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Abstract

Reactive transport modeling has become an important tool to study and understand
the transport and fate of solutes in the subsurface. However, the accurate simulation
of reactive transport represents a formidable challenge because of the characteristics of
flow, transport and chemical reactions that govern the migration of solutes in geological
formations.

In particular, solute transport in natural porous media is advection-controlled and disper-
sion is higher in the direction of flow than in the transverse direction. Both characteristics
create difficulties for traditional numerical schemes that result in numerical dispersion
and/or spurious oscillations. While these errors can often be tolerated in conservative
transport simulations, they can be amplified in presence of chemical reactions resulting
in much larger errors or unstable solutions.

In this thesis, new Lagrangian based methods to simulate conservative and reactive
transport in porous media are investigated. First, the derivation of a new meshless
approximation based on smoothed particle hydrodynamics (SPH) to simulate conserva-
tive multidimensional solute transport, including advection and anisotropic dispersion, is
presented. Second, a hybrid scheme that combines some of the advantages of streamline-
based simulations and meshless methods and that allows simulating longitudinal and
transverse dispersion without requiring a background grid is also derived. The numer-
ical properties of both methods are analyzed analytical and numerically. Furthermore,
both formulations are compared with existing numerical techniques in a set of two- and
three-dimensional benchmark problems.

It is demonstrated that the proposed schemes provide accurate and efficient solutions
of physical transport processes in heterogeneous porous media and overcome most of
the issues in existing numerical formulations. The new methods have the potential to
remove or minimize numerical dispersion and grid orientation effects and, in the case
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of the hybrid streamline method, also eliminate spurious oscillations even in presence of
large longitudinal to transverse dispersivity ratios.

Therefore, the results presented in this thesis confirm that the Lagrangian formulations
of solute transport investigated here are viable and compelling alternatives to simulate
reactive transport versus more standard numerical techniques.
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Chapter 1

Introduction

1.1 Motivation

Groundwater pollution has become a serious problem during recent decades. The release
and infiltration into aquifers of pesticides, organic compounds, contaminants of biolog-
ical origin and nuclear waste, among others, pose a risk for the human health and the
environment.

In 1996, the U.S. Environmental Protection Agency (EPA) identified 217,000 contam-
inated sites in the U.S. that required mitigation action. Another 300,000 sites were
reported cleaned up or were found to no require mitigation. It was estimated that sev-
eral thousands of those sites were polluted with highly radioactive nuclear waste and
would require coordinated mitigation actions for several decades before been declared
cleaned up. In addition, it was estimated that there were between 130,000 to 450,000
additional sites that could potentially require some mitigation action (EPA, 1996).

In Canada, the Federal Contaminated Site Inventory (FCS, retrieved on August 10,
2009) lists 3,208 sites that have at least one substance in the groundwater that occurs at
concentrations above natural levels and that pose an immediate or long-term hazard to
human health or the environment. Those sites includes only the small proportion of cases
for which the Government of Canada has accepted some or all financial responsibility.

Figure 1.1 shows a common example of groundwater contamination due to tailings infil-
tration from a tailings impoundment. Once the tailings plume reaches the water table
it migrates carried by the regional groundwater flow and it can eventually impact the

1



Figure 1.1: Groundwater pollution due to tailings infiltration. Once the tailings
plume reaches the water table it can migrate up to several kilometers
downstream from the contaminant source carried by the regional ground-
water flow.

water quality of wells located up to several kilometers downstream from the contaminant
source. This example demonstrates the potential large spatial scale of problems related
to the pollution of natural aquifers.

Because of the scale of the problem, it is essential to find the most effective and financially
sound mitigation actions. Possible mitigation actions include: natural attenuation (ei-
ther due to dilution or natural biodegradation), passive containment, and active cleanup
measures such as pump and treat and enhanced bioremediation (EPA, 1996). The selec-
tion of the most effective action requires a good understanding of the physical, chemical
and biological processes that govern the migration and transformation of contaminants
in the subsurface. At the same time, scientists and engineers who are involved in the
remediation of contaminated sites are interested in finding answers to questions like:

• How long will the contaminant plume take to reach a well or a river?

• What will be the contaminant concentration at a given location and time?

• Will dilution due to the advection and dispersion of the contaminant plume be
enough to decrease the contaminant concentration to acceptable levels within a
reasonable time frame?
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• Will the contaminant of concern be retarded with respect to the groundwater flow?

• Will biodegradation be an effective process to transform and remove the contami-
nant from the groundwater?

Reactive transport modeling has emerged during the last decades as an instrument to
answer these practical questions and as a tool to integrate fundamental knowledge of the
complex processes that control flow, transport and chemical reactions in porous media
(Steefel et al., 2005).

In this thesis, new methods for the simulation of conservative and reactive transport
are investigated. The methods focus upon accurate and efficient solution of physical
transport processes in heterogeneous porous media. This research addresses problems
in existing formulations that lead to, for example, negative concentrations, which are
particularly problematic because of non-linear chemical reaction rates that are common
in reactive transport simulations.

1.2 Reactive Transport Modeling

1.2.1 Definition

Reactive transport in natural porous media is a broad term that is used to refer to
complex physical and chemical processes that occur at disparate spatial and temporal
scales and that involve fluid flow, mass transport and chemical reactions in the subsurface
(Steefel et al., 2005).

The interaction between transport, and reactions is complex. On one hand, reactions
such as mineral precipitation and dissolution can change the porosity and permeability
of a porous medium, hence, affect the fluid flow and transport properties of the medium.
On the other hand, mass transport plays a key role in enabling reactions because it
provides the driving force to perturb a chemical system out of equilibrium by transport-
ing and mixing reactants and, because it sets a characteristic time scale during which
reactions can take place (Valocchi, 1985). The most important transport processes for
enabling reactions are advection, molecular diffusion, and mechanical dispersion (Steefel
and MacQuarrie, 1996; De Simoni et al., 2005; Steefel and Maher , 2009).
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1.2.2 Conceptual Model

The migration and transformation of contaminants in the subsurface is the result of
fluid and transport processes that occur at length scales of a single or few pores and
of chemical reactions that happen at even smaller scales (molecular scale). Although,
pore-scale modeling has gained considerable attraction during recent years, their use is
limited to very small scale problems where they have provided insightful understanding of
basic mechanisms. However, pore-scale modeling is not appropriate for studying practical
field-scale problems that occur at much larger scales (Steefel et al., 2005).

Therefore, most current conservative and reactive transport models used to simulate
field-scale problems are based on a continuum representation of porous media, such that
the system properties are averaged over a representative elementary volume (REV) with
length scale equal to many pore lengths (Bear , 1988; Steefel et al., 2005). Thus, the
REV scale, often called Darcy’s scale or local-scale, defines the spatial scale or volume
size where fluid velocity, transport properties, concentrations and reactions rates are
computed.

In what follows we will concentrate our discussion on the use of reactive transport model-
ing in hydrogeology. Furthermore, we will assume isothermal saturated groundwater flow
with constant density and negligible effect of reactions on flow and transport properties.

1.2.3 Mathematical Model

The groundwater specific discharge, q, can be calculated using Darcy’s law,

q = −K∇φ (1.1)

where K [L/T] is the hydraulic conductivity tensor and φ [L] is the hydraulic head.

The two main transport mechanisms at the REV scale are: advection, which involves
the movement of the solute with the flow; and hydrodynamic or local-scale dispersion
that includes molecular diffusion and mechanical dispersion due to variations of the flow
velocity at the pore-scale (Bear , 1988). Thus, reactive solute transport at the local-scale
is modeled by a system of partial differential equations, which is given as follows for the
case of constant porosity (Bear , 1988; Steefel and MacQuarrie, 1996):
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∂Ck
∂t

= ∇ · (D∇Ck)−∇ · (vCk) +Rk(c) k = 1, . . . ,m

∂Ck
∂t

= Rk(c) k = m+ 1, . . .M (1.2)

where Ck [M/L3] is the solute concentration of species or component k, D [L2/T] is
the hydrodynamic dispersion tensor, v = q/η [L/T] is the pore water velocity, η is the
porosity of the medium, Rk [M/L3/T] is the total reaction rate for species or component
k, c = (C1, . . . , CM) is the concentration vector,m is the number of species or components
in the aqueous (mobile) phase, and M is the total number of species or components.

The most common expression to compute the coefficients of the dispersion tensor D for
an isotropic porous medium considering a Cartesian coordinate system is (Bear , 1988)

Dij = (αT q +Dm) δij + (αL − αT ) vivj
q

(1.3)

where Dm [L2/T] is the molecular diffusivity, δij is Kronecker’s delta, q = |v| [L/T]
is the magnitude of the pore water velocity, and αL and αT [L] are the longitudinal
and transverse dispersivity of the medium, respectively. Alternative expressions for the
dispersion tensor components include different transverse dispersivities for the horizontal
and vertical directions (Burnett and Frind, 1987; Lichtner et al., 2002), however, those
models are less commonly used.

The reaction term in (1.2) may include homogeneous reactions that occur in a single
phase or heterogeneous reactions that include constituents in more than one phase, e.g.
sorption which includes the solid and aqueous phases (Rubin, 1983; Mayer et al., 2002).
From a practical point of view, sorption and biodegradation are the two most relevant
reactions in groundwater, because of their role in retarding the migration of heavy metals
and in the transformation of hydrocarbons, respectively; which are the two most common
substances in contaminated aquifers (EPA, 1996).

5



1.3 Numerical Solution

The system of equations in (1.2) corresponds to a set of non-linear partial differential
equations (PDE) and, in general, must be integrated numerically. There are two different
numerical approaches to integrate the system of PDEs: a fully-implicit approximation or
an operator splitting approach (Yeh and Tripathi, 1989; Steefel and MacQuarrie, 1996).
The simplest one is based on an operator splitting formulation that allows decoupling
of the transport and reaction terms. Then, equation (1.2) is split into two terms rep-
resenting transport and chemical reactions. Usually, the transport component, which
corresponds to a linear PDE, is solved first, then the concentrations computed as result
of the transport step are used as initial conditions to compute the solution of the non-
linear set of ordinary differential equations that represent chemical reactions. Variations
of the operator splitting approach include schemes that iterate between the solutions of
the transport and reaction terms or that switch the order of the evaluation (Steefel and
MacQuarrie, 1996).

In the discussion that follows we will assume that an operator splitting approach is used
to evaluate (1.2) and we will focus our analysis on the numerical solution of the transport
term. However, we must emphasize that the analysis presented below is also valid for
fully implicit implementations.

1.3.1 Particularities of Flow and Transport in Porous Media

The numerical integration of the advection-dispersion-reaction (ADR) equation, (1.2),
presents some unique challenges.

First, because of the geological origin of aquifers, hydraulic conductivity varies by sev-
eral orders of magnitudes within relatively short distances. For example, Sudicky (1986)
reports differences of more than thirty times between hydraulic conductivity values sepa-
rated by few centimeters in a shallow sandy aquifer at Canadian Forces Base in Borden,
Ontario, Canada. Similar variations were also observed at the Macrodispersion Experi-
ment (MADE) site in Mississippi, USA, where local-scale hydraulic conductivity values
varied by more than four orders of magnitude within an area of approximately 250 x 300 m
(Boggs et al., 1992; Zheng and Gorelick, 2003).

Large variations in hydraulic conductivity produce not only important variations in flow
velocity magnitude, but also in the direction of the flow (Sudicky, 1986). For example,
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Figure 1.2: Vertical cross-section of a synthetically generated aquifer using the esti-
mated statistics of the sandy aquifer at Canadian Forces Base, Borden,
Ontario (Mackay et al., 1986; Sudicky, 1986; Freyberg, 1986). Natural
logarithm of the hydraulic conductivity (top) and simulated groundwater
velocity (bottom). The cross-section is 32 m long and 8 m high. Large
variations of hydraulic conductivity within short distances result in im-
portant variation of the magnitude and direction (arrows) of the flow
velocity.

Figure 1.2 shows a vertical cross-section of a synthetically generated aquifer using the
estimated statistics of the sandy aquifer at the Borden site (Mackay et al., 1986; Sudicky,
1986; Freyberg, 1986). The figure also shows simulated groundwater velocities, that
demonstrate that variations of hydraulic conductivity within short distances result in
important variations of the magnitude and direction of the flow velocity.

Because of the heterogeneity of the flow velocity, adjacent fluid parcels may travel at very
different velocities. Such variations in travel time result in stretching and spreading of
the contaminant plume, which manifests as large variations of concentration within short
distances even at the order of few centimeters (Mackay et al., 1986; Molz and Widdowson,
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1988; Benson and Meerschaert, 2008). Figure 1.3 shows how variations in velocity can
produce dramatic changes in the shape of a initially regular plume within short travel
distances.

Figure 1.3: Solute plume migration in vertical cross-section shown in Figure 1.2. An
idealized initial rectangular solute plume (red rectangle on top figure)
migrates carried by the flow velocity. Because of the heterogeneity of the
flow field, the shape of the plume becomes very irregular after the center
of mass of the plume has travelled approximately 10 m (bottom).

Second, local-scale dispersion is anisotropic and it is much more important in the direction
of the flow than in the transverse directions. Table 1.1 lists estimated dispersivity values
based on data collected in field- and laboratory-scale experiments. While longitudinal
dispersivity ranges between 3 · 10−2 and 5 · 10−1 m, typical transverse dispersivity is of
the order of 10−3 m, which is equivalent to transverse dispersion coefficients of the order
of molecular diffusion for typical pore water velocities (Cirpka et al., 2006). Note that
experimental measurements of local-scale dispersion are difficult, thus most estimated
dispersivity values are based on spatial moment analysis, which measures the spreading of
the plume, or effective parameters that measure the combined effect of flow heterogeneity
and local-scale dispersion (Jose et al., 2004). Therefore, most of the values presented in
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Table 1.1 represent upper bounds for local-scale longitudinal and transverse dispersivities.

αL (m) αT (m) Comments

3 · 10−2 − 5 · 10−1 5 · 10−4 − 1 · 10−3

Based on data collected during
field-scale tracer test in a shallow
unconfined sand and gravel aquifer on
Cape Cod, Massachusetts, USA (Hess
et al., 2002)

4 · 10−1 4 · 10−2

Based on spatial moment analysis of
data collected during the large-scale
experiment conducted at the Borden
site in Ontario, Canada (Freyberg,
1986)

– 1 · 10−6 − 2 · 10−4

Calculated from reactive plume lengths
in laboratory-scale experiments with
homogeneous materials (Cirpka et al.,
2006)

4 · 10−1 2 · 10−3

Effective dispersivities obtained from
analysis of breakthrough curves in a
14 m long sandbox filled with four
different types of silica sand (Jose
et al., 2004)

Table 1.1: Estimated dispersivity values from field- and laboratory-scale experiments.

The heterogeneity of the flow velocity field together with the small magnitude of local-
scale dispersion coefficients in natural porous media, have important consequences for
key transport processes such as spreading, dilution and mixing.

Kitanidis (1994) discusses the difference between the spreading and dilution of a solute
plume. Spreading is defined as the stretching of the plume and can be measured as the
rate of change of the second central spatial moment. Dilution is the process by which
the initial solute mass is distributed in an increasing volume. Mixing is the result of
the combined action of the stretching and folding of material lines of the plume, and the
mass exchange due to local-scale dispersion (Weeks and Sposito, 1998). While spreading is
produced by the spatial velocity variability, dilution and mixing are due to the combined
action of the heterogeneity of the flow field and most importantly local-scale dispersion.
Because of the relatively small magnitude of the local-scale dispersion and in absence
of sorption, mixing between a contaminant and other chemical species present in the
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natural groundwater occurs in a narrow zone located along the irregular edges of the
contaminant plume (Oya and Valocchi, 1998).

Figure 1.4 shows the difference between spreading and mixing using results of simulations
included in Section 2.3.3. The figures show simulated concentrations for two conservative
transport scenarios with different Péclet number (Pe): advection-only (Pe =∞) and for
advection and dispersion (Pe = 200). Under a purely-advective scenario the solute plume
becomes irregular due to variations in velocity, however initial concentration values do not
change and there is a sharp interface between fluid zones with and without solute. When
local-dispersion is included, there is solute mass transfer in areas of high concentrations
near the plume edges that results in a thin area, relative to the typical length of the
local-scale heterogeneity, with concentrations lower than the initial value. In many field
situations the zone with lower concentrations would correspond to a mixing area where
the solute and the natural groundwater mix enabling chemical reactions. For example,
natural and enhanced attenuation of organic contaminants occur in a narrow zone close
to the plume boundaries where the contaminant (substrate) and the electron acceptor
(e.g. oxygen) mix (Oya and Valocchi, 1998; Cirpka et al., 1999b; Ham et al., 2004).

In the next section, we will argue that the characteristics of the flow and solute transport
process described above must be considered in the selection of numerical methods to
simulate conservative and reactive solute transport in groundwater.

1.3.2 Numerical Methods

We start this section by reviewing some of the most common numerical schemes that are
used to simulate conservative and reactive solute transport.

1.3.2.1 Mesh-based numerical methods

This category includes finite difference, finite volume or finite element methods. In finite
difference and finite volume schemes each grid cell defines a new control volume within
which parameters and variables are considered constant (Steefel and MacQuarrie, 1996).
Mesh-based methods are relatively easy to implement, have convergence, stability and
accuracy properties that are well understood, and it is possible to develop formulations
that are mass conservative. Because of those characteristics, mesh-based approximations
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Figure 1.4: Effect of advection and local-scale dispersion on solute concentration. Fig-
ure shows a small part of the simulated solute plume in Section 2.3.3 for
Péclet number, Pe = ∞ (top) and Pe = 200 (bottom). Advection only
affects the shape of a contaminant plume (top). If local-dispersion is in-
cluded, mass transfer occurs in areas of high concentration gradients and
a mixing zone develops around the plume edges (bottom). The mixing
zone is critical to enable some chemical reactions such as biodegradation.
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are used in most reactive transport packages (e.g. Pruess, 1991; White et al., 1995; Mayer
et al., 2002; Mills et al., 2007).

Low-order mesh-based schemes to approximate advection, e.g. upstream finite differ-
ence, introduce large amount of artificial diffusion and mixing (Steefel and MacQuarrie,
1996). Therefore, alternative schemes based on high-order approximations that were first
developed to simulate problems in computational fluid dynamics, have been adopted by
reactive transport modelers. Examples of high-order schemes are flux-corrected transport
(FCT) methods (Boris and Book, 1973; Zalesak, 1979), which combine high- and low-
order schemes; and total variation diminishing (TVD) schemes (Harten and Lax , 1984;
Yee et al., 1985; Cox and Nishikawa, 1991).

1.3.2.2 Hybrid Eulerian-Lagrangian methods

Hybrid schemes are based on the same general concept, the use of particles to handle
advection and a grid-based method to handle dispersion. Each time step is split into two
sub-steps. First, changes in concentrations due to advection are computed by forward
or backward particle tracking. Then, concentration values are interpolated onto a grid.
Next, grid concentration values are used to solve for dispersion, and eventually reactions,
using some traditional mesh-based solver. Multiple variations of this approach exist
depending on the interpolation methods and tracking algorithm. Examples of these kinds
of methods are: hybrid Eulerian-Lagrangian methods (Neuman, 1981, 1984), method of
characteristics (MOC) and hybrid method of characteristics (HMOC) in the MT3DMS
package (Zheng and Wang, 1999) and MOC3D (Konikow et al., 1996), and Eulerian-
Lagrangian localized adjoint methods (ELLAM) (Celia et al., 1990; Russell and Celia,
2002).

1.3.2.3 Random walk particle tracking methods

Random walk particle-tracking methods (RWPT) have long been used to simulate con-
servative solute transport in porous media (Ahlstrom et al., 1977; Pickens and Grisak,
1981; Tompson and Gelhar , 1990; Tompson, 1993). In this type of model, solute mass
is distributed among a set of particles that move carried by the flow velocity and by a
random drift that models dispersive transport (Delay et al., 2005; Salamon et al., 2006).
Solute concentrations are estimated by averaging the mass contained in the particles
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found in some specified volume. Therefore, concentration values depend upon the total
number of particles, size of the averaging volume, and spatial particle distribution.

The popularity of RWPT methods is due to its natural capacity to accurately simulate
advection and ease of implementation. Because of its advantages RWPT has become
the de facto standard method in numerical studies of plume spreading and dilution (e.g.
see Delay et al., 2005; Salamon et al., 2006, and references therein). However, RWPT
methods are less attractive for the simulation of reactive transport because: (i) it is
difficult to simulate general heterogeneous reactions that include the solid phase, (ii)
a very large number of particles is required to obtain an accurate estimation of low
concentration values that is crucial to approximate reactions that occur in the mixing
zone along the plume edges, and (iii) simulations that include multiple species need a
large number of particles to track individual species.

1.3.3 Limitations of Current Numerical Methods

According to Steefel and MacQuarrie (1996) there are three main properties that a nu-
merical method must satisfy to be used in reactive transport simulations: (i) accuracy
in space and time, which includes minimizing numerical diffusion and mass conserva-
tion errors, (ii) monotonicity, which means avoiding spurious oscillations (e.g., negative
concentrations); and (iii) computational efficiency. Next, we evaluate current numerical
methods based on those three criteria.

1.3.3.1 Accuracy

Mesh-based numerical methods, including high resolution methods, have problems to ac-
curately simulate multidimensional advection-dominated transport because of numerical
dispersion that results in excessive artificial mixing, dilution, and overestimation of reac-
tions rates (Steefel and MacQuarrie, 1996; Cirpka et al., 1999; Zheng and Wang, 1999).
Numerical dispersion is more important when the grid is not aligned with the direction
of the flow (Frind et al., 1987), which is always the case in non-uniform flows as found
in heterogeneous porous media.

On the other hand, hybrid schemes that require interpolating concentrations to a back-
ground grid also introduce numerical dispersion even if they provide a very accurate
solution for advection. In the case of RWPT methods, concentration values can only
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Figure 1.5: Subgrid-scale segregation and cell averaged concentration values. Species
A and B are physically segregated at the subgrid-scale (left). However,
they would appear well-mixed at the cell scale (right). If A and B are
two reactants in a chemical reaction, then numerical simulations based
on cell averaged concentrations would overestimate the reaction rate.

be obtained after averaging the mass of particles over some control volume, which also
results in numerical mixing.

The use of cell average concentration values can introduce large errors in the estimation
of dilution and reaction rates. For example, Figure 1.5 shows two species, A and B,
which are physically segregated, however, they would appear well-mixed in numerical
simulations that use cell averaged concentration values. If A and B are reactants in a
chemical reaction, then the simulated reaction rate would overestimate the real reaction
rate (which is zero, in this case).

The errors due to numerical dispersion and cell averaging are smaller for larger values of
local-scale dispersion, because concentration values within the cell volume are smoothed
out by dispersion (Steefel and MacQuarrie, 1996). However, as discussed earlier, local-
scale dispersion in porous media, particularly in the transverse direction, is small and
its effect to smooth out concentration fluctuations is limited. Therefore, sub-grid scale
concentration fluctuations are important and the use of cell averaged concentration val-
ues is an important source of error in conservative and reactive transport simulations
(Frind and Germain, 1986; Frind et al., 1987; Molz and Widdowson, 1988; Benson and
Meerschaert, 2008).

In evaluating the accuracy of a numerical method for simulating reactive transport, it
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is also important to keep in mind that any error in the solution of the transport com-
ponent can be greatly amplified by non-linear reactions. Thus, methods that perform
acceptably well to simulate conservative solute transport, can produce large errors when
chemical reactions are included (Steefel and MacQuarrie, 1996). For example, Cirpka
et al. (1999b) demonstrated that small amounts of numerical dispersion in simulations of
biodegradation controlled by transverse mixing simulated using a high-order finite volume
method, can result in larger errors in the estimation of reaction rates and contaminant
mass removal.

1.3.3.2 Monotonicity

Spurious oscillations in simulations of conservative solute transport arise due to the use
of non-linear high-order methods to control numerical dispersion (Steefel and MacQuar-
rie, 1996; Cirpka et al., 1999) and numerical approximations of the off-diagonal entries
(“cross-terms”) in the local-dispersion tensor (Herrera and Valocchi, 2006). Multidimen-
sional high-order mesh-based solvers for advection based on the FCT and TVD schemes,
which are supposed to suppress numerical oscillations, often result in small oscillations
(Steefel and MacQuarrie, 1996; Herrera and Valocchi, 2006). Numerical oscillations that
arise from the solution of parabolic or elliptic PDEs that include mixed derivatives or
“cross-terms” are a well known problem and have been the subject of many research
efforts in recent years (e.g. Nordbotten and Aavatsmark, 2005; Le Potier , 2005b; Mlacnik
and Durlofsky, 2006; Edwards and Zheng, 2008; Yuan and Sheng, 2008; Lipnikov et al.,
2009). To this day, no single solution provides a scheme that can be used in general
scenarios.

Although, small oscillations can be usually tolerated in conservative transport simula-
tions, they are unacceptable in reactive transport simulations because they can result
in unstable solutions in presence of non-linear chemistry. For example, Steefel and Mac-
Quarrie (1996) discusses the effect of small oscillations in a problem involving organic car-
bon degradation via sulfate reduction coupled to two equilibrium dissolution-precipitation
reactions. They simulate solute transport using a high-order FCT method that intro-
duces spurious oscillations that do not produce problems in a tracer simulation, but that
produce unstable results when chemical reactions are included.
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1.3.3.3 Performance

Numerical simulations of reactive transport in porous media are computationally de-
manding. Although, the increasingly availability of high-performance computers has
made feasible detailed simulations of reactive transport in two- and three-dimensional
domains (e.g. PFLOTRAN , retrieved on August 12, 2009), it is still not possible to re-
solve practical problems with enough detail to capture all the scales of heterogeneity that
are relevant for reactive transport (Steefel et al., 2005).

Performance is also important when a large number of scenarios must be simulated.
For example, because of our inability to observe all the scales of physical and chemical
heterogeneity present in natural porous media, reactive transport simulations include a
high degree of uncertainty. A standard way to deal with uncertainty is based on a Monte
Carlo approach that involves simulating many equally probable scenarios to determine
probability distributions for possible outcomes (Steefel et al., 2005). Simulating a large
number of realizations is also a requirement of some methods to estimate the effects of
variations in the input parameters on the model results (sensitivity analysis) or of some
automatic parameter calibration frameworks (Hill and Tiedeman, 2007).

Nowadays, high performance requires to use numerical methods that can be implemented
in algorithms that are amenable to parallelization. While RWPT methods can be imple-
mented using an embarrassingly parallel algorithm, efficient implementations of mesh-
based algorithms, although possible, are more difficult to obtain (Mills et al., 2007). On
the other hand, RWPT have very low convergence and very large numbers of particles (of
the order of billions (Suciu et al., 2006)) are required to obtain accurate results, which
counterbalances its parallel advantages.

Finally, high-order multidimensional mesh-based solvers for advection are usually im-
plemented using explicit schemes (Steefel and MacQuarrie, 1996). Explicit solvers have
stability limits on the time step size given by the Courant–Friedrichs–Lewy (CFL) condi-
tion, ∆t ≤ ∆/ |v|, where ∆ is the cell size. Therefore, the stability limit is more restrictive
for finer grids and finer discretizations require smaller time steps, hence, computational
effort. Since mesh-based multidimensional solvers introduce a global coupling between
concentration values, the stability limit is global and given by the maximum velocity in
the grid. Thus, it is not possible to take advantage of the irregular velocity distribution
to use greater time steps in slower areas of the domain.
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1.4 Lagrangian Numerical Methods

1.4.1 Meshless Methods

Kernel interpolation methods simulate mass transport using a collection of particles that
move according to the velocity field and carry and exchange solute mass with surrounding
particles. Particle locations are used as quadrature points to evaluate integral interpola-
tions of variables and their derivatives. Importantly, these schemes are able to incorporate
diffusive effects and mixing without using a grid or mesh, so they are also called mesh-
less methods. Some examples of this type of method are Vortex methods (Cottet and
Koumoutsakos, 2000) and particle strength exchange (PSE) method (Degond and Mas-
Gallic, 1989a; Zimmermann et al., 2001). Methods based on this approach give accurate
and stable results if a remeshing technique is used to control errors that result from ir-
regular spatial particle distributions produced by non-uniform flow fields. The remeshing
step introduces numerical dispersion that can be controlled but not completely avoided
by using suitable interpolation schemes (Cottet and Koumoutsakos, 2000; Chaniotis et al.,
2002).

Smoothed Particle Hydrodynamics (SPH) methods are another type of kernel-based in-
terpolation scheme (Gingold and Monaghan, 1977; Lucy, 1977). Cleary and Monaghan
(1999) presented a SPH scheme that allows one to solve the multidimensional advection-
dispersion equation, assuming isotropic dispersion, using an integral interpolation of the
dispersion operator that it is supposed to be less sensitive to particle disorder than tra-
ditional kernel interpolation schemes. Since the method can handle dispersion without
remapping the concentration field onto a grid, it is free of numerical dispersion and grid
orientation effects.

As discussed in Chapter 2, a key property of kernel interpolation methods is that they
track concentration values, in contrast to RWPT approaches which fundamentally track
particles with fixed masses. This feature allows one to evaluate reactions at individual
particles (e.g. Chaniotis et al., 2003). Heterogeneous reactions that include the solid
(immobile) phase can be handled by introducing additional fixed particles (Tartakovsky
et al., 2007).
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1.4.2 Streamline-Based Simulations

Streamline-based methods have been successfully used to simulate oil migration (Thiele
et al., 1996, 1997) and multidimensional solute transport (Crane and Blunt, 1999; Di Do-
nato and Blunt, 2004; Obi and Blunt, 2004, 2006). These methods use a numerical grid
that adapts to the flow field, which reduces numerical dispersion and grid orientation
effects. Because of its adaptation to the flow and its ability to minimize numerical dis-
persion, the method is well suited for simulations of advection-dominated transport as
found in heterogeneous porous media (Di Donato et al., 2003). Moreover, the use of
streamlines allows the transformation of a multidimensional transport equation to a set
of individual one-dimensional transport problems. The numerical solution of the result-
ing set of one-dimensional transport problems allows the use of more efficient numerical
solvers, more relaxed stability constraints and it is amenable to parallelization (Crane
and Blunt, 1999; Bandilla et al., 2009). Because of the efficiency of the method, it is pos-
sible to simulate large-scale domains with fine spatial and temporal resolution (Di Donato
et al., 2003; Obi and Blunt, 2004, 2006). In addition, chemical reactions, including ho-
mogeneous and heterogeneous reactions can be easily handled (Crane and Blunt, 1999;
Di Donato and Blunt, 2004).

1.5 Discussion

The previous analysis demonstrated that no single traditional numerical method presents
the three main features sought in reactive transport simulations. Moreover, one of the
conditions, monotonicity, is not satisfied by any of the current methods if anisotropic
dispersion is considered.

Because of the limitations of current numerical schemes, reactive transport simulations
must make some trade-offs to obtain practical results. For example, low-order approx-
imations for advection are preferred over more accurate high-order approximations, be-
cause they do not suffer numerical oscillations. Similarly, simulations that include local-
dispersion assume isotropic dispersion or remove the cross-terms to avoid introducing
non-physical artifacts, e.g. negative concentrations. In both cases, monotonicity comes
at the cost of tolerating additional numerical errors.

In our opinion, most of the problems that affect current numerical methods are caused by
the use of a grid or mesh, either to compute approximations of concentrations derivatives
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as in finite difference or finite element methods or, to compute cell averaged concentration
values as in RWPT, MOC and other hybrid approaches. As discussed, the use of a single
multidimensional grid introduces grid orientations effects due to the non-uniform flow
direction, artificial mixing because of the computation of cell averaged concentrations,
and global stability restrictions. Therefore, it seems that to overcome many of the prob-
lems that plague current numerical schemes, one should develop numerical methods that
do not require a rigid multidimensional grid. Numerical methods based on a Lagrangian
description of solute transport satisfy that condition and are attractive alternatives to
simulate reactive solute transport.

Because of their ability to control numerical dispersion and grid orientation effects and
their efficiency, meshless methods and streamline-based simulations are attractive alter-
natives for the simulation of reactive transport in natural porous media. However, they
also present some deficiencies that can be problematic for their use in reactive transport
codes.

