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Abstract

In this thesis an attempt is made to develop a methodology by which the
information provided by downhole physical property logs can be leveraged
to assist in the creation of constraints for the inversion of surface geophysics.
I �rst motivate the research with an introduction to the utility of downhole
physical property logging, including an overview of the diverse methods and
data which can be acquired. Background information is also provided on
statistical classi�cation techniques and the UBC-GIF (University of British
Columbia Geophysical Inversion Facility) inversion formulation so that the
methodology can be properly understood.

The introduced methodology di�ers from previous attempts at incorpora-
tion of a priori information since it applies statistical classi�cation of in situ
physical property measurements (as opposed to physical property values in-
ferred from geology) as the basis for constraints. Statistical classi�cation,
combined with the iterative nature of the scheme, act to propagate the in-
formation from the downhole physical property logs through-out the model
with minimum user input required. This automated approach reduces the
potential for bias from unsupported constraints, while maximizing the inte-
gration of the classi�cation results.

The methodology is explained, and then demonstrated on three simple illus-
trative models. The results from these demonstrations are compared against
unconstrained inversion, and the strengths and shortcomings of the method-
ology are discussed.
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Chapter 1

Introduction

1.1 Research Motivation

The di�culties in �nding economically viable mineral deposits has motivated
the development of new exploration methodologies. This has led to greater
e�orts from the geophysical community to incorporate available sources of
geological and geophysical information. Since the suite of available data
types is diverse, the synthesis of multiple sources of information into a single
coherent model can present many di�culties. In particular, the incorpora-
tion of geological constraints in the inversion of geophysical data has been
investigated by various researchers (LeLievre [2009], Oldenburg and Pratt
[2007], P.K. Fullagar [2007, 2008], Williams [2008]).

While valuable information can be gleaned from geological data, a challenge
remains due to the disconnect between geological units and geophysical prop-
erty values. Though descriptive, a distinct geological unit is not always able
to uniquely characterize the physical properties of a volume of earth, and vice
versa. Interpretation and translation to and from geological and geophysical
units can introduce bias based on the expert's experience.

Furthermore, as geophysical inversion moves to 3D and geometries become
more complex, simple interpolation of sparse information runs the risk of im-
posing inconsistent or unsupported constraints. Conversely, methods which
themselves are overly complex lose appeal since they can demand an exten-
sive amount of information which is not always available.

Current methodologies which exist to incorporate geological and geophysical
information into inversion typically su�er from at least one of the aforemen-
tioned di�culties: either they require the user to interpret physical property
values from geological information, or else they require the user to de�ne
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1.2. Objectives

some range of in�uence for each measurement in the model. Imposing con-
straints on a model which are biased in one of these ways can lead to recov-
ered models unsupported by the data.

1.2 Objectives

The aim of this thesis is to present a means of incorporating information from
downhole physical property logs into the inversion of geophysical data which
maximizes the application of data while minimizing the degree of required
user input.

In doing so it is hoped that such a methodology will enhance existing inver-
sion technology by providing a set of statistically-based constraints which
will leverage the depth, accuracy and multi-dimensionality of physical prop-
erty logs to increase the depth of investigation and resolution of surface
geophysics.

1.3 Thesis Structure

This thesis draws from three main topics: borehole geophysics, statistical
classi�cation, and geophysical inversion. As such, a chapter has been devoted
to each to provide the reader with su�cient background knowledge of the
applied topics before presenting a new methodology.

Chapter 2 presents an introduction to borehole geophysics, beginning with
the motivation for using borehole geophysics, including a basic explanation
of how downhole geophysical logs are collected. This is followed by compre-
hensive1 list of downhole geophysical methods, divided into sections based on
the physical phenomenon. For each downhole method, basic relevant infor-
mation is provided, such as what quantity is measured, how this is done, and
a brief discussion of applications. Chapter 2 �nishes with a short section dis-
cussing the merits and drawbacks of the various borehole casing methods, as
well as a short comment on the cost of logging downhole physical properties.

1The majority of common techniques are discussed
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Chapter 3 introduces the mathematical background behind statistical clas-
si�cation used in this thesis. This is built up starting with a general intro-
duction to statistical methods, followed by an explanation of the commonly
used K-Means algorithm (Hastie et al. [2001]). A toy example is used to illus-
trate how classi�cation occurs, which leads to the introduction of probabilis-
tic modeling and the Expectation-Maximization algorithm (Dempster et al.
[1977], Hastie et al. [2001], McLachlan and Krishnan [2008]). The mathemat-
ical framework of the EM algorithm is explained and demonstrated, using
the same toy example from before. This chapter ends with a brief discussion
of the practical issues of applying the EM algorithm to a data set, including
choosing the number of clusters and initialization.

Chapter 4 gives a quick introduction to geophysical inversion, with focus
placed on the basic mathematical framework of the methodology developed
at the University of British Columbia Geophysical Inversion Facility, as per
Oldenburg and Li [2005]. This is followed by a short discussion of the various
control parameters the UBC-GIF inversion codes are equipped with, and
their impact on the recovered model.

After providing this necessary background, Chapter 5 introduces a method-
ology for incorporating these three elements into a procedure whereby geo-
physical inversion of surface data can be constrained via classi�cation of
downhole physical property logs. This chapter begins with an overview of
the methodology, followed by a detailed explanation of the process broken
down into individual steps. The entire scheme is then demonstrated on three
simple geological models by stepping through the procedure and presenting
the results.

The thesis concludes with Chapters 6 & 7, in which a discussion of the results
is presented, including a critical analysis of the merits and di�culties of the
suggested methodology, and recommendations for further related research.
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Chapter 2

Borehole Geophysics

2.1 Introduction

What is borehole geophysics?

Borehole geophysics is a branch of geophysics in which sensors are lowered
into the earth via drill holes in order to obtain measurements of the in-situ
physical rock properties (�gure 2.1). Also referred to as downhole geophysics
or well logging, the technique has many applications, ranging from natural
resource exploration (ie: oil, gas or minerals) to geotechnical studies of the
earth (Pickett [1970]).

Figure 2.1: Sample of downhole geophysical data. Log abbreviations are
listed on top, with units listed on bottom
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2.1. Introduction

How does borehole geophysics work?

A standard mineral exploration project will begin with exploration on the
surface (including geology, geochemistry and geophysics). Once a target
has been identi�ed, strategic holes will be drilled in an attempt to intersect
the ore body. The primary goal of the drill hole has traditionally been to
recover the drill core, a sample column of rock extracted from the hole, on
which analysis can be performed to determine which geological units were
intersected.

Recently, it has begun to be more common for geoscientists to log drill holes
as well. Once the hole has been drilled, it is possible for the geoscientists to
lower probes into the well using a cable whose length is carefully measured
in order to provide accurate measurements of depth (see �gure 2.2).

Depending on the probe(s) being employed, di�erent physical properties can
be obtained. �gure 2.3 below shows a schematic of the six main downhole
con�gurations for data collection:

Figure 2.2: Typical downhole geophysics setup (taken from Killeen [1997])
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2.1. Introduction

Passive Source Measures energy emanating from the surrounding rocks.

Active Source Supplies a source into the borehole to measure a response
from the surrounding rocks.

Surface Source Supplies a source at the surface to measure a response from
the rocks surrounding the borehole.

Fluid Properties Measures properties of the �uid within the borehole.

BoreholeWalls Study the borehole walls by inspection using optical/acoustic
televiewers.

MechanicalMeasurements Measure the location, size and condition of
the hole itself.

In section 2.2 we will explore which physical properties can be measured
using borehole geophysics, how they are collected, and some practical issues
for the application of these techniques.
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Figure 2.3: Diagram illustrating various downhole probes (taken from Killeen
[1997])
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Why use borehole geophysics?

Unlike conventional geophysical techniques, borehole geophysics allows for
accurate measurements of physical rock properties at depth, creating a vir-
tual window into the earth through which geoscientists can extract a wide
range of di�erent information.

In addition to this, many natural resource exploration programs will employ
core logging as a standard component of their procedure. Thus more often
than not the boreholes are drilled whether or not downhole geophysics are
to be employed. Given that the majority of the cost in borehole geophysics
results from the need to drill, downhole geophysics is a cost e�ective way to
maximize the amount of data obtained from every dollar spent. Furthermore,
the time spent to log the core is vastly greater than the time taken to log
the hole, yet the data quality is nearly equal, as shown in �gure 2.4:

Figure 2.4: Logging time: core logging vs hole logging (taken from Killeen
[1997])

Having knowledge of physical rock properties can be very bene�cial in con-
straining geophysical inversions of data from surface geophysics (Oldenburg
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2.2. Downhole Geophysical Methods

and Pratt [2007]). How to best utilize this information is a topic of ongoing
research that will be further explored in later chapters.

2.2 Downhole Geophysical Methods

This Section comprises an overview of a typical2 suite of downhole geophys-
ical methods, divided into categories based on the techniques or physics
involved. For each method, the following are discussed:

� The basic quantity collected, and if possible, associated units.

� A brief overview of the underlying theory for data collection.

� Typical applications for this downhole geophysical survey.

It should be noted that this information is intended as an introduction to
the methods, with basic explanations provided. For further information on
all of the methods the reader is directed to the following resources: epa, gsc,
usg.

Table 2.1 below is designed to serve as a summary of this section for quick
reference, providing a list of the methods, the physical property they mea-
sure, common units used, and the some of the typical applications.

2It is recognized that many other methods exist. An attempt has been made in this
section to introduce the most widely used methods, and to explain them in a general way.
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2.2. Downhole Geophysical Methods

Method Physical Property Units Application

Spontaneous Resistivity mV Fluid �ow
Potential and salinity

Single Point Resistivity Ω Fractures
Resistance and faults

Inductive Conductivity S/m Map electrical
Conductivity formations

Electrical Resistivity Ω ·m Map electrical
Resistivity formations

Induced Chargeability mV/V Disseminated
Polarization ore bodies

Fluid Resistivity Ω ·m Porosity
Resistivity and salinity

Magnetic Magnetic SI × 10−3 Magnetic
Susceptibility Susceptibility minerals

Natural Radioactivity CPS Lithology
Gamma and alteration

Gamma-Gamma Density g/cm3 Base metal
Density exploration

Neutron Density CPS Porosity and
moisture content

Full Waveform Velocity µs/m Bulk elastic
Sonic properties

3-Arm Diameter mm Hole diameter
Caliper and condition

North-Seeking Position - Georeferencing
Gyro measurements

Temperature Temperature oC Fractures and
�uid �ow

Acoustic - - Dip angles,
Televiewer fractures and contacts

Optical - - Dip angles,
Televiewer fractures and contacts

Table 2.1: Quick Reference for Downhole Geophysical Methods
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2.2. Downhole Geophysical Methods

2.2.1 Electrical

2.2.1.1 Electrical Resistivity

What is Collected? Voltage between two downhole electrodes of �xed
spacing due to a dipole current source. Data are converted to resistivity, in
Ω ·m.

How is it Measured? Electrical Resistivity (R), or Normal Resistiv-
ity, is often measured in conjunction with the other electrical properties
(Spontaneous-Potential, Single-Point Resistance, and Induced Polarization)
using a square AC waveform (�gure 2.5). The Resistivity data is collected
during the constant current phase of the square wave on time.

Figure 2.5: Square AC waveform with labels indicating during which por-
tion of the signal Resistivity (R), Single-Point Resistance (SPR), Induced
Polarization (IP), and Spontaneous-Potential (SP) are collected.

Just like a surface dipole-dipole DC survey, resistivity is calculated by mea-
suring the voltage between two potential electrodes (M & N) due to a dipole
source from current electrodes (A & B). In �gure 2.6 below, an electrical
current, I is injected in the bottom electrode, labeled A, and travels to the
mud plug, or surface electrode, B (not included in the �gure). A potential
is measured between electrodes M (M8, M16, M32 or M64 in the �gure)
and N (the cable armor - not labeled). Multiple M electrodes exist so as
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2.2. Downhole Geophysical Methods

to provide di�erent volumes of investigation, since this is related to the dis-
tance between the A and M electrodes (approximately a sphere of radius
AM, centered around electrode A).

The apparent resistivity is calculated using Ohm's law

V

I
= R =

ρ · l
A

(2.1)

where V is the voltage between electrodes MN, I is the current measured
between electrodes AB, and R is the average resistance of the volume of
investigation, which can be represented in terms of a resistivity, ρ, a current
travel path, l, and a cross sectional area through which the current travels,
A. Rearranging this equation, the resistivity can be represented as

ρ = G · V
I

(2.2)

where the geometry is represented in terms of a single variable G = A
l , the

geometric factor.

Figure 2.6: Example of a downhole probe for measuring electrical properties
(Mount Sopris Poly-Electric Probe)

Applications: Resistivity is related to the porosity, salinity and metal
content of the formation. Since the electrode spacing is known however, a
quantitative assessment of resistivity is possible with a properly calibrated
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instrument. Therefore the Resistivity log can be very useful in mapping
conductors, faults, fractures, and determining bulk electrical properties of
formation rocks. One drawback to be aware of however is that since the
measurement is made between two potential electrodes, the signal can be
a�ected de�ection reversals caused by electrode spacing relative to bedding
thickness.

2.2.1.2 Spontaneous-Potential

What is Collected? Potential di�erence between a surface electrode and
a probe electrode, in mV .

How is it Measured? The Spontaneous-Potential (SP), or Self-Potential,
is often measured in conjunction with the other electrical properties (Single
Point Resistance, Resistivity, and Induced Polarization) using a square AC
waveform (�gure 2.5). The SP data is collected in the late o�-time of the
IP decay, after the injected current has fully dissipated. It is measured as
the potential di�erence between the top probe electrode (M64 in �gure2.6)
and either a mud plug or the cable armor. The signal from the SP is related
to the electrochemical potentials, electrokinetic potentials, and redox e�ects.
Because of this, the measurement is highly dependent on the �uids within
the borehole and thus can be highly variable depending on the environment.

Applications: Due to the relationship with �uid �ow and salinity, SP is
used mainly to determine lithology, bed thickness, formation �uid salinity,
as well as permeability. It is important to be aware that SP measures the
relative potential di�erence between the borehole �uid and the formation
�uid, and therefore responses are very dependent on individual survey con-
ditions such as borehole �uid salinity and hole diameter. Additionally, SP is
particularly prone to high noise levels and anomalous de�ections since it is
sensitive to stray currents and equipment malfunction.

2.2.1.3 Single Point Resistance

What is Collected? Voltage between a surface electrode and a single
probe electrode. Data are converted into resistance, in Ω.
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How is it Measured? The Single-Point Resistance (SPR) is often mea-
sured in conjunction with the other electrical properties (Spontaneous-Potential,
Resistivity, and Induced Polarization) using a square AC waveform (�gure
2.5). The SPR data - like the Resistivity data - is collected during the
constant current phase of the square wave on time. Current is injected at
electrode A and travels through the ground to electrode B (a mud plug), and
a voltage is measured between the same two electrodes (see �gure 2.7). Since
the cross sectional area A is proportional to the AB spacing, as the probe
gets further from the surface, the ratio of l

A approaches zero, and therefore
most of the response is due to resistive bodies close to either the probe elec-
trode or the mud plug. Since the mud plug is stationary, any anomalous
signal can be attributed to changes in resistivity near the probe electrode.
SPR has the advantage that unlike the normal resistivity measurements, it
is not a�icted with de�ection reversals due to bedding thickness, and thus
has higher vertical resolution.

Figure 2.7: Schematic of typical circuit used for Spontaneous Poten-
tial/Single Point Resistance probe

Applications: As a measure of resistivity, SPR is related to the porosity,
salinity, and metal content of the formation, however since the travel path
between current and voltage electrodes is unknown, the relationship cannot
be quanti�ed. As such, it is useful in determining the location of fractures
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and faults, determining relative salinity of formation pore �uids, and as a
metric for the grain size of conductive minerals.

2.2.1.4 Induced Polarization

What is Collected? Chargeability in mV/V .

How is it Measured? Induced Polarization (IP) is often measured in con-
junction with the other electrical properties (Spontaneous-Potential, Single-
Point Resistance, and Electrical Resistivity) using a square AC waveform
(�gure 2.5). The IP signal is measured at various time windows during the
decay of the current from the on-time to the o�-time. The standard sec-
ondary voltage measurement is taken in the middle of the o�-time. The
chargeability is de�ned as the ratio of this value to the primary on-time
voltage.

Applications: The IP e�ect can be used to locate large disseminated ore
bodies, or to indicate the presence of cation rich clays. Additionally, some al-
teration processes, such as pyritization, can provide a strong IP signal. While
correlated with conductivity and resistivity logs, the IP log can sometimes
produce very di�erent results.

2.2.1.5 Fluid Resistivity

What is Collected? Resistivity of the borehole �uids in Ω ·m.

How is it Measured? Fluids are passed through the probe where mea-
surements are shielded from outside sources. As �uids pass through the
probe, a resistivity measurement is taken using a DC Wenner array.

Applications: The Fluid Resistivity measurement is often used to corre-
late the temperature di�erences with di�erences in borehole �uids. It is also
important as it can be used with Archie's law to estimate the porosity of rock
units, as well as the resistivity of the rock (as opposed to the combination
of �uid and rock resistivity).
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2.2.1.6 Inductive Conductivity

What is Collected? Conductivity of formation rocks in S/m.

