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Abstract

As seismic waves travel through the earth, the visco-elasticity of the earth’s
medium will cause energy dissipation and waveform distortion. This phe-
nomenon is referred to as seismic absorption or attenuation.

In hydrocarbon reservoir description, seismic absorption can be used as
an important attribute to interpret for fluid units. In seismic data process-
ing, the information about seismic absorption can be used to enhance seismic
data resolution by means of absorption compensation. The absorptive prop-
erty of a medium can be described by a quality factor Q, which determines
the energy decay and a velocity dispersion relationship. The quality factor
and the velocity govern the propagation of seismic energy in the earth.

In this thesis, four new ideas have been developed to deal with the es-
timation and application of seismic absorption. These ideas are detailed in
four chapters respectively. By assuming that the amplitude spectrum of a
seismic wavelet may be modeled by that of a Ricker wavelet, an analyti-
cal relation has been derived to estimate a quality factor from the seismic
data peak frequency variation with time. This relation plays a central role
in quality factor estimation problems. Quality factors with coarse resolu-
tion can be estimated from prestack common midpoint (CMP) gathers, or
a post-stack single trace based on event picking.

To estimate interval Q for reservoir description, a method called reflectivity-
guided seismic attenuation analysis is proposed. This method first estimates
peak frequencies at a common midpoint location, then correlates the peak
frequency with sparsely-distributed reflectivities, and finally calculates Q
values from the peak frequencies at the reflectivity locations using an ana-
lytical expression. The peak frequency is estimated from the prestack CMP
gather using peak frequency variation with offset (PFVO) analysis which
is similar to amplitude variation with offset (AVO) analysis in implementa-
tion. The estimated Q section has the same layer boundaries of the acoustic
impedance or other layer properties. Therefore, the seismic attenuation
property obtained with the guide of reflectivity is easy to interpret for the
purpose of reservoir description.

To overcome the instability problem of conventional inverse Q filter-
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Abstract

ing, Q compensation is formulated as a least-squares (LS) inverse problem
based on statistical theory. The matrix of forward modeling is composed
of time-variant wavelets. The LS de-absorption is solved by an iterative
non-parametric approach.

To compensate for absorption in migrated seismic sections, a refocusing
technique is developed using non-stationary multi-dimensional deconvolu-
tion. A numerical method is introduced to calculate the blurring function
in layered media, and a least squares inverse scheme is used to remove the
blurring effect in order to refocus the migrated image. This refocusing pro-
cess can be used as an alternative to regular migration with absorption com-
pensation. Theoretical derivations and numerical tests showing the validity
of the new methods are detailed in the chapters.
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Chapter 1

Introduction

1.1 Thesis Objectives

The research being presented in this thesis deals with signal absorption phe-
nomena observed in seismic exploration. The topics addressed are the esti-
mation of the absorption properties and the compensation of the attenuated
signals.

1.2 Seismic Absorption Phenomena

Conventionally, in seismic exploration, the earth is modeled as an ideal elas-
tic medium, and seismic wave propagation is explained by means of the
elastic (or acoustic) wave equation. In practice, the propagation of seismic
waves in the earth is in many respects different from seismic wave prop-
agation in an ideal solid. For example, the earth material is anisotropic,
heterogeneous, porous, etc.. The traditional elastic wave equation is not
accurate enough to describe the wave behavior for this more complicated
medium. Generally, the visco-elasticity of the earth materials causes seis-
mic energy dissipation, and thus decreases the amplitude and modifies the
frequency content of propagating waves. This phenomenon of wave energy
dissipation is called seismic absorption or seismic attenuation, although at-
tenuation is just one aspect of the wave behavior in visco-elastic media. From
the studies of absorptive phenomena observed in seismic data, we may be
able to construct images with better resolution in seismic data processing
and extract more detailed information about the rock materials in seismic
data inversion.

1.3 Seismic Absorption Research

Absorption researchers have made contributions in several related areas:
from explaining the absorption mechanism, estimating absorptive properties
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Chapter 1. Introduction

and modeling its effect numerically and physically, to removing its effect, and
utilizing absorptive properties to locate and describe hydrocarbon reservoirs.

In recent years, due to the requirement of obtaining seismic images with
higher resolution and higher accuracy, as well as of extracting more informa-
tion for reservoir description in seismic exploration, seismic absorption has
become a field of extensive investigation, similar to other fields that take into
account secondary effects in seismic wave propagation, such as anisotropy,
angle-dependent reflectivity and wave-mode conversion.