The standard SPH approximation for diffusion (Cleary and Monaghan, 1999) can only
be used to simulate isotropic dispersion. Therefore, the use of this type of methods in
reactive transport modeling in porous media requires deriving new expressions to simulate
anisotropic dispersion.

Although, approximations for longitudinal dispersion along individual streamlines are
straightforward, transverse mixing between streamlines is more difficult to simulate. Two
approaches have been used to incorporate transverse dispersion in streamline-based simu-
lations. In the first one, solute transport is solved using a flow-oriented grid and transverse
dispersion is included as a flux component perpendicular to the streamlines (Frind and
Germain, 1986; Frind et al., 1987; Cirpka et al., 1999). This approach has been suc-
cessfully used in two-dimensional simulations (Frind et al., 1987; Cirpka et al., 1999b),
but it has not been extended to three-dimensions. A second alternative consists in using
a hybrid approach (Obi and Blunt, 2004). First, advection is solved along streamlines.
Then, concentration values are mapped onto a grid where a mesh-based solver is used to
solve for dispersion. Finally, concentration values are interpolated back from the grid to
the streamlines. The interpolation from and to streamlines introduces some numerical
error that is difficult to quantify (Obi and Blunt, 2004). Because the interpolation must
be done at each time step, the cumulative effect can be important even if an accurate
interpolation scheme is used.

The limitations of the meshless SPH and streamline-based methods for the simulation
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of multidimensional reactive transport in porous media provide the motivation for the
research in this thesis.

1.6 Objectives

The main objective of this thesis is to develop, implement, and evaluate new numerical
schemes based on meshless methods and streamline-based simulations to simulate reactive
transport. The main objective includes the following specific objectives:

1. To derive and implement a meshless approximation for conservative transport in
heterogeneous porous media. This includes deriving expressions to approximate
isotropic and anisotropic local-scale dispersion.

2. To devise schemes to incorporate local-scale dispersion (longitudinal and transverse)
in multidimensional streamline-based simulations.

3. To evaluate the newly derived numerical schemes in terms of accuracy, monotonicity
and performance.

4. To compare the new schemes with others current numerical methods such as: high-
order finite volume, method of characteristics and random-walk particle tracking
methods.

5. To evaluate the suitability of using the new meshless and streamline-based schemes
in reactive transport simulations.

1.7 Organization

This thesis is organized in four additional chapters and four appendices. Chapters 2,
3, and 4 correspond to manuscripts that have been published or will be submitted for
publication.

Chapter 2 presents the application of a meshless numerical method based on smoothed
particle hydrodynamics (SPH) for the simulation of conservative transport in heteroge-
neous geological formations assuming isotropic dispersion. The chapter includes ana-
lytical and numerical results that demonstrate that the new proposed scheme is stable,
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accurate, and conserves global mass. Appendix A presents details of the derivation of
the SPH-based numerical approximation.

In Chapter 3, we extend the SPH-based approximation implemented in Chapter 2 to
simulate anisotropic dispersion. In addition, we compare the new approximation with
another meshless method (particle strength exchange) and a mesh-based finite volume
scheme to simulate the dispersion of a two-dimensional contaminant plume under different
scenarios. We conclude that, although attractive to simulate conservative transport, the
new SPH-based approximation is unsuitable for reactive transport simulations because of
spurious oscillations that arise if the dispersion tensor is anisotropic. The new numerical
approximation is based on a SPH approximation for mixed second order derivatives,
which is derived in detail in Appendix B.

Chapter 4 presents the derivation of a new numerical scheme to incorporate dispersion
– including transverse dispersion – in streamline simulations. A key element of the
method is that dispersion is approximated in a flow oriented grid using a combination
of a one-dimensional finite difference scheme and a meshless approximation for isotropic
dispersion. We demontrate through analytical and numerical results that the resulting
approximation is always monotonic and, hence, suitable for reactive transport simula-
tions. Some key issues that arise in streamline-based simulations such as: streamline
tracing, streamline spatial distribution and streamline discretization, are discussed in
Appendix D.

Finally, Chapter 5 summarizes the main conclusions of the three preceding chapters and
includes recommendations for future research directions.
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Chapter 2

A Meshless Method to Simulate
Solute Transport in Heterogeneous
Porous Media1

2.1 Introduction

2.1.1 Background

Contaminant transport in natural aquifers is a complex, multiscale process that is fre-
quently studied using numerical methods. Conservative solute transport is typically
modeled using the advection-dispersion equation (ADE). Despite the large number of
available numerical methods that have been developed to solve it, the accurate numerical
solution of the ADE still presents formidable challenges. In particular, current numeri-
cal solutions of multidimensional advection-dominated transport in non-uniform velocity
fields are affected by one or all of the following problems: numerical dispersion that in-
troduces artificial mixing and dilution, grid orientation effects, and unphysical numerical
oscillations (Herrera and Valocchi, 2006).

To correctly capture the basic mechanisms that control conservative solute transport in
natural aquifers an ideal numerical method should be able to: (i) accurately capture

1A version of this chapter has been published. P. Herrera, M. Massabo, and R. Beckie (2009) A
meshless method to simulate solute transport in heterogeneous porous media. Adv. Water Resour.,
32:413–429.
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the effect of small-scale velocity fluctuations upon solute distribution, (ii) simulate the
effect of small values of local-scale dispersion in advection-dominated transport, (iii)
reproduce small-scale concentration fluctuations and (iv) allow the efficient simulation of
problems at moderate to large scales. In what follows we only discuss numerical methods
to simulate conservative solute transport but the same set of requirements should be
satisfied by any successful numerical method used to simulate reactive transport.

The objective of this paper is to develop and test a meshless method to simulate contam-
inant transport in porous media. This work was primarily motivated by our experience
in theoretical investigations of solute mixing and plume dilution in heterogeneous porous
media. Those investigations require an efficient numerical method that is able to accu-
rately simulate solute transport in multidimensional non-uniform velocity fields. We are
also interested in developing a meshless method that can be used to simulate conservative
and non-conservative solute transport with minimum modification.

The main contributions of this paper are: (i) to derive a meshless approximation for the
dispersion operator in heterogeneous porous media flow, (ii) to compare the meshless
approximation with other numerical methods traditionally used to simulate conserva-
tive solute transport in heterogeneous multidimensional velocity fields, (iii) to study
the convergence properties of the meshless approximation of the dispersion operator for
different spatial node distributions, and (iv) to demonstrate that the proposed mesh-
less approximation can be used to solve the ADE in different scenarios ranging from
advection-dominated to dispersion-dominated solute transport with accuracy better than
or comparable to standard numerical methods. Although we address only conservative
transport in this paper we highlight the advantages of the proposed scheme for simulating
reactive transport.

2.1.2 Numerical Methods

A detailed discussion of every numerical method used to solved the ADE is beyond
the scope of this manuscript, however we briefly discuss some of them to motivate the
development of our new meshless method.

Grid or mesh-based methods such as finite difference, finite volume or finite element meth-
ods are relatively easy to implement, their convergence, stability and accuracy properties
are well understood, and it is possible to develop formulations that are mass conserva-
tive. On the other hand, mesh-based methods have difficulty in accurately simulating
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multidimensional advection-dominated problems because of numerical dispersion that in-
troduces excessive artificial mixing and dilution of the contaminant plume. Therefore,
grid-based methods are only advised for problems with low Péclet number (Zheng and
Wang, 1999).

Hybrid schemes were developed to address the limitations of grid-based methods. The
following hybrid schemes are based on the same general concept – the use of streamlines
or particles to handle advection and a grid-based method to handle dispersion: hybrid
Eulerian-Lagrangian methods (Neuman, 1981, 1984), method of characteristics (MOC)
and hybrid method of characteristics (HMOC) in the popular MT3DMS (Zheng and
Wang, 1999) and MOC3D (Konikow et al., 1996), Eulerian-Lagrangian localized adjoint
methods (ELLAM) (Celia et al., 1990; Russell and Celia, 2002), and three-dimensional
hybrid streamline-grid approaches (Obi and Blunt, 2004). At each time step, these meth-
ods solve the advection–dispersion equation in two steps. First, changes in concentrations
due to advection are computed using some suitable scheme such as particle-tracking or
by solving the transport equation along streamlines. Then, concentration values are in-
terpolated onto a grid. Next, grid concentration values are used to solve for dispersion,
and eventually reactions, using some traditional mesh-based solver. Multiple variations
of this approach exist depending on the interpolation methods and tracking algorithm.
However, all of them require mapping concentrations between cell centers and particle
locations or streamline nodes. This remapping step introduces numerical dispersion that
is difficult to quantify and control in multidimensional simulations. Moreover, the nu-
merical dispersion due to the remapping step is more important in simulations with large
grid Péclet number where the effect of dispersion is not enough to smooth the sub-grid
scale concentration distribution.

The limitations of grid-based and hybrid methods to simulate advection dominated prob-
lems have motivated the development of Lagrangian and meshless methods including
those based on a random-walk and those based on integral interpolations.

Random-walk particle-tracking methods (RWPT) have long been used to simulate con-
servative solute transport in porous media (Ahlstrom et al., 1977; Smith and Schwartz ,
1980; Pickens and Grisak, 1981). In this type of model, solute mass is distributed among
a set of particles that move carried by the flow velocity and by a random drift that mod-
els dispersive transport (Delay et al., 2005; Salamon et al., 2006). Solute concentrations
are estimated by averaging the mass contained in the particles found in some specified
volume. Therefore, concentration values depend upon the total number of particles, size
of the averaging volume, and spatial particle distribution. The numerical precision of
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the computed concentration is limited by the finite number of particles used in a simula-
tion and the calculated concentration usually exhibits numerical oscillations that can be
amplified in presence of non-linear reactions (Tompson and Dougherty, 1992; Tompson,
1993). Therefore, the use of the method is limited to conservative transport or to reac-
tive transport simulations with simple reactions that can be modeled by changing the
state or phase of individual particles, e.g. sorption (Valocchi and Quinodoz , 1989). The
popularity of RWPT is due to its natural capacity to accurately simulate advection, ease
of implementation, and relatively moderate computational requirements. Because of its
advantages RWPT has become the de facto standard method used in numerical studies
of plume spreading and dilution.

In contrast to RWPT methods that simulate dispersion in a fluid by a random movement
of particles that carry solute mass, kernel interpolation methods simulate mass transport
using a collection of particles that move according to the velocity field and carry and ex-
change solute mass with surrounding particles. Particle locations are used as quadrature
points to evaluate integral interpolations of variables and their derivatives. Importantly,
these schemes are able to incorporate diffusive effects and mixing without using a grid or
mesh, so they are also called meshless methods. Some examples of this type of method
are vortex methods (Cottet and Koumoutsakos, 2000) and particle strength exchange
(PSE) method (Degond and Mas-Gallic, 1989a). Zimmermann et al. (2001) present, to
the best of our knowledge, the only application of this type of method to simulate solute
transport in porous media at the continuum scale. Their results indicate that the method
gives accurate and stable results for the flow configuration considered if a remeshing tech-
nique is used to control errors that result from irregular spatial particle distributions. As
in other methods, the remeshing step introduces numerical dispersion that can be con-
trolled but not completely avoided by using a suitable interpolation scheme (Cottet and
Koumoutsakos, 2000; Chaniotis et al., 2002).

Smoothed particle hydrodynamics (SPH) methods are another type of kernel-based in-
terpolation scheme (Gingold and Monaghan, 1977; Lucy, 1977). Cleary and Monaghan
(1999) presented a SPH scheme that allows one to solve the multidimensional ADE us-
ing an integral interpolation of the dispersion operator that is less sensitive to particle
disorder than traditional kernel interpolation schemes. Since the method can handle
dispersion without remapping the concentration field onto a grid, it is free of numerical
dispersion and grid orientation effects. As we show later, a key property of SPH is that
the method tracks concentration values, in contrast to RWPT approaches which funda-
mentally track particles with fixed masses. This feature of SPH allows one to simulate
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reactive transport directly with individual particles (e.g. Chaniotis et al., 2003).

We next propose a method to simulate solute transport in porous media based on the SPH
formalism. We show that this SPH-based method is advantageous because of its inherent
ability to solve advection, its capacity to approximate dispersion in a meshless fashion,
and its ability to reproduce smooth fine-scale concentration distributions appropriate for
reactive transport simulations. After deriving the method in Section 2.2, we compare and
contrast it to a conventional RWPT method and other traditional mesh-based methods
in Section 2.3.

2.2 Monte Carlo SPH method

In application of meshless methods such as SPH it is appropriate to reformulate the ADE
in terms of a Lagrangian coordinate system as

dr
dt

= v (r) (2.1)

dC

dt

�����
r

= ∇ · (D∇C)|r (2.2)

where C is the solute concentration, D is the local-scale dispersion tensor, v is the pore
water velocity, and r is the position vector of a small fluid volume or material point.

As we describe next, in SPH methods the concentration field is represented using a set
of particles that carry concentration information and are distributed through the domain
– even in areas where solute concentration is zero. Practically all meshless methods
including SPH use a particle-tracking approach to integrate (2.1) in the same way as
done in RWPT (Delay et al., 2005; Salamon et al., 2006). The key distinction between
SPH and RWPT is how dispersion is approximated. In SPH methods, dispersion – the
solution of equation (2.2) – is evaluated using a kernel interpolation approximation.

The “smoothed” in SPH comes from the representation of a scalar or vector field by a
smoothed integral interpolation. The smoothed interpolation AS(r) of a field A(r) is
defined as the integral (Gingold and Monaghan, 1977)

AS(r) =
ˆ
A(r�)W (r− r�, h) dr� (2.3)
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where W (r− r�, h) is a kernel function with compact support around r and smoothing
length h that satisfies some normalization properties (Gingold and Monaghan, 1977).
Spline polynomials with finite support are usually used as kernel functions because of
their practical advantages (Price, 2004). For those functions the compact support volume
of the kernel depends upon h. Figure 2.1 shows values of the Gaussian and cubic-spline
kernels and their derivatives as function of the smoothing length.
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Figure 2.1: Kernel function W, first derivative W’, second derivative W’’ and sym-
metric F function defined in Appendix A, for Gaussian (solid line) and
cubic spline (dashed line) kernels.

The numerical approximation of AS can be evaluated using a Monte Carlo integration
scheme by sampling the integrand A(r)W (r) at a limited set of disordered points or
particle locations. To evaluate the integral one must consider that the set of scattered
points is not uniformly distributed, therefore their spatial distribution must be explicitly
taken into account in the integral evaluation to get the following modified form of (2.3),

As(r) =
ˆ
A(r�)
p(r�)W (r− r�) p(r�)dr� (2.4)
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where p(r) is the probability density of finding a particle in a given unit volume with
units of one over volume [1/L3] (Gingold and Monaghan, 1982; Tartakovsky and Meakin,
2005). Thus, p(r)dr can be interpreted as a non-uniform density to sample the modified
integrand A(r)W (r)/p(r) (Press et al., 1992, p. 316). The exact evaluation of p(r)
for a set of scattered points in multiple dimensions is a very difficult task, but it can
be estimated using a density estimation by kernels approach (Schaback and Wendland,
2006), which yields,

p(r) = 1
Np

Np�

j=1
W (r− rj) (2.5)

Finally, the Monte Carlo approximation of (2.4) is

AN(r) = 1
Np

Np�

j

A(rj)W (r− rj)
p(rj)

±O



 1
�
Np



 (2.6)

where Np is the total number of points that effectively contribute to the integral. This
last expression is a valid approximation of the integral for any set of scattered points.
We note that in practice the error estimate in (2.6) is an upper bound and that the
actual error also depends upon p(r), i.e. the spatial distribution of the points, and the
local smoothness properties of A. For example, numerical studies have shown that the
actual error is much smaller for points that are reasonably well distributed (Cleary and
Monaghan, 1999; Monaghan, 2005).

Traditional SPH simulations used to solve hydrodynamics equations consider that the set
of locations rj represent the positions of a set of fluid particles with constant mass mj.
In that case, the fluid mass density ρ(r) is proportional to the particle density p(r) and
it can be estimated by using an expression similar to (2.5) where the mass of individual
particles appears explicitly (Monaghan, 1992, 2005). We note that the formulation given
by (2.5) and (2.6) is equivalent to the standard SPH formulation if the total mass in the
system is one and it is uniformly distributed among particles. This is consistent with
SPH simulations where, in general, the fluid mass assigned to each particle is considered
as a constant scaling parameter that is set at the beginning of individual simulations to
tune the spatial fluid density distribution (Dilts, 1999).
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There are two SPH approaches to approximate transport equations involving second order
derivatives. First, second order derivatives can be easily evaluated by differentiating (2.6).
The resulting expression involves the second derivative of the kernel, so it is very sensitive
to particle disorder (Cleary and Monaghan, 1999). In that case particle positions must
be periodically reinitialized on a regular lattice to achieve acceptable accuracy (Chaniotis
et al., 2002). A second approach is based on an integral approximation of the dispersive
fluxes that depends only upon the first derivative of the kernel (Brookshaw, 1985; Cleary
and Monaghan, 1999). Considering isotropic dispersion, i.e. D(r) = D(r)I, where I is
the identity matrix, the approximation of (2.2) is

dCi
dt

= 1
Np

Np�

j=1

1
pj

(Dj +Di) (Cj − Ci)F (rj − ri) (2.7)

where Ci is the solute concentration at position ri and F (rj − ri) is a function of the
separation vector and first derivative of the kernel that has spherical symmetry. Appendix
A presents the derivation of (2.7).

Equation (2.7) indicates that the magnitude of the contribution of solute from particle j
to particle i is equal to the contribution of particle j to particle i, i.e. the mass flux is anti-
symmetric fij = −fji, only if pi = pj . In general, for a set of irregularly spaced particles
pi �= pj , so (2.7) does not satisfy a basic property of the dispersion operator (Kuzmin
and Turek, 2002). Thus, it is necessary to replace the denominator by a symmetric
approximation of the form p̂ij = g(pi, pj), e.g. arithmetic or harmonic average. In
general, this correction is relatively small because particles that effectively contribute to
the summation are within few smoothing lengths due to the compact support property of
the kernel. Similar corrections to recover symmetry are used in standard SPH simulations
that consider variable smoothing lengths (Monaghan, 2005). Our MC-SPH method is
based upon this formulation to approximate dispersive fluxes that results in

dCi
dt

= 1
Np

Np�

j=1

1
p̂ij

(Dj +Di) (Cj − Ci)F (rj − ri) (2.8)

We refer to this approximation as the Monte Carlo SPH (MC-SPH) formulation for dis-
persion. Equation (2.8) satisfies two important physical constraints. First, dispersive
fluxes are anti-symmetric. Second, mass transfer occurs from higher to lower concentra-
tions because for typical kernels, F (rj − ri) < 0 as shown in Figure 2.1.
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In standard SPH simulations there is another approach to recover the symmetry of the
fluxes that consists in including the fluid density on the right hand side of (2.2). In
this case, density is placed inside operators following the “second golden rule of SPH”
(Monaghan, 1992). The resulting numerical approximation is

dCi
dt

=
Np�

j=1

mj
ρiρj

(ρjDj + ρiDi) (Cj − Ci)F (rj − ri) (2.9)

where ρi is the numerical approximation of the fluid mass density at position ri. Equation
(2.9) is the standard SPH approximation for dissipative or dispersive transport and it
has been used to simulate heat conduction in compressible gases (Cleary and Monaghan,
1999; Español and Revenga, 2003; Jubelgas et al., 2004); to simulate viscous effects in
low Reynolds number flows (Morris et al., 1997; Zhu et al., 1999); and to simulate solute
dispersion at the pore scale (Zhu and Fox , 2002; Tartakovsky and Meakin, 2005). In
what follows we refer to this approximation as weakly compressible SPH (WC-SPH)
formulation for dispersion. Although this approach is reasonable in simulations that
consider variable fluid density so that density must be explicitly incorporated inside the
dispersion operator, its use in incompressible flow simulations with constant density is, at
least, questionable. Moreover, as shown by equation (2.8), it is not necessary to use such
a pragmatic approach to develop a numerical formulation that satisfies basic physical
principles and conserves solute mass.

We close this section by summarizing the main distinctive properties of the MC-SPH
formulation. The approach considers that fluid particles represent a constant fluid volume
larger than a representative elementary volume (REV) such that Darcy’s velocities can
be defined and that particle trajectories can be computed by integrating (2.1). Solute
mass is distributed among a set of particles that carry concentration values. Local-scale
dispersion that occurs at scales much smaller than the REV, is modeled as a Fickian solute
mass transfer process between particles. Numerically, local-dispersion is approximated
by a local integral interpolation of the dispersion operator in (2.2). We note that the
particle fluid volume does not explicitly appear in the numerical formulation and that,
from a practical point of view, fluid particles can be regarded as numerical nodes.

2.2.1 Time Integration

The time integration of the system of equations (2.1) and (2.2) requires the use of a
sequential procedure. First, at the beginning of each time step node locations and con-

37



centrations are recorded. Then, new locations are calculated by integrating (2.1) using
an explicit time-marching scheme (e.g. Runge–Kutta methods) or a particle-tracking al-
gorithm (e.g. Pollock, 1988). After the new locations are computed, new concentrations
are calculated by integrating (2.2). This term can be integrated using explicit or implicit
schemes. For example, using a first-order approximation it can be approximated by

Ct+∆t
i − Cti

∆t =
�

j

αij
�
C∗j − C

∗
i

�
(2.10)

where

αij = 1
p̂j

(Di +Dj)F (rj − ri) ≥ 0 (2.11)

where C∗i = Cti or C∗i = Ct+∆t
i for explicit and implicit time integration, respectively.

Then, the first-order implicit approximation is given by



1 + ∆t
�

j

αij



Ct+∆t
i −



∆t
�

j

αij



Ct+∆t
j = Cti (2.12)

It is easy to demonstrate that this integration scheme is unconditionally stable and posi-
tivity preserving. Although possible, implicit schemes are seldom used because of compu-
tational overhead. Since nodes move with the flow, the connectivity list, i.e. the number
of nodes within the kernel support volume of a given node changes at each time step.
The memory requirements to store the associated matrix and the computational cost to
generate it and computing its inverse can be quite large, depending upon the average
number of nodes per smoothing length. That is why we used conditionally stable ex-
plicit time integration schemes in the simulations presented in Section 2.3. We motivate
the discussion about the stability of explicit schemes by writing the first-order explicit
approximation of (2.10)

Cti =


1−∆t
�

j

αij



Cti +


∆t
�

j

αij



Ctj (2.13)

which is stable and positivity preserving if 1/�αij ≥ ∆t. Empirical tests have shown
that other explicit solutions are stable for time steps ∆t such that (Cleary and Monaghan,
1999)

38



∆t ≤ �h
2

D
(2.14)

where � is a coefficient that depends upon the kernel function. In our simulations we
used a cubic-spline kernel and � = 0.1 to get stable results using an explicit second-order
Runge–Kutta scheme. From a physical point of view, equation (2.12) indicates that the
time step must be smaller than a dispersion time scale given by the dispersion coefficient
and the kernel support volume.

2.2.2 Accuracy and Spatial Resolution

Errors in meshless approximations based on kernel interpolants come from two sources
(Brackbill, 2005; Quinlan et al., 2006). The integral interpolation in (2.3) introduces a
smoothing error that depends on the shape and smoothing length of the kernel. Addition-
ally, there is a numerical integration error that depends upon the number and location
of the nodes and the smoothness of the real function (Schaback and Wendland, 2006).
There is a tradeoff between both sources of error because the accuracy of the smoothed
quantity increases as the smoothing length decreases, while the numerical integration er-
ror increases as the number of nodes per support volume decreases. Therefore, the only
way to simultaneously reduce both sources of error is to decrease the smoothing length
while increasing the total number of nodes to keep the same average number of nodes per
support volume. In general, for a given function and node distribution there is a critical
smoothing length hc such that for h > hc the smoothing error dominates and that for
h < hc the integration error is more important. The determination of hc for irregularly
spaced points is very difficult, if not impossible.

The numerical integration error also depends upon the regularity of the node distribution.
Meshless approximations such as SPH methods produce very accurate results in situa-
tions where particles are regular or uniformly distributed (Monaghan, 2005). In those
situations the error affecting the simulation is much smaller than the theoretical error es-
timate of (2.6) which considers a random particle distribution (Monaghan, 2005). When
particles are uniformly distributed the leading error term is due to the interpolation er-
ror and is controlled by the kernel smoothing length that sets the spatial resolution. For
example, numerical studies have shown that for a set of equispaced particles the error for
(2.9) converges with h2 (Cleary and Monaghan, 1999).
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The previous discussion indicates that the accuracy of the MC-SPH method to simulate
local-dispersion will evolve during the simulation. At early times the node distribution
is similar to the initial regular distribution, so the leading error term is due to the
interpolation approximation. As nodes are redistributed in space by the non-uniform
flow velocity, they become clustered in different zones, so the numerical integration error
becomes much more important. Then, the accuracy of the method during the simulation
must be controlled by an appropriate choice of the kernel smoothing length and the
number of nodes per kernel support volume or initial average spacing. The choice of
those parameters is not trivial, particularly in multidimensional simulations, and requires
some trial and error. In the simulations presented below, we selected those parameters
using the following steps: (i) setup an initial node configuration, (ii) simulate advection
only, (iii) check node distribution and, particularly, number of nodes per kernel support
volume, (iv) if node distribution was considered too sparse, increase the initial number of
nodes, (v) repeat until an acceptable final node distribution is produced. Because particle
tracking is very efficient, the determination of the optimum initial node configuration
demanded little time and effort relative to the overall simulation time.

2.2.3 Mass Conservation

In the proposed MC-SPH scheme solute mass is distributed in space as a finite set of
concentration values at node positions, thus the total mass in the system equal to the
integral of the concentration over the domain can be approximated as

M =
ˆ
Ω

C(r)dr ≈ �C�V +O


 1
�
Np



 (2.15)

where we have used a Monte Carlo integration approach and V is the volume of the
domain Ω. As discussed above, the accuracy of the integral depends upon the total
number of points Np and their spatial distribution. In most practical SPH simulations
the number of particles is quite large and (2.15) is a good approximation. Therefore, we
can study the evolution of the total solute mass in the system by writing

dM

dt
≈ V
d �C�

dt
= V
Np

Np�

i=1

dCi
dt

(2.16)
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Finally, substituting expression (2.10) used to compute the temporal derivative of the
concentration, we get

dM

dt
= V
Np

�

i

�

j

αij (Cj − Ci) = 0 (2.17)

since αij = −αji, and thus solute mass is globally conserved. In the analyses that follow
we use this expression to characterize mass balance.

2.3 Numerical evaluation of the MC-SPH method

To test the capacity of the MC-SPH method to provide reasonably accurate solutions
for dispersive transport we compare it with the analytical solutions of simple one- and
two-dimensional dispersion problems and with other numerical solutions for simulating
advective-dispersive transport in non-uniform velocity fields.

2.3.1 One-Dimensional Dispersion

We consider a simple one-dimensional problem to illustrate the behavior of the error
affecting our new MC-SPH approximation in (2.8) as function of the particle distribution
and smoothing length. We simulate the dispersion of a one-dimensional Gaussian plume
where the concentration as function of position and time is given by

C(x, t) = C0s0
s
e
−(x−x0)2

2s2 (2.18)

where s =
�
s20 + 2Dt, C0 is the maximum initial concentration, s0 is a constant that

controls the size of the initial plume, and x0 is the position of the plume center.

Particles were initially distributed over a regular equispaced grid with spacing ∆x. To
study the effect of the particle distribution, we generated a non-uniform particle distri-
bution by adding a normally distributed perturbation with standard deviation σ. Then,
we computed the numerical solution using a Gaussian kernel with cutoff at 4h, i.e. only
particles within 4h contribute to the kernel summation. The error introduced by this
approximation is small because of the rapid falloff of the Gaussian function.

41



Figure (2.2) shows the maximum normalized error defined as

error = �CNumerical − CAnalytical�2 /N (2.19)

where N = Np is the number of particles, versus h for two different ratios ∆x/h for
solutions computed using our MC-SPH and the traditional WC-SPH, formulations. For
uniform particle distribution (i.e., σ/∆x = 0) and ∆x/h = 0.66 the error increases as h2.
As particles become disordered the error increases for any value of h. Particle disorder is
less important for large smoothing lengths and errors for different σ are similar. Larger
values of the ratio ∆x/h, which is equivalent to fewer particles per support volume,
produces larger error even for the uniform particle distribution. For large particle disorder
(σ/∆x = 1) the interpolation error is dominant and the error of the numerical solutions
is almost independent of h. Figure (2.2) also shows that the use of the new MC-SPH
approximation instead of the standard WC-SPH does not make a difference as both
solutions produce results with similar accuracy.

2.3.2 Two-Dimensional Dispersion

In this section we consider the simulation of the dispersion of a two-dimensional Gaus-
sian plume using the RWPT and MC-SPH numerical methods. Despite the fact that
both methods are based on a Lagrangian formulation of the solute transport problem
and use a particle-tracking algorithm to integrate the advection equation, there are im-
portant differences in their conceptual approaches, accuracy, numerical implementation,
and computational performance that must be considered to evaluate their merits. Table
2.1 summarizes the main differences between both methods and Appendix C gives details
about our implementation of the RWPT method.

To make things simple we assume that the Gaussian plume is within a square two-
dimensional domain and that the maximum concentration, C0, occurs at the center of
the domain. In this case, the concentration as function of position and time is given by

C(x, y, t) = C0s20
s2
e
−(x−x0)2

2s2 − (y−y0)2
2s2 (2.20)

To calculate a reasonable value for the local-dispersion coefficient we assume a pore
water velocity v = 10−7 m/s and dispersivity α = 1 cm which results in a local-dispersion
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Figure 2.2: Error for one-dimensional simulations as a function of the smoothing
length h for Monte Carlo (MC) and Weakly Compressible (WC) formula-
tions defined by equations (2.8) and (2.9), respectively. Error magnitude
is shown for different ratios of particle spacing over smoothing length
∆x/h and for different perturbations over particle spacing, σ/∆x. Uni-
form particle spacing corresponds to σ/∆x = 0.
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MC-SPH RWPT
Particles carry solute concentration Particles carry solute mass
It is possible to compute chemical
reactions at individual particles

Chemical reactions must be evaluated
at some cell scale

It is more complex to implement full
dispersion tensor

It is easy to implement full dispersion
tensor

Numerical precision to represent
concentration values up to hardware
representation

Numerical precision to represent
concentration values given by number
of particles

Simulates solute mass transfer between
particles

Simulates solute mass transfer at cell
scale

It demands more computational effort
but it is possible to get very good
accuracy with moderate use of memory

It demands less computational effort
but it requires more memory to get
higher accuracy

Table 2.1: Comparison of MC-SPH and RWPT methods.

coefficient equal to D = v · α = 10−9 m2/s. We consider that the plume is centered in
a square domain of side L = 100 m and that s0 = 5 m, so that boundary effects are
negligible. To integrate the solution in time we use a time step ∆t = 11.6 days and we
consider a total simulation time T = 500∆t = 15.9 years.

We performed a series of simulations to evaluate the relative performance and conver-
gence properties of the RWPT and our MC-SPH methods. First, we solved the problem
using a RWPT method with different combinations of averaging volumes and number of
particles to represent the mass in the cell with the maximum concentration as summa-
rized in Table 2.2. Then, we simulated the same situation using MC-SPH considering
different combinations of number of particles and kernel smoothing length which defines
the average number of particles per kernel support volume as summarized in Table 2.3.

We note that the direct comparison of both methods is difficult because of the differences
in the way they calculate concentrations that result in different spatial resolutions and
accuracies for the same number of particles. For example, particles in the RWPT simu-
lations are only located within the plume edges while in MC-SPH simulations particles,
as explained below, must cover a larger area. In the MC-SPH simulations presented
here particles are quasi-randomly distributed in all the domain. However, it would be
possible to improve the spatial resolution by distributing the same number of particles
in a smaller area. Nevertheless, we believe that the results presented next constitute a
fair comparison of both methods.
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Simulation # cells Nr Np

RW1 50 x 50 10 329
RW2 50 x 50 100 3,957
RW3 50 x 50 1000 40,713
RW4 100 x 100 10 1,257
RW5 100 x 100 100 15,345
RW6 100 x 100 1000 157,972
RW7 200 x 200 10 4,993
RW8 200 x 200 100 60,965
RW9 200 x 200 1000 627,153

Table 2.2: Parameters used in RWPT simulations: number of cells used to calculate
concentrations, number of particles used to represent the mass within the
cell with maximum concentration Nr, and total number of particles Np.

