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ABSTRACT 

The burial of high level nuclear wastes in geologic repositories requires careful 

consideration of the long-term hydrogeological and geochemical stability of the receiving 

formations. Care must be taken due to the high environmental sensitivity of the waste 

material and its potential long-term effect on groundwater. Studies into the host rocks' natural 

ability to minimize contaminant migration are a matter of high priority in the planning for 

long-term storage of high level radioactive waste.   

Focusing on porous sedimentary rock, this study aims to examine numerical 

techniques used to analyze and interpret experimental data that characterize the distribution 

of porosity in geologic samples at the µm to mm scale.  Because repositories are hosted in 

natural fine-grained rock formations, transport in the vicinity of these repositories is 

diffusion-controlled and believed to be affected substantially by heterogeneities at these 

scales. Data available for the analyses consist of non-destructive, high-resolution 

measurements of porosity obtained using new developments in X-ray imaging.  Advances in 

computing technology make it possible to numerically analyze the expected patterns of sub-

mm-scale diffusive transport for these large experimental data sets.  

The modeling analyses examine 3D diffusive transport in heterogeneous rock samples 

and evaluate the effect of data resolution and image processing techniques on the 

connectivity of the transport pathways. The simulation results provide insight into small-

scale diffusive transport of solutes, and guide the needs for dataset resolution and handling 

for these types of investigations. With increased availability of experimental results, further 

modeling studies could be conducted. These studies would aim at developing a link between 

simulation results and observed data to further develop the transport theory for contaminant 

migration on this scale. 
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Chapter 1:  Introduction 

1.1  Background 

Transport and containment of contaminants in the subsurface are issues that are of 

importance worldwide.  Within our technological society, increasing energy demand creates 

a need for reliable energy production.  Accounting for ~15% of the world’s electricity supply 

(IEA, 2007), nuclear power has been and will remain an important global energy source.  

These power plants continually create high-level nuclear waste (used fuel rods) and the long-

term contamination potential associated with these radioactive materials creates a technical 

challenge and societal concerns. As a result, investigations into deep geologic repositories for 

the storage of nuclear waste are numerous and ongoing.  The difficulties with the storage of 

high level wastes tend to stem from the extremely slow radioactive decay timelines involved.   

Secure and safe containment for upwards of 100,000 years is commonly envisioned requiring 

the design of multiple safety barriers to warrant long-term waste isolation. These barriers 

may include emplacement of the waste in closed off, multiple-walled containers.  These 

containers are built to withstand corrosive and mechanical stresses found at depth within the 

earth (Finnish Energy Industries, 2007). In the case of deep geologic repositories, an 

additional level of safety is provided by emplacing the waste storage facility deep 

underground in hydrogeologically isolated low permeability units. For the unlikely case that 

all other safety barriers should fail, geologic media provide additional protection for 

radionuclide migration away from the repositories.  

Because of their potential for minimizing contaminant migration, low permeability 

geologic media are often considered ideal sites for waste containment.  For example, in 

Canada, low permeability argillaceous limestones are currently under investigation as 

potential host rock for a deep geologic repository for low and intermediate nuclear waste 
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(Intera, 2006).   With permeabilities on the order of 10-12-10-13 m/s (Yllera 2004), the 

dominant transport process in these formations is expected to be diffusion.  With diffusion-

dominated transport and negligible potential for advective transport, these sites are likely 

suitable for containment of high level wastes for time periods exceeding 100,000 years.  For 

this containment to be reliable, the time scale and spatial distribution of diffusive transport 

must be thoroughly examined.  In these low permeability media, the diffusion rate is thought 

to depend on the materials’ physical properties such as porosity and tortuosity.  Given their 

potential for small grain sizes and small values of porosity, the potential for large tortuosities 

is prevalent in low porosity materials such as sedimentary rocks (Koponen et al., 1996).   

 

1.2  Transport Parameters and Processes 

Physical properties of porous media have a great effect on the transport processes 

occurring within the materials.  In order to better understand the movements of contaminants, 

it is important that knowledge of the underlying transport processes be obtained.  This is a 

common approach to problems in groundwater investigations where advection-dispersion is 

the dominant transport process (Gelhar et al., 1992, Harvey and Gorelick, 2000).  For these 

studies, porosities and permeabilities are examined and average parameters defined at the 

scale of interest are used to quantify transport processes.  Diffusion-dominated solute 

transport in groundwater has received somewhat less attention, in particular the effect of sub-

mm scale heterogeneities on solute migration and contaminant distribution has not been 

investigated in detail. If transport is fully diffusion-dominated, the complexities of diffusion 

may be over-simplified, and a better understanding may be needed.  This is the type of 

transport regime that is typically prevalent in host rocks suitable for the storage and 

containment of nuclear wastes.   
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To help further examine the transport processes and their parameters, the scale at which they 

can be linked must be determined.  Many transport processes can be examined at the pore 

scale.  At this scale, distinction can be made between the fluid filled pores and the samples’ 

solid matrix.  The solid matrix makes up the load-bearing structure of the sample while the 

fluid filled pores are the regions where the transport can occur.  Due to difficulties in 

determining the small scale matrix and pore structures, larger scale links between averaged 

parameters and transport processes are examined through the use of a representative 

elementary volume.  This scale dependence is inherent to the concept of a representative 

elementary volume (REV).  The concept of an REV is that within a certain minimum volume 

of material, the characteristics of that elementary volume become representative of the 

characteristics of the volumes around it (Figure 1.1).  This minimum volume is the REV.  

When examining transport processes such as diffusion that usually occur at very small scales, 

the parameters that describe it can be very susceptible to the heterogeneity in the material 

properties that are found at that scale.  If the investigation occurs below the REV scale, these 

spatially varying parameters may or may not link to the accepted views of diffusion that our 

models are based upon. 
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Figure 1.1.  Below the REV scale, randomly selected small volumes V1, do not characterize the entire 
system.  Above the REV scale, V2 has a porosity that is representative of the material 
 

In the presently widely accepted views, diffusion is based on the second law of 

thermodynamics and random Brownian motion and is generally modeled through Fick’s 

Second law   
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where c is a solute concentration, t is time, D is the diffusion coefficient, and x describes a 

spatial coordinate.  Movement of a solute due to diffusion is thus modeled to be based upon 

the concentration gradient that is created between the source of the solute and the system into 

which it is introduced.  This movement is hindered to a degree determined by the deposition 

and subsequent rearrangement of the grains and pores of the material through which the 

solute is traveling. Lithification and cementation can also affect the pore structure and the 

connectivity of pores in a rock formation. The pore structure creates a microscopic obstacle 

course for the solute through which a straight line path is generally impossible.  The amount 

of deviation that an average solute particle takes from the straight line path is referred to as 

the tortuosity of the material, and it is ultimately described through the use of pore water or 

effective diffusion coefficients. 

Being dependent on microscopic transport paths of connected porosity, determining 

the tortuosity of a material directly is not a simple feat.  As such, tortuosity is usually 

determined empirically through the relationship  

 





)( 0D

DD peff       (1.2) 

 

(Boving and Grathwohl 2001, Nakashima 2000).  Where Deff is the effective diffusion 

coefficient,   is porosity, Dp is the pore water diffusion coefficient, and D0 is the molecular 

diffusion coefficient in water.  Thus tortuosity τ (>1) is D0/Dp or the ratio of the diffusivity in 

free water to the bulk diffusivity in the porous medium.  A tortuosity value greater than 1 

corresponds to a ratio of solute path lengths within a material where the longer effective path 

length (Le) is the divided by the straight line path length (L).  
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L

Le

Figure 1.2.  Conceptual model of the tortuosity of a material.  Tortuosity is calculated using the 
differences between a straight line path (L) and the actual effective path taken by a particle (Le) 
 

 

Some authors prefer to define tortuosity as Dp/D0 (Bear, 1979, Schwartz and Zhang, 2003), 

but as Bear (1979) explains, this is merely a matter of definition [(L/Le)
2 vs. (Le/L)2]. 

In fully saturated systems, τ has been estimated as (e.g.: Schwartz and Zhang. 2003).   

 

3
11 


      (1.3)  

 

When combining these two definitions, a relationship between Deff and Do can be derived that 

exclusively depends on porosity. 
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This relationship can be generalized by introducing a variable exponent m: 

meff

D

D


0

      (1.5) 

This relationship is commonly known as Archie’s law (e.g. Boving and Grathwohl, 2001) 

and allows the expression of effective diffusion coefficients as a function of porosity and the 

exponent m, which can be considered a fitting parameter. 

While these laws have been used extensively to explain the transport due to diffusion 

on large scales far above the lower limit of REV applicability, diffusion on the generally 

smaller scales of fully diffusion-dominated systems is not as thoroughly investigated.  Using 

Fick’s and Archie’s laws as starting points, further investigations into the processes of 

diffusion can be undertaken by looking at the material parameters that may influence the 

transport of contaminants in more detail than has been accomplished before.  Starting at the 

sub-mm scale, a more fundamental understanding of the processes may be obtained which 

can be upscaled to function with larger systems. 

 

1.3  Previous Work 

Advances in material characterization techniques have led to a better understanding of 

the sub-mm scale characteristics of porous material.  Since the mid 1990s, X-ray Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI) have been used to obtain high 

resolution images of porous media.  While the earlier studies focused on larger scale flow 

and transport processes (Greiner et al. 1997, Oswald et al. 1997), smaller scale studies of 

porosity, pore structure, and permeability were soon to follow (Ruiz de Argondona et al. 
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1999, Van Geet et al. 2003, Al-Raoush and Willson 2005).  Ruiz de Argondona et al. (1999) 

were able to use X-ray CT imaging as a method to non-destructively determine the porosity 

profiles and other internal features of dolomite building stones.  They found that they were 

able to examine the evolution of pores and the creation of a non-uniform porosity distribution 

by freeze thaw weathering.   

At an even smaller scale, Al-Raoush and Willson (2005) used synchrotron x-ray 

microtomography to examine the pore structures of porous media systems fabricated of glass 

beads with a minimum diameter of 0.123 mm.  With the high resolution (<10 μm) imaging 

capabilities of the synchrotron, they were able to create mechanistic idealizations of the pore 

network and determine the scale at which the REV might apply.  However, given the small 

size of clay particles (<2 μm), even this high resolution imaging technique is not able to 

determine the pore scale structure of clays and shales. 

With the arrival of high resolution images of porous media, diffusive transport 

processes have been examined with more care and at a higher resolution.  Nakashima (2000, 

2003) has used imaging techniques to obtain 3D representations of solute and porosity 

distributions enabling the determination of effective diffusion coefficients through numerical 

analysis. From high resolution images of a natural sandstone, Nakashima et al. (2004) were 

able to analyse the pore structure and diffusive pathways through a random walk computer 

simulation.  Theoretical effective diffusion coefficients coincided well with experimentally 

derived values. Unfortunately, the method used requires an explicit determination of the pore 

network structure based on sub-REV scale data from relatively large grained media (0.1 mm) 

and thus is not directly applicable to the finer grained geologic media that is of greater 

relevance for diffusion-dominated transport. 

 8



In the course of examining the diffusive transport processes, numerous authors have 

attempted to find and test correlations between image-obtained values of porosity and the 

corresponding diffusion coefficients calculated through modeling.  Using a simple diffusion 

model with a single diffusion coefficient determined from flow-through diffusion tests, 

Boving and Grathwohl (2001) found a broad correlation based on Archie’s law between 

porosity and tortuosity.  Indeed, their work confirmed that the dominating parameter 

controlling effective diffusion is porosity.  The broadness of the correlation could be caused 

by simplicity of the diffusion model as the correlation seemed to fit best for certain samples 

used in the experimental procedures.  

To further constrain the relationship between porosity and diffusion, several authors 

have attempted to determine the diffusion coefficients more accurately by gathering 

concentration profile data (Tidwell 2000, Polak et al. 2003, Altman et al. 2004, Wersin 

2004).  Again the relationships were found to be broad and ill-defined due in part to the 

simple diffusion models that were applied (Tidwell et al. 2000, Altman et al. 2004). Using a 

single-rate diffusion model in which the same diffusion coefficient was applied throughout 

the system, Tidwell et al. (2000) qualitatively examined the variations of the measured 

diffusion profile from the expected single-rate diffusion model.  From the observed 

variations, they surmised that diffusion not only depends on the magnitude of porosity but 

also its spatial distribution. 

Along with a simple single-rate diffusion model, Altman et al. (2004) also examined 

the potential of a multirate diffusion model based on a lognormal diffusion coefficient 

distribution.  Unfortunately, this model, while being less conservative, gave similar results to 

the single-rate model and was thus not advantageous.  With these models, they also found a 

positive correlation between porosity and diffusion, but were unable to quantify it.  
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Observing complex 3D diffusion behaviour, they saw the need for a more thorough diffusion 

model that would be able to account for 3D spatially variable diffusion coefficients.   

High resolution imaging of porous media can potentially offer insight into the spatial 

movements of differing particles in porous media.  Depending on the scale of the pores 

relative to the resolution of the imaging device, binary pore scale images (distinguishing 

pores from matrix) or non-binary averaged porosity maps can be created to signify the porous 

media’s pore structure.  Also available is the ability to threshold a non-binary porosity map 

into high and low values, effectively creating a binary pseudo pore-scale image.  It is 

hypothesized that this thresholding technique may properly simulate the pore scale structure 

of the media. 

 

1.4  Motivation for Current Project 

Considering that there is a need to investigate the role of sub-mm scale 

heterogeneities in rock formations, adequate imaging techniques to characterize and represent 

the porosity distributions must be developed. In addition, if solute migration on this scale is 

to be analyzed using numerical models, suitable numerical formulations to describe diffusion 

in heterogeneous systems must be available. This study will focus on investigating the effect 

of using different representations of observed porosity (e.g, binary and porosity map 

representations) and the resolution of the data on model results. In addition, different 

numerical formulations for calculating the diffusive fluxes will be evaluated.  

This method evaluation will provide the foundation for future integration of 3D 

porosity and transient concentration data in rock samples. A future goal is to use time-

dependent measurements of solute concentration distributions to determine spatially 

distributed diffusion coefficients via transient modeling simulations and inverse methods.  In 
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addition, it can be envisioned that the role of chemical reactions within the porous media and 

feedback on porosity distributions can be assessed using non-destructive imaging techniques 

combined with numerical analysis. However, these types of advances will only be possible if 

reliable and representative imaging techniques and numerical representations of porosity 

distribution and diffusive fluxes will be available. 

  

 

1.5  Thesis Objectives 

The objectives of this work include the use of sub-mm scale diffusive transport 

modeling based on observed porosity data to examine the sensitivities of model results to 

changes in data resolution as well as model formulation.  Specifically, the transport model 

will be used to answer the following questions:   

 How do the diffusion profiles differ between a binary pore-scale model and a 

REV scale model, using a REV scale transport model?  

 How does the resolution of the dataset affect the modeling of small scale 

diffusive fluxes?   

 Can MicroCT imaging techniques adequately capture the pore scale 

intricacies of a sandstone sample? 

 How does the pseudo pore-scale model compare to the porosity map derived 

through investigative techniques? 

 Is there a scale below which REV scale modeling appears to no longer 

adequately describe the transport of the contaminant? 
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 What is the effect of using harmonic versus arithmetic spatial weighting of 

diffusion coefficients on the model results?    

