t)∗ [s(t)− p(t)] = p0(t)−g(t)∗ p(t). (2.1)

Figure 2.3 illustrates the generation of surface-related multiples with the source

signature shown in Figure 2.3b, for a model with only one-reflection layer, Fig-

ure 2.3c. The generated surface-free data p0, which consists of only one primary is

shown in Figure 2.3d. This surface-free data feedbacks to the earth and convolves

with the surface-free impulse response g to produce first-order multiples m1, Fig-

ure 2.3e. The same process produces second-order multiples m2 (Figure 2.3f). Fi-

nally, the total response (surface-free data and surface-related multiples) is shown

in Figure 2.3g.

2.2.2 Data matrix

Our seismic data in the 2D case is three-dimensional: time, source position and

receiver position. By considering the earth as a linear time-invariant system, we

can represent an experiment, i.e. a shot gather (one source and multiple receivers),

10



(a)

(b)

Figure 2.2: Feedback diagram for surface-related multiples generation. First,
surface-free data is generated by convolving the source signature s+

with surface-free impulse response g. Then, surface-free data feedbacks
into the earth to generate higher order multiples.

as a superposition of many fully independent monochromatic experiments in the

Fourier domain. After taking the shot gather into the frequency domain and se-

lecting a single frequency, we obtain a vector of measurements for the different

receivers for that frequency. Repeating the process for all shot gathers produces a

data matrix, indicated by bold capital P (Berkhout, 1985), whose columns repre-

sent common source point gathers and rows represent common receivers gathers.

2.2.3 Two-dimensional formulation

Convolving surface-free impulse response G with total upgoing wavefield P− gen-

erates surface-related multiples. Figure 2.4 illustrates the surface-related multiples

prediction for 2D case interpreted as wave field extrapolation. We start with a

source positioned at xs and a set of receivers (geophones) positioned at xk. Our

11



(a)

(b) (c)

(d) (e)

(f) (g)

Figure 2.3: a) An illustration that shows the generation of surface-related
multiples. b) Source signature s(t). c) Surface-free impulse response
g(t). d) Surface-free data p0(t). e) First-order multiples m1(t). f)
Second-order multiples m2(t). g) Total response p(t).
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Figure 2.4: After convolving the source gather from total data P with the
common receivers gather from surface-free impulse response G for each
point in xk, the convolution result is summed up to produce the predicted
surface-related multiple trace at xr.

goal is to calculate the wavefield at a receiver positioned at xr, which represent the

surface-related multiples. To do that, we need the Green’s function to extrapolate

the path for a source positioned at xr and whose energy is measured at xk.

The surface-free impulse response G can act as the Green’s function to predict

all possible surface-related multiples. First, we convolve the two wavefields, the

shot gather from the total data P and the common receivers gather from the surface-

free impulse response G, for each point in xk. Then, we sum the convolution result

to get the wavefield at xr and that gives the surface-related multiples.

In practice, both the data P and the surface free impulse response G are trans-

formed to the frequency domain and then the convolution and the summation are

repeated over all source-receiver combinations to obtain the predicted surface re-

lated multiples M0. If we adapt a similar data matrix notation as in Berkhout

(1985), then the multiple prediction can be formulated as a matrix-matrix multipli-

cation:

M̂0 =−ĜP̂, (2.2)

where the minus sign represents the reflection at the surface and the hat is used to

represents a monochromatic matrix.
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Furthermore, we can use the same approach in Equation 2.2 to generalize Equa-

tion 2.1 for the 2D case to get

P̂ = P̂0 +M̂0, (2.3)

where P̂0 is the surface-free data and M̂0 is the surface-related multiples. Expand-

ing Equation 2.3 yields

P̂ = ĜQ̂+ ĜRP̂, (2.4)

where Q̂ is the source signature and R is the surface reflectivity, which is ap-

proximated to be −I, i.e.

P̂ = Ĝ(Q̂− P̂). (2.5)

2.3 Iterative surface-related multiple removal
In this section, we aim to give a brief description of the iterative Surface-Related

Multiple Removal (SRME) procedure (Verschuur et al., 1992). We start from the

surface-related multiples model, Equation 2.4. Now, let A = Q−1R be the sur-

face operator. Next, we rewrite the surface-related multiples as M̂0 = ĜRP̂ =

ĜQ̂Q̂−1RP̂ = P̂0AP. Substitution this expression in Equation 2.3 yields

P̂ = P̂0 + P̂0AP. (2.6)

By assuming the source function Q to be omnidirectional, i.e. Q̂ = Iq̂ with q̂
the discretized Fourier representation of the source function, the above equation

can be solved iteratively as,

P̂(n+1)
0 = P̂−A(n+1)P̂(n)

0 P, (2.7)

where n is the iteration index. The iterative procedure starts with approximating the

surface-free data with total data, i.e. P̂(0)
0 = P. Next, it estimates A in a matching

process.

This iterative procedure (Equation 2.7) matches predicted multiples to total

data, which may lead to throwing out multiples energy. It also requires regular

sampling.
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2.4 Curvelet-domain matched-filtering
Many seismic processing techniques depend on matching seismic wavefield am-

plitudes whether for adaptive subtraction of multiples (Verschuur et al., 1992; Her-

rmann et al., 2008b) or ground roll (Yarham and Herrmann, 2008) predictions from

total data or for restoration of migration amplitudes through image to migrated-

demigrated-image matching (Herrmann et al., 2008a). For a successful matching,

we need to control a possible overfitting that may inadvertently lead to primary

energy removal. Furthermore, we need to handle conflicting dips and apply the

separation after the matching stably. We will see in this section that curvelet sat-

isfies all these conditions by its ability to decompose seismic data sparsely into

position, scale and dip dependant coefficients and by imposing smoothness on its

coefficients in the phase space (Herrmann, 2008a).