Simulation h Np Nk

SPH1 0.5 10,000 3
SPH2 0.5 20,000 6
SPH3 0.5 40,000 13
SPH4 0.5 60,000 19
SPH5 0.5 80,000 25
SPH6 1.0 10,000 13
SPH7 1.0 20,000 25
SPH8 1.0 40,000 50
SPH9 1.0 60,000 75
SPH10 1.0 80,000 101
SPH11 2.0 10,000 50
SPH12 2.0 20,000 101
SPH13 2.0 40,000 201
SPH14 2.0 60,000 302
SPH15 2.0 80,000 402

Table 2.3: Parameters used in SPH simulations: smoothing length h, total number of
particles Np, and average number of particles per kernel support volume
Nk.
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2.3.2.1 Initial particle and concentration distribution

To apply the RWPT method to this problem we must first map the spatial concentration
distribution to a regular Cartesian grid. Next, we must set the number of particles that
represent a given mass to compute the equivalent particle distribution. In this example
we use different numbers of particles to represent the mass contained in the cells with
highest concentration value. Particles within each cell are initially distributed using a
quasi-random distribution to generate a uniform spatial coverage. Figure 2.3 shows the
corresponding particle distribution and the equivalent cell concentrations for some exam-
ple configuration. We note that particles are only present in cells where concentration
values are greater than some numerical threshold equal to the ratio between the mass of
individual particles and the cell volume (see Appendix C for details). Because of the av-
eraging procedure used to compute cell concentrations, the maximum cell concentration
value is less than C0. Similar differences between cell values and actual concentrations
occur in the rest of the domain and they are relatively more important near the plume
edges where cells contain fewer particles.

Figure 2.3: In RWPT simulations concentration values are approximated according
to the spatial distribution of particles. The left figure show the initial
particle distribution corresponding to a Gaussian plume with maximum
concentration C0 at the domain center. The right figure shows concen-
tration values computed according to the number of particles in each cell.

The initialization of particle positions and concentration values in SPH simulations are
independent. Particle positions are assigned such that the resulting particle distribution
covers the region of interest. For example, given an initial Gaussian plume and the same
number of particles as used in Figure 2.3, particles can be quasi-randomly distributed in a
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rectangular volume or distributed in a uniform rectangular lattice within a circular region
as shown in Figure 2.4. We observe that the maximum concentration value is within 0.1%
of the actual maximum concentration value C0 in both cases. This shows that the MC-
SPH method provides a better numerical resolution to represent concentration values than
the RWPT using the same number of particles. In this simple example, particles are only
created within a region of the numerical domain where concentrations are greater than
a given threshold value plus a surrounding buffer zone. The buffer zone is necessary to
provide additional space to allow dispersion to distribute the initial solute mass in a larger
volume. In real simulations it is important to prevent the existence of isolated particles
with non-negligible concentration at the edge of the particle cloud to avoid numerical
errors. There are three possible alternatives to control this source of error: (i) generate a
particle distribution that covers all the domain, (ii) use a dynamical scheme that inserts
particles as needed, (iii) generate an initial particle distribution with a buffer zone large
enough to guarantee an appropriate particle distribution during the simulation. The
first alternative is very simple to implement but it can become prohibitively expensive
in large-scale simulations or in simulations that require fine-spacing between particles.
The second solution works well but it is more difficult to implement and introduces some
computational overhead because it requires more sophisticated data structures to store
and manage the particle set. The third alternative combines the advantages of the other
two because it is very easy to implement and requires fewer particles than the first option.

Figure 2.4: In MC-SPH simulations concentration values are directly assigned to each
particle. Figures show two possible initial particle distributions and cor-
responding concentration values equivalent to a Gaussian plume with
maximum concentration C0 at the domain center.
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2.3.2.2 Performance

The overall number of floating operations and memory requirements of the RWPT
method using a background grid to compute concentration scales linearly with the to-
tal number of particles, i.e. it is O(N). However, the application of (C.3) to compute
smoother concentration distributions requires O(N2) operations. On the other hand,
the evaluation of the summation in (2.6) corresponds to an n-body problem which naive
implementation scales as O(N2) (Greengard, 1994). However, because the compact sup-
port of the kernel the actual work required to compute the summation can be reduced
to O(NNk), where Nk corresponds to the average number of particles per kernel sup-
port volume. The implementation of such algorithms requires an efficient method for
searching near-neighbor particles. Such algorithms are based on data structures used to
classify particles according to their spatial coordinates. For constant smoothing length
implementations as presented in this paper, the background grid algorithm is the most
efficient method (Viccione et al., 2008). For spatially varying smoothing lengths, more
sophisticated data structures based on octrees or binary trees must be used (e.g. Barnes
and Hut, 1986; Waltz et al., 2002). An explicit implementation of the proposed meshless
method as discussed in Section 2.2.1 requires an amount of memory that scales with the
number of particles (O(N)).

Figure 2.5 shows the CPU time required to complete a single time step as function of the
total number of particles in RWPT simulations. As expected the computational cost of
the method grows linearly with the total number of particles. On the other hand, Figure
2.6 shows that in SPH simulations the CPU time depends in a non-linear fashion on the
total number of particles and the kernel smoothing length. Larger smoothing lengths,
equivalent to more particles per kernel support volume, result in longer simulation times
for the same total number of particles. Figure 2.6 also shows that, as expected, the
CPU time required to complete a single time step scales linearly with the product of
the total number of particles and the average number of particles per kernel support,
NPK = NpNk. The differences observed between the curves corresponding to different
smoothing lengths for the same product NPK are due to differences in performance of
the routine that evaluates the changes in concentration at each time step as result of
different combinations of Np and Nk.
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Figure 2.5: Normalized CPU time required to solve one time step using RWPT as
function of the total number of particles Np. Computational cost of
RWPT simulations is proportional to the total number of particles Np.
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Figure 2.6: Normalized CPU time required to solve a single time step as function of
the total number of particles Np, kernel smoothing lenght h, and average
number of particles per kernel support volume Nk. Computational cost
of MC-SPH simulations is proportional to the product of Np and Nk.
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2.3.2.3 Accuracy

We used two criteria to compare the accuracy and convergence properties of RWPT
and MC-SPH. Figure 2.7 compares the temporal evolution of the simulated maximum
concentration with the theoretical result according to (2.20). The simulated RWPT
results exhibit unphysical oscillations and large errors. Such unphysical oscillations would
create serious problems if an operator splitting approach was used to simulate reactive
transport simulations where these errors would be amplified by non-linear reactions.
Local errors in RWPT simulations do not only depend upon the total number of particles
but also on the number of particles at each cell and the cell volume. For example,
simulation RW3 with Np = 40713 produces maximum concentration values that are closer
to the true value than the results of RW6 and RW9 with Np=157972 and Np = 627153,
respectively. Simulations with lower Nr as defined in Appendix C, not shown in the
figure, produced results with even larger errors. Figure 2.7 also shows a comparison
of the maximum concentration simulated with MC-SPH considering Np = 40, 000 and
the analytical solution. All of the simulations give solutions that are free of unphysical
oscillations, however, simulations with low average number of particles per kernel support
volume such as SPH3 (Nk = 13) can result in considerable local errors. Local errors can
be made negligible by choosing an appropriate combination of total number of particles
and kernel smoothing length to obtain larger average number of particles that effectively
contribute to the numerical integration, e.g. simulations SPH8 (Nk = 50) and SPH13
(Nk = 201). Results of other simulations with larger number of particles, not shown in
the figure, produced smaller errors.

Figure 2.8 shows the global error as function of the total number of particles in the
simulation and CPU time per time step. It is clear that using these metrics numerical
solutions computed using MC-SPH converge faster to the true solution than the RWPT
solutions. Figure 2.8 also shows that MC-SPH solutions have different convergence rates
depending upon the kernel smoothing length used. Moreover, curves corresponding to
different smoothing lengths intersect indicating the transition between regions where the
error is controlled by the average number of particles per kernel support volume Nk
(small Np) and the region where the error depends upon the spatial resolution given by
the kernel smoothing length (large Np). For simulations that require low CPU time, the
convergence rate for MC-SPH simulations is faster than the one for RWPT simulations.
However, the convergence rate of both methods becomes similar for simulations with
larger number of particles that require longer CPU times to complete a single time step.
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Figure 2.7: Maximum simulated concentration versus time step. RWPT simulations
with resolution number Nr = 1000 and MC-SPH simulations with Np =
40000. Estimated concentrations in RWPT simulations present numerical
oscillations due to representing the solute mass distribution as a finite set
of particles. MC-SPH simulations compute concentrations that are free
of numerical oscillations.
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Figure 2.8: Normalized global error versus total number of particles and normalized
CPU time. Error computed as defined in (2.19) substituting N by the
number of cells for RWPT and the total number of particles for MC-SPH
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number of particles Np or the CPU time required to complete a single
time step, is faster for MC-SPH simulations than for RWPT simulations.
However, the convergence rate of both methods become similar for simu-
lations that use more particles and demands longer CPU times.

53



2.3.3 Advection–Dispersion in Heterogeneous Porous Media

The objective of this section is to evaluate the performance of the MC-SPH approach to
simulate solute transport in two-dimensional heterogeneous porous media. To verify our
MC-SPH code we compared it with the ULTIMATE total variation diminishing (TVD)
finite difference solver and the hybrid method of characteristics (HMOC) particle-mesh
solver included in the popular MT3DMS package (Zheng and Wang, 1999). We focus
our analysis on verifying if the numerical results satisfy some basic physical requirements
such as: avoiding numerical dispersion, providing positive solution free of oscillations,
and mass conservation.

2.3.3.1 Setup

Before solving the solute transport problem we generated a velocity field as follows: (i)
generate a moderately heterogeneous random hydraulic conductivity field, (ii) calculate a
velocity field by solving the saturated flow problem using MODFLOW (Harbaugh, 2000)
considering a constant hydraulic head gradient from left to right, and no-flow boundaries
at top and bottom. Table 2.4 shows the parameters used to generate the random hydraulic
conductivity field and to solve the flow problem. We used the resulting velocity field to
simulate conservative transport of a square initial plume with constant concentration,
C0. Table 2.5 shows the parameters used to solve the transport problem. Figure 2.9
shows a schematic of the simulation setup. In all the simulations discussed below we
only considered constant isotropic dispersion.

Description Symbol Value

Variance of ln(K) σY 1.4
Correlation length of ln(k) IY 2.5

Domain dimension (Lx, Ly) (200IY , 50IY )
Grid size ∆ IY /5

Mean velocity in x U 0.81
Max. velocity in x umax 6.22

Table 2.4: Parameter and results of flow model.

For the TVD simulations we used the same grid discretization that was used to solve
the flow problem. For the HMOC simulations the allowed total maximum number of
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Description Symbol Value

Initial plume size (Lpx, Lpy) (20IY , 20IY )
Initial plume center (Xp, Yp) (36IY , 25IY )

Péclet number Pe = UIY /D [20, 200,∞]
Dimensionless time step τ = U∆t/∆ 6.5 · 10−3

Mean CFL number CFLmean =
U∆t/∆

0.03

Max. CFL number CFLmax =
umax∆t/∆

0.25

Table 2.5: Parameter values used in transport model.

Figure 2.9: Domain dimensions, square initial plume, and breakthrough observation
points P1 and P2 along centerline.
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particles was 6 · 105 and the number of particles per cell in cells where the relative
concentration gradient (Zheng and Wang, 1999, p. 65) was higher than 1 · 10−5 was
15. The threshold value, DCHMOC, which controls if the forward or backward MOC
method is used for an individual cell according to its relative concentration gradient was
set equal to 1 · 10−4 (Zheng and Wang, 1999, p. 73). In the MC-SPH simulations the
total number of particles was constant during the simulation and equal to 3.8 · 105 which
was equivalent to an initial number of particles per grid cell equal to 8. Particles where
initially distributed in a rectangular lattice within a rectangular region of size 68IY in the
direction of the flow and 28IY in the transverse direction centered at the initial plume
center. The kernel smoothing length was constant and equal to half the grid size used in
the MT3DMS models, so the spatial resolution of the three methods was comparable.

The results of both, TVD and HMOC, methods correspond to concentration values at
the center of grid cells. We interpolated the MC-SPH results which correspond to con-
centration values at scattered points onto a similar grid to compare them. We stress
that this interpolation was needed only for comparison purposes and it is usually not
necessary in SPH simulations. We used the following expression to compute interpolated
values AI ,

AI (ri) =

�
j
AjŴ (|ri − rj|)
�
j
Ŵ (|ri − rj|)

=
�

j

Ajψij (2.21)

where ψij are Shepard functions (Shepard, 1968) and summations are over all particles.
Although the interpolation in (2.21) is valid for any kernel function Ŵ , we used the same
kernel used in MC-SPH simulations to get interpolated quantities with similar spatial
resolution.

2.3.3.2 Results

Figure 2.10 shows the spatial concentration distribution at the end of the simulation for
the advection-only case. Solutions given by the three methods are very different. The
TVD solver is not able to avoid numerical dispersion so the plume exhibits large dilu-
tion and the initial plume mass is distributed within a much larger volume. There are
only few areas where the solute concentration is similar to the initial concentration. The
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HMOC produces less numerical dispersion and the plume edges are clearly distinguish-
able. However, the effects of numerical dispersion are clear in zones located between fast
or slower fingers and in front and behind the main plume. The existence of those arti-
ficial low concentration zones has some important practical implications. For example,
in presence of reactions controlled by mixing such as biodegradation those low concen-
tration zones could potentially extend the reactive zone near the plume edge (Cirpka
et al., 1999b). The concentration distribution generated by the MC-SPH code is free
of numerical dispersion and the plume edges are very sharp as expected in absence of
local-dispersion. Zones without contaminant located between fast and slow fingers are
observable surrounding all the plume volume. It is interesting to notice some isolated
high concentration spots in the front and back of the plume as result of connected high
and low permeability regions.

Figure 2.11 shows concentration values along the domain centerline at the end of the
simulation, i.e., after the plume center has traveled 62 integral scales. The three methods
produce very similar results for low Péclet numbers. As expected, the results produced
by TVD and HMOC methods are identical considering that both methods share the same
dispersion solver routine. It is more interesting to notice the good agreement between
MC-SPH and the other two methods for low Péclet values. It is difficult to say if the
small differences observed at the plume edges are due to differences between the meth-
ods or the interpolation method used to map the MC-SPH results onto a grid. More
important differences are observed for the more strongly advection-dominated scenarios.
For Péclet number equal to 200, the two Lagrangian based methods, HMOC and MC-
SPH, perform similarly while the TVD solution is smoothed by numerical dispersion.
This comparison clearly shows that even high-order Eulerian mesh-based methods such
as TVD cannot compete with particle-based methods for advection-dominated problems.
For the advection-only case the three methods give solutions that are clearly distinguish-
able. TVD results show little difference with respect to the situation for Pe = 200. On
the other hand, HMOC and MC-SPH results are closer to the expected sharp profile
with concentration values equal to the initial concentration or zero. The MC-SPH solu-
tion seems to perform better close to the plume edges where the HMOC solution gives
a smoother profile as consequence of the accumulated numerical dispersion due to the
interpolation of concentration values from scattered points to the cell centers at each
time step.

Figures 2.12 and 2.13 show breakthrough curves for points P1 and P2 located along the
domain centerline at 26IY and 42IY downstream from the initial plume center, respec-
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Figure 2.10: Spatial concentration distribution at dimensionless time τ = Ut/IY =
62 for Pe = ∞. TVD solver (top), HMOC solver (middle), and SPH
solution mapped onto rectangular grid (bottom). Only dimensionless
values C/C0 > 0.001 are shown.
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Figure 2.11: Concentration versus accumulated distance along centerline at dimen-
sionless time τ = Ut/IY = 62.
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tively. Breakthrough curves for low Péclet values equal to 20 given by the three methods
are almost identical. This confirms that the MC-SPH method is able to simulate sit-
uations where dispersion is important with accuracy that is comparable to well-tested
mesh-based methods as used in MT3DMS. As observed in the longitudinal profile com-
parison, the difference between HMOC and MC-SPH solutions and the TVD solution
increases as the transport process becomes controlled by advection. For Péclet number
equal to 200, HMOC and MC-SPH produces similar results while the corresponding TVD
breakthrough curves have a completely different shape typical of much higher dispersion
coefficients. Finally, for the purely-advective case the breakthrough curves corresponding
to each method become very different. For the point located closer to the plume center,
P1, HMOC and TVD predict a much earlier arrival time and longer tail. The earlier
arrival time is due to the lateral mixing produced by the numerical dispersion, which
transfers solute concentration from faster plume fingers that pass close to point P1. The
longer tail is also due to lateral and longitudinal numerical mixing. The breakthrough
curve corresponding to the MC-SPH solution is not affected by numerical dispersion,
thus it exhibits a rectangular shape as expected. For point P2, the three breakthrough
curves have similar arrival time indicating that a set of fast streamlines forming a fast
advancing front passes through P2, so the lateral mixing does not have a significant ef-
fect. However, lateral and longitudinal numerical dispersion produce much longer tails
in the corresponding HMOC and TVD curves. The analysis of the breakthrough curves
at both points indicates that neither the HMOC nor TVD schemes are able to correctly
predict mixing and dilution in situations where advection is much more important than
dispersion.

The value of the maximum plume concentration is an important parameter because it
is usually used as criteria for regulatory purposes. It has also been used in theoretical
studies to characterize and measure mixing and dilution processes. Figure 2.14 shows
the maximum plume concentration value as a function of time. It contains two curves
that correspond to the MC-SPH solution. SPH-particles correspond to the maximum
concentration value observed at any particle position while SPH-mesh corresponds to the
maximum concentration value after interpolation onto a grid. For Péclet value equal to
20 the three methods predict the same maximum concentration confirming the previously
observed behavior. For higher Péclet values the TVD solution predicts lower maximum
values than the other two methods, thus it over-predicts the dilution of the plume.

As discussed above it is difficult to directly compare the mass balance properties of mesh-
based methods like TVD, Eulerian–Lagrangian methods such as HMOC, and meshless
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Figure 2.12: Breakthrough curve at point P1 located 26IY downstream from initial
plume center.
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Figure 2.13: Breakthrough curve at point P2 located 42IY downstream from initial
plume center.
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Figure 2.14: Dimensionless maximum concentration versus dimensionless time. Be-
cause of numerical dispersion, the maximum concentration for simula-
tions with large Pe is smaller in TVD than in HMOC and MC-SPH
solutions.
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methods such as MC-SPH. In general, the only comparison that can be made consists in
looking at the total solute mass distributed in the domain volume. For grid-based meth-
ods with equispaced grid and uniform cell concentration, Ci, as used in the simulations
discussed here, the total mass in the domain is equal to M =

´
C dV = ∆V �iCi, where

∆V is the cell volume. In that case the mean concentration defined as C̄ =M/V is equal
to the arithmetic average of the cell concentrations, i.e. C̄ = ∆V

V

�
iCi = 1

ncells

�
iCi.

Since the total domain volume is constant, the total solute mass is conserved only if the
mean concentration C̄ is constant. Figure 2.15 shows the mean solute concentration ver-
sus dimensionless time for the three Péclet number considered. In the three scenarios the
mean concentration computed using the TVD and MC-SPH solution at particle positions
is constant, indicating that the total mass in the domain is conserved. On the other hand,
the mean concentration given by the HMOC method presents small fluctuations (<1%)
which are more important for the advection-dominated case. Small mass differences due
to the interpolation scheme used in HMOC are expected and this error is often cited
as the main disadvantage of the method (Zheng and Wang, 1999). There is a tempo-
ral change in the mean concentration computed using interpolated values given by the
MC-SPH solution. The change increases with time and it is higher for higher dispersion
coefficients. The temporal variation is probably due to the increasing interpolation error
due to the more irregular particle distribution. On the other hand, higher dispersion co-
efficients increase the dilution of the plume, so the total solute mass is distributed among
a larger number of particles with lower concentration values which are more sensible to
interpolation errors.

2.4 Conclusions

We derived a new SPH formulation based on the Monte Carlo nature of the original SPH
method to simulate solute transport in heterogeneous porous media. We demonstrated
that the new MC-SPH method is able to accurately simulate scenarios of practical and
theoretical interest where the combined action of flow heterogeneity and local-scale dis-
persion affects the plume movement, mixing and dilution. The study of those situations
using traditional numerical methods is very difficult if not impossible due to numerical
dispersion and other numerical artifacts such as unphysical oscillations, that not only
degrade the accuracy of the numerical solution but also modify the basic physical mech-
anisms that control solute transport in porous media.
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Figure 2.15: Mean concentration versus dimensionless time. While the mean concen-
tration value of SPH-Mesh (concentrations interpolated onto grid) is not
constant, the mean concentration at particle locations (SPH-Particles)
is constant throughout the simulation which demonstrates that the MC-
SPH formulation conserves total mass.
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We demonstrated through numerical benchmarks that the numerical error of the MC-
SPH method behaves in a complex way and it depends upon several factors such as
smoothing length, particle spacing and solution smoothness. However, numerical results
indicate that the overall accuracy of the method can be controlled with an adequate choice
of those parameters. The overall performance of the proposed method compares favor-
ably with existent numerical methods such as RWPT, higher-order Eulerian and hybrid
Eulerian–Lagrangian schemes for the set of simulations discussed in this paper. Due to
its Lagrangian nature the MC-SPH method performs very well for advection-dominated
problems. However, in contrast to other Lagrangian schemes, it is also able to simulate
scenarios where dispersion is important with accuracy comparable to Eulerian mesh-
based methods. Moreover, for the large range of Péclet numbers considered the MC-SPH
method provided solutions that are physically correct, e.g. sharp-fronts with negligible
numerical dispersion for advection dominated problems, or correct amount of mixing and
dilution in cases where dispersion is important. We have also demonstrated through the-
ory and numerical simulations that for practical problems the MC-SPH method satisfies
total mass conservation within reasonable accuracy.

Encouraging results of ongoing research to extend the MC-SPH method to simulate
anisotropic dispersion and chemical reactions considering more general boundary condi-
tions will be reported on due course.
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Chapter 3

Evaluation of Particle
Approximations to Simulate
Anisotropic Dispersion1

3.1 Introduction

Solute transport in natural porous media is commonly modeled using an advection-
dispersion equation (ADE). In most real situations, the transport process is advection-
controlled and the resulting parabolic partial differential equation exhibits more of a
hyperbolic character. On the other hand, the natural heterogeneity of geological forma-
tions results in rapid changes of the magnitude and direction of the flow velocity. Those
features make the numerical solution of the resulting transport equation with traditional
mesh based methods very challenging. The numerical solution of ADE that represents
solute transport in porous media is further complicated by the fact that the dispersion
coefficient is a second-order tensor with principal axes that are oriented parallel and
perpendicular to the flow velocity (Bear , 1988), so that the spreading of a contaminant
plume is anisotropic: faster in the flow direction than in the transverse direction.

Particles methods offer advantages for the simulation of solute transport in natural porous
media because of their natural ability to adapt to the flow velocity and to simulate solute
advection without introducing numerical dispersion and artificial mixing. Thus, there

1A version of this chapter will be submitted for publication. P. Herrera, M. Massabó, and R. Beckie.
Evaluation of Particle Approximations to Simulate Anisotropic Dispersion.
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has been a long dated interest in the use of particle methods to simulate solute transport
in the subsurface, e.g. (Kinzelbach, 1988) and references therein. The main challenge for
the use of particle methods is to derive an accurate approximation for dispersion that
can simulate solute mixing and dilution, while avoiding numerical oscillations that plague
most traditional numerical approximations of parabolic or elliptic equations that include
mixed derivatives or “cross-terms” (Crumpton et al., 1995; Le Potier , 2005b; Nordbotten
and Aavatsmark, 2005; Mlacnik and Durlofsky, 2006; Yuan and Sheng, 2008; Edwards
and Zheng, 2008; Lipnikov et al., 2009).

Recent approaches to incorporate diffusion or viscous effects in particle simulations are
based on a integral approximation of second order derivatives (Degond and Mas-Gallic,
1989a; Cleary and Monaghan, 1999; Eldredge et al., 2002). Particle locations are used
as quadrature points to discretize the integral approximation. When used to simulate
solute transport, these types of methods approximate the local dispersion operator using
concentration values at a set of scattered particles or nodes (Zimmermann et al., 2001;
Herrera et al., 2009b). The effects of dispersion are incorporated by modifying concen-
tration values of individual particles as the result of mass exchange between neighboring
particles. Therefore, important physical mechanisms such as dilution and solute mixing
are easily incorporated.

Zimmermann et al. (2001) investigated the use of the particle strength exchange (PSE)
method (Degond and Mas-Gallic, 1989a,?) to simulate solute transport in homogeneous
porous media considering anisotropic dispersion and uniform and non-uniform flow con-
ditions. Their results showed that the PSE approximation provides accurate results for
a set of benchmark problems if a remeshing procedure was used to control the irregular
particle distribution due to the flow velocity.

Herrera et al. (2009b) compared a smoothed particle hydrodynamics (SPH) approxi-
mation to simulate conservative transport in heterogeneous porous media with a high-
order finite volume and a hybrid method of characteristics (HMOC) solvers considering
isotropic dispersion. Herrera et al. (2009b) used a SPH approximation for isotropic dis-
persion, first introduced by Cleary and Monaghan (1999) to simulate thermal conduction,
that only involves the first derivative of the kernel, so it is less sensitive to particle disorder
than other SPH approximations for second derivatives that require remeshing (Chaniotis
et al., 2002). The results presented in (Herrera et al., 2009b) clearly show the advan-
tages of the SPH approximation for simulating advection-dominated solute transport in
heterogeneous porous media.
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The first objective of this paper is to derive a SPH expression to approximate anisotropic
dispersion to extend our previous work presented in (Herrera et al., 2009b). The second
objective is to evaluate the accuracy with which the two particle methods, SPH and PSE,
and a standard finite volume formulation can simulate isotropic and anisotropic disper-
sion under different conditions. In particular, we are interested in understanding the
convergence properties of both particle methods, the factors that control their accuracy,
and their relative performance in comparison with a well established mesh-based solver.
Additionally, we discuss the monotonicity properties of both particle approximations for
different degrees of anisotropy of the dispersion tensor.

3.2 Mathematical Formulation

The Lagrangian formulation of conservative solute transport in porous media involves
the following system of differential equations,

dr
dt

= v(r, t) (3.1)

dC(r, t)
dt

= ∇ · (D(r)∇C(r, t)) (3.2)

where r is the position of a fluid particle, C(r, t) is the solute concentration [M/L3] and
D(r) is the hydrodynamic dispersion coefficient [L2/T]. The first equation describes the
movement of a fluid particle due to the flow velocity, while the second equation describes
the change in concentration due to dispersion. Generally, the flow field is computed
externally and it is an input parameter for the transport simulation.

In isotropic porous media the components of the tensor D are given by (Bear , 1988)

Dij = (αT |v|+Dm) δij + (αL − αT ) vivj
|v| (3.3)

where αL and αT are the longitudinal and transverse dispersivity [L], respectively; Dm

is the molecular diffusivity [L2/T], and v is the pore water velocity [L/T]. In general,
the longitudinal dispersivity is at least one order of magnitude larger than the transverse
dispersivity, i.e. αT/αL � 1.
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The solution of (3.1) can be easily evaluated using a semi-analytical particle-tracking
scheme (Pollock, 1988) or an explicit time integration scheme. In the rest of this
manuscript we focus our discussion on the numerical solution of (3.2), which represents
a much more challenging problem in the context of particle methods.

3.3 Smoothed Particle Hydrodynamics (SPH) Ap-
proximation

3.3.1 Background

In the standard SPH formulation the smoothed interpolation AS(r) of a variable A(r) is
defined as the integral (Gingold and Monaghan, 1977; Lucy, 1977)

AS(r) =
ˆ
A(r�)W (r− r�, h) dr� (3.4)

whereW (r− r�, h) is a kernel function with smoothing length h that satisfies (Monaghan,
1992)

ˆ
W (r− r�, h) dr� = 1 (3.5)

lim
h→0
W (r− r�, h) = δ(r− r�) (3.6)

Spline polynomials with compact support are usually used as kernel functions because of
their practical advantages (Monaghan, 1992).

In the standard SPH formulation the numerical approximation of the integral in (3.4) is
evaluated as

A(ra) =
�

b

1
pb
A(rb)W (|ra − rb|) (3.7)
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where the numerical density pb is a measurement of the spatial particle distribution. In
most cases, it is approximated as

pa =
�

b

W (|ra − rb|) (3.8)

When computing approximations for first and second order derivatives it is also useful
to introduce the scalar function F (r) such that the gradient of a spherically symmetric
kernel can be evaluated as (Cleary and Monaghan, 1999; Jubelgas et al., 2004)

∇W (r) = rF (r) (3.9)

3.3.2 SPH Approximation for Tensorial Dispersion

To derive a SPH expression to approximate the dispersion term (3.2), we use the following
identity

�

i

�

j

∂

∂xi
Dij
∂C

∂xj
= 1

2
�

i

�

j

�
∂2

∂xi∂xj
(DijC)− C ∂

2Dij
∂xi∂xj

+Dij
∂2C

∂xi∂xj

�

(3.10)

that is valid for any symmetric tensor D. This expression is the generalization of the
identity used by Jubelgas et al. (2004) to derive a SPH approximation for thermal con-
duction.

Second derivatives of a scalar field A can be evaluated using (Español and Revenga, 2003;
Monaghan, 2005)

∂2A

∂xi∂xj

�����
a

=
�

b

1
pb

(Aa − Ab)F (ra − rb)
�

Γ(r� − r)i(r� − r)j
|r� − r|2

− δij

�

(3.11)

where Γ = 4 in two dimensions and Γ = 5 in three dimensions.

Finally, substituting (3.11) into (3.10), we arrive at our SPH approximation for equation
(3.2),
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dCa
dt

= 1
2
�

b

1
pab

(Ca − Cb)F (|ra − rb|)D (ra, rb) (3.12)

where

D (ra, rb) =
�

i

�

j

�
Daij +Dbij

� �

4(rb − ra)i(rb − ra)j
|rb − ra|2

− δij

�

=
�

i

�

j

DabijΘij (rb − ra)

where Da is the dispersion tensor at position ra and we have replaced the density pb
by a symmetric expression pab = f(pa, pb), e.g. the arithmetic average of pa and pb, to
ensure a symmetric approximation (Herrera et al., 2009b). This expression reduces to
the standard SPH approximation for diffusion (Tartakovsky and Meakin, 2005; Herrera
et al., 2009b) or thermal conduction (Cleary and Monaghan, 1999; Jubelgas et al., 2004), if
D = DI, where I is the identity matrix. In simulations that consider variable coefficients,
the term Dabij = (Dbij + Daij) can be substituted by an effective coefficient of the form
Dabij = 2DaijDbij/(Daij +Dbij) , which has given more robust results in thermal conduction
simulations(Cleary and Monaghan, 1999; Jubelgas et al., 2004).

The approximation (3.12) has two sources of error. First, the SPH integral interpolant
(3.4) introduces an error that grows with the smoothing length (O(h2)). Second, the
numerical discretization of the integral introduces an error that depends on the number
and position of the particles that contribute to the summation in (3.7). This source of
error is related to the ratio between the average number of particles per kernel smoothing
length γ, which is equivalent to the ratio between the smoothing length and the average
particle spacing ∆x, i.e. γ = h/∆x. In general, a larger number of particles per kernel
support volume (larger γ), results in a better approximation of the integral. However,
the use of large γ values while controlling h to minimize the interpolant error requires
an increasingly small particle spacing and, hence, a large number of particles. Therefore,
one must make a trade-off between γ and h to obtain reasonable error while controlling
the number of particles and computational effort (Cleary and Monaghan, 1999).

