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Abstract

Groundroll is a type of surface wave that propagates along the Earth’s
surface. Groundroll usually has low frequency, low velocity and high am-
plitude. Due to its high amplitude, groundroll almost always dominates
reflected body waves in land seismic data and covers important reflection
information. Therefore, removing groundroll noise is a very important step
before seismic imaging. The most common methods used in industry to
remove groundroll are the Fourier domain filtering methods based on the
different characteristics of groundroll and reflections, i.e. the low frequency
and low velocity properties of groundroll. However, groundroll and reflec-
tion usually have large overlap in both physical and frequency domain. Also
groundroll is spatially aliased at normal receiver intervals causing additional
processing difficulties. Therefore, a good separation of groundroll by Fourier
domain filtering method is challenging.

In this thesis, we propose a data-driven workflow to remove groundroll.
Our workflow is motivated both by SRME (Surface Related Multiple Elimi-
nation) method and a recently proposed interferometry method for the pre-
diction of groundroll. It consists of a prediction step based on interferometry
and a robust separation step that involves curvelet domain matched filtering
and sparsity promotion. Tests of our workflow on synthetic data show clear
removal of large amplitude groundroll and preservation of seismic reflection
events. Test of our separation step on real data shows improvement over
conventional Fourier domain filtering methods.
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Chapter 1

Introduction

Seismic surveying is the most common method for hydrocarbon explo-
ration both on land and in the ocean. The basic principle for a survey is to
send seismic waves into the Earth using sources such as a seismic vibrator
on land or an air-gun at sea. The artificial seismic waves sent out during a
survey are reflected by layer structures in the Earth and are recorded using
hydrophones in water or geophones on land. The recorded data is processed
to produce images of the subsurface structures, which will be interpreted by
geoscientists to determine the potential structural traps that may contain
hydrocarbons.

During acquisition of seismic data, both signal and unwanted energy are
recorded. Such undesired energy, more commonly known as noise, contam-
inates seismic data, leading to lower quality images and misinterpretations.
Thus, enhancing the reflection signal by suppressing noise is one of the main
goals in seismic data processing. Seismic noise is generally classified into two
categories: incoherent and coherent noise (Yilmaz, 2001). Incoherent noise is
uncorrelated between adjacent traces and can often be attenuated by stack-
ing traces and by filtering during processing. Coherent noise is unwanted
seismic energy that is consistent trace by trace, which makes it more difficult
to remove. The most common types of coherent noise include: multiples, air
waves, and surface waves (Yilmaz, 2001). This thesis deals with separating
seismic signal from coherent groundroll noise. It focuses on removing surface
waves in land seismic data.

1.1 Surface waves - groundroll

Surface waves are waves propagating along the surface of the Earth.
The amplitudes of surface waves decay exponentially with depth but slowly
along the surface. Therefore surface waves have large amplitudes. The most
typical surface waves are Love waves and Rayleigh waves. Love waves are
named after A.E.H. Love, a mathematician who first predicted the existence
of these waves in 1911. Love waves are horizontally polarized shear waves
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Chapter 1. Introduction

(SH waves) trapped in a low-velocity elastic layer over an elastic half-space.
The particle motion of a Love wave is parallel to the surface and perpen-
dicular to the direction of propagation. Love waves are generated by the
constructive interference of reverberations. In common seismic exploration,
Love waves are inconsequential because the seismic sources used in explo-
ration do not generate large amount of Love waves. Common geophones
that respond to vertical ground motion cannot detect Love waves, which
have horizontal ground motion (Telford et al., 1990).

In seismic exploration, the more important surface waves are Rayleigh
waves because they commonly exist in land seismic data. Rayleigh waves
were first predicted by British physicist John Willisam Strutt (Lord Rayleigh)
in 1885. Rayleigh waves have both vertical and horizontal particle motions
in the plane normal to the surface and parallel to the direction of propa-
gation. The vertical and horizontal motions have a definite phase relation
and thus produce overall elliptical motions in the vertical plane parallel to
the direction of propagation. Due to the elliptical particle motion, Rayleigh
waves ’roll’ along the ground, which is why they are commonly known as
groundroll. Figure 1.1 shows a simple schematic diagram of the particle
motion of groundroll. Rayleigh waves are generated by the constructive in-
terference of reflected and transmitted body waves (both P and SV waves)
at the free surface. Their particle motions decay exponentially with depth
but slowly along the surface. Therefore Rayleigh waves live for a long time
in seismic record. The depth of significant particle motion is at the same
scale of the wavelength. Rayleigh wave velocity depends on the near surface
elastic parameters and is less than the S wave velocity. Because the depth
of significant motion of a Rayleigh wave depends on the wavelength, for
media that have densities or velocities changing with depth, the velocity of
Rayleigh waves changes with wavelength (or frequency) and Rayleigh waves
become dispersive. For theoretical analysis and more detailed discussion on
characteristics of Rayleigh waves, we refer the reader to Aki and Richards
(2002). To summarize, Rayleigh waves travel along the Earth surface, are
low frequency, low group velocity, dispersive and have elliptical particle mo-
tions that decay exponentially with depth.

Groundroll is the most common coherent noise source in land seismic
data. As a result of its large amplitude, groundroll almost always domi-
nates seismic reflection events that may exist in the recorded data. Fig-
ure 1.2 shows a land shot gather contaminated by groundroll. The high
amplitude groundroll corrupts the data, causing the primary reflections to
be practically invisible. This is one of the major reasons for low signal to
noise ratio (SNR) of land seismic data.

2



Chapter 1. Introduction

Propagation direction of Rayleigh wave

Figure 1.1: Particle motion of Rayleigh waves.

Figure 1.2: A shot gather of land seismic data.
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Chapter 1. Introduction

The most common methods to remove groundroll are based on different
characteristics of groundroll and reflected body waves, which we refer to as
reflections from this point on. The low group velocity and low frequency
characteristics of groundroll are most utilized to separate them from higher
frequency reflections. The most popular methods used for groundroll re-
moval include band-pass frequency filtering (Yilmaz, 2001), f − k domain
filtering, multi-channel filtering (Galbraith and Wiggins, 1968), and other
Fourier based filtering with different variants including wide-band veloc-
ity filtering (Embree et al., 1963) and fan filtering (Fail and Grau, 1963;
Treitel et al., 1967). The general idea of these methods is to transfer the
data into the Fourier domain, remove characteristic frequencies of ground-
roll and then transfer the data back to the physical domain. However, a
good separation by the Fourier domain filtering methods is challenging be-
cause groundroll and reflection usually have significant overlaps both in the
physical domain and in the Fourier domain. Also groundroll is spatially
aliased at typical receiver intervals causing additional processing problems.
Several papers have shown that these methods have a tradeoff of distort-
ing reflections (McMechan and Sun, 1991; Liu, 1999). To address these
issues, other methods beyond the Fourier domain have been developed to
remove groundroll and these include Wiener-Levinson algorithm (Karslı and
Bayrak, 2004), Radon transform (Russel et al., 1990; Trad et al., 2003), and
one dimensional or two dimensional wavelet transform (Deighan and Watts,
1997; Zhang and Ulrych, 2003). Unfortunately, challenges still remain, par-
ticularly when dealing with aliased groundroll with poor frequency domain
separation. Moreover, because the velocity and frequency of groundroll de-
pends on near-surface velocity structure and density structure, most of these
filtering methods require user interpretation and careful selection of param-
eters for different datasets. Therefore, a data-driven method that avoids se-
lection of sensitive parameters and user interpretation for different datasets
is valuable.