To address these objectives, transport modeling was conducted based on high resolution 

porosity images of sandstone samples. The overarching objective of this work is to evaluate 

the current status and the suitability of imaging and numerical techniques to analyze spatially 

heterogeneous diffusive transport on the sub-mm scale.  Regrettably, experimentally derived 

solute concentrations for quantitative comparisons were not available at the time of writing 

and thus these works are composed of a thorough qualitative analysis. 
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Chapter 2:  Methods 

2.1  Introduction 

In order to simulate microscopic transport in geologic media, representative model 

parameters must be obtained at the scale of investigation.  This study aims to examine 

diffusion processes on the sub-mm scale through a network of pores that permeate the media 

and provide pathways through which contaminants can diffuse.  Depending on the grain size 

of the media, these pores can be on a scale as small as of 10-9 meters. This type of resolution 

cannot be provided using available 3D imaging techniques and could not be resolved using 

numerical models. Data is therefore collected on a slightly larger scale and REV scale models 

are used to simulate the diffusion processes  

For this study, a data set from a clean sandstone was chosen as the primary sample of 

interest due to its large pore size (approximately 10-5 meters).   

 

2.2  Data Collection and Format  

2.2.1 Data Collection 

Core samples that were considered to be of interest to the study were collected by a 

third party and sent to the University of New Brunswick (UNB).  At UNB, the geologic 

samples were examined using micro CT scanning equipment to obtain 3D images of porosity 

with voxel dimensions (x,y,z) on the order of 18 μm per side.  For comparison, very fine sand 

grains have diameters in the range of 62.5 – 125 μm.  Using methods developed by Glover et 

al. (2006, 2009), bead packs of this grain diameter may have effective pore radii of 

approximately 15 μm.  Depending on cementation and grain angularity, the effective pore 

radii could be as low as 0.1 μm for these grain sizes, more than two orders of magnitude 

smaller than the resolution of the imaging technique. 
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The obtained samples measure approximately 20 mm in length and 11 mm in 

diameter and the image sets contain on the order of 3x108 voxels.  The data are collected in 

the form of a stack of slices along the long axis of the sample.  

11mm

20mm
image 
 slices 

z 

x y 
 

Figure 2.1.  Size and orientation of core sample 
 

Using an independently determined bulk porosity value, spatial distributions of 

porosity can be established from the images for each voxel throughout the geologic sample.  

Binary porosity datasets (“binary”) are created using a threshold value above which the open 

pores coincide with the determined bulk porosity.  For this method, porosity values in the 

domain assume values of 1 (open pore) or 0 (solid material). Concurrently, 16 bit porosity 

datasets (“porosity map”) are also created in a similar fashion.  In this procedure, a porosity 

value ranging between 0 and 1 is assigned to each voxel. These two types of porosity datasets 

serve as the foundation upon which the numerical simulations are performed. 
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a) b) 

Figure 2.2.  a) 2D image slice of 11mm diameter sandstone taken from 3D dataset obtained using 
MicroCT scanner.  b) Section of sample showing binary spatial distribution of porosity where the white 
regions correspond to open pores. Ratio of white pixels to total pixels corresponds to average porosity of 
sample. 
 

2.2.2 Data Cropping 

Given the immense amount of data acquired using the MicroCT scanner (> 108 data 

points), simulations can only be conducted on a subset of the porosity data due to limitations 

of currently available computing technology and the unavailability of a numerical model that 

uses parallel computing technology.  Subsets of porosity data can be extracted using a 

cropping procedure. Cropping inevitably affects the boundary conditions for the numerical 

simulations, implying that mass transport across the lateral boundaries and the end of the 

subdomain is not possible. However, the current simulations are conceptual in nature and 

concentration data for comparison is not available. Cropping does therefore not affect the 

results obtained in this study.  From the original datasets, 2 crops (subdomains) were 

extracted from each data set type (binary and porosity-map).  
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2.2.3 Data Binning  

To examine the effect of image resolution and voxel size on the simulation results, 

binning of the dataset is performed.  Binning of the dataset is accomplished by arithmetically 

averaging adjacent cells in all three dimensions.  If binning by a factor of two, this will halve 

the image resolution, double the voxel dimensions (in a 2D image), and reduce the number of 

voxels by a factor of 4. If starting with a binary porosity distribution as in Figure 2.2 above, 

the binning takes the binary data of open pores and closed media and combines the voxels 

together such that the data present in adjacent cells is averaged into a new larger cell.  This 

artificially lowers the resolution of the image while subsequently increasing the number of 

unique porosity values to produce a more distributed porosity map as shown in Figure 2.3 

below. 

 

 

b) a) 0 255
 

Figure 2.3.  a) Binary porosity dataset with 144x144 voxels.  Binary 8 bit histogram shows values at 0 and 
255   b) Same porosity dataset after being binned 2x (to 72x72 voxels). The histogram now shows a spread 
in porosity values. 
 

To examine the effect of dataset resolution on the simulation results, simulations will be 

conducted at various resolutions based on datasets (binary and porosity map) that are binned 

255 0
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4 times by a factor of 2. Data binning is restricted to the x-y-dimension, while the original 

resolution is maintained along the length of the core (z-axis) (Figure 2.1) 

 

2.3  Modeling Methods 

2.3.1  Modeling Domain 

Tracer diffusion through the sandstone core is assessed by simulating the migration of 

Iodide. The transport module of the reactive transport code MIN3P is used to conduct the 

simulations.  Using an appropriate aqueous diffusion coefficient for Iodide found in literature 

(1.88x10-9 m2/s, Nakashima, 2002), 3D diffusion is modeled through the subdomains of the 

cores.  The measured porosity values are mapped onto corresponding grid nodes within the 

model domain. Model grid spacing depends on the resolution of the provided data.  

 

2.3.2  Boundary and Initial Conditions 

Model boundaries are set such that the transport will be fully diffusion-driven.  To 

achieve this, the hydraulic head gradient throughout the subdomain is set to zero.  A constant 

concentration is specified at one end of the subdomain. The remaining transport boundaries 

of the domain are treated as impermeable no-flow boundaries.  This mimics the preferred 

conditions for geologic burial as well as the conditions present in laboratory diffusion 

experiments. The initial concentration of Iodide within the domain is set to 1.0 x 10-10 mol/l 

and an input boundary concentration of 1.0 mol/l is specified. 

 

2.3.3  Diffusion Modeling 

MIN3P uses the conservation of solute mass governing equation (equation 2.1) to 

calculate mass transport fluxes between the cells within the model domain.   
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Since we are only concerned with mass transport through diffusion, the velocity of 

the solution in our system (V) is zero.  The source (Q) is kept at a constant concentration as 

described above. 

Using the experimentally acquired porosity values, along with literature values for 

aqueous diffusion coefficients (D0), effective diffusion coefficients (Deff) are calculated for 

each cell of the simulation using the Millington-Quirk approximation (Millington and Quirk, 

1960) (equation 2.2):  

 

3
4

0DDeff        (2.2) 

 

Average effective diffusion coefficients are calculated across adjacent cell boundaries 

using either arithmetic or harmonic averaging formulations (as described in section 2.3.3).   

 

2.3.4  Inter-Facial Fluxes - Averaging Formulations 

In calculating the diffusive mass fluxes between adjacent cells i and j within the simulation 

domain, the effective diffusion coefficients must be evaluated at the cell interfaces and may 

be calculated based on representative average porosities defined at the cell interface (Figure 

2.4). 

3
4

0, ijeffij DD       (2.3) 
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 a) b) 

Figure 2.4.  a) Arithmetic averaging will overestimate fluxes into areas of low porosity,  b) Harmonic 
averaging between the cells ensures that large fluxes are not present between cells of high and low 
porosity 

 

 

Various formulations are possible to determine the average porosity.  For example, 

the interfacial porosity can be obtained based on the spatially weighted arithmetic mean of 

the porosities of the two adjacent cells (equation 2.4).  

 

 
ij

jjiiarith
ij d

dd 



      (2.4) 

 

This method is commonly used in evaluating interfacial diffusion coefficients; however, as 

presented in Figure 2.4 for the extreme case of a fully open (water-filled) cell and a fully 

closed (solid-filled) cell, the average inter-cell porosity would be 50%.  Calculating the 

effective diffusion coefficient based on equation 2.3 would yield an effective diffusion 

coefficient that is on the order of D0 (equation 2.5). 
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Calculating the diffusion coefficient in such a way may overestimate diffusive fluxes 

into low porosity regions.  Instead, the average diffusion coefficient can be calculated based 

on the harmonic mean (equation 2.4) 

 

j

j

i

i

ijharm
ij dd

d
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


      (2.6) 

 

In this case, the low porosity value dominates the harmonic average and fluxes into low 

porosity regions are greatly reduced.  

 

While MIN3P generally uses the arithmetic averaging formulation like many other 

solute transport models, the harmonic formulation has also been implemented in the model as 

part of the present work (Section 6.3.2).  The effect of using different averaging schemes on 

3D diffusion in heterogeneous media is examined through a series of separate simulations 

using either the arithmetic or the harmonic averaging method. 

 

 Within the model, this averaging is implemented on a cell by cell basis using the 

diffusion coefficients at each cell as determined through the cells` porosity value and the 

Millington-Quirk approximation (eq. 2.2).  Making use of the cell size and the distance 

between nodes, the model calculates the mass flux influence coefficients as equations 2.7 for 

the arithmetic scheme and equation 2.8 for the harmonic scheme. 
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As was mentioned earlier, the arithmetic averaging scheme may overestimate mass flux into 

low porosity regions.  For this reason, the harmonic averaging scheme was favoured and was 

the basis for most of the simulation comparisons.  For the unbinned datasets, a comparison 

was run between the different averaging schemes to better quantify the logical fallacies 

involved. 
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Chapter 3:  MIN3P Diffusion Model Verification 

3.1 Introduction 

 To ensure that the model can accurately simulate diffusion-dominated transport in 

one, two and three spatial dimensions, it must be verified using proven methods of analysis.  

These generally entail the use of mathematical analytical solutions to given physical 

diffusion problems.  Comparing the numerically derived results to the analytical solution 

allows for a quantification of the goodness of the fit.   

Also examined is the effect of the time discretization on the numerical results.  The 

size of the time step is directly correlated to the size of the diffusion number (Steefel and 

MacQuarrie, 1996).  When the diffusion number exceeds a value of 1, the mass transfer by 

diffusion during beyond the length of a single cell is significant during a single time step.  

This could lead to artificial numerical diffusion as is examined in section 3.3. 

 

3.2 Verification 

 Comparisons between the numerical diffusion model and analytical solutions are 

made for 1D, 2D and 3D cases.  Unfortunately, while a rigorously tested analytical diffusion 

model can be found for the 1D case, the availability of reliable analytical diffusion models 

for higher dimensions is limited. 

When an analytical solution is unavailable, an alternative means of model verification 

is to compare the results to those of another widely accepted numerical model that has been 

previously put through its own rigorous verification.  In this case, the two numerical 

solutions are compared when given the exact same boundary value problem.  Good 

agreement of the solutions provides confidence that both models are solving the problem in 

an accurate manner. 
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3.2.1  Diffusion in 1D Semi-Infnite Domain 

 A 1D column simulation is compared to the Ogata-Banks analytical solution (Ogata 

and Banks, 1961).  The Ogata-Banks solution provides an analytical solution to the 1D-

advection dispersion equation including linear sorption.   
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The solution is derived for a semi-infinite domain and assumes a fixed concentration 

boundary at the inlet, and a zero concentration initial condition. The current study focuses  on 

diffusive transport of a non-reactive species, which allows to ignore the velocity and 

retardation terms.  This greatly simplifies the equation to the following form:  

 

]
4

[),( 0
Dt

x
erfcCtxC      (3.2) 

 

Thus the concentration of the solute at a point along the column at a certain time is dependent 

only upon the diffusion coefficient.  

  

 The parameters used for the comparison are summarized in Table 3.1.  Due to the 

analytical codes use of bulk diffusion coefficients (Dp) as opposed to MIN3P's use of 
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aqueous diffusion coefficients (D0), conversions were made through combining equations 1.2 

and 1.4 to obtain equation 3.3.  
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These conversions were performed to ensure that the analytical and numerical models use the 

same effective diffusion coefficients. 

 

Output times 
(days) 

column 
length 

(m) 

spatial 
increment  
∆x (m) 

Maximum 
timestep 
∆t (s) 

Porosity 
(%) 

Diffusion 
coefficient 

(m2/s) 

Diffusion 
number 

10,20,30,40,50 0.050 0.001 8640 12.5 D0 = 3.175d-11 0.274 

Table 3.1.  Simulation parameters used for 1D diffusion verification  
 

 

 24



0.0

0.2

0.4

0.6

0.8

1.0

0 0.01 0.02 0.03 0.04 0.05

Distance along Column (m)

R
el

at
iv

e 
C

o
n

ce
n

tr
at

io
n

10 Days

20 Days

30 Days

40 Days

50 Days

 

Figure 3.1.  Diffusion at multiple output times along 1D column.  MIN3P simulation (points) and Ogata-
Banks analytical solution (solid lines) 
 

From Figure 3.1, we can see that the fit is very good for multiple output times 

between the analytical and numerical models for this simple 1D column simulation. 

 

3.2.2  Diffusion in 2D Semi-Infinite Domain with Patch Source 

 Initially, MIN3P results were compared to the results of PATCH3D, a 3D analytical 

solution (Sudicky et al., 1988). However, discrepancies between the solution and MIN3P 

could not be resolved and after a thorough evaluation, it was concluded that the analytical 

code may not yield reliable results for the parameter set chosen. As a result, the evaluation 

was extended to a three-way comparison and the well known groundwater flow code 

MODFLOW (MacDonald and Harbaugh, 1983) was used to solve the diffusion problem.  
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This approach was possible because the diffusion and groundwater flow equations are both 

parabolic partial differential equations, and the flow code can be used as an analogue model 

for the diffusion problem.   
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The comparison was performed by setting the hydraulic conductivity (K) equal to the bulk 

diffusion coefficient (Dp), and storage (Ss) is set to 1.0. Using these parameters, the 

calculated hydraulic head values correspond to the concentration distribution. Diffusion from 

a patch source into a 2D domain is simulated using MIN3P, Modflow, and Patch3D for 

several different diffusion coefficients.   

 

 

Output 
time 

(days) 

Column 
length 

(m) 

Spatial 
increment 
∆x (m) 

Maximum 
timestep 
∆t (s) 

Column 
width 
(m) 

Source 
Width  
Y (m) 

Diffusion coefficient 
(m2/s) 

Diffusion 
number 

D0 = 2.315d-10 0.32 

D0 = 1.157d-10 0.16 

D0 = 3.175d-11 0.044 
50 0.10 0.0025 8640 0.40 0.03 

D0 = 1.157d-11 0.016 

Table 3.2.  Simulation parameters used for 2D diffusion verification. 
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 The model consists of a 2D strip source at x=0 with a width of 0.03 m in y-direction 

and is infinite in the z-direction.  Diffusion occurs outwards into the x,y plane. 