In Herrmann (2008a), the curvelet-domain matched-filtering is based on two

assumptions:

• A global Fourier matching removes the stationary differences between the

two matched wavefields. The Fourier matching removes only amplitude-

spectra mismatches and global kinematic errors and fails to remove errors

that vary spatial as a function of dip. In SRME (Verschuur et al., 1992),

these stationary differences come from the convolution of the source signa-

ture during the multiples prediction step.

• The remaining non-stationary differences, which come from the non-ideal

circumstances in the prediction, e.g. the absence of 3D effects, vary smoothly

as a function of position and dip along wavefronts.

After compensating for the stationary differences via global Fourier matching

procedure, i.e. no kinematic errors, we can approximate the non-stationary differ-

ences mathematically by the operator Ψ, whose action on a d-dimensional function

f is given by

(Ψ f )(x) =
∫
Rd

e jk·xa(x,ζ ) f̂ (ζ )dζ , (2.8)

where x,ζ are the spatial coordinate and wavenumber vectors, f̂ (ζ ) is the Fourier

transform coefficients of f (x), and a(x,ζ ) is a space- and spatial-frequency depen-

dent filter (Herrmann et al., 2008a).
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In practice, the operator Ψ, which after discretizing becomes a full positive-

definite matrix, acts on 2D images, e.g. shot gathers or common receivers gathers.

We usually have two images to match, g and f . In the context of SRME, f would

be predicted multiples and g would be total data. Then, the mismatched can be

modeled as a matrix-vector multiplication, i.e.,

g = Ψ f . (2.9)

Following Herrmann et al. (2008a), we approximate the action of Ψ operator by a

positive diagonal scaling in the curvelet domain

(Ψ f )(x)≈ C∗DΨC f (x), (2.10)

where C is the forward curvelet transform and C∗ is its adjoint, which is also its

pseudo inverse since we are using curvelet-domain via wrapping (Candes et al.,

2006), which is a tight frame with C∗C = I. The diagonal matrix DΨ approximates

the symbol a(x,ζ ) evaluated at the curvelet centers.

After substituting Equation 2.10 into Equation 2.9, the problem of finding the

action of the operator Ψ reduces to finding the elements of the curvelet diago-

nal scaling matrix DΨ, which we calculate by solving the following least-squares

problem

argmin
z

1
2
||g−C∗diag(C f )z||22, (2.11)

where z represents the diagonal elements of DΨ.

Many issues complicate the estimation of the curvelet diagonal scaling of Equa-

tion 2.11. The forward model is underdetermined, which leads to mapping many

scaling coefficients to the same image under the adjoint operator C∗. There is also

the possibility of overfitting that may lead to primary energy removal or incorrect

amplitude corrections. To solve these issues, a smoothness constraint is imposed

on the diagonal scaling to give

argmin
z

1
2
||g−C∗diag(C f )z||22 +λ ||Lz||22, (2.12)
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with

L = [LT
1 LT

2 LT
θ LT

scale]
T , (2.13)

where λ is the trade off parameter and L is the sharpening operator, which pe-

nalizes fluctuations among neighboring coefficients in the diagonal scaling z. The

sharpening operator penalizes the scaling coefficients of each wedge (Figure 1.5)

along the first and second direction, L1 and L2. It also penalizes coefficients be-

tween adjacent wedges at the same scale Lθ , and between wedges of adjacent scales

Lscale, see Herrmann et al. (2008a); Shahidi and Herrmann (2009).

To ensure positivity of the diagonal scaling, it is suggested in Herrmann et al.

(2008a) to replace z with ez. This is not implemented in the curvelet-domain

matched-filtering used to produce our result and we leave its implementation to

future works.

2.5 Motivation
To illustrate the potential benefit of adding curvelet-domain matching, let us con-

sider a common-offset section from North Sea field dataset. Figure 2.5 shows the

results of primaries estimation from two different multiples-elimination methods,

namely Surface-Related Multiple Elimination (SRME, Figure 2.5b), and Bayesian

threshold (Figure 2.5c, Saab et al. (2007)), which uses curvelet-domain matched-

filtering. Comparing the primary estimations from SRME and Bayesian thresh-

old reveals improved continuity and amplitude preservation for the primaries (near

the lower two arrows in each plot around 2.6 and 3.1s) of the Bayesian threshold

method. Furthermore, the strong residual of the first- and second-order water bot-

tom multiples in the shallow part (near the top two arrows in each plot around 0.75

and 1.2s) are better suppressed.
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(a) (b)

(c)

Figure 2.5: A common-offset section from North Sea field dataset with re-
sults from two different multiples-elimination methods. a) Total data
plotted with automatic-gain control. b) Primary estimation from one
term SRME. c) Scaled Bayesian iterative threshold primaries estimate.
Adapted from Herrmann et al. (2008b).
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Chapter 3

Convexified EPSI and
curvelet-domain
matched-filtering

In this chapter, we layout the theory behind estimation of primaries by sparse in-

version (EPSI), before incorporating a matching step into the convexified EPSI

procedure.