1.2 Thesis overview

The main theme of this thesis is a data-driven workflow to remove
groundroll. The workflow is motivated both by Surface Related Multiple
Elimination method (SRME- Verschuur et al., 1992) and recently devel-
oped seismic interferometry method for the prediction of groundroll (Curtis
et al., 2006; Halliday et al., 2007; Dong et al., 2006; Vasconcelos et al., 2008).
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Chapter 1. Introduction

Instead of using filtering methods which are based on different character-
istics of groundroll and reflection, our workflow is based on a data-driven
prediction of groundroll by seismic interferometry, coupled with a robust
subtraction step that involves curvelet-domain matched filtering (Herrmann
et al., 2008) and sparsity promotion (Yarham and Herrmann, 2008; Wang
et al., 2008). During the prediction, we exclude reflected body waves by
muting the corresponding stationary sources in seismic interferometry (Vas-
concelos et al., 2008). Since the data itself has been used as a prediction
operator, our method does not require prior information. In the separation
step, the matching process forces the predicted groundroll to fit with the
true groundroll in the input data. The underlying assumption for matching
is that data after subtraction has minimum energy. Finally, we utilize a
Bayesian algorithm developed by Yarham and Herrmann (2008) to replace
direct subtraction and thus enhance the overall separation of groundroll and
reflection. Figure 1.3 shows a comparison of our workflow for interferometry
groundroll removal and conventional SRME workflow.

input prediction 
(multidimensional correlation)

conservative Fourier matching

curvelet-domain matching

Bayesian separation

input prediction 
(multidimensional convolution)

conservative Fourier matching

Windowed Fourier matching

Direct subtraction

Our Workflow Conventional SRME Workflow

Figure 1.3: A comparison of our workflow for interferometry groundroll
removal and conventional SRME workflow.

Fourier domain matching is most utilized for adaptive subtraction. De-
spite the major advances by Fourier domain filtering methods, it is also
known that prediction errors that vary as a function of offset, time and
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dip pose serious challenges. To achieve better results than conventional
Fourier matching techniques, we use the curvelet transform developed by
Candès and Donoho (2004). The curvelet transform is a data-independent,
multiscale and multidirectional transform. Curvelets are localized in the fre-
quency domain and have rapid decay in the physical domain. In the physical
domain, curvelets look like localized plane waves. The curvelet transform has
been utilized to approximate piece-wise smooth images with curved edges,
e.g., complex wavefronts, with few significant curvelet coefficients (Candés
et al., 2000; Herrmann and Hennenfent, 2008). In this thesis, we utilize cur-
velets to build a multidirectional and multiscale filter to match predictions
to true groundroll. We also utilize the sparsity provided by curvelets to im-
prove groundroll separation. In the last section of this chapter, we discuss
the properties of curvelets in more detail as a theoretical background of the
thesis.

In Chapter 2, we give an introduction on seismic interferometry. Next
we discuss how to predict surface waves using seismic interferometry and
the problems associated with interferometry prediction of surface waves. In
Chapter 3 and 4, we discuss the curvelet domain matching technique and
Bayesian separation algorithm as mentioned earlier. Finally, in Chapter 5,
we summarize our workflow. We give conclusions and discuss possibilities
for future research.

1.3 Theoretical background

As mentioned earlier, we use curvelets in the separation step of our
method for matched filtering and sparsity promotion. Before we present our
workflow, we first give a general introduction to the curvelet transform and
its advantages for representing seismic data over other transforms.

Real seismic data contains wavefronts coming from different directions
with various frequencies and may have conflicting dips (Hennenfent and
Herrmann, 2008). Finding a transform that can detect and optimally repre-
sent (i.e. using only a few significant coefficients) these complex wavefronts
is highly sought after by geophysicists. In seismology, one of the mostly uti-
lized transforms is the Fourier transform, which decomposes the signal into
monochromatic plane waves with constant frequency and dip. The Fourier
transform is good at representing periodical signals that are sums of simple
sinusoidal waves, but it is not efficient at representing signals with disconti-
nuities, i.e. it requires many plane waves to represent a curved wavefront in
seismic data. One solution to overcome the difficulty of representing signals

6



Chapter 1. Introduction

with discontinuities is to use the wavelet transform. The wavelet transform
decomposes the signal into a set of basis functions called wavelets. The basic
wavelet in the wavelet transform is a normalized function with zero average,
which is centered and well-concentrated in the neighborhood of time zero.
A set of time-frequency atoms is obtained by dilation and translation of the
basic wavelet function. The wavelet transform is better at representing non-
periodic signals that have discontinuities compared to the Fourier transform.
However, the basis functions of 2D/3D wavelet transform are isotropic thus
in high dimensions the wavelet transform is non-directional. 2D/3D wavelet
transform decompose the signal into ’fat’ isotropic wave packets. Since seis-
mic data contains curved wavefronts, many wavelet coefficients are required
to properly represent seismic data.

To resolve the issues of representing wave-front like features, curvelets
have been utilized by Candés et al. (2000). Examples of curvelets in the
physical domain and in the frequency domain are given in Figure 1.4. In the
frequency domain, curvelets are strictly localized. In the physical domain,
curvelets have fast decay and are smooth in one direction and oscillatory in
the perpendicular direction. Figure 1.5 shows the partitioning for 2D dis-
crete curvelet transform. The 2D Fourier plane is partitioned into different
scales and the different scales are sub-partitioned into angular wedges. The
number of angular wedges double at every second scale (Candés et al., 2000).
Curvelets have the parabolic scaling: width ∝ length2, which makes them
act as localized eigenfunctions. Such construction gives curvelets following
properties: multiscale, multidirectional and anisotropic.

With these properties, the curvelet transform becomes an optimal choice
for representing seismic data (Herrmann and Hennenfent, 2008). Curvelets
can handle the multiscale and multidirectional properties of seismic data.
Curvelets can detect curved wavefronts due to their special shape, as shown
in Figure 1.6. Moreover, because of its specific partitioning, the curvelet
transform is able to differentiate between different signal components on the
basis of location, angle and frequency, making it suitable for separation
of seismic signals. Curvelets also provide the sparsest representation of
complex seismic data (Herrmann and Hennenfent, 2008; Candès et al., 2006).
We refer the reader to Herrmann and Hennenfent (2008) for a comparison
of the sparsity of seismic data obtained by using the Fourier transform, the
wavelet transform and the curvelet transform.

To summarize, we utilize the curvelet transform in our workflow to im-
prove the separation of groundroll for the two major reasons:

• The curvelet transform is a localized, multiscale and multidirectional
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Chapter 1. Introduction

transform, which decomposes signals into different location, angle and
frequency. Since groundroll and reflection have different frequencies
and velocities, they are more separable in the curvelet domain than
the Fourier domain or the wavelet domain;

• The sparsity provided by curvelets increases the probability of separa-
tion (sparse signals have more chances to be separated) and allows us
to utilize effective signal separation algorithms through l1 minimiza-
tion (Yarham and Herrmann, 2008; Wang et al., 2008).

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

Figure 1.4: Six real curvelets examples of different scales and angles in the
physical (left) and frequency (right) domain. Curvelets are strictly localized
in the Fourier domain and have rapid decay in the physical domain. Image
from Herrmann and Hennenfent (2008).
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Chapter 2

Groundroll prediction

In the previous chapter, the concept of groundroll was introduced.
Groundroll is a type of coherent noise generated by Rayleigh waves, which
have low velocity, low frequency and high amplitudes. Groundroll almost
always dominates reflection energy in land seismic data and degrades over-
all data quality due to its high amplitude. The most common methods to
remove groundroll are the Fourier domain filtering methods, which utilize
the low velocity and low frequency characteristics of groundroll. However,
groundroll and reflection usually have significant overlap both in the physi-
cal domain and the frequency domain. Also, groundroll is spatially aliased
at normal receiver intervals. Thus, it is challenging to achieve a good separa-
tion for groundroll and reflection by Fourier domain filtering methods alone.
Moreover, variations of near-surface velocity structures cause groundroll to
change in magnitude, velocity and frequency, requiring user interpretation
for different datasets. Our method to remove groundroll is based on a data-
driven prediction of groundroll by seismic interferometry coupled with a
separation step that involves curvelet-domain matching and sparsity promo-
tion. Since our method does not require prior information about near-surface
velocity structure, it avoids user interpretation and sensitive parameter se-
lection. In this chapter, we will discuss groundroll prediction method by
seismic interferometry, which has recently been introduced by Curtis et al.
(2006); Halliday et al. (2007); Dong et al. (2006); Vasconcelos et al. (2008).
We first introduce the concept of seismic interferometry and then explain
how to predict surface waves using interferometry.