3.3.3 Monotonicity

It is well known that traditional numerical approximations of parabolic or elliptic equa-
tions of the form (3.2) that consider the off-diagonal terms of the dispersion tensor do not
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satisfy the monotonicity properties of the solution, e.g. see (Herrera and Valocchi, 2006)
and references therein for details. The development of numerical approximations that
overcome those numerical issues is still the object of intense research (Le Potier , 2005b;
Mlacnik and Durlofsky, 2006; Nakshatrala and Valocchi, 2008; Yuan and Sheng, 2008;
Lipnikov et al., 2009). Therefore, it is important to study the monotonicity properties of
the SPH approximation derived above.

First, we notice that (3.12) has the form

dCi
dt

=
�

j �=i
βij(Cj − Ci) =

�

j

β̂ijCj (3.13)

with β̂ii = −�j �=i βij, thus �j β̂ij = 0.

Then, we can use the local extremum diminishing (LED) criteria (Jameson, 1995) to
study the monotonicity of this type of numerical discretization. A numerical approxima-
tion such (3.13) satisfies the LED criteria if βij ≥ 0, i �= j (Kuzmin and Turek, 2002),
which is a sufficient condition to obtain monotonic solutions as can be easily demon-
strated by the following rationale. If the concentration at node i, Ci, is a minimum the
temporal derivative of the concentration at that node is positive or zero. Therefore, a
minimum concentration can only increase or stay constant. Similar arguments can be
used to prove that a maximum value cannot increase.

In the case of (3.12), we have that

βab = −1
2
�

b

1
pab
F (|ra − rb|)D(ra, rb) a �= b (3.14)

with F (r) ≤ 0 because of the kernel properties.

Then, the LED criteria requires that D(ra, rb) ≥ 0. This condition cannot be demon-
strated for the general case of an irregular node distribution or non-uniform flow, but
it can be studied for the simple case of equispaced nodes in a square lattice in uniform
flow field. To make the analysis simpler we use a polar coordinate system such that θ
is the angle formed by the vector connecting two nodes located at ra and rb and the x
axis. Then, we obtain that Θxx = 4 cos2 θ− 1, Θyy = 4 sin2 θ− 1, and Θxy = 4 sin θ cos θ.
In a square lattice, θ = [0, π/4, π/2] or a multiple of those numbers. For θ = 0 or
θ = π/2 there is only one term that is not zero and it is positive. If θ = nπ/4 with n
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integer, we have that D(ra, rb) = Dabxx + Dabyy + 4Dabxy, which can be positive or negative
because of the change in sign of Dxx, Dyy, and Dxy with the flow orientation according
to (3.3). Figure 3.1 shows the value of D(ra, rb) as a function of the velocity direction
for θ = nπ/4. The figure shows that D(ra, rb) � 0 for all possible flow orientations. This
implies that the SPH discretization with nodes distributed in a square lattice does not
satisfy the LED criteria and that the numerical solution of (3.12) might exhibit negative
concentrations depending upon the flow orientation. This is confirmed by the results of
numerical simulations presented below.
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Figure 3.1: Coefficient D(ra, rb) = Dxx + Dyy + 4Dxy for |v| = 1 and such that
r =rb − ra forms an angle of 45◦ with the x axis as function of the angle
β formed by the flow velocity and the x axis.
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3.4 Particle Strength Exchange (PSE) Approxima-
tion

The PSE approximation of (3.2) is also based on an integral expression to compute the
dispersion operator (Degond and Mas-Gallic, 1989a). An approximation for anisotropic
dispersion derived in (Degond and Mas-Gallic, 1989) and used in (Zimmermann et al.,
2001) is

dCa
dt

= (∆x)2

ε6
�

b



(Cb − Ca)K(rab, ε)
�

i

�

j

Mij(ra, rb)(ra − rb)i(ra − rb)j



 (3.15)

where ∆x is the representative inter-particle spacing, K(rab, ε) is a cutoff function that
satisfies so-called moment conditions, ε is known as the core size which defines the size
of the area of influence of each particle, and the components of the matrix M(ra, rb) are
given by

Mij(ra, rb) = 1
2 (mij(ra) +mij(rb)) (3.16)

where

m(r) = D(r)− 1
4tr(D(r))I (3.17)

with tr(D) = �iDii. Zimmermann et al. (2001) provide expressions for second, fourth
and sixth order cutoff kernels and Eldredge et al. (2002) discuss the details of the kernel
properties and provide expressions to compute kernels that are up to eighth order in one
and two dimensions.

The same analysis used in the previous section to study the monotonicity properties of
the SPH approximation can be used to demonstrate that (3.15) does not guarantee the
monotonicity of the solution when the full dispersion tensor is considered as discussed
by Degond and Mas-Gallic (1989) and confirmed through numerical simulations by Zim-
mermann et al. (2001).

80



Because of the similarities between the SPH and PSE methods it is possible to establish a
direct parallel between the kernel and cutoff functions and between the smoothing length
and core size in SPH and PSE, respectively. In the rest of this manuscript, we will use
the terms kernel or cutoff function to refer to the function K and the terms core size or
smoothing length to refer to ε. We will also use W to refer to the cutoff K and h instead
of ε to refer to the core size whenever such change helps to simplify notation.

3.5 Numerical Tests

We next evaluate the accuracy of our SPH anisotropic dispersion approximation and the
PSE method from (Degond and Mas-Gallic, 1989) and (Zimmermann et al., 2001). We
use the simulation of the instantaneous release of a solute mass ∆M in an unbounded
domain with a temporally and spatially constant velocity as benchmark problem to study
the accuracy and controls on error of the dispersion approximations for SPH and PSE.
We also use a standard 9-points finite volume scheme (FV) in a Cartesian grid (Zheng and
Bennet, 1995; Herrera and Valocchi, 2006) to define a base case to compare the relative
performance of both particle methods. A similar problem has been previously used to
study the convergence properties of the PSE (Zimmermann et al., 2001) and diffusion
velocity methods (Beaudoin et al., 2003).

Since we are interested in numerical approximations of dispersion, we simplify the prob-
lem and neglect the contribution of advection. In this case, the transport process depends
on the flow only through the relation of the dispersion tensor and the flow velocity given
by (3.3). Because advection can be easily incorporated within a particle framework with-
out introducing additional errors, the results of our analysis can be directly extrapolated
to more realistic situations.

The analytical solution for the solute concentration as function of position and time is
given by,

c(x, t) = C1
C4 exp

�
−X2(2tDyy + w2)− Y 2(2tDxx + w2) + 4XY tDxy

8t2C2 + 4w2tC3 + 2w4

�

(3.18)

where X = x − x0 and Y = y − y0, (x0, y0) is the position of the initial solute release,
w is a measure of the size of the initial input, the constant C1 is related to the initial
mass ∆M , and the other constants are C2 = DxxDyy − D2

xy, C3 = Dxx + Dyy and
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C4 =
√

4t2C2 + 2twC3 + w4. To simplify the presentation of the results, we choose
C1 = C0w2 such that the maximum initial concentration is equal to C0. Table 3.1 shows
a summary of the parameters used to setup the test problem.

Parameter Symbol Value Unit

Released mass ∆M 107 g
Initial plume width w 44 m
Maximum initial concentration C0 320 mg/L
Length numerical domain L 2000 m
Long. Dispersivity αL 10 m
Time step ∆t 1 day
Total time T 300 days

Table 3.1: Parameters used in all simulations.

The three solutions are computed using an explicit fourth-order Runge-Kutta solver to
integrate in time. The use of an explicit solver imposes restrictions on the size of the
time step to obtain stable solutions. The three methods have stability limits of the form

∆t ≤ CT
∆2

Dxx +Dyy
(3.19)

where ∆ is the grid size for the finite volume, core size for the PSE (Zimmermann et al.,
2001), and smoothing length for the SPH approximations(Cleary and Monaghan, 1999),
respectively. The constant CT is equal to 0.5 for the finite volume approximation, and
it depends upon the kernel or cutoff functions for the SPH and PSE. Higher order cutoff
functions result in slightly more restrictive stability conditions, for example Zimmermann
et al. (2001) found that CT ≈ 2.5 and CT ≈ 1.2 for second and fourth order cutoff
functions, respectively. Additionally, the stability limits of both particle methods depends
upon the particle distribution. We found through numerical experiments that the SPH
solution is stable if CT = 0.1 and use this value to compute a time step that satisfies the
stability restrictions of three methods for the case of equispaced particles.

The PSE and SPH approximations require that the area of influence or support of par-
ticles overlap. Thus, one must use a core size for PSE or smoothing length for SPH
that is larger than the average particle spacing. Additionally, the error of the solution
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given by both methods depends upon the ratio of the smoothing length to the average
particle spacing. In our simulations, we used different ratios to test the influence of that
parameter on the error of the solution. On other hand, higher order kernels and cutoff
functions have larger support volume as shown in Figure 3.2, which results in larger areas
of influence and number of neighboring particles for a given smoothing length or core size.

Efficient implementations of the PSE and SPH solvers require a fast algorithm to identify
near neighbor particles. The SPH implementation is based on kernels that have compact
support, so an individual particle interacts only with particles that are within the kernel
support volume. In that case it is easy to use a background grid to classify particles
in space. The cell size of that grid is related to the kernel smoothing length such that
neighbor particles are always at most one cell apart (Welton, 1998). Kernels used in
the PSE approximation are modified Gaussian functions which have infinite support.
Therefore, in theory, all particles interact with each other. However, PSE kernels fall
rapidly with distance and one can assume that they have an effective compact support
that is few times the core size as shown in Figure 3.2. In our implementation, we have
assumed that the effective compact support of the PSE kernels is equal to five times the
kernel core size and we have applied the same strategy as in SPH to search for neighbor
particles.

3.5.1 Simulation Cases

To test the performance of the three numerical methods we define different scenarios
based on the values of the parameters summarized in Table 3.2. The ranges of values of
those parameters are similar to the ones used in previous studies or were selected based
on reasonable physical assumptions. For example, we use αT/αL in the range [0.001, 1.0]
with αL = 10 m and β equal to [0◦, 45◦, 53◦], which are similar to the values reported in
(Zimmermann et al., 2001; Beaudoin et al., 2003). We use value for h/∆x and ε/∆x in
the range [1.0, 1.6], which is similar to values used in other numerical studies to study
the convergence properties of the SPH approximation for thermal conduction (Cleary and
Monaghan, 1999) and PSE for solute dispersion (Zimmermann et al., 2001).
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Figure 3.2: Cubic, quartic, and quintic SPH kernels, W, with finite compact support
(Price, 2004) and second-, fourth-, and sixth-order cutoff functions, K,
used in PSE simulations (Zimmermann et al., 2001) as function of the
ratio between distance and kernel core size or smoothing length, h. All
kernels fall rapidly with distance and have an effective support equal to
few smoothing lengths.
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Parameter Explanation

αT/αL Dispersivity ratio
h/∆x Smoothing length or core size over average particle spacing
β Angle formed by velocity and x axis

SPH Kernel Three different SPH kernels: cubic, quartic and quintic
PSE Cutoff Three different cutoff functions: 2nd, 4th and 6th order

Table 3.2: Parameters used to define different simulation scenarios to evaluate ap-
proximations for anisotropic dispersion.

To study the convergence of the three methods with respect to the particle or grid spacing,
we define a set of runs with different number of cells or particles as summarized in Table
3.3. To assign the position of particles and cells we assume a large square domain with
side L. We assign the same number of particles and cells in each direction, Nc, for
simulations that consider equispaced particles. For simulations that consider random or
quasi-random particle distributions, the total number of particles, N , is calculated such
that the average number of particles in each direction is equal to Nc. We compute two
errors, E2 =

��
j e

2
j/N and E∞ = max(|ei|), where ej is the difference between analytical

and numerical solutions at node j, to measure the accuracy of the numerical solutions. We
also look at the temporal evolution of the difference between the maximum concentration
values of the numerical and analytical solutions. In the discussion that follows we report
errors after 200 time steps unless explicitly indicated.

Run Nc ∆x

R1 40 50.0
R2 60 33.3
R3 80 25.0
R4 100 20.0
R5 120 16.7
R6 140 14.3
R7 160 12.5

Table 3.3: Definition of different runs used to study convergence properties. Each run
is defined by the number of cells or average number of particles in each
direction, Nc, which results in a grid or average particle spacing, ∆x.
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3.5.2 Equispaced Particles

We first consider the case of equispaced particles in a square lattice. This scenario is
useful because it allows the direct comparison of the particle methods and the finite
volume approximation. Besides, the accuracy of both particle methods is expected to be
optimal for this configuration, thus the results of this section provide a best case estimate
of the error of the SPH and PSE methods.

Unless explicitly specified, all the results reported for equispaced particles were computed
using a cubic spline SPH kernel and second order PSE cutoff functions.

3.5.2.1 Effect of particle spacing

Figure 3.3 shows the error E2 versus the particle or grid spacing. For isotropic dispersion
(αT/αL = 1.0), the convergence rate of the three methods is similar, but the mesh
based FV approximation has in average an error that is one order of magnitude smaller
than the SPH approximation and almost two orders of magnitude smaller than the PSE
approximation for the range of particle or grid spacing considered.

For αT/αL = 0.01 (anisotropic case) the analysis is more complicated. For all the cases
the mesh-based FV solver is more accurate than both particle methods but the difference
is smaller than for the isotropic case. The PSE and FV methods exhibit good convergence
in all cases, while the SPH approximation is very sensitive to the value of the ratio h/∆x.
The SPH solution converges much faster for larger number of particles per kernel support
volume (larger h/∆x). Nevertheless, the convergence rate of the SPH solution for small
∆x is lower than for the other two methods.

Figure 3.4 shows the error E∞ divided by the maximum initial concentration versus the
particle or grid spacing. The situation is similar to the previously discussed for the error
E2. The three methods have smaller errors for the isotropic case than for the anisotropic
one. The approximation FV has consistently lower error than the two particle methods
for all the situations analyzed, however the difference is smaller in the anisotropic case.
For the isotropic situation the maximum absolute error is around 1% of C0 for the PSE
approximation and less than 1% for the SPH and FV methods. For the anisotropic case
the error is around 1% of the initial maximum concentration for the two particle methods
and less than that for FV solution. For small ∆x the convergence rates of the PSE and
FV approximations are comparable, while the SPH solution has a lower rate.
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Figure 3.3: Error E2 as function of particle or grid spacing for equispaced particles.
The three methods exhibit good convergence for the isotropic case in-
dependently of the ratio h/∆x. For the anisotropic case, the PSE and
FV solutions exhibit good convergence in all cases. However, the SPH
approximation is very sensitive to the value of h/∆x. The convergence
rate of the FV and PSE methods for small ∆x is higher than the SPH
one for the anisotropic case.
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Figure 3.4: Normalized error E∞ as function of particle or grid spacing for equispaced
particles. The three methods exhibit good convergence for the isotropic
case independently of the ratio h/∆x. For the anisotropic case, the PSE
and FV solutions exhibit good convergence in all cases. However, the SPH
approximation is versy sensitive to the value of h/∆x. The convergence
rate of the FV and PSE methods for small ∆x is higher than the SPH
one for the anisotropic case.
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3.5.2.2 Maximum concentration

Figure 3.5 shows the difference between the maximum concentration values of the ana-
lytical and numerical solutions as function of the number of time steps. For the isotropic
and anisotropic cases the difference increases at early time until reaching a maximum
value. For later times, as the initial plume smooths out, the error decreases to an asymp-
totic value. The SPH solution with h/∆x = 1.2 is the exception to this pattern since the
error grows unboundedly with time. The difference between the numerical and analyti-
cal solutions after 300 time steps is less than 1% for the FV and the best SPH run and
around 1% for the PSE solution.

3.5.2.3 Negative concentrations

Figure 3.6 shows a comparison of the analytical and numerical solutions after 300 days
for run R7 and αT/αL = 0.01. The three numerical solutions are similar to the analyt-
ical solution. However, the three numerical solutions exhibit negative concentrations in
bands that tend to be aligned with the main direction of the flow. Figure 3.7 shows the
spatial distribution of the difference between the analytical and numerical solutions. In
general, the FV and SPH approximations overestimate the concentration values in the
center of the plume in a region parallel to the flow direction and they underestimate the
concentration in areas outside the plume center along a line that is perpendicular to the
flow. The spatial distribution of the error of the PSE solution follows a different pattern.
Concentration values are underestimated in the central region of the plume and they are
overestimated in two separate regions that are located near the plume edge along the
plume center line. Therefore, the spatial distribution of the error of the three methods
depends upon the flow orientation.
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Figure 3.5: Difference between maximum concentration values of numerical and an-
alytical solutions as function of time for equispaced particles and run
R7. For the isotropic case the error of the three methods increases at
early time. As the concentration field smooths out the error decreases
at later times. For the anisotropic case the error of the SPH approxima-
tion for h/∆x = 1.2 grows unboundedly. However, the SPH solution for
h/∆x = 1.6 performs similar to the FV approximation.
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Figure 3.6: Concentration distribution after 300 time steps for run R7, αT /αL = 0.01,
and β = 45◦ . All three methods exhibit negative concentrations (dark
bands). Minimum concentration values are −1.8 ·10−2 for FV, −6.9 ·10−4

for SPH, and −3.2 · 10−1 for PSE.
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Figure 3.7: Difference between analytical and numerical solutions (Error = CN−CA)
after 300 time steps for run R7, αT /αL = 0.01, and β = 45◦. The spatial
pattern of the error of the three methods depends upon the flow velocity
direction.

3.5.2.4 Effect of ratio between smoothing length and particle spacing

As discussed above, the error of the SPH approximation for the integral in 3.4 depends
upon the number of particles per support volume, which is related to the ratio between
the smoothing length and the average particle spacing, γ = h/∆x. Previous numeri-
cal studies have shown that the SPH approximation for scalar diffusion (isotropic case)
provides accurate results even for small values of γ in the case of reasonably distributed
particles(Cleary and Monaghan, 1999). On the other hand, the stability of the PSE
approximation requires that particles overlap, i.e. the core size must be always larger
than the representative particle spacing. However, the accuracy of the approximation
decreases as the core size increases, thus it provides optimal solutions for small h such
that h/∆x > 1. Figure 3.8 shows errors E2 and E∞ of the SPH and PSE solutions
for run R6 as function of γ. We observe that as expected the error of the PSE solu-
tion increases monotonically with γ for the isotropic and anisotropic cases. In contrast,
the SPH solution exhibits a more interesting behavior. The error of the SPH solution
for the anisotropic case decreases with γ, which indicates that the error of the integral
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approximation controls the overall error in that case.

3.5.2.5 Effect of anisotropy ratio

Figure 3.9 shows E2 and normalized E∞ versus the anisotropy ratio for run R7. The error
of the SPH and FV approximations is larger for smaller αT/αL ratio, while the error of
the PSE method is almost constant for the range of dispersivity ratios considered. The
FV approximation has the smallest error in all the cases, while the PSE solution is more
accurate than the SPH solution for all the situations that consider anisotropic dispersion
(i.e. αT/αL �= 1). We note that these results consider γ = 1.2 and that according
our previous discussion, one would expect that the SPH solution would behave better
if a larger γ is used. However, the results of our simulations indicate that the trend of
increasing error for larger anisotropy ratios of the SPH and FV methods is independent
of the other parameters considered in this study.

3.5.2.6 Effect of kernel function

Table 3.4 presents a summary of the E2 and E∞ errors for run R5 for scenarios that
consider different SPH kernels and PSE cutoff functions. For the isotropic case, the use
higher-order SPH kernels does not have a clear impact on the accuracy of the solution,
while the use of higher-order PSE cutoff functions results in smaller errors. In particular,
the difference between the second and fourth order cutoff functions is quite important
and it confirms that the error of the PSE approximation can be effectively improved using
higher-order cutoff functions as discussed by Eldredge et al. (2002). For the anisotropic
case, the use of higher-order SPH kernels improve the solution but the effect is less
important than one observed using different cutoff functions in the PSE case. Moreover,
the use of higher-order cutoff functions improve the PSE approximation and makes it
more accurate than the FV method for the anisotropic case.
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Figure 3.8: Error E2 for run R6 versus the ratio between smoothing length or core
size and particle spacing, γ = h/∆x. While the error of the PSE solution
grows monotonically with γ for the isotropic and anisotropic cases, the
error of the SPH solution for the anisotropic case decreases with it.
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SPH PSE
αT/αL Kernel E2 E∞ Kernel E2 E∞

1 Cubic 7.0 2.7 2nd order 103.4 11.1
1 Quartic 4.1 2.1 4th order 4.1 2.1
1 Quintic 7.6 2.9 6th order 2.6 1.5

0.01 Cubic 17.4 3.9 2nd order 5.2 2.5
0.01 Quartic 7.1 2.6 4th order 0.2 0.5
0.01 Quintic 4.7 2.2 6th order 0.1 0.3

Table 3.4: Normalized error for different SPH kernels and PSE cutoff functions. Er-
ror of the SPH and PSE numerical solutions divided by the error of the
FV approximation for run R5 and h/∆x = 1.2 considering different SPH
kernels and PSE cutoff functions.

One would expect that higher order polynomials used as SPH kernels have the advantage
of smoother derivatives which, in combination with the increased size of support volume,
could decrease the sensitivity of the kernel to the degree of particle disorder (Price, 2004).
However, the results of our simulations show that the use of higher-order kernels does
not provide a significant improvement of the numerical solution in the simple case of
equispaced particles.

3.5.2.7 Effect of velocity orientation

It is well known that the error of numerical methods based on grids or meshes used to
solve (3.2) that include the off-diagonal terms of the dispersion tensor exhibit numerical
artifacts that depend upon the flow orientation with respect to the grid axes (Herrera
and Valocchi, 2006). Therefore, it is interesting to test if the error of the two particle
methods changes for different flow orientations. Table 3.5 summarizes the results for run
R6 assuming different flow orientations. As expected, all three methods are not sensitive
to the flow direction for the isotropic case. However, for the anisotropic case the mesh
based FV method exhibits differences of up to two orders of magnitude in the E2 error
and one order of magnitude in the E∞ depending on the flow direction. The error of the
SPH solution also depends upon the flow direction but it only shows small differences for
different velocity directions. On the other hand, the error of the PSE solution is almost
independent of the flow direction.
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SPH PSE FV
αT/αL β◦ E2 E∞ E2 E∞ E2 E∞

1 45 0.0061 1.8051 0.0728 6.6221 0.0007 0.5964
1 0 0.0061 1.8051 0.0728 6.6221 0.0007 0.5964
1 53 0.0061 1.8051 0.0728 6.6221 0.0007 0.5964

0.01 45 0.5062 10.4855 0.0880 5.1519 0.0172 2.1333
0.01 0 0.6919 14.9257 0.0880 5.0957 0.0006 0.5552
0.01 53 0.4495 9.7445 0.0880 5.2464 0.0154 1.9997

Table 3.5: Error versus flow velocity direction for R5 and h/∆x = 1.2. The error
of the numerical solutions is independent of the flow direction if isotropic
dispersion is considered. However, the error of the FV and SPH solution
depends on the flow velocity direction if anisotropic dispersion is simulated.

3.5.3 Irregularly Spaced Particles

It is well known that the accuracy and stability of the PSE and SPH methods depends
upon the spatial distribution of particles (Cleary and Monaghan, 1999; Zimmermann
et al., 2001; Chaniotis et al., 2002). In general, at the beginning of a simulation particles
are distributed in a uniform fashion, e.g. rectangular lattice. As particles move carried by
the flow, high velocity gradients result in the distortion of the initial regular distribution
as shown in Figure 3.10. In general, the continuity property of the flow prevents particles
from moving randomly and the particle set maintains some regularity (Monaghan, 2005).
However, some non-uniform flows can result in very irregular particle distributions.
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Figure 3.10: Particle distortion due to flow velocity. High gradients in fluid velocity
(arrows) result in distortion of the initial regular particle distribution
(black circles). However, the continuity property of the flow prevents
that particles become randomly distributed.

To evaluate effect of the particle disorder on the accuracy and stability of the SPH
and PSE solutions, we set up a set of simulations that evaluate the numerical solution
using randomly and quasi-randomly distributed particles. An example of the difference
between the distributions is shown in Figure 3.11. A random distribution results in large
contrasts in the spatial density of particles in different areas of the domain. On the other
hand, a quasi-random distribution results in an irregular but uniform spatial particle
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Figure 3.11: Particle locations for run R1 considering random and quasi-random dis-
tributions. The random distribution has large contrasts in particle den-
sity, while the quasi-random distribution has an irregular but uniform
spatial particle density.

density. Based on our experience, particle distributions as result of real flow fields fall
between these two extreme cases. Therefore, simulations that consider these two spatial
distributions allow us to estimate upper and lower bounds for the performance of the
PSE and SPH approximations for more realistic simulations.

For the simulations that consider irregularly distributed particles, we used a cubic SPH
kernel and a sixth order PSE cutoff function.

3.5.3.1 Isotropic case

Figure 3.12 shows the error E2 versus the average particle spacing for the same scenario
but different particle spatial distribution. As expected the error increases with the degree
of disorder. As seen by the slope of the curves in Figure 3.12, the convergence rate of
the two methods decreases as particles become more disordered. Both methods converge
very slowly for the case of randomly distributed particles and the convergence rate is
not monotonic. It is interesting to notice that while a larger ratio h/∆x results in larger
error for the case of equispaced particles, it actually helps to control the error in the
case of random and quasi-random particle distributions. Overall, the PSE method is less
sensitive to the disorder of the nodes than the SPH approximation.
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Figure 3.12: E2 error of (a) SPH and (b) PSE numerical solutions versus average
particle spacing for αT /αL = 1.0 using equispaced, random, and quasi-
random particle distributions. The convergence rate of boths methods
is lower for irregular particle distributions. In both cases, the error
increases with the degree of particle disorder.
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The previous observations are confirmed by Figure 3.13, which shows the normalized E∞
error as function of the average particle spacing. As a first approximation, we can say
that for small particle spacing the error increases by one order of magnitude between the
equispaced and quasi-random distribution and by another order of magnitude between
the quasi-random and random distributions.

Figure 3.14 shows the temporal evolution of the difference between the maximum concen-
tration of the analytical and numerical solutions. The error of the PSE solution is much
smaller than the error of the SPH approximation for the case of randomly distributed
particles. The error of both methods is smaller for quasi-randomly distributed particles.
This figure confirms that the use of larger ratios between smoothing length or core size
and particle spacing result in smaller errors when particles are irregularly distributed. In
particular, the error of the PSE method is almost constant and less than 1% of the initial
concentration if a ratio h/∆x = 1.6 is used. This error is comparable to the maximum
error of the PSE approximation for the case of equispaced particles with a second-order
cutoff function (see Figure 3.5).
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Figure 3.13: Normalized E∞ error of (a) SPH and (b) PSE numerical approxima-
tions versus average particle spacing for αT /αL = 1.0 using equispaced,
random, and quasi-random particle distribution. The convergence rate
of both methods is lower for irregular particle distributions.
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Figure 3.14: Difference between maximum concentration values of analytical and nu-
merical solutions as function of the number of time steps for run R7,
αT /αL = 1.0, and (a) random and (b) quasi-random particle distribu-
tions.
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3.5.3.2 Anisotropic case

Both particle approximations proved to be much more sensitive to particle disorder when
simulating anisotropic dispersion than for the isotropic case. SPH simulations with ran-
dom and quasi-random distributions and h/∆x = 1.2 became unstable after few time
steps. For the other scenarios, the errors of both methods stay almost constant as the
average particle spacing decreases, as shown in Figure 3.15. The use of larger smoothing
lengths or core sizes results in lower errors, but it does not significantly improve the
convergence rate of the numerical approximations. The minimum E∞ corresponds to the
PSE solution for quasi-randomly distributed particles and h/∆x = 1.6 is approximately
7% of the initial maximum concentration C0.

Figure 3.16 shows the concentration field for run R7 and quasi-randomly distributed
particles at the end of the simulation. Both solutions exhibit negative concentrations
(dark bands) that, as for equispaced particles, are located in regions almost parallel to
the flow direction. While the maximum magnitude of the negative values in the PSE
solution (−0.28) is very similar to the one observed for equispaced particles (−0.32), it
is five orders of magnitude larger for the SPH solution, −16.86 for quasi-random and
−6.9 · 10−4 for equispaced particles.

3.6 Conclusions

We present the derivation of SPH approximation to simulate anisotropic dispersion. We
also present an analytical analysis of the monotonicity properties of the new approxima-
tion. In addition, we compare the new approximation to the particle strength exchange
method and a standard 9-point finite volume scheme to simulate the dispersion of a
contaminant plume in two-dimensions under different dispersivity ratios and flow orien-
tations. Furthermore, we test the numerical properties of the three methods by evaluating
the sensitivity of the solution to a variety of numerical parameters such as particle and
grid spacing, kernel and cutoff functions, and ratio of smoothing length or core size to
particle spacing.

Based on the results of the numerical simulations presented above, we conclude the
following:

1. Simulations that consider anisotropic dispersion are troublesome for all three meth-
ods. The error of the numerical solution is larger and the convergence rate lower
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Figure 3.15: Error as function of average particle spacing for αT /αL = 0.01 using
randomly and quasi-randomly distributed particles. The use of larger
ratio h/∆x decreases the error, but convergence rates of both methods
are much lower than for equispaced particles or for the isotropic case.
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Figure 3.16: Concentration distribution after 300 time steps for run R7, αT /αL =
0.01 and quasi-randomly distributed particles. Dark bands indicate ar-
eas of negative concentrations. Minimum concentration values are -16.86
for SPH and -0.28 for PSE.

than for the corresponding isotropic case. Furthermore, the numerical solutions
computed with any of the three methods independent of the particle distribution
exhibit artificial oscillations and negative concentrations.

2. For equispaced particles, the convergence rate of both particle methods is similar
to that of the standard 9-point finite volume scheme. However, in contrast to the
finite volume scheme, the convergence rate and the overall accuracy of the SPH and
PSE methods does not only depend on the number of particles or average particle
spacing used, but also on other additional parameters such as kernel function and
smoothing length.

3. The spatial distribution of particles is the most important factor that controls the
accuracy of the numerical solutions computed with the PSE or SPH approximations.
The accuracy of the solution decreases as the degree of disorder of the particles
increases. This effect is more important for simulations that include anisotropic
dispersion than for simulations of isotropic dispersion. To a certain extent, the
loss of accuracy of the numerical solution can be controlled by using larger ratios
between smoothing length or core size to average particle spacing. Overall, the
PSE method is less sensitive to particle disorder than the SPH method.
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Previous studies (Zimmermann et al., 2001; Chaniotis et al., 2002) have demonstrated
that the periodic remeshing of particles can help to control the loss of accuracy of particle
formulations due to the particle disorder caused by the flow velocity. Our numerical
results indicate that using a remeshing step is likely beneficial in simulations that consider
anisotropic dispersion. However, the loss of accuracy of the particle methods for isotropic
dispersion is less important, thus the benefits of remeshing could be counter balanced by
the additional computational cost and artificial diffusion that it introduces. Moreover,
the remeshing procedure would not prevent the occurrence of negative concentrations.
Those numerical oscillations can be particularly troublesome if particle methods are used
to simulate reactive transport. In that case, negative values can be amplified by non-linear
chemical reactions. Therefore, although the PSE and SPH schemes may be compelling
alternatives to simulate conservative solute transport in porous media, they may not be
appropriate for reactive solute transport simulations.
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Chapter 4

A Multidimensional
Streamline-Based Method to
Simulate Reactive Solute Transport
in Heterogeneous Porous Media1

4.1 Introduction

4.1.1 Motivation

Despite considerable efforts made during the last decades to advance the state of the
art in numerical modeling of conservative and reactive solute transport in porous media,
current numerical methods still have serious limitations to provide accurate and efficient
simulations of situations of practical interest. The use of grid-based methods such as finite
difference or finite elements to simulate conservative and reactive transport in porous
media is problematic for several reasons. Solute transport in porous media is typically
advection-dominated, thus grid-based methods are afflicted by numerical dispersion that
can be mitigated but not avoided by using high-order numerical schemes. In addition,
spurious oscillations arise because of the application of non-linear high-order methods

1A version of this chapter will be submitted for publication. P. Herrera, A. Valocchi, and R. Beckie.
A Multidimensional Streamline-Based Method to Simulate Reactive Solute Transport in Heterogeneous
Porous Media.
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to solve advection (Steefel and MacQuarrie, 1996; Cirpka et al., 1999) and numerical
approximations of off-diagonal entries in the dispersion tensor (Herrera and Valocchi,
2006; Lipnikov et al., 2007). Finally, explicit time integration schemes can result in
very restrictive global stability criteria, especially in highly heterogeneous velocity fields
(Thiele et al., 1997; Crane and Blunt, 1999).