How is it Measured? Induction logging operates on the principles of
Maxwell's Equations, similar to surface electromagnetic methods. The in-
duction probe has two sets of coils, one to transmit a primary magnetic
�eld into the earth, and another to receive the secondary induced �eld from
the surrounding rocks (�gure 2.8). An AC current in the transmitter coils
gives rise to the primary magnetic �eld according to the Biot-Savart law.
When this alternating magnetic �eld impinges on conductive bodies, eddy
currents are induced in the bodies which then in turn give rise to secondary
magnetic �elds. The alternating secondary �eld will itself induce a current
in the receiver coils which has two components, in-phase and quadrature.
These components roughly correspond to Magnetic Susceptibility and In-
ductive Conductivity, and therefore these measurements are often collected
together.

Figure 2.8: Diagram of typical Induction Probe
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Applications: The main advantage of Inductive Conductivity is that un-
like the rest of the electrical methods, it can operate in holes that are not
�lled with conductive �uids (ie: air �lled, oil �lled etc), or in plastic cased
holes since the magnetic �eld can easily penetrate the casing. The Inductive
Conductivity log also provides superior vertical resolution to many other
electrical methods, and can be used to map conductive bodies, faults, pore
�uids and other bulk electrical properties of formations. Many induction
logging sondes have been designed to be insensitive to near �eld e�ects such
as changes in hole diameter or �uid salinity, and therefore the majority of
the response comes from 15-100cm out from the hole.

2.2.1.7 Magnetic Susceptibility

What is Collected? Magnetic Susceptibility of formation rocks inmCGS
or SI × 10−3.

How is it Measured? Magnetic Susceptibility (MS) data is collected via
induction logging, which operates on the principles of Maxwell's Equations,
similar to surface electromagnetic methods. The induction probe has two
sets of coils, one to transmit a primary magnetic �eld into the earth, and
another to receive the secondary induced �eld from the surrounding rocks
(�gure 2.8). An AC current in the transmitter coils gives rise to the primary
magnetic �eld according to the Biot-Savart law. When this alternating mag-
netic �eld impinges on conductive bodies, eddy currents are induced in the
bodies which then in turn give rise to secondary magnetic �elds. The al-
ternating secondary �eld will itself induce a current in the receiver coils
which has two components, in-phase and quadrature. These components
roughly correspond to Magnetic Susceptibility and Inductive Conductivity,
and therefore these measurements are often collected together.

Applications: The Magnetic Susceptibility of a formation is directly re-
lated to the quantity of magnetic minerals (magnetite and pyrhotite) con-
tained within. A MS survey can therefore be a quick way to determine the
amount of ferromagnetic minerals in a formation. Since changes in mag-
netic properties are often associated with hydrothermal alteration, MS can
also be useful in mapping alteration zones, since magnetic minerals such as
magnetite are oxidized to non-magnetic minerals such as hematite.
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2.2.2 Radiometric

2.2.2.1 Natural Gamma

What is Collected? Counts per second of gamma rays of a given energy
band, in CPS or API.

How is it Measured? Natural Gamma probes are typically equipped
with either a sodium iodide or a cesium iodide scintillation detector which,
when hit with gamma rays, gives o� light. When paired with a photo-
multiplier tube and electronics (�gure 2.9), this signal can be identi�ed by
its characteristic energy band as having come from the decay of a given
radio-element.

Figure 2.9: Typical scintillation detector

The most common radio-elements encountered in natural environments are
40K, which decays to stable 40Ca and 40Ar, and 214Bi and 208T l, which are
radioactive daughter products of stable 238U and 232Th, respectively. Since
there should exist equilibrium between parent and daughter elements, it is
possible to estimate the concentration of 238U and 232Th given the counts
from each daughter product.

The data from a Natural Gamma probe will consist of at least the Total
Count (gamma radiation counts per second hitting the scintillation detec-
tor), and often also include the windowed counts for each of 40K, 238U and
232Th, with energy windows centered at 1.46MeV , 1.76MeV , and 2.62MeV ,
respectively.
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Applications: Because the three main elements involved (potassium, ura-
nium and thorium) are found in di�erent concentrations in di�erent rock
types, the Natural Gamma log can be very informative when it comes to
distinguishing di�erent lithologies, particularly di�erent clays, as well as de-
tecting alteration zones. Since gamma rays can penetrate most mediums, the
Natural Gamma log can be used in holes that have been cased with plastic
or steel, or that are �lled with mud, �uid or air. This versatility has made
it one of the more popular downhole methods.

2.2.2.2 Gamma-Gamma Density

What is Collected? Bulk density of surrounding rocks, in g/cm3

How is it Measured? The Gamma-Gamma Density probe is essentially
a Natural Gamma probe with the addition of a weak radioactive source, such
as 60Co, at the nose of the probe. The concept is the same, with an extra
twist. The scintillation detector now counts gamma rays that have been
back-scattered from the surrounding rocks. The density is derived from the
ratio of two energy windows, typically one for low energies (< 200keV ), and
the other for large energies. The number of counts in each of these windows is
dependent on two e�ects: Compton scattering, and the photoelectric e�ect.

Figure 2.10: Schematic of Compton scattering & photoelectric e�ect

If the density of the surrounding rocks increases, more gamma rays will be
scattered by the Compton e�ect, and thus the counts in both energy windows
will decrease. If the atomic mass of the sampled rocks increases, however,
then the photoelectric e�ect will absorb a larger portion of the scattered
energy, and the low energy window will receive lower counts, while the high
energy window will remain una�ected.
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The ratio of high energy counts to low energy counts can therefore be treated
as an indicator of atomic mass. If properly calibrated, the instrument can
give good estimates of bulk density.

Applications: Because the Gamma-Gamma Density probe is particularly
sensitive to heavy elements, it is well suited to detecting the presence of
base metals in sampled rock since most rock forming minerals are relatively
light. It can also be used successfully for lithological mapping in minerals
with di�ering quantities of heavy elements such as iron and magnesium, or
for detecting changes in porosity, water content or compaction.

2.2.2.3 Neutron

What is Collected? Gamma ray counts per second, in CPS.

How is it Measured? There exist three main variations of detectors,
however they all operate on the same main principles. The Neutron probe
employs a high-energy neutron source such as Americium-Beryllium, which
sends fast neutrons into the surrounding rocks. These neutrons interact with
the nuclei of the rocks by elastically scattering (�gure 2.11), and emitting
energy as they do so. Since the optimal collision occurs between two bodies of
the same size, hydrogen is the optimal target for these fast neutrons, emitting
gamma rays and slow neutrons which can be detected by the probe.

Figure 2.11: Diagram of elastic scattering
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Applications: Since the Neutron probe is sensitive to hydrogen content
in the sample rocks, it is ideally suited for measuring porosity and moisture
content. It has also been used in a similar manner to the Natural Gamma
probe to map lithology.

2.2.3 Seismic

2.2.3.1 Full Waveform Sonic

What is Collected? Compressional (P) and shear (S) wave velocities, in
m/s.

How is it Measured? Seismic probes typically operate with at least one
transmitter and two receivers (�gure 2.12). The transmitter will pulse a P-
wave into the hole, which will travel through the hole �uids as well as the
hole walls, to the two receivers, one near and one far.

Figure 2.12: Typical con�guration of a seismic probe. Pulse is emitted from
Tx, and travels through the hole walls to receivers at Rx1 and Rx2.
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S-waves, or shear waves, oscillate perpendicular to the direction of propaga-
tion, and can only travel through solids, whereas P-waves, or pressure waves,
oscillate parallel to the direction of propagation, and can travel through all
mediums (�gure 2.13). The complete acoustic signal is recorded at both re-
ceivers, and given the character of each signal and the di�erence in arrival
times of characteristic modes, an estimate of S and P wave velocities can be
calculated.

Figure 2.13: Motion of S-waves & P-waves

Applications: When combined with surface seismic data, or used in a
hole-to-hole con�guration, seismic methods can be used for tomography.
When the S and P wave velocities are combined with a density measure-
ment, it is possible to estimate bulk elastic properties of the materials, such
as Young's Modulus etc.

Additionally, seismic methods are useful in determining the porosity or per-
meability of rocks, or the location of fractures or faults within a formation.
The penetration depth of the seismic waves is dependent on the frequency
used by the transmitter, and is typically of the order of tens of centimeters.

2.2.4 Structural

2.2.4.1 3-Arm Caliper

What is Collected? Diameter of the borehole, in inches or cm.
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How is it Measured? The 3-Arm Caliper is exactly that: it has three
mechanical arms which measure the diameter of the hole. This is done
by linking all three arms to a linear potentiometer with constant reference
voltage. The DC output voltage from the potentiometer is converted to
a frequency, which is then corrected so that it is approximately linearly
proportional to borehole diameter.

Applications: This log is primarily used to help in the correlation and
calibration of other instruments, since the response from many probes is
dependent on hole diameter. It can also help to locate areas of fracturing or
caving in an uncased hole, and can be used to proactively prevent damage
to equipment sent downhole.

2.2.4.2 Orientation Probe

What is Collected? 3D position of the downhole probe.

How is it Measured? The Orientation probe can serves as a reference to
delineate where the borehole goes once it is below the surface. Drill holes
will often deviate in both azimuth and dip due to the heterogeneous nature
of the material they are boring,and it can be di�cult to predict where a hole
will end up given the collar location.
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Figure 2.14: Diagram depicting the potential deviation between the expected
and the true borehole traces

Two main methods exist for tracking the position of the borehole. Three-
Component Flux-gate Magnetometers continuously monitor the probe's re-
lationship to the earth's magnetic �eld in order to determine the dip and
azimuth. This can give high resolution positional data which can be easily
�ltered to remove any small scale local magnetic anomalies, however since
the probe relies on magnetic �elds, it can have di�culties operating in highly
magnetic environments or inside of a steel cased hole.

The most recent orientation probes avoid this problem by using high accuracy
North-seeking gyro-compasses. A gyro-compass is essentially a gyroscope
with the addition of a component which applies torque whenever the axis is
not pointing North. Rather than using the earth's magnetic �eld, the gyro-
compass uses the earth's spin, and the conservation of angular momentum
to maintain its positional accuracy. Because of this, north seeking gyro-
compasses are not susceptible to di�culties in magnetic environments, and
can be used inside a cased hole.

Applications: Orientation probes are used primarily for the georeferenc-
ing of other measurements within the borehole. By giving the three di-
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mensional position of the borehole, all other measurements can be correctly
located within the trace of the hole.

2.2.4.3 Temperature

What is Collected? Temperature of borehole �uids, in oC.

How is it Measured? The temperature probe uses high sensitivity ther-
mistor beads to measure changes in temperature of the borehole �uids and
surrounding rocks. The thermistor sends a digital signal to the surface,
which when calibrated using the correct constants can be used to compute
the temperature.

Applications: Changes in thermal properties of rocks mainly indicate
cracks or changes in thermal conductivity. Cracks allow for �uid �ow which
can produce characteristic signals in the temperature log, whereas conductive
mineralization can be seen as an increase in temperature when the thermal
background is relatively quiet. Often a Temperature Gradient probe is used
to further increase the resolution and amplify the signal. Temperature log-
ging is typically carried out on the down run so that the acquired data is
una�ected by the thermal signature of the instruments.

2.2.4.4 Acoustic Televiewer

What is Collected? A 360o ultrasound image of the borehole walls.

How is it Measured? An Acoustic Televiewer operates by recording a
360o ultrasound image of the borehole walls (�gure 2.15). This is achieved
by emitting a high frequency (~1.2MHz) energy wave from the probe head,
and recording the amplitude of the wave after it has re�ected o� of the
borehole wall. The re�ectivity of the borehole wall depends mainly on the
impedance (product of density and acoustic velocity) contrast between the
inside and outside of the hole wall.
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Figure 2.15: Sample of image from a televiewer log, with associated inter-
pretaion

Applications: The ultrasound image can be related to the density of the
rock in the borehole wall. Since the Acoustic Televiewer records continuously
with such high resolution, the resulting pseudo-3D image of the density struc-
ture of the hole can be used for determining dip angles, locating fractures,
or lithological contacts.

2.2.4.5 Optical Televiewer

What is Collected? A 360o image of the borehole walls.

How is it Measured? The Optical Televiewer is essentially a video cam-
era equipped with specially designed optics to record a 360o image of the
borehole (�gure 2.15). The tip of the probe is mounted with a light ring to
supply the necessary light, and the image is recorded using a high resolution,
high sensitivity CCD camera.

Applications: Similarly to the Acoustic Televiewer, the Optical Televiewer
is well suited for determining dip angles, locating thin beds and fractures,
and for lithological interpretation.

26



2.3. Practical Considerations

2.3 Practical Considerations

2.3.1 Casing

When drilling a borehole, one of the major considerations is whether or not
to case the hole. Depending on the geology and the goal of the drilling
program, it is sometimes advisable to case the holes for various reasons,
including

� to prevent caving in of unconsolidated sediments

� to prevent loss of borehole �uids

� to prevent contamination of target/deposit �uids

� to facilitate the travel of probes within the hole

� to mitigate di�erences in downhole pressure

Casing typically comes in two materials: steel (common in the petroleum
industry) or plastics, such as PVC. There are arguments for and against
both materials, as well as for not casing the hole at all. Depending on
if/how the hole is cased, certain geophysical methods might no longer be
possible. A summary of the limiting e�ect of borehole casing is provided in
the �nal column of table 2.1.

2.3.1.1 Un-Cased Hole

An uncased borehole runs the risk of caving in. This risk increases in uncon-
solidated environments, or environments which are subjected to high pressure
(such as at depth). Additionally, over time even the best holes can begin
to collapse due to natural events such as seismic activity, groundwater �ow,
or other unforeseen events. For applications such as groundwater wells or
hydrocarbon recovery, an uncased borehole is less than ideal since the �uids
will easily disperse through the hole walls and thus make surface recovery
nearly impossible.

On the other hand, for exploration purposes, an uncased hole has the ad-
vantage of providing an uninhibited means to sample physical properties at
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depth. Since certain geophysical methods require contact with the borehole
walls (ie: resistivity, televiewers, magnetic susceptibility), uncased holes are
idea for downhole geophysical logging, and thus it is common to log holes
either while drilling, or simply before the hole is cased (if it is to be cased at
all).

2.3.1.2 Steel Cased Hole

At the other end of the spectrum is the option to case the hole in steel. This
is common practice for hydrocarbon exploration as it provides a solid, sealed
conduit through which to extract oil and gas. In addition to this, it increases
the lifespan of a borehole by signi�cantly decreasing the risk of a collapse
or cross contamination of �uids. By using di�erent grades of steel, as well
as di�erent thicknesses and diameters of pipe, a hole can be cased down to
great depths, thus isolating the hole from the surrounding rocks/�uids.

The downside to casing a hole in steel is the limiting e�ect it has on down-
hole geophysics. As was previously mentioned, some geophysical techniques
required contact with the borehole walls in order to perform proper mea-
surements, and by casing the hole in steel certain methods will no longer be
possible. In particular, methods which rely on electric or electromagnetic
phenomenon (resistivity, inductive conductivity, magnetic susceptibility etc)
are drastically e�ected by encasing the hole in a solid conductive body, and
thus cannot be reliably collected.

2.3.1.3 Plastic Cased Hole

Casing the hole with plastic such as PVC piping can be seen as a middle
ground between steel casing and no casing. While PVC is not as rigid or re-
liable as steel, it also does not su�er as badly from the same electromagnetic
limitations. Since plastic is not conductive, methods which do not require
direct contact with the borehole wall (inductive conductivity, magnetic sus-
ceptibility) can still be used. Because of this, plastic casing is commonly
used in mineral exploration and geotechnical studies.
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2.3.2 Cost Analysis

The costs of a drilling program can be prohibitively expensive. Traditionally,
drilling has been the �nal stage of exploration program: surface and airborne
measurements would be collected to locate the approximate location of the
target, and only then would drilling begin in an attempt to strike it. Previ-
ously, rather than log holes, the emphasis has been to log the core extracted
from the holes, and to focus available resources on drilling more holes.

The cost of logging each hole is a small fraction of the considerable investment
made to drill, while the amount of information provided by downhole logging
is extremely valuable. Combined with other sources of information, downhole
geophysics can be used to inform the location of future drilling, thus saving
considerable investment by avoiding misplaced holes. Additionally, downhole
logging has several advantages over core logging, such as higher vertical
resolution, more spatially relatable, and faster logging times (see �gure 2.4).

Despite the added cost of mobilization and demobilization of logging equip-
ment, downhole geophysical logging is still a minor expense when compared
to the cost of drilling the hole, and even more so should the hole be cased
- casing can almost double the cost of establishing a borehole, depending
on the depth and casing material. As such, logging boreholes should be-
come a standard practice, given the high returns on such a relatively small
investment.

2.4 Summary

As one can see from this overview of borehole geophysics, applied properly,
downhole logging can be an important tool for mineral exploration. The ver-
satility of the numerous techniques combined with the accuracy achieved in
measuring in situ physical property values can provide extensive information
about the subsurface.

The di�culty with applying this information to geophysical inversion lies in
the complexity of the downhole logs. Interpreting multiple logs measuring
di�erent physical properties, even in the same hole, can be extremely dif-
�cult. This is further complicated by adding multiple holes (possible in a
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three dimensional con�guration), and noting that the high vertical resolu-
tion achieved by downhole logs (on the order of tens of centimeters) is too
great for most other exploration techniques (surface geophysics, geological
mapping etc).