 

    

  

Diffusion 
direction 

Figure 3.2.  a) 2D patch source model setup.  Patch source is located at x=0 and is infinite in z with a finite 
width in the y-direction of 7.5% the extent of the y domain.  b) Diffusion contours in the x-y plane at T = 
50 days  
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zz 
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Figure 3.3.  Diffusion after 50 Days with multiple diffusion coefficients from a 2D patch source.  MIN3P 
numerical simulations (points), Modflow numerical simulations (dashed lines) and Patch3D analytical 
solution (solid lines) 
 

 For the 2D case, the three models are in good agreement when the diffusion 

coefficient is less than 1 x 10-10 m2/s.  For larger diffusion coefficients, the analytical model 

Patch3D begins to provide lower solute concentrations in relation to the numerical models 

Modflow and MIN3P.  Although at first glance this discrepancy looks to be attributable to 

boundary effects within the numerical models (concentration build-up at boundary), further 

simulations with lengthened and widened domains have discounted this as a source of error 

(see Appendix A).  The good agreement between results obtained using the rigorously tested 

Modflow numerical model and MIN3P builds confidence in the numerical solutions. 
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3.2.3  Diffusion in 3D Infinite Domain with Interior Brick Source 

 For testing the numerical code in 3D, the 3D analytical diffusion model Brick was 

used (Neville, 2006).  For this model, a brick of finite mass is placed within the center of a 

system and outward diffusion in 3 dimensions is simulated.  Simulations were compared for 

two different diffusion coefficients.  

 

Output 
time 

(days) 

Column 
dimensions 

x,y,z (m) 

Spatial 
increment 
∆x (m) 

Maximum 
Timestep 
∆t (s) 

Source dimensions 
x,y,z (m) 

Diffusion 
coefficient 

(m2/s) 

Diffusion 
number 

D0 = 1.157d-10 1.0 

50 
0.15, 
0.15, 
0.15. 

0.001 8640 0.009 , 0.003 , 0.003 
D0 = 3.175d-11 0.27 

Table 3.3.  Simulation parameters used for 3D diffusion verification. 
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Figure 3.4.  3D brick source model setup.  The source is located in the middle of the model domain and is 
in the shape of a brick with dimensions (x,y,z) of 0.009,0.003,0.003 metres. 
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Figure 3.5.  The brick provides a source of finite solute mass from which diffusion occurs in all three 
dimensions in an expanding oblate spheroid, concentration contours shown at T = 50 days 
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Figure 3.6.  3D diffusion outward from a brick source using multiple diffusion coefficients.  MIN3P 
numerical simulations (symbols) and brick analytical solution (solid lines), T = 50 days 
  

 For the 3D comparison, the diffusion of mass outwards from the finite brick source 

showed very similar results for both the analytical and numerical models.   

  

3.3 Diffusion Number Analyses 

The diffusion number is similar in scope to the Courant number used to characterize 

the time scale of advective transport in relation to the grid discretization (Saaltink et al., 

2001).  While the Courant number is calculated using the advective linear groundwater 

velocity (v) (equation 3.6), the diffusion number is calculated using the systems’ pore water 

diffusion coefficient (Dp) (Steefel and MacQuarrie, 1996).  
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In both equations,  and t x  relate to the temporal and spatial discretization 

parameters respectively. For the fully implicit time integration used in MIN3P, no stability 

criteria exist, and simulations can be conducted with arbitrary diffusion numbers. However, 

large time steps may lead to artificial numerical diffusion. Conducting simulations with 

different diffusion numbers is an effective way to investigate the accuracy of the solution as a 

function of time step size. 

 

3.3.1  1D Time Step Analysis 

Using the same initial parameters as in the 1D simulations presented above (Table 

3.1), the model is examined using differing maximum time increments within the numerical 

solution.  The time increments used along with their subsequent diffusion numbers are shown 

in Table 3.4. 

 

Maximum timestep 
∆t (Days) 

0.0005 0.001 0.005 0.01 0.05 0.1 0.5 1 5 

Diffusion number 0.0014 0.0027 0.014 0.027 0.14 0.27 1.4 2.7 14 

Table 3.4.  Simulation parameters used for 1D diffusion verification 
 

Figure 3.7. depicts the percentage error between the simulation with the smallest maximum 

time increment and the subsequent simulations with larger time increments. The results 
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demonstrate that relatively large percentage errors occur near the leading edge of the 

diffusion front for simulations with large diffusion numbers. However, given the magnitude 

of the concentrations involved at the diffusion front, these discrepancies can be considered to 

have very little effect on the overall transport of the solute and the simulation results.  

Comparing Figures 3.7 and 3.8, this correlation between concentration and percentage error 

can be seen as the percentage errors only increase significantly in the second half of the 

column, where the solute concentration is lowest. 
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Figure 3.7.  Percent error after 50 days along 1D column.  MIN3P simulations using differing maximum 
time steps. 
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Figure 3.8.  Concentration profile after 50 days along 1D column.  MIN3P simulations using differing 
maximum time steps. 
 

 

3.3.2  3D Time Step Analysis 

Results for the simple 1D homogeneous case are encouraging, but cannot be 

extrapolated to 3D heterogeneous media. Using a 3D dataset with heterogeneous porosity 

distribution, an additional analysis was completed to determine the effect of the diffusion 

number on 3D concentration distributions.  This test is directly related to the main focus of 

this study due to the fact that the material examined in this time-step analysis is the same 

dataset that is used in the remainder of this study.  A smaller dataset that had been derived 

from the original (section 4.2.1 – cropping and binning) was chosen so that simulations with 
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small minimum time increments could be completed without need for long computation 

times. 

 

Binned 
amount 

# of 
cells 

(x by z) 

cell 
size 
(m) 

bulk 
porosity 

(%) 

bulk 
effective D 

(m2/s) 

Maximum time 
increment 

(Hours) 

Diffusion 
number 

0.0001 0.159 

0.0005 0.79 

0.001 1.59 
4x 36 by 24 

7.20E-
05 

22.3974 2.57E-10 

0.01 15.9 

Table 3.5.  Simulation parameters used for 1D diffusion verification 
 

The porosity and subsequent effective diffusion coefficient are determined through 

the mean value of the binned dataset.  Due to its origin as a binary dataset, the full range of 

porosities between 0 and 1 are actually present within the column.  Subsequently, the plotted 

errors will be exacerbated in areas of connected high porosity where the effective diffusion 

coefficient can be as high as 1.88x10-9 m2/s 

As with earlier time step analyses, a diffusion profile is simulated using MIN3P with 

several differing maximum time increments.  These are examined by comparing the results at 

each time increments to those of the smallest time increment (Figure 3.9).  A contour plot 

comparing 2D concentration  profiles after 0.1 hours is also examined (Figure 3.10). 

For the 3D simulations in subsequent sections, a maximum time increment of 0.1 

hours was used to ensure reasonable computation times.  Given the variable nature of 

MIN3P’s time integration scheme, this maximum value was reached only after the main 

diffusion event examined in the results had occurred. 
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Figure 3.9.  Percent error after 0.1 Hours along a 3D column.  MIN3P simulations using differing 
maximum time step. 
 

   
 
Figure 3.10.  Contour plot of concentrations after 0.1 hours using time steps of 0.0001 (black lines) and 
0.01 hours (white lines). Cross section is through the middle of the column with source located at z = 0 m. 
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The effect of the increasing diffusion number can be seen in Figure 3.9 as the 

discrepancies grow larger with each increasing time increments.  As was determined with the 

1D case, the largest relative discrepancies occur near the end of the column where 

concentrations are at their lowest and can be considered to have very little effect on the 

overall transport of the solute and the simulation results.  Comparing the black and the white 

contours in Figure 3.10, the most visible errors occur where the area through which the solute 

is diffusing is at its largest.  This corresponds to large areas of higher porosity.  These 

significant errors can occur within the body of the diffusion in the first half of the column.  

Through interpolation of the averaged results above, it is recommended that a diffusion 

number of 10 not be exceeded if the percent error is to be kept at less than 1%.   
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Chapter 4:  Sub-mm Scale Diffusion Modeling in a Sandstone Core 

4.1 Introduction 

 Due to its relative large grain size, a sandstone core was chosen as the medium of 

interest for this study.  The 11mm x 20mm core was examined at UNB through non-

destructive microCT imaging to produce high-resolution images of the internal porosity 

structure of the sample.  The raw dataset produced by the microCT imager was processed 

using knowledge of the medium’s bulk porosity.  Combining the raw image data with the 

bulk porosity produced two types of porosity datasets which could be used as the basis for 

the simulations presented in the following.  After receiving the datasets from UNB, they were 

processed further through cropping and binning into a series of 10 separate datasets for each 

type (binary and porosity map).  Each of these sub datasets was subjected to a number of 

simulations.  A summary of the completed simulations is presented in Table 4.1. 
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Type 
Crop 

Location 
Binned amount 

# of cells 
(x by z) 

Bit Depth 
bulk porosity  

(%) 

Binary Crop1 1x 144 by 96 1 22.5266 

  2x 72 by 48 3 22.4814 

  4x 36 by 24 6 22.3974 

  8x 18 by 12 9 22.2950 

  16x 9 by 6 12 22.2300 

 Crop2 1x 144 by 96 1 10.1696 

  2x 72 by 48 3 10.1434 

  4x 36 by 24 6 10.0862 

  8x 18 by 12 9 9.9854 

  16x 9 by 6 12 9.8729 

PorosityMap Crop1 1x 144 by 96 16 16.3521 

  2x 72 by 48 19 16.3513 

  4x 36 by 24 22 16.3506 

  8x 18 by 12 25 16.3500 

  16x 9 by 6 28 16.3495 

 Crop2 1x 144 by 96 16 11.3812 

  2x 72 by 48 19 11.3805 

  4x 36 by 24 22 11.3798 

  8x 18 by 12 25 11.3793 

  16x 9 by 6 28 11.3787 

Table 4.1.  Summary of porosity data sets created for simulations 
 

 The bit depth refers to the number of unique possible porosity values that the model 

contains.  The actual maximum number of unique values can be determined by calculating 

2bit depth.  For example, a bit depth of 3 has 23 = 8 unique values for porosity. 

 

4.2 Dataset Description 

 Processing of the raw microCT data at UNB ended up in two separate datasets.  

While the resolution of the microCT was not sufficient to resolve individual grains and pores, 

pore clusters are resolvable and produce characteristic response values in the raw dataset.  

This dataset was processed using a threshold value for porosity above which the voxel was 

defined as an open space (i.e. void), and the remaining voxels were defined as solids. The 
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threshold was chosen such that the relative volume occupied by voids corresponds to the bulk 

porosity value. This approach is common in image processing and has previously been used 

by various authors in porous media simulations (Nakashima, 2002, Al-Raoush and Willson 

2005).  For the 16bit porosity map dataset, the threshold was lowered and the voxels above 

the threshold were given a value of porosity based on their raw image value (grayscale 

value).  These were again scaled to match the bulk porosity of the sample.  This gives a 

dataset with raw data values representative of the porosity distribution that range between 0 

and 65535. These values can subsequently be normalized to between 0 and 1 (65535 values 

between 0 and 1).  From these datasets, 2 crops were extracted and subsequently binned. 

 

4.2.1 Cropping and Binning 

The original dataset consists of 1x108 voxels (379x379x799) and is too large to be 

directly used in diffusion simulations. Two separate sub-datasets of 144x144x96 voxels 

(2x106) each are extracted from the full dataset to facilitate numerical analysis (Figure 2.2).   
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Figure 4.1.  Two separate 2x106 voxel datasets cropped from the original 1x108 voxel MicroCT porosity 
dataset. The top and bottom binary datasets have overall average porosities of 10% and 22% 
respectively. 

 

 

 

The crops (subdomains) are located 20 pixels away from the edges of the full dataset 

that they are adjacent to. This choice was made to avoid possible boundary effects of the 

imaging techniques, which may affect the quality of the porosity data. Crop 1 is located in 

the lower right hand corner, while Crop 2 is in the upper left.  While both the full binary and 

16 bit datasets have comparable bulk porosities of approximately 14.5%, the binary dataset 

shows much more variability between the sub-domains. The average bulk porosity of the 

slices of Crop 1 is 22%, while the average bulk porosity of the slices of Crop 2 is only 10%.  

A similar comparison of the crops of the 16 bit dataset (porosity map) only shows average 

bulk porosity values of 16% and 11 %, respectively.   The smaller variance of the 16 bit 

dataset is due in part to resolution limitations in the imaging technologies which decreases 

the effect of any averaging scheme emplaced on the data.  The subdomains were purposefully 

chosen to capture a relatively large difference in bulk porosity. Due to the appearance of edge 

effects encountered near the first and last slices of the sample caused by imaging 
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inaccuracies, the 96 slices in the long (z) direction were taken starting from the 200th slice 

from the bottom. 

Using the process explained earlier, each dataset is binned repeatedly until a 

resolution is reached that is too coarse to be modeled effectively.  For the datasets in 

question, this occurs after 4 binning iterations when the original dataset has been binned by a 

factor of 16.  This degree of binning leads to coarse datasets containing 9x9x6 voxels.  As 

will be examined later, although some parameters remain relatively unchanged with the 

degree of binning, the loss of resolution can have a significant impact on investigations into 

the transport processes. Irrespective of the data format and amount of binning, the modeling 

method remains the same (section 2.3).  

The cropping and binning of the dataset in the X and Y dimensions was completed 

using built-in tools in the image manipulation program imageJ (http://rsbweb.nih.gov/ij/).  In 

the Z dimension, a program developed for this project and outlined in Appendix B.2 was 

used to bin the separate slices. 

 

4.2.2 Binary Datasets 

The binary dataset loosely represents the pore structure of the sandstone media.  It is not a 

perfect representation due to the resolution limitations of the microCT device.  For a true 

pore-scale system to be represented, the resolution of the imaging device has to be high 

enough such that the individual pores can be resolved.  For diagnostic purposes, the binary 

dataset does represent a system of open and closed pores, but it may not be representative of 

our sample. 
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Figure 4.2.  Image of porosity of first slice and averaged porosities per slice versus distance along column.  
a) Crop 1 of the binary dataset.  Average porosity of 22%  b) Crop 2 of the binary dataset.  Average 
porosity of 10%. 
 

Once cropped, the two datasets are each binned 4 times by a factor of 2.  Each 

binning decreases the resolution in each of the coordinate directions (x,y,z) by 2 and 

consequently increases the voxel volumes by a factor of 8.  Thus the total number of voxels 

lost due to the averaging during each binning iteration is 7/8th of the dataset prior to binning. 

 

Binned amount 
# of cells 
(x by z) 

cell size 
(m) 

bulk porosity 
Crop 1 

(%) 

bulk porosity 
Crop 2 

(%) 

1x 144 by 96 1.80E-05 22.53 10.1696 

2x 72 by 48 3.60E-05 22.48 10.1434 

4x 36 by 24 7.20E-05 22.40 10.0862 

8x 18 by 12 1.44E-04 22.30 9.9854 

16x 9 by 6 2.88E-04 22.23 9.8729 

Table 4.2.  Binning of binary dataset crop 1 
 

 43



4.2.3 16 Bit (Porosity Map) Datasets 

The 16 bit dataset attempts to represent the porosity distribution of the material by 

assigning a range of porosity values to the images, again based on the bulk porosity.  It 

assumes that the imaging technique is not precise enough to resolve individual grains and 

pores and thus weighs the actual porosity of the individual voxels according to the raw value 

as determined using the imaging techniques.  

Cropping this dataset into Crop 1 and Crop 2 as with the binary dataset, the effect of 

the additional 65535 bits of data become apparent as the variance of the dataset is greatly 

reduced.  The two crops have respective average porosities of 16.5% and 13.5% while the 

original had a bulk porosity of 15% 
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Figure 4.3.  Image of porosity of first slice and averaged porosities per slice versus distance along column.  
a) Crop 1 of the 16 bit dataset.  Average porosity of 16.5%  b) Crop 2 of the 16 bit dataset.  Average 
porosity of 13.5%. 
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Like the binary dataset, once cropped, the datasets are each binned 4 times by a factor of 2. 