Will incorporating a matching step into EPSI optimization problem give better

results than using EPSI alone, knowing that using EPSI one would match multiples

to multiples instead of matching predicted multiplies to the total data as in SRME?

The remainder of this thesis is dedicated to answering this question.

3.1 Estimation of primaries by sparse inversion
EPSI is based on the same model as SRME. However, it estimates primaries in

an inversion process rather than in a prediction and a subtraction process. Unlike

SRME, EPSI is not sensitive to limited sampling because it can reconstruct missing

offset during the inversion process.

EPSI tries to change the paradigm that sees the surface-related multiples as

noise, which needs to be removed from the data prior to imaging. It proposes an

operator, which is based on the underlying principle that relates the primary im-
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pulse response to total upgoing wavefield that includes the source signature and

surface related multiples. EPSI monochromatic relationship is expressed mathe-

matically as:

Ĝ︸︷︷︸
surface-free impulse response

downgoing wavefield︷ ︸︸ ︷[
Q̂+RP̂

]
≈

upgoing wavefield︷︸︸︷
P̂ , (3.1)

where the hat indicates a monochromatic representation of a wavefield arranged

into a matrix, see Section 2.2.3 for details. The matrix product of any two-hatted

wavefields corresponds to a non-stationary convolution in the time domain.

The original EPSI (van Groenestijn and Verschuur, 2009) assumes the impulse

response G to be sparse in the time domain and the source function Q is omni-

directional, i.e. a constant-source for all shots or Q̂ = Iq̂ with q̂ the discretized

Fourier representation of the source function. Sparsity is enforced on the updates

of the surface-free impulse response by a zero norm. An increasing time window

in each iteration is placed over these updates in which the biggest events per trace

are selected. Increasing the window size improves the convergence. A Fourier

smoothness (shortness) is also enforced on the source function.

We obtain a reasonable estimate for primary impulse response G by choosing

the largest τ (sparsity level) elements of the gradient and setting the rest to zeros.

We keep repeating this process till we obtain the desired image of primaries.

3.1.1 Convexified EPSI

Many issues affect the practical adoption of the original EPSI formulation. It is

difficult to estimate many of its inversion parameters, e.g. the sparsity level of the

primaries in each iteration or the precise knowledge of the time window containing

them. The original EPSI also relies on the zero norm which makes it unstable.

Lin and Herrmann (2009) address these issues via a `0 to `1 convexification,

where the one norm on the surface-free impulse response is minimized alternately

with the two-norm on the source function. Introducing `1 convexification will not

only preserve sparsity on the Green’s function but will also stabilize the problem. It

will also eliminate most the inversion parameters. The time window, which is used

to prevent the inversion from being trapped in a local minima, is no longer needed
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since convex problems have no local minima. The sparsity level of primaries is

replaced with a more practical and easy to estimate parameter σ , which is related

to the noise level of measured data, see Equation 3.3.

3.1.2 Bi-convex optimization

EPSI optimization involves two alternating optimization problems that solve for

the unknown surface-free Green’s function G and the unknown source function Q.

To be consistent with the notation of optimization problems, indicated by lower

bold face letters e.g. p = vec(P) in our notation, we rewrite Equation 3.1 in a

vectorized form in this bi-linear forward model formulation

E[Q̂]g := F ∗
t blockdiag

([
Q̂+RP̂

]∗
1···n f
⊗ I
)

Ftg = p, (3.2)

where E[Q̂] is a linear operator, which depends on the source signature Q and the

upgoing wavefield P that acts on the vectorized surface-free Green’s function g,
∗ denotes the conjugate transpose, and ⊗ denotes the Kronecker product. This

expression reformulates the matrix-matrix product into a matrix-vector product.

Ft is the Fourier transform, whose action on a vectorized wavefield g is defined

as Ftg := ĝ = [ĝ1, ĝ2, · · · , ĝn f ]
∗ with n f the number of frequencies and F ∗

t is the

inverse Fourier transform operator that brings the vectorized wavefield back to the

time domain. The blockdiag lays out each frequency slice (1 · · ·n f ) in a vectorized

form and p is the vectorized upgoing wavefield. For now, we will assume R =−I.

Equation (3.2) is linear in both the surface-free Green’s function and the Fourier

coefficients of the source function. This permits us to invert for these two un-

knowns by alternatingly solving two optimization problems. First, we solve for

free impulse response g subject to data fitting, i.e. the one norm optimization prob-

lem on the unknown surface-free Green’s function,

g̃ = argmin
g
||g||1 subject to ||p−E[Q̂]g||2 ≤ σ , (3.3)

where g̃ is the vectorized estimation (estimations are indicated by )̃ for the surface-

free Green’s function and σ is the residual, which is linked to the noise level of the

data. Then, we solve the regularized least-squares problem for the unknown source
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function, ˜̂q = argmin
q

1
2
||ỹ−B[ ˜̂G]q̂||22 +λF ||LF q̂||22, (3.4)

where ỹ = vec([P̂+ ˜̂GP̂]1···n f ) is the data vector with ˜̂G = vec−1(g̃) the current es-

timate for the surface-free Green’s function and B[ ˜̂G] := blockdiag( ˜̂G1···n f ⊗ I). In

this expression, we assume the source to be omnidirectional, i.e. Q1···n f = Iq1···n f

The sharpening operator LF in the `2 penalty term imposes smoothness on the es-

timated Fourier coefficients of the source function ˜̂q, which corresponds to enforc-

ing decay in the time domain. The trade off parameter λF balances Fourier domain

smoothness versus data misfit to avoid overfitting, which may lead to leakage of

multiples into the source function.