2.1 Seismic interferometry and stationary phase
analysis

In exploration geophysics, seismic interferometry is beneficial since it can
extract inter-receiver responses from seismic data generated by active explo-
ration sources or passive random noise sources. The term interferometry was
first used in radio astronomy, which means extracting information by cor-
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Chapter 2. Groundroll prediction

relating radio signals from distant objects. Claerbout (1968) proposed the
idea of daylight imaging, a method that mimics an active source/receiver
response from correlating passive random noise traces recorded at two differ-
ent locations. Schuster et al. (2004) applied the correlation method to active
sources and proposed interferometry imaging. More recently, Wapenaar and
Fokkema (2006) developed a theory based on seismic representation theo-
rem and formally solidified the relationship in seismic interferometry for both
acoustic and elastic media. This representation theory forms the theoretical
basis for seismic interferometry using passive or active sources.

Following Wapenaar and Fokkema (2006), we use monochromatic Green’s
function to express the cross-correlation interferometry in acoustic media:

2${G(ra, rb,ω)} ≈ 2
ρc

∫

∂V

G(ra, s,ω)∗G(rb, s,ω)d2s. (2.1)

In this expression, all the quantities are in the Fourier domain. The vectors
ra and rb represent the locations of two receivers A and B inside the do-
main V . The boundary of the domain V is denoted by ∂V . The acoustic
wave speed of the medium is denoted by c and the density is denoted by ρ.
The symbol $ expresses the operation of taking the real part of a complex
value and ∗ denotes complex conjugate. For an impulsive source of volume
injection rate at rb , Green’s function G(ra, rb,ω) represents observation of
the pressure response at A for a single frequency ω.

The correlation of two signals in the time domain is equivalent to the
element wise product of the complex conjugate of the first signal and the
second signal in the frequency domain (i.e. f 'g = F−1(F(f))∗(F(g)), where
f ' g denotes the correlation of two signals f and g). Since Equation 2.1 is
in the frequency domain, the product G(ra, s,ω)∗G(rb, s,ω) in Equation 2.1
represents the correlation of the two Green’s functions in the time domain.
For two continuous functions f and g, their cross-correlation in time domain
is defined as:

(f ' g)(t) =
∫ ∞

−∞
f∗(τ)g(t + τ)dτ (2.2)

where * denotes complex conjugate. According to Equation 2.2, cross-
correlations measures the similarity of two waveforms as a function of a
time-lag applied to the second waveform (i.e. it measures the time align-
ment of two signals). Suppose there are two signals a and b, where b is a
with a time shift δ. In that case their correlation a ' b has maximum value
at time δ. Figure 2.1 shows a simple example of correlation for two signals.
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Figure 2.1(a) is a plot of a 20Hz central frequency Ricker wavelet at 0.5s.
Figure 2.1(b) has the same wavelet as Figure 2.1(a) but it has been shifted
from 0.5s to 2.0s. The correlation of the these two signals (Figure 2.1(c))
shows a wavelet at 1.5s. In the seismic context, two traces recorded at dif-
ferent receivers from the same source give us two signals. The difference
between the two signals that share the common source depends on the ray
paths from the common source to the two receivers. Cross-correlation of the
two traces eliminates the ray path that seismic waves have in common and
reveals the difference.

(a)

(b)

(c)

Figure 2.1: (a) A Ricker wavelet with 20 Hz central frequency at 0.5s (b)
(a) shifted for 1.5s (c) correlation of (a) and (b).

Equation 2.1 allows us to approximate the response at A from a source
at B by integrating the correlated responses at A and B over sources at

12
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∂V . To derive Equation 2.1, several assumptions and approximations are
made including the condition that the medium is non-attenuating inside
domain V and homogeneous at and outside the boundary ∂V . For more
detailed discussion on approximations and assumptions needed to derive
Equation 2.1, we refer the reader to Wapenaar and Fokkema (2006).

A B

0

100

50

25

75125

150

175

1

Figure 2.2: Simple acoustic model for testing seismic interferometry. Letters
A and B indicate the two receiver positions. Black dots indicate the source
locations numbered from 1 to 200. Acoustic wave velocity of the top layer
is 2.0 km/sec and the bottom layer is 4.0 km/sec.

To explain how interferometry works, we consider an acoustic example
with two horizontal layers. The top layer has a velocity of 2.0 km/sec and
the bottom layer has a velocity of 4.0 km/sec. Figure 2.2 includes the model,
where the positions of two receivers are indicated by letter A and B. The
black dots indicate the 200 source positions at a circle boundary of 1km
radius. Source 1 is located in the middle at the bottom of the circle and the
remaining sources distribute along the circle in an anti-clockwise fashion.

13
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We simulate the scalar wavefield by solving the acoustic wave-equation:

∆U − 1
c(x)2

∂2U

∂t2
= f(t). (2.3)

In this expression, ∆ is the Laplacian operator, f(t) is the source wavelet,
c(x) is the acoustic wave velocity which is a variable of spatial postion, and
U is a scalar wavefield. We use a fourth-order finite difference scheme for
the Laplacian operator in space and second order scheme for time stepping.
The time step is set to 0.25 ms and the spatial grid is set to 5 m for both
spatial directions. We use a 20 Hz central frequency Ricker wavelet as the
source wavelet. Figure 2.3 shows the responses at A and B from the 200
different sources at the circle boundary.

Since receivers A and B are enclosed by the sources located at the circle
boundary, we can use Equation 2.1 to reconstruct the response at A from
a source at B. Figure 2.5(a) shows correlation of traces at A and B from
different sources at the boundary without stack. Figure 2.5(b) shows the
stack of the correlated traces in Figure 2.5(a) from different portions of
the 200 sources. For example, trace 100 in Figure 2.5(b) is the sum of
correlated traces from source 1 to source 100 in Figure 2.5(a). Figure 2.6(b)
is the stack of correlated traces from all the 200 sources, i.e. the last trace
in Figure 2.5(b). Figure 2.6(a) is the response at A from a Ricker wavelet
source at B produced by finite difference modeling.

For this simple two layer acoustic model, there are two main events: the
direct waves (indicated by green color) and reflected waves (indicated by
purple color) , which are clearly visbile in Figure 2.6(a). The direct arrival
occurs around 0.5s and the reflected wave occurs around 1.2s. By comparing
the stacked trace in Figure 2.6(b) with the actual response in Figure 2.6(a),
we find that they are approximately equal to each other as predicted by
Equation 2.1. However, the response by interferometry (Figure 2.6(b)) is
not the same as the original response by finite-difference modeling (Fig-
ure 2.6(a)) for several reasons. First, Equation 2.1 applies to Green’s func-
tion and not to data that carries the imprint of a source wavelet (i.e. the
20Hz central frequency Ricker wavelet). Second, Equation 2.1 is based on
several assumptions and approximations including the condition that the
medium is homogeneous at the boundary of all the sources. However, in our
simulation, the circle boundary of sources is heterogeneous due to the inter-
face of the two layers. The sources located at the interface that indicated by
the small red circle in Figure 2.4 cause the non-physical arrival before the
direct wave in Figure 2.6(b). In addition, there are other approximations
that we discussed earlier in this chapter.

