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Abstract

Migration can accurately locate reflectors in the earth but in most cases

fails to correctly resolve their amplitude. This might lead to mis-interpretation

of the nature of reflector.

In this thesis, I introduced a method to accurately recover the ampli-

tude of the seismic reflector. This method relies on a new transform-based

recovery that exploits the expression of seismic images by the recently devel-

oped curvelet transform. The elements of this transform, called curvelets,

are multi-dimensional, multi-scale, and multi-directional. They also remain

approximately invariant under the imaging operator.

I exploit these properties of the curvelets to introduce a method called

Curvelet Match Filtering (CMF) for recovering the seismic amplitude in

presence of noise in both migrated image and data.

I detail the method and illustrate its performance on synthetic dataset. I

also extend CMF formulation to other geophysical applications and present

results on multiple removal. In addition of that, I investigate preconditioning

of the migration which results to rapid convergence rate of the iterative

method using migration.
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Chapter 1

Introduction

Exploration seismology is a complex and costly operation. On land,

dynamite or Vibroseis sources can be used to send energy into the subsurface.

This energy propagates and partially reflects at interfaces due to a change

in rock properties. The reflected wavefield is recorded at the earth’s surface

by an array of geophones. At sea, the principle remains the same but the

seismic source is typically an air gun and the receivers are hydrophones on

streamer lines towed by a seismic vessel. Seismic processing is a technique

widely used by the oil industry to explore and identify potential oil-rich

areas into the earth using the recorded data.

Seismic migration is vital part of seismic processing. Migration generates

an image of the subsurface that is finally interpreted by geo-scientists.

Migration difficulties generally arise from assumptions made in algo-

rithms, that are not met by underlying theory. In particular, modern mi-

gration algorithms can accurately position reflecting features in the Earth’s

subsurface, however they generally do not correctly resolve the amplitudes.

This problem has different causes. First, the migration operator is the ad-

joint but not the inverse of the linearized Born modeling or scattering op-

erator (see e.g. Guitton, 2004; Claerbout, 1985; Gray, 1997; Symes, 2008).
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1.1. Theme

Second, There are also other sources contributing to this inaccuracy in-

cluding geometrical spreading of wavefront energy, acquisition limitations,

velocity heterogeneity and anomalous focusing.

There exists a wide variety of migration amplitude recovery techniques:

• iterative-based methods use migration and scattering operators

and iteratively recover the amplitude of the reflectors through a Krylov

subspace-based method such as LSQR or conjugate-gradient (Kuehl

and Sacchi, 2003). They typically fairly computationally intensive

• match filter-based methods represent another type of amplitude

recovery approach that include the migrated and re-migrated image.

They require ”only one” time modeling and migration of the image

and computationally cheaper than iterative based methods. (Guitton,

2004; Claerbout, 1985; Rickett, 2003; Symes, 2008) are examples of

this approach.

1.1 Theme

The method proposed in this thesis follows the match filter-based ap-

proach. The main theme of this thesis is a practical, robust, and geomet-

rical—i.e., transform-based—approach to the seismic migration amplitude

recovery problem. The motivation of this approach is that two key features

of seismic data are, in my opinion, not used to their full extent in existing

approaches, namely

• Representation of the seismic normal operator in transform
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1.1. Theme

domain The seismic normal operator typically belongs to a class of

operators called Pseudo-differential operators. These operators have

interesting properties to make them suitable to represent in the trans-

form domain.

• Strong geometrical structure Seismic images are a spatio-temporal

sampling of the reflectors in the Earth’s subsurface. These reflectors

are mathematically continuous functions of reduced dimension (i.e.,

curves in 2D or sheets in 3D)

To make the most of these properties, my approach uses the curvelet

transform (Candès and Donoho, 2004) which is data-independent, multi-

scale, and multidirectional. The elements of this transform, the curvelets,

are localized in the frequency domain and of rapid decay in the physical

domain. They are very efficient at representing curve-like singularities—

e.g., reflectors. In other words, only a few curvelets are needed to represent

the complexity of real seismic image. I use this piece of information, called

sparsity, to help solve the imaging problem. The idea of sparsity-promoting

inversion is in itself not new to geophysics.

The other interesting property of the curvelets is their behavior under

the action of acoustic wave propagator (e.g., Candès and Demanet, 2003;

Smith, 1998, 1997) . A theorem in chapter 2 proved that the curvelets are

approximately invariant under the action of the normal operator . Further-

more I adopt the result of this theorem to introduce match-filtering approach

for estimation of this operator.
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1.2 Objectives

The objectives of this thesis are two-fold:

• develop an in-depth understanding of successful curvelet match filter-

ing for the approximation of normal operator and its key ingredients.

• formulate a practical sparsity-promoting seismic migration amplitude

recovery algorithm.

1.3 Outline

In chapter 2, I observe that curvelets, as a directional frame expansion,

lead to sparsity of seismic images and exhibit invariance under the normal

operator of the linearized imaging problem. Based on this observation I

derive a method for stable recovery of the migration amplitudes from noisy

data. The method corrects the amplitudes during a post-processing step

after migration, such that the main additional cost is one application of the

normal operator, i.e. a modeling followed by a migration. Asymptotically

this normal operator belongs to a class of operators known as pseudodiffer-

ential operators, for which a diagonal approximation in the curvelet domain

is derived, including a bound for its error and a method for the estimation of

the diagonal from a compound operator consisting of discrete implementa-

tions for the scattering operator and its adjoint the migration operator. The

solution is formulated as a nonlinear optimization problem where sparsity

in the curvelet domain, as well as continuity along the imaged reflectors,

are jointly promoted. To enhance sparsity, the `1-norm on the curvelet
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1.3. Outline

coefficients is minimized, while continuity is promoted by minimizing an

anisotropic diffusion norm on the image. The performance of the recovery

scheme is evaluated with a time-reversed ’wave-equation’ migration code on

synthetic datasets, including the complex SEG/EAGE AA′ salt model.

In chapter 3, I introduce a preconditioner for the inversion of the lin-

earized Born scattering operator. This preconditioner approximately cor-

rects for the “square root” of the normal operator. This approach consists

of three parts, namely (i) a left preconditioner, defined by a fractional time

integration designed to make the migration operator zero order, and two

right preconditioners that apply (ii) a scaling in the physical domain ac-

counting for a spherical spreading, and (iii) a curvelet-domain scaling that

corrects for spatial and reflector-dip dependent amplitude errors. I show

that a combination of these preconditioners lead to a significant improve-

ment of the convergence for iterative least-squares solutions to the seismic

imaging problem based on reverse-time migration operators.

In chapter 4, I show that other geophysical problems—e.g., focused re-

covery, seismic signal separation, and migration amplitude recovery—can be

re-cast in the formulation used for curvelet sparsity inversion formulation.

This puts in a broader perspective the insights gained during the develop-

ment of curvelet sparsity inversion formulation.

In chapter 5, I focused on the practical approach of amplitude recovery

method. I revisit the amplitude recovery method and extend it threefold.

First, I replace the linear least-squares formulation for the estimation of

the curvelet-domain coefficients (Herrmann et al. (2008)) by a non-linear

least-squares formulation that imposes positivity on the scaling coefficients.
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1.3. Outline

This comes from the fact that the normal operator is positive semi-definite.

Second, I consider the noise term both in the data and that generated by

migration due to incomplete data (i.e., few shots). Third, I investigate two

methods for recovery and compare them in terms of quality and performance,

a soft thresholding-correction technique and a sparsity promotion technique.

In Chapter 6, I summarize the work done in this thesis, and discuss some

of its aspects in a broader context. Conclusions and recommendations for

future research follow.

Appendix A contains further details about the curvelet transform. It

proves the theorem and associated lemma regarding the invariance of the

curvelet elements under the action of normal operator. This appendix pairs

with chapter 2.
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Chapter 2

Sparsity and continuity

promoting seismic image

recovery with curvelet

frames

2.1 Introduction

This paper introduces a general-purpose algorithm for the stable recovery

of the amplitudes in seismic images. The method involves the inversion in

dimension d of a zero-order pseudodifferential operator (PsDO ) of the type

(
Ψf

)
(x) =

∫
Rd

e−ix·ξa(x, ξ)f̂(ξ)dξ (2.1)

with

f̂(ξ) =
1

(2π)d

∫
Rd

f(x)eix·ξdx (2.2)

A version of this chapter has been published. Herrman, F.J., Moghaddam, P.P. and
Stolk, C. (2008) Sparsity- and continuity-promoting seismic image recovery with curvelet
frames. Applied and Computational Harmonic Analysis, Vol. 24, No. 2, pp. 150-173,
2008.
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2.1. Introduction

the Fourier transform with x, ξ ∈ Rd the spatial coordinate and wavenum-

ber vectors and a(x, ξ) the symbol of the pseudodifferential operator. Under

certain conditions that include no grazing rays and high-frequency asymp-

totics, the above linear operator describes seismic data after imaging (ten

Kroode et al., 1998; de Hoop and Brandsberg-Dahl, 2000; Stolk and Symes,

2003). A seismic image is derived from noisy data given by

d(xs, xr, t) =
(
Km

)
(xs, xr, t) + n(xs, xr, t) (2.3)

with K the Born scattering operator, m(x) the model with the reflectivity

and n zero-mean standard deviation σ white Gaussian noise. The seismic

data volume is a function of the source and receiver positions, xs ∈ Rd−1

and xr ∈ Rd−1 and of time, t ∈ R+
0 . After applying the migration operator

KT , (the symbol T is reserved for the transpose), to the data volume an

“image” is obtained according to

(KT d)(x) =
(
KT Km

)
(x) +

(
KT

)
n(x)

y(x) =
(
Ψm

)
(x) + e(x). with x ∈ Rd (2.4)

This equation for the image y corresponds to the normal equation and con-

tains contributions from the normal operator, Ψ, as well as from imaged

noise e. The operator K preserves the singularities in y, i.e., KT Km ≈ Id m

with Id the identity matrix and the symbol ≈ indicating ”approximated by”

in the locations of the singularities. With the increased demand for high-

quality images, the above approximation of Ψ ≈ Id is no longer justifiable
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2.1. Introduction

because it may lead to errors in the relative amplitudes of the imaged re-

flectors. Our main goal is to derive a method that recovers these imaged

amplitudes, i.e. estimate models m from “images” y with clutter.

2.1.1 Existing approaches

With the increasing demand for hydrocarbons and the increasingly hard

to image (subsalt), the recovery of correct seismic amplitudes has become

more necessary. Approaches in the extensive literature on this topic range

from least-squares migration, where the normal or Gramm matrix is inverted

with Krylov subspace methods (see e.g. Nemeth. et al., 1999; Chavent and

Plessix, 1999; de Hoop and Brandsberg-Dahl, 2000), to high-frequency (mi-

crolocal) methods (see e.g. ten Kroode et al., 1998; de Hoop and Brandsberg-

Dahl, 2000; Stolk and Symes, 2003), where the normal operator is inverted

based on ray-asymptotic arguments, to methods that apply a diagonal scal-

ing (see e.g. (Rickett, 2003; Guitton, 2004; Plessix and Mulder, 2004) and

more recently Symes (2006a)) to approximately invert the Gramm operator

of ’wave-equation’ migration. These scaling methods either calculate the

weighting analytically (ten Kroode et al., 1998; Plessix and Mulder, 2004),

based on certain assumptions regarding the acquisition and velocity model,

or estimate the diagonal weighting from the action of the normal operator

on some reference vector, an idea first suggested by Symes and reported

in (Claerbout and Nichols, 1994). In this paper, a similar approach is fol-

lowed, where the normal operator is replaced by a diagonal matrix acting

on the curvelet coefficients of the image (Candes et al., 2006a; Hennenfent

and Herrmann, 2006).
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2.1.2 Our approach

The computational cost of evaluating the migration operator is O(nd+2) for

a d-dimensional image with n samples in each direction. This large cost

makes it a major challenge to conduct least-squares migration for d > 2 or

large n Nemeth. et al. (1999); Chavent and Plessix (1999); de Hoop and

Brandsberg-Dahl (2000); Hu et al. (2001); Kuhl and Sacchi (2003); Plessix

and Mulder (2004); Hu et al. (2001). We address this issue by exploit-

ing recently developed curvelet frames. These frame expansions compress

seismic images (see e.g. Candes et al., 2006a; Hennenfent and Herrmann,

2006, for the compression of seismic data and Fig. 2.1 for the compression

of a typical migrated seismic image) and consist of a collection of frame

elements ’curvelets’ that are approximately invariant under PsDO ’s. These

two properties allow for the development of an approach similar to the so-

called wavelet-vaguelette method (WVD) (see e.g. Donoho, 1995; Candes

and Donoho, 2000b; Lee and Lucier, 2001). In this approach, scale-invariant

homogeneous operators are nonlinearly inverted, using the eigenfunction-like

behavior of wavelets and curvelets.

Our main contribution to earlier ideas on stable seismic image recovery

(see e.g. Herrmann, 2003) is threefold: First, the WVD method is extended

to expanding PsDO ’s with respect to redundant curvelet frames. Second, it

is observed that order-zero pseudodifferential operators with homogeneous

principal symbols act approximately as a multiplication on curvelets. This

property implies that such operators can be approximated by a diagonal

matrix acting on curvelet coefficients of an image, followed by an inverse
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curvelet transform. We refer to this procedure as a curvelet-domain diag-

onal approximation (or weighting) that becomes more accurate for smaller

scales (higher frequencies). Third, a formulation for the amplitude recov-

ery is presented in terms of a nonlinear sparsity-and continuity-enhancing

optimization problem.

After discretization, the nonlinear optimization problem for the seismic

amplitude recovery (see e.g. Tsaig and Donoho, 2006; Candes et al., 2006b;

Daubechies et al., 2005) has the following form

Pε :


x̃ = arg minx J(x) = Js(x) + Jc(x) subject to ‖y −Ax‖2 ≤ ε

m̃ =
(
AT

)† x̃.

(2.5)

During the optimization, the vector x is optimized with respect to the

penalty functional J(x) and the `2-data misfit. The penalty functional J(x)

is combination of sparsity penalty function Js(x) and continuity penalty

function Jc(x). The term sparsity vector is used for x to stress the point

that the magnitude-sorted coefficients of this vector are of rapid decay, by

virtue of compression by curvelet frames.

The above optimization problem is solved for the model by finding a

coefficient vector x̃ that minimizes the penalty term subject to fitting the

data to within a noise-level dependent tolerance level ε. The ’tilde’ symbol

(˜) is reserved for vectors that solve a nonlinear optimization problem. The

penalty functional J(x) is designed to promote the sparsity of the image

in the curvelet domain (i.e., Js(x)) as well as continuity along the imaged

reflectors (i.e., Jc(x)). Bold lowercase symbols refer to discretized vectors
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and bold uppercase symbols to discretized operators. Non-boldface symbols

refer to continuous infinite dimensional functions and operators.

Estimates for the model m̃ are calculated by applying the pseudo-inverse

(denoted by the symbol †) of the analysis matrix to x̃. This analysis matrix is

given by the adjoint of the synthesis matrix (AT ). This synthesis is given by

the diagonally-weighted curvelet synthesis matrix with a weighting designed

such that

AAT r ' Ψr. (2.6)

In this expression, r represents an appropriately chosen discrete reference

vector and Ψ the discrete normal operator, formed by compounding the

discrete scattering and its transpose the migration operator, i.e., Ψ := KTK

with the symbol := denoting ’defined as’. The symbol ' is used to denote

that this expression is approximate, a statement we will make more precise

with a bound on the error.

After forming the normal operator with one’s favorite numerical imple-

mentation for the migration operator and its adjoint, our amplitude recovery

method consists of the following steps:

1. Calculate an appropriate reference vector, r, from the data that is

close enough to the unknown image. Typically, this reference vector is

defined by a migrated image to which a simple amplitude correction

is applied;

2. Estimate a diagonal curvelet-domain weighting that approximates the

normal operator on the reference vector. This diagonal defines the

synthesis matrix A;
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3. Estimate x̃ by solving the nonlinear optimization problem Pε. This

program inverts the synthesis matrix;

4. Calculate the model m̃ from the recovered coefficient vector x̃ through

the pseudo-inverse of AT .

The proposed recovery method derives from two essential properties of

curvelet frames, namely the ability of this signal representation to compress

seismic images and the invariance of curvelets under the normal operator.

Fig. 2.1 and 2.2 are included to stress the importance of these properties

by confirming that a real migrated image can accurately be recovered from

only 3 % of the curvelet coefficients, while curvelets remain invariant under

the normal operator defined for a smooth background velocity model. Dur-

ing this paper, we use the first property to formulate a sparsity promoting

seismic image in term of a nonlinear optimization and the second property

for diagonal approximation of the normal operator in curvelet domain.

2.1.3 Outline

First, a diagonal approximation of the normal operator in the curvelet do-

main is derived. The error of this approximation is bounded, using proper-

ties of the curvelet tiling of phase space. In this derivation, use is made of

the property that the normal operator can be described as a zero-order pseu-

dodifferential operator. Next, a method is proposed to estimate the diago-

nal weighting matrix that uses the property that the symbol of the normal

operator is smooth in phase space and positive. This diagonal approxima-

tion leads to an approximate seismic image representation by a diagonally-
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(a)

(b)

(c)

Figure 2.1: Example of the recovery from different percentages of curvelet
coefficients. The data set concerns a migrated image derived from the Mobil
data set, (a) near perfect recovery from p = 99% of the coefficients, (b)
recovery from only p = 3% of the coefficients, (c) the difference between
near perfect recovery (a) and approximate recovery (b). This difference
does not contain substantial coherent energy.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: Invariance of curvelets under the discretized normal operator
Ψ for a smoothly varying background model (a so-called lens model see
Fig. 2.4(a)). Three coarse-scale curvelets in the physical domain before
(a) and after application of the normal operator (b) in the physical (a-
b) and Fourier domain (e-f). The results for three fine-scale curvelets are
plotted in (c-d) for the physical domain and in (g-h) for the Fourier domain.
Remark: The curvelets remain close to invariant under the normal operator,
a statement which becomes more accurate for finer scale which is consistent
with Theorem 1. The example also shows that this statement only holds for
curvelets that are in the support of the imaging operator excluding steeply
dipping curvelets.
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2.2. Approximation of the normal operator

weighted curvelet transform. With this representation, the seismic image

amplitudes can be recovered by solving a nonlinear optimization problem.

During this optimization problem, the image is recovered by minimizing the

data mismatch while promoting sparsity in the curvelet domain and con-

tinuity along imaged reflectors. This paper is concluded by applying the

algorithm to a synthetic data set derived from the SEG AA′ salt model.