Particle methods based on random-walk schemes are an attractive alternative to simulate
solute transport in porous media because of their natural ability to simulate advection-
dominated transport, their simplicity, and their inherent advantages for scalable and
efficient parallel implementations. However, those methods also have important disad-
vantages. First, they have problems in tracking low concentrations and producing smooth
concentration distributions (Tompson, 1993; Obi and Blunt, 2004; Herrera et al., 2009b).
Second, they require a background grid to simulate the effects of local-scale dispersion
on the mixing of different chemical compounds and to compute concentrations to es-
timate reaction rates. The computation of averaged concentration values over the cell
volumes can introduce artificial mixing that can compromise the original advantages of
the method. Third, their performance can be degraded in situations that include multi-
ple chemical species because of the large number of particles required to track multiple
concentrations.

Reactive solute transport simulations impose even more severe restrictions on the per-
formance of numerical methods than do conservative solute transport simulations. First,
numerical artifacts such as spurious oscillations and numerical dispersion can be ampli-
fied in presence of non-linear reactions (Cirpka et al., 1999b). Second, in many situations
of practical interest — e.g. biodegradation of contaminant plumes — chemical reactions
mainly occur in areas of low solute concentrations that can be difficult to model accu-
rately with methods that have been successfully applied to simulate conservative solute
transport, e.g. random-walk methods (Tompson, 1993). Last, numerical methods ap-
plied to simulate reactive transport must be computationally efficient to allow for the
simulation of multiple species at fine spatial and temporal scales.

Recently, Herrera et al. (2009b) presented a meshless approach based on smoothed parti-
cle hydrodynamics (SPH) (Gingold and Monaghan, 1977; Lucy, 1977), hereafter referred
to as the Monte-Carlo SPH (MC-SPH) method, to simulate conservative solute transport
in heterogeneous porous media. MC-SPH is a Lagrangian method that uses a kernel-based
interpolation scheme to represent dispersion (Cleary and Monaghan, 1999; Jubelgas et al.,
2004). In MC-SPH simulations, individual particles move along instantaneous stream-
lines carrying solute concentration and exchanging solute mass with nearby particles, as
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shown in Figure 4.1. Since the method can handle dispersion without remapping the
concentration field onto a grid, it is free of numerical dispersion and grid orientation
effects. In addition, because particles carry concentration information and not mass, the
method accurately resolves low concentration values and produces smooth concentration
distributions.

Figure 4.1: Meshless MC-SPH method. In MC-SPH simulations a given particle
(black circle) moves along an instantaneous streamline (dashed line) while
exchanging solute mass with particles that are within its “area of in-
fluence” defined by the support volume of the kernel function (shaded
circles).

Although promising, MC-SPH also presents problems. Because it is based on an integral
interpolation scheme, the accuracy of the solution depends on the spatial distribution
of the particles, which can become a problem in presence of heterogeneous flow fields
where particles accumulate in stagnant zones (Herrera et al., 2009a). The evaluation of
the interpolation scheme requires identifying near neighbor particles at each time step,
which introduces a computational overhead in comparison with other numerical schemes.
Moreover, the method had been only used to simulate isotropic dispersion until the recent
work of Herrera et al. (2009a) who introduced a method to handle the full dispersion
tensor in three dimensions. They demonstrated that their approximation worked well
for anisotropic dispersion, but can produce negative concentrations for the full tensor
dispersion with off-diagonal terms. Therefore, this approximation is not suitable for
reactive transport simulations and this motivates us to turn to a new approach based
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upon streamline methods.

Streamline methods have been successfully used to simulate oil migration (Thiele et al.,
1996, 1997) and multidimensional solute transport (Crane and Blunt, 1999; Di Donato
and Blunt, 2004; Obi and Blunt, 2004, 2006). These methods use a numerical grid
that adapts to the flow field, which reduces numerical dispersion and grid orientation
effects. The use of streamlines allows the transformation of a multidimensional trans-
port equation to a set of individual one-dimensional transport problems. Because of its
adaptation to the flow and its ability to minimize numerical dispersion, the method is
well suited for simulations of advection-dominated transport as found in heterogeneous
porous media (Di Donato et al., 2003). In addition, the numerical solution of the re-
sulting one-dimensional transport problem also allows the use of more efficient numerical
solvers and more relaxed stability constraints (Crane and Blunt, 1999). Because of the
efficiency of the method, it is possible to simulate large-scale domains with fine spatial
and temporal resolution (Di Donato et al., 2003; Obi and Blunt, 2004, 2006).

Although longitudinal dispersion along individual streamlines can be easily incorporated,
transverse mixing between streamlines is more difficult to simulate. Since many impor-
tant reactions in situations of practical interest occur along the fringes of contaminant
plumes and are controlled by transverse dispersion (Ham et al., 2004), it is crucial to
incorporate transverse mixing in a streamline-based formulation to obtain a general sim-
ulation framework that can be applied to a wide range of reactive transport problems.

To best of our knowledge, two approaches have been used to incorporate transverse
dispersion in streamline-based simulations. In the first, solute transport is solved using a
flow-oriented grid and transverse dispersion is included as a flux component perpendicular
to the streamlines (Cirpka et al., 1999). This approach has been successfully used in two-
dimensional simulations (Cirpka et al., 1999b), but it has not been extended to three-
dimensions. A second alternative employs a hybrid approach Obi and Blunt (2004). First,
advection is solved along streamlines. Then, concentration values are mapped onto a grid
where a mesh-based solver is used to solve for dispersion. Finally, concentration values
are interpolated back from the grid to the streamlines. The interpolation from and to
streamlines introduces some numerical error that is difficult to quantify (Obi and Blunt,
2004). Because the interpolation must be done at each time step, the cumulative effect
can be important even if an accurate interpolation scheme is used.
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Figure 4.2: Hybrid streamline-SPH method. The method combines ideas taken from
streamlines simulations and MC-SPH. Solute advection and longitudinal
dispersion are handled as in traditional streamline simulations. Nodes
along streamlines are used as interpolations points to apply the same
meshless approximation for local-scale dispersion as the one used in MC-
SPH, so an individual node (black circle) exchanges solute mass with
other nodes (grey circles) that are within the support volume of the kernel
function (shaded region).

4.1.2 Objectives

The main objective of this paper is to present a new hybrid numerical method that
combines some of the most important advantages of streamline methods and MC-SPH.
Streamlines are used to discretize the domain and to define the location of a set of
nodes that is used to evaluate the numerical solution. Advection is solved in tradi-
tional streamline-based simulations, i.e. as a composite of one-dimensional solutions.
Anisotropic dispersion is accommodated as the sum of a three-dimensional isotropic dis-
persion contribution handled using a meshless integral approximation, and longitudinal
dispersion solved along each streamlines using a standard finite difference formulation.
Figure 4.2 shows a schematic of the proposed hybrid method.

The main advantages of the proposed method are: (i) like traditional streamlines meth-
ods, it is well suited to simulate advection-dominated transport in heterogeneous porous
media because of the elimination of artificial mixing due to numerical dispersion, (ii) it
provides a robust mechanism to incorporate transverse dispersion between streamlines
without requiring additional interpolation steps, and (iii) the use of a flow oriented grid
to approximate dispersion results in a numerical scheme that is monotone and positivity
preserving even for full dispersion tensors, thereby avoiding negative concentrations and
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spurious oscillations that plague many other numerical methods.

4.2 Mathematical Formulation

4.2.1 Governing Equation

At the local-scale reactive solute transport in porous media is modeled by a system of
partial differential equations, which is given as follows for the case of constant porosity
and an incompressible fluid (Bear , 1988):

∂Ck
∂t

= ∇ · (D∇Ck)− v ·∇Ck +Rk(c) k = 1, . . . ,m

∂Ck
∂t

= Rk(c) k = m+ 1, . . .M (4.1)

where Ck [M/L3] is the solute concentration of species or component k, D [L2/T] is the
hydrodynamic dispersion tensor, v [L/T] is the pore water velocity, Rk [M/L3/T] is the
total reaction rate for species or component k, c = (C1, . . . , CM) is the concentration
vector, m is the number of species or components in the aqueous (mobile) phase, and M
is the total number of species or components.

In what follows we will focus our attention on the numerical solution of the first group of
equations that describe the migration of chemical species in the aqueous phase, which cor-
respond to a set of advection-dispersion-reaction (ADR) equations. However, as demon-
strated by others authors (Di Donato and Blunt, 2004) and in Section (4.4), the proposed
streamline formulation can also handle situations that include immobile species in the
solid phase.

The most common expression to compute the components of the dispersion tensor D for
an isotropic porous medium considering a Cartesian coordinate system is (Bear , 1988;
Lichtner et al., 2002)

Dij = (αT q +Dm) δij + (αL − αT ) vivj
q

(4.2)
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where Dm [L2/T] is the molecular diffusivity, δij is Kronecker’s delta, q = |v| [L/T] is
the magnitude of the pore water velocity, and αL and αT [L] are the longitudinal and
transverse dispersivity of the medium, respectively.

4.2.2 Streamline Formulation

Traditional streamline models neglect dispersion and rewrite the multidimensional trans-
port equation (4.1) as a one-dimensional transport equation along streamlines using the
following identity (Thiele et al., 1997; Crane and Blunt, 1999)

v ·∇ ≡ |v| ∂
∂s

= ∂
∂τ

(4.3)

where s is the arc length coordinate and τ is the time of flight (TOF), defined as the
time required to reach a point located at a distance s along a streamline (Thiele et al.,
1996; Crane and Blunt, 1999). Mathematically,

τ =
sˆ

0

1
|v| dξ (4.4)

If we consider a local coordinate system with components x̂i that are parallel and perpen-
dicular to the flow direction as shown in Figure 4.3, then the off-diagonal terms in (4.2)
are equal to zero and the diagonal terms simplify to �D11 = αL |v| and �D22 = �D33 = αT |v|.

Therefore, the multidimensional ADR equations can be written using a flow-oriented
coordinate system and the TOF to get

∂Ck
∂t

= ∇ ·�D∇Ck −
∂Ck
∂τ

+Rk(c) k = 1, . . .m (4.5)

or in terms of the arc length coordinate, s, to get

∂Ck
∂t

= ∇ ·�D∇Ck − |v|
∂Ck
∂s

+Rk(c) k = 1, . . .m (4.6)

The formulations given by (4.5) and (4.6) are equivalent, but they each present distinct
challenges for numerical methods.
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Figure 4.3: Flow oriented coordinate system. The transport equation can be written
considering using a coordinate system with coordinates x̂i that are parallel
and perpendicular to the direction of the flow. Streamline simulations
also define other two coordinates along individual streamlines, the time
of flight τ and the arc length s.

4.2.3 Numerical Approximation

The numerical solution of equations (4.5) or (4.6) requires numerical approximations
for the advection, dispersion and reactions terms. The advection term can be approx-
imated within a traditional streamline framework whereas the dispersion term can be
evaluated using a combination of a one-dimensional finite difference approximation along
streamlines for the longitudinal component and a kernel-based interpolation for the other
components. Finally, the reaction component can be approximated using different solvers
designed to integrate initial value problems (e.g. see Oran and Boris, 2000).

In the following description of the proposed streamline-based formulation we assume
that: (i) the flow velocity field is externally computed, thus it is an input parameter;
and (ii) the flow field is steady-state. The second assumption allows us to simplify the
discussion about the implementation of the method but it does not represent a real
limitation, because transient flow fields can be easily handled by tracing new streamlines
when flow conditions change and, then, interpolating concentrations from the old to the
new streamline locations(Thiele et al., 1996; Thiele, 2005).

In the discussion that follows we drop the sub-index k and assume a single species or
component to simplify notation.
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4.2.3.1 Advection along streamlines

For simple problems that involve only advection and longitudinal dispersion, concentra-
tion values along individual streamlines can be exactly computed using one-dimensional
analytical solutions (Thiele et al., 1996). However, more general scenarios require the
use of numerical approximation schemes.

Standard streamline simulations generate a numerical grid in TOF space by tracking
particles and recording the TOF when particles enter and exit from individual cells (e.g.
Crane and Blunt, 1999; Obi and Blunt, 2004). Because of the heterogeneity of the porous
medium and, hence, the flow velocity, the time required to cross individual cells may be
very different and node separation in TOF space is very irregular. In general, the inte-
gration of the advective term in (4.5) over the irregularly spaced nodes in TOF space
requires some regularization of the one-dimensional grid to avoid excessive numerical dis-
persion, to relax the stability restrictions of explicit solvers, and to simplify its numerical
solution by keeping a uniform grid spacing (Crane and Blunt, 1999; Thiele, 2003). For
example, Crane and Blunt (1999) refined the original TOF grid to get uniformly spaced
nodes and used a regularization algorithm to conserve mass balance in the interpolated
concentration values. Another approach is to only remove cells that are considered too
small to significantly improve the spatial resolution of the method and may introduce un-
necessary numerical constraints (Thiele, 2003). Thiele et al. (1997) used a second-order
in space and an explicit first-order in time total variation diminishing (TVD) solver to
compute the solution, while Crane and Blunt (1999) used a first-order finite difference
method with upstream differences for space and an implicit (backward Euler) difference
for time.

A second option, which is the one we have implemented in our code, is to formulate
the one-dimensional advection-dispersion equation along a streamline in terms of the arc
length coordinate using (4.6). In that case the numerical solution can be computed using
a grid defined by equispaced nodes along individual streamlines. The generation of such
a grid involves several steps. First, one must numerically integrate the fluid particle
trajectories recording particle positions instead of TOF. Next, one can approximate the
total length of a streamline as the sum of the distances of the arcs that connect adjacent
nodes. The approximation of the arc length segments by the arc connecting adjacent
nodes is second-order accurate for nodes that are relatively close (Aris, 1989). Then,
the total arc length is divided into a number of segments such that the length of each
segment is close to a given target spacing ∆s, while the sum of the individual segments
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is equal to the original streamline length and the starting and end points are the same
as in the original streamline.

The solution of the advective term in (4.6) is equivalent to solving the following PDE

∂C

∂t
+ q(s)∂C

∂s
= 0 (4.7)

which corresponds to an advection equation with variable coefficients also known as the
color equation (LeVeque, 2002). The last equation can be recast as a conservation law
with flux F = qC plus a source term due to the change in velocity, to obtain

∂C

∂t
+ ∂
∂s

(qC) = C ∂q
∂s

(4.8)

The last solution can be solved with any one-dimensional solver for hyperbolic equations,
e.g. low- or high-resolution schemes and explicit or implicit time discretizations.

The use of a uniformly spaced grid in s instead of one spaced in τ allows more control of
the physical distribution of nodes and the possibility of refining the streamline grid by
decreasing the node spacing independently of the resolution of the grid used to compute
the flow velocity.

4.2.3.2 Dispersion

The ratio between longitudinal and transverse dispersivities in porous media is equal to
or greater than one. Then, one can make the change of variable αL = αT + �αL with
α̃L ≥ 0. Therefore, the dispersion tensor with principal directions that are parallel and
perpendicular to the flow velocity, �D, can be rewritten as

�D =





�DL + �D 0 0
0 �D 0
0 0 �D



 (4.9)

where �DL = q �αL and �D = qαT +Dm. Then, the dispersion term in (4.6) can be rewritten
as,
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∇ ·

�
�D∇C

�
= ∇ ·

�
�D∇C

�
+ ∂

∂x̂1

�
�DL
∂C

∂x̂1

�

(4.10)

where x̂1 is the coordinate aligned with the flow direction (see Figure 4.3).

Using a streamline discretization the derivative along x̂1 can be easily evaluated using a
second-order finite difference approximation to obtain,

∂

∂x̂1
�DL
∂C

∂x̂1
= 1
si+1/2 − si−1/2




�Di+1/2
L

si+1 − si
(Ci+1 − Ci)−

�Di−1/2
L

si − si−1
(Ci − Ci−1)



 (4.11)

To derive this expression we have assumed that the difference between the indices of
consecutive nodes along a streamline is equal to one. Thus, (4.11) may be written as

∂

∂x̂1
�DL
∂C

∂x̂1
= γi+1Ci+1 + γi−1Ci−1 − γiCi (4.12)

with γi ≥ 0.

The first term on the right-hand-side of (4.10), which is equivalent to isotropic dispersion
or a diffusion process, can be evaluated using a MC-SPH approximation to obtain (Cleary
and Monaghan, 1999; Jubelgas et al., 2004; Herrera et al., 2009b),

dCi
dt

= −
�

j

1
p̂ij

�
�Di + �Dj

� rij
|rij|2
∇W (rij) (Cj − Ci) (4.13)

where rij = ri − rj is the separation vector between nodes i and j, �Di is the modified
dispersion coefficient at node i, W is a kernel function that satisfies some normalization
conditions and that, in general, has compact support, and p̂ij is a symmetric approxima-
tion of the node density at nodes i and j (for details see Cleary and Monaghan, 1999;
Monaghan, 2005; Herrera et al., 2009b, and references therein). The node density at
node i is evaluated as,

pi =
�

j

W (rij) (4.14)
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Then, we can rewrite (4.13) as

dCi
dt

=
�

j

βij (Cj − Ci) (4.15)

with βij ≥ 0 because for typical kernels ∇W ≤ 0.

Therefore, the numerical approximation of (4.10) can be written

dCi
dt

= γi+1Ci+1 + γi−1Ci−1 − γiCi +
�

j

βij (Cj − Ci) (4.16)

To study the monotonicity properties of this approximation (4.16), we notice that it has
the form

dCi
dt

=
�

j �=i
β̂ij(Cj − Ci) =

�

j

β̂ijCj (4.17)

with�j β̂ij = 0. The local extremum diminishing (LED) criteria (Jameson, 1995; Kuzmin
and Turek, 2002) establishes that numerical approximations such as (4.17) that satisfy
β̂ij ≥ 0, ∀i �= j preserves the monotonicity of the solution, because the temporal deriva-
tive of the concentration at a maximum can only be negative and similarly, the con-
centration at a minimum can only increase(Kuzmin and Turek, 2002). Therefore, the
discretization (4.16) preserves the positivity of the concentration distribution and pro-
vides solutions that are free of spurious oscillations and negative concentrations.

4.3 Implementation Details

4.3.1 Streamline Tracing

An important part of streamline-based simulations consists in tracing streamlines given
a velocity field. Given the location of an initial seed, the geometry of the streamline that
passes through that point is generated using a particle tracking method to integrate the
fluid trajectory (in the forward or backward directions) until reaching an inlet or outlet
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face or a sink or source cell. The arc length and TOF are recorded at discrete intervals
along the fluid particle trajectory.

Pollock’s semi-analytical method Pollock (1988) is a popular choice to track streamlines
when the flow velocity is known in a Cartesian staggered grid, because of its high per-
formance and accuracy due to its semi-analytical character. The method has also been
extended to handle situations when the flow velocity is computed in an unstructured grid
(Prevost et al., 2002). It is also possible to use explicit schemes to integrate streamline
trajectories, e.g. Runge-Kutta schemes (Zheng and Wang, 1999) or adaptive algorithms
e.g. (Bensabat et al., 2000).

In our experience it is possible to obtain a similar accuracy with Pollock’s method or with
an adaptive explicit scheme. Although, Pollock’s method is generally faster than explicit
schemes, the performance differences are negligible when compared to the total time
required for a simulation. On the contrary, explicit schemes are simpler to program and
more numerically robust because they avoid floating point errors that can be problematic
for semi-analytical methods. In our streamline solver we have implemented both Pollock’s
algorithm and an explicit adaptive scheme, however we use the second one as our default
particle tracking method.

The spatial distribution of streamlines is another key issue in streamline-based simula-
tions. Without an adequate choice of the initial seed particle locations and in the presence
of heterogeneous flow fields or sources or sinks, the spatial streamline distribution can be
very irregular with large areas of the domain that do not contain any streamlines. This
can be particularly problematic in situations that require mapping concentrations onto a
background grid (Obi and Blunt, 2004). It can also be problematic for the implementa-
tion of our hybrid scheme, because the MC-SPH approximation for dispersion assumes
that the area of influence of nodes in neighboring streamlines always overlap. Thus, it
is important to assure a minimum density of streamlines in every region of the domain.
A common solution of this problem is to use a background grid. After a set of initial
streamlines has been traced, new streamlines are traced starting at each grid cell that
does not contain one (Batycky et al., 1997; Crane and Blunt, 1999). This is the approach
we have implemented in our streamline simulator.
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4.3.2 Time Integration

In principle, it is possible to use an explicit, implicit or a hybrid scheme to integrate
(4.16). Moreover, depending on the numerical scheme used to approximate advection,
the solution of the advection-dispersion-reaction equation can be solved fully-implicitly.
A fully-implicit solution would result in more relaxed stability restrictions for the time
step size. On the other hand, as discussed below, a fully-implicit implementation also
has disadvantages such as larger memory requirements that make it less attractive. As
a consequence, in our streamline simulator we use an operator-splitting (OS) approach
to solve the advection and dispersion terms. The OS approach is also used in current
streamline simulators to incorporate dispersion (Obi and Blunt, 2004), to decouple the
saturation and pressure equations in streamline simulations of oil migration (Thiele et al.,
1997), and in numerical packages to solve solute transport in porous media (e.g. Zheng
and Wang, 1999).

The OS approach provides ample flexibility in the selection of numerical algorithms to
obtain high accuracy and reasonable performance. An OS approach also allows use of
different time steps to solve the advective and dispersive terms. This can be an advantage
to overcome some of the limitations of explicit solvers. Given a global time step ∆t, one
can integrate the dispersion term using ∆tD ≤ ∆t such that many sub-steps may be
necessary to complete a global step. A similar idea can be applied to integrate the
advection term. This is the approach we apply in our streamline simulator: a single
global step can involve many sub-steps to integrate the dispersive and advective terms.

4.3.3 Advection Solution

We use a first-order explicit TVD finite difference approximation to solve (4.8) (LeVeque,
2002). Although formally first-order accurate, the high-resolution approximation per-
forms better than low-order approximations such as upstream finite difference (LeVeque,
2002). The implementation of the one-dimensional TVD solver can be done assuming
that the flow velocity is evaluated at the node positions or at the midpoint between them.
In our implementation we evaluate the flow velocity at the node positions using a linear
interpolation scheme for the velocity components (Pollock, 1988), however any velocity
reconstruction scheme that provides a continuous velocity field that satisfies the original
mass balance equation may be used.
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We use different time steps along each streamline to satisfy the stability constraints of the
explicit solver while minimizing numerical dispersion and computational requirements.
We use ni time steps of size ∆ti to integrate (4.8) along streamline i during a global time
step ∆t such that ∆t = ni∆ti, and the internal time step ∆ti is such that the maximum
CFL number along streamline i is less than or equal to one, i.e. max(q∆ti/∆si) ≤ 1.
Therefore, small time steps are necessary only along streamlines that cross fast flow re-
gions, while large time steps can be applied to integrate along slow streamlines. This
constitutes an important performance advantage of streamline simulations versus multi-
dimensional mesh-based solvers.

4.3.4 MC-SPH Solution

4.3.4.1 SPH kernel

In our streamline simulator we use a cubic-spline kernel (Monaghan, 1992),

W (r, h) = σ

hnd
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where r is the magnitude of the separation vector, h is the so called smoothing length,
σ is a normalization constant, and nd is the number of dimensions. Hence, the size of
the kernel support volume is given by the selection of h. In our implementation we use a
constant smoothing length for all the nodes. We select h based on the spatial distribution
of streamlines and nodes such that the number of nodes per kernel support volume stays
within a range that guarantees reasonable accuracy (Herrera et al., 2009b,a).

4.3.4.2 Neighbor search

The number of nodes that effectively contribute to the summation in (4.13) depends upon
the support volume of the kernel function. Thus, evaluation of the temporal derivative
in (4.13) can be accelerated by discarding the nodes that are beyond the kernel support
volume. In that case the evaluation of the dispersion term for all the nodes becomes a
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problem of order O(NkN), where Nk is the average number of nodes per kernel volume
and N is the total number of nodes (Herrera et al., 2009b).

There are different methods to identify near neighbor nodes that use data structures
to classify nodes according to their spatial location (Waltz et al., 2002; Viccione et al.,
2008), e.g. linked lists (Welton, 1998) or hierarchical trees (Hernquist and Katz , 1989).
In our streamline simulator we use a background grid together with linked lists to store
a list of the nodes located at each cell. Then, the evaluation of (4.13) for a specific node
only requires looping over nodes that are within adjacent cells (Welton, 1998). While in
SPH particle simulations the node lists must be updated at each time step, in our hybrid
methods the lists must be only updated each time that the streamlines are traced which
happens much less often.

4.3.4.3 Time integration

Numerical experiments show implicit schemes to solve (4.16) are unconditionally stable
independent of the time step utilized. Although attractive because of its stability prop-
erties, the implicit solution of (4.16) can become impractical when some nodes have a
large number of neighbor nodes, e.g. three-dimensional problems or highly heterogeneous
system. In those cases, the number of nodes that contribute to the summation in (4.17)
and, hence, the number of non-zero coefficients β̂ij can be quite large. As consequence,
the memory required to store the matrix of the implicit solution can become prohibitive
even for a moderate number of nodes. A possible solution to this problem would be to
use a variable smoothing length such that the number of neighbor nodes stays relatively
constant (Monaghan, 2005).

Based on the above considerations, we use a first-order explicit formulation to integrate
the dispersion term. The stability restriction of the explicit solver requires a time step
such that (Cleary and Monaghan, 1999; Herrera et al., 2009b)

∆t ≤ � h2

max
�
�D
� (4.19)

where � is constant factor. In the simulations presented in the next section we find that
� = 0.1 provides stable solutions.

It is important to notice that the maximum time step given by (4.19) is inversely pro-
portional to the magnitude of �D, which, for typical porous media applications is small
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compared to the scale of the numerical discretization given by h. Thus, in general, the
condition imposed by (4.19) on the time step is less restrictive that the stability require-
ments of explicit solvers for advection.

4.3.5 Longitudinal Dispersion

4.3.5.1 Interface coefficients

The numerical approximation of the longitudinal dispersion terms requires the evaluation
of the coefficients �Di±1/2

L in (4.11). Those coefficients can be directly evaluated if the flow
velocity is known at the interface position i±1/2. Alternatively, �Di±1/2

L can be evaluated
as the harmonic average of the coefficients at the nodes i and i± 1 as in a standard cell-
centered finite difference approximation (Zheng and Bennet, 1995). Both approximations
result in symmetric expressions to compute dispersive numerical fluxes and guarantee flux
continuity across the interface. Because we evaluate the flow velocity at node positions,
we have implemented the second alternative in our streamline simulator.

4.3.5.2 Time integration

The use of an OS strategy allows decoupling of the temporal integration of the longitu-
dinal and transverse dispersion components that appear in (4.16). If each component is
integrated separately then the longitudinal term can be approximated using an explicit or
implicit approximations. An explicit approximation for the one-dimensional dispersion
equation is conditionally stable and must satisfy the following stability restriction

∆t ≤ 0.5 (∆si)2

max
�
�DL
� (4.20)

On the other hand, an implicit approximation has the advantage of being unconditionally
stable. The resulting linear system is tri-diagonal and can be efficiently solved using
a direct solver, e.g. one based on the Thomas algorithm (Wang and Anderson, 1982).
However, such a splitting strategy would introduce an additional operator-splitting error.

Alternatively, one can apply a single step to integrate (4.17), which combines the lon-
gitudinal and transverse dispersion terms. This is the approach implemented in our
streamline simulator which uses an explicit time marching scheme.
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Figure 4.4 shows a diagram of the overall solution strategy implemented in our streamline-
based simulator.

4.4 Numerical Examples

In this section, we present four examples that we use to compare our implementation of
the proposed streamline-based method and a finite difference package, MT3DMS (Zheng
and Wang, 1999), which is a well-established solute transport simulator. The examples
correspond to different hydraulic conditions and solute release mechanisms. We consider
different dispersivity values to test the quality of our new streamline-based approximation
for dispersion. In all the examples, the velocity field was computed with an external finite
volume package, MODFLOW (Harbaugh and McDonald, 1996).

MT3DMS is a well-tested and robust numerical package that provides several solvers to
simulate solute advection (Zheng and Wang, 1999). We use the multidimensional TVD
and method of characteristics (MOC) solvers to simulate the examples presented below.
The multidimensional TVD solver is a natural candidate for a comparison with our one-
dimensional TVD solver used to advect solute along streamlines. On the other hand, the
MOC solver minimizes numerical dispersion when transport is advection-dominated at
the cost of introducing additional mass balance errors and numerical oscillations (Zheng
and Wang, 1999). Thus, the two solvers provide a range of solutions that are a good
representation of the performance of the state of the art numerical solvers used to simulate
solute transport in porous media. In the rest of this section, we focus our analysis
on the ability of our streamline simulator to incorporate dispersion more than on the
relative advantages of the MT3DMS or streamline solvers to simulate advection, since
our principal objective is to introduce and validate our new formulation to incorporate
dispersion in streamline-based simulations.

The comparison of the performance of the solvers available in MT3DMS and our streamline-
based simulator is difficult because of differences in their implementations and capabili-
ties. For example, the solvers included in MT3DMS are implemented in the FORTRAN
programming language using single precision, while our streamline simulator is imple-
mented in Java using double precision. There are other implementation details that can
also result in additional performance differences. Furthermore, the simulations presented
in this section are for relatively small spatial domains and we expect that the observed
differences in performance would be different and, probably, more important for larger
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Figure 4.4: Overall solution approach implemented in streamline-based simulator.
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129



domains or finer grids. Finally, our streamline simulator and the solvers implemented
in MT3DMS are for serial computer platforms, thus we do not take into account the
obvious advantages of the streamline formulation to transform the solution of advection
into multiple independent one-dimensional problems that are amenable to parallelization.
Therefore, one should keep in mind that the performance comparisons reported below
are limited to specific implementations of the methods and only a few problem sizes.

4.4.1 Example 1: Continuous Solute Release in Uniform Flow

The first example corresponds to the continuous release of a contaminant in a uniform
two-dimensional flow. The domain is square with each side equal to 1000 m. The finite
difference grid has 100 x 100 cells, thus the cell spacing ∆ is equal to 10 m. The streamline
grid consists of 100 streamlines with nodes spaced every 10 m. Thus, the number of nodes
in the streamline grid is equal to the number of cells in the finite difference grid.

The flow velocity is constant and equal to 1 m/d and parallel to the x axis. The so-
lute is continuously released with constant concentration equal to 1 mg/L from a small
region in the center of the inlet boundary of the domain. We use a time step equal
to 3.65 d and we simulate the solute migration for a total of 150 time steps. In the
streamline simulations, we use a smoothing length equal to 12 m. For this simple quasi
one-dimensional problem we use the MT3DMS multidimensional TVD solver; which, for
this flow configuration, is equivalent to the one-dimensional TVD solver implemented in
our the streamline simulator. Then, differences between both numerical solutions are
only due to the approximation for dispersion.

We define four different scenarios depending upon the longitudinal and transverse disper-
sivity values as summarized in Table 4.1. The dispersivity values considered correspond to
longitudinal (PeL = ∆/αL) and transverse (PeT = ∆/αT ) grid Péclet numbers between
1 to 10 and 2 to 100, respectively.

Figure 4.5 shows contours of concentration values equal to 0.2 and 0.8 mg/L. The TVD
and streamline solutions are identical independently of the longitudinal and transverse
dispersivity values used in each scenario. This example demonstrates that the new
streamline-based approximation for anisotropic dispersion performs well independently
of the dispersivity values or anisotropy ratio.
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Scenario αL αT PeL PeT

1A 10 1 1 10
1B 10 5 1 2
1C 1 0.1 10 100
1D 1 0.5 10 20

Table 4.1: Dispersivity and equivalent longitudinal (PeL) and transverse (PeT ) grid
Péclet values used in Example 1.