14
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(a)

(b)

Figure 2.3: (a) Responses at receiver A. (b) Responses at receiver B from
different serial sources at the circle boundary.
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A B

0

100

50150

1

Figure 2.4: Ray path analysis for acoustic interferometry example in Fig-
ure 2.2. Sources locate around green circle are stationary sources for the
direct wave. Correlation of traces at A and B from sources around green
circle eliminates the common ray path and reveals the difference, i.e. ray-
path for the direct wave. Sources locate around purple circle are stationary
sources for the reflected wave. Correlation of traces at A and B from sources
around purple circle eliminates the common ray path and reveals the differ-
ence, i.e. raypath for the reflected wave.
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(a)

(b)

Figure 2.5: (a) Correlated traces for different serial sources (b) Accumulative
sum of correlated traces from different portions of all the sources.
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(a)

(b)

Figure 2.6: (a) Actual response at A from a source at B by finite difference
(b) Response at A from B constructed by interferometry

Figure 2.5(a) and Figure 2.5(b) represents the contributions of different
sources in the response by interferometry. Figure 2.5(a) shows the contri-
bution of a single source while Figure 2.5(b) shows the cumulative contri-
bution from source 1 to the corresponding source number at the horizontal
axis. Both Figure 2.5(a) and Figure 2.5(b) show that different sources con-
tribute differently in the response by interferometry. We refer to sources
that contribute constructively to the interferometry response as stationary
sources. In our simple experiment, there are two major kinds of stationary
sources contributing respectively to the direct and reflected waves. Other
sources that sum up destructively in the interferometry response are non-
stationary sources. As mentioned earlier, the interface on the boundary of
the sources breaks the homogeneous boundary condition which is needed to
derive Equation 2.1 and causes the nonphysical arrival before direct wave
in Figure 2.6(b)). The red circle in Figure 2.4 indicates the sources at the
interface while the red arrows in Figure 2.5(a) and Figure 2.5(b) show their
effect on the interferometry response.

Sources located at approximately No.70 (indicated by green circle in
Figure 2.4 and green arrows in both Figure 2.5(a) and Figure 2.5(b)) are
the major contributors to the direct wave that arrives at 0.5s roughly. In
Figure 2.4, sources around the small green circle are stationary sources for
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the direct wave. Correlation of traces at A and B from these sources elimi-
nates the ray path they have in common (dashed green line) and reveals the
difference (solid green line), i.e. the direct wave traveling from B to A. The
green arrows in Figure 2.5(a) and Figure 2.5(b) indicate that these sources
contribute constructively for the direct wave, as predicted by the ray path
analysis. Similarly, sources around the small purple circle are stationary
sources for the reflected wave. Correlation of traces at A and B from these
sources eliminates the ray path they have in common (dashed purple line)
and reveals the difference (solid purple line), i.e. reflected wave traveling
from B to A. The purple arrows in Figure 2.5(a) and Figure 2.5(b) indi-
cate that sources around the purple circle contribute constructively for the
reflected wave.

2.2 Groundroll prediction by cross-correlation
interferometry

In the previous section, we discussed seismic interferometry for acoustic
media and performed the stationary phase analysis for a simple two layer
example (Figure 2.2). The stationary phase analysis plays a key role in the
interferometry prediction for groundroll. By performing a similar stationary
phase analysis for realistic land seismic data, we show that all the sources
located at surface act as stationary sources for surface waves. We start our
analysis by introducing the interferometry for elastic media.

In reality land seismic data is the response of Earth’s elastic material
from seismic sources such as dynamite or a seismic vibrator. The observation
of geophones is not the pressure of a simple scalar wavefield but particle
velocity in different directions. Seismic interferometry theory for elastic
media is more complex than acoustic media. Our objective is using seismic
interferometry to predict groundroll and it only exists in elastic media. To
predict groundroll using seismic interferometry, we must consider seismic
interferometry theory for elastic media. Wapenaar and Fokkema (2006)
show a similar representation of seismic interferometry for elastic media
using Green’s functions:

2${Gv,f
p,q (xa,xb)} ≈ 2

ρcK

∫

∂V

Gv,Φ
p,K(xa,x)Gv,Φ

q,K(xb,x)
∗
d2x (2.4)

On left side, Gv,f
p,q (ra, rb) is the Green’s function observed at ra for an im-
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pulsive source at rb in the frequency domain. The superscript v indicates
that the measured quantity is particle velocity and f indicates the source
is a point source of force. Subscript p indicates the direction of particle
velocity and q indicates direction of point force source. On the right side of
Equation 2.4, Gv,Φ

p,K(ra, s) also denotes the Green’s function. The difference
between the Green’s function on left side and right side is that subscript
Φ denotes sources of potential and K denotes the different potential source
types, i.e. P-wave source (K = 0) and S-wave sources with different polar-
ization directions (K = 1, 2, 3). cK is the velocity of different waves and
ρ is the density of the media. The repeated subscript K denotes Einstein
summation from 0 to 3, i.e. summation over different source types. From a
number of numerical comparisons, Blonk et al. (1995) show that the vertical
components from vertical point force dominate land seismic data. In reality,
usually only vertical components and vertical sources are available. There-
fore, we use only vertical particle velocity from a vertical point force source
as an approximation for seismic interferometry in elastic media instead of
summation over different types of sources.

To clearly explain how to perform interferometry for real seismic data
and predict groundroll, we built an elastic model to generate synthetic data.
We generate the groundroll and reflection events separately and then com-
bine them into a synthetic dataset. Such generation of synthetic data allows
more accurate modeling of groundroll at a finer grid and gives us a ground
truth for the reflection. Figure 2.7(a) shows the P-wave velocity model for
generation of reflection events. S-wave velocity and density are not shown in
Figure 2.7(a) but have similar structures. Instead of horizontal layers, this
model has more complex structures and produces more complicated reflec-
tions. Groundroll is generated from a model with linear increase of P and S
wave velocities from the surface to 50m depth over a half space, as shown in
Figure 2.7(b). A line of receivers is placed horizontally on the free surface
with 8m sampling intervals. A single vertical source is put at the location of
a receiver then moved along the receiver line in sequential order to produce
shot gathers. This setting simulates realistic exploration surveys. We only
consider vertical sources that are restricted to the free surface.

We generate the synthetic data by elastic finite difference modeling. The
modeling code we use has fourth order accuracy in space and second order
accuracy in time. We use a 20Hz central frequency Ricker wavelet as the
source wavelet. We set the spatial grid to 2m in both directions (i.e. x
and z) and time step to 0.2ms for generating reflections and we set the
spatial grid to be 0.5m and time step to 0.05ms for generating groundroll.
Figure 2.8(a) shows a combined synthetic shot gather with a source at 1.0km
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A B

(a)

(b)

Figure 2.7: P-wave velocity model for generating (a) reflections and (b)
groundroll.

21



Chapter 2. Groundroll prediction

at the surface. Figure 2.8(b) shows the true reflections for the shot gather
in Figure 2.8(a).

(a) (b)

Figure 2.8: (a) a synthetic shot gather at 1.0 km (b) true reflections con-
tained in (a)

Letter A and B in Figure 2.7(a) indicate two receiver positions. Accord-
ing to Equation 2.4, we can reconstruct the response at B from A if we have
all types of sources (i.e. all the sources including K = 0, 1, 2, 3 in Equa-
tion 2.4) located at a boundary that encloses A and B. However, we only
have the vertical force sources and they are located at the free surface, so we
will only have an approximation to the exact Green’s function. Similar to
previous analysis for the acoustic example, we perform the stationary phase
analysis for sources at the surface. For a source located at the surface to
the left of A, the correlation of the responses at A and B eliminates the
common ray path (dash line) and shows residual from A to B (solid line).
Since groundroll travels along the surface from A to B, sources to the left
of A are stationary sources for groundroll observed at B. For a source close
to A, the correlation of responses at A and B is close to correlation of the
source wavelet and the response at B. Therefore sources close to A are sta-
tionary sources for all the events in the response at B Figure 2.9 shows the
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correlated traces at A and B from different source at the free surface. All
the sources located to the left of A contribute constructively to groundroll
as indicated by the purple arrows. Sources close to A contribute to all the
events as indicated by the green arrows. If we then remove the sources close
to A by muting and sum only part of the sources ( i.e. not summing the
sources close to A as in standard interferometry), we get a response domi-
nated by groundroll. We can use this result as a prediction for groundroll.
The advantage of this interferometry prediction is that it does not require
any prior information about near surface velocity and it is fully data-driven.

Figure 2.9: Correlated traces at A and B with auto gain control from dif-
ference source locations at the surface.