Binned 
amount 

# of cells 
(x by z) 

cell size 
(m) 

bulk porosity 
Crop 1 

(%) 

bulk porosity 
Crop 2 

(%) 

1x 144 by 96 1.80E-05 16.3521 11.3812 

2x 72 by 48 3.60E-05 16.3513 11.3805 

4x 36 by 24 7.20E-05 16.3506 11.3798 

8x 18 by 12 1.44E-04 16.3500 11.3793 

16x 9 by 6 2.88E-04 16.3495 11.3787 

Table 4.3.  Binning of 16 bit dataset crop 1 
 

 

4.3 Diffusion modeling 

Once cropped and binned, the datasets are formatted such that they can be read into the 

reactive transport code MIN3P.  This formatting is done using a program developed for this 

project and outlined in Appendix A.2.  MIN3P is used for the simulations because it allows 

the inclusion of multiple components and reactions, which may be used in future studies. 

However, the present work only focuses on non-reactive diffusive solute transport.   

Using Iodide as a conservative tracer, simulations are created to conduct numerical 

diffusion experiments. Two different set-ups are investigated, including a single reservoir and 

a double reservoir (through-diffusion) design. The single reservoir system simulates a closed 

system from which Iodide can only enter from the input end and will eventually build up in 

the system until it is at a constant concentration throughout the medium.   

Simulations of through-diffusion provide a numerical analogue to more complex 

double reservoir experiments.  With a second reservoir present at the end of the domain,  the 

system is allowed to reach a steady state much sooner where the inputted Iodide mass is 
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balanced by an equal amount of mass exiting into the low concentration reservoir.  This type 

of system allows for better comparisons of mass flux between the differing model media. 

 

Starting with the medium’s pore structure saturated with water, the reservoirs are kept 

at a constant concentration of Iodide along one face of the sample.  The Iodide is allowed to 

diffuse into the medium based on the laws that govern its movement constrained by the 

inputted parameters and the model criteria.  

 

144x144 cells 

Constant Iodide concentration 
of 1E-10 mol/l on top face 

No mass flux through 
vertical sides 

96 cells 

z 

Constant Iodide concentration 
of 1.0 mol/l on bottom face 

x y 
 

Figure 4.4.  Model domain setup for numerical through diffusion experiment with Iodide reservoir input 
at z = 0. 
 

4.3.1   Input Parameters 

Along with the porosity maps generated from the imaging techniques, the diffusion model is 

influenced by several other input parameters.  The aqueous diffusion coefficient of Iodide is 

the diffusion coefficient of Iodide in pure water (no solids. porosity of 1.)  It has been 
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calculated and tabulated in prior laboratory experiments (Nakashima, 2002). Effective 

diffusion coefficients are calculated based on the Millington relationship as outlined in 

Section 2.3.3. Advective transport was excluded by setting the head gradient across the 

domain to zero and specifying low hydraulic conductivity for the media (10-10 m/s) 

The boundary conditions of the domain consist of zero flux boundaries for each of the 

vertical faces (sides of the domain). For the through-diffusion experiments, constant 

concentration boundaries are located at the top and bottom face, the bottom face at z = 0 

being coincident with a constant Iodide concentration of 1 mol/l.  Paralleling a flow-through 

diffusion cell experiment, the top face is kept at a negligible concentration such that any 

Iodide reaching the end of the domain will exit the system. For the closed system 

formulation, a constant concentration boundary is only specified at the inlet while the end of 

the domain is assumed impermeable (zero concentration gradient).   

The simulation is run until a final solution time of 1.0 hour with intermediate output 

times of 0.005, 0.01, 0.02, 0.04, 0.1, and 0.5 hours.  This allows for examinations of 

contaminant movement at early diffusion times while also capturing the system at quasi 

steady state conditions. Longer solution times would better show the steady state diffusion 

transport, but were not attempted due to constrains on model runtimes. Table 4.3 provides a 

summary of the model input parameters. 

 

Simulation 
output times 

(hours) 

Simulation 
final output 
time (hours) 

Diffusion 
coefficient D0 

(m2/s) 

Head gradient 
across domain 

(m/m) 

Input 
concentration 

z = 0 (mol/l) 

Output 
concentration 
z = max (mol/l) 

0.005, 0.01, 0.02, 
0.04, 0.1, 0.5, 1.0 

1.0 1.88E-09 Zero 1.0 1.0E-10 

Table 4.4.  Major input parameters for sandstone core diffusion simulations 
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The maximum simulation times and output times were chosen after conducting 

numerous test simulations to provide information on the rate of diffusion and the duration 

required to achieve quasi-steady state conditions (for through-diffusion experiments).  The 

output times were chosen such that the evolution of the diffusing Iodide could be examined 

as it entered the media.  For the closed system, the final run time was chosen such that the 

amount of Iodide reaching the end of the domain would be minimal.  In the open system, the 

chosen final run time allowed for a number of the faster simulations to approach steady state.  

Longer runtimes were also avoided to minimize any constraints due to lengthy computational 

runtimes. 

 

 4.4 Results 

For the single sandstone core of 11 mm by 20 mm, a large number of simulations 

were completed.  With multiple crops of both the binary and 16 bit porosity datasets, changes 

in the degree of binning as well as variations of the model workings allow for the simulations 

to be compared.   

 

4.4.1  Simulations of 3D Diffusion for Binary Dataset 

Using the provided binary datasets as porosity maps, simulations of diffusion through 

the datasets were completed for diffusion timelines of up to 1 hour.  Given the binary nature 

of the dataset’s porosity, diffusion through the sample was not expected to occur along a 

planar diffusion front as would be the case in a homogeneous system, but instead be 

determined by the pore structure itself. 

 To examine the movement of the Iodide as it diffuses through the sample, a slice 

through the sample is examined through time and a number of slices through the sample are 
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examined at the end of the simulation.  This is done for both the binary sample dataset as 

well as the sample dataset that has been binned by a factor of 4. 

 Figure 4.5 shows the changes in the concentration of Iodide in one slice 3.3x10-4 m 

from the Iodide source as the Iodide diffuses into the sample through time. 

 

 
Figure 4.5.  Concentration map at xy slice 19 from the source (z=3.3x10-4m)  after a) 0.005hr  b) 0.01hr c) 
0.02hr d) 0.04hr e) 0.1hr and f) 0.5hr for the binary dataset. 
 
 
 These images show the heterogeneity of the diffusional flux through the sample’s 

pore structure.  The warmer colours of higher concentration are not always found in most 

open areas.  As such, the concentration does not seem to depend on the porosity of an area 

alone, but also the connectivity of that area to pores above, below, and behind it.  This can be 

further examined through looking at the slices along the transport path through time.  Figure 

4.6 shows the changes in the concentration of Iodide along the centreline of the sample in the 

y direction as the Iodide diffuses into the sample through time. 
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Figure 4.6.  Concentration map at xz slice along the centerline of y after a) 0.005hr  b) 0.01hr c) 0.02hr d) 
0.04hr e) 0.1hr and f) 0.5hr for the binary dataset. 
 
 
 These images along the transport path greatly depict the three dimensionality of 

diffusive transport, even for a fairly homogeneous sandstone.  By looking at only one plane 

of cells, we can see that the Iodide, entering from the bottom, does not enter homogeneously 

all along the plane and does not stay in the chosen plane as it moves upwards through the 

sample.  This is due to the movement perpendicular to the plane as the diffusing molecules 

follow the tortuous paths of the areas of connected porosity. 

 Looking at multiple slices through the sample after diffusion is allowed to occur for 

1.0 hours (Figure 4.7), we again can see that the areas of warmest colour, and thus highest 

concentration, vary from slice to slice. 
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Figure 4.7.  Concentration map after 1hr through xy slices a) 13  b) 26 c) 39 d) 52 e) 65 f) 78 and g) 91 out 
of 96 for the binary dataset. 
 
 

 As the concentration decreases with distance, the areas of high concentration migrate 

around the slices from the lower left in the slice near the input to the upper left in slices near 

the middle of the sample to the centre right in slices farthest away from the source, indicating 

the presence of preferential diffusion pathways.  If these preferential pathways did not exist, 

the Iodide would take the shortest route away from the source and would thus not move in 

such a way around the sample. 
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Figure 4.8.  Concentration map at xy slice 19 from the source (z=3.3x10-4m)  after a) 0.005hr  b) 0.01hr c) 
0.02hr  d) 0.04hr  e) 0.1hr and f) 0.5hr for the dataset that has been binned by 4x. 
 
 
 When the dataset is binned by a factor of 4 as in these images, the percentage of the 

slice that is available for Iodide penetration is greatly increased.  Even so, the Iodide 

diffusion front still does not move through the slice all at once.  There are several areas 

where faster moving fingers of Iodide penetrate and move through the slice before laterally 

adjacent pores are filled.  This displays the continued reliance of the diffusion path on the 

connectivity of the pores.  Again, this can be further examined through looking at the slices 

along the transport path through time (Figure 4.8). 
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Figure 4.9.  Concentration map at xz slice along the centerline of y after a) 0.005hr  b) 0.01hr c) 0.02hr d) 
0.04hr  e) 0.1hr and f) 0.5hr for the dataset that has been binned 4x. 
 
 

 In these xz slices along the y centreline, the Iodide is present throughout a larger area 

of the cross section when compared to the similar un-binned case (Figure 4.6), but there is 

still the presence of fingering at the diffusion front where the Iodide preferentially follows 

the paths of least resistance.   

 This connectivity of the pores in 3-dimensions can be overlooked in many 

groundwater problems where the REV is chosen such that it does not encompass these 

heterogeneities.  But for small scale transport such as this study, these preferential pathways 

are the main conduits for diffusion through the sample and it is even probable that these paths 

at these small scales will make the diffusion anisotropic. 

 With multiple crops of both the binary and 16 bit porosity datasets, changes in the 

degree of binning as well as variations of the model workings all have an effect on the 

diffusion of Iodide through the sample.  The subsequent sections examine and compare the 

various simulation parameters and their effects. 
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4.4.2  Crop 1 

Crop 1 is located in the lower right quadrant of the original dataset.  It is an area of 

higher than average porosity with denser clusters of open pore spaces. 

 

4.4.2.1  Binary Dataset 

 The Crop 1 binary dataset has the highest average porosity of all of the datasets at 

22%.  All things being equal, it should potentially show the highest rate of diffusion. 

 

Binned 
amount 

# of cells 
(x by z) 

cell size 
(m) 

bulk 
porosity 

(%) 
Runtime 

Cumulative Mass In 
(mol/1.0hr) 

1x 144 by 96 1.80E-05 22.5266 39 hrs 37 min 12 sec 1.87E-06 

2x 72 by 48 3.60E-05 22.4814 1 hrs  0 min 44 sec 2.19E-06 

4x 36 by 24 7.20E-05 22.3974 2 min 46 sec 2.68E-06 

8x 18 by 12 1.44E-04 22.2950 11.39 sec 3.23E-06 

16x 9 by 6 2.88E-04 22.2300 0.83 sec 3.73E-06 

Table 4.5.  Binned parameters for binary dataset crop 1 
 

Figure 4.10 shows the changes in the concentration distribution of Iodide due to the 

binning of the dataset.  Figure 4.11 shows how the concentration along the long axis of the 

domain is affected.  As the dataset becomes more binned, the number of unique porosity 

values increases while the total number of voxels decreases.  With the lowering spatial 

resolution, the amount of data available to the model decreases correspondingly (number of 

voxels) resulting in a less complex model and shorter runtimes.  In order to maintain 

accuracy, there is more information held within each voxel due to their combination while 

binning (increase bit depth).   
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Figure 4.10.  Concentration map at an xy slice 3.3x10-4m from the source after 0.01hrs for the binary 
dataset. Binned a) 1x b) 2x c) 4x d) 8x and e) 16x. 
 

 As the number of unique porosity values in the input database increases, the volume 

of zero-porosity decreases and the connectivity of the open pores increases.  This results in 

the spreading of the solute through larger areas of the sample as seen in Figure 4.10.  This 

also results in faster diffusion as is visible in the increases in the mass transfer rates in Table 

4.5 above as well as in the flattening of the curves in Figure 4.11 below.   

Due to the solute transport in the column being confined to diffusion, these increases 

in mass transfer rates correspond to an increase in the bulk effective diffusion coefficient.  

Since the bulk porosity remains relatively constant throughout the simulations, the increase in 

the mass transfer rates must be dependent on an increase of connectivity between the open 

pores within the column. 
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Figure 4.11.  Concentration profiles along the long axis of the domain for each output time for the binary 
dataset.  Binned a) 1x b) 2x c) 4x d) 8x and e) 16x 
 

 

4.4.2.2  16 Bit Dataset 

The Crop 1 16 bit dataset, while in the same location as the binary dataset, only has a 

bulk porosity of 16%.  This is higher than the bulk porosity of the full dataset`s 14%, but still 

shows nowhere near the variance presented in the binary dataset. 
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Binned 
amount 

 

# of cells 
(x by z) 

cell size 
(m) 

bulk 
porosity 

(%) 

Runtime 
 

Cumulative Mass In 
(mol/1.0hr) 

1x 144 by 96 1.80E-05 16.3521 20 hrs 38 min 55 sec 2.68E-06 

2x 72 by 48 3.60E-05 16.3513 45 min  9 sec 2.66E-06 

4x 36 by 24 7.20E-05 16.3506 2 min 23 sec 2.67E-06 

8x 18 by 12 1.44E-04 16.3500 10.11 sec 2.71E-06 

16x 9 by 6 2.88E-04 16.3495 0.88 sec 2.75E-06 

 
Table 4.6.  Binned parameters for 16 bit dataset crop 1 

 

Since the action of binning is to arithmetically average adjoining cells, the differences 

seen in the binary dataset are not visible here.  Due to its higher starting bit depth, the 16 bit 

dataset is not as affected by the increase in internal voxel information as was the case in the 

binary dataset.  This leads to less overall changes within each voxel due to their combination 

as the total number of voxels decreases.  This is also displayed in the relatively constant 

values of the cumulative mass in.  The porosity map information as determined by the spatial 

position of the voxels is not influenced by the binning procedure and the solute diffusion into 

the system remains relatively unaffected. 
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Figure 4.12.  Concentration map at an xy slice 3.3x10-4m from the source after 0.01hrs for the porosity 
dataset. Binned a) 1x b) 2x c) 4x d) 8x and e) 16x. 
 

 As with the binary dataset, the binning affects the resolution of the datasets and leads 

to a smaller amount of voxels.  Contrastingly, the pores are spread relatively uniformly 

through the dataset, resulting in a limited volume of zero-porosity through which the solute 

does not travel.  This results in a fairly constant mass flux into and through the sample as is 

visible in Figures 4.12 and 4.13. 
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Figure 4.13.  Concentration profiles along the long axis of the domain for each output time for the 
porosity map dataset.  Binned a) 1x b) 2x c) 4x d) 8x and e) 16x 
 

 There is very little variation between the diffusion profiles through the datasets 

binned at different amounts.  This agrees with the relatively constant cumulative mass fluxes 

from Table 4.6 as well as the connectivity of the pores in the system as examined through the 

ratios in Table 4.7 below. 
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4.4.2.3  Binary Versus 16 Bit Datasets 

The two datasets create quite different models for diffusion.  With its pore structure made up 

of either open pore space or closed solid media, the unbinned binary dataset forces the Iodide 

diffusion to travel only through areas of connected pores.  Transport through the solid media 

is minimized and hence somewhat convoluted pathways may emerge.  On the other hand, the 

amount of purely solid media present in the 16 bit dataset is of a much smaller proportion.  