2.2 Approximation of the normal operator

The primary focus of seismic imaging is to locate singularities in the earth’s

elastic properties from seismic data recorded at the surface (Beylkin, 1984;

de Hoop and Bleistein, 1997; ten Kroode et al., 1998; Stolk, 2000; Bleis-

tein et al., 2001; Brandsberg-Dahl and de Hoop, 2003). A seismic survey

consists of multiple seismic experiments in which both the location of the

sources and receivers are varied along the surface. The acquired data is sub-

sequently used to create images of the singularities in the subsurface. The

main purpose of the recovery method presented in this paper is to recover

the relative amplitudes of seismic images from data that is possibly contam-

inated with noise. For this purpose, a diagonal approximation of the normal

operator in the curvelet domain is presented. This approximation derives

from the invariance properties of curvelets under the normal operator (see

Fig. 2.2). The approximation leads to a SVD-like decomposition for the

normal operator and makes the large-scale seismic image recovery problem

amenable to a solution by nonlinear optimization.
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2.2. Approximation of the normal operator

2.2.1 Zero-order imaging operators

In the high-frequency limit, the scattering operator and the normal oper-

ator can, under certain conditions on the medium and ray-geometry, be

considered as Fourier Integral Operators (FIO’s) (ten Kroode et al., 1998).

In dimension two (d = 2), the scattering operator, K, and its adjoint the

migration operator, KT , can both be considered as FIO’s of order 1
4 , while

the leading behavior for their composition, the normal operator Ψ, corre-

sponds to an order-one invertible elliptic PsDO (ten Kroode et al., 1998;

de Hoop and Brandsberg-Dahl, 2000; Stolk and Symes, 2003). To make this

PsDOamenable to an approximation by curvelets, the following substitu-

tions are made for the scattering operator and the model: K 7→ K (−∆)−1/2

and m 7→ (−∆)1/2 m with ((−∆)αf)∧(ξ) = |ξ|2α · f̂(ξ), with ∆ is the Lapla-

cian operator. Alternatively, these operators can be made zero-order by

composing the data side with a 1/2-order fractional integration along the

time coordinate, i.e., K 7→ ∂
−1/2
t K. After these substitutions, the normal

operator Ψ becomes zero-order. Similar substitutions are made in the WVD

methods where vaguelettes are introduced according to the same mappings.

Our seismic image amplitude problem is different from the recovery of

images in ill-posed problems such as inverting the Radon transform (Candes

and Donoho, 2000b). In our case, the ill-posedness comes from small values

of the symbol at certain positions and wave numbers and is not related to

the ill-posedness stemming from the inversion of a normal operator that

acts as a (fractional) inverse Laplacian. Our normal operator, without the

above substitutions, acts as a (fractional) Laplacian. This behavior makes
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2.2. Approximation of the normal operator

the problem ill-posed for the low-frequencies. Since seismic data and the

approximations of the operators are both high-frequency, this ill-posedness

is negated. The ill-posedness that is a concern are the entries in the symbol

of the normal operator that correspond to regions in the model space that

are badly insonified.

2.2.2 Curvelet frames

Curvelets are directional frames that represent a specific tiling of the two/three-

dimensional frequency plane into multiscale and multi-angular wedges (see

Fig. 5.1). Because the directional sampling increases every-other scale dou-

bling, curvelets become more and more anisotropic at finer and finer scales.

They become ’needle-like’ as illustrated in Fig. 5.1. Curvelets are localized

in Fourier space and their smoothness in this domain leads to a rapid decay

in the physical domain. Their effective support is given by ellipsoids with

a width ∝ 2j/2 and length ∝ 2j and an angle θjl = 2πl2bj/2c with j the

scale and l the angular index. Curvelets are indexed by the multi-index

µ := (j, l, k) ∈ M with M the multi-index set running over all scales, j,

angles, l, and positions k (see for details Candes et al., 2006a; Ying et al.,

2005). Following Candes et al. (2006a), define the continuous curvelet family

for x ∈ R2 as

ϕµ(x) = 23j/4ϕ(DjRθjl
x− k), (2.7)

where

• ϕ(x) is a smooth bell-shaped function in the horizontal direction and

oscillatory in the vertical direction;
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2.2. Approximation of the normal operator

• Dj = diag(2j , 2bj/2c) is the parabolic scaling matrix;

• Rθjl
is the rotation matrix over angles θjl = 2πl2−bj/2c with 0 ≤ θjl <

2π;

• k = (k1, k2) ∈ Z2 the translation parameters.

In the frequency domain, curvelets are compactly supported and each

element ϕ̂µ(ξ) is localized near the symmetric wedge

Wjl = {±ξ, 2j ≤ |ξ| ≤ 2j+1, |θ − θjl| ≤ π.2−bj/2c},

The number of wedges doubles every other scale doubling and hence the

directional selectivity increases for finer scales (see Fig. 5.1). For each µ ∈

M, the curvelet coefficients are given by the inner product

cµ = 〈f, ϕµ〉 :=
∫
R2

f(x)ϕµ(x)dx (2.8)

of a function f ∈ L2(R2) with a curvelet ϕµ ∈ L2(R2). Curvelets are tight

frames, so we have the following reconstruction formula

f =
∑
µ∈M

cµϕµ = CT Cf, (2.9)

by virtue of the energy conservation

∑
µ∈M

|cµ|2 = ‖f‖L2(R2), ∀ f ∈ L2(R2), (2.10)
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2.2. Approximation of the normal operator

with C and CT the curvelet decomposition and composition, respectively.

Refer to Candes et al. (2006a), for details on the construction of the fast

discrete curvelet transform (FDCT) in dimension two.
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Figure 2.3: Spatial and frequency representation of curvelets, (a) four dif-
ferent curvelets in the spatial domain at three different scales, (b) dyadic
partitioning in the frequency domain, where each wedge corresponds to the
frequency support of a curvelet in the spatial domain. This figure illustrates
the microlocal correspondence between curvelets in the physical and Fourier
domain. Curvelets are characterized by rapid decay in the physical space
and of compact support in the Fourier space. Notice the correspondence
between the orientation of curvelets in the two domains. The 90◦ rotation
is a property of the Fourier transform.

2.2.3 Diagonal approximation of PsDO ’s

Data, and the scattering operator K can be so defined that the normal

operator is a PsDOof order 0, which is real and self-adjoint, and has a

homogeneous principal symbol a(x, ξ). We will show that we can approxi-

mate Ψf in the curvelet domain by application of a diagonal matrix, if the
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2.2. Approximation of the normal operator

wavenumbers in f are sufficiently high, relative to the smoothness of the

symbol of Ψ.

So let Ψ = Ψ(x,D) be a pseudodifferential operator of order 0, with

homogeneous principal symbol a(x, ξ). Assuming the operator is self-adjoint

and real, the principal symbol a is also real and has an even symmetry under

the transformation ξ ↔ −ξ. In addition, we make the technical assumption

that Ψ is compact, i.e., if f has compact support, then Ψf also has compact

support.

Curvelets in R2 are denoted by ϕµ and we define |µ| = j. The scale

j ranges from some positive number jmin, to infinity (or jmax in an imple-

mentation). The central position and wave vector for the curvelet will be

denoted by (xµ, ξµ), we let θµ = ξµ/‖ξµ‖ be the angle of the curvelet.

Next, we give some consequences of the localization of the curvelet in

the space and Fourier domains. The support of a curvelet in the Fourier

domain is contained in one of the domains ±ξ2 > ε|ξ1|, or ±ξ1 > ε|ξ2|,

for some small ε, say we are in the first case, then ξ2 can be used as the

radial coordinate, with ξ1/ξ2 the angular coordinate in the Fourier domain.

From the localization properties w.r.t. the angular coordinate, it follows that

(ξ1/ξ2 − ξµ,1/ξµ,2) is bounded by C12−bj/2c on the support of the curvelet

and with C1 some finite positive constant (from here on we assume that any

constant Ci is finite and positive), so that

‖(ξ1/ξ2 − ξµ,1/ξµ,2)ϕ̂µ‖L2(R2) ≤ C12−bj/2c. (2.11)

Localization in the space domain follows from the smoothness of the defining
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2.2. Approximation of the normal operator

functions in the Fourier domain, in the radial direction we have

‖θµ · (x− xµ)ϕµ‖L2(R2
)
≤ C22−j

with C2 another finite constant. For the other directions we have a weaker

estimate, as the curvelet is in the Fourier domain narrower, and therefore in

the space domain wider in the directions normal to θµ

‖(x− xµ)ϕµ‖L2(R2
)
≤ C32−bj/2c.

In fact parallel results hold for curvelets in Rd.

We now compare the application of a PsDO to a curvelet with simply

multiplying by the value of the symbol at (xµ, ξµ). The result will be proved

for x in Rd.

Lemma 1 Suppose a is in the symbol class S0
1,0 (Hormander, 1987), then,

with C ′ some constant, the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2. (2.12)

To approximate Ψ, we define the sequence u := (uµ)µ∈M = a(xµ, ξµ) with

M the set of all the curvelet indices. Let DΨ be the diagonal matrix with

entries given by u. Next we state our result on the approximation of Ψ by

CTDΨC.

Theorem 1 The following estimate for the error holds

‖(Ψ(x,D)− CTDΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2, (2.13)
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2.2. Approximation of the normal operator

where C ′′ is a constant depending on Ψ.

This main result is proved in Appendix A and it shows that the approxi-

mation error for the diagonal approximation decreases for increasingly finer

scales, j. The approximation derives from the property that the symbol is

slowly varying over the support of a curvelet when the velocity model is

sufficiently smooth.

2.2.4 Decomposition of the normal operator

By virtue of Theorem 1, the normal operator can approximately be factor-

ized into

(
Ψϕµ

)
(x) '

(
CTDΨCϕµ

)
(x) (2.14)

=
(
AAT ϕµ

)
(x)

with A := CT
√

DΨ and AT :=
√

DΨC. Because the seismic reflectivity can

be written as a superposition of curvelets, the ϕµ can be replaced with the

model m. The normal equation (cf. Eq. 2.4) can now be rewritten in the

following approximate form

y(x) =
(
Ψm

)
(x) + e(x)

'
(
AAT m

)
(x) + e(x)

= Ax0 + e. (2.15)

The symbol ' in these expressions is used to indicate that the approxima-

tion is only valid for models that are sufficiently close to a reference vector.
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2.2. Approximation of the normal operator

Moreover, the identity only holds to within some constant. This approxi-

mation for the forward model forms the point of departure for our seismic

amplitude recovery algorithm.

To illustrate the above results, a numerical approximation of a PsDO is

applied to a number of curvelets at different location, angles and scales. This

PsDOcorresponds to the normal operator associated with a seismic experi-

ment with a velocity model containing a low-velocity lens (see Fig. 2.4(a)).

The results of these experiments are summarized in Fig. 2.2. Fig. 2.2(b), 2.2(d)

display the results of applying the PsDO to three different coarse- and fine-

scale curvelets (Fig. 2.2(a), 2.2(c)). The Fourier-domain images are plotted

in Fig. 2.2(f), 2.2(h). Comparing the imaged curvelets with their originals,

shows that curvelets remain invariant as long as they lie in the support of

the normal operator. Steep dipping curvelets are outside the support of the

operator and this explains the deterioration of their amplitudes for steep

dips. As predicted by Theorem 1, the normal operator becomes more diag-

onal for increasingly finer scales, an observation reflected in the behavior of

the coarse- versus the fine-scale curvelets. Not only is this observation con-

sistent with the microlocal correspondence of curvelets reported by Candes

and Donoho (2000b) but it is also consistent with the fact that the PsDO ’s

correspond to high-frequency approximations of the normal operator.

2.2.5 Estimation of the diagonal

The discrete normal operator: Before proceeding with the formulation

of the seismic image recovery problem, a method is introduced to estimate

the diagonal entries of DΨ. These entries are calculated from applying a
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2.2. Approximation of the normal operator

discrete implementation of the normal operator to some appropriately cho-

sen reference vector. This discrete normal operator is given by the com-

position of the discretized scattering operator that relates the discretized

reflectivity to the discretized data and its adjoint the migration operator.

This compound operator corresponds to a matrix-free implementation for

Ψ := KTK ∈ RM×M with K ∈ RL×M the scattering matrix and L and M

the length of the data and image vectors.

The discrete curvelet transform: For the numerical implementation

of the curvelet transform, the fast discrete curvelet transform via wrap-

ping (Candes et al., 2006a) is used, which corresponds to a matrix-free im-

plementation of the tall curvelet decomposition matrix C ∈ RN×M with

N = #{M} � M with the symbol # denoting ’number of’. This trans-

form yields a redundant coefficient vector c = Cr with c ∈ RN . For this

choice of curvelet transform, the pseudo-inverse equals the transpose, i.e.,

CTc = C†c. The transform is a numerical isometry that preserves energy,

i.e., ‖r‖ = ‖Cr‖, so we have CTCr = I r in the `2 sense. Since the discrete

curvelet representation is overcomplete, with a moderate redundancy (a fac-

tor of roughly 8 for d = 2), the converse is not the identity, i.e., CCT r is

a projection. Because CCT is a projection, not every curvelet vector is the

forward transform of some discrete vector f .

Non-uniqueness: The estimation of the diagonal DΨ involves the cal-

culation of a diagonal curvelet-domain weighting vector that approximates

the action of the normal operator on an appropriately chosen reference vec-
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2.2. Approximation of the normal operator

tor r, i.e., CTDΨCr ' Ψr (cf. Eq. 2.13). This estimation problem can be

formulated in terms of a least-squares minimization problem. Define the

’data’ vector as b = Ψr, i.e., the migrated demigrated reference vector. Let

DΨ = diag(u), with u ∈ RN , be the diagonal curvelet-domain weighting

matrix with coefficients (uµ)µ∈M on its diagonal and calculate the curvelet

transform of the reference vector v = Cr. The diagonal estimation problem

can now be formulated as finding the vector u that minimizes ‖b − Pu‖2

with P := CT diag(v) and b ∈ RM the known demigrated-migrated refer-

ence vector. Since the curvelet transform is redundant (M � N), there are

many possible solutions to this minimization problem, which gives rise to

non-uniqueness.

Regularization via smoothness in phase space: One of the conse-

quences of the non-uniqueness is the existence of negative entries in the

estimated diagonal. These entries are inconsistent with the fact that Ψ is

positive definite. Therefore, a regularization is needed that leads to an esti-

mate for the diagonal with positive entries only. We argue that this can be

accomplished by imposing smoothness in phase space. This smoothness is

a property of the symbol that describes the behavior of the normal opera-

tor. In the curvelet domain, this smoothness translates to a smoothness in

the amplitudes amongst neighboring points on the curvelet grid. For each

entry in the diagonal, this smoothness can be imposed by including an ad-

ditional penalty term in the least-squares formulation for the estimation of
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2.2. Approximation of the normal operator

the diagonal. This damped least-squares problem can be formulated as

ũ = arg min
u

1
2
‖b−Pu‖22 + η2‖Lu‖22, (2.16)

where L =
[
DT

1 DT
2 DT

θ

]T is a so-called sharpening operator, penalizing

fluctuations amongst neighboring coefficients in u. D1,2 contain first-order

differences at each scale in the x1,2 directions, i.e., D1,2 =
[
Djmin

1,2 · · ·D
jmax
1,2

]
with Dj

1,2 the differences at the jth scale in the spatial directions, and Dθ the

first-order differences in the θ direction, i.e., Dθ =
[
Djmin

θ · · ·Djmax

θ

]
with

Dj
θ the difference in the angle direction at the jth scale. These differences

are scale dependent because the curvelet grid changes for each scale. The

emphasis on the penalty term with respect to the misfit is controlled by η.

Estimation with positivity constraints: To ensure a correct balance

between the misfit and the penalty functional, Eq. 2.16 is solved for a series

of increasing Lagrange multipliers η. For each η, the following system of

equations is inverted  P

ηL

u ≈

b

0

 (2.17)

with ≈ the approximation in least squares sense and 0 a column vector

with N zero entries. For a given reference vector, the diagonal estimation

procedure consists of the following steps. Apply the normal operator to

the reference vector and calculate its curvelet coefficients. Set the Lagrange

multiplier to ηmin and solve Eq. 2.16 by inverting the system of equations in

Eq. 2.17. Subsequently, increase η by ∆η and repeat this procedure until all
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2.2. Approximation of the normal operator

diagonal elements of ũ are nonnegative. Even though we do not have a proof

of convergence for this method, increasing the η leads to positive entries for

large enough η. The steps of this estimation procedure are summarized in

Table. 2.1.

Calculate: b = Ψr and v = Cr.
Set: η = ηmin;
while ∃ (ũµ)µ∈M < 0 do

Solve
ũ = arg minu

1
2‖b−Pu‖22 + η2‖Lu‖22

Increase the Lagrange multiplier
λ = η + ∆η

end while

Table 2.1: Algorithm for the estimation of the diagonal via regularized least-
squares inversion. The Lagrange multiplier, η, is increased up to the point
that all entries in the vector for the diagonal are positive.

Example: The procedure outlined above is tested on a stylized exam-

ple with a velocity model given by a low-velocity lens (Fig. 2.4(a)) and a

bandwidth-limited reflectivity (Fig. 2.4(b)), consisting of three events. The

low-velocity zone is representative of a gas lens in the overburden. Data is

generated from this reflectivity with a zero-order linearized Born modeling

and consists of 32 shot records with 500 receivers each. For more details

on the migration code, refer to Symes (2006b) and to the numerical ex-

periment section at the end of this paper. The data is subsequently imaged

(Fig. 2.4(c)). This image and the bandwidth-limited reflectivity (Fig. 2.4(b))

define the ’data’ vector b (cf. Eq. 2.17) and the reference vector r used to

estimate ũ according to the algorithm presented in Table 2.1. Fig. 2.5 dis-
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plays the curvelet vectors for increasing η = {0.01, 0.1, 1, 10}. These plots

clearly illustrate that ũ becomes positive for η large enough (η ≥ 1 in this

case). Fig. 2.4(d) contains the diagonal approximation of the normal opera-

tor for the diagonal estimated with η = 1. Comparison between the results

of applying the normal operator (Fig. 2.4(c)) and its diagonal approximation

(Fig. 2.4(d)), shows a nice correspondence. The relative `2-error between

the actual image its approximation is 6.1 %. This value corresponds to a

moderate size for the constant C ′′ in the bound for the approximation error

(Theorem 1).