2.3 Data matrix formulation of interferometry

As discussed in the previous section, interferometry with partial sum-
mation provides a data-driven prediction for groundroll. To simplify our
notation, we rearrange the interferometry operation into the form of matrix
multiplication, using Berkhout’s monochromatic matrix notation.

For a 2D seismic line with fixed receivers, we arrange the shot gathers
into a 3D time-receiver-shot data volume as done within SRME (Verschuur
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(a)

(b)

Figure 2.10: (a) Example of 2D line data cube in time domain (b) Example
of 2D line data cube in frequency domain.
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Figure 2.11: Frequency slice of data volume.

R
e
c
e
iv
e
r

SourceSource

S
o
u
rc
e

Receiver

= X

R
e
c
e
iv
e
r
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Figure 2.12: Prediction of groundroll for a monochromatic matrix.
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0 0 1 1 1 1

0 0 0 1 1 1

1 0 0 0 1 1

1 1 0 0 0 1

1 1 1 0 0 0

1 1 1 1 0 0

Figure 2.13: Example of R matrix.

and Berkhout, 1997). Figure 2.10(a) shows an example of the 2D seismic line
data cube. The three axises are time, receiver position and shot position.
The data volume is then Fourier transformed along the first axis (i.e. time)
into the frequency domain, as shown in Figure 2.10(b). Then we take a single
frequency slice out of the frequency data volume, as shown in Figure 2.11,
which forms the monochromatic data matrix P. The rows of P correspond
to different shots and the columns of P correspond to different receivers.
P∗ denotes taking the complex conjugate for each element of P and PT

denotes the transpose of the matrix P. We can also arrange the groundroll
prediction of a 2D seismic line into the same data volume structure and
take the equivalent monochromatic data matrix out, denoted by S. For
each monochromatic matrix of original data and groundroll prediction, we
have the following relationship:

S = R(P∗)TRP (2.5)

where R is a matrix with 0s in the diagonals and 1s elsewhere e.g. Fig-
ure 2.13. R removes the stationary sources for all events, leaving only sta-
tionary sources for groundroll. We choose the width of the muting window
to be the same scale with the wavelength. Since S and P are in the frequency
domain, the matrix multiplication between R(P∗)T and RP is mathemati-
cally equivalent to the correlation and stack operation in interferometry.

We apply the interferometry prediction for the synthetic data generated
from Figure 2.7(a). Figure 2.14(a) shows the prediction of groundroll. In
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Figure 2.8(a) groundroll is dominant in the original data, but there are
still visible reflections in the image. In the correlation prediction shown in
Figure 2.14(a), there are barely any reflections. Comparing the prediction
with true groundroll, we find that the prediction has the same dip with true
groundroll. We also note that the amplitude of the prediction is not at the
same scale of the original data. The phase and position are also not exactly
the same. This is mainly due to the imprint of the source wavelet and vertical
component approximation we use. Therefore, we have to adaptively match
the prediction instead of directly subtracting it from the original data. We
will discuss the separation step in the next two chapters.

(a) (b)

Figure 2.14: (a) Interferometry prediction of the groundroll for the shot
gather at 1.0 km. (b) True groundroll for the shot gather at 1.0km.
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Groundroll separation by
curvelet-domain matched
filtering

In the previous chapter, we put emphasis on how to predict ground-
roll. The next step is to separate the prediction from the total data that
contains true groundroll and reflection. However, as discussed in the previ-
ous chapter, the prediction is not accurate and therefore we cannot directly
subtract the prediction from the total data. There are several reasons why
the prediction is inaccurate. First, the interferometry prediction is based
on the correlation of two waveforms (instead of Green’s function) and con-
sequentially correlates the imprint of the source signature. Second, several
approximations and assumptions are used in the cross-correlation interfero-
metry. For example, sources are assumed to be uniformly distributed at a
boundary that encloses the receivers. The medium is assumed to be non-
attenuating in the domain and homogeneous at and outside the boundary of
sources. For elastic seismic interferometry, we need displacement responses
at all directions from different type of sources (K = 0, 1, 2, 3 in Equation
2.5). Since we only use the vertical displacements from vertical sources and
lack other components, the cross-correlation interferometry we have is only
an approximation to the full elastic case. We only have sources located at
the surface, which is also an approximation. One of the results of using only
sources at the surface is that these surfaces sources are stationary sources
for groundroll, therefore the reconstructed shot gathers are dominated by
groundroll i.e. it provides a prediction for groundroll, although it is not
accurate.

Due to the approximations and inaccuracy, we must match the predic-
tion to the true groundroll in the original data before subtraction, i.e. the
prediction needs to be adaptively subtracted from the original data. In
this chapter, we will discuss the adaptive subtraction methods and focus on
the curvelet domain matched filtering (Herrmann et al., 2008), which has
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advantages over conventional Fourier domain matched filtering.

3.1 Least-square adaptive subtraction strategies

As mentioned earlier, the interferometry prediction of groundroll is usu-
ally imperfect and inaccurate. Therefore, we rely on adaptive subtraction
to fit the prediction to the true groundroll contained in the original data.
The common adaptive subtraction method is Fourier domain matched filter-
ing. The underlying assumptions for the Fourier domain matched filtering is
that the errors in the prediction are stationary and signal after subtraction
is orthogonal to the noise and therefore has minimum energy.

The Fourier domain filtering operation can be viewed as a scaling of the
Fourier coefficients of the prediction:

mtrue ≈ Fmpredicted with F = FHdiag
(
f̂
)
F (3.1)

where mpredicted is the inaccurate prediction that needs to be matched. mtrue

is the true groundroll, which is usually unknown. F is the Fourier domain
filtering operation that matches the prediction to the true groundroll. F is
the Fourier transform which decomposes the prediction into the frequency
domain. Vector f̂ is the Fourier domain filter that corrects the coefficients
of the prediction. FH is the inverse Fourier transform that reconstructs
the filtered prediction in the physical domain. The filter f̂ is estimated by
solving a least-square minimization problem:

f̂ = arg min
ĝ

1
2
‖d− FHdiag (ĝ)Fm‖22 + λ‖LF ĝ‖22. (3.2)

Since we do not know mtrue, total original data d that contains mtrue is used
as a substitute for the reference of matching. To avoid over-fitting the total
data (d also contains reflection events), smoothness in the Fourier domain
i.e. fast decay in the physical domain is imposed as a regularization. The
operator LF computes the difference of the filter ĝ between adjacent frequen-
cies. By adding λ‖LF ĝ‖22 as a penalty term in the minimization objective
function, the minimization process in Equation 3.2 seeks for a solution that
not only minimizes the misfit of matching, but also minimizes the differ-
ence of the filter between adjacent frequencies, i.e. promotes smoothness of
the filter in the Fourier domain. The regularization parameter λ controls
the amount of smoothness of the filter ĝ in the frequency domain. For a
larger λ, there is more emphasis on the penalty of the difference between
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adjacent frequencies of the filter ĝ, thus the solution is more smooth in the
Fourier domain. Because smoothness in the frequency domain is equivalent
to fast decay in the time domain, the regularization term λ‖LF ĝ‖22 can be
incorporated implicitly by adding a short-time window to constrain the filter
ĝ.

Verschuur and Berkhout (1997) argue that the least square subtraction
is best applied in two stages: firstly, global subtraction per shot record to re-
move the overall source signature; secondly, local subtraction for each shot in
overlapping space-time windows. The reason behind this approach is that in
SRME method, the errors in the prediction for multiples come from the con-
volution of the source signature and non-ideal local mismatch that depends
on offset, time and dip. Similarly, the errors in the interferometry prediction
for groundroll come from the correlation of the source signature and local
imperfections which depend on offset, time and dip. Therefore, the adaptive
subtraction for groundroll should also be carried in two stages: global and
local Fourier domain matched filtering. The global Fourier filters handle the
spectrum mismatch and global kinematic errors which mainly occur due to
the correlation of the source signature. In actuality, because of 3D geology of
the Earth, directivity effects in sources and receivers, and dispersive effects
of groundroll, it is better to estimate the global filters per offset instead of per
shot gather. The windowed Fourier domain matched filtering mitigates the
local imperfections (as a function of offset, time and dip) in the groundroll
prediction. However, the windowed Fourier matched filtering runs the risk
of over fitting the data (i.e. it removes part of the reflection together with
groundroll) because it has limited control over window-to-window variations.
It is also known that local imperfections that depend on the location and dip
in the prediction is particularly challenging for the Fourier domain matched
filtering. When applied to multiple primary separation problem, the least
square Fourier matching technique leads to residual multiple energy, high-
frequency clutter and deterioration to the primaries (Herrmann et al., 2007).
With the similarities of multiple primary separation and groundroll reflec-
tion separation, we expect analogous problems will arise when applying the
least square Fourier matching technique to groundroll matching. Due to the
large amplitudes and dispersion of groundroll, these problems will be even
more severe for groundroll separation. A small mismatch in the groundroll
prediction may cause coverage of important reflection information.