In this bi-convex optimization, we start with estimate for the source function

and then solve for the surface-free Green’s function by an one-norm optimization

problem, which seeks a sparse vector that after convolution with the downgoing

wavefield explains the total upgoing wavefield, see Equation (3.3). Given this

sparse estimation for the Green’s function, the regularized least-squares problem is

solved that seeks the Fourier coefficients of the source function, see Equation (3.4).

A sparsfying Transform

To further enforce the sparsity assumption, we can define a suitable sparsifying

transform on the estimated surface-free Green’s function. In Lin and Herrmann

(2009), they define this sparsifying transform as a Kronecker product between the

2D curvelet transform along source-receiver coordinates, and the wavelet trans-

form along time coordinate, i.e. S := C⊗W, with C, W the curvelet and wavelet

transform operators, respectively. The synthesis operator S∗ then sits between E[Q̂]

and g in Equation 3.3, and the solution seeks the sparsest set of transform domain

coefficients of the surface-free Green’s function Sg̃ instead of the sparse Green’s

function g̃.

Due to the redundancy of the curvelet transform, about 8 times redundant in

2D case, and the high demand for memory of our implementation of Algorithm 1,

see Section 3.2, the above sparsifying transform is not used in our matching.
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3.2 EPSI with curvelet-domain matched-filtering
EPSI implicitly assumes that the source is omnidirectional, i.e. constant source

for all shot gathers; absence of 3D effects; infinite aperture; and ideal total surface

reflectivity, i.e. R = −I. Although in principle EPSI can be extended to 3D, it is

been shown that this assumption is more problematic to handle in practice as expe-

riences with SRME-based method have shown (Lin et al., 2004). Deviation form

these assumptions may lead to detrimental effects on the quality of the estimated

surface-free data.

Following the successful application of curvelet-domain matched-filtering within

the SRME procedure, we propose to incorporate a matching step into our bi-convex

optimization procedure to mitigate possible adverse effects that stem from ampli-

tude mismatches that vary smoothly as a function of position and dip along the

predicted wavefronts of the current estimate for the surface-free data. We include

a non-trivial surface reflectivity operator, i.e. R 6= −I, that will absorb amplitude

errors of non-ideal reflections at the surface, finite-aperture, and other unknown

effects.

We start with the assumption that the operator R is symmetric positive defi-

nite and pseudo local (no kinematic shifts). Then, we approximate this space-dip-

dependent filter by a simple curvelet domain scaling

R≈C∗diag(z)C. (3.5)

After that, the diagonal curvelet scaling is estimated in the regularized least-squares

problem Equation 2.11 that matches multiples to multiples and not predicted mul-

tiples to total data as in SRME.

3.2.1 Frequency-domain monochromatic matching

Our first attempt to incorporate the surface reflectivity operator R into our formula-

tion was to assume that this operator is frequency independent, even though it can

be easily extended to include angular frequency dependency. Then we incorporate

this operator in Equation 3.1 to get

P̂− ĜQ̂ = ĜC∗diag(z)CP̂, (3.6)

23



which we can solve by least-squares to get the curvelet scaling z:

argmin
z

1
2
||ũ−M̂z||22 +λ ||Lz||22, (3.7)

where M̂ := ˜̂GC∗diag(CP̂) and ũ := vec([P̂− ˜̂G˜̂Qi]) with i the index corresponding

to the frequency for which ˜̂q is maximum.

This method solves for the curvelet scaling fast, 200x faster than the method

proposed in the next section, and does not demand large memory to execute. How-

ever, it does not give the desired space-dip dependent amplitude corrections corre-

sponding to the symbol of the pseudo differential operator a(x,ζ ) in Equation 2.8

since it is acting on a frequency slice that has two spatial coordinates and no time

coordinate. To solve this problem, the scaling should act on a spatial-time slice,

e.g. a shot gather or a common receivers gather.

3.2.2 Time-domain matching

In this approach, we apply the spatial-dip dependant operator R to each shot record

of the upgoing wavefield P separately, to give the desired spatial-dip dependent

amplitude corrections. Then, we take the scaled upgoing wavefield to the Fourier

domain and substitute it into EPSI monochromatic relationship Equation 3.1, to get

vec(P̂− ˜̂G ˜̂Q) = ĜM̂z1···ns , (3.8)

where M̂i = C∗diag(CPi) with i the shot gather index and ns is the number of

sources. Our operator R now acts on each shot record of the upgoing wavefield P
separately.

This new approach seeks a smooth positive spatial-dip dependent curvelet-

domain scaling for all the shot gathers of the total upgoing wavefield simultane-

ously, which makes it time and memory demanding approach, especially with the

curvelet redundancy of about 8 times for the 2D case.

Incorporation of this expression into our formulation, yields a tri-convex opti-
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mization problem that now includes curvelet-domain matching:

z1···ns = argmin
z1···ns

1
2
||ũ−Nz1···ns ||22 +λ ||Lz1···ns ||22, (3.9)

where N := blockdiag([ ˜̂G ˜̂M]1···n f ⊗ I) and ũ := vec(P̂− ˜̂G ˜̂Q]1···n f ). The trade-off

parameter λ and the sharpening operator L are of Equation 2.12 respectively and

ns and n f are the number of sources and the number of frequencies respectively.