2.3 Stable seismic image recovery

Our formulation for the seismic amplitude recovery problem banks on two

fundamental properties of curvelets, namely their ability to detect wave-

fronts and their invariance under the normal operator. The combination

of these two properties allow for a robust solution of the recovery problem

in terms of a nonlinear optimization problem. In this section, the different

steps that lead to this formulation are discussed starting with an argumen-

tation why curvelets compress seismic images, followed by a quick review of

`1-promoted image recovery, its extension to the seismic situation and its

solution by a cooling method.

2.3.1 Curvelet frames for seismic images

The sedimentary crust consists of sheet-like layers that correspond to func-

tions with singularities along piece-wise smooth curves. These singularities
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(a) (b)

(c) (d)

Figure 2.4: Stylized example of the diagonal estimation for a smooth velocity
model and a reflectivity consisting of three reflection events including a fault,
(a) the smooth background model with the low-velocity lens. This velocity
model is used to calculate the linearized scattering and migration operators,
(b) the bandwidth limited reflectivity, (c) the imaged reflectivity from data
consisting of 32 shot records with 500 traces each, (d) the approximated
normal operator for diag(ũ) estimated with η = 1. The bandwidth limited
reflectivity in (b) and the image in (c) served as input for the reference
and ’data’ vectors for the diagonal estimation procedure outlined in Table
2.1. Remarks: the main dimming of the normal operator is captured by the
diagonal approximation. The relative `2-error between the actual and the
approximate normal operator is 6.1 %.
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(a) (b)

(c) (d)

Figure 2.5: Estimates for the diagonal ũ are plotted in (a-d) for increasing
η = {0.01, 0.1, 1, 10}. The diagonal is estimated according the procedure
outlined in Table 2.1 with the reference and ’data’ vectors, v and b, plotted
in Fig. 2.4(b) and 2.4(c). As expected the diagonal becomes more positive
for increasing η.
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are associated with rapid variations in the medium fluctuations at which

seismic waves reflect. During seismic imaging, these singularities are recov-

ered. Examples of singularities imaged from real seismic data can be found

in Fig. 2.1(a). This image can be considered as a bandwidth limited version

of a function with singularities on piece-wise C2 curves that may include

faults and pinch outs (see e.g., Fig. 2.4(b) and 2.8(a) that are examples

of synthetic reflectivity models). Fourier (and also wavelet) transforms are

known to perform poorly on this type of functions, (Candes and Donoho,

2000a; Candes and Guo, 2002). This poor performance can be explained by

the inability of the Fourier transform to localize and the lack of directivity of

wavelets. Only when oriented perpendicular to the interfaces, wavelets decay

rapidly. Since wavelets lack directionality, they can not resolve these direc-

tions, known as the wavefront set. This inability explains why wavelets do

not significantly improve the compression rate for seismic images. Curvelet

frames, on the other hand, are designed to detect the wavefront set (Candes

and Donoho, 2000a, 2004, 2005a,b) and lead, as shown in Fig. 2.6, to better

empirical compression rates for real and synthetic seismic images. This im-

proved compression rate explains the accurate reconstruction in Fig. 2.1(a)

of a real seismic image from only 3 % of the curvelet coefficients and is con-

sistent with the theoretical nonlinear approximations rates reported in the

literature (see e.g. Candes and Donoho, 2000a). These rates correspond to

a rate of O(P−2) for curvelets, with P the number of largest entries used

in the approximation, while Fourier and wavelets only attain O(P−1/2) and

O(P−1), respectively. The empirical rates plotted in Fig. 2.6 seem to confirm

these theoretical findings.
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(a) (b)

Figure 2.6: Decay rate for the curvelet coefficients compared to the decay
for the coefficients of Fourier (dashed line) and discrete wavelet transforms
(dot-dashed line), (a) decay rate for the sorted curvelet coefficients (solid
line) of the real migrated image included in Fig. 2.1(a), (b) the same as
(a) but now for the synthetic reflectivity of the SEG/EAGE AA′ salt model
(cf. Fig. 2.8(a)). The decay for the curvelet transform clearly compares
favorably to these other two transforms.

2.3.2 Stable recovery

Because of the redundancy of the curvelet transform, CCT is a projection

and this means that not every curvelet vector is a forward transform of a vec-

tor f . Therefore, the vector x0 can’t readily be calculated from f = CTx0,

because there exist infinitely many coefficient vectors whose inverse trans-

form equals f . Recent work on in the field of compressive sensing has shown

that rectangular matrices such as the curvelet matrix, C ∈ RN×M with

N � M , can stably be inverted through a nonlinear sparsity promoting

optimization program. These nonlinear recovery methods require fast decay

for the magnitude sorted curvelet coefficients (for details refer to the ex-

tensive literature on stable recovery also known as compressed sensing. See

e.g. Starck et al., 2004; Elad et al., 2005; Candes et al., 2006b).

Following these results, the vector x0 can be approximately recovered
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from noise-corrupted data

y = Ax0 + n (2.18)

with A := CT . As long as the signal is sufficiently compressible x0 can

successfully be recovered to within the noise level. This recovery involves

the solution of a constrained convex optimization problem

P1 :


x̃ = arg minx ‖x‖1 :=

∑N
j=1 |xj | subject to ‖y −Ax‖2 ≤ ε

m̃ = Ax.

(2.19)

For certain matrices A, the solution of this unconstrained optimization prob-

lem lies to within the noise level (see e.g. Candes et al., 2006b; Elad et al.,

2005). The optimization problem P1 is known as the constrained variation

of the LASSO (Tibshirani, 1997) and the basis-pursuit denoising (BPDN)

(Chen et al., 2001) algorithms.

As part of the optimization, the sparsity vector is fitted within the tol-

erance ε. This tolerance depends on the noise level given by the standard

deviation of the noise vector. Since n1, n2, · · ·nM ∈ N(0, σ2), the probabil-

ity of ‖n‖22 exceeding its mean by plus or minus two standard deviations

is small. The ‖n‖22 is distributed according the χ2-distribution with mean

M ·σ2 and standard deviation
√

2M ·σ2. By choosing ε2 = σ2(M + ν
√

2M)

with ν = 2, we remain within the mean plus or minus two standard devi-

ations. Following (Elad et al., 2005), the above constrained optimization

problem (P1), is replaced by a series of simpler unconstrained optimization
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problems

Pλ :


arg minx ‖y −Ax‖22 + λ‖x‖1

m̃ = Ax̃.

(2.20)

These optimization problems depend on the Lagrange multiplier λ. A cool-

ing method is used, where Pλ is solved for a Lagrange multiplier λ that is

slowly decreased from a large starting value λ1 < ‖ATy‖∞. The optimal x̃

is found for the largest λ for which ‖y−Ax̃‖2 ≤ ε. During the optimization,

the underdetermined frame matrix A is inverted by imposing the sparsity

promoting `1-norm. This norm regularizes the inverse problem of finding

the unknown coefficient vector (see also Daubechies et al., 2005). We refer

to (Donoho et al., 2006; Tropp, 2006) for the recovery conditions for Eq.’s

2.19 and 2.20.

2.3.3 Solution by iterative thresholding

Following (Daubechies et al., 2005; Elad et al., 2005) and ideas dating back to

(Figueiredo and Nowak, 2003), Eq. 2.27 is solved by an iterative thresholding

technique that derives from the Landweber descent method. The method

consist of an outer loop during which the Lagrange multiplier is lowered and

an inner loop during which Pλ is solved. The inner loop is initialized by the

solution obtained from the previous outer loop starting with zero vector for

the first iteration. After m iterations of the outer cooling loop, the estimated

coefficient vector is computed for fixed λ by the following inner loop

xm+1 = Tλ

(
xm + AT (y −Axm)

)
(2.21)
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with λ = λm and

Tλ(x) := sgn(x) ·max(0, |x| − |λ|). (2.22)

As shown by (Daubechies et al., 2005), this iteration for fixed λ converges

to the solution of Eq. 2.27 for m large enough and ‖A‖ < 1. The cost for

each iteration is a curvelet synthesis and subsequent analysis.

2.3.4 Stable seismic recovery

The main purpose is to estimate the relative amplitudes of seismic images

from data that are possibly contaminated with noise. This data is repre-

sented by the discretized linearized forward model

d = Km + n (2.23)

with K the discrete linearized Born modeling operator. Applying the adjoint

of this operator to the data vector creates a noisy image (cf. Eq. 2.4)

y = Ψm + e. (2.24)

With the curvelet decomposition of the normal operator (cf. Eq. 3.9) in

discrete form, i.e.,

Ψm ' AATm, (2.25)
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this expression can be rewritten into the following approximate form

y ' Ax0 + e (2.26)

with A := CTΓ and Γ :=
√

DΨ. To avoid instabilities related to small

entries in the estimated diagonal u, we set DΨ = diag (ũ + δ)/δ with δ

some small parameter. Comparing this image representation with the one

in Eq. 2.18 shows that these expressions are equivalent, aside from the noise

term. While the noise in Eq. 2.18 is white and Gaussian, the noise term

in Eq. 2.26 is colored by the migration operator. The expectation for the

covariance of this colored noise term equals E{eeT } = σ2Ψ ' σ2AAT .

Because the nonlinear recovery of the vector x0 involves the inversion of

the matrix A in which the covariance is factored, the noise term is approxi-

mately whitened. To understand this whitening, consider the pseudo-inverse

A† = Γ−1C which, when applied to e, approximately whitens the noise in

the curvelet domain. This whitening is a well-known property of WVD

techniques.

The nonlinear recovery of seismic images now involves solving

P′
1 :


x̃ = arg minx ‖x‖1 :=

∑N
j=1 |xj | subject to ‖y −Ax‖2 ≤ ε

m̃ =
(
AT

)† x̃.

(2.27)

The main assumption underlying this formulation is that the curvelet vector

of the model remains (approximately) sparse after application of the normal

operator. This assumption is valid when the curvelets remain sufficiently
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invariant under this operator. In that case, the nonlinear program (P′
1)

approximately inverts the normal operator in two stages, namely during

the `1-norm regularized inversion of the synthesis matrix, yielding a sparse

estimate for the curvelet coefficient vector, and during the calculation of

the model vector via the pseudo-inverse of AT . During each stage, the

’square-root’ of the normal operator is approximately inverted.

2.4 Sparsity- and continuity-enhanced seismic

image recovery

The above formulation provides a stable recovery for the amplitudes of seis-

mic images, the relative strengths of the fluctuations in m, without the

necessity of multiple evaluations of the normal operator. This recovery is

only accurate when the proposed diagonal approximation (cf. Eq. 3.3) pro-

vides an adequate approximation to the normal operator. The accuracy

of this approximation depends on the available scales in the seismic image

(cf. Theorem. 1), on the complexity of the background velocity model, the

acquisition geometry and the closeness of the reference r to the actual un-

known model m. For the remainder of this paper, we assume the acquisition

to be ideal and the reference vector to be close to the actual model.

Anisotropic diffusion: Aside from the aforementioned factors that enter

into the seismic recovery problem, there is the issue of how to limit spurious

curvelet artifacts. These artifacts are either related to the so-called “pseudo

Gibb’s” phenomenon (or better side-band effects (see Candes and Guo,
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2002)), inherent to curvelet or other harmonic expansions. To reduce these

spurious artifacts, the sparsity enhancing penalty functional in Eq. 2.27 is

complemented with an additional continuity-enhancing penalty functional.

This functional enhances the continuity along the imaged reflectors, which

tend to be smooth in the tangential directions. By applying an anisotropic

smoothing technique, the ’wavefront’ set of the imaged reflectivity is pre-

served. This technique differs from commonly used edge-preserving penalty

functionals such as total variation (TV) (see e.g. Claerbout and Muir, 1973;

Schertzer, 2003) that tend to remove the oscillatory behavior of the reflectors

in the normal direction.

The anisotropic-diffusion penalty term (see e.g. Fehmers and Hocker,

2003) is given by

Jc(m) = ‖Λ1/2∇m‖22, (2.28)

with ∇ the discretized gradient matrix defined as ∇ =
[
DT

1 DT
2

]T . The

block-diagonal matrix Λ is location dependent (see Fig. 2.10, which plots

the gradients) and rotates the gradient towards the tangents of the reflecting

surfaces. This rotation matrix is given by

Λ[r] =
1

‖∇r‖22 + 2υ


+D2r

−D1r

 (
+D2r −D1r

)
+ υI

 , (2.29)

with Di the discretized derivative in the ith coordinate direction and υ a

parameter that controls the fluctuations for regions where the gradient is

small. Following Black et al. (1998), this control parameter is set propor-

tional to the median of |∇r| with | | the length of each gradient vector (white
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arrows in Fig. 2.10). Similar to the diagonal approximation, a reference vec-

tor derived from the migrated image (cf. Eq. 2.24) is used to calculate the

tangential directions of the reflecting surfaces.

By combining the two different penalty terms that promote sparsity and

continuity, we finally arrive at our formulation for the seismic-amplitude

recovery problem

Pε :


arg minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ =
(
AT

)† x,

(2.30)

in which the composite penalty term J(x) is given by

J(x) = αJs(x) + βJc(x), (2.31)

with α, β ≥ 0 and α+β = 1. The Js(x) = ‖x‖1 is the `1-norm. The second

term in the penalty term is given by Jc(x) = ‖Λ1/2∇
(
AT

)† x‖22. Because

the optimization is carried out over x and not over the model vector m, this

expression includes a pseudo-inverse that is calculated with a few iterations

of the LSQR algorithm (Paige and Saunders, 1982).

The cooling method: The above nonlinear optimization problem (Pε)

is solved with a cooling method (see e.g. Starck et al., 2004). This method

consists of a series of thresholded Landweber iterations that solve a series of

unconstrained subproblems for decreasing λ. Since this method only requires

knowledge of the Jacobians at each iteration, it is relatively straightforward

to include the Jacobian of the additional continuity-enhancing penalty func-
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tional Jc(x). For data given by Eq. 2.18, the iterations of the cooling method

for a particular cooling parameter λ consist of the following three main steps:

Step 1: update of the Jacobian of 1
2‖y −Ax‖22:

x← x + AT (y −Ax) ; (2.32)

Step 2: project onto the `1 ball S = {‖x‖1 ≤ ‖x0‖1} by soft thresholding

x← Tλ(x); (2.33)

Step 3: project onto the anisotropic diffusion ball C = {x : J(x) ≤ J(x0)}

by

x← x− β∇xJc(x) (2.34)

with

∇xJc(x) = 2A†∇ ·
(
Λ∇

((
AT

)†
x
))

. (2.35)

Remember that steps 1 &2 with ‖A‖ ≤ 1 converge to the solution of Eq. 2.27

for a fixed λ. During step 3, the coefficients are updated according to the

gradient of the anisotropic diffusion norm designed to reduce spurious arti-

facts. The different steps of our algorithm are summarized in Table 2.2. To

ensure sparsity, the algorithm is started by setting x0 = 0.

43



2.5. Practical considerations

Initialize:
m = 0;
x0 = 0;
y = KTd;
Choose:
M and L
‖ATy‖∞ > λ1 > λ2 > · · ·
while ‖y −Ax̃‖2 > ε do

m = m + 1;
xm = xm−1;
for l = 1 to L do

xm = Tλm

(
xm + AT (y − xm)

)
{Iterative thresholding}

end for
Anisotropic descent update;
xm = xm − β∇xm Jc(xm);

end while
x̃ = xm; m̃ =

(
AT

)† x̃.

Table 2.2: Sparsity-and continuity-enhancing recovery of seismic amplitudes.

2.5 Practical considerations

The presented method depends on the availability of a reference vector with

an image that is sufficiently close to the unknown model. As in most Krylov-

subspace solvers, we derive the reference vector from the migrated image

(matched filter) as an initial guess. Since waves are subject to spherical

spreading, a depth-dependent correction is applied to the migrated image

(cf. Eq. 2.24). This corrected image serves as input for the diagonal estima-

tion procedure and the calculation of the anisotropic difussion norm. The

image recovery procedure consists of the following steps

1. Obtain the reference vector, r, by imaging the data with Eq. 2.24,
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followed by applying the depth correction.

2. Use the reference vector, r, to estimate the diagonal matrix, diag(ũ),

with the procedure outlined in Table 2.1;

3. Define the synthesis and analysis matrices A and AT ;

4. Calculate the rotation matrix, Λ, (cf. Eq. 2.29) for the continuity

promoting penalty functional;

5. Solve the optimization problem Pε (Eq. 2.30) with the algorithm out-

lined in Table 2.2. This yields the estimate for the amplitude-corrected

image, m̃;

6. Optionally goto 1 with r := m̃;

2.6 Numerical experiments

The recovery method is applied to a synthetic imaging example for data of

the SEG/EAGE AA′ salt model (O’Brien and Gray, 1997; Aminzadeh et al.,

1997). The original velocity model and its smoothed version that defines the

background velocity model, used by the migration operators, are included

in Fig. 2.7. To avoid multiple reflections, the background velocity model

is averaged over a window of size 720 × 720 m. The reflectivity (velocity

perturbation) is defined as the band-pass filtered difference between the

smoothed velocity model and a slightly less smoothed velocity model. The

density is assumed to be constant. Fig. 2.8(a) shows the reflectivity model

that is 3.6 km by 15.3 km with a grid spacing of 24m in the vertical and
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horizontal coordinate directions. This reflectivity was used to generate data

with the linearized Born modeling operator.

The migrated image: A two-way reverse-time migration code with check-

pointing was used to conduct the experiments. This two-dimensional (d = 2)

time-domain code, developed by Symes (2006b), has absorbing boundary

conditions and is based on the adjoint-state method. The migration oper-

ator is derived from the gradient of a descent algorithm for least-squares

inversion (see Symes, 2006b, and the references therein). The data is gen-

erated with the adjoint of the migration operator, which corresponds to

the linearized Born approximation. This Born modeling operator generates

data without nonlinear events such as multiple reflections. The migration

operator and its adjoint are made zero-order by applying a half-order frac-

tional integration on the source wavelet. We choose a source wavelet with

a relatively broad temporal frequency band [5 − 60]Hz. The data consists

of 324 shots with 176 receivers each with a shot at every 48 m, yielding a

maximum offset of 4.224 km. Each geophone records 626 time samples with

a sample interval of 8 ms, which amounts to 5 s of data.

The 8000 time-step linearized Born modeling takes about 64 min with

68 CPU’s on a MPI cluster, while the migration takes about 294 min. These

computation times explain why calculating the pseudo-inverse of the normal

operator becomes computationally prohibitive in real applications where the

images are three dimensional (d = 3).