Much of the solid matrix that is found in the binary dataset is instead already averaged 

alongside the open pore structure.  This pore structure, while having a lower porosity than in 

the binary case, is more even throughout the media.  Thus the transport path for Iodide 

diffusion is less through specific pore pathways and occurs more as a unified diffusion front.  

This difference disappears as the datasets are binned and the diffusion front model becomes 

prevalent throughout.  This can be seen in the ratios calculated in Table 4.7 below.  The ratio 

of Porosity to Cumulative Mass In gives insight into how easily the solute can enter and 

travel along the open pores of the system.  The higher ratio signifies that the pores are more 

connected and that it is relatively easy for the solute to enter and move about the system. 

 Binary 16 Bit 

Binned 
amount 

 

bulk 
porosity 

(%) 

Cumulative 
Mass In 

(mol/1.0hr) 

Ratio 
(Porosity / 
mass in) 

bulk 
porosity 

(%) 

Cumulative 
Mass In 

(mol/1.0hr) 

Ratio 
(Porosity / 
mass in) 

1x 22.5266 1.87E-06 8.3E-6 16.3521 2.68E-06 16.4E-6 

2x 22.4814 2.19E-06 9.7E-6 16.3513 2.66E-06 16.3E-6 

4x 22.3974 2.68E-06 12.0E-6 16.3506 2.67E-06 16.3E-6 

8x 22.2950 3.23E-06 14.5E-6 16.3500 2.71E-06 16.6E-6 

16x 22.2300 3.73E-06 16.8E-6 16.3495 2.75E-06 16.8E-6 

 
Table 4.7.  Comparison of ratios of porosity / mass in 

 

From Table 4.7, the unbinned binary dataset has the lowest ratio and thus the lowest 

amount of interconnectivity between its pores.  This occurs due to the large volume of zero 
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porosity material within the dataset.  As the binary dataset is binned, the volume of zero 

porosity material decreases through the averaging effect of the binning and the ratio as well 

as the connectivity increase.  Within the 16 bit porosity map, there is very little variation 

between the ratios of the binned datasets.  This occurs because the distribution of porosity 

within the system is initially well spread and thus subsequent binning has little effect on the 

connectivity of the pores. 

 

4.4.2.4  Arithmetic  Versus Harmonic Averaging 

Similar spreading of diffusion into areas of lower porosity can be seen when 

comparing the arithmetic and harmonic averaging schemes.  For the binary case, the 

difference between the averaging schemes is very noticeable as the connectivity of the 

separate pores is artificially increased by diffusion through areas of zero-porosity.   

 

 

 

 

 

Dataset 
Type 

Dataset 
Type 

bulk 
porosity 

(%) 

Runtime 
 

Cumulative Mass In 
(mol/1.0hr) 

Harmonic 22.5266 39 hrs 37 min 12 sec 1.87E-06 
Binary 

Arithmetic 22.5266 28 hrs 37 min 25 sec 2.62E-06 

Harmonic 16.3521 20 hrs 38 min 55 sec 2.68E-06 
16 bit 

Arithmetic 16.3521 25hrs 39 min 51 sec 2.76E-06 

 
Table 4.8.  Parameters of arithmetic vs harmonic  

Due to the binary nature of the dataset, areas of open pore are frequently located 

adjacent to areas of zero porosity matrix.  As explained earlier, arithmetic averaging leads to 

artificial diffusion into the areas of zero or low porosity.  This can be seen in the comparisons 

in Figure 4.14 as the slice from the model using arithmetic averaging shows large areas with 

high Iodide concentration in regions that have low porosity.  The Iodide diffusion path from 
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the model using harmonic averaging on the other hand more closely follows the apparent 

pore structure of the media. 

 

 

Figure 4.14.  Slice of porosity 3.3x10-4 m from the source for binary data set, as well as concentration 
maps for models with harmonic and arithmetically averaged modeling schemes (respectively) 
 

For the 16 bit case, the difference between the arithmetic and the harmonic averaging 

schemes is not as prevalent as in the binary case.  Given that the adjacent cells are more 

likely to be similar in value in this dataset than in the binary case, the choice of averaging 

scheme has a greatly reduced effect.  This could be an artifact of the original processing step 

used to create the 16 bit dataset from the raw microCT data.  Due to the resolution limits 

emplaced by the imaging device, the dataset has already undergone a certain amount of 

“averaging”. 

 

 

Figure 4.15.  Slice of porosity for 16 bit data set (porosity map), as well as concentration maps for models 
with harmonic and arithmetically averaged modeling schemes (respectively) 
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 This inferred imaging device limited averaging can be compared to the arithmetic 

averaging of the porosity maps that occurs through the binning process.  While it’s argued 

above that harmonic averaging is best for contending with artificial diffusion into areas of 

zero or low porosity during solute transport, harmonic averaging during the binning process 

would quickly close off the open pores and lower the overall bulk porosity of the sample as 

its connectivity is reduced to zero.  Arithmetic averaging, conversely, keeps the bulk porosity 

of the sample relatively constant throughout the binning process, but it also spreads the open 

pores among a greater volume of the sample thus potentially increasing the connectivity in 

the process. 

 

4.4.3  Crop 2 

Crop 2 is located in the upper left quadrant of the original dataset.  It is an area of 

lower than average porosity with small areas of connected pores. 

4.4.3.1  Binary Dataset 

The Crop 2 binary dataset has the lowest bulk porosity value of all of the datasets 

with a porosity of 10%. With the low bulk porosity and thus the large areas of zero porosity 

solid matrix, the unbinned binary dataset has a very restricted transport pathway through the 

10% of the media that is open to diffusion (Figure 4.10).   
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Binned 
amount 

# of cells 
(x by z) 

cell size 
(m) 

bulk 
porosity 

(%) 

Runtime 
 

Cumulative Mass In 
(mol/1.0hr) 

1x 144 by 96 1.80E-05 10.1696 65 hrs 21 min 50 sec 2.13E-07 

2x 72 by 48 3.60E-05 10.1434 1 hrs 41 min 40 sec 3.20E-07 

4x 36 by 24 7.20E-05 10.0862 3 min 22 sec 5.22E-07 

8x 18 by 12 1.44E-04 9.9854 12.06 sec 8.17E-07 

16x 9 by 6 2.88E-04 9.8729 0.98 sec 1.12E-06 

 Table 4.9.  Parameters for binary dataset crop 2 as a function of binning degree 

 

Similar to Crop 1, as the dataset becomes more binned, the volume of voxels of zero-

porosity decreases as the binning process arithmetically averages them with surrounding 

open pores.  Due to its low starting porosity, the number of pores open to influx of solute 

from the source is relatively small.  This can be seen in the small value for cumulative mass 

in.  Once binned 16x, the area open to influx of solute from the source is greatly increased 

and the cumulative mass influx into the system increases by a factor of 5. 

 

 

Figure 4.16.  Concentration map for crop 2 at an xy slice 3.3x10-4m from the source after 0.01hrs for crop 
2 of the binary dataset. Binned a) 1x b) 2x c) 4x d) 8x and e) 16x. 
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Through arithmetic averaging, the binning quickly appears to increase the area 

through which the Iodide can diffuse.  Seen clearly in the concentration profile (Figure 4.16), 

each subsequent binning greatly increases the transport of the Iodide (Table 4.8).  Though it 

may seem detrimental, arithmetic averaging is used such that the bulk porosity remains 

relatively constant throughout the binning. 
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Figure 4.17.  Concentration profiles for crop 2 along the long axis of the domain for each output time for 
the binary dataset.  Binned a) 1x b) 2x c) 4x d) 8x and e) 16x. 
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4.4.3.2  16 Bit Dataset 

With a bulk porosity of 12%, Crop 2 again has a lower porosity than the average of 

the original dataset. Due to the smaller variance of the 16 bit datasets, the lower porosity of 

Crop 2 acts similar to its higher porosity counterpart.  Like the Crop 1, subsequent binning 

does not have much of an effect on the porosity and thus on the Iodide transport. 

Binned 
amount 

 

# of cells 
(x by z) 

cell size 
(m) 

bulk 
porosity 

(%) 

Runtime 
 

Cumulative Mass In 
(mol/1.0hr) 

bin1x 144 by 96 1.80E-05 11.3812 22 hrs  3 min 44 sec 1.52E-06 

bin2x 72 by 48 3.60E-05 11.3805 39 min 43 sec 1.51E-06 

bin4x 36 by 24 7.20E-05 11.3798 2 min 31 sec 1.53E-06 

bin8x 18 by 12 1.44E-04 11.3793 10.62 sec 1.59E-06 

bin16x 9 by 6 2.88E-04 11.3787 0.89 sec 1.65E-06 

 Table 4.10.  Binned parameter for 16 bit dataset crop 2 

 

4.4.3.3  Binary Versus 16 Bit 

With the lower bulk porosity of Crop 2, quite a noticeable difference can be seen 

between the 10% porosity binary dataset and the 12% porosity 16 bit dataset.  While the large 

amount of solid matrix present in the binary dataset greatly limits the transport through the 

media, the slightly lowered average porosity of the 16 bit dataset has little effect on lowering 

the rate of the Iodide transport through its domain.  The contrast between the two dataset 

types can be attributed to the differences in the connectivity of their open pores.   

The consequence of this difference depends greatly on the resolution of the sample in 

question and the scale that is of interest.  The binary dataset needs high resolution imaging to 

be sure that thresholding can adequately describe the pore structure of the sample.  Due to the 

large computational constraints required by high resolution images, this limits the overall size 

 66



of the sample which in itself can create experimental challenges.  To bypass some of these 

challenges, Nakashima (2003, 2008) chose to examine the diffusion of small numbers of 

particles within certain samples using random walk simulations. While this effectively 

characterizes the diffusion characteristics of the rocks, it lacks the ability to be expanded 

beyond the realm of small scale solute transport.   

The 16 bit dataset doesn’t depend as much on the resolution of the images since each 

voxel is already a mixture of open and closed pore space.  From the perspective of larger 

scale averaging and the effectiveness of binning, the 16 bit dataset appears to have the 

advantage of robustness and consistency.  But, from a small-scale connectivity perspective, a 

binary dataset appears to better maintain tortuous transport pathways which are lost in the 

averaging of the binned as well as the 16 bit datasets. 

Unfortunately, the simulated behaviour of the solute through the sample has yet to be 

experimentally examined and as such it is unclear as to how much the connectivity of the 

pores influences the diffusion pathways at the scale of this project.  With experimentally 

derived solute concentrations, this could be determined.  Unfortunately, these were not 

available at this time. 
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4.4.4  Crop 1 Versus Crop 2 

The bulk porosity of Crop 1 for the binary and 16 bit datasets is 20% and 16% 

respectively.  This differs from the values of 10% and 12% found for Crop 2. This difference 

is much more visible on the transport within the binary datasets.  The lack of connected 

pathways of open pores in Crop 2 substantially slows the progress of Iodide diffusion 

through the media. Contrastingly, within the 16 bit datasets, both crops have a lack of areas 

of zero porosity and thus the transport is not limited to any specific areas and the Iodide 

transport is fairly even throughout the media for both crops. 

 

 Crop 
 

Dataset 
Type 

bulk 
porosity 

(%) 

Runtime 
 

Cumulative Mass In 
(mol/1.0hr) 

Binary 22.5266 39 hrs 37 min 12 sec 1.87E-06 
1 

16 bit 16.3521 20 hrs 38 min 55 sec 2.68E-06 

Binary 10.1696 65 hrs 21 min 50 sec 2.13E-07 
2 

16 bit 11.3812 22hrs 3 min 44 sec 1.52E-06 

 

 

Table 4.11.  Comparisons between crops for unbinned datasets  
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4.5  Discussion 

 Using Fick's law to model diffusion, studies have been able to adequately mimic the 

bulk diffusive transport visible in bench and field scale experiments (Voss and Souza, 1987. 

Zhang et al, 1998. Harvey and Gorelick, 2000, Patriarche et al., 2004.).  When looking at the 

pore scale, further success has been found by using random walk simulations in place of 

Fick's law (Nakashima, 2003).  Given the current state of easily available computational 

capacity, expansions of pore scale simulations are hitting a ceiling.  Thus, in trying to fill the 

gap, this study has examined bringing Fick's law to the local REV scale (porosity-map 

dataset). The unbinned binary dataset simulations essentially correspond to the application of 

Fick’s law to the pore scale.  To ensure that the pore scale model adequately represents the 

samples in question, a pore size analysis must be conducted to make sure that the resolution 

of the investigating instruments is high enough that it can resolve the individual pores.  If this 

is not the case, a binary dataset can be constructed, but it will not represent the sample 

correctly.  With poorly resolved pore/matrix boundaries, the distinction between open and 

closed pores becomes unclear.  The thresholding used to create a binary dataset can then 

create smaller or larger pores dependent on where the threshold is set.  This can affect the 

connectivity of the sample as pathways can be either closed off or enlarged respectively. 

 By using Fick's law, the main driving force for diffusion is the concentration gradient 

that is set up within the media.  While the binary dataset may not be pure pore scale modeling 

due to limitations in the resolution of the investigative techniques, assessments can be made 

of the diffusive transport mechanisms of contaminants on the scale of the materials' pore 

structure.  Given the transportation timelines and velocities involved, this is the scale of 

interest. 
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 Unfortunately, without pertinent concentration profile data, the assessments made 

cannot be directly compared to real-world laboratory results and thus cannot at this time be 

verified for correctness.  Once this type of data can be reliably obtained, the errors inherent in 

each of the tested modeling schemes can be better quantified and compared to actual 

transport characteristics. 

 Even though this REV scale modeling is less computationally intensive than its 

comparably sized Random Walk pore scale counterpart, the largest simulation heretofore 

examined consisted of just under 2,000,000 cells and measured a mere 2.6 mm x 2.6 mm x 

1.7 mm.  Using a desktop computer with a 2Ghz AMD processor and 4Gb of RAM, diffusion 

through the model for a simulated 2 hours took 20-40 hours of computation.  If it were 

possible to simulate the entire 10 mm x 10 mm x 20 mm dataset at this resolution, the 

computation times required to complete the 75 hour lab diffusion experiment would be very 

large indeed.  With the further addition of more components and reactions to the model, it 

can be deduced that images at this resolution are entirely too large for simulations using this 

model. 

 Realizing these challenges, three courses of action are being pursued.  As has been 

determined in the study above, binning of the dataset can sometimes be undertaken with very 

little apparent loss of information or change in the transport characteristics of the model.  

With this in mind, entire large datasets may be binned down to acceptable sizes before 

modeling more chemically complex models in the future.  The decreased physical complexity 

will allow for computation times to remain relatively low while the chemical complexities 

are added and examined. 

Secondly, smaller volumes of the materials can be examined experimentally.  With 

the above datasets, cropping of the original dataset is achievable because of the lack of 
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laboratory-derived concentration profile data for comparison and verification.  Due to the 3D 

nature of the pore structure and subsequent diffusive transport paths, cropping would not be 

applicable if such a comparison between simulated and experimental results were to be made.  

Assumptions of zero mass flux along the lateral boundaries would rightly be called into 

question.  With a smaller experimental dataset, the experimentally set boundary conditions 

could be used in the simulations and direct comparisons could subsequently be made. 