For these reasons, incorporating such a highly dimensional, high resolution
data set into geophysical inversion presents di�culties. As a �rst step, the
information from the various physical property logs and holes can be synthe-
sized into coherent, well de�ned parameters using statistical classi�cation.
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Chapter 3

Statistical Classi�cation

3.1 Introduction

In the previous chapter downhole physical property logs were presented as a
viable tool for geophysical exploration. One of the advantages discussed was
the wide array of di�erent methods and techniques sensitive to a variety of
physical properties, including conductivity, magnetic susceptibility, density,
and acoustic velocity.

Due to this versatility, despite the one-dimensional nature of a borehole trace,
the data acquired from logging a hole can be highly dimensional. Such data-
sets lend themselves nicely to statistical methods of discrimination to explain
the underlying patterns in the data.

These methods can be divided into two main categories: supervised learn-
ing and unsupervised learning. The distinction between the two lies in the
existence or lack of training data, X̃. Training data can be de�ned as being
a subset of the data, X, for which the response (in classi�cation problems
this might be de�ned as the class), Y , is already known.

3.1.1 Supervised Learning

Given training data, X̃, supervised learning methods will apply this infor-
mation to 'train' the algorithm how to assign an output for the rest of the
data-set, for which the response is unknown. Mathematically this can be
expressed as the following two step process:

1. Train the mapping function F using training data X̃:

Ỹ = F
(
X̃
)
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2. Apply mapping function F to solve for unknown outputs Y , since

Y = F (X)

For downhole physical property logs, supervised learning methods could be
applied if a library of physical properties and the associated lithological unit
exists. In such a case the mapping function could be trained to recognize cer-
tain combinations of physical property values, and then assign a lithological
unit de�ned as having those properties.

3.1.2 Unsupervised Learning

In a more realistic scenario, such a library might not exist. In the absence
of training data, unsupervised learning methods can be used in which other
means of determining outputs are employed. To make the problem more
explicit, what is really needed is a method for determining the mapping
function F without knowing the relationship between any of the inputs (X)
and outputs (Y ).

Since most of the quantities involved in this problem are unknown, it is
helpful to re-cast the problem in terms of statistical quantities. As such, the
problem becomes one of �nding the parameters of a distribution F which
explain the data X. This distribution can, in general, be any function, and
once it is discovered, it can be applied to determine the outputs, Y .

One way of simplifying this problem is to divide a large, complex data-set
into a number of smaller, simpler data-sets, and to attempt to explain each
of them with (relatively) simple functions. Known as clustering, such algo-
rithms will attempt to group similar data together such that the di�erence
between each cluster is greater than the di�erence between data within each
cluster.

3.1.3 Classi�cation

Within both supervised and unsupervised learning, one goal can be to classify
a data-set. This implies that a certain number of classes exist which divide
the data according to some metric. In the formulation

Y = F (X)
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3.2. K-Means Algorithm

Y would become the solution such that yi states which class xi came from,
using F as the classi�er. Taking this further, in the context of clustering
algorithms, each cluster can be de�ned as a class, and thus by clustering the
data two goals are accomplished: the classi�er is de�ned (as a set of clusters
with de�ned distributions) and each datum is assigned to a class (by cluster
membership).

In order to better illustrate how such methods of statistical classi�cation can
be applied to a real data-set, consider the following toy problem.

3.1.4 Numerical Example

In the following �gure a simple one dimensional data-set is presented, in
which values listed above the line, j = 1, 2..7, are the indices of the data
values listed below the line xj = 1, 2, 3, 4, 6, 7, 8.

Figure 3.1: Simple 1D data example

By inspection, it is simple to separate the distribution of data into clusters:
clearly there are two, with one encapsulating data j = 1− 4, and the other
data 5− 7. The goal now is to show how a computer can be taught to apply
the same reasoning to determine the correct class for each datum (with
possible classes being either cluster 1 or cluster 2).

3.2 K-Means Algorithm

In order to solve for the cluster assignments for all data xj , j = 1..7, in
�gure 3.1, the K-Means algorithm will be introduced and applied. One of
the simplest and most common clustering algorithms in use today, the K-
Means algorithm operates by taking a user de�ned number of clusters, K,
and iteratively completing the following two steps until convergence:
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1. Assign every datum to the cluster with the closest mean value

2. Recalculate the mean value of each of the clusters

The algorithm begins by randomly assigning every datum to one of the K
clusters. The mean value of each cluster is then calculated as

µk =
1

Nk

∑
xi∃Ck

xi (3.1)

where Nk is the number of data in the kth cluster, and xi∃Ck denotes these
data which were assigned to the kth cluster. Given the current set of K mean
values, each datum is reassigned to the cluster with the closest mean value,
as de�ned by the Euclidean norm

Distance between xi and µk = dik = ‖xi − µk‖2

such that the intra-cluster variance

K∑
k=1

Nk

∑
xi∃Ck

dik (3.2)

is minimized. These two steps are iterated until convergence - when the
cluster assignments no longer change.

3.2.1 Numerical Example: K-Means Algorithm

Applying the K-Means algorithm to solve our toy problem, lets start by
correctly guessing that there are two clusters. This simpli�es the problem
to solving for the mean value of each cluster, and the corresponding cluster
assignments. The algorithm will be initialized by randomly assigning each
datum to one of the two clusters, which will be referred to as C1 and C2:

j = 1 2 3 4 5 6 7

C1
√ √ √

C2
√ √ √ √
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The mean value of each cluster can then be calculated using Eq. 3.1:

µ1 =
1

3
(1 + 4 + 7) =

12

3
= 4

µ2 =
1

4
(2 + 3 + 6 + 8) =

19

4
= 4.75

It can be shown that - as one would expect - the cluster assignments which
minimize Eq. 3.2 are:

j = 1 2 3 4 5 6 7

C1
√ √ √ √

C2
√ √ √

and the corresponding mean values are

µ1 =
1

4
(1 + 2 + 3 + 4) =

10

4
= 2.50

µ2 =
1

3
(6 + 7 + 8) =

21

3
= 7.00

with a variance of

σ2
1 =

1

4

∑
xi∃C1

‖xi − 2.5‖ = 1.25

σ2
2 =

1

3

∑
xi∃C2

‖xi − 7‖ = 1.00

Therefore the solution can be shown as

Figure 3.2: Simple 1D data example

where the red diamonds indicate the mean values and the pale red ellipses
denote the variance. K-Means has successfully arrived at the correct solution
to this toy problem, however one can imagine certain complications that
would not be handled quite so nicely:
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1. K-Means creates spherical clusters with shared variance for all dimen-
sions; it therefore might not be ideal for modeling more complex pro-
cesses.

2. The algorithm is very simplistic in its deterministic cluster assignment;
what if a datum lies directly between two clusters? Which is the closest
then?

In order to handle such di�culties, the more general Expectation-Maximization
algorithm for clustering will be introduced and applied.

3.3 Expectation Maximization Algorithm

The EM algorithm, having been �rst formally presented in 1977 in a paper
by Arthur Dempster, Nan Laird, and Donald Rubin, is now a well known
and well studied algorithm. As such, many resources exist to assist in the
understanding of the underlying theory, and it should be noted that all
derivations in this chapter have been re-written based on a survey of these
sources. To make the derivation more tangible, only relevant details are
presented in this chapter. For further information, the reader is directed
to the following resources: Chen and Gupta [2010], Dempster et al. [1977],
Do and Batzoglou [2008], Fraley and Raftery [1998], Hastie et al. [2001],
Mclachlan and Peel [2000], McLachlan and Krishnan [2008], Schneider [2001].

In this section a more general formulation of the toy problem will be pre-
sented to assist in the derivation and explanation of the Expectation-Maximization
(EM) algorithm. To make for a simple example, the toy problem will still
be solved using the EM algorithm, followed by a discussion of the bene�ts
of such a generalized formulation.

3.3.1 Gaussian Mixture Model

Let the data X now be generalized to take on the form of a K-dimensional
cloud of N data points:

X =


x1

1 x1
2 ... x1

K

x2
1 ... ... ...
... ... ... ...
xN1 ... ... xNK

 (3.3)
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with each datum having an input from each dimension k so that the jth

datum is:
xj = [xj1 xj2 ... xjK ]

In these terms, the one dimensional toy problem has K = 1 and N = 7.
To facilitate the solving of this complex problem, it will be assumed that
each datum xj can be modeled as having been independently sampled from
a generative distribution, or likelihood function. Written l (xj |θ), and read
�the likelihood of observing datum xj given the unknown set of de�ning
parameters θ�, where θ is a set of parameters which we hope to discover from
the observed data X. In general, l (xj |θ) can be any distribution, however
due to its inherent �exibility in �tting most functions, a Gaussian Mixture
Model (GMM) is often used:

l (xj |θ) =
M∑
i=1
αigi (xj |θi) with

M∑
i=1
αi = 1 (3.4)

where M is the number of Gaussian components and θi = [µi,Σi] is now
taken to be the mean value and covariance of the ith K-dimensional Gaussian
distribution:

gi (xj |θi) =
1

(2π)
K
2 det (Σi)

1
2

exp

(
−1

2
(xj − µi)T Σ−1

i (xj − µi)
)

(3.5)

with αi as the weight given to the ithdistribution. The constraint that

M∑
i=1

αi = 1 (3.6)

ensures that the total probability that xj came from any of the M distribu-
tions sums to one.

Put forth in the same terms as were used in section 3.1:

Y = F (X)

where the goal is to recover the value of the unknown class membership Y ,
from the data X using mapping F . Y contains information as to which of
the M Gaussian distributions datum xj came from. The problem is com-
plicated by the fact that the mapping function, F , is also unknown, since
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the parameters θ which de�ne each of the M Gaussian distributions have
yet to be determined. Finally, as with K-Means, there still lies to matter of
choosing a number of clusters (Gaussian distributions), M , to represent the
data.

Therefore given known dataX, and the assumption that the data are derived
from a Gaussian Mixture Model, the following variables will need to be solved
for:

Y the class memberships. This contains information as to which of the M Gaussian
distributions each datum is most likely to come from.

θ the de�ning parameters for each of the M Gaussian distributions. θi = [µi,Σi] i = 1..M .

α the weight given to each distribution, 1..M . This value dictates the importance of each
Gaussian distribution in representing the data.

In the following sections the EM method will be derived to solve for these
quantities.

3.3.2 Maximum-Likelihood

Since the data are independent and identically distributed (i.i.d.), the like-
lihood of observing the entire data X given parameters θ is the product of
the likelihood of observing each datum independently:

l (X|θ) =
N∏
j=1

l (xj |θ) =
N∏
j=1

M∑
i=1

αigi (xj |θi) (3.7)

The goal of a Maximum Likelihood algorithm is to obtain an estimate for
the parameters of each Gaussian distribution, θ = [θ1, θ2, ..., θM ]and α =
[α1, α2, ..., αM ], where θi = (µi,Σi) such that they maximize the likelihood
function, l (X|θ). In other words, to discover the most likely parameters [θ, α]
for the generative distribution l (X|θ) which explains the data X. Because
l (X|θ) is a product (Eq. 3.7), the maximization can be simpli�ed by taking
its logarithm3 and maximizing this instead:

3Note: For all discussion of the EM Method, log refers to the natural logarithm.
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log [l (X|θ)] =

N∑
j=1

log

[
M∑
i=1

αigi (xj |θi)

]
(3.8)

which will be represented as L (θ) since the log-likelihood is only a function
of the parameters θ.

3.3.3 E-Step

The E-Step, or Expectation step, applies the expectation value along with
some other mathematical tricks to rewrite the log-likelihood, L (θ), in terms
that can be more easily maximized.

Applying Bayes theorem (Hastie et al. [2001]), it can be shown that since
the likelihood that the data came from any of the M Gaussian distributions
is equal to unity

M∑
i=1

l (yi|X, θ) = 1 (3.9)

the log-likelihood can also written as

L (θ) = log (l (X|θ)) = log

(
M∑
i=1

l (X,Y |θ)

)
(3.10)

Multiplying this by unity (Eq. 3.9) gives

L (θ) = log

(
M∑
i=1

l (yi|X, θp)
l (X,Y |θ)
l (yi|X, θp)

)
(3.11)

where θp is de�ned as the current best estimate of the parameters at the pth

iteration. Jensen's inequality (Hastie et al. [2001]) can be invoked to rewrite
this as:

L (θ) ≥
M∑
i=1

l (yi|X, θp) log
(
l (X,Y |θ)
l (yi|X, θp)

)
(3.12)
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Finally, splitting up the logarithmic function gives two terms:

L (θ) ≥
∑M

i=1 l (yi|X, θp) log (l (X,Y |θ)) −
∑M

i=1 l (yi|X, θp) log (l (yi|X, θp))
≥ Q (θ|θp) − R (θp|θp)

(3.13)

Since the goal is to maximize this expression (by taking the derivative) with
respect to θ, only Q (θ|θp) is of interest since R (θp|θp) is not a function of θ.
Therefore only the �rst term in Eq. 3.13 is of interest, and can be explicitly
written as:

Qj (θ|θp) =

M∑
i=1

γpijlog (l (xj , yj |θ)) (3.14)

where

γpij = l (yj = i|X = xj , θ
p) (3.15)

Explicitly this is evaluating the following:

γpij =

αpi

(2π)
K
2 det(Σpi )

1
2
exp

[
−1
2 (xj − µpi )

T
(Σp

i )
−1

(xj − µpi )
]

∑M
k=1

αpk

(2π)
K
2 det(Σpk)

1
2
exp

[
−1
2

(
xj − µpk

)T (
Σp
k

)−1 (
xj − µpk

)] (3.16)

In plain text, γpij can be thought of as the best guess as to the probability
that xj belongs to component i at iteration p .

Plugging in Eq. 3.5 and simplifying, the expected value of the log-likelihood
of the datum xj coming from distribution i given parameters θp becomes
maximized by:

Qj (θ|θp) =
M∑
i=1

γpij

(
logαi −

1

2
log |Σi| −

1

2
(xj − µi)T (Σi)

−1 (xj − µi)
)

(3.17)

Summing over all data, the expected value of the complete data log-likelihood
is maximized by:
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Q (θ|θp) =

N∑
j=1

M∑
i=1

γpij

(
logαi −

1

2
log |Σi| −

1

2
(xj − µi)T (Σi)

−1 (xj − µi)
)

(3.18)

This can be simpli�ed further by de�ning the following as the number of
data in each cluster at the end of the pth iteration:

npi =
N∑
j=1

γpij (3.19)

So that Eq. 3.18 now becomes:

Q (θ|θp) =

M∑
i=1

npi

(
logαi −

1

2
log |Σi|

)
−1

2

N∑
j=1

M∑
i=1

γpij (xj − µi)T (Σi)
−1 (xj − µi)

(3.20)

3.3.4 M-Step

Now that the log-likelihood has been rewritten in more manageable terms,
the function in Eq. 3.20 will be maximized with respect the unknown vari-
ables: µi,Σi and αi, for i = 1..M . This will be done by taking derivatives
and setting them equal to zero.

Mixing Weights α

The �rst set of variables which will be solved for are the mixing weights, α.
Formally, the following will be solved:

argmax
θ

Q (θ|θp) s.t.
M∑
i=1

αi = 1 (3.21)
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Using a Lagrangian to solve for the weights gives

J (α, λ) = Q (θ|θp) + λ

(
M∑
i=1

αi − 1

)
(3.22)

Taking the derivative of this expression with respect to the weights

∂J (α, λ)

∂αi
=
npi
αi

+ λ = 0 (3.23)

Summing over all the components, i = 1..M , gives

λ = −
M∑
i=1

npi (3.24)

Therefore

αp+1
i =

npi
M∑
i=1
npi

=
npi
N

(3.25)

which intuitively makes sense: the weight (importance) prescribed to each
Gaussian distribution is equal to the number of data which are represented
by each distribution normalized by the total number of data.

Mean Values µ

Following the same procedure, the mean values can be solved for by taking
the derivative of Eq. 3.20, this time with respect to µi and setting it equal
to zero:

∂Q (θ|θp)
∂µi

= (Σp
i )
−1

 N∑
j=1

γpijxj − n
p
i

 = 0 (3.26)

Rearranging gives

µp+1
i =

1

npi

N∑
j=1

γpijxj (3.27)
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which, for the ith Gaussian distribution, in words is: �the sum of all data
(xj) weighted by their probability of belonging to the ith distribution (γij),
then normalized by the number of data represented by the ith distribution
(ni)�.

Covariances Σ

Finally, once more to solve for the covariances, the derivative of Eq.3.20 is
taken with respect to Σi, and set equal to zero:

∂Q (θ|θp)
∂Σi

=
−1

2
npiΣ

−1
i +

1

2

N∑
j=1

γpijΣ
−1
i (xj − µpi ) (xj − µpi )

T
Σ−1
i = 0 (3.28)

Rearranging gives

Σp+1
i =

1

npi

N∑
j=1

γpij (xj − µpi ) (xj − µpi )
T

(3.29)

which again, for the ithGaussian distribution, in words is: �the sum of the
squared di�erence between each datum and the ith mean value (µi), weighted
by their probability of belonging to the ith distribution (γij), and then nor-
malized by the number of data represented by the ith distribution (ni)�.