Fig. 2.8 shows the original reflectivity and the migrated image obtained

with Eq. 2.24. The image suffers from amplitude deterioration due to spher-
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(a)

(b)

Figure 2.7: The SEG/EAGE AA′ salt model (Aminzadeh et al., 1997), (a)
The original velocity model, (b) the smoothed velocity model with a window
size of 720 × 720 m. Remark: Imaging this model is a challenge because of
the presence of the high-velocity (bright) salt.
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ical spreading and poor illumination. Despite the overall amplitude deteri-

oration for steep reflectors and events at increasing depths, the migration

resolves most of the singularities in the image (cf. Fig 2.8(a) and 2.8(b)).

(a)

(b)

Figure 2.8: Imaging of the SEG/EAGE AA′ salt model (Aminzadeh et al.,
1997), (a) reflectivity defined in terms of the band-pass filtered difference
between the smoothed velocity model and a slightly less smoothed velocity
model, (b) the imaged reflectivity according to Eq. 2.24. The main reflec-
tion events are present but suffer from deteriorated amplitudes, especially
under the high-velocity salt and for steep reflectors and faults.
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Diagonal estimation: After applying corrections for the spherical spread-

ing, the migrated image is considered as reference vector. This reference

vector is used to compute the diagonal approximation for the normal op-

erator and for the calculation of the gradients. The image deterioration

between the reference vector (Fig. 2.9(a)) and the demigrated-migrated ref-

erence vector (Fig. 2.9(b)) is similar to the amplitude deterioration between

the ’unknown’ true reflectivity and migrated image (cf. Fig. 2.8), there-

for the images in Fig’s. 2.9(a) and 2.9(b) should be adequate as input for

the diagonal estimation procedure outlined in Table 2.1. To avoid insta-

bilities related to small entries in the estimated diagonal diag ũ, we set

Γ = diag (ũ + δ)/δ with δ = 0.2. The result of applying the estimated

diagonal to the bandwidth-limited reflectivity of Fig. 2.8(a) is included in

Fig. 2.9(c) and shows that most of the imprint of the normal operator is

captured by the diagonal approximation.

Seismic amplitude recovery for the SEG AA′ model: With the di-

agonal approximation in place, the amplitude corrections are applied with

the procedure presented in Table 2.2. The anisotropic diffusion penalty

term is calculated from the gradients plotted in Fig. 2.10. The results of the

amplitude recovery are summarized in Fig. 2.11. Fig. 2.11(a) depicts the

result obtained by only applying a `1-norm penalty (β = 0). The image is

calculated by lowering the Lagrange multiplier λ in 20 steps from a value

that corresponds to a threshold that removes all but 5% of the coefficients

to a Lagrange multiplier that only removes 1% of the curvelet coefficients.

For each intermediate λ, the inner loop is repeated 5 times (L=5). The

49



2.6. Numerical experiments

(a)

(b)

(c)

Figure 2.9: Images that are input to the diagonal approximation scheme
outlined in Table 2.1, (a) the reference vector, r, derived from Fig. 2.8(b),
after applying corrections for the spherical-divergence and receiver-array ta-
per, (b) the demigrated-migrated reference vector, b = Ψr, that serves
as ’data’ for the diagonal estimation, (c) diagonal approximation on the
original bandwidth-limited reflectivity plotted in (a). This diagonal approx-
imation by AATm captures the normal operator, Ψm, quite well.
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lateral (m)

de
pt

h 
(m

)

2000 4000 6000 8000 10000 12000 14000

500

1000

1500

2000

2500

3000

3500

Figure 2.10: Gradient vectors for the reference vector r plotted in Fig.
2.9(a). The gradients (white ↑’s) are used to calculate the tangential di-
rections along which the additional anisotropic smoothing is applied.
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result of this norm-one optimization are plotted in Fig. 2.11(a). The im-

age shows a clear improvement over the image plotted in Fig. 2.9(a). Not

only is the spherical divergence corrected in a stable manner, but the ampli-

tude of the steep reflections events are recovered as well. There are, however,

some small remaining artifacts related to side-band effects (Candes and Guo,

2002). By including the continuity-enhancing penalty functional most of the

aforementioned artifacts can be removed as can be seen from Fig. 2.11(b).

In this example, the sparsity- and continuity-enhancing norms are weighted

equally, i.e. α = β = 1/2 in Eq. 2.31. To further illustrate the migration

amplitude recovery, detailed plots for different traces of the recovered the

amplitudes are included in Fig. 2.12. Fig. 2.12(a) compares vertical traces

of the original, migrated and amplitude recovered images. The traces are

normalized with respect to the first reflector and the plots show that the

amplitudes are nicely recovered. Similarly, the amplitudes along the hori-

zontal reflector at z = 3432 m, are nicely recovered. The improvement in

the recovered amplitudes is also apparent from Fig. 2.12(c) that contains the

average vertical-wavenumber amplitude spectra of the original, the imaged

and the recovered reflectivity.

Seismic amplitude recovery from noisy data: So far, the examples

were noise free. In practice, seismic data volumes contain several sources of

clutter, ranging from coherent nonlinear events, such as multiple reflections,

to incoherent measurement errors. In this paper, only the recovery from

incoherent contamination is considered. Sources of coherent clutter can

be removed by using curvelet-based signal separation techniques reported
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(a)

(b)

Figure 2.11: Images after nonlinear recovery (Pε). (a) result with the `1-
norm recovery only (β = 0); (b) recovery with the combined `1 and con-
tinuity recovery for α = β = 1/2. The amplitudes are recovered. The
anisotropic diffusion successfully removes the artifacts.
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(a) (b)

(c)

Figure 2.12: Recovery of the amplitudes after normalization with respect
to the first event, (a) seismic traces of the original reflectivity (dot-dashed
line), the migrated reflectivity (dashed line) and the recovered reflectivity
(solid line), (b) amplitudes along the bottom most horizontal reflector, (c)
average amplitude spectra of the depth-dependent reflectivity. The original
and recovered spectra are normalized to match. Remarks: The nonlinear
recovery corrects for the amplitudes and restores the spectrum.
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elsewhere (Herrmann et al., 2007). An image computed from data with a

signal-to-noise ratio (SNR) of 3 dB is included in Fig. 4.3(a). As shown

in Eq. 2.24, the image now contains an additional contribution due to the

noise. This noise contribution is clearly visible throughout the image as a

non-stationary clutter and leads to a deterioration of the image quality. The

clutter in the image space, however, is significantly smaller than in the data

space, as can be observed from the noisy shot record plotted in Fig. 2.14(b).

The difference in noise levels between the data and image spaces can be

explained by the 154-fold redundancy of the data space compared to the

image space (L = 154×M).

The result for the amplitude recovery of the noisy data are included in

Fig. 4.3(b) and this figure shows that the migration amplitudes can stably

be recovered, leading to a significant improvement in the SNR for the image

(9.2 dB for the image in Fig. 4.3(b) as opposed to (1.5 dB for the noisy

image which includes the error due to the imprint of the normal operator).

This improved image was obtained using the algorithm of table 2.2, with

the same settings as in the noise-free example except for the lowest value

of the Lagrange multiplier, which is now set to a larger value depending

calculated from the noise level. From Fig. 4.3(b), one can see that the noise

contamination has largely been removed. Moreover, the amplitudes have

been restored in particular for the steep events at depth. Data generated

from the estimated image, d̃ = Km̃ shows a significant removal of the

noise (cf. Fig. 2.14(b)-2.14(c)), with reflection events that match the noise-

free data plotted in Fig. 2.14(a). This visual improvements leads to an

improvement of SNR for the data of 19.2 dB.
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2.7 Conclusions

2.7.1 Initial findings

The method presented in this paper combines the compression of images by

curvelets with the invariance of this transform under the normal operator.

This combination allows for a formulation of a stable recovery method for

seismic amplitudes. During the recovery, the normal operator is approxi-

mately inverted. Compared to other approaches for migration scaling, the

presented method (i) includes a theoretical bound on the L2 − error for

the diagonal approximation in the curvelet domain; (ii) prescribes a proce-

dure for the estimation of the diagonal from numerical implementations of

the imaging operators; (iii) formulates the amplitude recovery problem as

a nonlinear optimization problem, where the inversion of the diagonalized

normal operator is regularized by imposing sparsity in the curvelet domain

and continuity along the imaged reflectors.

As long as the background velocity model is sufficiently smooth and

there is a reference vector available close enough to the actual reflectivity,

the normal operator can be approximated by a diagonal weighting in the

curvelet domain. The theoretical approximation error is scale-dependent

and decreases for finer scales, an observation consistent with the microlocal

properties of the normal operator and curvelets in the high-frequency limit.

Estimation of the diagonal exploits smoothness of the symbol by penalizing

neighboring entries in the diagonal that fluctuate. These fluctuations are

inconsistent with the smoothness of the symbol. For a sufficiently large La-

grange multiplier, the regularized least-squares estimation for the diagonal
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(a)

(b)

Figure 2.13: Image amplitude recovery for noisy data (SNR 3 dB), (a) noise
image according to Eq. 2.24, (b) image after nonlinear recovery from noisy
data (Pε). The clearly visible non-stationary noise in (a) is removed dur-
ing the recovery while the amplitudes are also restored. Steeply dipping
reflectors denoted by the arrows are also well recovered.
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(a) (b)

(c)

Figure 2.14: ’Denoising’ of a shot record, (a) the noise-free data received by
the receiver array, (b) noisy data with a SNR of 3 dB, (c) forward modeled
data after amplitude recovery. Observe the significant improvement in the
data quality, reflected in an increase for the SNR of 19.2 dB. 58
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leads to positive entries. Numerical experiments with the diagonal approx-

imation showed a moderate-sized constant for the bound of the theoretical

error.

The diagonal approximation is used to formulate the seismic amplitude

recovery in terms of a constrained optimization problem. The amplitude-

corrected image is obtained by solving this sparsity- and continuity-promoting

optimization problem. The invariance of curvelets under the normal opera-

tor preserves the sparsity. The cost of computing the diagonal approxima-

tion is one demigration-migration per reference vector, which is much less

compared to the cost of Krylov-based least-squares inversion. The recov-

ery results show an overall improvement of the image quality. The joined

sparsity- and continuity-enhanced image has diminished artifacts, improved

resolution and recovered amplitudes.

2.7.2 Extension to prestack imaging

The discussion has been on ’post-stack’ images obtained after applying the

zero-offset imaging condition. When the velocity model is correct, images

are smooth along the redundant coordinate in pre-stack angle gathers. This

smoothness property has been used in velocity analyses methods such as

differential semblance (Symes and Carazzone, 1991) and is suitable for the

framework laid down in this paper. Besides the `1- and continuity norms,

the amplitude recovery can also exploit the smoothness along the redundant

angle coordinate. The fact that smoothness translates to sparsity is espe-

cially exciting because it allows to further exploit the results from the field

of compressed sensing.
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2.7.3 Recent related work

During the revision, we were informed of recent work by William Symes

on optimal scaling of reverse-time migration Symes (2006a). This work

and recent work by Guitton (2004) attempt to invert the normal operator

by estimating a diagonal approximation from a reference vector, typically

given by the migrated image, and the demigrated-migrated reference vec-

tor. Smoothness of the diagonal approximation is also imposed by both

authors by parameterizing the diagonal as a smooth function in the spatial

domain. Our approach goes several steps further by imposing smoothness

in phase space and by making use of the curvelet transform that allows for

the inversion of the diagonal using the methods of stable image recovery.

2.7.4 Choice of the reference vector

Having access to a proper reference vector is a prerequisite for the success of

the method presented in this paper. Selection of the appropriate reference

is somewhat reminiscent of finding a good initial guess for Krylov subspace

methods. In this paper, we took a data-driven approach by using the mi-

grated image (matched-filter result) as a first guess. Our formulation allows

for multiple reference vectors and we hope to report on appropriate selection

strategies for reference vectors in the future. This investigation will include

an analysis of the sensitivity of our method to the accuracy of the velocity

model.
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Chapter 3

Curvelet-based migration

preconditioning and scaling

3.1 Introduction

Over the years, extensive research has been done to reduce the computa-

tional costs of (least-squares) seismic imaging. Improvements in this area

are particularly important during iterative least-squares migration, where

the linear Born-scattering operator is inverted with iterative Lanczos meth-

ods, such as LSQR (Paige and Saunders, 1982; De Roeck, 2002). Examples

of these methods can be found in the literature (see e.g. Nemeth et al.,

1999; Chavent and Plessix, 1999; Hu et al., 2001; Kuhl and Sacchi, 2003; Yu

et al., 2006).

The most successful methods to reduce the cost of migration are the so-

called scaling methods where the action of the compound linearized modeling-

migration operator—known as the Hessian or normal operator—is replaced

by a diagonal scaling in some domain, see e.g. contributions by Claerbout

A version of this chapter has been published. Herrmann, F.J., Brown, C.R., Erlangga,
Y.A. and Moghaddam, P.P. (2009) Curvelet-based migration preconditioning and scaling.
Geophysics, 74, pp. A41, 2009
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and Nichols (1994); Rickett (2003); Guitton (2004); Plessix and Mulder

(2004), and more recently by Symes (2008) and Herrmann et al. (2008a).

These methods vary in degree of sophistication with regard to the estimation

of the diagonal, e.g. through migrated-image to remigrated-image match-

ing. They also differ in the way the scaling is applied—i.e., by ’division’ in

the physical domain or via sparsity promotion in the curvelet domain, as

reported recently by Herrmann et al. (2008a). During all these methods, im-

aged amplitudes are restored by applying a scaling as a post-processing step

after migration. Even though our approach and the one of Symes (2008)

are similar, the curvelet-domain scaling has the advantage that it is able to

handle conflicting dips.

In this paper, we take this line of research a step further by using the

above scaling argument to apply the proper preconditioning to the system

of equations involved in linearized Born scattering. By “proper” we mean a

preconditioner with a computational overhead that justifies its improvement

by the increase in convergence rate. Because the system is solved iteratively,

the preconditioner does not need to be very accurate, avoiding unnecessary

extra computational overhead. Note that we use the term precondition-

ing somewhat loosely compared to its formal definition in numerical linear

algebra where the solution is not changed with preconditioning (Calvetti,

2007). Therefore, we also use this term to denote changes in the forward

model that favor least-squares inversion. To illustrate the improvements in

the images and in the convergence of least-squares migration, we consider

three levels of preconditioning. First, we correct the order of the normal

operator by introducing a left preconditioning, consisting of a fractional
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time integration that corresponds to a scaling in the Fourier domain. This

first level of preconditioning follows directly from earlier work on migration-

amplitude recovery reported by Herrmann et al. (2008a) and Symes (2008).

The next level of preconditioning consists of diagonal scaling in the physi-

cal domain that compensates for spherical spreading of seismic waves. As

a final step, we also include a curvelet-domain scaling as part of the right

preconditioning. This step corrects for the remaining amplitude errors that

vary spatially as a function of the reflector dip. We conclude by study-

ing the performance of these different levels of preconditioning on the SEG

AA’ salt model (O’Brien and Gray, 1996; Aminzadeh et al., 1997), using

a reverse-time ‘wave-equation’ migration code with optimal checkpointing

(Symes, 2007). Because our main interest is to study the performance of our

preconditioner, we work on data generated by the linearized Born-scattering

operator instead of data generated by the solution of the full nonlinear for-

ward model.

3.2 Problem formulation

During seismic imaging, the following system of equations needs to be solved

Ax ≈ b, (3.1)

where b = Ax0 is the multiple-free data with x0 the true reflector model, A

the linearized Born-scattering operator, and x the unknown model vector.

Here, the symbol ≈ refers to “equality” in the least-squares sense. Con-
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trary to many inverse problems, the matrix A, albeit extremely large, is

reasonably well behaved and a migrated image can be obtained by applying

the adjoint of A to the data vector—i.e., x̃ = A∗b with A∗ the migration

operator. The symbol ∗ denotes the adjoint, and x̃ is the estimate (denoted

by the˜) of the image.

Unfortunately, the output of the above procedure, called migration, pro-

duces erroneous results for the amplitudes of the imaged reflectors. To

restore these amplitudes, the least-squares solution to Equation 3.1 can be

obtained as the solution of the linear system

A∗Ax ≈ A∗b, (3.2)

with A∗A the normal or Hessian operator. Solutions to this system are not

unique and correspond to solutions of the least-squares method—i.e.,

x̃LS = arg min
x

1
2
‖b−Ax‖22, (3.3)

which finds image vectors, x, that after modeling fit the data vector, b.

However, the matrix A∗A is not invertible—i.e., it has zero or small singu-

lar values that correspond to shadow zones. Because the system is large,

we employ an iterative matrix-free solution method, such as LSQR (Paige

and Saunders, 1982). By limiting the number of iterations for this method,

we control the energy of the solution vector x̃ and we obtain a regularized

solution that is equivalent to the solution of a damped least-squares prob-

lem (Vogel, 2002). Even though these iterative methods converge relatively
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quickly (see e.g. Nemeth et al., 1999; Chavent and Plessix, 1999; Hu et al.,

2001; Kuhl and Sacchi, 2003; Yu et al., 2006), the sheer size of the imaging

problem calls for a further reduction in the number of iterations.

In a perfect world, with infinite computational resources, the ideal pre-

conditioning for the system in Equation 3.1 corresponds to

AM−1
R u ≈ b, x := M−1

R u, (3.4)

with the right preconditioning matrix, MR :=
(
A∗A

)1/2, given by the

‘square-root’ of the normal operator. Here, the symbol := refers to ‘defined

as’. In this ideal case, migration recovers the image vector x, exactly. Un-

fortunately, in practice (albeit some recent exciting progress has been made

by Demanet and Ying, 2008, using discrete symbol calculus for smooth sym-

bols, a development on which we intend to report in the future) the quantity(
A∗A

)1/2 cannot be computed and we have to resort to appropriate approx-

imations.