To avoid the problems in windowed Fourier domain matched filtering,
Herrmann et al. (2008) has proposed an alternative — the curvelet domain
matched filtering and applied it successfully to multiple separation. Since
the groundroll separation problem has similarities to the multiple separation
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problem (i.e. offset, time and dip dependent errors in the prediction), we
apply curvelet-domain matched filtering to match the groundroll prediction.
Our matching approach consists of two stages: first global Fourier domain
matched filtering and second curvelet-domain matched filtering. The im-
print of the source signature i.e. kinematic shifts and amplitude spectral
mistakes are removed by a conservative global Fourier domain matched fil-
tering procedure per offset. Remaining dip and offset dependent errors are
addressed by the curvelet domain matched filtering.

3.2 Curvelet-domain matched filtering

After we remove the correlation of source signature and directivity by
global Fourier domain matching, the prediction of groundroll can be viewed
as a non-stationary scaling of the true groundroll. Following Herrmann et al.
(2008), this non-stationary scaling can be mathematically modeled as a zero
order pseudo-differential operator. This operator links the prediction to the
true groundroll in the original data:

mtrue = Bm0 with B ≈ CT diag (b)C, {b}µ∈M > 0 (3.3)

where B is a full positive definite matrix, approximating the zero order
pseudo-differential operator. Through the global Fourier matched filter-
ing, we gain m0 = FHdiag

(
f̂
)
Fmpredicted — predicted groundroll without

source signature and directivity. The true groundroll is denoted by mtrue.
The action of B is approximated by a curvelet domain filtering operation ,
which has a similar form compared to the Fourier domain matched filtering.
The matrix C represents the curvelet transform, vector b is the curvelet
domain scaling vector and M is the index set of curvelet coefficients. The
curvelet transform C decomposes m0 into the curvelet domain. After filtered
by b, the inverse curvelet transform CT reconstructs the curvelet matched
groundroll in the physical domain.

In this approximate model, the groundroll prediction is connected to
the true groundroll through a scaling of the curvelet coefficients. The scal-
ing of the curvelet coefficients fixes the amplitude errors in the groundroll
prediction which vary smoothly as a function of location, scale and dip.
Following Herrmann et al. (2008), we estimate the scaling vector b in Equa-
tion 3.3 through the least-square optimization that minimizes the l2 misfit
between the true groundroll mtrue and curvelet-domain matched groundroll
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CT diag
(
Cm0

)
b. Since we do not know the true groundroll mtrue, as a ref-

erence we use the total data d which includes the true groundroll. According
to Herrmann (2008), there are several issues that make the estimation of the
scaling vector difficult: (i) the forward model is undetermined due to the re-
dundancy of the curvelet transform (i.e. CCT is not identity); (ii) it has the
risk of over-fitting the total data which contains reflections; (iii) it is requisite
the scaling vector is positive. As with the Fourier domain matching, which
is regularized by imposing the Fourier domain smoothness, the curvelet do-
main matching imposes smoothness in the curvelet domain to address issue
(i) and (ii). To impose curvelet domain smoothness (i.e. to control curvelet-
to-curvelet variations) for the scaling vector b in Equation 3.3, we add the
penalty term γ‖LCb‖22 in Equation 3.4. The curvelet-domain sharpening
operator LC consists three terms, namely DT

1 ,DT
2 , and DT

θ , which compute
the differences for the curvelet-domain scaling vector in space (x1, x2) and
angle (θ) directions for each scale:

b̃ = arg min
b

1
2
‖d−CT diag

(
Cm0

)
b‖22 + γ‖LCb‖22, (3.4)

LC = [DT
1 DT

2 DT
θ ]. (3.5)

The parameter γ in Equation 3.4 controls the amount of smoothness of the
scaling vector. For a larger γ, there is more emphasis on penalizing the
variations between different curvelets, and the scaling vector becomes more
smooth in the curvelet domain. To address issue (iii), we substitute the
scaling vector b with exponentiation ez, where the exponentiation is taken
element-wise for vector z. Finding the solution for Equation 3.4 is equivalent
to solving the following augmented system:

[
d
0

]
=

[
CT diag{Cm0}

γL

]
b with b = ez > 0 (3.6)

by the minimizing the functional:

Jγ(z) =
1
2
‖d̃−Hγez‖22

where d̃ =
[
d
0

]
H =

[
CT diag{Cm0}

γL

]
. (3.7)

This nonlinear system can be solved using the limited-memory BFGS solver
(Nocedal and Wright, 1999) with the gradient:
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gradJ (z) = diag{ez}[HT
γ (Hγ)ez − d̃)]. (3.8)

3.3 Synthetic examples and discussions

We test our matching approach on the synthetic data which has been
produced in the previous chapter. (See Figure 2.7 in Chapter 2). Figure 3.1
shows the result of global Fourier matched groundroll and the reflection
produced by subtracting global Fourier matched groundroll. Figure 3.1(a)
demonstrates that the global Fourier matching fixes the global spectral er-
ror by matching the groundroll prediction to the right scale and phase.
Figure 3.1(b) shows that subtracting this global Fourier matched groundroll
from the original data reveals some of the reflection events but there is still
a significant portion of residual groundroll remaining. The SNR of the re-
flection produced by subtracting global Fourier matched groundroll is 8.66
dB.

Figure 3.2 shows the result of curvelet matched groundroll and reflection
produced by subtracting the curvelet matched groundroll from the original
data. We test a few parameters for γ from 0.001 to 1.0 and find γ = 0.02
to be an optimal choice. Table 3.1 shows the SNR of the reflections pro-
duced by subtracting curvelet matched groundroll for different parameter
selections. From the table we can see results of γ = 0.02 produced the
highest SNR, which has 3.33 dB improvement compared with global Fourier
matched result. Figure 3.2(a) is the curvelet-domain matched groundroll
with input being the global Fourier matched groundroll. Figure 3.2(b) il-
lustrates that subtracting the curvelet-domain matched groundroll from the
original data removes much of the groundroll residual found in Figure 3.1(b).
Figure 3.2(c) shows the difference between true reflection and reflection pro-
duced by subtracting the curvelet matched groundroll. From Figure 3.2(c)
we can see there are still some groundroll residuals left in reflection produced
by subtracting the curvelet matched groundroll. There are also some leak-
ages to reflections at places where groundroll and reflections overlap with
each other, which is moderate.

Figure 3.3 shows the comparison of our separation result and true re-
flection at offset 0.4km. Figure 3.3(a) is the comparison of true reflection
and reflection from subtracting global Fourier matched groundroll. Fig-
ure 3.3(b) is the comparison of true reflection and reflection from subtracting
the curvelet-domain matched groundroll. Figure 3.3 demonstrates that our
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two stage matching procedure removes most of groundroll while conserves
reflections.

Figure 3.4 shows the curvelet domain matched filter for γ = 0.02. In
Figure 3.4(a), the low frequency components (i.e. coarse scales) of the cur-
velet domain filter are in the center and high frequency components (i.e. fine
scales) are at the perimeter. The angle increases clockwise and the number
of angles double every other scale. The mosaic plot shows that the curvelet
domain matched filter is smooth along two space directions and the angle
direction.