Figure 4.5: Comparison of simulated concentrations for Example 1. Contours for
concentration values equal to 0.2 and 0.8 mg/L at the end of runs 1A (a),
1B (b), 1C (c) and 1D (d). Solid lines correspond to finite difference and
squares to streamline solutions, respectively.
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4.4.2 Example 2: Quarter Five-Spot in Heterogeneous Medium

4.4.2.1 Setup

The second example corresponds to the well-known quarter five-spot well configuration.
We consider a square domain with an injection well located on the lower left corner and
an extraction well on the upper right corner. The four faces of the domain have no flow
boundary conditions. The domain is a square of 64 x 64 m and is discretized using a
uniform grid with 64 cells in each direction. We compute the flow velocity field assuming
steady-state conditions and a heterogeneous hydraulic conductivity field. The spatial
distribution of the natural logarithm of the hydraulic conductivity, Y = ln(K) with K
in units of m/d, is generated assuming an exponential covariance model with mean value
Ȳ = 1.0, variance σY = 1.0 and correlation length in both directions equal to five times
the grid spacing. The injection and extraction rates at the wells is set equal to 10 m3/d.
Streamlines are first generated from 100 equispaced points located over the diagonal line
that connects the upper left and lower right corners. Additional streamlines are traced
such that each cell of the grid used to compute the velocity field is crossed by at least one
streamline resulting in a total of 146 streamlines. The generated hydraulic conductivity
and streamlines are shown in Figure 4.6.

Figure 4.6: Spatial distribution of the natural logarithm of the hydraulic conductivity
and streamlines in Example 2.
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To test the sensitivity of the TVD and MOC solutions with respect to the grid size, we
refine the original grid to obtain a fine grid with 128 cells in each direction. We assign
the hydraulic conductivity values computed in the coarse grid to the corresponding cells
in the the fine grid, i.e. one value computed in the coarse grid is assigned to four cells
in the fine grid. We then solve the flow and transport problems in the new grid. There
are differences between the flow solutions computed in the coarse and fine grid as result
of the different spatial discretizations, but they are rather small. For example, the mean
velocity computed in the fine grid is less than 1% higher than the one computed in
the coarse grid. However, the simulation results presented below demonstrate that such
differences have a negligible impact on the solute transport solution. In the streamline
simulations nodes are uniformly distributed along streamlines with an average spacing
of 1 m. Additional parameters required to set up the MOC solver are listed in Table
4.2. Those parameters were chosen to minimize numerical oscillations observed in some
preliminary simulations.

Parameter Value

Max. # of cells a particle can move in one time step 1
Relative cell concentration gradient (DCCELL) 0.00001
Number of particles in cells with relative gradient >
DCCELL

32

Number of particles in cells with relative gradient <
DCCELL

2

Number of particles in sources or sink cells 64
Tracking algorithm 4th-order

Runge-Kutta

Table 4.2: Parameters used in MOC simulations. For a detailed explanation see
(Zheng and Wang, 1999).

We assume that the contaminant is injected through the lower left well with concentra-
tion equal to 1 mg/L and that the initial concentration is zero. The period simulated
corresponds to 300 days and it is discretized using different time steps according to the
stability restrictions of the explicit multidimensional TVD, MOC and streamline solvers
as summarized in Table 4.3. The time step used in the streamline simulations was chosen
such that the product of the mean flow velocity times the time step is equal to the average
arc length spacing.
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Method # Nodes or Cells Time Step # Time steps

Streamlines 15,106 0.500 600
TVD Coarse 4,096 0.109 2820
TVD Fine 16,384 0.034 8520
MOC Coarse 49,116 0.193 1560
MOC Fine 203,439 0.054 5520

Table 4.3: Number of nodes or cells, time step size and number of time steps used in
simulations of Example 2. Number of nodes reported for MOC corresponds
to the maximum number of particles used during the simulation since this
is the factor that controls the computational requirements, i.e. CPU time
and memory.

We use the three solvers to simulate four scenarios that represent different dispersivity
values as summarized in Table 4.4. For the streamline simulations that include dispersion
we use a smoothing length equal to 1.2 m.

Scenario αL (m) αT (m) PeL PeT

2A 0.1 0 10 ∞

2B 0.1 0.01 10 100
2C 0.1 0.1 10 10
2D 0 0 ∞ ∞

Table 4.4: Dispersivity and equivalent longitudinal (PeL) and transverse (PeT ) grid
Péclet values used in Example 2.

4.4.2.2 Simulated concentrations

Figure 4.7 shows simulated concentrations for scenarios 2A and 2C after the injection
of 0.4 pore volumes of solute. MOC and TVD solutions were computed using the fine
grid. Simulated concentration values using the streamline simulator were interpolated
from nodes along streamlines to the cell centers of the fine grid for comparison purposes.
In general, the numerical solutions computed with all three methods are similar.

For scenario 2A the simulated concentrations indicate the presence of a slow flow region
along the diagonal line that connects the two wells, which creates a sharp interface
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between two fast moving fingers with concentration equal to the source concentration
and a central region with concentration equal to zero. When transverse dispersion is
included (run 2C) the slow central flow region is filled with concentrations that are about
50% of the source value. Transverse dispersion also produces a wider mixing zone at
the edges of the advancing contaminant front where concentration values lie between the
source and the background values.

Figure 4.7: Simulated concentration values after injection of 0.4 pore volume of con-
taminated fluid for Example 2. Interpolated streamline (first row), MOC
(second row) and TVD (third row) solutions for scenarios 2A (left col-
umn) and 2C (right column). The solutions computed with the three
methods are similar for both scenarios.
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We also recorded the simulated concentration versus time at two observation points.
To avoid introducing additional numerical dispersion in the streamline results, we chose
the locations of the observation points such that they coincide with two nodes in the
streamline grid. The first observation point, P1, is located in the region of rapid flow
changes near the plume center-line (see Figure 4.7) and the second one, P2, in a region
where the advance of the plume is relatively homogeneous.

Figures 4.8 and 4.9 show simulated breakthrough curves for the four scenarios considered
at P1 and P2, respectively. While all three numerical methods simulate concentration
values that are similar for point P2, there are important differences in the simulated
curves for P1. At P1, the solution is very sensitive to numerical dispersion because of the
presence of a slow flow region between two fast advancing plume fingers, which creates
high concentration gradients.

Simulated concentrations with the MOC and streamline-based solvers at point P1 for
the purely-advective case (2D) agree well, with the exception of numerical oscillation
in the MOC solution. On the other hand, numerical dispersion is clearly observable in
both, coarse and fine, TVD curves. In general, both mesh-based solvers predict earlier
breakthrough for all the simulated scenarios because of additional transverse dispersion
due to computing cell average concentrations. For example, in absence of transverse dis-
persion (2A) both mesh based solvers predict that the arrival of solute to the observation
point P1 would occur around 80 days earlier than predicted by the streamline simulator.
However, the difference between the streamline and mesh-based solvers becomes smaller
as transverse dispersion increases and concentration values are smooth out at the grid
scale, e.g. scenarios 2B and 2C. The solutions computed with the MOC and TVD solvers
also become more similar as transverse dispersion increases and the advantages of the
MOC solver to minimize numerical dispersion become less important.
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Figure 4.8: Breakthrough curves at observation point P1 in Example 2. Point P1 is
located in a region of rapid flow changes near the plume center-line. Each
figure corresponds to one of the four scenarios simulated in Example 2:
2A, 2B, 2C and 2D. At P1 simulated concentrations are very sensitive
to transverse dispersion. The numerical solutions computed with the
streamline solver in absence of transverse dispersion (A and D) differ
significantly from the ones computed with the two mesh-based solvers.
Those differences become smaller as transverse dispersion increases (B
and C).

Figure 4.10 shows a comparison of the simulated breakthrough curves at P1 using the
streamline and MOC (fine grid) solvers. The streamline solver predicts a breakthrough
curve for run 2A, which considers only longitudinal dispersion, that is similar to the
curve for the purely-advective case (2D), but has earlier breakthrough and reaches the
peak concentration at later time. This is the expected behavior for that situation, which
corresponds to a quasi one-dimensional transport problem. When transverse dispersion
is included (run 2B), the streamline simulator predicts a change in the first part of the
curve as consequence of the transfer of solute mass from fast streamlines to slower ones,
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Figure 4.9: Breakthrough curves at observation point P2 in Example 2. Point P2 is
located in a relatively homogeneous flow region where the advance of the
solute front is relatively uniform. Each figure corresponds to one of the
four scenarios simulated in Example 2: 2A, 2B, 2C and 2D. Simulated
concentrations with the streamline simulator and the two mesh-based
solvers are similar independent of the longitudinal and transverse disper-
sivity values.
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which results in an earlier breakthrough and change in slope with respect to the curves for
runs 2A and 2D. In contrast, the breakthrough curves computed with the MOC solver,
which performs well for the purely-advective case, do not show a clear distinction between
the addition of longitudinal or transverse dispersion. When longitudinal dispersion is in-
cluded the breakthrough curve shifts to the left of the curve for the purely-advective
case, which is not consistent with the situation analyzed. Adding transverse dispersion
results in an additional shift of the curve to the left, but there are no clearly distin-
guishable changes in slope as observed in the curve obtained with the streamline-based
solver. This example demonstrates some of the advantages of the streamline simulator to
study situations of theoretical interest such as the effect of transverse dispersion in the
transport of solutes in heterogeneous porous media.
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Figure 4.10: Comparison of simulated breakthrough curves at observation point P1
for Example 2, (a) streamline simulator and (b) MOC solver using fine
grid.

Figure 4.11 shows a comparison of the simulated breakthrough curves at P2 using the
streamline and MOC (fine grid) solvers for the four transport scenarios analyzed. With
the exception of the purely-advective case simulated with the MOC solver, the simu-
lated breakthrough curves are similar independently of the solver and dispersivity values
considered.
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Figure 4.11: Comparison of simulated breakthrough curves at observation point P2
for Example 2, (a) streamline simulator and (b) MOC solver using fine
grid.

4.4.2.3 Numerical oscillations

Figure 4.12 shows simulated concentrations after injection of 0.4 pore volumes of solute
for runs 2A and 2B. Negative and greater than source concentration values are colored
black, thus dark areas within the domain boundaries indicate zones where numerical
oscillations occur. Numerical oscillations present in the solutions computed with the
MOC and TVD solvers cover most of the simulation domain including areas that have
not been reached by the solute front.

Table 4.5 and 4.6 lists the normalized maximum and minimum simulated concentrations,
respectively. Minimum concentration values simulated with both mesh-based solvers,
TVD and MOC, are negative for scenarios that include anisotropic dispersion (A, B) due
to the presence of the off-diagonal terms of the dispersion tensor. The TVD solver also
produces small negative values for the advection-only case (D), but their magnitude is
much smaller than for the runs that included anisotropic dispersion. In contrast, solutions
computed with the streamline solver are always positive. Moreover, maximum concen-
tration values computed with the TVD and MOC solvers are greater than the source
concentration for some of the scenarios simulated because of spurious numerical oscilla-
tions. The magnitude of the oscillations is greater for scenarios that consider anisotropic
dispersion (A and B), probably because of the presence of negative concentrations val-
ues that arise due to the presence of the cross-dispersion terms. The magnitude of the
oscillations decreases when only advection (D) or isotropic dispersion are simulated (C).
Solutions computed with the streamline solver are free of spurious oscillations in all cases.
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Figure 4.12: Numerical oscillations in simulated concentrations for Example 2. Con-
centration values after injection of 0.4 pore volume of contaminated
fluid. Interpolated streamline (first row), MOC (second row) and TVD
solutions (third row) for scenarios 2A (left column) and 2B (right col-
umn). Negative and greater than source concentration values are shown
as dark areas within the domain boundaries. Solutions computed with
the MOC and TVD solver exhibit numerical oscillations that cover most
of the domain.
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Method\Run 2A 2B 2C 2D
Streamlines 0 0 0 0
TVD Coarse -0.0285 -0.0171 0 <-0.0001
TVD Fine -0.0236 -0.0111 0 <-0.0001
MOC Coarse -0.0042 -0.0011 0 0
MOC Fine -0.0043 -0.0010 0 0

Table 4.5: Normalized minimum simulated concentration values for Example 2.

Method\Run 2A 2B 2C 2D
Streamlines 1.0000 1.0000 1.0000 1.0000
TVD Coarse 1.0272 1.0147 1.0037 1.0063
TVD Fine 1.0588 1.0276 1.0000 1.0034
MOC Coarse 1.0435 1.0112 1.0000 1.0000
MOC Fine 1.0561 1.0076 1.0000 1.0000

Table 4.6: Normalized maximum simulated concentration values for Example 2.

4.4.2.4 Performance comparison

Table 4.7 summarizes the normalized CPU time required to simulate the four different
scenarios analyzed in Example 2. The streamline solver is faster to solve advection. It is
up three times faster than the TVD or MOC solvers for the coarse grid (64x64 cells) and
more than thirty times faster for the fine grid (128x128 cells). However, the mesh-based
solvers are faster if dispersion is included and the solution is computed using the coarse
grid. Yet, the streamline solver is faster by a factor of about two, if the fine grid is used.
This demonstrates that the streamline solver performs much better than mesh-based
solvers to simulate two-dimensional problems. The difference in performance is more
important when advection and longitudinal dispersion are simulated, which can be very
valuable in many situations of practical interest. For example, simulating scenarios that
consider only advection and longitudinal dispersion can be useful in the first stages of
a model calibration, sensitivity analysis, evaluation of parameters uncertainty (Hill and
Tiedeman, 2007) or in any situation where a large number of solute transport simulations
is required.
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Method\Run 2A 2B 2C 2D
Streamlines 1.1 28.6 28.6 1.0
TVD Coarse 4.4 4.4 4.4 2.5

TVD Fine 55.1 55.1 48.1 29.0
MOC Coarse 5.5 5.5 5.5 3.4

MOC Fine 81.0 81.0 81.0 50.2

Table 4.7: Normalized CPU time required to simulate Example 2 for different scenar-
ios. Streamline solver is faster than mesh-based solvers to solve advection
independently of the grid size. It is also faster to solve advection-dispersion
than mesh-based solvers using a fine grid.

4.4.3 Example 3: Quarter Five-Spot in Heterogeneous Medium
with Rate-Limited Sorption

As a third example we consider the transport of a dissolved solute in groundwater that re-
acts with the porous medium and sorbs onto the solid grains. This example demonstrates
the capacity of streamline-based simulations to easily incorporate heterogeneous chemical
reactions that involve the aqueous and solid phases. Di Donato and Blunt (2004) studied
a similar problem in the context of the migration of a reactive solute through fractured
rocks.

Sorption is usually modeled assuming local equilibrium, i.e. that solute sorption occurs
almost instantaneously relative to the solute transport time scale. However, the local
equilibrium assumption is not always valid (Valocchi, 1985) and it is necessary to modify
the equilibrium model to incorporate rate-limited mass transfer effects. In those cases,
sorption can be modeled as a first-order reversible kinetic reaction of the form (Haggerty
and Gorelick, 1995)

∂S

∂t
= β
ρb

�
C −

S

Kd

�
(4.21)

and

∂C

∂t
= −β
η

�
C −

S

Kd

�
(4.22)
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where β is the first-order mass transfer rate between the dissolved and solid phases [1/T],
Kd is the distribution coefficient for the solid phase [M/L3], ρb is the bulk density of the
solid, η is the soil porosity, and S is the amount of mass in the solid phase [M/M]. As β
decreases, mass transfer rates become smaller and sorption becomes negligible. On the
other hand, as β increases the solution becomes similar to the one obtained assuming
local equilibrium. A similar mathematical model can be used to model mass transfer
between mobile and immobile flow regions (Haggerty and Gorelick, 1995).

In our streamline-based simulator, we compute the solution of the system of differential
equations given by (4.21) and (4.22) at each node of the streamline grid using a first-
order implicit (backward Euler) discretization in time. To verify our implementation,
we simulate the advective transport of a solute that undergoes rate limited sorption
under four different scenarios summarized in Table 4.8. We set the soil density value
equal to 1,500 kg/m3 and select Kd values such that the equivalent retardation factors,
R = 1 + (ρb/η)Kd, are equal to 1.15 and 1.30.

Run Kd (L/mg) β (1/d)

3A 1 · 10−7 1 · 10−1

3B 1 · 10−7 1 · 10−4

3C 2 · 10−7 1 · 10−1

3D 2 · 10−7 1 · 10−4

Table 4.8: Parameters of the rate-limited sorption model used in Example 3.

We compare concentrations simulated with the our streamline simulator and MOC and
TVD solvers using the coarse grid. Figure 4.13 shows the simulated breakthrough curves
at point P2. Solutions computed with the streamline solver and the MOC solver behave
similarly. While the curves for scenarios 3A and 3C are retarded, the curves for scenarios
3B and 3D do not show retardation because in those cases sorption is limited by the small
β values used. As in the previous example simulations performed with the streamline
solver were almost three times faster than the ones computed with the MOC solver.
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Figure 4.13: Breakthrough at observation point P2 for different mass transfer (β)
and partition (Kd) coefficients considered in Example 3. Concentrations
simulated with (a) streamline-based and (b) MOC solvers.
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4.4.4 Example 4: Natural Biodegradation in Three-dimensional
Heterogeneous Porous Media

In this example, we simulate the natural biodegradation of a mixture of volatile organic
compounds such as benzene, toluene, ethylbenzene, and xylenes (BTEX) in an heteroge-
neous aquifer with oxygen as electron acceptor.

We simulate the aerobic reaction using an instantaneous explicit reaction model (Borden
and Bedient, 1986; Rifai et al., 1987; Rifai and Bedient, 1990). The concentrations of
oxygen ([O]) and hydrocarbon ([H]) at time t+1 given their values at time t are computed
using (Clement et al., 1998)

[H](t+ 1) =






[H](t)− [O](t)/F if [H](t) > [O](t)/F

0 if [H](t) ≤ [O](t)/F
(4.23)

and

[O](t+ 1) =






0 if [H](t) > [O](t)/F

[O](t)− F · [H](t) if [H](t) ≤ [O](t)/F
(4.24)

where F is the stoichiometric reaction ratio between oxygen and the hydrocarbon, in this
case BTEX, and it is assumed equal to 3.0 (Rifai et al., 1987; Clement et al., 1998).

4.4.4.1 Setup

The domain is three-dimensional and rectangular with dimensions of 50 m in the x
direction, 21 m in the y direction and 5 m in the vertical direction (z) and it is discretized
using a regular Cartesian grid such that the cell spacing in the three directions is equal
to 1 m.

The hydrocarbon source is a well located at coordinates x=8.5 m, y=10.5 m and z=2.5 m
that releases 0.2 m3/d of water with a BTEX concentration equal to 2 mg/L. Oxygen
is initially present in the natural groundwater and enters the domain with concentration
equal to 5 mg/L.
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The spatial distribution of the natural logarithm of the hydraulic conductivity, Y =
ln(K), was generated assuming an exponential covariance model with mean value Ȳ = 1.0
with K in units of meter per day (m/d), variance σY = 1.5 and correlation length equal
to four times the grid spacing in the x and y directions and two times in the vertical
direction.

We solve the flow equation assuming steady-state conditions and a constant head differ-
ence of 0.4 m between the planes define by x = 0 and x = 50 and no flow conditions on
the other faces. The spatial distributions of the generated hydraulic conductivity and
computed flow velocity are shown in Figure 4.14.

To evaluate the sensitivity of the solutions computed with the mesh-based solvers to the
grid size, we refined the original coarse grid by a factor of two in each direction to obtain
a fine grid with 100 cells in the longitudinal, 42 cells in the transverse and 10 cells in the
vertical directions, respectively. We applied the same procedure as in the Example 2 to
compute a flow solution that is similar to the one computed in the coarse grid.

We consider three transport scenarios summarized in Table 4.9: one that includes only
advection, a second one that considers advection and biodegradation, and a third one
that also includes dispersion.

Run αL αT Reaction

4A 0 0 Yes
4B 0.1 0.01 Yes
4C 0 0 No

Table 4.9: Definition of three scenarios simulated in Example 4: advective transport
with biodegradation (4A), advective-dispersive transport with biodegrada-
tion (4B) and conservative advective transport (4C).

The streamline grid includes 281 streamlines with average node spacing along streamlines
equal to 1 m. We use a constant smoothing length equal to 1 m to ensure that every
node in the domain has at least a minimum of 10 neighboring nodes. To compute the
MOC solution we use the same parameters listed in Table 4.2.

We simulate this problem using our streamline simulator and the RT3D numerical model
Clement (1997), which is a modified version of MT3DMS that adds the capability to
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Figure 4.14: Spatial distribution of natural logarithm of hydraulic conductivity and
flow velocity magnitude used in Example 4. Magnitude of hydraulic
conductivity and flow velocity vary more than six and two orders of
magnitude, respectively.
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simulate chemical reactions. RT3D and our streamline solver utilize the same operator-
splitting approach to incorporate chemical reactions.

We simulate a total of 10,000 days which is longer than the time required for the plumes
simulated with the two mesh-based solvers to reach steady-state conditions. We chose
time step values to satisfy the stability or accuracy criteria required by each method.
Table 4.10 summarizes the numerical discretizations and their associated time steps.

Method # Nodes or Cells Time Step (d) # Time Steps

Streamlines 13,539 2.0 5,000
TVD Coarse 5,250 3.2 3,300
TVD Fine 42,000 0.4 27,816

MOC Coarse 75,562 5.0 2,000
MOC Fine 565,464 0.6 16,000

Table 4.10: Spatial and temporal discretizations used to simulate Example 4.

Because of the flow configuration there are two different regions separated by a surface
that divides the flow between flow that enters the domain through the well and natural
groundwater (Cirpka et al., 1999b). In absence of longitudinal and transverse mixing, the
substrate (BTEX) and oxygen are physically segregated and occupy two different regions
and biodegradation cannot take place. If longitudinal dispersion is included, biodegra-
dation only occurs until all the oxygen initially present in the area located downgradient
from the source is depleted or the plume exits the domain. Thus, in the long term
biodegradation is only possible if transverse dispersion mixes the natural groundwater
and the contaminated water (Cirpka et al., 1999b; Ham et al., 2004). It is expected that a
steady-state plume will be established when the mass of substrate entering the domain is
equal to the amount that is consumed through biodegradation. Since the reaction rate is
controlled by transverse mixing between the two flow regions, the length of steady-state
plumes depends only on the transverse dispersivity value (Ham et al., 2004).

4.4.4.2 Simulated concentrations

Figure 4.15 shows simulated BTEX and oxygen concentrations at the nodes that define
the streamline grid after 10,000 days since the initial release of BTEX for the scenario
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that includes advection and biodegradation (4A). As expected, oxygen is depleted in the
region located downgradient of the BTEX spill. Because of the absence of transverse dis-
persion there is a sharp transition in BTEX and oxygen concentrations between two flow
regions that correspond to BTEX-contaminated water flowing from the well and natural
groundwater. BTEX concentration values along most of the streamlines are equal to the
source concentration, which indicates that flow coming from the spill has completely re-
placed the original groundwater. Yet, few slower streamlines present concentrations that
are lower than the source concentration as a result of biodegradation due to numerical
dispersion along streamlines. The presence of those lower concentration values indicates
that flow originating at the contaminant source and moving along slow streamlines has
not reached the outlet face before the end of the simulation.

Figure 4.16 shows simulated concentration for the scenario that includes advection, dis-
persion and biodegradation (4B). Oxygen is depleted in the region located downgradient
of the BTEX spill. However, in contrast to the situation without dispersion shown in
Figure 4.15, BTEX and oxygen concentrations change gradually between the two flow
regions because of mixing due to transverse dispersion. In this case, natural degradation
takes place in most of the plume volume and BTEX concentration values gradually de-
crease along streamlines. At the outlet face they are between 25 to 50% lower than the
source concentration.

Figure 4.17 shows simulated concentrations in the vertical plane defined by the coordinate
y=11.5 at the end of the simulation using the streamline-based solver and the MOC
and TVD solvers using the fine grid. For comparison purposes the streamline solution
was interpolated onto a grid that is similar to the one used in the MOC and TVD
simulations. For the conservative advective case the streamline and MOC solutions are
similar, however, the TVD solver produces lower concentrations after some distance from
the source as result of numerical dispersion. When aerobic degradation is included,
hydrocarbon concentrations simulated with the TVD and MOC solvers are much lower
than for the conservative case after some distance from the source. The difference between
the conservative and reactive case is due to numerical dispersion that mixes BTEX and
oxygen even in absence of physical dispersion and results in the degradation of most of
the released BTEX before it exits the domain.

The streamline solution for the case that includes biodegradation is similar to the one
for the conservative scenario, with the exception of minor differences near the top center
of the domain. Those differences are due to slow streamlines that cross that region. The
leading BTEX concentration along those streamlines is lower than in the conservative
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Figure 4.15: Simulated concentrations at nodes along streamlines after 10,000 days
since the initial release of BTEX for the scenario that includes advective
transport with biodegradation in Example 4. Only 10,000 nodes are
shown. Oxygen is depleted in the region located downgradient of the
BTEX spill. Because of the absence of transverse dispersion there is
a sharp transition in BTEX and oxygen concentrations between two
flow regions that correspond to flow originating at the well and natural
groundwater.
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Figure 4.16: Simulated concentrations at nodes along streamlines after 10,000 days
since the initial release for the scenario that includes advection, disper-
sion and biodegradation in Example 4. Only 10,000 nodes are shown.
Oxygen is depleted in the region located downgradient of the BTEX
spill. However, in this case BTEX and oxygen concentrations change
gradually between the two flow regions because of mixing due to trans-
verse dispersion.
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case because of longitudinal numerical dispersion that mixes oxygen and BTEX (see
Figure 4.15). However, the artificial longitudinal mixing results in small errors when
compared with the large errors observed in the simulated concentrations obtained with
the two mesh-based solvers.

When transverse dispersion is included, the streamline solver, as expected, predicts lower
concentrations after some distance from the source as consequence of transverse mixing
that provides oxygen to degrade BTEX that flows through the center of the plume. The
TVD and MOC solvers also predict lower concentrations than for the advective case with
biodegradation, but the effect on the plume shape is relatively minor.

Figure 4.17: Simulated concentration values for Example 4 at vertical plane defined
by y=11.5 m. Streamlines (top), MOC (middle), and TVD (bottom) for
advective transport (left column), advective transport with biodegrada-
tion (middle column) and advective-dispersive transport with biodegra-
dation (right column). Streamline solution shows concentration values
interpolated onto a grid of 100x42x10 cells. TVD and MOC solutions
computed using the fine grid. Vertical scale is exaggerated by a factor
of two.

Figure 4.18 shows simulated concentrations after 10,000 days of BTEX injection in the
horizontal plane that crosses the domain center defined by coordinate z=2.5 m. This
figure confirms the results observed in Figure 4.17. The simulated plume with the MOC
and TVD solvers for the case that included advection and biodegradation are shorter
and thinner than for the conservative case. Including transverse dispersion has only
an small effect in the overall shape and extension of the simulated plume. In contrast
the streamline solver predicts similar plumes for the purely advective and the advective-
reactive cases and a smaller plume when transverse dispersion is included.
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Figure 4.18: Simulated concentration values for Example 4 at horizontal plane de-
fined by z=2.5 m. Streamlines (top), MOC (middle), and TVD (bot-
tom) for advective transport (left column), advective transport with
biodegradation (middle column) and advective-dispersive transport with
biodegradation (right column). The streamline solution shows concen-
tration values interpolated onto a grid of 100x42x10 cells. TVD and
MOC solutions were computed using fine grid.

Figure 4.19 shows contours of concentration values equal to 1 mg/L equivalent to 50
% of the source concentration for the horizontal plane shown in Figure 4.18. For the
conservative case the simulated concentrations with the streamline solver and the TVD
and MOC solvers using the coarse and fine grids are similar. However, the simulated
plumes with the mesh-based solvers using the coarse and fine grids are different when
biodegradation is included. The coarse solution predicts a shorter plume, while the
fine grid solutions predict a longer plume that looks more similar to the one simulated
with the streamline-based solver. The observed convergence of the mesh-based solutions
towards the streamline-based solution as the grid spacing decreases demonstrates that,
for this problem, a streamline-based formulation may provide a high level of accuracy at
a fraction of the memory requirements and, as discussed below, computational cost that
would be required by a mesh-based solver.
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Figure 4.19: Comparison of simulated concentration values for Example 4 at horizon-
tal plane defined by z=2.5 m. Contours of BTEX concentration equal
to 50% of the source concentration for advective transport (first row),
advective transport with biodegradation (second row), and advective-
dispersive transport with biodegradation (third row). Streamline solu-
tion (black), TVD solution (red) and MOC solution (blue) computed in
coarse (left column) and fine (right column) grids. Mesh-based solutions
overestimate biodegradation as consequence of numerical transverse dis-
persion. The error is larger if the solution is computed in the coarse grid.
In absence of physical transverse dispersion, the mesh-based solvers pre-
dict plumes that are similar to the ones computed including transverse
dispersion.

The effects of numerical dispersion on the simulated concentration values using the mesh-
based solvers can be more easily understood by analyzing a transverse profile as shown
in Figure 4.20. That figure shows normalized BTEX and oxygen concentration values
along the profile parallel to the y direction at coordinates x=35 m and z=2.5 m simulated
using the MOC and TVD solvers using the fine grid. The figure shows that in absence
of transverse dispersion and reaction, there is an artificial mixing region where BTEX
and oxygen are present. That mixing region is due to two factors. First, mesh-based
solvers compute average concentration values over a volume (cell or element) that is not
necessarily aligned with the direction of the flow, thus it is impossible to capture the flow
divide that separates the two flow regions Cirpka et al. (1999b). Second, because of the
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heterogeneity of the medium the flow velocity is non-uniform and solvers based on finite
volume formulations, such as the multidimensional TVD solver included in MT3DMS,
suffer grid orientation effects that introduce additional numerical dispersion. Both causes
are related but are independent as demonstrated by a comparison of the profiles simulated
with the MOC and TVD solvers. Because of its hybrid Eulerian-Lagrangian nature, the
MOC solver is able to control the numerical dispersion due to variations in the flow
velocity, however it cannot remove the effect of the concentration averaging over a cell
volume. Therefore, the width of the simulated mixing region is equal to two or three
times the dimension of a grid cell. On the other hand, the solution computed with the
TVD solver is greatly affected by numerical dispersion caused by the non-uniform flow
velocity, which results in a much larger area (approximately ten cells) where BTEX and
oxygen overlap.

If biodegradation is included, degradation of BTEX takes place within the artificial mix-
ing region. Thus, the simulated plume is thinner than in the conservative case. Although,
the profiles shown in Figure 4.20 are illustrative of the effect of numerical dispersion at a
given control plane, the overall shape of the plume is the result of the cumulative effect of
numerical dispersion and biodegradation that occur between the source and the control
plane. For example, the MOC solution for the conservative case shows much less overlap
of BTEX and oxygen than the TVD solution. However, the widths of the simulated
plumes for the reactive scenarios are similar. This confirms that in presence of chemical
reactions even small numerical errors observed in conservative transport simulations can
be amplified to produce an overall solution that is very similar to the one computed with
less accurate methods, e.g. TVD.

Finally, we must mention that simulated concentrations with the MOC and TVD solvers
include negative values and values greater than the source or natural groundwater con-
centrations. The magnitude of those numerical oscillations is larger for the scenario that
includes dispersion because of the presence of the cross-terms in the dispersion approxi-
mation.