In this paper, we propose a combination of left and right preconditioning—

i.e., we replace Equation 3.1 by

bA︷ ︸︸ ︷
M−1

L AM−1
R u ≈

bb︷ ︸︸ ︷
M−1

L b, x := M−1
R u, (3.5)

with M−1
L the left preconditioning matrix. The migrated and least-squares

migrated images are given by x̃ = M−1
R ũ, with ũ = Â∗b̂, and by x̃LS =

M−1
R ũLS , with ũLS = arg minu ‖b̂ − Âu‖2, respectively. Our precondi-

tioners are derived from the following three observations: (i) under certain
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conditions—such as the high-frequency limit, smooth background velocity

models, and the absence of turning waves (Stolk, 2000)—the normal oper-

ator is in d dimensions a (d − 1)-order pseudodifferential operator (ΨDO,

see e.g. recent work by Herrmann et al., 2008a; Symes, 2008, and the refer-

ences therein), (ii) migration amplitudes decay with depth due to spherical

spreading of seismic body waves, and (iii) zero-order ΨDO’s can be approx-

imated by a diagonal scaling in the curvelet domain (see e.g. Herrmann

et al., 2008a). These observations allow us to define a series of increasingly

more accurate approximations to the ‘square-root’ of the normal operator,

leading to better and better preconditioners. Finally, we also argue that

using curvelets will add a certain robustness to Gaussian noise and mod-

eling errors, an observation substantiated by successful applications of this

transform in seismic data processing (Herrmann et al., 2008b; Wang et al.,

2008).

3.3 Preconditioning

In this section, we introduce different types of preconditioners based on the

aforementioned observations. For each preconditioned system, we study the

migrated images. Later, we study the convergence of the iterative solver.

The examples are computed for the reflectivity and smooth velocity back-

ground models plotted in Figure 3.1. To test our preconditioner, data with

324 shots is generated using Equation 3.1. Each shot consists of 176 traces

of 6.4s and with a trace interval of 24m. The maximum offset of the data is

4224m.
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3.3.1 Left preconditioning by fractional differentiation

As stated before, under aforementioned conditions the normal operator cor-

responds to a (d − 1)-order ΨDO. In 2-D image space, this operator corre-

sponds to the leading-order behavior of the square root of Laplacian—i.e.,

the action of
(
∆

)1/2· in the physical domain, or to |ξ|· with ξ the wave vec-

tor in the spatial Fourier domain. In data space, this action corresponds to

a multiplication by |ω| in the temporal Fourier domain (Herrmann et al.,

2008a). We compensate for this action by defining the following left precon-

ditioning:

M−1
L := ∂

−1/2
|t| , (3.6)

where ∂
−1/2
|t| · := F ∗|ω|−1/2F · with F the Fourier transform and F ∗ = F−1 its

inverse. We define the level I preconditioner with M−1
L as above and M−1

R =

I (which implies x = u). Comparison of the migrated images before and after

left preconditioning (cf. Figures 3.1(c) and 3.2(a)) shows that the imprint of

the Laplacian is removed—i.e., some of the low-frequency content is restored.

However, the migrated image still contains dimming of the amplitudes. Note

that this left preconditioning corresponds to the solution of the scaled least-

squares problem: arg minx
1
2‖b̂− Âx‖22 = arg minx

1
2‖M

−1
L (b−Ax)‖22.

3.3.2 Right preconditioning by scaling in the physical

domain

To further correct the amplitudes, we propose to apply a scaling to com-

pensate for the leading-order amplitude decay. This decay is linear because

the reflected waves travel from the source down to the reflector, experi-
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encing an amplitude decay proportional to the square-root of the reflector

depth (in 2-D). We correct this linear amplitude decay by defining the right

preconditioning matrix:

M−1
R = Dz := diag

(
z
) 1

2 , (3.7)

where zi = i∆z, i = 1 · · ·nz, with ∆z the depth sample interval and nz the

number of samples. Combined with the left preconditioner M−1
L , we call

this the level II preconditioner. The results for the migrated image in Fig-

ure 3.2(b) now show further improvement. However, amplitude variations

remain, e.g., along the major horizontal reflector just above 3500m.

3.3.3 Right preconditioning by scaling in the curvelet

domain

After applying the left preconditioning, the Hessian can be modeled by a

zero-order ΨDO whose action corresponds to that of a nonstationary dip

filter—i.e., we have

(
Ψf

)
(x) '

∫
ξ∈Rd

ejξ·xa(x, ξ)f̂(ξ)dξ, (3.8)

with Ψ the Hessian of the preconditioned modeling operator and a(x, ξ)

a space- and spatial-frequency dependent filter known as the symbol. We

use the symbol ' to indicate high-frequency approximation and absence of

turning waves. Following ideas that go back to Taylor (1981), a pseudodiffer-

ential operator can approximately be diagonalized by linear combinations of
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localized oscillatory functions, such as curvelets (Candès et al., 2006), wave

atoms (Demanet and Ying, 2007), and local Fourier bases (Meyer, 1992).

In this paper, we use recent results by Herrmann et al. (2008a) who use

curvelets because they have the additional advantage of being sparse on the

model. The action of the ΨDO can, after discretization, be approximated

by a scaling in the curvelet domain—i.e., we have the following approximate

identity

Ψr ≈ C∗D2
ΨCr, D2

Ψ := diag
(
d2

)
, (3.9)

which is accurate for a reference vector r close enough to the actual im-

age. In this expression, the matrices C and C∗ represent the 2-D discrete

curvelet transform (see e.g. Candès et al., 2006) for which the adjoint equals

the pseudoinverse—i.e., we have C∗C = I with I the identity matrix. The

reciprocal of the curvelet-domain scaling coefficients, d−2, is found by a rem-

igrated image-to-image matched-filtering procedure that involves the refer-

ence vector, typically derived from a conventional migrated image, and the

remigrated reference vector. Hence, the cost of forming Equation 3.9 is ap-

proximately one modeling and one migration (for further details refer to

Herrmann et al., 2008a,c). As we will show below, these additional costs are

well offset by the increase in convergence.

By including the above approximation, we define the right precondition-

ing matrix as

M−1
R = DzC∗D−1

Ψ , (3.10)

which compensates for the remaining amplitude errors. Because there is

no need for high accuracy, Equation 3.9 is a good approximation whose ac-
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3.4. Convergence of least-squares migration

curacy increases with frequency (Herrmann et al., 2008a). Note, however,

that this preconditioner by virtue of the underlying assumptions will not

help in the removal of nonlocal imaging artifacts. We call the combination

of Equations 3.6 and 3.10, the level III preconditioner. The image obtained

with this system is plotted in Figure 3.2(c) and shows, as expected, fur-

ther improvement in the amplitudes of the migrated image. Despite this

improvement, image artifacts and amplitude errors are still present and can

be attributed to the approximation in Equation 3.9 and to the fact that

migration does not correspond to inversion—i.e., A∗A 6= I .

3.4 Convergence of least-squares migration

Even though the different preconditioning operators defined so far lead to im-

provements, problems remain in achieving high-fidelity images. As reported

in the literature, the image quality can be further improved by replacing

migration with least-squares migration where the (preconditioned) scatter-

ing matrix is inverted iteratively. After a limited number of iterations, this

method inverts the (preconditioned) system of equations approximately.

The performance of iterative solvers depends on certain properties of

the (preconditioned) matrix A, which include its condition number (ratio

of the largest to smallest singular value) and the clustering of the singu-

lar values (see e.g. De Roeck, 2002, where these quantities are discussed

for a relatively small Kirchhoff-based imaging problem). Because LSQR

minimizes the residual during each iteration (cf. Equation 3.3), studying its

progress as a function of the number of iterations gives us some way to gauge
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the performance. For this purpose, we introduce the normalized log-based

least-squares residual µk = 20 log ‖Âuk − b̂‖2/‖b̂‖2, with uk the solution

of the (preconditioned) system after k iterations and with u0 = 0. Follow-

ing De Roeck (2002), we also track the log-based least-squares model-space

residual—i.e., νk = 20 log ‖Â∗(Âuk − b̂
)
‖2/‖Â∗b̂‖2. Note that in practice,

these latter residuals are never computed because they are not a by-product

of LSQR, and require an additional matrix-vector multiply per iteration.

Contrary to data-space residuals, which possibly contain unmodeled com-

ponents that may not be in the range of the modeling operator, model-space

residuals typically converge to zero. Both quantities are used to empirically

establish the performance of the different levels of preconditioning. The re-

sults of this exercise are summarized in Figure 3.3, which plots the decay of

µk and νk as a function of the number of iterations k. To account for the

overhead, plots for the level III preconditioner are offset by one iteration.

This is justified because the cost per iteration of evaluating the curvelet

transform, and its inverse, is negligible compared to the cost of migration

and demigration.

As we move from a single left preconditioner, towards left and right pre-

conditioners, the data residuals decay faster with a significant improvement

obtained by the curvelet-domain scaling. For instance, the residual after

10 iterations for level II preconditioning (fractional integration and depth

weighting) is attained by only 5 iterations of level III preconditioning (in-

cluding curvelet-domain scaling), whereas the result after 10 iterations is

approximately 2 dB better. Including the computational overhead, level III

preconditioning gains 8 dB in four iterations. Even though the picture for
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the model-space residual is less clear, there is a similar trend for the level III

preconditioning. For instance, after 10 iterations, we have an improvement

of approximately 4.5 dB.

The improvements in convergence for the preconditioned system are also

reflected in the least-squares migrated results included in Figure 3.4. Com-

paring these images shows a clear enhancement for the preconditioned sys-

tem, plotted in Figure 3.4(b), over the least-squares result obtained without

preconditioning. Moreover, juxtaposing the preconditioned least-squares im-

age with the solution for the preconditioned migrated image after one itera-

tion depicted in Figure 3.2(c) shows a significant enhancement of the overall

amplitudes and frequency content (cf. Figure 3.1(a) and 3.4(b)).

The bottom line is that each iteration takes 40 and 180 minutes for the

modeling and migration on an IBM eServer with 52 processors at 2.2GHz.

Aside from one additional modeling and migration, the computation of the

diagonal estimation takes approximately 90 minutes on a single CPU. The

cost of the 2-D curvelet-transforms part of the preconditioning is less than

one minute and is negligible compared to the modeling and migration costs.

3.5 Extensions

The preconditioning methodology presented in this letter constitutes a first

step towards a concerted effort to formulate seismic imaging and inversion

as an optimization problem. This type of formulation allows us to create

high-fidelity images and to make progress towards full-waveform inversion.

Having access to appropriate preconditioners is instrumental for this purpose
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because it makes the computations tractable. We envisage the following

extensions of our work:

• generalization to 3-D, which entails a different power for the fractional

integration, a different spherical-spreading correction, and a 3-D for-

mulation of our curvelet-domain matched filter. Moreover, in 3-D the

theory of approximating the Hessian by a ΨDO is less well developed.

• replacement of the level II physical-space preconditioning by more

accurate source Green’s function illumination corrections (see e.g.,

Plessix and Mulder, 2004).

• inclusion of density variations, or in case of elastic wave propagation,

the inclusion of variations in the elastic moduli. This extension re-

quires a multi-parameter formulation.

• regularization by curvelet-domain sparsity promotion, replacing Equa-

tion 3.3 by

ũ`1 = arg min
u

‖u‖1 subject to ‖Âu− b̂‖2 ≤ ε (3.11)

with ε a noise-dependent parameter, and x`1 := M−1
R ũ`1 . To ben-

efit from our preconditioning, Equation 3.11 requires a solver with

Newton-type steps, as opposed to most `1-norm solvers that are based

on projected gradients. The advantage of this formulation is that it

uses curvelet-domain sparsity, which has proven to be a particularly

powerful prior (Wang and Sacchi, 2007; Herrmann et al., 2008b,a; Hen-

nenfent et al., 2008). We will report on the solution of Equation 3.11

79



3.6. Conclusions

elsewhere.

• incorporation of our preconditioner in sparsity-promoting full-waveform

inversion. This problem requires the solution of the unconstrained op-

timization problem

min
z

1
2
‖b̂− F̂[z]‖22 + λ‖z‖1, (3.12)

where z is the curvelet representation of the model, λ a Lagrange

multiplier balancing the residual energy and `1-norm penalty term, and

F̂[z] the nonlinear forward map that links the curvelet-domain model

to data. Again, the solution of this optimization problem requires a

sophisticated solver that can benefit from our preconditioner.

3.6 Conclusions

Because of the size of the seismic imaging problem, preconditioning of least-

squares migration is an elusive topic, where traditional approaches from

numerical linear algebra have not yet found their way. Lack of direct access

to the matrices involved and the cost of evaluating matrix-free implementa-

tions of the operators are both to blame. Nonetheless, the first few iterations

of the LSQR algorithm of least-squares migration are known to make sig-

nificant progress towards the solution. Unfortunately, even for this limited

number of iterations, the computational costs are often still prohibitively

large for practical problems. The method presented in this paper partly

resolves this issue through a combination of left and right preconditioning
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together with a curvelet-domain scaling. Inclusion of the latter proved par-

ticularly important because it restores the amplitudes and leads to faster

convergence, at a relatively small computational overhead. Aside from this

tangible reduction in computational costs of roughly 50%, the use of curvelet

frames opens the enticing perspective to use `1-norm regularization to im-

prove the quality of images. Preconditioning also plays a pivotal role in

making this approach numerically feasible and may extend to a solution

of the full-waveform inversion problem with sparsity promotion. Both ap-

proaches are justified by ample evidence that curvelets are sparse on the

model.
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(a)

(b)

(c)

Figure 3.1: The SEG/EAGE AA′ salt model, (a) reflectivity defined by
the high-pass filtered velocity model, (b) smoothed velocity model, (c) the
migrated image according to Equation 3.1. This image suffers from dete-
riorated amplitudes, especially under the high-velocity salt and for steep
reflectors and faults.
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(a)

(b)

(c)

Figure 3.2: Migrated images for different levels of preconditioning, (a) result
for left preconditioning (level I, cf. Equation 3.6), (b) result for left-right
(including depth-correction) preconditioning (level II, cf. Equation 3.7), (c)
the same but now including curvelet-domain scaling (level III, cf. Equation
3.10).
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Figure 3.3: Residual decays for different levels of preconditioning. The
dotted blue lines corresponds to least-squares migration without precondi-
tioning, the dash-dotted lines to level I preconditioning, the dashed black
lines to level II preconditioning, and the red solid lines to level III precon-
ditioning. This is offset by one iteration to account for the overhead, (a)
plot for the decay of the data-space normalized residues µk as a function of
the number of LSQR iterations, (b) the same but now for the model-space
normalized residuals νk.
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(a)

(b)

Figure 3.4: Least-squares migration without and with preconditioning jux-
taposed with the original reflectivity (in light blue), (a) least-squares mi-
grated image, (b) least-squares image with level III preconditioning. Notice
the improvement in the recovered reflectivity.
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Chapter 4

Curvelet-based seismic data

processing

4.1 Introduction

In this letter, we demonstrate that the discrete curvelet transform (Candès

et al., 2006a; Hennenfent and Herrmann, 2006b) can be used to reconstruct

seismic data from incomplete measurements, to separate primaries and mul-

tiples and to restore migration amplitudes. The crux of the method lies

in the combination of the curvelet transform, which attains a fast decay

for the magnitude-sorted curvelet coefficients, with a sparsity promoting

program. By themselves sparsity-promoting programs are not new to the

geosciences (Sacchi et al., 1998). However, sparsity promotion with the

curvelet transform is new. The curvelet transform’s unparalleled ability to

detect wavefront-like events that are locally linear and coherent means it is

particularly well suited to seismic data problems. In this paper, we show

examples including data regularization (Hennenfent and Herrmann, 2006a,

A version of this chapter has been published. Herrmann, F.J., Wang, D., Hennenfent,
G. and Moghaddam, P.P. (2008) Curvelet-based seismic data processing: a multiscale and
nonlinear approach.Geophysics, 73(1):A1-A5, 2008.

89



4.2. Curvelets

2007a), primary-multiple separation (Herrmann et al., 2007) and migration-

amplitude recovery (Herrmann et al., 2008). Application of this formalism

to wavefield extrapolation is presented elsewhere (Lin and Herrmann, 2007).

4.2 Curvelets

Curvelets are localized ’little plane-waves’ (see Hennenfent and Her-

rmann, 2006b, and the on-line ancillary material for an introduction on

this topic) that are oscillatory in one direction and smooth in the other

direction(s). They are multiscale and multi-directional. Curvelets have an

anisotropic shape – they obey the so-called parabolic scaling relationship,

yielding a ”width” proportional to square of the ”length” for the support

of curvelets in the physical domain. This anisotropic scaling is necessary

to detect wavefronts and explains their high compression rates on seismic

data and images (Candès et al., 2006a; Herrmann et al., 2008), as long as

these datasets can be represented as functions with events on piece-wise

twice differentiable curves. Then, the events become linear at the fine scales

justifying an approximation by the linearly shaped curvelets. Even seismic

data with caustics, pinch-outs, faults or strong amplitude variations fit this

model, which amounts to a preservation of the sparsity attained by curvelets.

Curvelets represent a specific tiling of the 2-D/3-D frequency domain

into strictly localized wedges. Because the directional sampling increases

every-other scale doubling, curvelets become more anisotropic at finer scales.

Curvelets compose multi-D data according to f = CTCf with C and CT

the forward and inverse discrete curvelet transform matrices (defined by the
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4.3. Common problem formulation by sparsity-promoting inversion

fast discrete curvelet transform, FDCT, with wrapping, a type of periodic

extenstion, see Candès et al., 2006a; Ying et al., 2005). The symbol T

represents the transpose, which is equivalent to the inverse for this choice

of curvelet transform. This transform has a moderate redundancy (a factor

of roughly 8 in 2-D and 24 in 3-D) and a computational complexity of

O(n log n) with n the length of f . Even though CTC = I , with I the

identity matrix, the converse is not true, i.e., CCT 6= I .

4.3 Common problem formulation by

sparsity-promoting inversion

Our solution strategy is built on the premise that seismic data and images

have a sparse representation, x0, in the curvelet domain. To exploit this

property, our forward model reads

y = Ax0 + n (4.1)

with y a vector of noisy and possibly incomplete measurements; A the

modeling matrix that includes CT ; and n, a zero-centered white Gaussian

noise. Because of the redundancy of C and/or the incompleteness of the

data, the matrix A can not readily be inverted. However, as long as the

data, y, permits a sparse vector, x0, the matrix, A, can be inverted by a

sparsity-promoting program (Candès et al., 2006b; Donoho, 2006):
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4.3. Common problem formulation by sparsity-promoting inversion

Pε :


x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(4.2)

in which ε is a noise-dependent tolerance level, ST the inverse transform and

f̃ the solution calculated from the vector x̃ (the symbol ˜ denotes a vector

obtained by nonlinear optimization) minimizing Pε. The difference between

x̃ and x0 is proportional to the noise level.