 Thirdly, the proliferation of multiple-processor computing opens the possibility of 

creating an enhanced diffusion-specialized parallel computing model.  Splitting the 

simulations into manageable pieces to thus be simulated in parallel amongst multiple 

processors, computational runtimes can be reduced from their linearly processed 

counterparts. 

 As should be apparent, these three courses of action are not mutually exclusive.  

Thus, to quickly examine large, high resolution, chemically complex systems, all three of 

these actions may be implemented at the same time. 

 Once computational constraints have been addressed, future considerations may 

consder increasing the complexity of the simulations.  In addition to the pure diffusion driven 

transport, chemical processes may be of importance in contaminated systems.  Along with 

regular surface-contaminant sorption interactions, the implications of other precipitation-

dissolution reactions may become prevalent at the small scale.  With its dependence on 

porosity, the diffusive transport paths may be altered significantly as dilution enlarges and 

precipitation contracts the pore spaces and throats.  If widespread precipitation occurs, the 

transport pathways could even be shut down altogether as the pores all become clogged.  As 

the models become more reliable, future resources may also be put towards examinations of 

in situ investigation techniques for dataset collection.  As in Chitale, 2005, in situ porosity 
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imaging techniques may allow for the models to simulate transport through relatively 

undisturbed material.  This should always be a consideration when dealing with materials 

from stressed environments, even more so when the stresses are high as they potentially are 

in deep geologic repositories.  With in situ testing, advances in the characterization of 

potential waste burial and containment sites could be made in the future. 
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Chapter 5:  Summary and Conclusions 

 Diffusion, as a means of contaminant transport, is often overlooked or relegated to 

play a minor role in groundwater systems.  As such, it has not been as thoroughly studied as 

its advective system counterparts.  Studies of diffusion in high risk environments, such as 

geologic repositories considered for the emplacement of nuclear waste, have been relatively 

recent.  In these higher risk environments, contaminant transport must be kept to a minimum 

as there must be full containment for a perceptively long time.  To ensure contaminant 

containment over these long timelines, studies have begun to examine the small scale 

processes involved in diffusion-dominated hydraulic settings.  With transport being limited to 

diffusion, the potential for contaminant emission is diminished. 

 To examine the processes of diffusive transport on a local (sub-cm) scale, this study 

attempts to simulate diffusion at the μm-mm scale using material parameters obtained 

through high-resolution imaging.  With the transport module of the REV scale reactive 

transport code MIN3P, diffusion was simulated through a small section of the provided 

material as the two datasets of varying radiometric resolution were subjected to changing 

voxel resolutions.  Varying the radiometric and pixel resolutions, the examination of the 

potential effects of differing imaging techniques and their effectiveness at certain 

measurement scales was possible.  Unfortunately, the lack of useable target concentration 

data prevents validation of the simulations to real world results and limits the discussion to 

comparisons within the simulated results. 

 In the case of 3D diffusion, the use of a binary dataset to imitate pore structure of a 

pore scale model gives some insight into the potential movement of a contaminant through 

the material.  It can be seen that, due to wandering connections of areas of open porosity, the 

diffusion of the contaminant through the material is noticeably tortuous and three- 
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dimensional.  With decreasing porosity within a material, this reliance on pore connectivity 

will logically increase, as the amount of open pores gets fewer and farther between. 

 Moving away from the binary dataset, this reliance on connections of pore spaces 

noticeably decreases.  With the increase in bit depth brought about by binning or the 

simulations involving the 16 bit porosity map, the three-dimensional nature of the diffusion 

paths becomes less observable as a more unified diffusion front begins to emerge.  This 

smearing of the contaminant into areas of low porosity exists because of the increased bit 

depth of the 16 bit and binned binary datasets.  This increased number of unique porosity 

values creates a more normal distribution of porosity values and in doing so, decreases the 

dichotomy between the open pore spaces and the closed matrix.  Within the 16 bit dataset, 

the porosity distribution is already fairly normally distributed and thus, subsequent binning 

has relatively little effect on the simulations.  This lack of effect can also be seen in the 

constancy of the mass influx into the 16 bit system as there appears to be little change in the 

connectivity of the pores during the binning process. 

 The largest effect of the binning was seen with the low porosity binary set.  This 

dataset, with its large areas of low porosity matrix material, has the transport occurring 

through tenuously connected pathways of open pore spaces.  When adjacent voxels are 

averaged arithmetically during the binning process, the increase in bit depth comes at the 

expense of the low porosity areas.  More transport can thus occur through those areas and the 

tenuous connections between the open pores widens.  As the bit depth increases and the 

porosity values move towards a more normal distribution, mass transfer into the system is 

also found to increase.  In the most extreme case of the low porosity binary Crop 2 being 

binned by 16 times, the increase in mass transfer is by a factor of 5.26.  As the areas of low 

porosity that originally stop the contaminant from entering the system are binned into areas 
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of medium porosity, the mass can enter the system through the entire input face instead of 

entering only through areas of open pores.   

Increased mass transfer into the system can also be seen when the model uses 

arithmetic averaging instead of harmonic averaging to calculate the mass flux between cells.  

Though showing similar mass transfer results to the partially binned dataset, the diffusion 

into the binned dataset remains logical since it is diffusing into an area of non-zero porosity.  

Contrarily, diffusion into the unbinned dataset using the arithmetically averages mass fluxes 

transfers mass from the contaminant source and open pores into areas of very low porosity.  

This increases the amount of mass into the system, but much of the extra mass enters the 

matrix where it should not belong.  Due to this unsuitable transport, harmonic averaging 

should be used. This is common practice for the solution of groundwater flow problems; 

however, most solute transport models use arithmetic averaging for calculation of the 

effective diffusion coefficients. 

Erroneous mass transfer within the system can also be attributed to errors caused by 

numerical diffusion.  As noted in section 3.3, diffusion numbers in excess of 1 introduce 

errors caused by the transport of the solute outside of the constraints of the numerical cell in 

question.  When the diffusion number is on the order of 1, the errors are relatively small and 

occur only at the low concentrations existing at the diffusion front.  But as the diffusion 

number gets sufficiently large (150), errors of 5% occurred even among the bulk of the 

diffusing mass.  Therefore, if computational constraints allow, the diffusion number should 

be kept below a maximum of 10 to avoid errors that are greater than 1%. 

Looking at the mass transfer through the systems, there appears a mixture of two 

forms of transport.  Moving from the binary to the binned and 16 bit models, there is a shift 

from behaving like a pore-scale model with fingers of diffusing material to a model that 
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relies on a more average diffusion front that moves through the system.  The former model 

gives insight into how connectivity of the pores can play a role in the tortuous movement of 

the solute, but it is highly variable and dependent on sample and instrument resolutions.  

With the variations seen during the adjustments to the binary dataset, it is difficult to have 

confidence that the simulations adequately describe the solute transport.  The 16 bit porosity 

model fits into our REV scale definition and produces consistent diffusion profiles due to its 

more even distribution of porosity.  If available, experimentally derived diffusion profiles 

would be desired to present a form to which the different models could be validated. 

 For future studies, the 16 bit porosity map method of image processing should be 

further tested and verified against experimentally derived concentrations.  As it was found to 

give the most consistent results through all of its related datasets, it appears to be quite 

susceptible to data manipulation.  As is apparent by the large amounts of data, some sort of 

data manipulation is needed in order to be able to simulate a sizeable volume of material. 

 If validation attempts find that the 16 bit dataset is inadequately less accurate at 

predicting diffusion concentration profiles within the material, differing binning methods 

should be examined.  While binning using the arithmetical averaging of adjacent cells 

appears to give acceptable representations of the original datasets in some respects, it does 

not appear to work well on others.  Notably, the binning of the low porosity dataset allowed 

for an unreasonable loss of areas of lower porosity.  This loss of the low porosity matrix was 

the cause of increasingly excessive transport through the material as the binning increased.  

Binning using harmonic averaging would address this problem, but would instead favour the 

low porosity areas and the pores would instead close up, stopping all transport altogether. 

Further study into the effects of different binning schema can perhaps find a middle ground.  

Adhering to the normal averaging formulae, using a geometric mean would perhaps give a 
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desirable result that is the best of both worlds.  Looking elsewhere, image resampling 

techniques aim to manipulate image resolutions while preserving image quality and may 

provide a means to better binning. 

 Without doubt, in order to move forward with the modeling of diffusion systems at 

such small scales, computational restraint will be needed to keep the model achievable on 

today's technology.  With advancements in parallel computing, these restrictions may well be 

loosened.  Until then, averaging techniques may allow the laboratory experiments to be 

conducted such that they can be reliably modeled. 
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Appendices 

 

A.1  Additional 2D Verification 

 Given the difficulties in finding a robust analytical model code for which to compare 

diffusion profiles obtained from a 2-dimensional patch source, numerous numerical 

simulations were run with varying parameters to determine where divergences between 

certain solutions exist.  For the case where the diffusion coefficient equals 1.157d-10 m2/s, 

subsequent simulations were conducted to determine if boundary effects were present.  Table 

A.1 lists the simulations that were run. 

 

Simulation 
number 

Column 
length (m) 

Spatial 
increment 
Δx (m) 

Column 
width (m) 

Spatial 
increment 
Δy (m) 

Source 
Width  
Y (m) 

Diffusion coefficient 
(m2/s) 

48 0.10 0.40 0.03 

49 0.20 0.40 0.03 

51 0.10 0.80 0.03 

55 0.20 

0.0025 

0.80 

0.01 

0.03 

D0 = 1.157d-10 

Table A.1.  Simulation parameters used for 2D diffusion while testing for boundary effects. 
 

 

While the spatial increments were kept constant, the length and width of the column were 

increased.  These increases extend the boundaries such that the diffusing Iodide is not 

influenced by reaching the sides or end of the column.  The difference these changing extents 

have on the diffusion profiles can be seen in Figure A.1.  From the data, the concentration 

reaches the background minimum of 1.0d-10 at a distance along the column of 0.168 m.  

Thus there should be observable boundary effects for the simulations where the column is 

only 0.1 m long. 
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Figure A.1.  Concentration difference from original numerical simulation (N48).  Diffusion of Iodide 
along the column centerline. 

 

As seen in Figure A.1, there is no observable difference between simulations of 

similar column lengths, but there is a difference between the shorter and longer column 

simulations.  This difference can be accounted for by the boundary effect that occurs as the 

Iodide reaches the end of the shorter column.  At a distance of 0.02 m along the column 

centreline, the difference between the simulations of different column lengths is on the order 

of 1x10-6 mol/l.  Comparatively, the difference between the simulated and analytical diffusion 

profiles at this distance is on the order of 2x10-2 mol/l, indicating that there are fundamental 

differences between the results that cannot be attributed to boundary effects.   
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 This difference can also be seen in the 2D Figure A.2 below.  The diffusion pattern is 

fairly similar between the simulation types, except near the source zone. 

 

 

Figure A.2.  Concentration map of Iodide diffusion form a patch source at x=0 for a) MIN3P numerical 
model, and b) Patch3d analytical model. 

 

 

Near the source zone, the solute appears to be spreading in the y-dimension parallel to 

the boundary only in the numerical simulation.  In the analytical solution, the solute appears 

to curl around the top and bottom of the source zone and travel towards x=0 at an angle that 

is not parallel to the y axis.  This loss of mass in the –x direction, could account for the lower 
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than simulated analytical concentrations, and is not consistent with the underlying governing 

equations. 
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A.2  Data Pre-processing 

 The original datasets were supplied from UNB as a set of images stacked along the z-

axis, with x and y-coordinates specified for each image.  To facilitate input into the MIN3P 

model, the data needs to be pre-processed to match the code’s data structure. At the same 

time, the original datasets can be cropped, binned, and transformed to select sub-regions and 

to adjust the resolution of the data set.  Pre-processing was performed using the image 

manipulation program imageJ (http://rsbweb.nih.gov/ij/) and a set of tailored Fortran 90 

programs, developed specifically for this project. For the sake of simplicity, the following 

example input file is used for each of the created F90 programs. 

 

The parameters used below are as follows:   

nx, ny, nz:  number of cells in the x, y, z dimension 

scale:  scaling factor applied to normalize the image to porosity (either 255 or 65536) 

slice1:  the number of the slice from the original dataset that is to be nearest the source 

change: the distance in metres between slices (Δz) 

nout:  the number of outputs provided by MIN3P 

nbin:  the amount of binning 
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Example Input 

nx ny nz scale  slice1 change 
144 144 96 255  300  0.180E-04 
nout  
1  
nbin 
2 
 

 

A.2.1  Cropping 

 Cropping of the stack of images in the x-y plane is completed using the built-in 

cropping tool within the image manipulation program imageJ (http://rsbweb.nih.gov/ij/).  

ImageJ allows for cropping of multiple images at a time.  The required starting pixels and 

size of crop is all that is required.  As pictured in Figure IV.1, Crop 1 is located 20,20 pixels 

from the top left and is 144x144 pixels.  Crop 2 is located 215,215 from the top left corner of 

the original dataset and is also 144x144 pixels.  Cropping of the stack in the z direction is 

completed by choosing the desired number of slices to enter into the transformation program 

(Appendix A.2.2.) 

 

A.2.2  Transformation into MIN3P Format 

 In order to correctly read the input data, the datasets are transformed from their 

original x-y image slices into a single file of the format x,y,z,n.  This program reads in the 

stack dimensions (nx,ny,nz), the amount of scaling to be applied to each voxel (scale), the 

location of the first slice to be read (slice), and the distance in metres between the slices 

(change).  Also inputted are each x-y slice named prefix####.txt where the prefix is specified 

on running the program and the number increases sequentially through the slices.  The 

program outputs the transformed file as output.out in the format x,y,z,n without the required 

three line header.  The header needs to be added manually after the transformation.  The 
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program also calculates and outputs the average value of n per slice for each slice in 

average.avg. 