3.3.5 Convergence

These two steps, the E-Step and the M-Step, are iterated repeatedly until
convergence is reached. The typical stopping criterion for this being∣∣L (θp+1

)
− L (θp)

∣∣ < δ (3.30)

In other words, when the di�erence between the last iteration's log-likelihood
and the current iteration's log-likelihood is less than some prede�ned thresh-
old value, δ, stop the algorithm. Since the M-Step acts at each iteration to
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3.3. Expectation Maximization Algorithm

maximize Q (θ|θp), a new set of parameters θp+1 can always be chosen such
that Q

(
θp+1|θp

)
≥ Q (θ|θp). Given Eq. 3.13, it can be shown that since

L
(
X|θp+1

)
≥ Q

(
θp+1|θp

)
−R (θp|θp) ≥ Q (θp|θp)−R (θp|θp) = L (X|θp)

(3.31)

this implies that L
(
θp+1

)
≥ L (θp), and thus the log-likelihood never de-

creases.

3.3.6 Numerical Example: EM Algorithm

The EM algorithm will now be applied to our toy problem:

Figure 3.3: Simple 1D data example

As with K-Means, two clusters will be assumed, however for the EM algo-
rithm this implies that there exists a mixture of two one-dimensional Gaus-
sian distributions. To begin, the problem will be initialized with the following
parameters:

µ0
1 = 0.0 µ0

2 = 9.0
Σ0

1 = 1.0 Σ0
2 = 1.0

α0
1 = 0.5 α0

2 = 0.5
(3.32)

Note that this follows the same notation as the previous sub-section, there-
fore θpi are the parameters for the ith distribution at the pth iteration.

3.3.6.1 E-Step

As per Eq. 3.16 γ1
1j will be calculated as:

γ1
1j =

α0
1exp

[
−1
2 (xj−µ01)

T
(Σ0

1)
−1

(xj−µ01)
]

(2π)
K
2 |Σ0

1|
1
2

α0
1exp

[
−1
2 (xj−µ01)

T
(Σ0

1)
−1

(xj−µ01)
]

(2π)
K
2 |Σ0

1|
1
2

+
α0
2exp

[
−1
2 (xj−µ02)

T
(Σ0

2)
−1

(xj−µ02)
]

(2π)
K
2 |Σ0

2|
1
2

(3.33)
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Plugging in values:

γ1
1j =

(0.5)exp[−1
2

(xj−(0.0))T (1.0)−1(xj−(0.0))]

(2π)
1
2 |1.0|

1
2

(0.5)exp[−1
2

(xj−(0.0))T (1.0)−1(xj−(0.0))]

(2π)
1
2 |1.0|

1
2

+
(0.5)exp[−1

2
(xj−(9.0))T (1.0)−1(xj−(9.0))]

(2π)
1
2 |1.0|

1
2

(3.34)

Evaluating this for all xj , j = 1...N , the following results are obtained:

j xj γ1
1j γ1

2j

1 1 1.0 2.088× 10−14

2 2 1.0 1.6919× 10−10

3 3 1.0 1.371× 10−6

4 4 0.98901 0.010987
5 6 1.371× 10−6 1.0
6 7 1.6919× 10−10 1.0
7 8 2.088× 10−14 1.0

Table 3.2: γ1
ij Values

Recall that γij denotes the probability of datum xj belonging to the ith

Gaussian distribution, and that (to mathematical precision)
∑M

i=1 γij = 1.
Due to the simplicity of this problem, one can see that by the �rst iteration
the EM algorithm has already assigned data 1 − 4 to the �rst distribution,
and data 5− 7 to the second.

3.3.6.2 M-Step

Now that γ1
ij has been calculated, a new set of parameters, µ1

1, Σ1
1, α

1
1 and

µ1
2, Σ1

2, α
1
2 can be estimated as per Eqs. 3.25, 3.27 and 3.29:

µ1
1 =

∑N
j=1 γ

1
1jxj∑N

j=1 γ
1
1j

(3.35)

Σ1
1 =

∑N
j=1 γ

1
1j

(
xj − µ1

1

) (
xj − µ1

1

)T∑N
j=1 γ

1
1j

(3.36)
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α1
1 =

∑N
j=1 γ

1
1j

N
(3.37)

Evaluating these expressions, as well as those for the second Gaussian dis-
tribution, for all iterations, we obtain these values:

Iteration (p) µp1 Σp
1 αp1 µp2 Σp

2 αp2
K-Means 2.50 1.25 - 7.00 1.00 -

0 0 1 0.5 9 1 0.5
1 2.4959 7.4766 0.5699 6.9891 4.7409 0.4301
2 3.0864 4.0486 0.5921 6.3769 4.7409 0.4079
3 2.9743 3.2647 0.5918 6.5367 3.2027 0.4082
4 2.7912 2.5497 0.5875 6.7608 2.3991 0.4125
5 2.6427 1.8692 0.5829 6.9242 1.6556 0.4171
6 2.5606 1.4777 0.5757 6.9970 1.0472 0.4211
7 2.5289 1.3471 0.5743 7.0064 0.7413 0.4243
8 2.5194 1.3140 0.5739 7.0047 0.6768 0.4257
9 2.5168 1.3060 0.5738 7.0038 0.6724 0.4261
10 2.5162 1.3040 0.5738 7.0035 0.6726 0.4262
11 2.5161 1.3035 0.5738 7.0034 0.6728 0.4262
12 2.5160 1.3034 0.5738 7.0034 0.6729 0.4262
13 2.5160 1.3034 0.5738 7.0034 0.6729 0.4262
14 2.5160 1.3034 0.5738 7.0034 0.6729 0.4262

Table 3.3: Parameter Values

where the results from the K-Means algorithm have been marked in blue,
and the values to which EM parameters converged are marked in red. The
mean values are almost identical, while the variances are slightly di�erent.
This is due to the fundamental di�erence between the two algorithms: K-
Means �ts each data to a single cluster, whereas the EM algorithm will �t
every datum to every cluster, and thus the variance will be slightly larger
to accommodate points which are further away. Comparing �gure 3.2 to 3.4
below, it would appear that the EM method has better �t the distribution
of data. Additionally, as a metric of the weighting values, α, consider that
4
7 data gives a weight of 0.5714, and 3

7 data a weight of 0.4286.
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Figure 3.4: Toy problem: EM algorithm results

3.3.6.3 Convergence

Given the values in Table 3.3 the log-likelihood can be calculated at each it-
eration. As was previously asserted, the values of Q (θ|θp) are always greater
or equal to the previous values (see Table 3.4).

Iteration (p) Q (θ|θp) L (θ)

0 −26.9015 −2.1121

1 −13.2172 −2.5044

2 −12.0333 −2.7148

3 −11.0431 −2.6589

4 −9.8202 −2.5115

5 −8.7451 −2.3682

6 −8.3068 −2.3128

7 −8.2328 −2.3104

8 −8.2201 −2.3113

9 −8.2174 −2.3116

10 −8.2168 −2.3116

11 −8.2167 −2.3117

12 −8.2166 −2.3117

13 −8.2166 −2.3117

14 −8.2166 −2.3117

Table 3.4: Convergence of the EM Method

3.3.7 Practical Issues

3.3.7.1 Number of Clusters

As was stated in section 3.3.1, one of the drawbacks of classi�cation tech-
niques such as the Expectation-Maximization method is that they require
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3.3. Expectation Maximization Algorithm

the user to specify the desired number of clusters, M . In many situations
there is no way of knowing the exact number of distributions contributing
to the resulting data. Since relocation methods such as K-Means and the
EM method can be very unstable, the choice ofM can be very important to
the result. Since Bayesian statistics are used to derive the result, a common
metric for the goodness-of-�t is the AIC, or Akaike Information Criterion,
de�ned as the following:

AIC = −2L (θ) + 2k (3.38)

where L (θ) is the log-likelihood of the resulting data, X, and associated
memberships, Y , given the estimated parameters θ, k is the number of pa-
rameters being estimated, and N is the number of data. Using the AIC, the
question of how many clusters becomes the following optimization problem:

argmin
M

AIC (M, θ)

Plotting the AIC gives a curve similar to the following

Figure 3.5: Plot of number of clusters vs. Akaike information criterion
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3.3. Expectation Maximization Algorithm

where the �rst local minimum4 (indicated by a ♦) suggests strong evidence
for the corresponding model. A further re�nement on the AIC for cases
when the number of parameters is large relative to the number of data is the
AICc:

AICc = AIC +
2k (k + 1)

N − k − 1
= −2L (θ) + 2k +

2k (k + 1)

N − k − 1
(3.39)

Other criteria such as the BIC, or Bayes Information Criterion

BIC = −2L (θ) + klog (N) (3.40)

exist, and although debate exists as to which should be preferred as a metric
of the optimal model, the literature seems to slightly favor the AIC, and thus
it has been used in this work.

3.3.7.2 Initialization

Because the Expectation-Maximization method is unstable, it is sensitive to
the initial conditions. In order to mitigate these e�ects, the algorithm is
initiated by choosingM data at random to assign as the initial mean values,
with diagonal covariances such that Σij for i = j is var (X (:, j)), and for
i 6= j is 0.

The algorithm is started this way a number of times, with a new random
set of initial mean values chosen each time, and the repeat with the highest
log-likelihood is kept as the best run.

As with any iterative algorithm it is also necessary to de�ne a maximum
number of iterations so that it does not get stuck in an in�nite loop. Should
the algorithm fail to converge due to ill-conditioning, regularization is some-
times necessary.

3.3.7.3 Regularization

Since the M-Step of the EM method requires evaluating Σ−1 it is important
that Σ is in fact invertible. Many factors can potentially lead to an ill-
conditioned covariance matrix, such as:

4Some authors have formulated the BIC as the negative of Eq.3.38, and thus the �rst
local maximum is used instead.
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� If the number of data N is small relative to the dimensionality M of
the data

� If the data are highly correlated

� Too many clusters are being used

Should one or more of these di�culties be present, it is possible that the
algorithm will converge to a local solution which has an ill-conditioned co-
variance matrix. In order to avoid this, one strategy is to regularize the
covariance matrix by adding a small (∼ 10−6) positive value to the diago-
nal components. Another less-optimal strategy is to use shared covariance
matrices; in other words all the covariance matrices are the pooled estimate
of the entire data-set. This restricts the ability of the algorithm to model
complex distributions, but it can resolve the ill-conditioning problem.

3.4 Geophysical Application

Despite only presenting the Expectation-Maximization algorithm in any rea-
sonable detail, other classi�cation schemes were also attempted. In particu-
lar Self Organizing Maps, or SOMs (Kohonen [1990], Vesanto et al. [2000]),
were investigated as a potential classi�cation algorithm, however in all initial
testing5 the EM algorithm was able to correctly classify the model at least as
well as SOMs, if not better. This is likely due in part to the fact that the EM
algorithm assumes normally distributed point clouds of data values, which is
also the assumption made for the distribution of physical property values in
the earth. It is possible that with further investigation, SOMs might present
an alternative e�ective means of classifying downhole data, without the need
for such assumptions (Fraser and Hodgkinson [2009]).

Though some of the �ner elements of the statistical classi�cation discussed
in this chapter may be di�cult to grasp, the important point is that classi-
�cation has been presented as a viable means to process the vast amount of
information supplied by downhole physical property logs. Not only is classi-
�cation able to leverage the high vertical resolution of the physical property

5Prior to applying any classi�cation algorithms to downhole data, various algorithms
(K-Means, Fuzzy Logic C-Means, SOMs, and EM) were tested on a number of synthetic
distributions of data with varying degrees of di�culty (more overlap in clusters, wider
distribution spreads etc).

50



3.4. Geophysical Application

logs, but also to integrate the information from various physical properties
into one coherent log of �rock type� with depth. Associated with this �rock
type� log are a set of parameters which de�ne each geophysical unit. For
each physical property measured in the classi�ed logs, a mean value and
associated standard deviation are supplied for each unique rock type the
algorithm �nds.

The statistical classi�cation of various de�ning parameters of the earth (be
they geological, geochemical or geophysical) has long been applied to help
understand distributions of natural resources (Journel and Huijbregts [1978],
Isaaks and Srivastava [1989], Matheron [1963]). Over the last couple decades,
geostatistics has been applied to assist in understanding the relation and
distribution of multiple physical properties from downhole logs (MacMahon
et al. [2002], S.E. MacMahon [2002]). Traditionally the results of such anal-
ysis have been interpreted on their own, applying methods such as kriging
to develop models of the subsurface. Only recently has research begun to
be dedicated to the incorporation of geostatistics to constraining geophysical
inversion (Wang and Yang [2011], Hermans et al. [2011]). Currently, the ma-
jority of e�orts are taking place in petroleum, environmental, and engineering
geophysics, however applications for mineral exploration are becoming more
common.

In the following chapter a basic introduction of the theory of geophysical
inversion will be presented so that the means of constraining inversion can
be better understood. With this knowledge, an explanation of a methodology
for incorporating classi�cation results into the creation of constraints will be
better understood.
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Chapter 4

Geophysical Inversion

4.1 Introduction

In geophysics, measurements of the earth are taken so that a set of desired
parameters might be inferred about the underlying volume of earth, such as
location or size of a body, or some distribution of physical properties. The
di�culty lies in the fact that it is not typically possible to directly measure
these parameters, and therefore an experiment must be set up in which some
knowledge of the physics involved is assumed.

In general, such an experiment will involve an input of energy to the earth,
followed by measurements of the energy output. Speci�cs such as what kind
of energy is input, how the energy propagates through the system, or how
best to measure the energy output are all dependent on the system being
studied and the parameters one hopes to estimate. Assuming these details
are correctly chosen, the goal is to arrive at a representative model which is
a best estimate of the parameters in question.

4.1.1 Forward Problem

In order to determine whether or not the optimal model has been chosen, a
basic but important metric is whether the selected model is able to reproduce
the observed data. This requires the ability to simulate measurements of an
arbitrary model - termed the forward problem. In mathematical terms, this
is equivalent to applying a functional F to a vector m in model space to
arrive at a vector d in data space (see �gure 4.1). Practically, this is the
act of taking measurements, since it is our measurements which give us
information about the model in question (wherein the physics involved can
be thought of as the functional).
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Figure 4.1: Diagram illustrating forward modeling

4.1.2 Inverse Problem

As one might expect, the inverse problem is just the opposite of the for-
ward problem. Attempting to recover parameters from experimental mea-
surements is in e�ect attempting to solve an inverse problem - hence inver-
sion. Here, we have a vector in data space d, and we would like to map it
back to a vector in model space m (see �gure 4.2).

Figure 4.2: Diagram illustrating inversion

This problem is in�nitely more di�cult than the forward problem, and before
we attempt to solve it we must ask ourselves some important questions:

� Does a solution exist?

� If a solution does exist, is it unique?

� If the solution exists but is not unique, are there properties that are
uniquely determined?

Without going into too many details, it can be stated that the inverse prob-
lem is fundamentally non-unique (Oldenburg and Li [2005]) since there exist
an in�nite number of models which could reproduce the data. Therefore
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solving these problems requires a little extra thought. In the next section
a brief outline of the mathematical formulation for a typical geophysical
inversion will be presented, including the means by which the problem of
non-uniqueness is tackled.

4.2 Mathematical Formulation

As was mentioned in the previous section, the main di�culty with inverse
problems is that they are fundamentally non-unique. In order to solve them,
we must therefore constrain the number of possible solutions (Oldenburg
and Pratt [2007]). There are a number of di�erent ways this can be done,
however for our applications we will be applying Tikhonov Regularization of
the form:

φ = φd + βφm (4.1)

where φm is the objective function, φd is the data mis�t, and β is the Tikhonov
parameter. Below we will work to build up the mathematical formulation of
each of these components, and to give practical justi�cation for each of the
constraints.

4.2.1 Data Mis�t

The most basic criteria for a correct model is that it should be able to
reproduce the observed data to within a reasonable threshold. Consider the
following geophysical data:

dj = (gj ,m) j = 1..N (4.2)

where dj is the projection of the jth basis vector, gj , onto the model, m. Or,
equivalently in matrix form:

dobs = Gm (4.3)
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Then if the predicted model is mpred, the predicted data will be

dpred = Gmpred (4.4)

and we would like to minimize the di�erence between the two:

φd = ‖ dpred − dobs ‖2 = ‖ Gmpred − dobs ‖2 (4.5)

In reality the goal is not really to minimize the data mis�t. If one considers
noisy data:

dobs = Gm+ ε (4.6)

where ε is Gaussian noise, then one can re-represent the data mis�t as:

φd = ‖Wd(Gm
pred − dobs) ‖2

where

Wd = diag
(

1
σi
... 1
σN

) (4.7)

where σ is the standard deviation, N is the number of data, and Wd is
referred to as a weighting function. The e�ect of the weighting function is to
normalize the noise on each datum, therefore the desired di�erence between
the predicted data and the noisy data is simply the number of data

φd ≡ N (4.8)

4.2.2 Objective Function

The objective function speci�es the desired behavior of the model. In a typi-
cal geophysical inversion there will be two main components to the objective
function: smallness and smoothness.

Smallness, or smallest deviatoric model, ensures that the recovered model is
similar to a desired reference model, mref . Similarly to the data mis�t, the
goal here is to minimize the di�erence between the recovered model and the
reference model:

φs =‖Ws (m−mref ) ‖2 (4.9)
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where Ws is again a weighting function which allows the user to control
which elements of the recovered model should most resemble the reference
model.