Mathematical models, resulting from modification to the elastic wave
equation, like the Voigt model, the standard linear solid model, the Fut-
terman model and others have been used for different applications for a
long time (Ricker, 1953; Biot, 1956a,b; Futterman, 1962; White, 1975; Tok-
soz et al., 1979a,b; Aki and Richards, 1980; Johnson, 2001). More compli-
cated seismic attenuation models have also been suggested, such as those by
Dvorkin et al. (1995), Pride et al. (2004), and Carcione and Picotti (2006).
These models relate seismic attenuation to the porous properties of rock
materials, such as porosity, saturation, fluid content, permeability, etc., and
try to fit field data and laboratory observations more accurately than al-
lowed by means of traditional methods. An overview of seismic attenuation
models can be found in Toverud and Ursin (2005).

Numerical simulation of seismic waves in absorptive media is generally
implemented through finite-difference modeling. This can either be imple-
mented in the frequency domain or time domain (Day and Minster, 1984;
Carcione, 1993; Blanch et al., 1995; Bohlen, 2002). Physical models have
also been built to measure seismic absorption in more realistic environments
(Toksoz et al., 1979a; Winkler et al., 1979; Sams et al., 1997; Batzle et al.,
2005). Both mathematical modeling and physical modeling are important
tools to confirm the accuracy of theories and discriminate mechanisms re-
garding seismic absorption.

The seismic absorption property of a medium is usually described by
a quality factor designated by Q. Many algorithms to estimate Q values
have been published. Among them, the most popular is the spectral ratio
method (Spencer et al., 1982; Tonn, 1991). Methods suggested by Quan and
Harris (1997), Zhang and Ulrych (2002), Taner and Treitel (2003), Singleton
et al. (2006), Rickett (2006) and Guerra and Leaney (2006) are claimed to
be more robust than the traditional spectral ratio methods, and/or disclose
more detailed attenuation information of rock properties. The objectives of
Q estimation can be grouped into two categories, one is for Q compensation,
and another one is for reservoir description. For Q compensation, generally,
we only require absorptive information for major layers. For reservoir de-
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scription, we require Q information of higher resolution for the study of
fine layers. These two different requirements are similar to the resolution
requirements for velocities in seismic data processing and inversion.

To remove the effect of absorption, traditionally we can use time-variant
spectral whitening or time variant deconvolution (Robinson, 1979; Harg-
reaves and Calvert, 1991; Bickel, 1993; Varela et al., 1993; Yilmaz, 2000).
Computation techniques trying to stabilize inverse Q filtering have been in-
troduced by Margrave et al. (2003), Wang (2003), and Zhang and Ulrych
(2007).

The inclusion of absorption effects into the migration scheme has also
been suggested by Berkhout (1981), Dai and West (1994), Yu et al. (2002),
Cui and He (2004) and Wang (2008) for stacked seismic sections and Mittet
et al. (1995) for prestack seismic data. Migration plus Q compensation can
be considered as multi-dimensional seismic absorption compensation.

Many researchers have devoted their efforts to relating seismic attenu-
ation to reservoir description, due to the fact that for porous rocks satu-
rated with fluid, generally, strong absorption can be observed. Parra and
Hacket (2002), Castagna et al. (2003), Taner and Treitel (2003), Hübert
et al. (2005), Chapman et al. (2005) and Dvorkin and Mavko (2006) use
different physical hypotheses to relate attenuation properties to reservoir
characterization. There is more and more interest in seismic exploration in
using attenuation properties as an attribute in reservoir description, because
of reported successful cases.

In a medium, shear waves and compressional waves travel at different
speeds. They could experience different absorption on their wave-paths de-
pending on the fluid content in rock fractures. Winkler et al. (1979), Klimen-
tos (1995), Deffenbaugh et al. (2000), Bale and Stewart (2002), and Mavko
et al. (2005b) have investigated the characteristics of shear wave attenuation
in seismic data.

1.4 Basic Assumptions

1.4.1 Effective Absorption

Seismic attenuation is usually categorized into scattering attenuation and
intrinsic attenuation. Scattering attenuation is generally caused by three-
dimensional heterogeneities in the subsurface that distribute wave energy
in arbitrary directions. Often quoted research about scattering attenuation
includes O’Doherty and Anstey (1971), Richards and Menke (1983) and Sato
and Fehler (1998).
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Intrinsic attenuation is caused by internal friction among grains in the
rock matrix, and the relative movement between the solid rock matrix and
the pore fluid, when a seismic wave travels through loosely consolidated or
porous media. Internal friction and fluid flow are considered directly related
to rock porosity, permeability and the fluid content in the void space. More
detailed explanation of the physics of intrinsic attenuation can be found
in Biot (1956a), Biot (1956b),White (1975), Ricker (1977), Dvorkin et al.
(1995), Johnson (2001) and Pride (2003), etc..