Nonlinear programs Pε are not new to seismic data processing as in spiky

deconvolution (Taylor et al., 1979; Santosa and Symes, 1986) and Fourier

transform-based interpolation (Sacchi et al., 1998). The curvelets’ high com-

pression rate makes the nonlinear program Pε perform well when CT is in-

cluded in the modeling operator. Despite its large-scale and nonlinearity,

the solution of the convex problem Pε can be approximated with a limited

(< 250) number of iterations of a threshold-based cooling method derived

from work by Figueiredo and Nowak (2003); Daubechies et al. (2004); Elad

et al. (2005). At each iteration the descent update (x← x + AT
(
y−Ax

)
),

minimizing the quadratic part of Equation 4.2, is followed by a soft thresh-

olding (x ← Tλ(x) with Tλ(x) := sgn(x) · max(0, |x| − |λ|)) for decreasing

threshold levels λ. This soft thresholding on the entries of the unknown

curvelet vector captures the sparsity and the cooling, which speeds up the

algorithm, allows additional coefficients to fit the data.
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4.4 Seismic data recovery

The reconstruction of seismic wavefields from regularly-sampled data

with missing traces is a setting where a curvelet-based method will perform

well. As with other transform-based methods, sparsity is used to reconstruct

the wavefield by solving Pε.It is also shown that the recovery performance

can be increased when information on the major primary arrivals is included

in the modeling operator.

4.4.1 Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete data corre-

sponds to the inversion of the picking operator R. This operator models

missing data by inserting zero traces at source-receiver locations where data

is missing passing recorded traces unchanged. The task of the recovery is to

undo this operation by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered by compounding

the picking operator with the curvelet modeling operator, i.e., A := RCT .

With this definition for the modeling operator, solving Pε corresponds to

seeking the sparsest curvelet vector whose inverse curvelet transform, fol-

lowed by the picking, matches the data at the nonzero traces. Applying

the inverse transform (with S := C in Pε) gives the interpolated data. For

details on the conditions that determine successful recovery, refer to Hen-

nenfent and Herrmann (2007a,b) and Herrmann and Hennenfent (2007).

An example of curvelet-based recovery is presented in Figure 4.1 which

shows the results of decimating, and then reconstructing, a seismic dataset.
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The original shot and receiver spacings were 25m, and 80% of the traces were

thrown out at random (see Figure 4.1(b)). Comparing the ’ground truth’

in Figure 4.1(a) with the recovered data in Figure 4.1(c) shows a successful

recovery in case the high-frequencies are removed. Aside from sparsity in the

curvelet domain, no prior information was used during the recovery, which

is quite remarkable. Part of the explanation lies in the curvelet’s ability to

locally exploit the 3-D geometry of the data and this suggests why curvelets

are successful for complex datasets where other methods may fail.

4.4.2 Focused recovery

In practice, additional information on the to-be-recovered wavefield is of-

ten available. For instance, one may have access to the predominant primary

arrivals or to the velocity model. In that case, the recently introduced fo-

cal transform (Berkhout and Verschuur, 2006), which ’deconvolves’ the data

with an estimate of the primaries, incorporates this additional information

into the recovery process. Application of this primary operator, ∆P, adds

a wavefield interaction with the surface, mapping primaries to first-order

surface-related multiples (Verschuur and Berkhout, 1997; Herrmann, 2007).

Inversion of this operator, strips the data off one interaction with the surface,

focusing primary energy to (directional) sources. This focusing correponds

to a collapse of the 3-D primary events to an approximate line source which

has a sparser representation in the curvelet domain.

By compounding the non-adaptive, data-independent, curvelet trans-

form with the data-adaptive focal transform, i.e., A := R∆PCT , the re-

covery can be improved by solving Pε. The solution of Pε now entails
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(a) (b)

(c) (d)

Figure 4.1: Comparison between 3-D curvelet-based recovery by sparsity-
promoting inversion with and without focusing, (a) fully sampled real SAGA
data shot gather, (b) randomly subsampled shot gather from a 3-D data
volume with 80 % of the traces missing in the receiver and shot directions,
(c) curvelet-based recovery, (d) curvelet-based recovery with focusing. No-
tice the improvement (denoted by the arrows) from the focusing with the
primary operator.
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the inversion of ∆P, yielding the sparsest set of curvelet coefficients that

matches the incomplete data when ’convolved’ with the primaries. Apply-

ing the inverse curvelet transform, followed by ’convolution’ with ∆P yields

the interpolation, i.e. ST := ∆PCT . Comparing the curvelet recovery with

the focused curvelet recovery (Figure 4.1(c) and 4.1(d)) shows an overall

improvement in the recovered details.

4.5 Seismic signal separation

Predictive multiple suppression involves two steps, namely multiple pre-

diction and primary-multiple separation. In practice, the second step ap-

pears difficult and adaptive least-squares `2-matched-filtering techniques are

known to lead to residual multiple energy, high frequency jitter and de-

terioration of the primaries (Herrmann et al., 2007). By employing the

curvelet’s ability to detect wavefronts with conflicting dips (e.g. caustics),

a non-adaptive, independent of the total data, separation scheme can be

defined that is robust with respect to moderate errors in the multiple pre-

diction. The nonlinear program, Pε, with y defined by the total data, can

be adapted to separate multiples from primaries by replacing the `1 norm

by a weighted `1 norm, i.e., ‖x‖1 7→ ‖x‖1,w =
∑

µ |wµxµ| with µ running

over all curvelets and w a vector with positive weights. By defining these

weights proportional to the magnitude of the curvelet coefficients of the 2-D

SRME-predicted multiples, the solution of Pε with A := CT removes mul-

tiples. Primaries and multiples naturally separate in the curvelet domain

and the weighting further promotes this separation while solving Pε. The
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weights that are fixed during the optimization penalize the entries in the

curvelet vector for which the predicted multiples are significant. The em-

phasis on the weights versus the data misfit (the proportionality constant) is

user defined. The estimate for the primaries is obtained by inverse curvelet

transforming the curvelet vector that minimizes Pε for the weighted `1 norm

(A = ST := CT ).

Figure 4.2 shows an example of 3-D curvelet-based primary-multiple

separation of a North Sea dataset with the weights set according to the

curvelet-domain magnitudes of the SRME-predicted multiples multiplied by

1.25. Comparison between the estimates for the primaries from adaptive

subtraction by `2-matched filtering (Verschuur and Berkhout, 1997) and

from our nonlinear and non-adaptive curvelet-based separation shows an

improvement in (i) the elimination of the focused multiple energy below

shot location 1000 m, induced by out-of-plane scattering due to small 3-D

variations in the multiple-generating reflectors and (ii) an overall improved

continuity and noise reduction. This example demonstrates that the multi-

scale and multi-angular curvelet domain can be used to separate primaries

and multiples given an inaccurate prediction for the multiples. However,

the separation goes at the expense of a moderate loss of primary energy

which compares favorably compared to the loss associated with `2-matched

filtering (see also Herrmann et al., 2007).
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(a) (b)

(c) (d)

Figure 4.2: 3-D Primary-multiple separation with Pε for the SAGA dataset,
(a) near-offset section including multiples, (b) the SRME-predicted multi-
ples, (c) the estimated primaries according to `2-matched filtering, (d) the
estimated primaries obtained with Pε. Notice the improvement, in areas
with small 3-D effects (ellipsoid) and residual multiples.
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4.6 Migration-amplitude recovery

Restoring migration amplitudes is another area where curvelets can be

shown to play an important role. In this application, the purpose is to

replace computationally expensive amplitude recovery methods, such as

least-squares migration (Nemeth et al., 1999; Kuhl and Sacchi, 2003), by

an amplitude scaling (Guitton, 2004). This scaling can be calculated from

a demigrated-migrated reference vector close to the actual reflectivity.

In order to exploit curvelet sparsity, we propose to scale in the curvelet

domain. This choice seems natural because migrated images suffer from

spatially varying and dip-dependent amplitude deterioration that can be

accommodated by curvelets. The advantages of this approach are manifold

and include (i) a correct handling of reflectors with conflicting dips and (ii)

a stable curvelet sparsity-promoting inversion of the diagonal that restores

the amplitudes and removes the clutter by exploiting curvelet sparsity on

the model.

The method is based on the approximate identity: KTKr ≈ CTDrCr

with K and KT the demigration, migration operators and Dr a reference-

model specific scaling (Herrmann et al., 2008). By defining the modeling

matrix as A := CT
√

Dr, Pε can be used to recover the migration am-

plitudes from the migrated image. Possible spurious side-band effects and

erroneously detected curvelets (Candès and Guo, 2002) are removed by sup-

plementing the `1 norm in Pε with an anisotropic diffusion norm (Fehmers

and Höcker, 2003). This norm enhances the continuity along the imaged

reflectors and removes spurious artifacts.
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Results for the SEG AA’ dataset (O’Brien and Gray, 1996; Aminzadeh

et al., 1997) are summarized in Figure 4.3. These results are obtained with

a reverse-time ’wave-equation’ finite-difference migration code. To illustrate

the recovery performance, idealized seismic data is generated by demigra-

tion, followed by adding white Gaussian noise, yielding a signal-to-noise ratio

(SNR) of only 3 dB. This data is subsequently migrated and used as input.

Despite the poor SNR, the image in Figure 4.3(a) contains most reflectors,

which can be explained by the redundancy of the data, the migration op-

erator’s sophistication (diffractions at the bottom of the salt are handled

correctly) and the perfect ’match’ between the demigration and migration

operators. However, the noise gives rise to clutter and there is dimming of

the amplitudes, in particular for steep dips under the salt. Nonlinear recov-

ery removes most of this clutter and more importantly the amplitudes for

the sub-salt steep-dipping events are mostly restored. This idealized exam-

ple shows how curvelets can be used to recover the image amplitudes. As

long as the background velocity model is sufficiently smooth and the reflec-

tivity sufficiently sparse, this recovery method can be expected to perform

well even for more complex images.

4.7 Discussion and conclusions

The presented examples show that problems in data acquisition and

imaging can be solved with a common problem formulation during which

sparsity in the curvelet domain is promoted. For curved wavefront-like fea-

tures that oscillate in one direction and that are smooth in the other di-
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(a)

(b)

Figure 4.3: Image amplitude recovery for a migrated image calculated from
noisy data (SNR 3 dB), (a) image with clutter, (b) image after nonlinear
recovery. The clearly visible non-stationary noise in (a) is mostly removed
during the recovery while the amplitudes are also restored. Steeply dipping
reflectors (denoted by the arrows) under the salt are also well recovered.
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rection(s), curvelets attain high compression rates while other transforms

do not necessarily achieve sparsity for these geometries. Seismic images

of sedimentary basins and seismic wave arrivals in the data both behave

in this fashion, so that curvelets are particularly valuable for compression.

It is this compression that underlies the success of our sparsity promoting

formulation. First, we showed on real data that missing data can be re-

covered by solving a nonlinear optimization problem where the data misfit

and the `1-norm on the curvelet coefficients are simultaneously minimized.

This recovery is improved further with a combined curvelet-focal transform.

Sparsity also proved essential during the primary-multiple separation. In

this case, it leads to a form of decorrelation of primaries and multiples, re-

ducing the probability of having large overlapping curvelet entries between

these different events. Finally, the sparsity of curvelets on the image itself

was exploited to recover the migration amplitudes of the synthetic subsalt

imaging example. Through these three examples, the successful application

of curvelets, enhanced with sparsity-promoting inversion, opens new per-

spectives on seismic data processing and imaging. The ability of curvelets

to detect wavefront-like features is key to our success and opens an exciting

new outlook towards future developments in exploration seismology.
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Chapter 5

True amplitude depth

migration using curvelets

5.1 Introduction

Despite the fact that modern depth migrations can accurately position re-

flecting surfaces in the Earth subsurface, they often do not correctly recover

high-fidelity amplitude information. This is true even when accurate knowl-

edge of the velocity model is available.

Many approaches have been proposed to solve the “true-amplitude” mi-

gration problem and they generally fall into three main categories. First,

there are approaches that correct for the amplitude “during migration” by

applying imaging conditions that take reflector amplitudes into account (see

e.g. J. C. Costa and Novais, 2009; Chattopadhyay and McMechan, 2008;

J. Schleicher and Novais, 2008; Y. Zhang and Zhang, 2007).

The second category involves linearized inversion where the linearized

scattering operator, i.e. the adjoint of migration (see e.g. Guitton, 2004;

Claerbout, 1985; Gray, 1997; Symes, 2007), is inverted using iterative Lanc-

A version of this chapter will be submitted for publication. Moghaddam, P.P., Her-
rmann F. J. and Shahidi, R. (2010) True amplitude depth migration using curvelets.
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zos methods (Herrmann et al. (2009)). In this category, a variety of algo-

rithms for true amplitude migration have been introduced which iteratively

update the migrated image to minimize the misfit between observed and the

simulated data (see e.g. Tarantola, 1987; Nemeth et al., 1999; Kuehl and

Sacchi, 2003; Mulder and Plessix, 2004; Herrmann et al., 2009).

Third, there are the so called image-to-image scaling methods, where

the normal operator (i.e. migration followed by the scattering operator)

is approximated through a transform-domain scaling method. The scaling

is done by comparing the migrated image (with some possible pre/post-

processings) with a second image obtained by remigration of the image (i.e.

after applying the normal operator on the migrated image). Typically, this

diagonal scaling is performed in some transform domain ( Fourier, curvelets,

physical, etc, see e.g. Rickett, 2003; Plessix and Mulder, 2004; Guitton, 2004;

Symes, 2008a; Herrmann et al., 2008).

Our method falls in the third category, and we address the amplitude re-

covery problem by exploiting the recently developed curvelet frames. These

frame expansions compress seismic images (see e.g. Hennenfent and Her-

rmann, 2006; E. J. Cand‘es and Ying, 2006) and consist of a collection of

frame elements ‘curvelets’ that are invariant under the normal operator (Her-

rmann et al. (2008, 2009)). These two properties allow for the development

of an approach where the normal operator is nonlinearly inverted, using the

eigen-like behavior of curvelets, in combination with the ability of curvelets

to handle conflicting dips and sparsely represent the seismic images.

The main contributions of this chapter are three-fold. First, we replace

the linear least-squares formulation for the estimation of the curvelet-domain
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coefficients (Herrmann et al. (2008)) by a nonlinear least-squares formula-

tion that approximates the symmetric positive definite normal operator by

imposing positivity on the scaling coefficients. Second, we apply this method

to correct the amplitudes of images that suffer from migration noise caused

by small number of shots, as well as noise in the data. Third, we compare

two sparsity-promoting methods for recovery, a soft thresholding-correction

technique and a large scale sparsity solver.

Our method is tested with reverse-time ‘wave equation’ migration code

simulating the acoustic wave equation on different synthetic models.

5.2 Outline of the chapter

In the first section, we derive our formulation and propose two methods for

amplitude recovery. Next, we derive the diagonal estimation for the normal

operator in the curvelet domain. The chapter ends with an example of each

method on the SEG salt model linearized Born dataset and comparison of

the proposed methods followed by conclusion.

5.3 Problem Formulation

By assuming our data consist of primaries only (i.e., the surface related and

all the internal multiples are assumed to be removed before migration), the

data can be expressed as,

d ≈ Km + n, (5.1)
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with d data, K the linearized Born scattering operator (also known as the

demigration operator), m the perturbation in the velocity model (i.e., δv
v3

with v as velocity, see William W. Symes and Gao (2004); Symes (2008b) )

and n zero-centered Gaussian noise with variance σ2
n. Theoretically, migra-

tion is the adjoint of the scattering operator. After applying the migration

to the data, we obtain the image,

y = KTd (5.2)

= Ψm + KTn (5.3)

where y is the migrated data, KT is the migration operator and the Ψ is the

normal operator defined by Ψ = KTK. In order to find m in above equation,

we need to invert the normal operator (Ψ). To solve the above equation, we

follow recent results by Herrmann et al. (2008, 2009) and approximate the

normal operator by a curvelet-domain scaling, i.e.,we have,

Ψm ' CTWCm, (5.4)

with W a diagonal matrix. This diagonal approximation involves applying

the curvelet transform C, followed by a scaling with the positive diagonal

matrix W and the inverse curvelet transform back to the physical domain

by CT . [Note that the curvelets are a tight frame (E. J. Cand‘es and Ying,

2006) so the adjoint of curvelet transform (CT ) is equal to its pseudo-inverse
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(i.e., CTC = I)]. Inserting this approximation into Equation 5.2 leads to,

y ' CTWCm + e, (5.5)

with e = KTn colored noise with covariance,

Cee = E(eeT ) = E(KTnnTK) = KTE(nnT )K = σ2
nK

TK, (5.6)

with E(.) the statistical expectation and Cnn = E(nnT ) = σ2
nI the covari-

ance of the white Gaussian noise. To exploit curvelet-domain sparsity on

the recovered model, we rewrite Equation 5.5 as,

y = CTWx + e (5.7)

where x = Cm. In the context of stable signal recovery (see e.g. Candès

et al., 2006; Daubechies et al., 2005), x can be found by solving the following

optimization problem,

P1 :

 x̃ = arg minx ||x||1 =
∑

µ∈M |xµ| subject to ||C− 1
2

ee (y −CTWx)||2 ≤ υ

m̃ = CT x̃,

(5.8)

where υ is the noise dependent tolerance, .̃ stands for the estimated value

and µ is the index set of curvelets. The term C
− 1

2
ee in front of misfit acts as

the whitening operator for the data misfit (Tarantola (1987)). During the

optimization, the vector x is found by minimizing the `1 norm on the curvelet

representation for the model and the `2 norm for data misfit. Equation 5.8
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allows us to exploit curvelet-domain sparsity subject to fitting the migrated

image within a tolerance by solving the sparsity-promoting program.