The other component, smoothness, can be applied in any spatial direction.
This component helps to prevent large discontinuities from appearing in the
model by enforcing that the recovered model be smooth in a given direction.
This is accomplished by minimizing the derivative of the di�erence between
the recovered model and the reference model:

φxi =‖Wxi

d

dxi
(m−mref ) ‖2 (4.10)

where d
dxi

is the derivative in the xi direction, and as alwaysWxi is a weight-
ing function. Therefore in three dimensions one could easily imagine hav-
ing three smoothness components in the objective function. Adding it all
together along with weighting parameters αi, we arrive at the following ex-
pression for the model objective function:

φm = αs ‖Ws (m−mref ) ‖2
+ αx ‖Wx

d
dx (m−mref ) ‖2

+ αy ‖Wy
d
dy (m−mref ) ‖2

+ αz ‖Wz
d
dz (m−mref ) ‖2

(4.11)

The weighting parameters, αi, are constants which allow the user to specify
the importance of a given constraint (ie: smallness or smoothness). For
example, if a layered earth model is suspected, the user might put a larger
emphasis on the smoothness of the horizontal components (x and y) than
on the vertical (z), since discontinuities would be expected between vertical
layers. This would be accomplished by making αz < αx, αy.

To simplify this, the weighting functions, weighting parameters and deriva-
tives can all be collapsed into one large matrix, Wm, resulting in the more
common notation:

φm =‖Wm (m−mref ) ‖2 (4.12)

4.2.3 Solving

Combining the results from Sections 4.2.1 and 4.2.2, and rewriting Eq. 4.1,
we arrive at the following expression to minimize:

φ =‖Wd(Gm
pred − dobs) ‖2 +β ‖Wm (m−mref ) ‖2 (4.13)

56



4.2. Mathematical Formulation

The minimization is carried out by taking the gradient with respect to m
and setting it equal to zero. After a little linear algebra we arrive at the
following:(

GTW T
d WdG+ βW T

mWm

)
m = GTW T

d Wdd
obs + βW T

mWmmref (4.14)

The expression is then solved for a number of di�erent β values in a line
search to �nd β∗ such that φd = φ∗d = N . This produces what is referred to
as a Tikhonov curve, or L-curve, seen below.

Figure 4.3: Diagram of the Tikhonov curve used for solving geophysical
inverse problem

It should be noted that for large problems this methodology is not always
preferable, or possible, due to computational limitations and di�culties. A
suite of techniques exist to tackle these problems, and for more information
the reader is directed to Oldenburg and Pratt [2007], Oldenburg and Li
[2005].

4.2.4 Control Parameters

In order to handle a wide array of di�erent problems, Eq. 4.14 is equipped
with a number of tunable parameters which allow the user to apply prior
information. In this section they will be discussed with reference to both
their impact on an inversion, as well as their physical interpretation. In
3-dimensions, the 12 parameters fall into three main groups:
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Weighting Functions Weighting Parameters Reference Models

Wx αx mref

Wy αy mmin

Wz αz mmax

Ws αs
Wd

Table 4.1: Tunable Parameters in UBC GIF 3D Inversion Code

4.2.4.1 Weighting Functions

Weighting functions, Wi, allow the user to distribute con�dence estimates
unevenly across the spatial extent of the model space. Since each weighting
function is a matrix of size equal to the number of cells in model space, a
di�erent weighting can be applied to each cell. In this way it is possible
to incorporate more inhomogeneous structures into the recovered model.
Consider the following example:

Suppose we are trying to recover a line from point A to point B, and we have
a priori knowledge of the value of the model at two points, x1 and x2 (see
�gure 4.4 below).

Figure 4.4: Unknown 1D model which connects points A and B, with prior
knowledge of the values at points x1 and x2

One way to incorporate this information into the recovered model is to apply
a weighting function of the form:
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Figure 4.5: Weighting function, Wx used to emphasize known points in the
model. Larger values will be more penalized for not resembling the reference
model.

In this way, at points x1 and x2 the model will be heavily biased towards
the reference model, mref , which might look something like:

Figure 4.6: Example of 1D reference model, mref

while the rest of the model will be less heavily impacted. This can be gener-
alized to apply to any of the weighting functions listed in Table 4.1, resulting
in a wide range of spatial variability in the recovered model.

The one weighting function which might be considered di�erent than the rest
(though it serves the same purpose) is the data mis�t weighting function,
Wd. As was suggested in Eq. 4.7, the data mis�t weighting function is
typically taken to be a diagonal matrix of one over the standard deviation:

Wd = diag

(
1

σi
...

1

σN

)
(4.15)
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Applying this weighting to the data mis�t has the e�ect of normalizing the
data mis�t by the standard deviation of each datum. When this is done, the
desired mis�t is

φ∗d = N (4.16)

4.2.4.2 Reference Models

The reference model, mref , plays a crucial role in the inversion process.
It is in the reference model that the user is able to specify an estimate of
the expected recovered model. Referring back to Section 4.2, it is evident
that the reference model appears in many of the constraint equations, and
therefore the choice of reference model can have large implications for the
recovered model.

4.2.4.3 Bounds

The other two constraints, mmin and mmax, are optional additional models
that can be included to impose upper and lower bounds on the value of
each cell in the resulting discretized model. Mathematically, this additional
constraint modi�es Eq. 4.1 so that it is now

minimize φ = φd + βφm
s.t. mmin 0 m 0 mmax (4.17)

This kind of a constraint can be very useful when some information is avail-
able about the expected geology being represented in the model, or for cer-
tain physical properties which have known physically justi�ed constraints
(ie: positivity).

4.3 DCIP2D

This thesis employs DCIP2D to carry out the modeling of DC resistivity
data. Developed at the University of British Columbia Geophysical Inver-
sion Facility, the software package is able to both simulate DC resistivity
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data through forward modeling, as well as recover two-dimensional resistiv-
ity models through the inversion of surface data.

In order to provide adequate �exibility to handle a variety of di�erent geo-
physical targets, DCIP2D is equipped with a number optional input param-
eters. Of these parameters, only a handful were applied in this thesis. These
include the mesh �le and the data �le (both of which are self explanatory),
as well as an initial/reference model, alpha values, weight �les, and bounds
�les.

The initial model and reference model, as mentioned in section 4.2.4, allow
the user to specify an estimate of the expected model. If the recovered model,
m, deviates from this reference model, mref , it is penalized according to the
model objection function (equation 4.11). Additionally, whether or not mref

appears in the derivative terms (equation 4.10) of the objective function is
speci�ed by USE_MREF. When set as FALSE, mref will not appear in
these terms, and thus the inversion is not penalized if the derivative of the
di�erence between the reference model and the recovered model is large.

This can further be re�ned by specifying the alpha values used in the objec-
tive function (equation 4.11). These values (αs, αx and αz) help to control
the importance of each term in the objective function. By making αs small,
the emphasis is placed on recovering a smooth model rather than a model
which is similar to the reference model, and vice versa.

Weighting �les can be applied to enforce smooth or sharp boundaries in spe-
ci�c locations in the model. One typical application of weighting �les with
DCIP inversions is to mitigate noise close to the surface in the recovered
model. This noise is characteristic of a DCIP inversion, and often occurs
close to the electrode locations in the model. By using weight �les to hori-
zontally smooth the surface, these e�ects can be minimized without adversely
a�ecting the entire model.

Finally, bounds �les can be applied to constrain the recovered resistivity
values to within some prede�ned boundaries. This is particularly useful
when accurate information is available to limit the range of possible values
within the model. Furthermore, since the bounds are applied on a cell by
cell basis, known general structure can be incorporated into the inversion
without the need to lock in speci�c values or lithological boundaries.
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4.3. DCIP2D

In the following chapter the topics discussed in the previous three chapters
will be combined to develop an iterative inversion technique which incorpo-
rates the information provided by downhole physical property logging into
the inversion of surface geophysics. If the reader is interested in more infor-
mation on the application of the DCIP2D software package, they are directed
to the user manual (Uni [2011]).
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Chapter 5

Iterative Inversion Technique

Given the tools provided in the last three chapters, an attempt was made to
maximize the incorporation of valuable information acquired from downhole
physical property logs into the inversion of surface geophysical data. The
resulting multi-step procedure is explained below, followed by a set of simple
illustrative examples.

5.1 Methodology

The methodology explained below (�gure 5.1) aims to apply the information
from downhole logs to constrain geophysical inversion, and to do so with
minimal bias from the user. This is achieved via the statistical classi�cation
of downhole physical property logs discussed in chapter 3, and a departure
from soft constraints such as reference models, to the harder and more �exible
bounds constraints. By iteratively updating the bounds based on the results
from classi�cation, a �nal model can be achieved which is both accurate
and reliable, with minimal information provided by the user, and maximum
application of the physical property logs.

To demonstrate this procedure, synthetic modeling was performed. The goal
of synthetic modeling was to simulate real data using a derived geophysical
model, and apply the suggested methodology in an attempt to recover the
model from the data. This demonstration allows for better understanding of
the entire process since the models and data are well known and controlled,
facilitating the evaluation of the recovered models.
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5.1. Methodology

Figure 5.1: Methodology �ow chart

The synthetic modeling began with the creation of simple geological models.
Each geological model was then translated into a set of physical property
models by assigning values to each unit. Once the physical property models
were created, forward modeling of the conductivity model was performed in
order to create synthetic surface data. Following the simulation of surface
data, the methodology outlined in �gure 5.1 can be applied.

5.1.1 Creating Geological Models

The synthetic modeling process began with the derivation of a geological
model. In this step, the geometry was speci�ed, including the size and
complexity (ie: number of distinct geological units) of the model, as well
as the depth of targets. In this research, 2D modeling was chosen so as to
facilitate the computational aspects of the modeling (ie: run time), as well
as the visualization of the results. Models were created with indices (ie: 1,
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5.1. Methodology

2, 3 etc.) to identify distinct rock types such that physical properties could
then be easily applied in the following step.

The �rst example has been kept very simple: an attempt was made to recover
a conductive cylinder in a resistive half space. Speci�cally, the cylinder is
centered at 250m at a depth of 200m, and has a radius of 100m. Though this
basic task was one easily accomplished by existing inversion methodologies,
the goal was not only to recover the target, but to recover correct resistivity
values with a well de�ned boundary between the two units. Geometrically,
the model can was represented by the following two units:

Figure 5.2: Geological model with two units (red and blue)

5.1.2 Creating Geophysical Models

In order to provide a multidimensional downhole data-set, three physical
properties (and thus three models) were de�ned for each unit: density, in
grams per cubic centimeter (g/cm3), magnetic susceptibility, in standard units
(SI), and electrical resistivity, in Ohm-meters (Ω ·m)6. These physical prop-
erties were chosen because they provide su�cient contrasts between the dif-
ferent units, and as such encompass some of the more commonly used meth-
ods for locating common geophysical targets.

To translate the geological units from �gure 5.2 into geophysical models, the
two units have been de�ned as a simpli�ed mineralized zone within a sand-
stone background. The physical property values assigned to each unit were

6Physical property logs were actually collected as conductivities, in Siemens per meter
(S/m), then converted to resistivities, since ρ = 1

σ
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de�ned as normal distributions with a mean (µ) and standard deviation(σ),
where the mean values have been taken from Carmichael [1989] and the
standard deviations were assigned based on comparison with real physical
property logs7. Applying this to the �rst example, the following physical
property values were assigned (see table 5.1 below).

Unit

Density Magnetic Susceptibility Electrical Resistivity

(g/cm3) (SI) (Ω ·m)
µ σ µ σ µ σ

1 2.8 0.40 3.75× 10−4 7.5× 10−5 1.0× 103 2.0× 102

2 5.0 0.25 2.50× 10−3 5.0× 10−4 1.0× 101 2.0× 100

Table 5.1: Model I: Physical Property Values of Geological Units

Figure 5.3: Physical property models on �ne mesh. From top to bottom,
resistivity, magnetic susceptibility, and density

7This method of assigning physical property values was chosen to better represent the
variability present in a typical downhole log.
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To simulate the high vertical resolution of downhole logging, the physical
property models are de�ned on a �ne mesh (�gure 5.3 above). Before the
models could be used for generating synthetic surface data, they were down-
sampled onto a coarser mesh (�gure 5.4) to facilitate the computational
aspects of modeling.

As explained in chapter 4, simulating surface geophysical data can be ac-
complished through forward modeling of the physical property models. DC
resistivity was the geophysical method of choice due to the superior depth of
investigation as compared to potential �eld methods. The resistivity model
was therefore forward modeled to simulate a DC resistivity survey using
DCIPF2D (Uni [2011]).

Figure 5.4: True model
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Speci�cally, two pole-dipole surveys (one in each direction) were simulated
(see �gure 5.5), each with 19 electrodes spaced 50m apart. The data were
combined to increase the density of measurements and provide greater reso-
lution at depth.

Figure 5.5: Pole-dipole survey. Top with pole current electrode (red) on left,
bottom with pole current electrode (red) on right

Gaussian noise was added to the simulated data to represent instrument
variability, and the associated standard deviations were assigned to the data
as errors. For all data used, noise was also applied as a �oor plus 5% of the
datum. The noise �oor was chosen such that the maximum noise level (on
the smallest data) was approximately 30% of the datum value.
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5.1. Methodology

Figure 5.6: DC resistivity data (top) and associated percent errors (bottom)

5.1.3 Blind Inversion

Following the simulation of a DC resistivity survey, the data were inverted
blind, with no prior information of the expected model. The inversion was
run using DCIP2D (Uni [2011]), with the only de�ned parameters having
been the mesh (the same mesh as was used for the forward modeling) and
the data from the forward modeling. Since DCIP data can be susceptible to
noise on the surface (near electrodes), it is common to add surface weighting
to the inversion so that the top few layers of the model are encouraged to be
smooth horizontally. This has the e�ect of reducing the amount of noise in
the model resulting from the placement of the electrodes.
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5.1. Methodology

Figure 5.7: Blind inversion, with (bottom) and without (top) horizontal
surface weighting

The inversion ran for 9 iterations and achieved the target mis�t of 380 with a
best �tting half-space of 515Ω ·m used as a reference model. �gure 5.7 above
shows the resulting model with and without horizontal surface weighting,
both with a color scale ranging from 1.0Ω ·m to 1500Ω ·m 8. Both recovered
models are shown to isolate the impact made by the surface weighting.

The recovered model (�gure 5.7a) clearly de�nes a body of some resistivity
ranging from tens to hundreds of Ω ·m in magnitude, beginning at approx-
imately 100m and extending down some few hundred meters. The width

8For consistency, when possible, models for each example will be displayed with the
same colorscale, and always with padding cells removed
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5.1. Methodology

of the body is somewhere in the range of 500m, centered at 250m, and the
background resistivity value is approximately 550Ω ·m, with a slightly more
resistive overburden.

This result was taken as a preliminary investigation into the region, and
though the resulting model was not to be entirely trusted, it was used to
inform the decision as to where to drill and log boreholes in the following
step.

5.1.4 Simulating Physical Property Logs

Given this initial inversion, it was decided that extra information would be
acquired via downhole physical property logging. In order to better de�ne
the magnitude and extent of the target, drill holes were placed at 210m,
250m, and 290m. This number of holes was chosen so as to allow for easy
visualization of the results, while providing su�cient downhole information
to successfully complete the procedure. Conductivity, magnetic susceptibil-
ity, and density were logged in each hole on 1m intervals from the surface to
the bottom of the model, at 500m.

Since many downhole physical property measurements are relatively accurate
in the near-�eld, downhole logs were simulated by extracting a column of
data values from the �ne resolution physical property models9, and applying
a noise �oor and percent error to represent instrument variability. To simplify
the simulation, all boreholes were logged vertically (no dip or azimuth), and
are of equal depth.

9Due to the large range in conductivity and magnetic susceptibility values, these phys-
ical properties were taken as the log of the model value. Similarly, since it is common
practice to observe the anomalous density rather than the absolute density, anomalous
density was logged by subtracting a background value from all measurements.
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Figure 5.8: Physical property logs. Properties listed above, units listed
below, for three holes (listed at top)

5.1.5 Classifying Downhole Data

Though it would be possible to directly apply the downhole physical prop-
erty logs as a constraint for the inversion of surface data through the use of
a reference model, it is not ideal. This is because of the extreme di�erence in
resolution between downhole data and surface data, resulting in the poten-
tial for a highly variable reference model. Additionally, such a methodology
requires some scheme of interpolation, which invariably requires the user to
specify some level of information as to how to spread the borehole informa-
tion out from the hole. This can be highly subjective and lead to di�culties,
since borehole measurements are only sensitive to areas close to the hole.

Since it is common practice to collect multiple physical property logs simul-
taneously, statistical classi�cation is an ideal candidate to simplify the high
resolution information from the downhole logs and provide the inversion with
coherent constraints. This is done using the Expectation-Maximization algo-
rithm, as explained in section 3.3. The classi�cation scheme takes as inputs
the physical property logs (for as many holes and properties as are available)
and returns as outputs a class ID for each datum, as well as an associated dic-
tionary which translates each class into a mean value and standard deviation
for each physical property.
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For the current example, the logs were classi�ed for di�erent numbers of
rock types, ranging from a single unit up to six distinct rock types. Looking
at a plot of the Akaike Information Criterion versus the number of clusters
(�gure 5.9) , it was clear that the optimal number of clusters was two, as
per section 3.3.7.1.

Figure 5.9: Akaike information criterion vs number of clusters

Given the classi�cation results, this model has been de�ned in terms of two
rock types, the �rst with a mean conductivity of 9.6Ω ·m and the second of
857.0Ω ·m.

Figure 5.10: Classi�cation results. Left to right: rock type vs depth & scatter
plot
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5.1. Methodology

5.1.6 Creating Constraints

Once the data was classi�ed, the results were applied to create constraints for
geophysical inversion. In order to create constraints which are both reliable
and applicable to the whole model, it has been assumed that all distinct rock
types found in the model have been su�ciently sampled in the downhole logs,
and therefore that the classi�cation results are themselves representative of
the true model.