 
PROGRAM generalized 
 
 INTEGER :: nx 
 INTEGER :: ny 
 INTEGER :: nz 
 INTEGER :: nn 
 INTEGER :: nc 
 INTEGER :: nt 
 INTEGER :: xlow 
 INTEGER :: xhigh 
  
 REAL :: xtemp 
 REAL :: scale = 1 
 REAL :: xcng 
 REAL :: ycng 
 REAL :: zcng = 0 
 REAL :: chng 
    
 INTEGER :: ivol = 1 
 INTEGER :: jvol = 1 
 INTEGER :: kvol = 1 
 INTEGER :: lvol = 1 
 INTEGER :: tvol = 1 
 INTEGER :: iz = 1 
 INTEGER :: itxt = 10 
 INTEGER :: iout = 15 
 INTEGER :: iavg = 12 
 INTEGER :: iinp = 11 
 INTEGER :: fstslc = 0 
    
 character*72 :: prefix 
 character*4 :: suffix 
 character*1 :: cdummy 
  
 INTEGER :: l_prfx 
 INTEGER :: l_sufx 
    
 REAL, PARAMETER :: pi = 3.141592 
 REAL, allocatable :: por(:) 
 REAL, allocatable :: por_slice(:) 
 REAL, allocatable :: rowt(:,:) 
 REAL, allocatable :: row(:,:) 
 REAL, allocatable :: av(:) 
  
 REAL, allocatable :: xnum(:) 
 REAL, allocatable :: ynum(:) 
 REAL, allocatable :: znum(:) 
    
  
      write(*,*)'enter the prefix of the files to be concatenated...' 
       
c getting prefix name 
       
      call getstrqq(prefix) 
      l_prfx=index(prefix,' ')-1 
      if(l_prfx.eq.-1.or.l_prfx.gt.72)then 
         l_prfx=72 
      endif 

 87



 
c read dimensions from input file 
 
      open(iinp,file=prefix(:l_prfx) 
     & //'.inp',status='unknown',form='formatted') 
 
      read(iinp,*) cdummy 
      read(iinp,*) nx,ny,nz,scale,fstslc,chng 
c     read(iinp,*) nx,ny,nz,scale,chng 
       
             
c allocating parameters 
 
 nn = nx * ny 
 nt = nn * nz 
  
 allocate (por(nt)) 
 allocate (por_slice(nn)) 
 allocate (rowt(1,nx)) 
 allocate (row(nx,1)) 
 allocate (av(nz)) 
 
      allocate (xnum(nt)) 
      allocate (ynum(nt)) 
      allocate (znum(nt)) 
       
             
       
c start z loop 
      do iz = 1,nz 
       
       lvol = fstslc + iz-1 
c      lvol = 300 + iz-1 
       ycng = 0 
        
 100   format(I4.4)  
        
         write (suffix,100) lvol 
         l_sufx = 4 
 
    open(itxt,file=prefix(:l_prfx)//suffix(:l_sufx) 
     & //'.txt',status='unknown',form='formatted') 
 
        
 
c transposing file 
        kvol = 1 
   do jvol = 1,ny 
           
          read(itxt,*) (row(ivol,1),ivol=1,nx) 
     rowt=transpose(row) 
      
     xcng = 0 
           
       do ivol=1,nx 
         if ((rowt(1,ivol))==0) then 
           por_slice(kvol)=(0.1000000E-19) 
         else 
           por_slice(kvol)=((rowt(1,ivol)))/scale 
         end if 
          
         por(tvol)=por_slice(kvol) 
          
         xnum(tvol)=xcng 
         ynum(tvol)=ycng 
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         znum(tvol)=zcng 
          
         xcng = xcng + chng 
         kvol = kvol + 1 
         tvol = tvol + 1 
                            
       end do 
    
   ycng = ycng + chng 
    
   end do 
       
      zcng = zcng + chng 
       
c averaging of slices   
             
     av(iz) = sum(por_slice) / size(por_slice) 
            
  close (itxt) 
       
      end do      
      
c end z do loop   
   
  
  
 open(iavg,file='average.avg',status='unknown',form='formatted') 
       
   write(iavg,'(/a)') 'average:' 
        write(iavg,'(72a/)')('-',i=1,72) 
        write(iavg,'(/a)') 'the average for the specified slice 
     &  in percent(%) is:'  
         
      do iz = 1,nz 
         
       write(iavg,*) 100 * av(iz) 
  
 end do 
  
 close (iavg) 
              
      open(iout,file='output.out',status='unknown',form='formatted') 
  
   do ivol = 1,nt 
     write(iout,200) xnum(ivol),ynum(ivol),znum(ivol),por(ivol) 
   end do 
     
200 format(100E15.7) 
  
 close (iout) 
  
END PROGRAM generalized 
 

A.2.3  Binning 

 Like cropping, binning of the stack of images in the x-y plane is also completed using 

the built-in imageJ plugin filter.  Binning in these planes was completed as consecutive 2x 

binnings.  After binning in the x-y plane, the dataset is transformed as explained above.  
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Binning of the stack in the z direction is completed after the transformation using the 

following program.  This program reads in the stack dimensions (nx,ny,nz) as well as the 

desired binning degree (nbin) from the input file.  Also inputted is the transformed dataset 

file prefix.por with the three line header from the transformation step.  This program outputs 

a dataset file named prefix.binned in the same x,y,z,n format as was inputted. 

 
PROGRAM binXtimes 
 
 INTEGER :: nx 
 INTEGER :: ny 
 INTEGER :: nz 
 INTEGER :: zbin 
 INTEGER :: nnew 
 INTEGER :: nn 
 INTEGER :: nt 
 INTEGER :: nout 
 INTEGER :: need 
 INTEGER :: nbin = 2 
   
 INTEGER :: ivol = 1 
 INTEGER :: tvol = 1 
 INTEGER :: iout = 1 
 INTEGER :: ix = 1 
 INTEGER :: iz = 1 
 INTEGER :: ibinned = 12 
 INTEGER :: iinp = 11 
 INTEGER :: ipor = 10 
  
 character*72 :: prefix 
 character*1 :: cdummy 
  
 INTEGER :: l_prfx 
 INTEGER :: l_sufx 
 
 REAL, allocatable :: binz(:) 
 REAL, allocatable :: por(:) 
 REAL, allocatable :: por_sum(:) 
 REAL, allocatable :: xnum(:) 
 REAL, allocatable :: ynum(:) 
 REAL, allocatable :: znum(:) 
  
  
 write(*,*)'enter the prefix of the files to be binned...' 
        
c getting prefix name 
        
 call getstrqq(prefix) 
   l_prfx=index(prefix,' ')-1 
   if(l_prfx.eq.-1.or.l_prfx.gt.72)then 
      l_prfx=72 
         endif 
 
  
c read dimensions from input file 
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        open(iinp,file=prefix(:l_prfx) 
     & //'.inp',status='unknown',form='formatted') 
  
   read(iinp,*) cdummy 
       read(iinp,*) nx,ny,nz 
       read(iinp,*) cdummy 
       read(iinp,*) cdummy 
       read(iinp,*) cdummy 
       read(iinp,*) nbin 
        
 
c allocate sizes to arrays 
       
      nx = (nx / nbin) 
      ny = (ny / nbin) 
      zbin = (nz / nbin) 
       
      nn = nx * ny 
 nt = nn * nz 
 nnew = nn * zbin 
       
 allocate (binz(nnew)) 
 allocate (por(nt)) 
 allocate (por_sum(nn)) 
 allocate (xnum(nt)) 
 allocate (ynum(nt)) 
 allocate (znum(nt)) 
 
 
  
c read in porosity array 
 
 open(ipor,file=prefix(:l_prfx) 
     & //'.por',status='unknown',form='formatted') 
 
c      read(ipor,*) cdummy 
c read(ipor,*) cdummy 
c read(ipor,*) cdummy 
   do ivol = 1,nt 
            read(ipor,*) xnum(ivol),ynum(ivol),znum(ivol),por(ivol) 
   end do 
   
 close (ipor) 
 
 
 
c loop to get average per slice 
 
   do z = 0,(zbin-1)  
   
c initialize por_sum array 
 
         do ivol = 1,nn 
          por_sum(ivol) = 0.0 
         end do 
   
    do b = 0,(nbin-1) 
     
      ivol = 1 
     
       do y = 0,(ny-1) 
     
           do x = 1,nx 
 
           need = (nn * ((z * nbin) + b)) + (ny * y) + x 
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             por_sum(ivol) = por_sum(ivol) + por(need) 
              
             if (b .eq. (nbin-1)) then 
               binz(tvol) = por_sum(ivol) / nbin              
             tvol = tvol + 1 
           end if 
            
           ivol = ivol + 1 
                                 
           end do 
        
       end do 
          
     end do   
         
        end do 
       
      
c write average output file for each average output      
 
 
         
        open(ibinned,file=prefix(:l_prfx) 
     &     //'.binned',status='unknown',form='formatted') 
          write(ibinned,'(/a)') 'normalized average:' 
          write(ibinned,'(72a/)')('-',i=1,72) 
          write(ibinned,'(/a)') 'the normalized concentration is:'  
                                    
              do iz = 1,(nnew) 
                write(ibinned,200) xnum(iz),ynum(iz),znum(iz),binz(iz) 
              end do 
 
200   format(100E15.7) 
    
   close (ibinned) 
  
END PROGRAM binXtimes 
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A.3  Modifications to MIN3P 

 To accommodate the needs of the datasets provided for the study, numerous 

modifications had to be made to MIN3P.  Those modifications were completed to allow for 

variable archie`s law exponents (Equation 1.5, Section 1.2), to replace the arithmetic 

averaging scheme with a harmonic scheme for diffusion coefficients (Equations 2.5, 2.5, 

Section 2.3.4), and to allow for the input of a porosity field. 

 

A.3.1  Archie`s Law Exponent 

 To account for a variable Archie`s law exponent, the parameter had to be read from 

the input file and subsequently used for the determination of the diffusion coefficient.  First, 

the initcprt subroutine was modified to initialize and then search for and read the exponent 

from the input file as follows: 

 

initcprt.f 

parameter (r86400 = 8.64d4, r3 = 3.0d0, r4 = 4.0d0) 
 
 archie = r4/r3 
 
c  tortuosity corrections - new definition 
 
        subsection = 'tortuosity correction' 
 
        call findstrg(subsection,itmp,found_subsection) 
 
        if (found_subsection) then 
          read(itmp,*,err=999,end=999) subsection 
          if (subsection.eq.'millington') then 
            tortuosity_corr = .true. 
  elseif (subsection.eq.'archie') then 
            tortuosity_corr = .true. 
   if (found_subsection) then 
   read(itmp,*,err=999,end=999) archie 
   end if 
          elseif (subsection.eq.'no correction') then 
            tortuosity_corr = .false. 
          end if 
        end if 
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Once within the program, the exponent was passed to the diffcoff subroutine as the 

variable arch to calculate the diffusion coefficient. 

 

diffcoff.f 
 
      real*8 function diffcoff(diff_p,sat_p,por,tortuosity_corr,arch) 
 
      implicit real*8 (a-h,o-z) 
 
      parameter (r3 = 3.0d0, r4 = 4.0d0, r10 = 10.0d0) 
  
      logical tortuosity_corr 
 
      if (tortuosity_corr) then 
        diffcoff = diff_p * sat_p**(r10/r3) * por**(arch) 
      else 
        diffcoff = diff_p * sat_p * por 
      end if 
 
      return 
      end 
 

The diffcoff subroutine is called in a number of subsequent subroutines and they also 

had to be modified to call the new arch variable.  These included infcrt_a, infcrt_g, jacbrt, 

and mbalrt. 

 

A.3.2  Harmonic Averaging of Diffusion Coefficients 

 The harmonic averaging of the diffusion coefficients is computed within the 

subroutine infcrt_a_d.  This was repurposed from the original subroutine infcvs which dealt 

with the harmonic averaging of permeabilities.  It was modified to read and work with the 

diffusion coefficients. 
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infcrt_a_d.f 

c ---------------------------------------------------------------------- 
c subroutine infcvs tweaked for diffusion 
c ----------------- 
c 
c compute influence coefficients (variably saturated flow) 
c 
c 
c                        /|   ij, K_ij 
c                       / | / 
c                      /  |/ 
c                     |   / 
c            K_i      |  /|           K_j 
c            *--------|-*-------------* 
c            i d_i,ij |  \|  d_j,ij   j 
c                     |   \ 
c                     |  / \ 
c                     | /   A_ij 
c 
c 
c written by:      Uli Mayer - June 12, 96  
c 
c last modified:   Scot Ellis - January 8, 07 
c 
c ---------------------------------------------------------------------- 
  
      subroutine infcrt_a_d 
  
      use parm 
      use gen 
      use phys 
 
      implicit real*8 (a-h,o-z) 
 
      parameter (rhalf = 0.5d0, r1 = 1.0d0) 
 
 sa = r1      !fully saturated 
 
c  initialize pointer to current control volume 
 
      ivol = 0 
 
c  loop over control volumes 
 
      do ivz = 1,nvz                  ! number of control volumes in z 
        do ivy = 1,nvy                ! number of control volumes in y  
          do ivx = 1,nvx              ! number of control volumes in x 
 
c  pointer to current control volume 
 
            ivol = ivol+1 
            jtemp = iavs(ivol) 
 
c  assign conductivities for current control volume 
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            izn = mpropvs(ivol)       !retrieve material properties 
    
   por_i = pornew(ivol)  !assign porosity 
   diff_i = diffcoff(diff_a,sa,por_i,tortuosity_corr, 
     &  archie)      !assign diff 
coef 
    
c  permeability update due to porosity changes 
 
c            if (update_permeability) then 
c             cxx_i = perm_fac(ivol)*cxx_i 
c              cyy_i = perm_fac(ivol)*cyy_i 
c              czz_i = perm_fac(ivol)*czz_i 
c            end if 
 
            jtemp = jtemp+1           ! skip diagonal 
 
c  pointers to previous colums in x,y and z 
 
            ivxp = ivx-1 
            ivxn = ivx+1 
            ivyp = ivy-1 
            ivyn = ivy+1 
            ivzp = ivz-1 
            ivzn = ivz+1 
 
c  assign interfacial distances of current control volume 
 
            if (half_cells) then             !half_cells on boundary 
 
              if (nvx.gt.1) then                        !in x-direction 
                if (ivx.eq.1.or.ivx.eq.nvx) then        !boundary 
                  delx_i = delx(ivx)  
                elseif (ivx.gt.0.and.ivx.lt.nvx) then   !interior 
                  delx_i = rhalf*delx(ivx)   
                end if 
              end if 
 
              if (nvy.gt.1) then                        !in y-direction 
                if (ivy.eq.1.or.ivy.eq.nvy) then        !boundary 
                  dely_i = dely(ivy)  
                elseif (ivy.gt.0.and.ivy.lt.nvy) then   !interior 
                  dely_i = rhalf*dely(ivy)   
                end if 
              end if 
 
              if (nvz.gt.1) then                        !in z-direction 
                if (ivz.eq.1.or.ivz.eq.nvz) then        !boundary 
                  delz_i = delz(ivz)  
                elseif (ivz.gt.0.and.ivz.lt.nvz) then   !interior 
                  delz_i = rhalf*delz(ivz)   
                end if 
              end if 
 
            else                            !full cells on boundary 
 
              if (nvx.gt.1) then                        !in x-direction 
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                delx_i = rhalf*delx(ivx)   
              end if 
 
              if (nvy.gt.1) then                        !in y-direction 
                dely_i = rhalf*dely(ivy)   
              end if 
 
              if (nvz.gt.1) then                        !in z-direction 
                delz_i = rhalf*delz(ivz)   
              end if 
 
            end if                          !(half_cells) 
 
c  calculate influence coefficients in x-direction 
 
            if (nvx.gt.1) then              !connections in x-direction 
 
              if (ivxp.gt.0) then           !left connection   (2) 
                areaf = dely(ivy)*delz(ivz) 
                if (half_cells) then        !half cells on boundary 
                  if (ivxp.eq.1) then 
                    delx_j = delx(ivxp) 
                  elseif (ivxp.gt.1) then 
                    delx_j = rhalf*delx(ivxp)         
                  end if 
                else                        !full cells on boundary 
                  delx_j = rhalf*delx(ivxp)         
                end if                      !(half_cells) 
                jvol = javs(jtemp)               
                jzn = mpropvs(jvol)  
      
     por_j = pornew(jvol) 
     diff_j = diffcoff(diff_a,sa,por_j,tortuosity_corr, 
     &    archie) 
 
c  permeability update due to porosity changes 
 
c                if (update_permeability) then 
c                  cxx_j = perm_fac(jvol)*cxx_j 
c                end if 
 
                diff_ij = diff_i*diff_j 
                cinfrt_da(jtemp) = diff_ij*areaf/(diff_i*delx_j+ 
     &    diff_j*delx_i) 
                jtemp = jtemp+1 
              end if 
 
              if (ivxn.le.nvx) then         !right connection  (3) 
                areaf = dely(ivy)*delz(ivz) 
                if (half_cells) then        !half cells on boundary 
                  if (ivxn.eq.nvx) then 
                    delx_j = delx(ivxn) 
                  elseif (ivxn.lt.nvx) then 
                    delx_j = rhalf*delx(ivxn)         
                  end if 
                else                        !full cells on boundary 
                  delx_j = rhalf*delx(ivxn) 
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                end if                      !(half_cells) 
                jvol = javs(jtemp)               
                jzn = mpropvs(jvol) 
      