To solve this tri-convex optimization, we start by assuming R = −I. Then,

given an estimate for the source signature we solve Equation 3.3 for the sparse

surface-free Green’s function. After that, we substitute our Green’s function esti-

mate into Equation 3.4, and solve the least-squares problem to obtain a new source

estimate.

Now that we have an estimate for both G and Q, we can start the matching

step by assuming R 6=−I and solve Equation 3.9 for the diagonal curvelet-domain

scaling. The new estimate for the surface reflectivity operator R is then used in the

next estimations of the surface-free Green’s function and the source function, see

Algorithm 1.

Algorithm 1 Stabilized Estimation of Primaries by Sparse Inversion with Curvelet
Domain Matched Filtering

Result: Estimate for g and Q
choose noise level σ , iteration increment ρ

g0←− 0, Q0←− 0, R0 ←−−I, k←− 1
while ‖p−E[Q̂,R]g‖2 ≥ σ do

gk ← solve (3.3) using initial guess Qk−1,Rk−1 with SPG`1
1at least ρk itera-

tions.
Qk ← solve (3.4) for the source signature using gk,Rk−1 with LSQR
z← solve (3.9) with LSQR
Rk ← C∗diag(z)C

end while
g← gk
Q← Qk

1see van den Berg and Friedlander (2008)
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Chapter 4

Observations and results

This chapter studies the factors affecting the outcome of incorporating a matched-

filtering step into EPSI. We conclude this chapter by showing our results.

4.1 Methodology

4.1.1 Synthetic data

We consider synthetic time-domain finite-difference acoustic forward modeling

data with 128 shot gathers each with 128 receivers (traces). Each trace has 256

time samples and a time sampling interval of 6.4ms; and the distance between any

two sources or receivers is 20m. Delphi f dacmod was used to generate this data,

see Table 4.1 for detailed parameters. We assume the data to be receiver ghost free.

Unless otherwise stated, all the shot gathers shown in this section are the middle

shot gather, i.e. shot index of 64 (offset = 1260m).

4.1.2 Results evaluation

We want to compare the primary multiples separation results of EPSI with and

without the curvelet-domain matched-filtering step. However, since we do not have

the true primaries to evaluate the separation results, e.g. with signal-to-noise ratio,

we rely on prior knowledge of the locations of these primaries to evaluate our

results.
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Table 4.1: Synthetic time-domain finite difference acoustic forward modeling
data parameters.

Parameter Value Parameter Value

time sample interval 6.4ms sources depth 5m
samples/trace 256 receivers depth 5m
number of sources 128 grid size (dx) 5m
number of receivers 128 grid size (dz) 5m
wavelet type Ricker wavelet model size (nx) 509
frequency range 0-60Hz model size (nz) 251
source type monopole

The matching step will be evaluated by the smoothness and the positivity of

the curvelet-domain matched-filtering diagonal scaling.

4.2 Factors affecting our results
In this section, we study the factors that control the output of the matching process,

namely the number of least-squares iterations η and the trade off parameter λ

which control the smoothing and positivity of the curvelet-domain scaling. We will

also answer the question of when and how frequent should we do the matching.

Before experimenting with these factors, we present EPSI results without match-

ing of the synthetic data described in Table 4.1. Figure 4.1a shows the zero-offset

section of total upgoing wavefield. After applying EPSI to this data, it converges

after 22 alternating optimization loops to give an estimate for the primaries (Fig-

ure 4.1b) and an estimate for the source wavelet (Figure 4.1d). The multiples es-

timate (Figure 4.1c) is calculated by subtracting the primary estimate form total

upgoing wavefield.

4.2.1 The smoothing and positivity of the curvelet-domain diagonal
scaling

In Section 2.4, the second assumption behind the curvelet-domain matched-filtering

states that the non-stationary differences vary smoothly as a function of location

and dip and then it can be modeled mathematically by a matrix-vector multiplica-
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(a) (b) (c)

(d)

Figure 4.1: Zero-offset EPSI synthetic data results with no matching. a) To-
tal upgoing wavefield section (P̂). b) Primaries estimation (P̂0). c) pri-
maries estimation minus the total data (P̂− P̂0 = −ĜP̂), i.e. the multi-
ples estimation d) Final estimated source wavelet (Q̂)

tion of a positive definite matrix on a reference vector, see Equation 2.9.

To test the effects of the number of least-squares matching iterations η of

Equation 3.9 and the trade off parameter λ on the positivity and smoothness of

the curvelet-domain scaling vector z1···ns , we carry out two experiments on which

we fix one of the parameters and allow the other to vary. Then, we compare

the smoothness of the curvelet-domain scaling of the middle shot gather (offset

= 1260m) with a mosaic plot, see Figure 1.5 for detailed description. We also show

2D-plots of the same curvelet-domain scaling to judge the positivity. After that we

present the final zero-offset primary multiple separation results, i.e. the estimated
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primaries P̂0 and the calculated multiples M̂0.

Fixing λ and varying η

In this experiment, we test the effect of the number of curvelet-domain matched-

filtering iteration η on the positivity and smoothness of the curvelet-domain scal-

ing vector by fixing the trade off parameter λ = 0.46 and varying the number of

iteration η = 10,35 and 100.