As was previously mentioned, in order to minimize the amount of required
user input, emphasis was put on the creation of upper and lower bounds
�les, which specify the minimum and maximum possible values for each
cell of the recovered model. For consistency among constraints, a simple
reference model was also generated rather than to rely on the best �tting
half space determined by the inversion algorithm.

5.1.6.1 Generating Bounds

The initial upper and lower bounds �les were kept fairly simple. For all
areas surrounding the boreholes, bounds were assigned as the most extreme
values possible (lower bound was the smallest possible value, upper bound
was the largest possible value). The smallest and largest values, which will
be referred to as ρmin and ρmax, were de�ned by the classi�cation results.
Since each class, or rock unit, was de�ned as a normal distribution, it was
assumed that the majority of values belonging to each rock type were within
one standard deviation (σ) of their mean value (µ). The smallest and largest
values were then de�ned to be the minimum value of µ−σ and the maximum
value of µ + σ, respectively, for all rock units. For the �rst example, this
equates to lower and upper bounds for resistivity of 6Ω · m (yellow) and
1240Ω ·m (blue), respectively10.

10These values will be re-used later during the updating of constraints for cells which
could not be classi�ed.
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Figure 5.11: Initial resistivity bounds constraints: upper bounds (top) and
lower bounds (bottom)

With ρmin and ρmax set as the background resistivity values of the lower and
upper bounds, respectively, it can be assumed that the majority of values
in the recovered model would fall within these bounds, without concern
of restricting the ability of the inversion to �t the data or add supported
structure.

Additionally, since the values measured in the boreholes were known to be
fairly accurate, the upper and lower bounds of cells in the path of the bore-
hole were assigned a value of µi ± σi (for upper and lower bounds, respec-
tively), where i is the class ID of the cell as assigned during classi�cation. In
this way the inversion was entrusted to spread the borehole information out
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through the model, without biasing it towards or away from the true model.

5.1.6.2 Generating a Reference Model

Similar to the bounds �les, the reference model was created as a background
value with the borehole values from classi�cation overlayed. The background
value was determined as the mean value of all measured borehole values
(433Ω · m for this example), and the borehole values were de�ned as µi,
where i is the class ID of the cell as assigned during classi�cation. Though
this reference model was almost certainly wrong for most cells, it represents
an approximate value within the range of the upper and lower bounds, and
as was previously mentioned, the emphasis is on the bounds �les rather than
the reference model.

Figure 5.12: Reference resistivity model

5.1.7 Inversion With Constraints

In the second round of inversion, this time with constraints, a number of
extra parameters were applied as compared with the initial blind inversion:

� The bounds �les were applied as upper and lower bounds

� The classi�cation derived reference model was used as an initial and
reference model
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� To minimize the e�ects of the reference model, αs was set very small(
∼ 10−9

)
and

� USE_MREF was speci�ed as FALSE so that the reference model was
not used in the derivative terms of the objective function11.

Given the previous inversion result as well as the classi�cation results (�gure
5.10) , it was advisable to add in weighting �les to mitigate excessively noisy
structure on the surface that is typical of the inversion of DC data12. Other
than the aforementioned changes, the rest of the input �le was the same.

Figure 5.13: Recovered model from inversion with borehole constraints

When compared with the initial inversion result presented in �gure 5.7, this
is a noticeable improvement in resolution. The target is now discernible as
a somewhat circular body (in 2D cross-section) of approximately 15Ω · m,
ranging in depth from 100m to approximately 325m, with a lateral extent
from approximately 100m to 400m. The background now has a more resistive
value, with a blurred lateral band of higher resistivity (∼ 1200Ω ·m) from
approximately 150m to 250m.

11In this way, the recovered model was only very slightly penalized for deviating from
the reference model, allowing the emphasis to be placed on the bounds.

12The e�ects of the surface weighting are shown in �gure 5.7
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5.1.8 Updating Constraints, Re-inverting & Iterating

Though the incorporation of constraints greatly improved the resolution of
the recovered model, further re�nements were still possible. To accomplish
this, an iterative process of classifying the resulting model and updating the
upper and lower bounds �les followed.

5.1.8.1 Classifying the Inversion Model & Updating the Bounds

The classi�cation of the inversion model, much like the bounds and reference
model creation, relied on the results from the initial classi�cation of the
downhole physical property logs. It was a three-tiered process that operated
in the following manner:

1. Bin the recovered model

2. Overlay borehole values

3. Assign all unclassi�ed cells wide bounds (ρmin & ρmax)

First, for each rock unit (i) in the dictionary, all cells in the recovered model
with values which fell within C1 standard deviations of the mean value of
that rock unit were assigned a new upper and lower bound of µi ± C2σi
(�gure 5.15b). Mathematically this is the following:

For each rock unit i, �nd all cells in recovered model m such that

(µi − C1σi) ≤ m ≤ (µi + C1σi) (5.1)

and assign these cells upper and lower bounds of

µi ± C2σi (5.2)

Thus if C1 > C2 the value of the bounds are truncated at known values
determined from classi�cation of the physical property logs13.

13 Typically, 1 ≤ C1 ≤ 3, and C2 = 1.
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Figure 5.14: 1D diagram illustrating the model classi�cation procedure. a)
Binning the recovered model into rock types based on statistical classi�cation
results. b) Resulting upper and lower bounds. c) Expansion coe�cients. d)
Resulting upper and lower bounds when b) is multiplied by c).
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In order to allow for �exibility in the recovered model, the newly assigned
upper and lower bounds were multiplied by an expansion coe�cient, C3

14

(�gure 5.15c), such that the assigned bounds expanded exponentially as the
distance between the cell and the closest borehole increased. This coe�cient
was scaled such that the values of the resulting bounds ranged from the
original assignment (from 5.2) to 2 (C3 − 1) times wider bounds. In this
way, as the distance from a borehole increased, and the reliability of the
model classi�cation decreased, the bounds widened accordingly, allowing for
a wider range of structures and values in the recovered model (�gure 5.15d).

14Reasonable values for C3are 1.0 ≤ C3 ≤ 2.0
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Figure 5.15: Model classi�cation procedure. From top to bottom: previous
recovered model, upper resistivity bounds without expansion coe�cients,
expansion coe�cients, upper resistivity bounds with expansion coe�cients.
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Next, the bounds of the cells in the path of the boreholes were once more set
to µi ± σi (where i is the class assignment from the original classi�cation).
Since the downhole physical property logs were trusted to be accurate in close
proximity to the holes, there was no reason to change the values assigned
during the initial classi�cation.

Finally, for all unclassi�ed cells, the extreme bounds from the original bounds
constraints, ρmin and ρmax, are applied. In this way, the model was left
�exibility to alter the value of these unclassi�ed cells until they fall within
range of one of the classi�ed units.

For the current example, the �rst iteration of classi�cation was performed
using

C1 = 3.0
C2 = 1.0
C3 = 1.5

(5.3)

This implies that all values within three standard deviations of the mean
value of one of the rock units will be binned as belonging to that unit, and
the bounds will be reassigned as the mean value of that unit plus or minus
one standard deviation (for upper and lower bounds, respectfully). Following
this, these new bounds will be multiplied by a Gaussian weighting ranging
from 1.0 at the borehole locations, out to 1.5 at the furthest point. As one
can see in �gure 5.16 below, most of the model was binned into one of the
two rock units, with a bu�er region between the two where the values were
neither one nor the other. These cells were assigned the same values as were
used for the upper and lower bounds backgrounds during the initial creation
of constraints in section 5.1.6.
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Figure 5.16: Updated upper (top) and lower (bottom) bounds, iteration 1
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5.1.8.2 Re-inverting & Iterating

With the constraints updated such that the bounds for most cells have be-
come tighter, the inversion was run once more, using the same parameters
as the previous inversion, but with updated constraints. Applying these new
bounds �les as constraints for another round of inversion, the model below
in �gure 5.17 was recovered. Though it bears a close resemblance to the re-
sult from the initial round of constrained inversion (�gure 5.13), there exists
a more well de�ned boundary between the two units and the values of all
cells are closer to the mean values de�ned in classi�cation. Additionally, the
background values have smoothed out to a more homogenous mean value of
approximately 700Ω ·m, and the lateral band of resistive cells has somewhat
dissipated.

Figure 5.17: Recovered model, iteration 1

The results from this new inversion were then classi�ed just as were the
previous results, and the bounds updated once more. In this way, the number
of cells with wide bounds decreased with each iteration, and the inversion
was able to converge to a model in which the value of each cell was within
C2 standard deviations of the mean value of one of the classi�ed rock units.
For the example being discussed, three iterations were performed. To speed
up the process, at each iteration, C3 was decreased so that the value of the
bounds expanded less from the assigned value at each iteration. For the
current example, the expansion coe�cient (C3) was decreased from 1.5 to
1.2 to 1.1, �nally resulting in the following recovered model.
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Figure 5.18: Recovered model, iteration 3 (top) compared to recovered model
from blind inversion result (bottom)

If compared to the previous results, especially the initial blind inversion, this
�nal recovered model has greatly improved the understanding of the explo-
ration target, to the extent that it would be possible to de�ne a boundary to
within a couple of cells between a conductive body (comfortably estimated
to be approximately 10Ω ·m) and a resistive background (of approximately
1000Ω ·m). Without the additional information provided by the downhole
physical property logs, such accuracy would never have been possible, par-
ticularly at depth.

In the following subsections, three simple geological models are processed
using the methodology just discussed.
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5.2 Model I: Cylinder in a Half-space

5.2.1 The Model

Model I is a re�nement on the example used in the previous section. The
model is identical, as are the forward modeled surface data (for easy reference
see �gures 5.19, 5.20 and 5.21 below).

Figure 5.19: Model I: True model

Figure 5.20: Model I: DC resistivity data (top) and errors (bottom)

86



5.2. Model I: Cylinder in a Half-space

The di�erence in this example is that the boreholes will be taken in di�erent
locations to simulate a more realistic exploration project in which only one
drill hole was able to pierce the target.

Figure 5.21: Model I: Blind Inversion with (bottom) and without (top) hor-
izontal surface weighting

5.2.2 Downhole Physical Property Logs & Classi�cation

Speci�cally, drill holes were placed at 100m, 250m, and 400m. Conductivity,
magnetic susceptibility, and density were again logged in each hole on 1m
intervals from the surface to the bottom of the model, at 1000m (including
padding cells, not seen).
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Figure 5.22: Model I: Physical property logs. Properties listed above, units
listed below, for three holes (listed at top)

The physical property logs (�gure 5.22) were again statistically classi�ed via
the Expectation-Maximization algorithm for di�erent numbers of rock types,
ranging from a single unit up to six distinct rock types. Looking at a plot of
the Akaike Information Criterion versus the number of clusters (�gure 5.23)
, the optimal number of clusters was still two, as per section 3.3.7.1.

Figure 5.23: Model I: Akaike information criterion vs number of clusters
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Clustering all the downhole measurements into two distinct rock types, the
following plot of rock type with depth produced was produced, with the
associated scatter plot (�gure 5.24):

Figure 5.24: Model I: Classi�cation Results. Rock type vs depth (left) &
scatter plot of physical property values (right)

Given the new classi�cation results, Model I has been de�ned in terms of
two rock types, the �rst with a mean resistivity of 9.4Ω ·m and the second of
850.9Ω ·m. These values are very similar to the values from the previous ex-
ample, and indicate that the statistical classi�cation is not heavily impacted
by the location of the drill holes, so long as the same rock types are still
sampled su�ciently.

5.2.3 Creating & Applying Constraints

The classi�cation results were applied as per section 5.1.6 to create con-
straints for the next round of inversion. When completed, the absolute lower
and upper bounds for resistivity were 7.8Ω·m and 1021.1Ω·m, respectively15.
The reference model background was between these values, with a resistivity
of 430.1Ω ·m. All three of these models can be seen below in �gure 5.25.

15These values will be re-used later during the updating of constraints for cells which
could not be classi�ed.
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Figure 5.25: Model I: Initial constraints. From top to bottom: upper resis-
tivity bounds, lower resistivity bounds, and reference model.
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Applying these constraints, along with the surface weighting to smooth out
the top 50m and a few other parameters discussed in section 5.1.7, the fol-
lowing model is recovered from the inversion of the DC resistivity data:

Figure 5.26: Model I: Recovered model from inversion with borehole con-
straints

Even with only a single borehole pierce point, the result presented above is
a signi�cant improvement compared to the original recovered model (�gure
5.21). The model recovered with the help of the borehole constraints presents
a much more �nite body, beginning at approximately 100m and extending
down in two lobes to a maximum depth of 350m. The width of the body
has been greatly reduced, now ranging from 125m to 375m, with resistivities
from 7 − 125Ω ·m. The background has become more homogenous thanks
to the surface weighting, with an average value of around 850Ω ·m.

5.2.4 Updating Constraints and Final Models

In the next sections, the goal was to re�ne the result from the previous
inversion. This was done iteratively using the results from classi�cation as
per the steps outlined in section 5.1.8, beginning with the model shown above
in �gure 5.26.
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Iteration I

Classi�cation of the model in �gure 5.26 was again performed using an expan-
sion factor C3 of 1.5 (50% increase in bounds as the distance from boreholes
increase) and a threshold of µ ± 3σ (C1 = 3, since the two units had such
small variance). Visible in �gure 5.27 below, most of the model was binned
into one of the two rock units, though there exists a bu�er region between
the two where the values were neither one nor the other. These cells were
assigned the same values as were used for the upper and lower bounds back-
grounds (ρmin and ρmax) during the initial creation of constraints in section
5.2.3.

Figure 5.27: Model I: Updated bounds, iteration 1
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These new bounds �les were applied as constraints for another round of
inversion, giving the model below in �gure 5.28. Despite similarities to the
result presented in �gure 5.26, there exist subtle di�erences. Notably, the two
lobes which extend down beneath the main body have been truncated, and
the boundary between the central target and the surrounding background
are now more well de�ned, with the values of all cells closer to the mean
values de�ned in classi�cation.

Figure 5.28: Model I: Recovered model, iteration 1

Iteration II

This time classi�cation of the model in �gure 5.28 was performed with a
smaller expansion coe�cient, C3 = 1.2 (20% increase in bounds as the dis-
tance from boreholes increase). The same threshold was applied, and the
bounds were updated to the following:
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5.2. Model I: Cylinder in a Half-space

Figure 5.29: Model I: Updated bounds, iteration 2

During this iteration of classi�cation less the bu�er region between the two
units is slightly larger, with a few additional patches of unclassi�ed cells
having been given the initial background bounds from �gure 5.25. The clas-
si�cation had the most di�culty binning the edges of the conductive body
in the center, however the majority of the background unit was correctly
binned as such. The overall tighter bounds (20% expansion rather than
50%) encouraged the inversion to re�ne the model yet further, resulting in
the following model:
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5.2. Model I: Cylinder in a Half-space

Figure 5.30: Model I: Recovered model, iteration 2

Iteration III

Finally, in the third iteration of this procedure, the most recent inversion
result was classi�ed with an expansion coe�cient of only C3 = 1.1 (10%
increase in bounds), and again the same threshold. The results are much the
same as the last iteration for both the bounds (�gure 5.31) and the inversion
result (�gure 5.32), and thus the iterative process was stopped.