(a) (b)

Figure 3.1: (a) Global Fourier matched groundroll for shot gather at 1.0 km
(b) reflection produced by subtracting (a) from the total data

γ = 1.0 γ = 0.1 γ = 0.02 γ = 0.01 γ = 0.001
SNR (dB) 8.99 10.92 11.99 11.23 6.25

Table 3.1: SNR of the reflections produced by subtracting curvelet matched
groundroll for different parameter selections.

Ideally, the result after curvelet-domain matching should be the appro-
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(a) (b)

(c)

Figure 3.2: (a) Curvelet matched groundroll with γ = 0.02 for shot gather
at 1.0 km. (b) Reflection produced by subtracting (a) from original data.
(c) difference between (b) and true reflection
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(a)

(b)

Figure 3.3: (a) Comparison of reflection produced by global Fourier match-
ing with the true reflection at offset 0.4km (b) Comparison of reflection
produced by curvelet-domain matching with the true reflection at offset
0.4km. Shot location is at 1.0km. Red lines represent the true reflection
and blue lines represent reflection results produced by subtracting global
Fourier matched groundroll and curvelet matched groundroll.
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(b)

Figure 3.4: (a) Mosaic and (b) 2D plots of the curvelet domain filter for
shot gather at 1.0 km and γ = 0.02. In (a), the low frequency components
(i.e. coarse scales) of the curvelet domain filter are in the center and high
frequency components (i.e. fine scales) are at the perimeter. The angle
increases clockwise and the number of angles double every other scale. The
color represents the amplitudes of the curvelet coefficients.

priate estimate for groundroll. However, other kinematic and phase errors
that could not be removed by global Fourier domain matching may affect
our curvelet-domain filtering, making the direct subtraction less effective.
As shown in Figure 3.2(b) and Figure 3.2(c), there ares still residual er-
rors left in the reflection produced by subtracting curvelet domain matched
groundroll from the original data. To handle these errors, in the next chap-
ter, we introduce a Bayesian method that separates the curvelet matched
groundroll and reflection robustly by promoting sparsity in curvelet domain.
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Chapter 4

Bayesian separation for
groundroll

In the previous chapter, we discussed the curvelet domain matched fil-
tering that fits the prediction to the true groundroll in the original data.
Ideally, the scaled groundroll, yielded by the solution of the curvelet-domain
matched filtering, can be subtracted directly from the total data. Unfortu-
nately, noises in seismic data and imperfections in the prediction may affect
our curvelet domain filtering, making direct subtraction less effective. As
shown in the previous chapter, there are still residual errors left in the reflec-
tion produced by subtracting the curvelet domain matched groundroll from
the original data. Herrmann et al. (2008) has shown that a similar problem
arises in multiple separation. Due to the large amplitudes of groundroll,
the imperfection in the matched groundroll could be a more severe problem,
i.e. a relatively small residual error in the matched groundroll can cover
important reflection information. Recently a Bayesian separation algorithm
has been proposed to address this problem and has been successfully ap-
plied to multiple separation (Saab et al., 2007; Wang et al., 2008). Yarham
and Herrmann (2008) applied this Bayesian method to improve the ground-
roll separation when a prediction for groundroll from conventional methods
is provided. In this chapter, we apply the Bayesian algorithm to robustly
separate the curvelet matched groundroll instead of direct subtraction.

4.1 Bayesian wavefield separation algorithm

The Bayesian algorithm (Wang et al., 2008) is proposed to separate two
coherent wavefield components, when a prediction is given for one of the
components. This thesis addresses how to separate groundroll and reflec-
tion. The prediction of groundroll which contains moderate residual errors
(not the interferometry prediction in Chapter 2 ) is given by the two stage
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matching process in Chapter 3 (first conservative global Fourier matching
and then curvelet matching) and we refer to it as curvelet matched ground-
roll.

We form our forward model of signal separation problem as:

b = s1 + s2 + n (4.1)

where b is the total data. Vectors s1 and s2 are reflection and groundroll
respectively. We assume the noise n in the total data is Gaussian noise
with a standard deviation σ. We denote the curvelet matched groundroll
by b2. Since there are moderate noise residuals left in the curvelet matched
groundroll, we assume:

b2 = s2 + n2 (4.2)

and we obtain

b1 = s1 + n1 (4.3)

where b1 = b − b2 and n1 = n − n2. Since we do not have accurate
knowledge about the noises, we simply assume the noise terms ni to be in-
dependent white Gaussian noises with possibly different standard deviation
σi. Such assumption of Gaussian noises is consistent with previous work
about matched filtering (Herrmann et al., 2008; Verschuur et al., 1992).

We decompose the two unknown signal components into the curvelet
domain i.e. xi = Csi, i = 1, 2, where C is the curvelet transform. And we
get the following equations:

b1 = CTx1 + n1

b2 = CTx2 + n2 (4.4)

where CT represents the inverse curvelet transform. The unknown curvelet
coefficients for reflection (i.e. x1) and groundroll (i.e. x2) are linked to the
direct subtraction b1 and the curvelet matched groundroll b2. Using the
system equations above, we are able to utilize the sparsity in the curvelet
domain to further improve groundroll separation.

Since curvelet matched groundroll and reflection prediction (i.e. b1 and
b2) are known, we aim to find the curvelet coefficients x1 and x2 that max-
imize the conditional probability P (x1,x2|b1,b2). Using Bayes’ rule, we
choose to maximize:
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P (x1,x2|b1,b2) = P (x1,x2)P (b1|x1,x2)P (b2|b1,x1,x2)
P (b1,b2)

= P (x1,x2)P (n)P (n2)
P (b1,b2) .

(4.5)

In order to get x1 and x2 , we make additional assumption that x1 and x2

have weighted Laplacian prior distributions. Such an assumption acts as a
sparsity-promoting prior and is consistent with the high compression rate of
seismic data in the curvelet domain (Wang et al., 2008). Following previous
work by Saab et al. (2007); Wang et al. (2008); Yarham and Herrmann
(2008), we find estimations x̂1 and x̂2 by solving the optimization problem:

arg max
x1,x2

P (x1,x2|b1,b2) = arg max
x1,x2

P (x1,x2)P (n)P (n2)

= arg max
x1,x2

exp
(
− λ1||x1||1,w1 − λ2||x2||1,w2

− ||C
Tx2 − b2||22

σ2
2

− ||C
T (x1 + x2)− (b1 + b2)||22

σ2

)

= arg max
x1,x2

−
(

λ1||x1||1,w1 + λ2||x2||1,w2

+
||CTx2 − b2||22

σ2
2

+
||CT (x1 + x2)− (b1 + b2)||22

σ2

)
. (4.6)

where ||xi||1,wi =
∑

µ∈M |wi,µxi,µ| is the weighted l1 norm of the curvelet
coefficients xi and M is the index set for the curvelet coefficients. According
to Saab et al. (2007); Wang et al. (2008), the maximization of the conditional
probability can be cast into:

arg max
x1,x2

P (x1,x2|b1,b2) = arg min
x1,x2

f(x1,x2)

= arg min
x1,x2

λ1||x1||1,w1 + λ2||x2||1,w2

+||CTx2 − b2||22
+η||CT (x1 + x2)− (b1 + b2)||22 (4.7)
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Following previous work by Herrmann et al. (2007); Wang et al. (2008)
and their empirical findings, we choose the weights using curvelet matched
groundroll and reflection produced by direct subtraction:

w1 = |Cb2|,
w2 = |Cb1| (4.8)

This choice of weights ensures they are strictly positive. Furthermore, it
makes it less likely that the curvelet coefficient vector for reflection (i.e. x̂1)
will overlap with the curvelet coefficient for groundroll (i.e. x̂2). Therefore,
the two signal components: reflection and groundroll will be driven apart
by the weights.