Figure 4.2a, 4.2c and 4.2e show mosaic plots of the curvelet-domain scaling

coefficients for η = 10,35 and 100, respectively and Figure 4.2b, 4.2d and 4.2f

show the corresponding 2D-plots of the same coefficients. Since the surface reflec-

tivity coefficients are negative, approximated by R=−I in EPSI without matching,

and to avoid the confusion with literature (Herrmann et al., 2008a; Yarham and

Herrmann, 2008) where the curvelet-domain scaling vector z1···ns is positive, we

will plot −z1···ns instead of z1···ns . The corresponding final primaries and multiples

estimations are shown in Figure 4.3(a)-(f).

As the number of iterations increases, the curvelet-domain scaling vector be-

comes more smooth and positive as shown in Figure 4.2. The smoothness and

positivity also affect the final EPSI output. In Figure 4.3a, we notice a significant

leakage of multiples into the zero offset primaries section, indicated by the small

black arrows at around 0.48, 0.75, 0.8 and 1s. However, in Figure 4.3b, these

indicated multiples are either eliminated or faded. Figure 4.3c has slightly less

multiples than Figure 4.3b. For example, the multiple, indicated by the third arrow,

has been eliminated. Figure 4.3(d)-(f) show the same effects, so as the number of

iterations increases the multiples become more preserved.

Increasing the number of iterations produces a more smooth and positive curvelet-

domain scaling vector, which results in a better primary-multiples separation. How-

ever, that comes at the expense of execution time. Although we are utilizing the

parallel execution and the distributed arrays of MATLAB in our implementation of

Algorithm 1, one matching iteration still takes about 10 minutes to execute on 5

nodes each with 8GB memory shared between 2 workers.
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(a) λ = 0.46,η = 10 (b) λ = 0.46,η = 10

(c) λ = 0.46,η = 35 (d) λ = 0.46,η = 35

(e) λ = 0.46,η = 100 (f) λ = 0.46,η = 100

Figure 4.2: Mosaic and 2D plots for the curvelet-domain matched-filtering
scaling for one shot (offset = 1260m) for λ = 0.46 and η =
10,35 and 100. The λ and η used to generate each subfigure are stated
underneath it.

.
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(a) λ = 0.46,η = 10 (b) λ = 0.46,η = 35 (c) λ = 0.1,η = 100

(d) λ = 0.46,η = 10 (e) λ = 0.46,η = 35 (f) λ = 0.46,η = 100

Figure 4.3: Zero-offset synthetic data results for λ = 0.46 and η = 10, 35
and 100. The λ and η used to generate each subfigure are stated under-
neath it. a-c) zero-offset primaries estimates. d-f) zero-offset multiples
estimates.
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Fixing η and varying λ

This experiment aims to test the effect of the trade off parameter λ on the positiv-

ity and smoothness of the curvelet-domain scaling vector by fixing the number of

matching iterations η = 35 and allowing the trade off parameter to vary λ = 0.046,

0.46 and 46.4.

The mosaic plots of the curvelet-domain scaling coefficients for λ = 0.046,

0.46 and 46.4 are shown in Figure 4.4a, 4.4c and 4.4e respectively. Next to each

mosaic plot, a 2D-plot of the same coefficients is shown, Figure 4.4b, 4.4d, and

4.4f. The corresponding final primaries and multiples estimations are shown in

Figure 4.5(a)-(f).

Increasing the trade off parameter λ will obviously make the curvelet-domain

scaling smoother and more positive, see Figure 4.4, but λ also balances the curvelet-

domain smoothness versus data misfit to avoid overfitting, which may lead to leak-

age of multiples into primaries estimate. The later point is obvious in Figure 4.5,

where we notice severe leakage of multiples (Figure 4.5f) into the primaries (Fig-

ure 4.5c). Figure 4.5a has slightly less multiples than Figure 4.5b especially at the

deepest parts near the lowest three arrows.

A large value of the trade off parameter λ and the number of matching iter-

ations η are desirable, but if not chosen correctly might lead to severe leakage

of multiples into primaries estimate or to longer execution time. Hence, in order

to practically incorporate the matching step, we need to choose these parameters

wisely to avoid data overfitting and timely execution.

4.2.2 When and how frequent should we do the matching?

In this section, we carry out different experiments to determine the best way to

incorporate curvelet-domain matched-filtering step into EPSI. We present these

experiments starting with the worst result. Then, we evaluate the quality of each

result by comparing it to EPSI result with no matching presented in Figure 4.1. In

all the experiments, the number of iteration η and the trade off parameter λ are

fixed, η = 30 and λ = 0.46.

Before we carry out the experiments, we will take a look at different alternat-

ing optimization iterations snapshots (Figure 4.6). In particular, we look at the
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(a) λ = 0.046,η = 35 (b) λ = 0.046,η = 35

(c) λ = 0.46,η = 35 (d) λ = 0.46,η = 35

(e) λ = 46.4,η = 35 (f) λ = 46.4,η = 35

Figure 4.4: Mosaic and 2D plots for the curvelet-domain matched-filtering
scaling for one shot (offset = 1260m) for η = 35 and λ = 0.046, 0.46 and
46.4. The λ and η used to generate each subfigure are stated underneath
it.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Zero-offset synthetic data results for η = 35 and λ = 0.046, 0.46
and 46.4. The λ and η used to generate each subfigure are stated under-
neath it. a-c) zero-offset primaries estimates. d-f) zero-offset multiples
estimates.
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primaries estimates for different iterations P̂0 = ĜQ̂, Figure 4.6a- 4.6d, the mul-

tiples estimations calculated by subtracting the primaries estimates from the total

upgoing wavefield MS
0 = P̂− ĜQ̂, Figure 4.6e- 4.6h, and finally at the multiples

estimates generated by convolving the Green’s functions with the total upgoing

wavefield M̂C
0 − ĜP̂, Figure 4.6i- 4.6l.