     por_j = pornew(jvol) 
     diff_j = diffcoff(diff_a,sa,por_j,tortuosity_corr, 
     &    archie) 
 
c  permeability update due to porosity changes 
 
c                if (update_permeability) then 
c                  cxx_j = perm_fac(jvol)*cxx_j 
c                end if 
 
                diff_ij = diff_i*diff_j 
                cinfrt_da(jtemp) = diff_ij*areaf/(diff_i*delx_j+ 
     &    diff_j*delx_i) 
                jtemp = jtemp+1 
              end if 
 
            end if                          !connections in x-direction 
 
c  calculate influence coefficients in y-direction 
 
            if (nvy.gt.1) then              !connections in y-direction 
 
              if (ivyp.gt.0) then           !front connection (4) 
                areaf = delx(ivx)*delz(ivz) 
                if (half_cells) then        !half cells on boundary 
                  if (ivyp.eq.1) then 
                    dely_j = dely(ivyp) 
                  elseif (ivyp.gt.1) then 
                    dely_j = rhalf*dely(ivyp)         
                  end if 
                else                        !full cells on boundary 
                  dely_j = rhalf*dely(ivyp)         
                end if                      !(half_cells) 
                jvol = javs(jtemp)               
                jzn = mpropvs(jvol) 
        
     por_j = pornew(jvol) 
     diff_j = diffcoff(diff_a,sa,por_j,tortuosity_corr, 
     &    archie) 
 
c  permeability update due to porosity changes 
 
c                if (update_permeability) then 
c                  cyy_j = perm_fac(jvol)*cyy_j 
c                end if 
 
                diff_ij = diff_i*diff_j 
                cinfrt_da(jtemp) = diff_ij*areaf/(diff_i*dely_j+ 
     &    diff_j*dely_i) 
                jtemp = jtemp+1 
              end if 
 
              if (ivyn.le.nvy) then         !back connection (5) 
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                areaf = delx(ivx)*delz(ivz) 
                if (half_cells) then        !half cells on boundary 
                  if (ivyn.eq.nvy) then 
                    dely_j = dely(ivyn) 
                  elseif (ivyn.lt.nvy) then 
                    dely_j = rhalf*dely(ivyn) 
                  end if 
                else                        !full cells on boundary 
                  dely_j = rhalf*dely(ivyn) 
                end if                      !(half_cells) 
                jvol = javs(jtemp)               
                jzn = mpropvs(jvol) 
      
     por_j = pornew(jvol) 
     diff_j = diffcoff(diff_a,sa,por_j,tortuosity_corr, 
     &    archie) 
 
c  permeability update due to porosity changes 
 
c                if (update_permeability) then 
c                  cyy_j = perm_fac(jvol)*cyy_j 
c                end if 
 
                diff_ij = diff_i*diff_j 
                cinfrt_da(jtemp) = diff_ij*areaf/(diff_i*dely_j+ 
     &    diff_j*dely_i) 
                jtemp = jtemp+1 
              end if 
 
            endif                           !connections in y-direction 
 
c  calculate influence coefficients in z-direction 
 
            if (nvz.gt.1) then              !connections in z-direction 
 
              if (ivzp.gt.0) then           !bottom connection (6) 
                areaf = delx(ivx)*dely(ivy) 
                if (half_cells) then        !half cells on boundary 
                  if (ivzp.eq.1) then 
                    delz_j = delz(ivzp) 
                  elseif (ivzp.gt.1) then 
                    delz_j = rhalf*delz(ivzp)         
                  end if 
                else                        !full cells on boundary 
                  delz_j = rhalf*delz(ivzp)         
                end if                      !(half_cells) 
                jvol = javs(jtemp)               
                jzn = mpropvs(jvol) 
      
     por_j = pornew(jvol) 
     diff_j = diffcoff(diff_a,sa,por_j,tortuosity_corr, 
     &    archie) 
 
c  permeability update due to porosity changes 
 
c                if (update_permeability) then 
c                  czz_j = perm_fac(jvol)*czz_j 
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c                end if 
 
                diff_ij = diff_i*diff_j 
                cinfrt_da(jtemp) = diff_ij*areaf/(diff_i*delz_j+ 
     &     diff_j*delz_i) 
                jtemp = jtemp+1 
              end if 
 
              if (ivzn.le.nvz) then         !top connection (7) 
                areaf = delx(ivx)*dely(ivy) 
                if (half_cells) then        !half cells on boundary 
                  if (ivzn.eq.nvz) then 
                    delz_j = delz(ivzn) 
                  elseif (ivzn.lt.nvz) then 
                    delz_j = rhalf*delz(ivzn) 
                  end if 
                else                        !full cells on boundary 
                  delz_j = rhalf*delz(ivzn) 
                end if                      !(half_cells) 
                jvol = javs(jtemp)               
                jzn = mpropvs(jvol) 
      
     por_j = pornew(jvol) 
     diff_j = diffcoff(diff_a,sa,por_j,tortuosity_corr, 
     &    archie) 
 
c  permeability update due to porosity changes 
 
c                if (update_permeability) then 
c                  czz_j = perm_fac(jvol)*czz_j 
c                end if 
 
                diff_ij = diff_i*diff_j 
                cinfrt_da(jtemp) = diff_ij*areaf/(diff_i*delz_j+ 
     &    diff_j*delz_i) 
                jtemp = jtemp+1 
              end if 
 
            end if                          !connections in z-direction 
 
          end do                            ! number of increments in x 
        end do                              ! number of increments in y 
      end do                                ! number of increments in z 
 
cdbg 
c     do irow=1,nn 
c       istart = iavs(irow) 
c       iend = iavs(irow+1)-1 
c       write(igen,'(6(a,i5,a,f10.3,1x))')  
c    &       ('cinfvs(',i1,') = ',cinfvs(i1),i1=istart,iend) 
c     end do 
c     stop 
cdbg 
      return 
      end 
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A.3.3  Allowing Input of Porosity Field 

 To have the model simulate diffusion through the provided porosity fields, these 

fields had to be inputted and processed by MIN3P.  For this, an array (pornew) was created in 

the place of the original porosity parameter.  The porosity file was then opened using 

opngfls, read into the program and assigned using initpppm. 

 

opngfls 

      ipor = 26 
 
c  porosity distribution 
 
      open(ipor,file=prefix(:l_prfx)//'.por',status='unknown', 
     &          form='formatted') 
 

 

initpppm 

 character*1 cdummy 
 
      parameter (r1 = 1.0d0, tiny = 1.0d-10) 
 
c  set default 
 
 porosity_field = .false. 
  
      if (varsat_flow.or.reactive_transport) then 
 
 
c  read porosity field from file 
 
          subsection = 'read porosity field from file' 
 
          call findstrg(subsection,itmp,found_subsection) 
 
          if (found_subsection) then 
 
            porosity_field = .true. 
  
c  read porosities 
 
            read(ipor,*,err=999,end=999) cdummy 
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       read(ipor,*,err=999,end=999) cdummy 
       read(ipor,*,err=999,end=999) cdummy 
            do ivol = 1,nn 
              read(ipor,*,err=999,end=999) rdummy, rdummy, rdummy, 
     &                                     por_init(ivol) 
            end do 
   
    close (ipor) 
        
     end if 
 
 
c  read porosity from input file 
 
  if (.not.porosity_field) then 
      
    read(icnv,*,err=999,end=999) por 
      
  end if 
 
 
 
    if (porosity_field) then 
     pornew(ivol) = por_init(ivol)        
    else 
     pornew(ivol) = por     
     por_init(ivol) = por 
 
    end if 
 
    nntemp = nntemp+1 
    mpropvs(ivol) = izn     !allocate properties 
 

 Since the original porosity parameter was now an array, some loops had to be 

constructed within subroutines batreac, initbcrt, initicrt, and transbcrt.  Batreac is shown 

as a sample. 

 

batreac 

 

        do ivol = 1,nn         !loop over control volumes 
  if (porosity_field) then 
   swc = 1.0d0 
           sac = 0.0d0 
  else 
 
   call rtrvpprm(swc,sac,pornew(ivol),section_header) 
  endif 
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c  compute initial condition 
  
          call gcreact(ccnew,ccold,cxc,gamma_l(1),gamma_l(nc+1), 
     &               cgc,swc,sac,pornew(ivol),igen,ilog,idbg, 
     &               tec_header,prefix,l_prfx,zone_name,l_zone_name) 
  
        end do            !loop over control volumes 
 
c  compute initial condition 
    do ivol = 1,nn         !loop over control volumes 
               
   call gcreact(ccnew,ccold,cxc,gamma_l(1),gamma_l(nc+1), 
     &                   cgc,swc,sac,pornew(ivol),igen,ilog,idbg, 
     &                   tec_header,prefix,l_prfx,zone_name,l_zone_name) 
    
    end do            !loop over control volumes 
 
 

 

A.4  Dataset Post-processing 

 Once the simulation is complete, the following program reads in the concentration 

data from the simulation output from multiple output times and calculates and outputs the 

average concentration per slice for each slice as prefix_##.avg  where ## corresponds to the 

output time number.  From the general input file above, the program reads in the stack 

dimensions (nx,ny,nz) as well as the number of output time files to average (nout). 

 

PROGRAM profile_norm 
 
 INTEGER :: nx 
 INTEGER :: ny 
 INTEGER :: nz 
 INTEGER :: nn 
 INTEGER :: nc 
 INTEGER :: nt 
 INTEGER :: nout 
 INTEGER :: need 
   
 INTEGER :: ivol = 1 
 INTEGER :: tvol = 1 
 INTEGER :: inorm = 1 
 INTEGER :: iout = 1 
 INTEGER :: ix = 1 
 INTEGER :: iz = 1 
 INTEGER :: iavg = 12 
 INTEGER :: iinp = 11 
 INTEGER :: igst = 13 
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 INTEGER :: ipor = 10 
 INTEGER :: inor = 14 
  
 character*72 :: prefix 
 character*4 :: suffix 
 character*1 :: cdummy 
c character*1 :: borp = 'b' 
  
 INTEGER :: l_prfx 
 INTEGER :: l_sufx 
 
 REAL, allocatable :: av(:) 
 REAL, allocatable :: avconc(:) 
 REAL, allocatable :: conc(:) 
 REAL, allocatable :: conc_need(:) 
 REAL, allocatable :: avpor(:) 
 REAL, allocatable :: por(:) 
 REAL, allocatable :: por_need(:) 
 REAL, allocatable :: por_conc(:) 
 REAL, allocatable :: norm(:) 
 REAL, allocatable :: xnum(:) 
 REAL, allocatable :: ynum(:) 
 REAL, allocatable :: znum(:) 
  
  
 write(*,*)'enter the prefix of the files to be averaged...' 
        
c getting prefix name 
        
 call getstrqq(prefix) 
   l_prfx=index(prefix,' ')-1 
   if(l_prfx.eq.-1.or.l_prfx.gt.72)then 
      l_prfx=72 
         endif 
 
  
c read dimensions from input file 
  
        open(iinp,file=prefix(:l_prfx) 
     & //'.inp',status='unknown',form='formatted') 
  
   read(iinp,*) cdummy 
       read(iinp,*) nx,ny,nz 
       read(iinp,*) cdummy 
c       read(iinp,*) nout,borp 
       read(iinp,*) nout 
 
c allocate sizes to arrays 
 
      nn = nx * ny 
 nt = nn * nz 
       
      allocate (av(nz)) 
      allocate (avconc(nz)) 
 allocate (conc(nt)) 
 allocate (conc_need(nn)) 
 allocate (avpor(nz)) 
 allocate (por(nt)) 
 allocate (por_need(nn)) 
 allocate (por_conc(nn)) 
 allocate (norm(nt)) 
 allocate (xnum(nt)) 
 allocate (ynum(nt)) 
 allocate (znum(nt)) 
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c read in porosity array 
 
 open(ipor,file=prefix(:l_prfx) 
     & //'.por',status='unknown',form='formatted') 
 
      read(ipor,*) cdummy 
 read(ipor,*) cdummy 
 read(ipor,*) cdummy 
   do ivol = 1,nt 
            read(ipor,*) rdummy, rdummy, rdummy, por(ivol) 
   end do 
   
 close (ipor) 
 
c read in outputted concentration array 
 
100   format (I1)  
 
c loop for each output file 
 
      do iout = 1,nout 
        
        write (suffix,100) iout 
        l_sufx = 1 
      
        open(igst,file=prefix(:l_prfx)//'_'//suffix(:l_sufx) 
     &   //'.gst',status='unknown',form='formatted') 
  
        read(igst,*) cdummy 
   read(igst,*) cdummy 
   read(igst,*) cdummy 
       do ivol = 1,nt 
               read(igst,*) xnum(ivol),ynum(ivol),znum(ivol),conc(ivol) 
       end do 
   
   close (igst) 
         
        iz = 1 
 
c loop to get average per slice 
 
   do z = 0,(nz-1)  
   
      ivol = 1 
   
       do y = 0,(ny-1) 
     
    do x = 1,nx 
 
           need = (nn * z) + (ny * y) + x 
             por_need(ivol) = por(need) 
             conc_need(ivol) = conc(need) 
             por_conc(ivol) = (conc_need(ivol) * por_need(ivol)) 
              
c               if (borp .EQ. 'p') then 
c                 norm(inorm) = (conc(inorm) / por(inorm)) 
c                 inorm = inorm + 1 
c               end if 
            
           ivol = ivol + 1 
 
           end do 
            
       end do 
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 106

       avpor(iz) = sum(por_need) / size(por_need) 
       avconc(iz) = sum(por_conc) / size(por_conc) 
c           avconc(iz) = sum(conc_need) / size(conc_need) 
       av(iz) = avconc(iz) / avpor(iz) 
             
        
            iz = iz + 1 
       
        end do 
       
      !! write (*,*) 100*av(iz) 
       
c write average output file for each average output      
         
        open(iavg,file=prefix(:l_prfx)//'_'//suffix(:l_sufx) 
     &   //'.avg',status='unknown',form='formatted') 
        write(iavg,'(/a)') 'Maximum value is:' 
        write(iavg,*) maxval(conc) 
   write(iavg,'(72a/)')('-',i=1,72) 
    
   write(iavg,'(/a)') 'normalized average:' 
        write(iavg,'(72a/)')('-',i=1,72) 
        write(iavg,'(/a)') 'the normalized average for the specified  
     &  slice is:'  
         
            do iz = 1,(nz) 
         
            write(iavg,*) av(iz) 
  
       end do 
  
   close (iavg) 
 
c write full output of normalized concentration data if porosity input 
    
c   if (borp .EQ. 'p') then 
c     open(inor,file=prefix(:l_prfx)//'_'//suffix(:l_sufx) 
c     &     //'.nor',status='unknown',form='formatted') 
c          write(inor,'(/a)') 'normalized average:' 
c          write(inor,'(72a/)')('-',i=1,72) 
c          write(inor,'(/a)') 'the normalized concentration is:'  
c         
c              do iz = 1,(nz) 
c         
c              write(inor,200) xnum(iz),ynum(iz),znum(iz),norm(iz) 
c               
c         end do 
c200       format(100E15.7)  
c     close (inor) 
c   end if 
    
 end do 
  
END PROGRAM profile_norm 
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