Equation 4.7 minimizes the sum of four components: the weighed l1
norm of curvelet coefficients for groundroll and reflection, the l2 misfit of
the curvelet matched groundroll, and l2 misfit of the total data. The two
parameters λ1,λ2 in Equation 4.7 controls the relative sparsity of groundroll
and reflection. If we expect sparser reflection compared to groundroll, we
set λ1 > λ2, putting more weight on the penalty of the l1 norm of reflec-
tions. The parameter η controls the confidence level for the curvelet matched
groundroll. Increasing η will put more emphasis on the penalty of misfit of
total data and less emphasis on the misfit of curvelet matched groundroll,
i.e. a larger η corresponds to a worse prediction of groundroll. Equation 4.7
leads to solutions that are not only sparse, but also fit the curvelet matched
groundroll and total data.

The minimization of f(x1,x2) can be solved by soft iterative threshold-
ing. From the initial starting conditions x0

1,x
0
2, the separation algorithm

computes the nth iteration as:

xn+1
1 = Tλ1w1

2η
[Cb2 −CCTxn

2 + Cb1 −CCTxn
1 + xn

1 ]

xn+1
2 = T λ2w2

2(1+η)
[Cb2 −CCTxn

2 + xn
2 +

η

1 + η
(Cb1 −CCTxn

1 )] (4.9)

where Tu is the element-wise soft thresholding operator on a vector v:

Tuµ := sgn(vµ) max(0, |vµ|−| uµ|), µ ∈M. (4.10)

Here uµ is the threshold value and M is the index set for v. With the use
of strictly positive weights w1 and w2 (Equation 4.8), the algorithm above
converges to the global minimum (Daubechies et al., 2004; Wang et al.,
2008). Table 4.1 demonstrates the algorithm in detail.
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Initialize: x0
1 = 0,x0

2 = 0, m = 0,
Choose: mmax, η, λ1, λ2

Define Threshold: w1 = (λ1|Cb2|)/(2η), w2 = (λ2|Cb1|)/(2(η +
1))
while m < mmax do

m = m + 1
x̃1 = Cb2−CCTxm

2 +Cb1−CCTxm
1 +xm

1 ; {Coefficient update}
x̃2 = Cb2 −CCTxm

2 + xm
2 + η

η+1(Cb1 −CCTxm
1 ); {Coefficient

update}
xm+1

1 = sign(x̃1) ·max(0, |x̃1|−|w1|); {Soft threshold}
xm+1

2 = sign(x̃2) ·max(0, |x̃2|−|w2|); {Soft threshold}
end while

Table 4.1: The Bayesian-separation algorithm. Table from Yarham and
Herrmann (2008)

4.2 Application to synthetic data

We apply the Bayesian separation method to the synthetic data we used
in the previous chapters. We test several pairs of the parameters and find
λ∗1 = 2.0, λ∗2 = 8.0, and η∗ = 2.0 to be a optimal choice. The optimal
choice of parameters leads to a SNR of 13.23 dB. The bigger value for λ2

is consistent with sparser groundroll than reflections. Table 4.2 shows SNR
of Bayesian separated reflection for different parameter choice. From the
SNR numbers, we can see the algorithm is quite stable for different pa-
rameter choice. Fig 4.1 shows the groundroll and reflection produced by
the Bayesian separation algorithm for optimal parameter choice λ∗1 = 2.0,
λ∗2 = 8.0, and η∗ = 2.0. Compared with reflection produced by subtract-
ing curvelet matched groundroll ( i.e. Fig 3.2(b) ), our Bayesian algorithm
removed partial amount of groundroll residual that could not be resolved
by the curvelet domain matched filtering. The SNR also shows a 1.24 dB
improvement compared with the curvelet matched reflection for γ = 0.02
which has a SNR of 11.99 dB.
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(a) (b)

Figure 4.1: (a) Groundroll produced by Bayesian separation (b) Reflection
produced by Bayesian separation for λ1 = 2.0, λ2 = 8.0, and η = 2.0
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SNR (dB) λ∗1,λ
∗
2 2 · λ∗1,λ∗2 λ∗1, 2 · λ∗2

η∗ 13.23 13.10 13.20
1
2 · η

∗ 13.14 12.62 13.14
2 · η∗ 13.15 13.06 13.21

Table 4.2: SNR of the Bayesian separated reflections for different parameter
selections.
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Chapter 5

Conclusion and future
research

5.1 A data-driven workflow for groundroll
removal

Groundroll is one of most common coherent noises in land seismic data.
Groundroll and reflection seismic events usually have significant overlap in
both time and frequency domain. How to remove groundroll while preserving
reflection remains an active research topic in exploration geophysics. Our
goal for this thesis is to develop a data-driven workflow to remove groundroll
noise in land seismic data.

In this thesis, we have proposed a workflow that is motivated both by
by surface related multiple elimination (SRME- Verschuur et al., 1992) and
recently developed interferometry method for groundroll prediction (Cur-
tis et al., 2006; Halliday et al., 2007; Dong et al., 2006; Vasconcelos et al.,
2008). Our workflow to remove groundroll consists of two steps: prediction
and adaptive subtraction. For prediction, we exclude stationary sources
for reflections and use only stationary sources for groundroll in the inte-
ferometry. We show that such a cross-correlation based interferometery
can serve as a data-driven but imperfect prediction for groundroll, which
need to be adaptively matched to the true groundroll in the original data.
We show that imperfections in the inteferometry prediction for groundroll
mainly come from two parts: (1) the stationary differences which mainly
occur due to the correlation of source signature during interferometry, and
(2) non-stationary difference which vary smoothly as a function of dip and
offset along the wavefronts. For adaptive subtraction, we remove stationary
differences, i.e., global kinematical errors and amplitude spectra mismatch,
through a global Fourier matching process. Then we address the remain-
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ing dip and offset dependent errors by curvelet domain matched filtering.
We show that position, scale and dip dependent amplitude errors in the
prediction can be successfully corrected through a diagonal scaling of cur-
velet coefficients. Overfitting to reflections is avoided by imposing smooth
constraints among neighboring curvelet coefficients of the diagonal scaler.
Finally, we apply a Bayesian separation algorithm to further improve the
separation result over the output of typical direct subtraction. We show that
the sparsity of seismic data provided by the curvelet transform increases the
separation of coherent wavefield and allows us to utilize robust signal sepa-
ration through l1 mininization.

5.2 Open and future research

Recently proposed interfeometry method to predict groundroll adds a
new family of groundroll removal methods based on the predictability of
groundroll, different from the traditional method based on the low velocity
and low frequency properties of groundroll. In this thesis, we demonstrate
that for a 2D seismic line, interferometry using inline sources can effectively
predict inline groundroll that has linear moveout. For 3D seismic survey,
groundroll has hyperbolic moveout when there is non-zero distance from the
source to the receiver line. Crossline groundroll with hyperbolic moveout is
particularly challenging for traditional f-k filtering method due to its signif-
icant overlap with reflections. One possible future research direction is to
expand the interferometry prediction to 3D seismic survey, using out of line
sources to predict crossline groundroll and then adaptively subtract it.
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Appendix A

A real example for curvelet
matching and Bayesian
separation

In reality, depends on the survey geometry and data quality, the inter-
ferometry prediction may not be available or at a satisfactory level. In this
appendix, we show that our curvelet domain matching and Bayesian sep-
aration can still serve as a powerful tool for separating groundroll when
other prediction for groundroll is available. Figure A.1(a) shows a real shot
gather from a 2D seismic line. The receivers are placed with a distance of
25 meters and the sampling interval in time is 4ms. Figure A.1(b) shows
the groundroll prediction produced by Fourier domain filtering and thresh-
old. Figure A.2(a) shows the reflections produced by directly subtract the
Fourier domain groundroll prediction. Figure A.2(b) shows the reflection
produced by curvelet domain matching and Bayesian separation. Notice the
improvement around near offset.
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(a)

(b)

Figure A.1: (a) A real shot gather. (b) groundroll prediction produced by
Fourier domain threshold and filtering.
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Appendix A. A real example for curvelet matching and Bayesian separation

(a)

(b)

Figure A.2: (a) Reflection produced by direct subtraction of the Fourier
domain groundroll prediction. (b) Separated reflection through curvelet
domain matched filtering and Bayesian separation.
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