In contrast to the initial blind inversion, this �nal recovered model has greatly
improved the understanding of the exploration target. Though the result
is not quite as de�nitive as the initial example shown, it is still possible to
outline an elliptical body of approximately 10Ω ·m sitting in a background or
approximately 1000Ω·m. Just as before, the addition of the information from
downhole physical property logs has greatly improved the understanding of
the model, even with only a single borehole pierce point.
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Figure 5.31: Model I: Updated bounds, iteration III
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5.2. Model I: Cylinder in a Half-space

Figure 5.32: Model I: Recovered model, iteration III (top), compared to
blind inversion result (bottom)

These results will be further discussed in following chapters.
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5.3 Model II: Vertical Contact with Resistive

Overburden

5.3.1 The Model

This model introduces a new added level of di�culty: overburden. First,
an attempt was made to recover a vertical contact between two units with a
resistive overburden, and then in the next model the same scenario but with a
conductive overburden. The two basement units extend from 50m below the
surface to depth with a vertical contact in the center of the model, at 250m.
On top of these, the top 50m of the model consists of a layer of resistive
material. The di�culty in this example was recovering the correct location
for the contacts, as well as the correct magnitude of resistivity values, despite
the overburden. The geometry of the model is the following:

Figure 5.33: Models II & III: Geological model with three units (red, green
and blue)

Translating this geological model into geophysical models, the overburden
was interpreted to represent a layer of resistive soil, or till, sitting atop
the contact between a sandstone unit (right) and a shale unit (left). The
mean physical properties for these units are shown below in table 5.2 with
associated standard deviations.
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5.3. Model II: Vertical Contact with Resistive Overburden

Unit

Density Magnetic Susceptibility Electrical Resistivity

(g/cm3) (SI) (Ω ·m)
µ

∑
µ

∑
µ

∑
1 2.8 0.40 3.75× 10−4 7.0× 10−5 1.0× 103 2.0× 102

2 2.5 0.20 6.00× 10−4 1.0× 10−4 2.0× 102 4.0× 101

3 1.7 0.25 6.20× 10−5 2.0× 10−5 2.5× 103 4.5× 102

Table 5.2: Model II: Physical Property Values of Geological Units

Applying these physical properties to the geological model in �gure 5.33, the
following three physical property models were created:
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5.3. Model II: Vertical Contact with Resistive Overburden

Figure 5.34: Model II: Physical property models on �ne mesh. From top to
bottom, resistivity, magnetic susceptibility, and density
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5.3. Model II: Vertical Contact with Resistive Overburden

Once re-meshed, the true resistivity model which we attempted to recover
was the following:

Figure 5.35: Model II: True model

5.3.2 DC Data & Blind Inversion

5.3.2.1 Data

Data was again forward modeled using DCIPF2D with a a synthetically
generated pole-dipole survey consisting of 19 electrodes space 50m apart
(�gure 5.5). For this data set the Gaussian noise was added with a �oor of
0.0005 plus 5% of each datum. The resulting data and associated percent
errors are shown below in �gure 5.36.
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5.3. Model II: Vertical Contact with Resistive Overburden

Figure 5.36: Model II: DC resistivity data (top) and associated percent errors
(bottom)

5.3.2.2 Inversion

The �rst inversion was run blind, with only the mesh and the data as inputs.
After running for 9 iterations and achieving the target mis�t of 380 with a
best �tting half space of 420Ω ·m used as a reference model, the inversion
recovered the following models (one with and one without horizontal surface
weighting):
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5.3. Model II: Vertical Contact with Resistive Overburden

Figure 5.37: Model II: Blind Inversion with (bottom) and without (top)
horizontal surface weighting

These results clearly depict a resistive (in the range of 3000Ω ·m) overburden
approximately 50m thick, with a large conductive body below it on the left.
This body has a minimum resistivity of around 100Ω · m and begins at a
depth of approximately 100m, extending down to at least 300m before fading
to background values (in the range of 500Ω ·m). On the right there is a band
of more resistive material that appears to be associated with the overburden,
though it is smaller in magnitude.
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5.3. Model II: Vertical Contact with Resistive Overburden

5.3.3 Downhole Physical Property Logs & Classi�cation

In order to further probe the conductive target and to better understand
the resistive band on the right, three holes were drilled and logged: one at
60m, one at 185m, and the last at 340m. Again, the holes were logged for
conductivity, magnetic susceptibility and density on 1m intervals ranging
from the surface to the bottom of the model.

Figure 5.38: Model II: Physical property logs. Properties listed above, units
listed below, for three holes (listed at top)

Despite the initial inversion result, the logs indicated that the body on the left
was actually a full unit, and gave no evidence of a resistive band on the right.
To better explore this possibility, the downhole logs were classi�ed using the
Expectation-Maximization algorithm and applied to create constraints for
a new round of inversion. The classi�cation was performed for number of
rock types, ranging from one to six, and the following Akaike Information
Criterion vs number of clusters plot was produced, suggesting that there are
three distinct rock types in the model.
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5.3. Model II: Vertical Contact with Resistive Overburden

Figure 5.39: Model II: Akaike information criterion vs number of clusters

Clustering the information from the physical property logs into three rock
units, the following scatter plot and plot of rock type vs depth were produced:

Figure 5.40: Model II: Classi�cation results. Rock type vs depth (left) &
scatter plot of physical properties (right)

From the classi�cation, it was determined that the resistivities of the three
rock types are 1872.2Ω ·m, 868.7Ω ·m and 190.9Ω ·m, respectively.
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5.3. Model II: Vertical Contact with Resistive Overburden

5.3.4 Creating & Applying Constraints

As per section 5.1.6, the results from classi�cation were applied to create
constraints consisting of upper and lower bounds as well as a reference model.
The background lower and upper resistivity bounds were assigned as 125Ω·m
and 2470Ω · m, respectively, while the background reference model value
was 977Ω ·m. The models, with borehole classi�cation overlayed on these
backgrounds, are visible below in �gure 5.41.
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Figure 5.41: Model II: Initial constraints. From top to bottom: upper resis-
tivity bounds, lower resistivity bounds, and reference model.

107



5.3. Model II: Vertical Contact with Resistive Overburden

Since the initial recovered model suggested a distinct layer of resistive ma-
terial on the surface, which was further supported by the borehole logs, the
surface weighting was altered to to smooth the top 50m and to allow a ver-
tical discontinuity near the bottom of this layer. When this weighting alone
is used, the following model is produced:

Figure 5.42: Model II: Recovered model from blind inversion with full surface
weighting

Figure 5.43: Model II: Recovered model from inversion with borehole con-
straints and surface weighting
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5.3. Model II: Vertical Contact with Resistive Overburden

Combining this weighting with the aforementioned constraints and the pa-
rameters suggested in section 5.1.7, the model in �gure 5.43, above was
recovered.

Comparing this new result to the previous blind inversion, much of the char-
acter is the same, however some important features are di�erent. As was
suggested by the logs, the conductive body on the left continues to depth
and has a far more homogenous structure than was previously expected,
with an average resistivity in the range of 150Ω ·m. Additionally, the con-
tact between the conductive unit and the overburden is much sharper, and
nearly horizontal. The resistive body on the right has somewhat dissipated,
while the overall resistivity of the right side of the model has increased from
∼ 500Ω ·m to ∼ 800Ω ·m. Due to the surface weighting, there is much less
noise in the top 50m, and the average resistivity of the overburden now sits
at ∼ 2500Ω ·m.

5.3.5 Updating Constraints and Final Models

Beginning with the previous inversion result and iterating, an attempt was
made to further increase the resolution of the recovered model.

Iteration I

As was previously done, the �rst iteration of classi�cation used an expansion
coe�cient of C3 = 1.5 (50% increase of bounds) with a threshold of µ± 2σ
(C1 = 2). Most of the model was classi�ed, however a vertical band in the
center of the model was not able to be binned as any of the three rock units,
and thus was assigned the default background resistivity bounds (ρmin &
ρmax) from the initial bounds constraints (�gure 5.41).
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5.3. Model II: Vertical Contact with Resistive Overburden

Figure 5.44: Model II: Updated bounds, iteration 1
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5.3. Model II: Vertical Contact with Resistive Overburden

Using these updated constraints for another iteration of inversion, the fol-
lowing model was recovered:

Figure 5.45: Model II: Recovered model, iteration 1

This recovered model continues the trend from the past inversion. The con-
ductive unit on the left has become yet more homogenous, the average resis-
tivity increasing further to approximately 200Ω ·m, while the resistive body
on the right has dissipated yet more, and the resistivity of the background
unit on the right has increased again: now ∼ 1000Ω ·m. Additionally, the
contact between the overburden and the bottom two units has become very
clean, and the contact between the two bottom units has moved more to the
center of the model and become more vertical.

Iteration II

In this iteration of classi�cation an expansion coe�cient of C3 = 1.2 was
used (20% increase of bounds), again with the same threshold. The entire
model was successfully binned in one of the three units this time, de�ning a
very vertical boundary in the center of the model between the two basement
units.
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5.3. Model II: Vertical Contact with Resistive Overburden

Figure 5.46: Model II: Updated bounds, iteration 2

With the tighter bounds applied (using only 20% expansion), the boundary
between the two basement units has become quite sharp. The rest of the
model is more or less unchanged, though the resistive body on the right has
further dissipated.

112



5.3. Model II: Vertical Contact with Resistive Overburden

Figure 5.47: Model II: Recovered model, iteration 2

Iteration III

Finally, reducing the expansion coe�cient to C3 = 1.1, the bounds become
very tight, though they bear the same overall geometry as the previous iter-
ation.
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5.3. Model II: Vertical Contact with Resistive Overburden

Figure 5.48: Model II: Updated bounds, iteration 3
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5.3. Model II: Vertical Contact with Resistive Overburden

Applying these bounds to the third iteration, the �nal model was recovered:

Figure 5.49: Model II: Recovered model, Iteration 3 (top) compared to blind
inversion result (bottom)

This �nal model maintains the sharp boundary between the two basement
units, but also extends the conductivity of the left unit and the resistivity
of the right unit to depth more than in previous models. Thus through
iterating and updating the constraints, the contacts between all three units
have been successfully resolved and the correct resistivity values determined.
These results will be further discussed in a later chapter.
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5.4 Model III: Vertical Contact with Conductive

Overburden

5.4.1 The Model

Geometrically, the �nal model is the same as the last: two basement units
extending from 50m below the surface to depth, with an overburden on
top of them (see �gure 5.33). The di�erence now is that rather than a
resistive overburden, it is now a conductive overburden. The two basement
units remain the same. Again, the goal was to recover the contacts between
the units to as high resolution as possible, while correctly estimating the
resistivity of each unit.

As opposed to the previous model, in which the overburden consisted of
sand/till, in this model the two basement units are overlayed by a conductive
layer of caliche. As such, physical property values were assigned based on
typical values for such rock types Carmichael [1989] (see table 5.3 below).

Unit

Density Magnetic Susceptibility Electrical Resistivity

(g/cm3) (SI) Ω ·m
µ

∑
µ

∑
µ

∑
1 2.8 0.40 3.75× 10−4 7.0× 10−5 1.0× 103 2.0× 102

2 2.5 0.20 6.00× 10−4 1.0× 10−4 2.0× 102 4.0× 101

3 1.9 0.25 9.00× 10−4 1.0× 10−4 4.0× 102 8.0× 101

Table 5.3: Model III: Physical Property Values of Geological Units
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5.4. Model III: Vertical Contact with Conductive Overburden

When these values were applied, the following three physical property models
were produced:

Figure 5.50: Model III: Physical property models on �ne mesh. From top to
bottom, resistivity, magnetic susceptibility, and density

117



5.4. Model III: Vertical Contact with Conductive Overburden

Finally, the down-sampled true resistivity model is the following:

Figure 5.51: Model III: True model

5.4.2 DC Data & Blind Inversion

5.4.2.1 Data

Just as with the past two models, a DC resistivity survey was synthetically
collected, again using a mirrored pole-dipole con�guration with 19 electrodes
spaced 50m apart (see �gure 5.5). For this data set, the Gaussian noise was
added with a noise �oor of 0.0005 and 5% of each datum. The resulting data
and percent error are presented in pseudo-section in the following �gure:
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5.4. Model III: Vertical Contact with Conductive Overburden

Figure 5.52: Model III: DC resistivity data (top) and associated percent
errors (bottom)

5.4.2.2 Inversion

A �rst pass blind inversion of this data was run with no prior information or
constraints; the only input parameters de�ned were the mesh and the data
from �gure 5.52.

The inversion ran for 8 iterations before achieving the target mis�t of 380
with a best �tting half space of 335Ω ·m used as a reference model. �gure
5.53 below shows the recovered model, with and without horizontal surface
weighting applied, with padding cells removed and a color scale ranging from
150Ω ·m to 2500Ω ·m.
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5.4. Model III: Vertical Contact with Conductive Overburden

Figure 5.53: Model III: Recovered model from blind inversion with (bottom)
and without (top) horizontal surface weighting

From the resulting models, it is apparent that there exists a conductive body
on the left with a resistive body on the right, though much else is not clear.
The surface is very noisy, with extreme values in resistivity placed directly
under the electrodes. The conductive body on the left extends from approxi-
mately 75m down to approximately 250m, with a lateral extent from −250m
to 200m, with an average resistivity in the range of 150Ω ·m. The resistive
body similarly begins at around 75m, though it is thinner and disappears
by 150m depth. Laterally, the resistive body extends from around 300m,
to the far right edge of the model at 750m (and on into the padding cells).
The rest of the model depicts a smooth background with a resistivity in the
range of 300− 400Ω ·m.
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5.4. Model III: Vertical Contact with Conductive Overburden

5.4.3 Downhole Physical Property Logs & Classi�cation

Based on the initial results, three holes were drilled to further explore the
two recovered exploration targets (one resistive, one conductive). Since the
conductive target was of more interest, two drill holes were designed to pierce
this body, one at 75m and another at 175m, while one exploratory hole at-
tempted to pierce the resistive body at 325m. From this information it was
hoped that a better understanding of the interaction of these two bodies
would be achieved. As with Model I, all three holes were logged for conduc-
tivity, magnetic susceptibility and density on a 1m interval extending from
the surface to the bottom of the model.

Figure 5.54: Model III: Physical property logs. Properties listed above, units
listed below, for three holes (listed at top)

From the physical property logs, it appeared that the bodies extend to depth,
and thus it was decided that a more detailed inversion was required. To ac-
complish this constraints were required, and therefore the logs were classi�ed
using the Expectation-Maximization algorithm. The logs were classi�ed for
di�erent numbers of rock types, ranging from a single unit to six distinct
units. Looking at the Akaike plot below in �gure 5.55, it was decided that
there exists three distinct rock units in the recovered model.
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Figure 5.55: Model III: Akaike information criterion vs number of classes

Clustering the physical property logs into three rock types, the following plot
of rock type with depth was recovered, with the associated scatter plot for
the three physical properties (�gure 5.56):

Figure 5.56: Model III: Classi�cation results. Rock type vs depth (left) &
scatter plot (right)

Given the classi�cation results, Model III has three rock types, the �rst with
a mean resistivity of 376.9Ω ·m, the second a mean of 971.2Ω ·m, and the
third of 194.2Ω ·m.
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5.4. Model III: Vertical Contact with Conductive Overburden

5.4.4 Creating & Applying Constraints

The classi�cation results were applied as per section 5.1.6 to create con-
straints for the next round of inversion. When completed, the absolute lower
and upper resistivity bounds were 130Ω · m, 1450Ω · m, respectively. The
reference model background was between these values, with a resistivity of
514Ω ·m. All three of these models can be seen below in �gure 5.57
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Figure 5.57: Model III: Initial constraints. From top to bottom: upper
resistivity bounds, lower resistivity bounds, and reference model.
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5.4. Model III: Vertical Contact with Conductive Overburden

In addition to these constraints the surface weighting was altered to smooth
out the top 100m as well as allow the inversion to have a sharper boundary
at the tops of the two bodies. This weighting was motivated by the results
of classi�cation which seem to indicate a sharp horizontal contact between
the two bottom units and the overburden. Applying only this new weighting
to the inversion, the following model is recovered:

Figure 5.58: Model III: Recovered model form blind inversion with full sur-
face weighting

Combining all of these constraints and re-running the inversion with the
parameters discussed in section 5.1.7, the following model was recovered:
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Figure 5.59: Model III: Recovered model from inversion with borehole con-
straints

The latest inversion result presents a stark contrast to the initial blind inver-
sion (�gure 5.7) with two �nite bodies in the near surface. As was apparent
in the downhole logs, both bodies, particularly the conductive one, extend to
depth, comprising not simply two bodies, but rather two distinct rock units
with resistivities in the range of 150Ω ·m and 700Ω ·m, respectively. From
looking at this model it appears that the contact between the two dips at
approximately 75o , and that there still exists a resistive body (∼ 1200Ω ·m)
in the top right of the model. The surface appears signi�cantly less noisy,
with an average resistivity of approximately 400Ω ·m.

5.4.5 Updating Constraints and Final Models

In the next sections, the goal was to re�ne the result from the previous
inversion. This was done iteratively using the results from classi�cation, as
per the steps outlined in section 5.1.8, beginning with the model shown in
�gure 5.59.

Iteration I

Classi�cation of the model in �gure 5.59 was performed as per section 5.1.8
with an expansion coe�cient of C3 = 1.5 (50% increase in bounds as the
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distance from boreholes increases) and a threshold of µ ± 2σ (C1 = 2).
Most of the model was easily binned into one of the three rock types, with
a region between the two bottom units bearing the same rock type as the
overburden. The weighting used to expand the bounds away from the holes
is clearly visible, giving the model room to adjust the model as necessary in
the next iteration.

Figure 5.60: Model III: Updated bounds, iteration 1

With the bounds �les updated (�gure 5.60 above), another round of inversion
was completed, again with the same parameters as the last. The newly
recovered model looks very similar to the last. The only di�erences being
that the resistive body on the right appears to have somewhat dissipated
and the contact between the two basement units is at a sharper angle.

127



5.4. Model III: Vertical Contact with Conductive Overburden

Figure 5.61: Model III: Recovered model, iteration 2

Iterations II & III

As per the suggested procedure, classi�cation was again performed, �rst with
a smaller expansion coe�cient of C3 = 1.2 (20% increase in bounds), and
then C3 = 1.1 for iteration III. Again, most cells were classi�ed as being
one of the three rock types in the dictionary, with a band running down
the middle of the model classi�ed as the same rock type as the overburden.
Updating the bounds �les, the following models were produced:
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Figure 5.62: Model III: Updated bounds, iteration 2
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5.4. Model III: Vertical Contact with Conductive Overburden

Figure 5.63: Model III: Updated bounds, iteration 3

Since the geometry of the bounding models did not signi�cantly changed,
the geometry of the recovered models don't change very much either. The
contact continues to become more vertical and the resistivity of the body
on the right continues to disperse, while the unit on the left becomes less
conductive. The region between the two appears as a bu�er zone of values
similar in resistivity to the overburden. Comparing �gures 5.64 & 5.65, the
recovered models from both iterations II and III are very similar.
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Figure 5.64: Model III: Recovered model, iteration 2

Figure 5.65: Model III: Recovered model, iteration 3

Iteration IV

When the expansion coe�cient was �nally dropped to C3 = 1.0 (no expan-
sion) the bounds �les became very sharp. The contact between the two units
is nearly vertical, while the contact between the overburden and the bottom
two is nearly horizontal. There still exists a vertical band of cells binned
as belonging to the same rock type as the overburden, however it is much
narrower than was initially recovered.
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Figure 5.66: Model III: Updated bounds, iteration 4

This �nal recovered model is a further progression of the other iterations:
the contact is now practically vertical, and the resistive body at the top right
is much smaller. The resistivity of the right unit is approximately 900Ω ·m,
while the resistivity of the right unit has increased to approximately 200Ω·m.
The surface, as well as a thin vertical band separating the two basement
units, both have a resistivity in the range of 400Ω ·m, and aside from a few
anomalies, each of these units is fairly homogenous.
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Figure 5.67: Model III: Recovered model, iteration 4 (top), compared to
blind inversion result (bottom)

Comparing this result with both the initial blind inversion, as well as the
�rst constrained inversion, the resolution has been greatly increased. Again,
as with Models I & II, the addition of downhole physical property logs,
paired with the iterative methodology suggested, has signi�cantly improved
the understanding of the model.
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Chapter 6

Discussion

6.1 Summary of Results

Though the models used as examples in this thesis were relatively simple,
they serve as a proof of concept that the suggested methodology can have
dramatic bene�ts over existing unconstrained inversion. Below a summary of
the results is presented, with a brief discussion on the bene�ts and challenges
of the applied methodology.