In this thesis, if not stated otherwise, the absorption dealt with is ef-
fective absorption, which is the composite effect of scattering and intrinsic
attenuation. This is based on the premise that scattering attenuation and
intrinsic attenuation have similar features in observed seismic or well log
data, and also that, at present, there is no reliable way to separate them.

1.4.2 Frequency Independent Q

When using Q to describe seismic attenuation, it is often assumed that
Q does not change with frequency in the seismic frequency range (10 −
−200Hz). However, there are many mathematical models which describe the
change of Q with frequency (Ricker, 1953; Pride et al., 2004; Carcione and
Picotti, 2006). Frequency dependent Q models may be theoretically more
attractive in visco-elastic wave equation derivation, and/or better fitting
laboratory testing data. The usability of these more complicated seismic
attenuation models is hindered by their dependence on some unmeasurable
parameters and the necessity to use frequency dependentQ values in practice
(Dvorkin and Mavko, 2006).

When Q is considered as a function of frequency, it would be convenient
if the Q function can be possibly separated into a frequency dependent
part and a frequency independent part, so that we can use the frequency
independent part to describe attention property. In this thesis, we use the
simplest convention: absorption property Q does not depend on frequency,
while attenuation changes with frequency. The assumption is valid over the
signal bandwidth in seismic exploration and conforms to many theoretical
models and laboratory observations.

1.5 Thesis Structure

This chapter introduces the background of the research on seismic absorp-
tion.
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Chapter 1. Introduction

Chapter 2 reviews physical mechanisms and mathematical descriptions
of seismic absorption. A definition of quality factor Q and the correspond-
ing dispersion relation between attenuation and velocity are analyzed. The
linear dispersion model is adopted in this thesis because it is appropriate
not only for handling the problem of estimating quality factors from both
prestack and poststack seismic data, but also for absorption compensation.

Chapter 3 develops a method to estimate quality factors from wavelet
peak frequency variation. The analytical formula derived can be used to
estimate Q from a CMP gather, and also from a stacked seismic trace.
The estimated Q provides the information required for one-dimensional and
multi-dimensional Q compensation.

Chapter 4 suggests a scheme called reflectivity-guided Q analysis for
reservoir description. It first estimates peak frequencies at a CMP location,
then correlates the peak frequency with sparsely-distributed reflectivities,
and, finally calculates a Q curve from the peak frequencies at the locations
of impedance contrasts using an analytical equation.

Chapter 5 formulates seismic absorption compensation as a least-squares
(LS) inverse problem based on statistical theory. The purpose of doing so
is to overcome the instability problem of regular inverse Q filtering. The
kernel matrix of the inversion is composed of time-variant wavelets. The LS
de-absorption can be solved iteratively with fast convergence. The results
of de-absorption are related to the accuracy of the estimated Q values and
also of the seismic wavelets.

Chapter 6 investigates the blurring effect in migrated images when using
a regular migration algorithm to migrate seismic data with absorption. The
deblurring problem is considered as a multi-dimensional time-variant decon-
volution and is solved using a LS inverse scheme in time-wavenumber domain
to refocus migrated images. The refocusing processing is an alternative to
traditional post-stack migration with absorption compensation.

Chapter 7 draws conclusions from the research, proposes future research
topics, and discusses some other issues in seismic absorption which are not
detailed in the previous chapters.
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Chapter 2

Mechanism and Description
of Seismic Absorption

Seismic waves traveling in the earth experience amplitude attenuation and
velocity dispersion due to the absorptive property of the rocks. Convention-
ally, in seismic exploration, the earth is modeled as an ideal elastic medium,
that is, each layer of the earth can be fully described by two parameters:
velocity and density (v, ρ). In practice, the propagation of seismic waves in
the earth is in many respects different from seismic wave propagation in an
ideal solid. When a seismic wave experiences absorption during its propa-
gating process, the wave behavior can be described by velocity, density and
a quality factor (v, ρ, Q), if the absorptive property of a medium is fully
determined by a quality factor (Q).

There are different physical hypotheses to explain signal attenuation
observed in seismic data and there are also numerous mathematical formulas
available to describe the attenuation phenomenon. This chapter investigates
the causes of the absorption phenomenon and how absorption is described
in terms of wave theory by reviewing the appropriate works in the published
literature.

2.1 Physical Hypothesis

A great deal of attention has been given to the study of the attenuation
of seismic waves (Ricker, 1977; White, 1983; Mavko and Nur, 1979; Toksoz
et al., 1979b; Kneib and Shapiro, 1995; Carcione, 1995; Dvorkin et al., 1995;
Johnson, 2001; Pride et al., 2004). Loss parameters for rocks have been
measured by many techniques over a wide range of frequency and environ-
mental conditions. Physical mechanisms for energy loss have been proposed
and described mathematically in varying degrees of detail.