4.4.4.3 Breakthrough curves

As an additional comparison between the streamline, TVD and MOC solvers, we also
recorded the simulated concentrations versus time at two observation locations P1 and
P2. We chose the location of those observations points such that they coincide with the
position of nodes along streamlines and that are located close to the flow divide that
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Figure 4.20: Simulated concentration values for Example 4 along the profile parallel
to y direction at coordinates x=35 m and z=2.5 m. Normalized BTEX
and oxygen concentration values computed using (a) MOC and (b) TVD
solvers in fine grid for advective transport with biodegradation (A),
advective-dispersive transport with biodegradation (B), and advective
transport (C). In absence of transverse mixing and reaction, there is an
overlap (mixing region) of BTEX and oxygen (black lines) because of
numerical dispersion. If biodegradation is included, BTEX and oxygen
react within that numerical mixing region.
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separates the flow originating at the spill and the natural groundwater flow. Figure 4.21
shows the location of the two observation points with respect to the contaminant source
and simulated plume defined by the 1 mg/L BTEX contour. Point P1 is located at
approximately 7 m downgradient of the BTEX source along the main direction of the
flow while point P2 is located 10 m farther downgradient from P1.

Figure 4.21: Location of contaminant source (red dot) and the two observation wells
(black dots) in Example 4. Solid line corresponds to simulated 1 mg/L
BTEX concentration in plane defined by coordinate z=2.5 m.

Figure 4.22 shows simulated BTEX breakthrough curves at the two observation points for
the scenario that includes only advection. Concentrations simulated with the streamline,
MOC and TVD solvers in the coarse and fine grids are similar close to the location
of the source, i.e. at P1. However, simulated concentrations farther from the source,
at point P2, are different. Curves that correspond to the TVD and MOC solvers show
earlier breakthrough. Furthermore, solutions computed with the TVD solver in the coarse
and fine grid do not reach the source concentration at point P2, which indicates artificial
dilution due to numerical mixing that is more important for the solutions computed using
the coarse grid. Both solutions computed with the MOC solver show large numerical
oscillations.

On the other hand, the breakthrough curve corresponding to the streamline-based solver
also shows some longitudinal numerical dispersion. To demonstrate that that error can be
easily avoided, we also simulated this scenario using a streamline grid that has the same
number of streamlines but has a smaller average node spacing equal to one fifth of the
original one, i.e. 0.2 m. The breakthrough curve simulated using the refined streamline
grid is very sharp and concentration values go from zero to the source concentration in
a very short time, which is the expected behavior for this scenario that does not include
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transverse or longitudinal dispersion. Nevertheless, as discussed above, errors due to
longitudinal dispersion along streamlines are minor in comparison to the errors caused
by the variable flow velocity orientation with respect to the main axes of the numerical
grid associated to the MOC and TVD solvers.

Figure 4.23 shows simulated BTEX breakthrough curves at the two observation points
for the scenario that includes advection and biodegradation. As in the conservative
case, simulated concentrations with the streamline, MOC and TVD solvers in the fine
grid are similar close to the location of the BTEX release at P1. However, simulated
concentrations with the TVD and MOC solvers at point P2 are much lower than the
source concentration because of the combined action of numerical transverse mixing and
biodegradation. Simulated concentrations are even smaller when computed in the coarse
grid because of larger numerical errors. A comparison with Figure 4.22 shows that in this
case differences between the simulated concentrations using the MOC and TVD solvers
and the streamline-based solver are much more important that for the conservative case.
This demonstrates how the addition of chemical reactions can amplify errors observed in
conservative solute transport simulations.

4.4.4.4 Performance

Table 4.11 summarizes the normalized CPU time required to simulate the two scenarios
than include biodegradation. The streamline solver is faster than the mesh-based solvers
to simulate advection and biodegradation independent of the grid size and number of
time steps. However, it is much slower than the mesh-based solvers using the coarse
grid and it is slightly slower than the TVD solver using the fine grid when dispersion is
included.
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Figure 4.22: Simulated BTEX concentration versus time for Example 4 assuming
advective transport only. Concentrations simulated with the streamline,
MOC and TVD solvers in the coarse and fine grids are similar close to the
location of the BTEX release (P1). However, simulated concentrations
farther from the source at point P2 are different because of the numerical
dispersion that affects the solution computed with the TVD and MOC
solvers.
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Figure 4.23: Simulated BTEX concentration versus time for Example 4 assuming
advective transport and biodegradation. Concentrations simulated with
the streamline, MOC and TVD solvers in the fine grid are similar close
to the location of the BTEX release (P1). However, simulated con-
centrations with the TVD and MOC solvers farther from the source,
at point P2, are much lower than the source concentration because of
the combined action of numerical transverse mixing and biodegradation.
Simulated concentrations are smaller when computed in the coarse grid
because of the larger numerical errors.
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Method\Run 4A 4B
Streamlines 1.0 132.7
TVD Coarse 1.4 1.7

TVD Fine 90.4 117.1
MOC Coarse 5.0 5.7

MOC Fine 341.5 385.8

Table 4.11: Normalized CPU time required to simulate Example 4 for the two scenar-
ios than include biodegradation. The streamline solver is faster than the
mesh-based solvers to solve advection and biodegradation independent of
the grid size. However, it is much slower than the mesh-based solvers
using the coarse grid and it is slightly slower than the TVD solver using
the fine grid when dispersion is included.

It is somehow surprising that the streamline solver using more than 13,000 nodes and
5,000 time steps is faster than the TVD solver using a grid that has only 5,250 cells and
3,300 time steps (see Table 4.10) to simulate scenario 4A. This difference is due to the
streamline-formulation to solve advection that allows the utilization of more efficient and
simple data structures to solve multiple one-dimensional problems versus more complex
and costly ones required by multidimensional solvers. That advantage of the streamline-
based formulation makes it even more attractive for parallel implementations.

The advantages of the streamline-based solver are even more important when compared
to mesh-based solutions of similar level of accuracy, which require using a grid with fine
discretization. At the same time that the computational cost and memory requirements
increase because of the larger number of cells due to the finer discretization, the stability
restrictions of the explicit mesh-based solvers require using smaller time steps. The net
effect is a rapid increase in the simulation time with each level of grid refinement. For
example, the explicit multidimensional TVD solver in MT3DMS requires that (Zheng
and Wang, 1999),

∆t ≤ 1
|vx|
∆x + |vy |

∆y + |vz |
∆z

(4.25)

The restriction on the time step is global and it is computed using the maximum velocity
in the grid. The flow velocity distribution in heterogeneous porous media is skewed and
most cells have velocities that are much lower than the maximum value as shown in Figure
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4.24. Thus, the use of a single time step imposes an unnecessarily restrictive condition in
most of the domain. However, because of the global coupling of the concentration values
introduced by use of a multidimensional solver, it is impossible to use different time steps
according to the local flow velocities. The distribution of flow velocities is even more
asymmetric for more heterogeneous porous media, thus the global stability restriction is
even costlier in those cases.
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Figure 4.24: Distribution of cells according to the flow velocity magnitude for the
(a) coarse grid and (b) fine grid. Explicit mesh-based solvers such as
the multidimensional TVD solver in MT3DMS must satisfy a global
stability restriction, thus concentration values must be updated using
a single time step for all the cells in the grid. The global time step is
computed based on the maximum velocity at any of the cells in the grid.
However, the flow velocity distribution in heterogeneous porous media
is skewed and most cells have velocities that are much lower than the
maximum value.

The distribution of the flow velocity at the streamline nodes follows a distribution that
is similar to the one of the magnitude of the flow velocity at the grid cells as shown in
Figure 4.25. Yet, the explicit solution of advection must satisfy a local stability restriction
that is given by the maximum velocity along individual streamlines, which has a much
more uniform distribution. While short time steps must be used to advect concentration
values along few fast streamlines, larger time steps can be used along many other slower
streamlines. The possibility of using variable time steps according to the flow regions
sampled by individual streamlines can result in important performance advantages and
constitutes one of the main advantages of streamline-based simulations.
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Figure 4.25: Distribution of (a) nodes along streamlines according to the flow velocity
magnitude and (b) number of streamlines based on the maximum veloc-
ity magnitude along individual streamlines. The distribution of the flow
velocity at the streamline nodes follows a distribution that is similar to
the one of the magnitude of the flow velocity at the grid cells shown in
Figure 4.24. However, the explicit solution of advection along individual
streamlines must satisfy a local stability restriction that is given by the
maximum velocity along individual streamlines. While short time steps
must be used to advect concentration values along few fast streamlines,
larger time steps can be used along many other slower streamlines.

The increase in the time required to complete the streamline-based simulations for sce-
nario 4A and 4B is due to the approximation for the dispersion terms. Because of the
irregularity of the flow, streamlines and nodes along them are irregularly distributed in
space. Thus, the number of neighbor nodes that contribute to the SPH approximation
for dispersion, if a constant smoothing length is used, varies in different regions of the
domain and ranges from 10 in divergent flow regions or close to the boundaries to 138 in
convergent flow regions or near the contaminant source as shown in Figure 4.26. While
few nodes have less than 20 neighbors which is considered a reasonable number (Cleary
and Monaghan, 1999), most nodes have many more neighbors resulting in a large compu-
tational overhead. That computational disadvantage can be overcome by using a variable
smoothing length that is automatically adjusted to get a relatively constant number of
neighboring nodes (Monaghan, 2005). However, the use of an adaptive smoothing length
would result in a more complicated implementation.
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Figure 4.26: Spatial distribution of nodes and number of nodes according to the num-
ber of neighboring nodes that contribute to the SPH summation to ap-
proximate dispersion. The selection of a constant smoothing length to
guarantee a reasonable number of neighboring nodes for any node in
the domain results in an irregular distribution of the number of nodes
that contribute to the summation in (4.17). While few nodes have less
than 20 neighbors which is considered a reasonable number Cleary and
Monaghan (1999), most nodes have many more neighbors resulting in a
large computational overhead.
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Although, the SPH-based approximation for dispersion introduces a large computational
overhead, the time required by the streamline-base solver to compute the solution of the
overall transport equation that includes advection and dispersion is comparable to the
one required by the fastest of the two mesh-based solvers (TVD) using a fine grid and it
is much lower than the one required by the slowest one (MOC) .

4.5 Conclusions

We derived and implemented a numerical scheme to incorporate dispersion, including
transverse dispersion, in multidimensional streamline simulations. Because the new
scheme does not require the mapping of concentration values onto a grid it does not
introduce additional numerical dispersion.

Because the new scheme is able to simulate transverse dispersion and completely avoid
numerical dispersion, it is an attractive alternative to obtain accurate simulations of
problems that involve chemical reactions that are controlled by transverse mixing such
as bio-remediation or natural attenuation of contaminant plumes.

Furthermore, we demonstrated theoretically and by numerical simulations that the pro-
posed scheme guarantees solutions that are free of numerical oscillations even when the
dispersion tensor is anisotropic. This is an important advantage of the new method over
traditional numerical approximations that suffer numerical artifacts that lead to negative
concentration values if the cross-terms of the dispersion tensor are included. Although,
such numerical oscillations can be tolerated in conservative solute transport simulations,
they may compromise the stability of the solution if non-linear reactions are included.

For a set of two- and three-dimensional benchmark problems, the new streamline method
was competitive in terms of performance with state of the art finite volume and a Eulerian-
Lagrangian solvers, while avoiding the numerical artifacts that plague the solutions com-
puted with those solvers.
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Chapter 5

Conclusions

Previous chapters presented the derivations, implementation and evaluation of two new
numerical methods for the simulation of conservative and reactive solute transport in
natural porous media. Both approximations are based on a continuum description of
reactive transport, thus parameters and variables are defined at the REV or local-scale.

Chapter 2 presents the derivation and implementation of a meshless approximation for
the advection-dispersion equation derived from smoothed particle hydrodynamics (SPH).
Although, SPH formulations had been previously used to simulate solute transport at the
pore (Zhu et al., 1999; Zhu and Fox , 2001, 2002; Tartakovsky et al., 2007) and laboratory
(Tartakovsky et al., 2008) scales, Chapter 2 presents one of the first attempts reported in
the literature to use meshless methods to simulate solute transport in porous media at
the field-scale together with the work of Zimmermann et al. (2001), Li et al. (2003) and
Praveen Kumar and Dodagoudar (2008).

Chapter 3 presents the derivation of a new SPH approximation to simulate anisotropic
dispersion, which extends the traditional SPH scheme for diffusion and thermal conduc-
tion (Cleary and Monaghan, 1999; Zhu and Fox , 2001; Jubelgas et al., 2004) used in
Chapter 2. Results of numerical simulations demonstrated that the accuracy of the new
approximation depends upon multiple parameters such as: average particle spacing, ker-
nel function, smoothing length, and, most importantly, degree of particle disorder. This
feature is common to other kernel interpolation methods such as the particle strength
exchange (PSE) method (Degond and Mas-Gallic, 1989; Zimmermann et al., 2001). An-
other important conclusion of this chapter is that SPH and PSE methods provide more
accurate approximations for isotropic dispersion than for anisotropic dispersion, which is
also similar to the behavior of other standard numerical schemes.
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Chapter 4 presents a hybrid scheme to simulate solute transport in a flow oriented grid:
advection and longitudinal dispersion are solved along streamlines, while transverse dis-
persion is handled using the meshless approximation presented in Chapters 2 and 3. The
hybrid scheme overcomes two main limitations of previous streamline-based simulations.
First, it allows simulating transverse dispersion without using a background grid and
introducing numerical dispersion. Second, it can be used to simulate three-dimensional
problems, which was not possible with previous methods that used orthogonal flow-
oriented grids and were restricted to two-dimensional problems (e.g. Frind, 1982; Cirpka
et al., 1999). Furthermore, the hybrid approach also represents one of the few and, in
our opinion the simplest, monotonic approximation for anisotropic dispersion (see Mlac-
nik and Durlofsky, 2006; Lipnikov et al., 2009, for examples of alternative monotonic
schemes). Moreover, benchmarking results demonstrated that the streamline-based for-
mulation minimizes numerical dispersion in the longitudinal direction and it completely
avoids it in the transverse direction. Because of these features, the new hybrid scheme
is suitable to accurately simulate conservative and reactive solute transport including
reactions controlled by transverse mixing. Furthermore, the new hybrid formulation, as
others streamline-based schemes (Di Donato and Blunt, 2004), also allows the simulation
of general heterogeneous chemical reactions that involve species or components in the
solid phase, which constitutes one of the main advantages of this type of method over
particle based methods.

5.1 Limitations of Proposed Numerical Schemes

Although, the two proposed numerical schemes represent attractive alternatives versus
most traditional numerical methods, they also have their own limitations.

First, as demonstrated in Chapter 3, the accuracy of meshless approximations for dis-
persion, including SPH and PSE, depends upon the spatial distribution of particles or
numerical nodes. Although, the distribution of particles can become very irregular in
presence of non-uniform velocity fields, the numerical simulations presented in Chapter
2 demonstrated that it is still possible to obtain reasonable accurate results in simula-
tions that consider large Péclet numbers. Under those conditions, even large errors in
the approximation of dispersion are relatively minor in comparison to other numerical
errors, e.g. due to solution of advection. Nevertheless, we believe that the effect of par-
ticle disorder should always be considered and, if possible, estimated whenever meshless
methods like the ones presented in Chapters 2 and 3 are used.
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Second, meshless methods require searching for nearby nodes and evaluating pair inter-
actions between neighboring nodes, which can result in computational overhead. This
problem can be controlled by an adequate choice of the radius of interaction of the nu-
merical nodes (e.g. smoothing length in SPH simulations). As demonstrated by the
numerical simulations presented in Chapter 2, which include hundreds of thousands of
nodes, this is an effective alternative for two-dimensional simulations. However, this can
be a much more serious limitation in three-dimensional scenarios as demonstrated by
the simulation of aerobic biodegradation presented in Chapter 4, because the number of
neighboring nodes can increase dramatically going from two- to three-dimensional sce-
narios. Moreover, this issue becomes more important when simulations consider very
heterogeneous velocity fields and/or sources and sinks. In those cases, particles concen-
trate in slow flow regions, while streamlines converge towards high flow velocity zones
and sources or sinks. An obvious solution to this problem is to adapt the radius of in-
fluence according to the local node density such that the number of neighboring nodes
stays relatively constant, which is the standard approach in SPH simulations of fluids
with large density variations (Monaghan, 2005). That modification would introduce ad-
ditional complexity to the overall algorithm, but we believe that the performance gains
would be enough to justify that cost. Moreover, an implementation of such algorithm
would provide a method with a grid that automatically adapt to the flow field and that
provides spatially varying resolution according to the flow characteristics.

Last, all the simulations presented in the previous chapters considered steady-state flow
conditions, however, many real problems involve transient flows. While, the extension of
the SPH-based method to transient flows is direct and it does not require additional mod-
ifications, the streamline-based approach would require additional changes. Streamline-
based simulations of transient flows are standard in reservoir simulations (Thiele, 2005).
Streamlines are updated each time than the flow field changes and concentrations are
mapped from the old to the new streamlines. As other schemes that require interpola-
tions, the mapping concentrations from the old to the new streamline locations introduces
numerical dispersion. However, changes of the flow field occur over time periods that are
relatively long in comparison to typical transport time steps, thus the mapping of con-
centrations is only necessary few times during a simulation and the cumulative effect is
relatively minor.
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5.2 General Conclusions

In addition to the specific conclusions discussed above, the results discussed in the pre-
vious chapters also confirmed the following general results that are relevant for reactive
transport modeling:

1. The simulation of aerobic biodegradation presented in Chapter 4 is a good example
of situations were relatively small errors that can be tolerated in conservative so-
lute transport simulations, can result in much larger errors if chemical reactions are
included. Thus, as pointed out by Steefel and MacQuarrie (1996), traditional meth-
ods that seem to work well for simulations of conservative transport are unsuitable
for simulating reactive transport.

2. The difference between numerical solutions computed with different numerical meth-
ods can be very large. This is particularly true for realistic problems that involve
heterogeneous media and chemical reactions. Since, in general, it is not possible to
derive analytical solutions for such problems it is difficult to decide a priori which
numerical algorithm provides the best solution. This indicates the need for defin-
ing a set of benchmark problems that can be used to verify the performance of
numerical methods and their implementations.

3. Current numerical methods are inadequate to simulate reactive transport in highly
heterogeneous porous media under common field conditions. Mesh-based methods
suffer excessive numerical dispersion and spurious oscillations. Similarly, hybrids
schemes like the method of characteristics (MOC) that use a background grid to
compute concentrations also suffer numerical mixing and require using a very large
number of particles to obtain smooth solutions. Finally, random walk particle
tracking methods have problems to simulate low concentrations and also suffer
numerical oscillations (overshooting).

4. The main advantages of the proposed Lagrangian schemes are due to the fact that
they track concentrations defined at the REV or local-scale in contrast to traditional
Eulerian or Eulerian-Lagrangian formulations that compute grid-scale concentra-
tions. Although, usually overlooked, the equations that describe the evolution of
concentrations at the grid and local-scale are different (Beckie, 1998). Most of the
numerical errors that plague traditional numerical approximations are a manifes-
tation of those differences.
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5.3 Perspectives

Although, the implementations of both new numerical schemes use an SPH-based ap-
proximation for isotropic dispersion, any other meshless approximation for diffusion may
also be used. SPH and PSE methods are only two of multiple meshless methods de-
veloped during recent years. For example, Fries and Matthies (2004) and Schaback and
Wendland (2006) present exhaustive reviews of many others meshless numerical meth-
ods. We believe that others meshless methods may have advantages over SPH, e.g. higher
convergence, which could make them better alternatives for new implementations of the
proposed Lagrangian numerical schemes.

The two proposed numerical methods are also attractive alternatives to study fundamen-
tal issues related to mixing and reactions in heterogeneous porous media. For example,
Tartakovsky et al. (2008) present a novel multiscale approach to model mixing in hetero-
geneous porous media. They use a SPH scheme similar to the one presented in Chapter
2, to simulate solute transport. The novel characteristics of their approach is that the
evolution of particle positions is given by an stochastic Langevin equation that model
velocity fluctuations at the local-scale. The resulting model is simple and theoretically
appealing because it provides a clear separation between the two main components of
mixing in porous media: local-dispersion and spreading due to local-scale velocity vari-
ations. On the other hand, the streamline-based method represents a unique tool to
evaluate the potential effect of transverse dispersion and flow heterogeneity, e.g. conver-
gent flow regions, on the enhancement of mixing and dilution rates in natural aquifers as
hypothesized by Werth et al. (2006).

The two numerical methods derived in this research allow using different spatial reso-
lutions to simulate flow and reactive transport. This flexibility can be an important
advantage in the implementation of multiscale or upscaling methods that require solv-
ing transport and flow with different levels of spatial resolution as demonstrated by the
nested gridding approach of Gautier et al. (1999) or the multiscale method of Tartakovsky
et al. (2008). This constitutes a significant advantage over mesh-based methods that, in
general, solve flow and transport using the same spatial discretization.
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5.4 Final Remarks

Although, a large portion of this thesis has been focused on discussing specific methods
and implementation details, we think that its most important contribution would be
to promote and demonstrate the advantages of Lagrangian approaches – be they SPH,
streamline-based simulations or other – to simulate reactive transport in natural porous
media. We hope that the results of this research would help to highlight those advantages
and contribute to the adoption of Lagrangian schemes in current and future reactive
transport codes.
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Appendix A

Derivation of SPH Approximation
for Isotropic Dispersion

To solve the PDE equation given by

dA

dt
= 1
α
∇ · (βΦ∇A) (A.1)

where A is an scalar variable, and α, β and Φ are scalar parameters; we can use the
identity

1
α
∇ · (βΦ∇A) = 1

2α
�
∇

2 (βΦA)− A∇2(βΦ) + βΦ∇2A
�

(A.2)

Thus, the solution of (A.1) requires only an expression to evaluate the Laplacian. Ap-
plying a Taylor series expansion and some algebraic manipulation it is possible to show
that the Laplacian of a scalar field S can be approximated by (Jubelgas et al., 2004)

∇
2S
���
r
≈ −2

ˆ
[S(r�)− S(r)] (r� − r)

|r� − r|2
·∇W (r� − r) dr� +O(h2) (A.3)

If this last expression is integrated using a traditional SPH approach, then

∇
2S
���
ri

= − 2
Np

Np�

j=1

1
pj

[S(rj)− S(ri)]F (rj − ri) (A.4)
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where

F (rj − ri) = (rj − ri)
|rj − ri|2

·∇W (rj − ri) (A.5)

Finally, substituting (A.4) into (A.2), we get

dA

dt

�����
ri

= 1
Np

Np�

j=1

1
αipj

(βiφi + βjφj) (Aj − Ai)F (rj − ri) (A.6)
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Appendix B

Derivation of SPH Approximation
for Second Order Derivatives

Español and Revenga (2003) and Monaghan (2005) provide expressions to compute second
derivatives using a smoothed particle hydrodynamics (SPH) formulation. Here, we give
a detailed derivation of those expressions.

We start by recalling some of the properties of SPH kernels. The gradient of a spherically
symmetric SPH kernel, W (r), can be expressed as ∇W (r) = −rF (r), where F (r) is a
spherically symmetric scalar function and r and r are the separation vector and its
magnitude, respectively. Additionally, the kernel satisfies the normalization condition´
W (r) dr = 1 and has compact support, i.e. W (r) = 0 ∀r > he, where he is a finite

constant.

The Taylor series approximation of a function A around x is,

A(x�) = A(x) + (x� − x)T · ∇A|x + 1
2(x� − x)T · ∇∇A|x · (x� − x) +O(|x� − x|3) (B.1)

To simplify notation, we use r = x� − x = (r1, r2, r3), such that

A(x�)− A(x) ≈
�

i

ri
∂A

∂xi

�����
x

+ 1
2
�

i

�

j

rirj
∂2A

∂xi∂xj

�����
x

(B.2)
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Now, we multiply by Γαβ(r) = F (r)rαrβ/r2 and integrate to obtain,

ˆ
(A(x�)− A(x)) Γαβ(r) dx� =

�

i

∂A

∂xi

ˆ
F (r)rirαrβ

r2
dx�

+ 1
2
�

i

�

j

∂2A

∂xi∂xj

ˆ
F (r)rirjrαrβ

r2
dx�

(B.3)

We note that dr = dx� and use spherical coordinates to evaluate the integrals, to obtain,

ˆ
F (r)r1r1r2

r2
dr =

∞̂

0

2πˆ
0

πˆ
0

F (r)r3 cos2(θ)sin(θ) sin3(φ) dφ dθ dr = 0 (B.4)

because
´ 2π

0 cos2(θ)sin(θ) dθ = 0. Similarly, the other terms multiplying first derivatives
vanish. Thus,

ˆ
(A(x�)− A(x)) Γαβ(r) dx� = 1

2
�

α

�

β

∂2A

∂xα∂xβ
Λαβ (B.5)

where only coefficients of the form Λαβ =
´
F (r)rαrαrβrβ/r2 dr are not zero. Therefore,

2
ˆ

(A(x�)− A(x)) Γαα(r) dr = Λαα
∂2A

∂x2
α

+
�

β �=α
Λαβ
∂2A

∂x2
β

= (Λαα − Λαβ)
∂2A

∂x2
α

+ Λαβ∇2A

(B.6)

and

2
ˆ

(A(x�)− A(x)) Γαβ(r) dr = Λαβ
∂2A

∂xα∂xβ
+ Λβα

∂2A

∂xβ∂xα

= 2Λαβ
∂2A

∂xα∂xβ

(B.7)

The coefficients Λαβ can be easily evaluated, for example,
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Λxx =
∞̂

0

2πˆ
0

πˆ
0

F (r)r4 cos4(θ) sin5(φ) dφ dθ dr

= 4
5π

∞̂

0

F (r)r4 dr

(B.8)

and

Λxy =
∞̂

0

2πˆ
0

πˆ
0

F (r)r4 cos2(θ) sin2(θ) sin5(φ) dφ dθ dr

= 4
15π

∞̂

0

F (r)r4 dr

(B.9)

The coefficients related to the other directions have one of these two forms. To compute
the integral in r, we recall that rF (r) = −∂W (r)/∂r, thus

∞̂

0

F (r)r4 dr = −
∞̂

0

r3
∂W (r)
∂r

dr = 3
∞̂

0

r2W (r) dr (B.10)

after integration by parts. Finally, we use the normalization condition of the kernel

ˆ
W (r) dr =

πˆ
0

2πˆ
0

∞̂

0

r2W (r) dr dθ dφ = 4π
∞̂

0

r2W (r) dr = 1 (B.11)

to obtain

∞̂

0

F (r)r4 dr = 3
4π (B.12)

Then,

Λαα = 3
5 Λαβ = 1

5 (B.13)
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We observe that Λαα − Λαβ = 2Λαβ, thus equations B.6 and B.7 can be combined to
obtain,

2
ˆ

(A(x�)− A(x)) Γαβ(x� − x) dx� = Λαβ∇2Aδαβ + 2Λαβ
∂2A

∂xα∂xβ
(B.14)

where δαβ is Kronecker delta. This last expression gives the following approximation for
the Laplacian,

∇
2A = 2

ˆ
(A(x�)− A(x))F (x� − x) dx� (B.15)

which is identical to an expression previously derived to simulate thermal conduction
(Cleary and Monaghan, 1999; Jubelgas et al., 2004).

Finally, substituting B.15 into B.14 and rearranging terms, we obtain

∂2A

∂xα∂xβ

�����
x

=
ˆ

(A(x�)− A(x))F (x� − x)
�

1
Λαβ
rαrβ
r2
− δαβ

�

dx� (B.16)

Using an SPH approximation to evaluate the integral,

∂2A

∂xα∂xβ

�����
xa

=
�

b

1
pb

(A(xb)− A(xa))F (|xb − xa|)Θαβ(xb − xa) (B.17)

where Θαβ(x� − x) =
�

1
Λαβ

(x�−x)α(x�−x)β
|x�−x|2 − δαβ

�
and pa = �bW (xb − xa). Substituting

1/Λαβ = 5 in three dimensions and 1/Λαβ = 4 in two dimensions, we obtain the expres-
sions given by Español and Revenga (2003) and Monaghan (2005), respectively.
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Appendix C

Random Walk Particle Method

Random-walk particle-tracking (RWPT) methods are based on the equivalence in the
limit of a large number of particles between the ADE which describes continuum-scale
mass conservation and the Fokker–Planck equation which describes the time evolution
of the probability density function of the position of a solute particle. Most numerical
implementations of the RWPT are based on the Îto integration of the equivalent Langevin
equation (Gardiner , 1990) that written in matrix form corresponds to

X(t+ ∆t) = X(t) + ∆tA(t) + B(t)Z
√

∆t (C.1)

where X(t) corresponds to the vector of particle position at time t and Z is a normally
distributed random vector with zero mean and unit variance that represents the Brownian
motion of the particles due to dispersion. The other two terms in (C.1) corresponds to a
drift term given by

A =v +∇ ·D (C.2)

assuming constant porosity; and a displacement matrix, B, that depends on the disper-
sion tensor. The relation of these terms with the ADE are discussed in detail in several
references (e.g. Lichtner et al., 2002; Delay et al., 2005; Salamon et al., 2006).

Several approaches have been proposed to interpolate the flow velocity required to eval-
uate the coefficients appearing in (C.1) and (C.2). Particular attention has been paid to
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methods that avoid local mass conservation problems due to discontinuities of the dis-
persion tensor across sharp interfaces (LaBolle et al., 1996; Labolle et al., 2000; Salamon
et al., 2006). In our implementation of the RWPT we use a hybrid approach to interpo-
late velocity: a linear interpolation is used to evaluate the velocity vector that appears
in the drift term, and a trilinear interpolation is used to interpolate the velocity vector
used to evaluate the dispersion tensor. This interpolation scheme guarantees the spatial
continuity of the advective velocity and the dispersion tensor (Salamon et al., 2006).

To apply the RWPT method to practical situations it is necessary to map solute mass from
and to concentration values because initial and boundary conditions and geochemical
computations are usually expressed in concentration units. Given the total solute mass
in the system M , the mass of each particle is computed as mp = M/Np. In general, the
total number of particles is chosen to satisfy some numerical resolution, for example such
that the mass of a given number of particles Nr is equal to some unit mass value M0, i.e.
mpNr =M0. Given a set of particles, a continuum spatial concentration distribution can
be approximated as (Bagtzoglou et al., 1992; Tompson, 1993)

C(x) =
ˆ

Ω
mpξ(x− x�)dx� ≈

Np�

j=1
mpξ(x− xj) (C.3)

where ξ(x) is a projection function. In theory, this expression allows the computation
of the concentration values at any location. In practice, most implementations use a
box function with value 1/Vc for points within a cube of volume Vc around x and 0
otherwise(Tompson, 1993). In simple terms, the domain Ω is divided in a set of cubic
cells with volume Vc, then concentration values are assigned to cell j by counting the
number of particles within it, nj, so that the concentration value of the cell is computed
as Cj = njmp/Vc.

The value of Np affects the accuracy of the method in two ways. First, the equivalence
between the Langevin equation and the continuum ADE is valid for Np → ∞. Second,
concentration values can only be represented as an integer multiple of mp/Vc. Errors can
be particularly important near the plume edges where the drop in the number of particles
produces unphysical numerical oscillations in the computed concentrations that can be
amplified in presence of non-linear chemical reactions if a splitting approach is used to
solve reactive transport (Tompson and Dougherty, 1992; Tompson, 1993).
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Appendix D

Streamline Tracing

In streamline simulations the value of variables such as time of flight and arc length
together with the node positions along streamlines define the computational grid. There-
fore, the accuracy of the results depends upon the accuracy of the computed streamlines
trajectory, arc length and time of flight. On the other hand, it may be necessary to trace
a large number of streamlines to provide an adequate coverage of the domain in com-
plex three-dimensional problems. Additionally, streamlines must be periodically updated
whenever temporal changes of the flow field occur. Therefore, it is important to select
tracing algorithms that allow an accurate and efficient computation of the streamlines.

When tracing the streamlines used in a simulation it is sometimes useful to consider some
of the characteristics of the flow field in order to optimize the location and minimize the
number of streamlines necessary to obtain a given spatial resolution and accuracy.

We discuss some of the issues associated with tracing and spatial distribution of stream-
lines in the next sections.