6.1.1 Model I: Cylinder in a Halfspace

Model I was used as a �rst attempt due to the simplicity of the model: only
two units, both with relatively low variability in physical properties (see
�gure 5.8). The goal with this model was to test the ability of the iterative
scheme in re�ning the model, rather than to challenge the classi�cation.

The initial blind inversion (�gure 6.1, middle) was able to detect a body at
the correct depth, however both the magnitude of the resistivity as well as the
size of the body are poorly estimated. In addition to this, the magnitude of
the background resistivity was approximately half of the true value, at only
550Ω ·m. Though arguments can be made for applying further constraints
to the initial inversion rather than running it with all default values, with
no prior knowledge of the expected geology, there is no basis for imposing
constraints at this stage.

Once motivated by the initial recovered model, the added information from
the borehole logs is extremely e�ective at re�ning the resolution of the target
body (�gure 6.1, bottom). The �nal iterations are an attempt to further in-
crease the resolution, particularly at the boundary between background and
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target. Since the borehole information provides support for the target in
the vertical direction, the vertical extent of the target is correctly recovered,
with sharp boundaries on the top and bottom. However since the inversion
is required to estimate the horizontal extent of the target away from holes,
the horizontal extent of the target is slightly misrepresented. Part of this
can be attributed to the fact both the borehole logs and the mesh are rec-
tilinear while the target is circular; thus the sides of the target are less well
approximated. Despite this, the �nal result is extremely close to the true
model, with only ∼ 5− 10% of the target being poorly recovered (see �gure
6.1 below).
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Figure 6.1: Model I: Results. From top to bottom: True model, model
recovered from blind inversion, model recovered from suggested methodology.
Outline of true lithological boundaries visible in black
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The results just presented bear more weight when one considers that the
depth of investigation in these models is only the �rst couple hundred meters.
This is due to the survey con�guration (Oldenburg and Li [1999]) as well as to
the resistivity values of the model. As a rule of thumb, the maximum depth
of investigation for a pole-dipole array is taken to be between one third and
one half of the maximum electrode spacing 1000m, which in the case of this
survey (�gure 5.5) is between 333m and 500m. This approximation should be
taken with a grain of salt however, since other factors will play into the true
depth of investigation. Additionally, it should be noted that this does not
imply quality data down to a given depth, but rather decreasing resolution
with depth.

In addition to this, di�culties can arise from a very resistive or a very con-
ductive overburden. For very resistive overburden, it can be di�cult to get
su�cient current into the ground, resulting in a low signal to noise ratio. At
the other end of the spectrum, if the overburden is too conductive, all of the
current put into the ground can be channeled along the surface, resulting in
little to no signal at depth.

Figure 6.2: Model I: Depth of investigation. Contour at depth at which
sensitivity has been reduced to 0.5

Average sensitivities have been calculated for the surface data. These values
are normalized so that the sensitivity ranges from zero to unity, with the
most sensitive cells in the model being at the surface (near the measurement
locations). The contour in �gure 6.2 above shows the depth at which the
surface data is only 50% sensitive to structure.
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6.1.2 Model II: Vertical Contact with Resistive Overburden

Model II was an investigation into the ability of constraints to assist in the
recovery of a geological contact masked by an overburden. More variability
was added to the model, and structure continued to depth. In this case
the initial blind inversion was able to fairly accurately recover the geometry
of the overburden, however the magnitude (o� the color-scale in �gure 6.3,
middle) is far too large. Additionally, the bodies recovered beneath the
overburden are quite misleading. Rather than a vertical contact between
two units, it appears that there is a �nite, oblong conductive body sitting in
a fairly uniform background of approximately 400Ω ·m.

After surface weighting and borehole constraints are applied, the model
changes signi�cantly. By the end of the iterative procedure, a very di�erent
model is presented (�gure 6.3, bottom). Both the vertical and horizontal
contacts are accurately recovered, and each of the two basement units are
much more homogenous than those recovered in the initial inversion.
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6.1. Summary of Results

Figure 6.3: Model II: Results. From top to bottom: True model, model
recovered from blind inversion, model recovered from suggested methodology.
Outline of true lithological boundaries visible in black
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6.1. Summary of Results

Though some artifacts exist, such as the more resistive region in the top left
corner of the bottom right unit and the two conductive lobes in the bottom
left unit, the primary features of the �nal recovered model are the three
distinct units, with the vertical and horizontal contacts. Furthermore, these
artifacts appear to be supported by the data, since they appear in all of the
inversions, both with and without constraints. It is possible that they were
introduced by a combination of factors, including the generation of models
using normal distributions of values, as well as the random Gaussian noise
applied to the collected surface data.

Figure 6.4: Model II: Depth of investigation. Contour at depth at which
sensitivity has been reduced to 0.5

Again, when the depth of investigation (�gure 6.4, above) is considered,
these results are fairly impressive. Given that the surface data quickly loses
reliability after the �rst 200m, it is clear that the borehole constraints have
added support for structure at depth.
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6.1. Summary of Results

6.1.3 Model III: Vertical Contact with Conductive

Overburden

The third and �nal model was used as an extension of Model II. Model
III investigated the e�ect of a conductive overburden over a vertical contact.
This was chosen due to the di�culty that an inversion can have in recovering
bodies beneath a conductive layer. In previous modeling attempts which
contained conductive units on the surface overlaying �nite conductive bodies
at depth, virtually no signal was found in the DC resistivity data from the
targets at depth. As a simpli�cation of such a scenario, Model III (�gure
6.5, top) was created.

Similar to Model II, the initial blind inversion of Model III recovers two �nite
oblong bodies in the shallow subsurface, sitting in a background of approxi-
mately 400Ω ·m. Contrary to the previous model however, the overburden
is not accurately represented. Rather than a single homogenous band at the
surface, the inversion has recovered a noisy mix of extreme values, both high
and low resistivities. It is also worth noting that the recovered magnitude
of the resistive body on the right is near 2000Ω ·m, nearly twice the highest
resistivity found in the model16.

16Highest mean value of any of the three units is only 1000Ω ·m (see table 5.2)
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Figure 6.5: Model III: Results. From top to bottom: True model, model
recovered form blind inversion, model recovered from suggested methodology.
Outline of true lithological boundaries visible in black
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6.1. Summary of Results

By applying the borehole constraints, paired with the suggested iterative
methodology, the �nal recovered model is very similar to the true model (see
�gure 6.5, bottom). Due to the surface weighting (motivated by the results
of the physical property logs), the overburden is a much more distinct layer,
with a fairly homogenous resistivity of 400Ω ·m. The two basement units are
also much more apparent, the constraints having extended them to depth.
Save for the resistive body in the top left of the bottom right unit17, the
�nal recovered model is very accurate throughout, with physical property
magnitudes and contact locations correctly estimated.

Figure 6.6: Model III: Depth of investigation. Contour at depth at which
sensitivity has been reduced to 0.5

Once more, looking at �gure 6.6 above, it is clear that the surface data does
not provide reliable information below approximately 200m. Given this, one
can conclude that the borehole constraints have added important and reliable
information to the inversion, particularly at depth.

17Similar to in Model II, this artifact exists throughout all inversion, suggesting that it
is supported by the data.
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6.2 False Classi�cation

One of the di�culties in applying classi�cation to the discrimination of dis-
tinct rock units arises when the contrast between all values is very small.
Under such circumstances, the classi�cation of the recovered model (section
5.1.8) can falsely classify regions of the model surrounding the interface be-
tween two distinct units. This is particularly evident in the last two example
models.

In Model II, the mean values of the bottom right, bottom left, and overbur-
den units are 1000Ω·m, 200Ω·m, and 2500Ω·m, respectfully. Since the value
of the bottom right unit falls in between the two other units, the classi�ca-
tion scheme has di�culty correctly binning the cells lying on the interface
between the bottom left unit and the overburden (see �gure 6.3, bottom).
In Model II, this was partially remedied by the coincidental application of
surface weighting to enhance the sharpness of this interface.

Model III su�ers from the same problem, however the contrast has switched.
With the mean resistivities of the bottom right unit, bottom left unit, and
overburden at 1000Ω ·m, 200Ω ·m, and 400Ω ·m, respectively, it is now the
vertical contact which su�ers from this challenge in classi�cation. In this
case, no weighting was applied on this interface since there was no basis for
forcefully imposing a horizontal discontinuity at a speci�c location in the
model. The result is the narrow vertical band of yellow between the two
basement units in the bottom image of �gure 6.5. Looking back at section
5.4.5, it is clear that the methodology was able to reduce the impact of
this e�ect through iterative classi�cation, however due to this fundamental
di�culty it is unable to completely resolve it.

One can imagine that as the model becomes more complex, and more distinct
rock units are introduced, this will become more of an issue. One way to
address this is to narrow the range of values to be binned as a given unit.
Looking back at section 5.1.8, this would be accomplished by using a smaller
value for C1 such that only values very close to the mean value of a given
unit are binned as belonging to it. This would have the e�ect of binning
much less of the recovered model at each iteration, and accordingly would
likely require many more iterations to converge to a �nal recovered model.
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6.3 Choosing Parameters

One of the main motivations behind the derivation of the methodology used
in this thesis was to remove bias from the user. It was stated that this would
be accomplished by removing as much of the required user input as possi-
ble, and it may therefore seem counter-intuitive to impose parameters. The
important di�erence is that the three parameters, C1, C2, and C3, act indi-
rectly on the inversion. This is because the parameters set thresholds for the
binning scheme presented in 5.1.8.1, which itself is statistically based. Addi-
tionally, the results of the binning scheme are the bounds constraints, which
are applied via an iterative procedure, allowing �exibility for the methodol-
ogy to remove as much of the user bias as possible.

Furthermore, the choice of the three parameters can be motivated by an
analysis of the variability in the borehole logs, derived from the statistical
classi�cation. If the physical properties of the rock units are similar and
highly variable, such that their signals overlap, it is desirable to apply smaller
values of C1 (≤ 2) so that the risk of false classi�cation is reduced. C3 can also
be made larger to allow for wider bounds far from boreholes, allowing greater
�exibility to the inversion to recover from a potential false classi�cation.
This will likely result in a slower convergence and more iterations, but can
produce more reliable results if units are highly variable. C2 does not need
to be changed, and can generally be kept as 1.

6.4 Real Data

Clearly the proposed methodology has had some success when applied to
synthetic data, however the real test is to see how well it performs when
applied to real geophysical data sets. The original intent of this thesis was to
show both the synthetic examples as well as a real example. Due to logistical
issues in acquiring surface geophysical data, this was never possible, however
downhole physical property logs were supplied by DGI Geoscience Ltd.

Since no surface geophysical data was available at the time of writing, it
was not possible to test the iterative inversion procedure. Despite a lack
of surface data, statistical classi�cation of the supplied downhole physical
property logs was performed, with reasonable success. While the procedures
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6.4. Real Data

and algorithms for classifying real data are identical to those applied for the
synthetic data, working with real physical property logs introduces a few
extra di�culties that must be taken into account.

6.4.1 Extra Considerations

For starters, selecting which physical properties to classify together is a non
trivial task. Certain physical properties complement each other better than
others, while some simply contain redundant information (ie: resistivity logs
of di�erent spacings). Methods exist to determine which logs contain the
most information (S.E. MacMahon [2002]), though this was not applied in
this thesis. In addition to this, many downhole logs are measured on multiple
runs to ensure quality data. Picking the best run for a given log is not always
straight-forward. Determining what is true signal, versus what is poor data
can be a di�cult and very subjective task.

Finally, the distribution of physical properties in the subsurface was mod-
eled as being Gaussian, however this is a simple approximation. Whether or
not it is a valid assumption, it is at best a simple approximation of a num-
ber of rather complicated geological processes. As such, when classifying
real downhole physical property logs using the Expectation-Maximization
method (which assumes the model is a set of multidimensional Gaussian
distributions), there is often a much higher degree of striping in the classi�-
cation results. This is to say that the resulting lithological model has many
more thin, alternating layers of di�erent rock types. To a certain degree,
this simply represents the complexity of the true downhole structure, how-
ever below a certain vertical resolution, bands of a given rock type become
nothing more than statistical noise. Since the downhole classi�cation results
will be applied as constraints for a much coarser model, isolated thin bands
of a given rock type will be averaged out in favor of the bulk value.
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6.4.2 Sample Classi�cation

Here a brief summary of the results from a test run of classi�cation of the
real data for a single borehole are presented. Taking full advantage of the
numerous physical properties logged, 8 physical property logs (Far density,
P-wave slowness, magnetic susceptibility, temperature, neutron, gamma-
gamma, �uid resistivity, and 8 inch normal resistivity) were used for sta-
tistical classi�cation (�gure below).

Figure 6.7: Sample of real physical property logs used in classi�cation

These logs were classi�ed using the EM method as described in section 3.3,
for a model with the number of rock types ranging from 1 to 12. Plotting
the Akaike Information Criterion vs the number of clusters produces the
following curve:
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Figure 6.8: Akaike Information Criterion vs. number of clusters for sample
of real downhole data

Choosing to display the model found for 7 distinct rock types (notice the
slight corner in the curve at 7 clusters), the following results are produced:

Figure 6.9: Results from EM classi�cation of sample of real downhole data.
Left, scatter plot of values for magnetic susceptibility vs. P-wave slowness
vs. 8� normal resistivity. Right, plot of rock type vs depth.

Despite the extra striping (as discussed above), it is clear that there are 5
main units, with a couple of extra units coming in as bands. Plotting the
recovered mean values (red) and standard deviations (green) versus the true
data (blue) for each of the logs and recovered rock types gives the following:
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Figure 6.10: Classi�cation results for sample of real downhole data

Given the success of the algorithm in classifying real downhole physical prop-
erty logs into distinct rock types, application of the full iterative inversion
methodology would be a very interesting next step for this research, if and
when the surface data should become available.
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Chapter 7

Conclusions

This thesis undertook the challenge of developing a methodology whereby
downhole physical property logs were leveraged to constrain geophysical in-
version of surface data with minimal required user input. The resulting
procedure employes an iterative scheme to re�ne the inversion model by up-
dating the constraints via repeated re-classi�cation of the recovered model.
The constraints were applied mainly as upper and lower bounds �les, with
the emphasis removed from any reference model by setting αs very small and
removing the mref from the derivative terms in the objective function.

The suggested methodology was demonstrated on three synthetic geological
models: a cylinder in a halfspace and a vertical contact with both a resistive
and conductive overburden. The results of this research were compared to
blind inversions which were run without any constraints. From these results,
it can be concluded that the procedure is capable of increasing the resolution
of recovered models in three main aspects:

1. The interfaces between units are sharper and more accurate

2. The physical property values of recovered bodies/units are both more
homogenous and more accurate

3. Structures at depth are much more likely to be accurately recovered,
despite limited sensitivity of the surface data

Given the success, it is be suggested that further research continue to ex-
plore each of the elements involved in this thesis. In particular, adapting
the methodology to better handle the di�culties arising from false classi�-
cation is important. Attempting this procedure with more complex models
would be a worthwhile next step before complicating matters with further
alterations.
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Chapter 7. Conclusions

Many other aspects of this research could also bene�t from more intensive
scrutiny. For example, little e�ort has been put into determining which
combinations of physical property logs are best for classi�cation. Work on
this has been done by using statistical methods to determine the relative
importance of each log (S.E. MacMahon [2002]), and this would be a logical
addition to the methodology.

To remove all user bias from the iterative scheme, a method of selecting
the three parameters C1, C2, and C3 directly from the statistical classi�ca-
tion could be developed. Optimizing the combination of these parameters
would greatly improve the iterative scheme and would greatly simplify the
application of the procedure.

Furthermore, the Expectation-Maximization method was chosen as the clas-
si�cation method of choice due to its inherent �exibility and success in �t-
ting the data during early experimentation, however it is possible that other
methods would be better suited to this application, such as Self Organizing
Maps (Kohonen [1990], Fraser and Hodgkinson [2009]).

For simplicity, this thesis applied only 2D inversion to the problem. To ex-
pand the investigation to 3D would be an interesting endeavor, and would
almost certainly introduce further questions. Another possible application
worth exploring is the merit of this methodology when combined with coop-
erative inversions. Since physical property classi�cation inherently creates
constraints which are consistent across physical properties, the method could
be successfully applied to constraining cooperative inversions.
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