Referring to Figure 4.6, we notice the importance of the first few iterations;

they define the way that the upcoming iterations follow. After these few iterations,

we notice only small changes in the inversion process, i.e. small changes in P̂0, M̂S
0

and MC
0 . For example, there is a slight change between the primaries estimate after

the sixth iteration (Figure 4.6c) and after the twenty-first iteration (Figure 4.6d)

compared to a significant change between the primaries estimate after the first iter-

ation (Figure 4.6a) and after the third iteration (Figure 4.6b).

Notice also that after these few iterations, the two multiples estimates, M̂S
0 and

M̂C
0 start to become closer to each other. In curvelet-domain matched-filtering,

we are trying to estimate the surface-reflectivity by taking advantage of EPSI by

matching multiples to multiples instead of predicted multiples to total data like in

SRME. Hence, it is desirable to have M̂S
0 close to M̂C

0 , but how close? That is what

we will try to find out in the following experiments.

Only one matching at the first alternating optimization loop

In this experiment, we only solve one curvelet-domain matched-filtering optimiza-

tion problem, Equation 3.9, right after we get the first estimation of the Green’s

and the source function. Then, we use the estimated curvelet-domain scaling in all

the upcoming iterations.

Figure 4.7a- 4.7b show the zero-offset primaries and multiples estimates, re-

spectively. There is obvious leakage of multiples into the primaries estimate, indi-

cated by the small black arrows. The primaries estimate after the first alternating

loop is still unstable and will go under a lot of changes during the first few loops,

which might lead to this leakage. On the other hand, we notice a leakage of pri-

maries into the multiples estimate, which might come form the fact that the two

multiples M̂S
0 and M̂C

0 are far apart from each other when we do the matching.

Therefore, incorporating a matched-filtering step into EPSI in the first few iter-
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(a) Iteration = 1 (b) Iteration = 3 (c) Iteration = 6 (d) Iteration = 21

(e) Iteration = 1 (f) Iteration = 3 (g) Iteration = 6 (h) Iteration = 21

(i) Iteration = 1 (j) Iteration = 3 (k) Iteration = 6 (l) Iteration = 21

Figure 4.6: a-d) Primaries estimates at different iterations. e-h) Multiples es-
timates calculated by subtracting the primaries estimate for the total data
P̂− ĜQ̂. i-l) Multiples estimates calculated by convolving the Green’s
function with the total upgoing wavefield −ĜP̂.
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(a) (b)

Figure 4.7: Zero-offset results of EPSI with only one matching step at the
first alternating optimization loop. a) Zero-offset primaries estimate.
b) Zero-offset multiple estimate calculated by subtracting the primaries
estimate form the total upgoing wavefield.

ations produces an undesirable leakage of events between primaries and multiples

estimates.

Multiple matching starting from the second alternating optimization loop

In this experiment, we solve six curvelet-domain matched-filtering optimization

problems at even loops starting from the second loop, i.e. in loops indexed 2, 4, ...,

12.

The zero-offset primaries and multiples estimates are shown in Figure 4.8a-

4.8b, respectively. We immediately notice that the primaries are better preserved
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(a) (b)

Figure 4.8: Zero-offset results of EPSI with six matching steps starting after
the second alternating optimization loop (even loops only). a) Zero-
offset primaries estimate. b) Zero-offset multiple estimate calculated
by subtracting the primaries estimate form the total upgoing wavefield.

and there is much less primaries leaking into the multiples. However, there are ob-

viously still multiples leaking into the primaries estimate, indicated by the arrows.

This leakage might be coming form the first two matching steps at the second and

fourth loop where the inversion process still goes under significant changes.

This result is better than the previous one. However, solving more than one

matched-filtering optimization problem is impractical. Solving one matched-filtering

optimization problem takes longer than solving the same problem without the

matching step.
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(a) (b)

Figure 4.9: Zero-offset results of EPSI with only one matching step at the
twenty first alternating optimization loop. a) Zero-offset primaries es-
timate. b) Zero-offset multiple estimate calculated by subtracting the
primaries estimate form the total upgoing wavefield.

Only one matching near the last alternating optimization loop

In this experiment, we only solve one matched-filtering optimization problem near

the last loop, loop 21, just before the inversion problem converges.

The zero-offset primaries and multiples estimates are shown in Figure 4.9a-

4.9b, respectively. This result is very close to the original result with no curvelet-

domain matched-filtering but it suffers from weak multiples events leaking into

the primaries estimate, indicated by the black arrows. In the last few loops, the

inversion problem goes through small changes and the two multiples estimates M̂S
0

and M̂C
0 are very close and there is no much that the matching step can correct.
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(a) (b)

Figure 4.10: Zero-offset results of EPSI with only one matching step at the
twelve alternating optimization loop. a) Zero-offset primaries esti-
mate. b) Zero-offset multiple estimate calculated by subtracting the
primaries estimate form the total upgoing wavefield.

Only one matching at the middle alternating optimization loop

In this experiment, we solve one matched-filtering optimization problem near the

middle loop, loop 12. At this stage in the inversion problem, the dramatic changes

of the first few iterations have already stabilized and we still have many upcoming

iterations before the inversion problem exits.