Inserting Equation 5.4, the approximation for the normal operator into

Equation 5.6 for the noise covariance yields,

Cee = σ2
nK

TK ' σ2
nC

TWC. (5.9)

Assuming the curvelet transform is nearly orthonormal, we can approximate

the action of C
− 1

2
ee in Equation 5.8 by,

C
− 1

2
ee ' σ−1

n CTW− 1
2 C. (5.10)

With this approximation, Equation 5.8 becomes,

P :

 x̃ = arg minx ||x||1 subject to ||b−CTW
1
2 x||2 ≤ ε

m̃ = CT x̃,
(5.11)

with b = CTW− 1
2 Cy and ε = σnυ. We propose two alternative methods for

solving above problem, one is a Basis Pursuit De-Noising problem (BPDN)

and other one is a soft-thresholding solution. BPDN proposes a solution to

problem P equivalent to a weighted `1 problem (by changing the variable

W
1
2 x 7→ x) yielding m̃ = CTW− 1

2 x̃,

BPDN : x̃ = arg min
x
||x||

1,W− 1
2

=
∑

i

|xiw
−1/2
i | subject to ||b−CTx||2 ≤ ε

(5.12)

We solve optimization BPDN with a projected gradient method (SPGL1),
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recently introduced by (van den Berg and Friedlander, 2008). An alternative

way can be evaluating P in unconstrained form. This is equivalent to a

quadratic program yielding m̃ = CT x̃,

QP : x̃ = arg minx
1
2 ||b−CTx||22 + λ(ε)||x||

1,W− 1
2

(5.13)

where λ(ε) is a constant controlled by the noise level in the data. An ap-

proximate solution for the optimization QP can be found with a weighted

soft-thresholding method, given by,

m̃ = CT sign(Cb)�max(0, |(Cb)�w− 1
2 | − λ(ε)), (5.14)

where � is the element-wise product, w = diagW is a vectorized form of

the diagonal elements for the matrix W, sign(·) is the element-wise sign

function and | · | the absolute value function. In the examples section, we

examine both methods in term of quality of their output.

5.4 Diagonal Approximation of the Normal

Operator

In the previous section, we stated that we can diagonally approximate the

normal operator in the curvelet domain. This approximation (c.f., Equa-

tion 5.4), replaces the construction of the normal operator, which is com-

putationally expensive, with a curvelet domain diagonal scaling, which is

computationally cheap. In this section, we provide the theoretical underpin-

ning of such approximation by introducing the curvelets and their invariance
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5.5. Curvelets and their invariance under normal operator

bound under the action of normal operator. We then propose a method to

approximate the normal operator with a diagonal scaling in curvelet domain.

5.5 Curvelets and their invariance under normal

operator

A 2D curvelet φµ is defined by its index µ = (j, k, θ) with j = 0, 1, 2, ... con-

sisting of its scale subindex, θ = 0, 1, ..., 2bj/2c − 1, its orientation subindex

(bxc is the lower integer part of x ), and k = (kx, kz) the location in the

wavenumber domain subindex which are scale and angle dependent. Fig-

ure 5.1(a) shows an example of different curvelets with different scales and

orientations and Figure 5.1(b) shows the corresponding Fourier spectrum.

An important feature of curvelets is that the action of the normal oper-

ator (i.e., Ψ = KTK ) on a curvelet φµ corresponds to its multiplication by

a positive scalar. In Herrmann et al. (2008), we proved a theorem bound-

ing the error with the normal operator diagonal approximation in curvelet

domain, i.e., we showed,

||Ψφµ −CTWCφµ||2 ≤ β2−j/2, (5.15)

with W a positive diagonal matrix as defined before and β a constant.

According to this theorem, the approximation error decays with scale (i.e.,

j), which is consistent with the high-frequency asymptotic behavior that

underlies the diagonal approximation. Shahidi and Herrmann (2009a) shows

that the constant β is of moderate size.

115



5.5. Curvelets and their invariance under normal operator

k1

0-0.25-0.50 0.25 0.50
-0.50

k 2

-0.25

0

0.25

0.500

100

200

300

400

500

0 100 200 300 400 500
Samples

S
am

pl
es

Figure 5.1: Spatial and frequency representation of curvelets, (a) four dif-
ferent curvelets in the spatial domain at three different scales, (b) dyadic
partitioning in the frequency domain, where each wedge corresponds to the
frequency support of a curvelet in the spatial domain. This figure illustrates
the microlocal correspondence between curvelets in the physical and Fourier
domain. Curvelets are characterized by rapid decay in the physical space
and of compact support in the Fourier space. Notice the correspondence
between the orientations of curvelets in the two domains. The 90o rotation
is a property of the Fourier transform. Courtesy of Herrmann et al. (2008).
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5.6. Diagonal approximation

The normal operator is pseudodifferential when no multipathing occurs

(Beylkin, 1985; Rakesh, 1988; Ten-Kroode et al., 1998), and its order in

space dimension n is n − 1 (Stolk, 2000). The inequality in Equation 5.15

holds when the order of normal operator is zero (Herrmann et al., 2008).

Ten-Kroode et al. (1998); Stolk (2000) show that in 2D applying an operator

of order −1/2 to both migration and modeling operators makes the operator

of zero order. As it is shown in Herrmann et al. (2009), this is equivalent to

fractional integration of the source wavelet in both the modeling and migra-

tion operators. Mathematically, this can be written as ∂
−1/2
t · = F−∗|ω|−1/2·

with F−∗ the inverse Fourier transform.

Equation 5.15 states that curvelets are similar to eigenvectors of the

normal operator. Therefore, we propose a quasi-eigenvalue decomposition

for the normal operator with curvelets as quasi-eigenvectors. This type

of approach is similar to the Wavelet-Vaguellette Decomposition (WVD)

proposed by (Donoho, 1995; Herrmann et al., 2008).

5.6 Diagonal approximation

In Herrmann et al. (2008), we derive an approximation of the normal oper-

ator by remigrating the migrated image again (i.e., mremig = KTKmmig).

Subsequently, find a diagonal approximation for the normal operator using

these image pairs. Mathematically,

mremig = (KTK)mmig ' CTWCmmig (5.16)

' CT diag(v)w, (5.17)
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5.6. Diagonal approximation

with v = Cmmig and w representing the diagonal elements of W (i.e.,

W = diag(w)).

Equation 5.16 aims to find a curvelet-domain diagonal scaling vector (i.e.,

w in Equation 5.16). Because the curvelet transform is redundant (i.e., it

has more rows than columns), inverting for w in Equation 5.16 needs solv-

ing an underdetermined system of equations yielding non-unique solutions.

To find a unique solution to this estimation problem, we exploit additional

properties of the normal operator. First, the normal operator is positive def-

inite, yielding positive entries for the scaling vector w. Second, the normal

operator is elliptic Pseudo-differential (Stolk and De-Hoop, 2006; Shahidi

and Herrmann, 2009a) and is invertible when the symbols of this operator

are smooth in both physical and Fourier space, when the background veloc-

ity model is smooth (Stolk and De-Hoop, 2006; Herrmann et al., 2008). We

use these two properties to formulate the diagonal estimation in terms of a

nonlinear least-squares problem, which yields positivity of the entries of the

diagonal and smoothness amongst neighboring curvelet coefficients in space

and angle domain. Compared to our earlier work (Herrmann et al., 2008),

the positivity assumption is new in the context of imaging (see related work

on application of this method for multiple removal, Herrmann et al. (2007)

) and the diagonal estimated by following,

Pd :

 z̃ = arg minz J(z) = 1
2 ||mmig −CT diag(v)ez||2 + κ||Lz||2,

w̃ = (diag)(w̃) with w̃ = ez̃,

(5.18)

where w is replaced by ez to ensure positivity of the estimated diagonal
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elements (W). In above equation, phase-space smoothness is promoted by

minimizing `2 norm of the coefficients after applying the sharpening oper-

ator, L = [Dx Dz Dθ]. This operator penalizes fluctuations amongst

neighboring coefficients in ez, i.e., coefficients that are close in phase space

both in position and angle (for more details on this topic see Shahidi and

Herrmann (2009b)). The matrices Dx,z contain first-order differences at

each scale in the x, z directions, and Dθ the first-order difference in the θ

direction. Because the curvelet grid differs for each scale and angle, this

sharpening operator is implemented for each curvelet wedge separately. κ is

a smoothness parameter that control the smoothness of the scaling versus

data misfit. In this paper, we select this parameter by exhaustive search for

automatic parameter selection (Shahidi and Herrmann (2009a)).

Equation 5.18 is convex and can be minimized by an efficient numerical

optimization method. We use Limited-memory BFGS (see e.g. Nocedal and

Wright, 1999), using following gradient,

∇zJ(z) = ez � diag(v)C(CT diag(v)ez −mmig) + 2κLTLz. (5.19)

5.7 Practical Workflow

Our algorithm consists of two main steps, namely the calculation of the

curvelet scaling coefficients via an image-to-remigrated image matched fil-

tering and the subsequent estimation of amplitude-corrected, denoised image

by sparsity promotion.
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In order to apply the curvelet-domain match filter, we require a curvelet

implementation (E. Candes (2005)). Our algorithm also requires access to

the Born modeling operator and its adjoint, the migration operator. For this

purpose, we use Symes (2007) reverse-time migration with optimal check-

pointing and its linearized modeling.

We make the normal operator zero order by applying a zero-phase half-

time integration to the source wavelet input to both operators (Ten-Kroode

et al., 1998; Symes, 2008a). Our algorithm consists of the following steps:

1. Perform migration and depth correction–i.e., d 7→ DZKTd = mmig,

with mmig depth corrected migrated image and DZ = diag(z) where

zi = i4z, for i = 1 : nz, 4z is the depth grid spacing and nz is the

number of samples in depth (Herrmann et al. (2009)). The reason

for depth correction is to amplify the amplitudes of deep events in the

migrated image. This ensures that after applying the normal operator,

the amplitude of the deep events are partially calibrated so it can be

used to extract information from the normal operator via estimation

of its diagonal in curvelet domain.

2. Remigrate and resimulate the migrated image–i.e., KTKm̃mig = mremig.

3. Find the curvelet domain diagonal scaling W for which m̃mig ' CTWCmremig

by solving the optimization problem Pd (cf., Equation 5.18).

4. Construct the original image by solving the minimization problem QP

with weighted soft-thresholding (Equation 5.14) or the optimization

problem BPDN using a solver for large-scale sparse reconstruction.
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5.8 Examples

In this section, we apply our amplitude recovery methods on the (noisy)

linearized Born dataset with noise using SEG-AA salt model (Aminzadeh

et al. (1997); O’Brien and Gray (1996)). The SEGAA model shown in

Figure 5.2(a) is 5.28km in depth and 16.8km in offset with grid resolution

of 12m. The 5000 time-step linearized Born modeling takes about 24 min

with 25 CPUs on a MPI cluster, while the migration takes about 90 min.

In this section, we compare the soft-thresholding and the BPDN methods

described in this paper in terms of output quality and calculation speed

for both no noise in data (migration noise only) and when noise is added

to data. We also analyze the accuracy of the estimation by comparing the

recovered image traces with the reflectivity.

5.8.1 Noise-free case

Since the removal of the migration noise is our primary interest, we conduct

an imaging experiment with a small number of shots. This dimensionality

reduction results in cheaper acquisition and faster computation but goes at

the expense of introducing the migration noise. This experiment serves as

an illustration on how well our method performs in both the removal of

migration noise and restoration of the amplitudes.

We use a land-acquisition scenario with 50 shots between 50m and 16.5km

at a 336m spacing and 680 receivers per shot at a 24m interval with offsets

between 200m and 16.5km. To generate the linearized Born dataset, we

smooth this velocity model as shown in Figure 5.2(b) and use the difference
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(a)

(b)

(c)

Figure 5.2: Conflicting dips velocity model and reflectivity (a) velocity
model, (b) smooth velocity model used to generate our example, (c) re-
flectivity generated by subtracting smooth velocity model from original one
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between the smooth and the original velocity as the reflectivity shown in

Figure 5.2(c).

Figure 5.3 summarizes our approximation of the normal operator with

the curvelet-domain scaling. We chose the reflectivity in Figure 5.2(c) and

applied the scattering operator to generate linearized Born dataset (i.e.,

d = Km). We used the smoothed velocity model shown in Figure 5.2(b)

as background velocity for the scattering operator. The depth corrected

migrated result is included in Figure 5.3(a). After another modeling and

migration of this image, remigrated image is shown in Figure 5.3(b). These

two images serve as input to our curvelet scaling coefficient estimation. Ap-

plying this curvelet-domain scaling to the reference image yields a good ap-

proximation to the action of normal operator as can be seen in Figure 5.3(c).

The relative approximation error in this case is 3.71%.

To illustrate the importance of imposing curvelet domain smoothness

during the estimation of diagonal scaling, we compare the results of two

experiments, one without κ = 0 in Equation 5.19, and one with a smoothing

regularization (κ = 0.01 found empirically and used to generate the example

in Figure 5.3. Figure 5.4 shows the plot of coefficients for each wedge of the

reference vector (Figure 5.4(a)), the diagonal estimation without smoothness

(Figure 5.4(b)) and with the smoothness (Figure 5.4(c)) constraints. These

figures show curvelet decomposition of a shot gather at different frequency

band (scale) and angles (dip). Five scales are used for the decomposition.

The centre (coarsest scale) shows the DC and low frequency components of

the shot gather. The second coarsest scale has 8 angles. The number of

angles is doubled to 16 at the third and fourth scale and doubled again to
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(a)

(b)

(c)

Figure 5.3: Diagonal approximation of normal operator, (a) reference image
(depth corrected migrated image), (b) normal operator on the reference
image (i.e., Ψr) (c) approximate normal operator on the reference image
(i.e., CTWCr), approximation error is %3.71
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32 for the fifth scale. Note the portions of shot gather captured at various

angles and scales. As one can see, the curvelet coefficients for the non zero

smoothing regularization κ = .01 (Figure 5.4(c)) is smooth over different

angles and locations.

Soft-thresholding solution

We investigate the effect of the threshold λ on the soft-thresholding solution

for the optimization problem QP. Figure 5.5 shows the result of solving the

optimization problem QP with soft thresholding for different values of the

threshold λ. The solution of soft thresholding shown in Figure 5.5(a)is for

when λ = 0 . This solution is similar to approximately inverting the normal

operator in the curvelet domain and applying it to the migrated image (i.e.,

in Equation 5.11 m̃ = CTW− 1
2 Cb). Figure 5.5(b) shows the result for

λ = σb and Figure 5.5(c) for λ = 2σb). We clearly see from the figures that

by increasing λ the incoherent noise removed from the image at the expense

of dimming the amplitude of the bottom reflectors.

BPDN solution

Here we investigate the effect of the tolerance ε on the solution for the

optimization problem BPDN for noise-free data. Figure 5.6 show the results

for solving the optimization problem BPDN using SPGL1 solver (Berg and

Friedlander, 2007; van den Berg and Friedlander, 2008) for different value

of the tolerance ε. The solution of SPGL1 shown in Figure 5.6(a) is for

when ε is small (ε = σb with σb is the standard deviation of b in BPDN).

This solution is similar to Figure 5.5(a) and corresponds to applying the
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scales

Angles

(a)

scales

Angles

(b)

scales

Angles

(c)

Figure 5.4: Curvelet-domain representation of the curvelet vector obtained
from (a) reference vector, (b) scaling coefficients without smoothing con-
straints, (c), scaling coefficients with smoothing constraint. The different
sub-images represent the curvelet coefficients at different scales (coarsest in
the center) and different angles.
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(a)

(b)

(c)

Figure 5.5: Examples of the solution for optimization problem QP with
soft-thresholding, (a) λ = 0, (b) λ = σb (c) λ = 2σb
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inverse of the diagonal approximation to b. Figure 5.6(b) shows the result

for larger ε (ε = 50σb) and Figure 5.6(c) is the solution when the ε is very

high (ε = 100σb). As can be seen from the figures, when ε is small, the image

contains many artifacts that increases with depth and when the ε is large,

these artifacts removed at the expense of dimming the bottom reflectors.

The best choice of ε is shown in Figure 5.6(b) which is the result of testing

a range of different value in the solver. In this image, the deep artifacts are

visibly removed and the bottom reflectors are enhanced.

Amplitude Analysis

To investigate the performance and accuracy of our amplitude recovery

method, we examine a number of traces in the recovered images and com-

pare them to the original reflectivity. Figure 5.7 shows the location of the

traces. To examine the performance of our method in the presence of a salt

body, we choose a number of traces inside and outside the salt body. The

offset location of traces are (3480, 5160, 5880, 8640, 10080, and 12720) m,

respectively. Figure 5.8 shows the amplitude of the traces along the off-

set lines (3480, 5160, and 5880) m, respectively. Except small amount of

residual noise in the recovered images, all the strong phases well recovered.

Early arrivals are generally well recovered; however, with increasing depth

the amount of noise increases.

Figure 5.9 shows the amplitude of the traces along the offset lines of

(8640, 10080, and 12720) m, respectively. Note that these traces pass

through the salt body. Similar to Figure 5.8, all important phases in the

reflectivity are well matched in the recovered image, except the phases that
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(a)

(b)

(c)

Figure 5.6: Examples of the solution for optimization problem BPDN with
SPGL1, (a) ε = σb, (b) ε = 50σb (c) ε = 100σb
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(a)

Figure 5.7: Reflectivity model, the vertical lines are locations of investigation

come from the bottom salt. Salt bottom imaging is one of the most chal-

lenging fields in the seismic imaging. One reason might be the difference in

the nature of the salt bottom reflector. This means the amplitude of the

reflector should be interpreted as change in the acoustic impedance in that

location rather than the simply perturbation in the velocity model.

5.8.2 Noisy data

We examine the effectiveness of our recovery method for noisy data. For

this purpose, we add white Gaussian noise to the linearized Born data with

SNR = 10 dB and re-run our method on the data. Figure 5.10 shows data

before and after adding the noise. Figure 5.11 shows the depth corrected

migrated image for this dataset. Note that the noise is obscuring the deep

reflectors in the migrated image.
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Figure 5.8: Amplitude analysis of the recovered images using proposed meth-
ods, (a) offset=3480 (m) , (b) offset=5160 (m), (c) offset=5880 (m)
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Figure 5.9: Amplitude analysis of the recovered images using proposed meth-
ods, (a) offset= 8640 (m), (b) offset=10080 (m) , (c) offset=12720 (m), note
the salt bottom amplitude mismatch
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(a)

(b)

Figure 5.10: Synthetic data, (a) before , (b) after adding the noise, SNR =
10dB
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(a)

Figure 5.11: Depth corrected migrated noisy image

Soft-thresholding solution

We investigate the effect of the threshold λ on the soft-thresholding solution

for the optimization problem QP. Figure 5.12 shows the result of solving

the optimization problem QP with soft thresholding for different values of

the threshold λ. The solution of soft thresholding shown in Figure 5.12(a)is

for when λ = σb . Figure 5.12(b) shows the result for λ = 2σb and Fig-

ure 5.12(c) is for when λ = 3σb). As can be seen from the figures, by

increasing λ the incoherent noise is visibly removed from the image at the

expense of dimming the amplitude of the bottom reflectors. The best choise

of λ is in Figure 5.12(b).