Streamline Tracing Algorithms

Most current streamline simulators use a semi-analytical method to trace streamlines
that was first introduced by Pollock (1988) to track fluid particles in groundwater simu-
lations. This method is attractive because given a velocity field in a staggered Cartesian
grid, it provides analytical expressions to compute particle trajectories without introduc-
ing additional numerical errors. Moreover, the method is simple to understand and, in
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theory, easy to implement. In practice, implementations of the algorithm are complex
and sensitive to errors due to floating point arithmetic. Additionally, the extension of the
method to unstructured grids, although possible using isoparametric coordinate trans-
formations (Cordes and Kinzelbach, 1992; Prevost et al., 2002), is much more involved
and difficult to implement than the original method.

Fluid particle trajectories that define streamlines can also be integrated using explicit
time integration schemes, e.g. Runge-Kutta. This type of algorithm is straightforward,
very easy to implement, numerically robust, and can be used with velocity fields given
in structured or unstructured grids without modifications. However, explicit integra-
tion schemes introduce additional numerical errors that can be difficult to quantify and
control.

In this section, we compare Pollock’s method with an explicit adaptive first-order time
integration scheme. We give a brief description of both methods and compare them in
a set of benchmark problems. Finally, we comment on their relative advantages and
disadvantages.

Pollock’s Method

Given the components of the flow velocity in a three-dimensional staggered Cartesian grid,
Pollock’s algorithm assumes that the components of the velocity vector v = (u, v, w), can
be approximated as a linear function of the velocity components at the cell faces, i.e.

u(x, y, z) = Ax (x− x1) + u1

v(x, y, z) = Ay(y − y1) + v1
w(x, y, z) = Az(z − z1) + w1

(D.1)

where u1 is the velocity component in the x direction at face 1 located at x1 as shown
in Figure D.1, and the slope Ai is computed as ratio of the difference of the cell face
velocities over the grid spacing, e.g. Ax = (u2 − u1) /∆x. Similar definitions apply for
the other two directions.
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Figure D.1: Pollock’s method assumes that the components of the velocity within a
cell can be approximated as a linear function of the velocity components
at the cell faces. The method provides analytical expressions to compute
the new position D after an interval of time ∆t = t1 − t0 of a particle
initially at point C. However, the method is usually used to compute the
exit point B from a cell given an entry point A.

The fluid velocity and particle position in each direction are related by,

du

dt
= du
dx

dx

dt
= Axu (D.2)

Integrating this last expression one obtains,

∆t = 1
Ax

ln
�
u(x0 + ∆x, t0 + ∆t)

u(x0, t0)

�

(D.3)

Taking the exponential of each side and substituting u(x0 + ∆x, t0 + ∆t) from (D.1),

∆x = 1
Ax

�
u(x0)eAx∆t

− u1
�

(D.4)
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Similar expressions are valid in the y and z directions.

While equation (D.3) provides an expression to compute the travel time required by a
fluid particle at position x0 to move a distance ∆x, (D.4) can be used to compute the
new position after an interval of time ∆t.

A common application of Pollock’s method is to compute the time a fluid particle at
position xp will need to exit from the current cell. Assuming all velocities are positive,

∆tx = 1
Ax

ln
�
u2
u(xp)

�

∆ty = 1
Ay

ln
�
v2
v(yp)

�

∆tz = 1
Az

ln
�
w2
w(zp)

�
(D.5)

Then, the particle will exit after

∆texit = min(∆tx,∆ty,∆tz) (D.6)

Thus, given an entry point to a cell it is possible to calculate the exact exit position in
single step and without introducing additional numerical errors.

A simple inspection of (D.4) and (D.3) reveals that implementations of the algorithm
must take into account several possible issues:

1. If the flow velocity is constant within a cell, then A = 0, and expressions (D.3)
and (D.4) become undefined. The situation is more complicated if floating point
arithmetic is used because the ratio 1/A can also overflow for small differences of
velocity.

2. The analytical expressions are not valid in cells with sources or sinks where the
slope of the velocity changes sign within a single cell.

3. Equations (D.3) and (D.4) are valid within a single cell. Thus, to compute the new
position of a particle after a time step ∆t, one must first check if the particle would
exit the current cell before that time. If it exits, then the time step must be divided
in smaller sub steps.
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4. Additionally, the algorithm assumes that it is always possible to exactly determine
the cell where an individual particle is located. Thus, particles located over or close
to one of the cell edges or corners can be problematic.

Algorithm D.1 summarizes the steps necessary to find the position of a fluid particle
initially at position xp after an interval of time ∆t. Algorithm D.2 presents the steps
used to obtain the remaining time to exit from the current cell. Finally, Algorithm D.3
presents the steps to update the position of a fluid particle.

Algorithm D.1 Pollock’s particle tracking algorithm.
1: xp ← initial position
2: time ← 0
3: while time < ∆t and xp inside domain do
4: cell ← get cell that contains xp
5: if cell = sink or cell = source then
6: break
7: else
8: vp ← get velocity at xp
9: // for each direction

10: fi ← get exit face in direction i
11: ∆ti ← get time to exit through face fi
12:
13: ∆texit ← min(∆ti)
14: if ∆texit > ∆t then
15: xp ← update position using ∆t
16: break
17: else
18: xp ← update position using texit
19: // now xp is over one of the cell edges
20: move xp to next cell
21: time ← time + texit
22: end if
23: end if
24: end while
25: return xp

Explicit Time Integration

The temporal evolution of the trajectory of a fluid particle initially at x0 at time t0 is
given by the solution of the following differential equation,
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Algorithm D.2 Function to compute exit time from current cell in Pollock’s method.
1: x1, x2, xp ← coordinates of face 1, 2 and fluid particle
2: u1, u2, up ← velocities at face 1, 2 and fluid particle position
3:
4: A ← (x2 − x1)/(u2 − u1)
5: if exit through face 1 then
6: if constant velocity then
7: time ← (x1 − xp)/up
8: else
9: time ← A · ln(u1/up)

10: end if
11: else if exit through face 2 then
12: if constant velocity then
13: time ← (x2 − xp)/up
14: else
15: time ← A · ln(u2/up)
16: end if
17: end if
18: return time

Algorithm D.3 Function to update position in Pollock’s method.
1: x1, x2, xp ← coordinates of face 1, 2 and fluid particle
2: u1, u2, up ← velocities at face 1, 2 and fluid particle position
3:
4: if exit throug face 1 or 2 then
5: // we have to move xp to new cell
6: // thus we add to or substract from x1 or x2 a small number
7: if exit through face 1 then
8: xp ← x1 − �
9: else if exit through face 2 then

10: xp ← x2 + �
11: end if
12: else
13: if constant velocity then
14: xp ← xp + up∆t;
15: else
16: A = (x2 − x1)/(u2 − u1)
17: xp ← x1 + A [up · exp (∆t/A)− u1]
18: end if
19: end if
20: return xp
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dx
dt

= v(x, t) (D.7)

with,

x(t0) = x0 (D.8)

The numerical solution of (D.7) can be easily computed using an explicit time integration
scheme. For example, a first-order explicit approximation reads,

x(t+ ∆t) = x0 + v(x0, t0)∆t (D.9)

Although simple to implement, (D.9) is seldom used in practice because of its relatively
large error, which is proportional to the time step. In practice, (D.7) is solved using
a higher-order integration scheme, e.g. explicit second- and fourth-order Runge-Kutta,
that have smaller errors for a given ∆t. Such schemes apply expressions similar to (D.9)
to compute the particle position at intermediate steps. Then, the final position after ∆t
is computed as a weighted combination of the the intermediate locations.

The main drawback of explicit integrators is that it is difficult to determine a priori a
value ∆t such that the error remains below a given threshold. This problem is particularly
important in velocity fields that exhibit large differences in velocity magnitude and/or
direction within short distances as shown in Figure (D.2).
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Figure D.2: Example of explicit time integration. A fluid particle starting at point A
travels along the instantaneous streamline (solid line). After a time step
∆t, it is located at point B. If an explicit integration scheme is used to
integrate the particle trajectory numerical errors can become important.
For example, if a large time step ∆t is used, the particle moves in the
direction of the instantaneous velocity at position A ending at point D.
However, the error can be made smaller if two steps are used for the
integration. First, the particle moves with the initial velocity to E, and
then it moves to C along the direction of the velocity at point E.

There are multiple possible solutions to control the error of explicit integration schemes.
The first one is to use a very small constant time step such that the error in the worst
case stays below a specific threshold. In general, this solution is not acceptable because
it introduces unnecessary computational overhead in slow regions.

A second alternative consists in using an adaptive step size integration algorithm, e.g.
Dormand-Prince (Dormand and Prince, 1980); which uses two methods with different
order at each time step. The difference between both solutions is used to estimate the
numerical error and, if necessary, to adapt the size of the time step.

A third alternative consists in recognizing that the accuracy of the explicit integration
also depends on the spatial resolution of the reconstruction of the velocity field. The
error of the velocity field reconstruction is related to the size of the numerical grid used
to compute the velocity components. Thus, an efficient algorithm can limit the error of
the integration by controlling how far a fluid particle can move in one time step relative
to the grid size. Therefore, many sub-steps may be necessary in areas of high velocity,

198



while one or few sub-steps may be enough in slow zones. Therefore, it is possible to
satisfy restrictions on accuracy and performance. We refer to this scheme as the first-
order explicit adaptive particle tracking (FEAPT) method. Algorithm D.4 summarizes
the steps of the explicit method.

Algorithm D.4 First-order explicit adaptive particle tracking.
1: xp ← initial position
2: ∆ ← maximum distance a particle is allowed to move during one time step
3: time ← 0
4: while time < ∆t and xp inside domain do
5: cell ← get cell that contains xp
6: if cell = sink or cell = source then
7: break
8: else
9: vp ← get velocity at xp

10: t ← ∆/|vp|
11: xp ← xp + vp · t
12: time ← time + t
13: end if
14: end while
15: return xp

Numerical Examples

In this section, we compare Pollock’s and the FEAPT methods in a set of benchmark
problems.

Homogeneous quarter five-spot

The first test problem corresponds to the well known quarter five-spot configuration
in a homogeneous medium. An injection and extraction well are located in the lower
left corner and upper right corner, respectively. The resulting streamline pattern is
well known and it has become a common test problem for streamline simulations (e.g.
Matringe, 2004).

We consider a square domain of 25 m side and we use a 100 x 100 regular Cartesian grid
to solve the flow problem. We trace streamlines from ten seeds placed along a diagonal
straight line that passes through the center of the domain and that connects the upper
left and lower right corners.
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Figure D.3 shows streamlines traced with Pollock’s and the explicit adaptive scheme with
tolerance equal to 5% and 50% of the cell size of the velocity field. The explicit scheme
performs similarly that Pollock’s method to trace the interior streamlines. However, the
FEAPT solution with larger tolerance has problems tracing the exterior streamlines at
the lower right and upper left corners where the curvature of the trajectory is maximum.
When using the larger tolerance particles travel too far and exit the domain. While the
explicit solution with 50% tolerance required the same time that Pollock’s method, the
FEAPT solution with 5% tolerance needed three times longer.

Figure D.3: Streamlines traced with Pollock’s method (solid lines) and with explicit
adaptive scheme (crosses). Spacing between crosses is equal to four times
the cell size of velocity field. Numbers indicate streamline labels used
in the text. Solutions for explicit time integration correspond to 5%
(left) and 50% (right) tolerance. In both cases the position of the inte-
rior streamlines is almost identical. However, the FEAPT solution with
larger tolerance has problems tracing the exterior streamlines at corners
where the streamline curvature is maximum.

Heterogeneous quarter five-spot

As a second test problem, we consider the same well configuration but a heterogeneous
hydraulic conductivity field. We generate two hydraulic conductivity fields assuming
a spatial distribution of Y = ln(K) given by an exponential covariance with variance
σY = 5 and correlation length equal to four times the grid spacing (Figure D.5).
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Figure D.4: Normalized time of flight versus normalized arc length computed with
Pollock’s and adaptive explicit time integration with tolerances equal to
5% and 50% of grid spacing. Streamlines traced with any of the three
methods are similar.

Figure D.5: Spatial distribution of hydraulic conductivity in fields K1 (left) and K2
(right). Note that hydraulic conductivity values vary by more than 14
and 18 orders of magnitude in field K1 and K2, respectively. In both
cases, the magnitude of the resulting flow velocity varies up to five orders
of magnitude.
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Figure D.6: Streamlines traced with Pollock’s method (solid lines) and with explicit
adaptive scheme (crosses) for fields K1 (left) and K2 (right). Spacing
between crosses is equal to four times the cell size of the grid used to
compute the velocity field. Streamlines were traced with explicit time
integration scheme using a tolerance equal to 5% of the grid spacing.

As in the homogeneous case, we trace streamlines from ten seeds placed along a diagonal
straight line that passes through the center of the domain and that connects the upper
left and lower right corners. The resulting streamlines are shown in Figure D.6. With the
exception of few location along streamline 8 in field K1, streamlines traced with Pollock’s
and FEAPT method are very similar. As shown in Figure D.7, the small differences in
the streamline locations are also observed in curves that relate the time of flight and arc
length along individual streamlines. For the strongly heterogeneous fields used in this
example, it is necessary to use a very small tolerance (< 1% of grid spacing) in the explicit
integration scheme to obtain a perfect match between the FEAPT and Pollock’s methods.
However, the FEAPT solution with tolerance equal to 1% of the grid produces results
that are also very close to the curves generated with Pollock’s method. Moreover, it is is
clear that the FEAPT and Pollock’s solutions converge to the same curve as we decrease
the maximum distance than a fluid particle is allowed to advance in an individual time
step.
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Figure D.7: Normalized time of flight versus normalized arc length for streamlines
in heterogeneous K1 (top) and K2 (down) hydraulic conductivity fields.
The difference between the results of the adaptive explicit integration
scheme and Pollock’s method become negligible as the tolerance for the
explicit integration decreases to around 1% of the grid spacing.
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Performance

The main advantage of Pollock’s method consists in its ability to provide accurate results
with minimum computational overhead. To assess the difference between the performance
of the explicit integration scheme versus Pollock’s algorithm, we traced 600 streamlines
in the heterogeneous quarter five-spot configuration discussed in the previous section.
The resulting streamlines are shown in Figure D.8. When using the explicit integration
algorithm, nodes are recorded only if the separation distance between the new and the
previously recorded node is equal to or larger than an specified arc length spacing ∆s.
In Pollock’s method only entry and exit points to/from cells are recorded. All the tests
were run in laptop computer with an Intel Core 2 Duo 2GHz processor with 3MB of L2
cache and 2GB of RAM memory. The results of the comparison are summarized in Table
D.1.

The explicit streamline integration with tolerance equal to 1% of the grid spacing takes
one order of magnitude longer than Pollock’s method, while reducing the tolerance to
0.1% resulted in an extra order of magnitude increase in the computational time. Al-
though the performance difference between both methods is important, it is very likely
that it would not be relevant in practical streamline simulations. In real simulations, the
time required to trace streamlines would be much smaller than the time required to solve
the flow and transport problems. In that case, even the slowest of the three methods,
explicit integration with 0.1% tolerance, would require only a small fraction of the total
simulation time.

Method Time (sec) # Nodes ∆s

Pollock 0.3 99,361 −

Explicit 1% 5.9 221,437 ∆x/2
Explicit 1% 5.8 111,739 ∆x

Explicit 0.1% 56.6 223,140 ∆x/2
Explicit 0.1% 57.9 112,206 ∆x

Table D.1: Comparison of the performance of Pollock’s and explicit adaptive algo-
rithm to trace streamlines shown in Figure D.8. When using the explicit
integration algorithm, nodes are recorded only if the separation distance
between the new and the previously recorded node is equal to or larger
than the arc length spacing ∆s. In Pollock’s method only entry to and
exit points from cells are recorded.
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Comments on the Selection of a Streamline Tracing Algorithm

Based on the examples presented above and our accumulated experience using Pollock’s
and the explicit adaptive integration schemes, we have the following comments:

1. Both methods are able to provide the same level of accuracy if a small tolerance is
used for FEAPT method.

2. However, as demonstrated with the heterogeneous quarter five-spot problem, Pol-
lock’s method can be orders of magnitude faster than the explicit integration algo-
rithm for the same level of accuracy.

3. On the other hand, tracing streamlines is a relatively inexpensive part of a simula-
tion when compared to the solution of the flow and transport problems. Moreover,
the cost of the tracing step can be easily reduced by parallelizing both algorithms,
making the relative cost even smaller. Therefore, performance should not be con-
sidered as the sole factor in choosing a streamline tracing algorithm.

4. Because of its semi-analytical formulation, the original Pollock’s method is re-
stricted to flow fields computed in regular cell-centered Cartesian grids. Its ex-
tension to unstructured grids, although possible, it involves much more complex
expressions and additional steps. Additionally, the method assumes a linear re-
construction of the velocity components, which is a low order approximation. On
the other hand, the FEAPT method only requires a routine to evaluate the flow
velocity at each location, thus it can be applied to any type of grid (structured or
unstructured) and to any velocity approximation without modifications.

In summary, Pollock’s method continue to be an attractive option because of its inherent
accuracy and relative low computational overhead. However, the explicit integration
schemes should be considered as a serious alternative to replace it in new streamline
simulation packages because of its simplicity, flexibility, and numerical robustness.

Streamline Distribution

In streamline simulations the resolution of the numerical grid is given by the distribution
and number of streamlines. Good spatial resolution requires that streamlines cover all
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the domain with some minimum density of lines crossing every region of the domain. In
general, streamlines are traced starting from an initial location (seed) and then tracking
backward and forward until exiting the domain or hitting a sink or source cell. There-
fore, it is possible, for simple flow fields, to optimize the streamline distribution with an
adequate choice of the initial seeds. For example, Figure D.9 shows two possible dis-
tributions of ten streamlines in the homogeneous quarter five-spot problem. It is clear
that the streamlines traced from equispaced seeds over the diagonal line provide a more
regular coverage of the domain than the ones traced from points located over a vertical
line.

The optimal selection of initial seeds becomes much more complicated in the case of
heterogeneous velocity fields as shown in Figure D.10. The figure shows four possible
distributions for hundred streamlines in the heterogeneous quarter five-spot problem
considering field K1. We observe that independently of the distribution of the initial
seeds, the distribution of streamlines is very irregular. Large areas of the domain contain
few streamlines, while few small regions concentrate many of them. Streamlines occur less
often in slow flow areas, while they concentrate in fast regions. Therefore, an attractive
alternative to obtain a more uniform coverage is to launch some streamlines from the
slowest cells in the domain. However, many of the slowest cells are located nearby, and
seeding streamlines using such strategy produces a more irregular streamline distribution
than the one obtained using randomly distributed seeds.

In many streamline simulations, it is impossible to tolerate regions of the domain with-
out a crossing streamline. For example, in solute transport simulations that use an
operator-splitting approach and solve advection along streamlines and dispersion using a
background grid (Crane and Blunt, 1999; Obi and Blunt, 2004), at least one streamline
must cross each cell of the background grid in order to minimize interpolation errors.
A common approach in those cases consists in using a background grid to control the
streamline distribution. First, streamlines are traced from specified seeds marking cells
of the grid that are crossed by at least one streamline. Second, new streamlines are
traced from the rest of cells. In general, the number of streamlines is dependant on the
initial seeds configuration and the order used to identify empty cells in the grid. As illus-
tration, we use the quarter five-spot problem considering the field K1 and trace enough
streamlines such as at least one streamline crosses every cell a 100 x 100 square grid. We
use Pollock’s method and only record the entry and exit points in each cell. Table D.2
summarizes the total number of streamlines and nodes required to cover the grid using
five different strategies for the distribution of initial seeds. We observe that independent
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Figure D.8: Distribution of 600 streamlines traced to compare the performance of
Pollock’s and the explicit adaptive integration scheme. Streamlines for
fields K1 (left) and K2 (right).

Figure D.9: Two possible distributions of ten streamlines in the homogeneous quarter
five-spot problem. Red squares indicate the position of initial seeds.
Using a sensible choice of the initial seeds, it is possible to obtain a more
uniform coverage of the domain with the same number of streamlines.
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Figure D.10: Four possible distributions for hundred streamlines in the heteroge-
neous quarter five-spot problem considering field K1. Red squares indi-
cate the position of initial seeds. Seed distributions correspond to: (i)
equispaced points along diagonal line (top left), (ii) quasi-randomly dis-
tributed points (top right), (iii) fifty equispaced points along diagonal
and fifty quasi-randomly distributed points (down left), and (iv) fifty
equispaced points along diagonal and the location of the fifty (0.5%) of
the slowest cells. Independent of the distribution of the initial seeds,
the distribution of streamlines is very irregular in highly heterogeneous
velocity fields.
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Initial seeds # Streamlines # Nodes

100 points over diagonal line 1036 169,831
100 quasi-random points 1034 169,253

50 points over diagonal and
50 quasi-random points 1016 166,274
400 quasi-random points 1064 174,313

without initial seeds
(trace streamlines from each empty cell) 1035 169,128

Table D.2: Comparison of different strategies to trace streamlines such that at least
one streamline crosses each cell of a 100 x 100 Cartesian grid. The total
number of streamlines and nodes are very similar independently of the
different seed locations.

of the seed distribution the required number of streamlines and nodes are similar with
small variations around average values of 1035 streamlines and 169,000 nodes. It is im-
portant to highlight that the average number of nodes is much larger than the number
of cells in the background grid (10,000), which is, in our experience, a common situation
in streamline simulations. The large number of nodes required to provide an adequate
coverage of the domain is the price one must pay to obtain good spatial resolution and
better accuracy. On the other hand, that cost is smaller in simulations that consider less
heterogeneous media.

Streamline Discretization

There are three possible choices to distribute nodes along streamlines: (i) uniform spacing
in the time of flight coordinate, (ii) uniform spacing in the arc length coordinate, and
(iii) only record positions of entry and exit points in each cell. The selection of the
streamline discretization has important practical implications for the performance of the
simulation, selection of numerical solvers for the transport step, and stability restrictions
of the overall numerical method. For example, it is much easier to solve the advection
step formulated in terms of the time of flight coordinate τ , if nodes along streamlines are
separated by a uniform step ∆τ(Crane and Blunt, 1999). However, there are also other
trade-offs that must be considered such as limitations in the total number of nodes and
spatial node distribution.
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We use a simple flow scenario to motivate our discussion about the merits of the differ-
ent streamline discretization schemes. We consider flow in a homogeneous medium with
hydraulic conductivity K0 that contains a high permeability inclusion with K1 = 10K0.
We set boundary conditions such that the mean flow goes from left to right. We solve
the flow problem using a regular Cartesian grid with 10 x 10 cells. Figure D.11 shows an
schematic of the flow problem. We use the resulting velocity field to trace ten streamlines
using the three different discretization approaches. First, we trace streamlines recording
only the entry and exit points to/from individual cells. This is the most common dis-
cretization used in streamlines simulation because, as explained above, it arises naturally
from the use of Pollock’s method as the tracing algorithm. Second, we trace streamlines
recording node positions that are equispaced in the time of flight coordinate with step
∆τ , i.e. a fluid particle at node i needs ∆τ time to move to the next node i+ 1. Third,
we trace streamlines recording only the entry and exit points to/from individual cells
as in the first discretization method, but we additionally apply a post-processing step
to uniformly distribute nodes in the arc length coordinate such as neighbor nodes are
separated by an arc length spacing ∆s.

K
0

10K
0

H
0

H
1

FLOW!

Figure D.11: Schematic of flow problem used to discuss alternatives streamline dis-
cretization. We consider a homogeneous medium with hydraulic con-
ductivity K0 that contains a high permeability inclusion with K1 =
10K0. Boundary conditions are set such that the mean flow goes from
left to right.

Figure D.12 shows the locations of nodes along streamlines traced using the first two
discretization approaches. If only entry and exit points are recorded, then some of the
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nodes located near the high permeability inclusion are separated by a very short distance
because they enter and exit near one of the cell corners. Those small separations can
introduce unacceptable stability constrains for explicit solvers used to simulate advection
(Thiele, 2003). Therefore, some post-processing step must be applied to remove nodes
with short separation (Crane and Blunt, 1999; Thiele, 2003). On the other hand, a
discretization based on the time of flight with spacing ∆τ = ∆x/U , where ∆x is the
grid spacing and U is the mean velocity; can result in a very irregular spatial node
distribution. Nodes along streamlines cluster in slow flow zones, while they are separated
by long distances in regions with fast flow velocity. Therefore, a prohibitively large
number of nodes may be required in order to keep a minimum spatial node density in all
the domain.

Figure D.12: Comparison of streamline discretization approaches. Red dots indi-
cate the position of nodes along streamlines. In traditional streamline
methods, Pollock’s semi-analytical method is used to find nodes where
streamlines enter or exit to/from individual cells (left). Alternatively,
nodes can be distributed using a constant time of flight spacing (right).

Figure D.13 presents a comparison of node locations if only entry and exit points are
recorded and for a uniform arc length discretization with spacing ∆s = ∆x/2. The arc
length based discretization provides a uniform coverage of the domain with a relatively
small number of nodes in comparison with the time of flight based discretization. Ad-
ditionally, the constant node spacing along individual streamlines relaxes the stability
restrictions of explicit solvers in comparison to the situation where entry and exit points
are recorded. Because of its advantages, we selected the arc length based discretization
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as the default option in our streamline simulator.

Figure D.13: In traditional streamline methods, Pollock’s semi-analytical method is
used to find nodes where streamlines enter or exit to/from individual
cells (left). That information can be used to distribute nodes using a
constant arc length spacing along streamlines (right). Red dots indi-
cate the position of nodes along streamlines. Note the short separation
between some nodes in the left figure and the regular spatial node dis-
tribution in the right one.

References

Aris, R., Vectors, Tensors and the Basic Equations of Fluid Mechanics, Dover Publica-
tions, 1989.

Cordes, C., and W. Kinzelbach, Continuous groundwater velocity fields and path lines
in linear, bilinear, and trilinear finite elements., Water Resour. Res., 28 , 2903–2911,
1992.

Crane, M., and M. Blunt, Streamline-based simulation of solute transport, Water Resour.
Res., 35 , 3061–3078, 1999.

Dormand, J., and P. Prince, A family of embedded Runge-Kutta formulae, J. Comput.
Appl. Math., 6 , 19–26, 1980.

Matringe, S., Accurate streamline tracing and coverage, Master’s thesis, Stanford Uni-
versity, 2004.

212



Obi, E., and M. Blunt, Streamline-based simulation of advective-dispersive solute trans-
port, Adv. Water Resour., 27 , 913–924, 2004.

Pollock, D., Semianalytical computation of path lines for Finite-Difference models,
Ground Water , 26 , 743–750, 1988.

Prevost, M., M. Edwards, and M. Blunt, Streamline tracing on curvilinear structured
and unstructured grids, Soc. Petrol. Eng. J., 7 , 139–148, 2002.

Thiele, M., Streamline simulation, in 7th International Forum on Reservoir Simulation,
2003.

Thiele, M., R. Batycky, and M. Blunt, Simulating flow in heteroneous systems using
streamtube and streamlines, SPE Reservoir Engineering, pp. 5–12, 1996.

213


	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	Co-authorship Statement
	1 Introduction
	1.1 Motivation
	1.2 Reactive Transport Modeling
	1.2.1 Definition
	1.2.2 Conceptual Model
	1.2.3 Mathematical Model

	1.3 Numerical Solution
	1.3.1 Particularities of Flow and Transport in Porous Media
	1.3.2 Numerical Methods
	1.3.2.1 Mesh-based numerical methods
	1.3.2.2 Hybrid Eulerian-Lagrangian methods
	1.3.2.3 Random walk particle tracking methods

	1.3.3 Limitations of Current Numerical Methods
	1.3.3.1 Accuracy 
	1.3.3.2 Monotonicity
	1.3.3.3 Performance


	1.4 Lagrangian Numerical Methods
	1.4.1 Meshless Methods
	1.4.2 Streamline-Based Simulations

	1.5 Discussion
	1.6 Objectives
	1.7 Organization
	1.8 References

	2 A Meshless Method to Simulate Solute Transport in Heterogeneous Porous MediaA version of this chapter has been published. P. Herrera, M. Massabo, and R. Beckie (2009) A meshless method to simulate solute transport in heterogeneous porous media. Adv. Water Resour., 32:413–429.
	2.1 Introduction
	2.1.1 Background
	2.1.2 Numerical Methods

	2.2 Monte Carlo SPH method
	2.2.1 Time Integration 
	2.2.2 Accuracy and Spatial Resolution 
	2.2.3 Mass Conservation 

	2.3 Numerical evaluation of the MC-SPH method
	2.3.1 One-Dimensional Dispersion
	2.3.2 Two-Dimensional Dispersion
	2.3.2.1 Initial particle and concentration distribution
	2.3.2.2 Performance
	2.3.2.3 Accuracy

	2.3.3 Advection–Dispersion in Heterogeneous Porous Media
	2.3.3.1 Setup
	2.3.3.2 Results


	2.4 Conclusions
	2.5 References

	3 Evaluation of Particle Approximations to Simulate Anisotropic DispersionA version of this chapter will be submitted for publication. P. Herrera, M. Massabó, and R. Beckie. Evaluation of Particle Approximations to Simulate Anisotropic Dispersion.
	3.1 Introduction
	3.2 Mathematical Formulation
	3.3 Smoothed Particle Hydrodynamics (SPH) Approximation
	3.3.1 Background
	3.3.2 SPH Approximation for Tensorial Dispersion
	3.3.3 Monotonicity

	3.4 Particle Strength Exchange (PSE) Approximation
	3.5 Numerical Tests
	3.5.1 Simulation Cases
	3.5.2 Equispaced Particles
	3.5.2.1 Effect of particle spacing
	3.5.2.2 Maximum concentration
	3.5.2.3 Negative concentrations
	3.5.2.4 Effect of ratio between smoothing length and particle spacing
	3.5.2.5 Effect of anisotropy ratio
	3.5.2.6 Effect of kernel function
	3.5.2.7 Effect of velocity orientation

	3.5.3 Irregularly Spaced Particles
	3.5.3.1 Isotropic case
	3.5.3.2 Anisotropic case


	3.6 Conclusions
	3.7 References

	4 A Multidimensional Streamline-Based Method to Simulate Reactive Solute Transport in Heterogeneous Porous MediaA version of this chapter will be submitted for publication. P. Herrera, A. Valocchi, and R. Beckie. A Multidimensional Streamline-Based Method to Simulate Reactive Solute Transport in Heterogeneous Porous Media.
	4.1 Introduction
	4.1.1 Motivation
	4.1.2 Objectives

	4.2 Mathematical Formulation
	4.2.1 Governing Equation
	4.2.2 Streamline Formulation
	4.2.3 Numerical Approximation
	4.2.3.1 Advection along streamlines
	4.2.3.2 Dispersion


	4.3 Implementation Details
	4.3.1 Streamline Tracing
	4.3.2 Time Integration
	4.3.3 Advection Solution
	4.3.4 MC-SPH Solution
	4.3.4.1 SPH kernel
	4.3.4.2 Neighbor search
	4.3.4.3 Time integration

	4.3.5 Longitudinal Dispersion
	4.3.5.1 Interface coefficients
	4.3.5.2 Time integration


	4.4 Numerical Examples
	4.4.1 Example 1: Continuous Solute Release in Uniform Flow
	4.4.2 Example 2: Quarter Five-Spot in Heterogeneous Medium
	4.4.2.1 Setup
	4.4.2.2 Simulated concentrations
	4.4.2.3 Numerical oscillations
	4.4.2.4 Performance comparison

	4.4.3 Example 3: Quarter Five-Spot in Heterogeneous Medium with Rate-Limited Sorption
	4.4.4 Example 4: Natural Biodegradation in Three-dimensional Heterogeneous Porous Media
	4.4.4.1 Setup
	4.4.4.2 Simulated concentrations
	4.4.4.3 Breakthrough curves
	4.4.4.4 Performance


	4.5 Conclusions
	4.6 References

	5 Conclusions
	5.1 Limitations of Proposed Numerical Schemes
	5.2 General Conclusions
	5.3 Perspectives
	5.4 Final Remarks
	5.5 References

	Appendix A Derivation of SPH Approximation for Isotropic Dispersion
	Appendix B Derivation of SPH Approximation for Second Order Derivatives
	Appendix C Random Walk Particle Method
	Appendix D Streamline Tracing