Figure 4.10a- 4.10b show the zero-offset primaries and multiples estimates,

respectively. This result is better than all previous results including the one without

curvelet-domain matched-filtering one. We notice less multiples leakage into the

primaries estimate especially where the two black arrows indicate.
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4.2.3 Optimized result

We will conclude this section by first presenting an optimized result, a result where

λ and η are chosen wisely and the matched-filtering optimization is solved only

once in the middle loop, and then compare it to EPSI result without the curvelet-

domain matched-filtering.

The optimized result is shown in Figure 4.11. Figure 4.11a- 4.11c show the

zero-offset section of the total upgoing wavefield, the estimate for the primaries

and the calculated multiples, respectively. The estimated source wavelet is shown

in Figure 4.11d.

This result is better than EPSI without the curvelet-domain matched-filtering

step presented in Figure 4.1. By comparing this result primaries estimate (Fig-

ure 4.11b) to the one without matching estimated primaries (Figure 4.1b), we no-

tice that the multiple event indicated by the top arrow is now weaker and more

interestingly the other multiple indicated by the bottom arrow is no longer there.

The number of iterations (η = 60) and the trade off parameter (λ = 0.49) are

chosen to avoid overfitting the data and to solve the least-squares optimization

problem in a reasonable time and at the same time does not sacrifice the positivity

and smoothness of the curvelet-domain scaling vector. The matching step is incor-

porate at the twelve loop away from the instability of the few first iteration to avoid

leakage between the primaries and the multiples.
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(a) (b) (c)

(d)

Figure 4.11: Zero-offset EPSI synthetic data result with curvelet-domain
matched filtering incorporated into loop 12. The number of iterations
η = 60 and the trade off parameter λ = 0.46. a) Total upgoing wave-
field section (P̂). b) Primaries estimation (P̂0). c) primaries estimation
minus the total data (P̂− P̂0 = −ĜP̂), i.e. the multiples estimation d)
Final estimated source wavelet (Q̂)
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Chapter 5

Conclusion and future works

5.1 Conclusion
The aim of this thesis is to incorporate a curvelet-domain matched-filtering step

into the formulation of EPSI and investigate the factors that affect the outcome of

this matching step on the outcome of EPSI.

We started by leveraging the curvelet transform ability to represent seismic data

and images sparsely as a function of location, scale and dip to end up with a solid

matched-filtering formulation that has the ability to control a possible overfitting

that might lead to primary energy removal.

Then we incorporated this formulation into EPSI formulation to produce a tri-

convex optimization problem in which after we invert for the Green’s and source

function, we solve our matching-filtering problem.

After that we looked at the different factors that affect the outcome of our

inversion namely, the number of iteration η , the value of the trade off parameter

λ and when and how frequent should we solve the matched-filtering problem. We

also saw that the number of iterations and the value of the regularization parameter

should be chosen wisely to balance the smoothness and positivity of the curvelet-

domain scaling versus data overfitting and long execution time.

Then, we concluded by showing that solving the curvelet-domain matched-

filtering step around the middle alternating optimization loop gives the best results

since in that stage the inversion problem have already stabilized and the dramatic
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changes of the first few iterations have already done.

5.2 Future works
In this section we try to improve our method by making it faster. We suggest

two ways to do that either by changing the problem formulation or by imposing

frequency regularization over the curvelet-domain scaling vector.

New formulation

The problem with the current formulation Equation 3.9 is that we have to solve for

the curvelet domain scaling for the whole data at the same time which requires a

great deal of time and memory. We start by assuming R =−I and then change the

formulation a bit to get

P−GQ =−C∗diag(z)CGP. (5.1)

This formulation is solved for each shot gather separately which makes it fast and

easy to parallelized. However, this formulation does not have a physical meaning

like matching for the reflectivity coefficients (Equation 3.9).

Frequency regularization

In Shahidi and Herrmann (2009), they show that by imposing a smoothness over

the curvelet-domain scaling vector in the frequency domain, faster convergence is

realized. By incorporating this in our formulation we could shorten the execution

time of Equation 3.9.
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Appendix A

Implementations

There are many implementations of the curvelet-domain matched-filtering namely,

a MATLAB, a Python and a partially MPI C++ implementation. Although the last

implementation is the fastest and has more features, we chose to extend the MAT-

LAB implementation for these reasons. MATLAB does not only make developing

and testing algorithms fast and easy, but a recent extension to MATLAB, namely

Parallel Computing Toolbox, makes solving memory and time intensive algorithms

possible. It provides MPI free programming of distributed arrays, different parts of

one large array reside at different computational nodes, and distributed algorithm

execution, different parts of an algorithm is executed at different computational

nodes at the same time. The latter feature makes our algorithm, see Section 3.2.2,

possible. For example, the diagonal scaling in Equation 3.9 for our small synthetic

data has more than 32 million elements.

SPG`1, a gradient-based solver that uses spectral step length and Pareto root

finding (van den Berg and Friedlander, 2008), is used for solving the `1 optimiza-

tion problem in Equation 3.3 and for the `2 optimization problem in Equation 3.4,

the least-squares solver described in Paige and Saunders (1982) is used.

We have chosen the curvelet-domain transform via wrapping (Candes et al.,

2006) as our curvelet transform with 6 scales and 16 angles at the finest scale. For

this choice of implementation, the pseudo-inverse equals the adjoint.
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