BPDN solution

Figure 5.13 shows the result of solving the optimization problem BPDN us-

ing SPGL1 solver for different value of the tolerance ε. The solution of BPDN
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(a)

(b)

(c)

Figure 5.12: Examples of the solution for optimization problem QP with
soft-thresholding, (a) λ = σb, (b) λ = 2σb (c) λ = 3σb
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is shown in Figure 5.13(a) for small ε (ε = 10σb with σb is the standard de-

viation of b in BPDN). This solution is similar to approximately inverting

the approximation of normal operator in curvelet domain and applying it to

migrated image (i.e., in Equation 5.11 m̃ = CTW− 1
2 Cb). Figure 5.13(b)

shows the result for when ε is larger (ε = 140σb) and Figure 5.13(c) is the

solution when the ε is high (ε = 200σb). We can clearly see from the figures

that when ε is small, the image contains high amount of noise and when the

ε is large, the noise removed with expense of dimming the bottom reflectors.

The best choice of ε in Figure 5.13(b) is found through exhaustive process

of running the solver on a wide range of ε and compare the results.

5.9 Tolerance analysis

In the last section, we did not specifically analyze the value of the tolerance ε

in the optimization problem BPDN rather we empirically ran the problem

with different values of ε and compared the results. A candidate value for the

tolerance can be the statistical expectation of the misfit function in BPDN

in Equation 5.8,

υ̃ = E[||C− 1
2

ee (y −CTWx)||2] (5.20)

with some manipulation υ̃ = N with N is the number of elements in y

in lexicographical order. Indeed Figure 5.13(b) is obtained for υ = N or

ε = Nσn.
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(a)

(b)

(c)

Figure 5.13: Examples of the solution for optimization problem BPDN
with SPGL1, (a) ε = 10σb, (b) ε = 140σb (c) ε = 200σb

137



5.10. Verification of approximation

5.10 Verification of approximation

Throughout our formulation, we made a subtle approximation from Equa-

tion 5.8 to Equation 5.11,

CTW− 1
2 CCTWx ' CTW

1
2 x. (5.21)

In this approximation, we assume the projection CCT is approximately

equal to identity. Here we investigate the accuracy of this approximation.

We assume x = Cm with m is the true reflectivity. We call the left

hand of above expression as El = CTW− 1
2 CCTWx and the right hand as

Er = CTW
1
2 x.

Figure 5.14 show the comparison between the terms in Equation 5.21.

Figure 5.14(a) is the left hand El expression and Figure 5.14(b) is the right

hand Er expression. The relative error between two images is 4.09 percent.

5.11 Comparison

Comparing the output quality and the performance, we suggest using the

soft-thresholding technique for amplitude recovery. Soft thresholding in

most cases results in better or similar quality of the output with less com-

putational burden comparing to BPDN.
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(a)

(b)

Figure 5.14: Comparison between the approximation terms in Equation
5.21, (a) left hand term El = CTW− 1

2 CCTWx , (b) right hand term
Er = CTW

1
2 x, relative error is 4.09 percent.
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5.12 Conclusion

The method presented in this chapter, is a revisit of the earlier work (Her-

rmann et al. (2008)), by taking into account the migration noise and the data

noise. The method relies on the curvelet transform in both approximation

and inversion of the normal operator and has following features,

• speeding up the calculation of the normal operator by diagonalizing it

in curvelet domain.

• efficiently using the compression of seismic images by curvelets to solve

a curvelet-sparsity optimization problem.

• bringing the amplitude correction problem within the context of stable

signal recovery.

The results of applying our method on synthetic data suggest that our

migration amplitude recovery can be both efficient and effective in eliminat-

ing migration artifacts and recovering the amplitudes in the seismic image.

The recovered images showed partial elimination of noise, improved spatial

resolution, and enhanced reflectivity amplitude.
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Chapter 6

Conclusions

In this chapter I summarize the main contributions of this thesis and

discuss some limitations of the work presented. I also suggest follow-up

work as well as possible extensions.

6.1 Main contributions

The topic of this thesis is seismic image amplitude correction which is

directly applied to seismic imaging. The approach I advocate is to view seis-

mic imaging in a mathematical perspective. I identify a transform, called

the curvelet transform (Candès and Donoho, 2004), to that effect and use

it in a new formulation of the seismic images amplitude correction problem.

The most challenging operator in the seismic imaging problem, called nor-

mal operator, is a computationally exhausting. This operator needs to be

inverted during the imaging process to give an accurate understanding about

the reflectors amplitude in a seismic image. Each element of the curvelet

transform, namely curvelet, has an attractive property under the normal

operator. In this thesis, I proved that each curvelet remains approximately

invariant under the normal operator, which gives us an exceptional ability

to approximately invert the normal operator with only one iteration. I call
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this approach the curvelet match filtering (CMF).

I leverage this approximation towards the development of a stable am-

plitude recovery by coining it with sparsity-promoting inversion, which is

basically a large-scale one-norm solver.

The remainder of this section provides more details about the contribu-

tions.

6.1.1 Sparsity and continuity promoting seismic image

recovery with curvelet frames

I combine the compression of images by curvelets with the invariance

of this transform under the normal operator. This combination allows for

a formulation of a stable recovery method for seismic amplitudes. During

the recovery, the normal operator is approximately inverted. Compared to

other approaches for migration scaling, the presented method (i) includes a

theoretical bound on the L2 − error for the diagonal approximation in the

curvelet domain; (ii) prescribes a procedure for the estimation of the diag-

onal from numerical implementations of the imaging operators; (iii) formu-

lates the amplitude recovery problem as a nonlinear optimization problem,

where the inversion of the diagonalized normal operator is regularized by

imposing sparsity in the curvelet domain and continuity along the imaged

reflectors.

The diagonal approximation is used to formulate the seismic amplitude

recovery in terms of a constrained optimization problem. The amplitude-

corrected image is obtained by solving this sparsity- and continuity-promoting

optimization problem. The invariance of curvelets under the normal opera-
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tor preserves the sparsity. The cost of computing the diagonal approxima-

tion is one demigration-migration per reference vector, which is much less

compared to the cost of Krylov-based least-squares inversion. The recov-

ery results show an overall improvement of the image quality. The joined

sparsity- and continuity-enhanced image has diminished artifacts, improved

resolution and recovered amplitudes.

6.1.2 Curvelet-based migration preconditioning and scaling

I present a method to approximate the normal operator and use this ap-

proximation as a preconditioner in the least squares framework. Because

of the size of the seismic imaging problem, preconditioning of least-squares

migration is an interesting topic. Traditionally, the first few iterations of the

LSQR algorithm of least-squares migration are known to make significant

progress towards the solution. Unfortunately, even for this limited number

of iterations, the computational costs are often still prohibitively large for

practical problems. Our method, partly resolves this issue through a com-

bination of left and right preconditioning together with a curvelet-domain

scaling. Inclusion of the latter proved particularly important because it re-

stores the amplitudes and leads to faster convergence, at a relatively small

computational overhead. Preconditioning also plays a pivotal role in mak-

ing this approach numerically feasible and may extend to a solution of the

full-waveform inversion problem with sparsity promotion. Both approaches

are justified by ample evidence that curvelets are sparse on the model.
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6.1.3 Curvelet-based seismic data processing

Beside the seismic wavefield reconstruction problem, I recast a few other

processing steps—signal separation, migration-amplitude recovery, and deconvolution—

in a sparsity-promoting program that exploits the high degree of sparsity

attained by curvelets on seismic data and images. The promising results

obtained show that the insights gained from the developments of CMF can

be leveraged towards a much broader range of applications. This prospect

opens an exciting new outlook towards future developments in exploration

seismology.

6.1.4 True amplitude depth migration using curvelets

I presented a fast and robust approach for approximation of the normal

operator by revisiting of the earlier work and taking into account the migra-

tion noise and the data noise. Compared to other approaches for migration

amplitude recovery, some improvements in the design of curvelet amplitude

recovery method including, speeding up the calculation of the normal oper-

ator by diagonalizing it in curvelet domain, designing an efficient approxi-

mation that takes into account a laterally-variant velocity models and steep

reflectors. The results of applying method on synthetic data suggest that

migration amplitude recovery method can be both efficient and effective in

eliminating migration artifacts and recovering the amplitudes in the seismic

image. The recovered images showed partial elimination of noise, improved

spatial resolution, and enhanced reflectivity amplitude.
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6.2 Follow-up work

I suggest a few ideas that go beyond the reported experiments.

6.2.1 Full waveform inversion

Our estimation for normal operator can be directly applied to the context

of full waveform inversion in which the normal operator is inverted and used

iteratively. In this context, the velocity model (not just reflectivity in the

migration context) is estimated directly from data (see e.g. Symes, 2008).

6.2.2 3D true amplitude migration

Our 2D true amplitude migration can be easily extend to 3D. This can

be done in two ways, first, I apply the curvelet smoothing in 2D and for 3rd

dimension I can exploit wavelet smoothing. Second, I can use the 3D curvelet

transform and extend the method to 3D curvelet diagonal estimation. The

latter, needs a sophisticated algorithm to locate the closest curvelets in 3D

rather than 2D for smoothing operator.

6.3 Adding more priori knowledge to solution

In this thesis, I propose some ideas for amplitude recovery which pre-

sume that the seismic image are sparse in the curvelet domain. The common

theme of most ideas is that there is no priori knowledge of the geological

structure of the survey area. However, if a priori knowledge about the struc-

ture already obtained through the well-log or other geological/geophysical
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experiments, it can be used within stable recovery framework in addition of

sparsity to reconstruct seismic wavefields.

6.4 Current limitations

I examine both the practical and the fundamental weaknesses of the

current curvelet transform.

6.4.1 Curvelet code

The true amplitude migration results presented in this thesis were ob-

tained using the FDCT based on the wrapping of specially selected Fourier

samples (Candès et al., 2005). This implementation breaks down the input

image or volume into a number of scales depending on the length of the

shortest axis. In other words, if one axis is much shorter than the others,

the decomposition along the long axes is unnecessarily limited. Despite an

increased implementation complexity, an alternative would be to extend the

short axis to be sufficiently large enough. This extension can be done by

padding the image along the short axis or wrapping it.

A more fundamental limitation of the FDCT is related to the redun-

dancy of the transform. Indeed, the FDCT is around 8-redundant in 2D

and around 24-redundant in 3D, which precludes, at least for now, tractable

higher-dimensional FDCTs. Lu and Do (2007) propose a less redundant N -

dimensional (N ≥ 2) implementation, termed surfacelet transform, by com-

bining a directional filter bank with a multiscale pyramid. Another option is

to combine the curvelet transform with another transform (Herrmann, 2003;
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Neelamani et al., 2008) to reduce redundancy and reach higher dimensions.

The different treatment of the axes is unsatisfactory in several applications

(see, e.g., Neelamani et al., 2008), though. For interest, Kutyniok and La-

bate (2005) propose yet another N -dimensional (N ≥ 2) transform, called

shearlet transform, but no discrete implementation is available at this point

to determine the redundancy and the effectiveness of shearlets for wavefield

reconstruction. In addition, in some cases, defining the smoothing opera-

tor in the transform domain is not as straightforward as curvelets since in

some cases finding the closest elements in transform domain might require

a significant amount of operations.
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Appendix A

Proofs of lemma 1 and

theorem 1

We first prove Theorem 1 from Lemma 1, we then prove the Lemma which

appears in chapter 2.

Proof: [Proof of Theorem 1] CT acting on a vector c = {cµ}µ∈M in `2 is

simply given by CTc =
∑

ν cνϕν . Hence,

CTDΨCϕµ =
∑

ν

(Cϕµ)νa(xν , ξν)ϕν .

The difference (Ψ(x,D)−CTDΨC)ϕµ can be written as, using that CT C =

Id, ∑
ν

(Cϕµ)ν(Ψ(x,D)− a(xν , ξν))ϕν

The vector (Cϕµ)ν is bounded in `2(M) of vectors with curvelet indices, and

its entries can only be nonzero if |µ| − 2 ≤ |ν| ≤ |µ| + 2, since the support

of two curvelets in the Fourier domain is disjoint when curvelets are two or

A version of this appendix has been published. Herrman, F.J., Moghaddam, P.P. and
Stolk, C. (2008) Sparsity- and continuity-promoting seismic image recovery with curvelet
frames. Applied and Computational Harmonic Analysis, Vol. 24, No. 2, pp. 150-173,
2008.
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more scales apart. It follows that

‖(Ψ(x,D)− CTDΨC)ϕµ‖2L2(Rn
)
≤ C6

∑
ν

‖(Cϕµ)ν(A(x,D)− a(xν , ξν))ϕν‖2
L2(Rd

)

≤ C7

∑
ν

2−|ν||(Cϕµ)ν |2 ≤ C82−|µ|/2.

Proof: [Proof of Lemma 1] Possibly after a coordinate transformation,

which does not affect the pseudodifferential nature of Ψ, we may assume

that ξµ = (0, . . . , 0, λ), we will write ξ′ = (ξ1, . . . , ξd−1).

We may take |ν| greater than some minimum value, so that the support

in the wavenumber domain is away from ξ = 0. We can then assume that the

principal symbol is homogeneous of order 0 in the support of the curvelet.

On the support of the curvelet in the Fourier domain the symbol can be

written as a(x, ξ′

ξn
). We apply a preparation theorem to this term. There

are C∞ functions bn(x, ξ′/ξd), n = 1, . . . , 2d− 1, such that

a(x, ξ′/ξd)− a(xν , ξ
′
ν/ξν,d)

=
d∑

n=1

(x− xν)nbn(x, ξ′/ξd) +
d−1∑
n=1

(
ξn

ξd
− ξν,n

ξν,d

)
bd+n(x, ξ′/ξd).

Therefore, we can write

(
Ψ(x,D′/Dd)− a(xν , ξ

′
ν/ξν,d)

)
ϕν

=

[
d∑

n=1

(x− xν)nbn(x,D′/Dd) +
d−1∑
n=1

bd+n(x,D′/Dd)
Dn

Dd

]
ϕν . (A.1)

Consider first the contribution for one of the bn with 1 ≤ n ≤ d. The
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operator acting on the curvelet reads

(x− xν)nbn(x,D′/Dd)ϕν

= bn(x,D′/Dd)(x− xν)nϕν + [(x− xν)n, bn(x,D′/Dd)]ϕν .

Because of the support and decay properties of curvelets we have ‖(x −

xν)nϕν‖L2 ≤ C
−|ν|/2
9 , therefore

‖bn(x,D′/Dd)(x− xν)nϕν‖L2(Rd
)
≤ C102−|ν|/2

By the calculus of pseudodifferential operators, the operator [(x−xν)n, bn(x,D′/Dd)]

is a pseudodifferential operator of order −1, which is continuous H−1(Rd)

to L2(Rd) therefore

‖[(x− xν)n, bn(x,D′/Dd)]ϕν‖L2(Rd
)
≤ C10‖ϕν‖H−1(Rd

)
≤ C112−|ν|.

Adding the previous two estimates, we find that

‖(x− xν)nbn(x,D′/Dd)ϕν‖L2(Rd
)
≤ C122−|ν|/2. (A.2)

We now consider the bn, d+1 ≤ n ≤ 2d−1. We must estimate bd+n(x,D′/Dd)Dn
Dd

ϕν .

By (2.11) we have ‖Dn
Dd

ϕν‖L2(Rn
) ≤ C132−|ν|/2. Therefore,

‖bd+n(x,D′/Dd)
D′

Dd
ϕν‖L2(Rd

)
≤ C142−|ν|/2. (A.3)

From (A.1) and the estimates (A.2) and (A.3) for the summands, we find
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the result.
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Appendix B

Reverse time wave equation

migration

This appendix is part of chapter 5. Most migration operators are defined

to be the adjoint of what is called the scattering operator. This assumption

is also true for reverse time migration.

B.1 Single scattering

The causal acoustic Green’s function G(x, t;xs),x ∈ R3 for a point source

at x = xs is the solution of

1
v2(x)

∂2G

∂t2
(x, t;xs)−∇2

xG(x, t;xs) = δ(x− xs)δ(t) (B.1)

with G = 0, t < 0 and v is the acoustic wave velocity field.

Denote by m(x) = δv(x)/v(x) a relative perturbation of the velocity

field. Then linearization of the wave equation yields for the corresponding

perturbation of the Green’s function

A version of this appendix will be submitted for publication. Moghaddam, P.P.,
Herrmann F. J. and Shahidi, R. (2010) True amplitude depth migration using curvelets.
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1
v2(x)

∂2δG

∂t2
(x, t;xs)−∇2

xδG(x, t;xs) =
2m(x)
v2(x)

∂2

∂t2
G(x, t;xs) (B.2)

whose solution has the integral representation at the source and receiver

points xr,xs

δG(xr, t;xs) =
∂2

∂t2

∫
dx

∫
dτ

2m(x)
v2(x)

G(x, t− τ ;xr)G(x, τ ;xs) (B.3)

B.2 Shot-geophone modeling and migration

The single-scattered wave field is the time convolution of δG with a source

wavelet. The main concern of this paper is the kinematic relationships

between data and image, thus we ignore the filtering effect of the source

functional and replace it by delta function. This replacement of the source

by an impulse does not violate any of our assumptions regarding the adjoint

state method, thus the Born modeling operator K[v] is

K[v]m(x) = δG(xr, t;xs) (B.4)

The crux of our amplitude recovery method relies on the shot-geophone

migration operator to be the adjoint of the shot-geophone modeling opera-

tor. The derivation of the adjoint reverse time implementation is a minor

variation on the usual implementation of reverse time migration (the ’ad-

joint state method’, ((see e.g. Tarantola, 1987; Whitmore, 1983; Lailly,

1983; Yoon and Hong, 2003; Symes and Stolk, 2004; Symes, 2007)). The
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result is

K∗[v]d(xr, t;xs) = m̂(x) = −
∫

dxs

∫ T

0
dt2v(x)q(x, t;xs)

∂2G

∂t2
(x, t;xs)

(B.5)

where the adjoint state or backpropagated field q(x, t;xs) satisfies q = 0, t >

T and

1
v2(x)

∂2q

∂t2
(x, t;xs)−∇2

xq(x, t;xs) =
∫

dxrd(xr, t;xs)δ(x− xr) (B.6)

The migration operator defined by above equations is the reverse time

migration operator. Symes and Stolk (2004) showed that the migration

operator which is defined in equations B.5 and B.6 is the adjoint of the

modeling operator defined in equation B.3. The reverse time migration that

is used for this work is based on the Symes and Stolk (2004) implementation,

for which the adjointness of the modeling and migration operators is properly

tested in the discrete sense. By having the migration and modeling operators

properly set, we can proceed with our amplitude recovery method.
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