Absorption is a composite effect caused by the earth media which have a
wide range of properties, such as lithology, inhomogeneity, porosity, perme-
ability, saturation, fluid contents, etc.. There is no general consensus as to
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Chapter 2. Mechanism and Description of Seismic Absorption

what the dominant loss mechanism is. In different environments, a different
mechanism may play a dominant role.

2.1.1 Scattering Attenuation and Intrinsic Attenuation

There are two mechanisms that are usually considered to cause seismic atten-
uation, scattering and intrinsic attenuation. Scattering redistributes wave
energy within the medium but does not remove energy from the overall
wavefield. Conversely, intrinsic attenuation refers to various mechanisms
that convert vibrational energy into heat through friction, fluid flow, and
thermal relaxation processes. The effect of scattering and intrinsic atten-
uation on seismic data are the same, in that they both attenuate seismic
amplitude and distort the seismic waveform. Scattering attenuation is gen-
erally caused by relatively simple factors, such as three-dimensional random
heterogeneity in rocks, which distributes wave energy in arbitrary directions,
and interfaces which reflect and redirect wave propagation. (O’Doherty and
Anstey, 1971; Richards and Menke, 1983; Sato and Fehler, 1998). Intrin-
sic attenuation is caused by more complicated rock properties. Observed
seismic attenuation is generally the integrated effects of both scattering and
intrinsic attenuation. For porous rocks saturated with fluid, intrinsic ab-
sorption generally plays the dominant role (Sams et al., 1997).

2.1.2 Causes of Intrinsic Attenuation

As has been stated, seismic absorption is a comprehensive effect caused by
many factors. For intrinsic attenuation, two factors are generally considered
the most important. One is the internal friction resulting from the relative
slide along the contacts of grains in the rock matrix during wave propagation.
Another is the fluid flow inside rock pore spaces. Part of the traveling energy
from a seismic source is transformed into relative movement and dissipates
inside and among rock grains due to friction and fluid flow.

Some scientists (Ricker, 1977; Aki and Richards, 1980) considered thermo-
elasticity as the most viable model to explain intrinsic attenuation at litho-
spheric temperatures, because the required scales for rock grains and cracks
along with the amount of attenuation caused by thermo elasticity are in
closest agreement with observations.

Rocks have microscopic cracks and pores which may contain fluids. These
cracks can have a profound influence on the propagation velocities of P
and S-waves. Biot (1956a) and Biot (1956b) analyzed wave propagation in
isotropic porous solids where the coupling of motion between the fluid and
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the solid matrix was considered. He arrived at expressions for attenuation
due to fluid flows within non-connecting pores initiated by elastic waves.
White (1983) (p.131) studied Biot’s model and concluded that the attenu-
ation predicted by Biot’s model is extremely small for frequencies less than
100Hz. Pride et al. (2004) introduced a model which explains seismic at-
tenuation in porous rocks as resulting from wave-induced fluid flow. Their
model also confirms that “squirt-flow” in Biot’s model is incapable of ex-
plaining the measured level of attenuation, and describes that “mesoscopic”
scale (larger than the grain sizes but smaller than wavelengths) factors are
the main contributors of observed seismic attenuation. These factors are
lithological variation and fluid-saturated pore spaces in a medium. Research
carried out by Carcione and Picotti (2006) shows that the most effective loss
mechanisms result from porosity variation and partial saturation in rocks.
Rock grain and frame-moduli variations are the next cause of attenuation.

Many questions remain unanswered. A major complication is the wide
range of properties possessed by earth materials. Conclusions drawn from
data of oil-reservoir rocks may not be applicable to materials in the upper
mantle. Hence, it is difficult to make a choice among the proposed mecha-
nisms even if this were desirable. In fact, no one mechanism can be expected
to describe losses in all rocks under all environmental conditions.

Physical mechanism studies help us to understand how rock absorption
properties are related to rock physical properties by means of suitable rock
physics modelling. Although several such models have been introduced in
the cited references, there is no consensus on which model is best. Figure 2.1
illustrates a generic idea that seismic attenuation is the composite effect of
rock physical parameters, and that the attenuation property can be denoted
by Q. A rock body is very complicated. To describe it needs numerous
parameters, such as lithology, porosity, saturation, pore fluid, permeability,
etc.. However, the wave behavior inside this rock body can be simply de-
scribed by density, velocity, and Q. Rock physical models try to link the
wave behavior defined by ρ, v, and Q to rock physical properties. Seismic
inversion tries to deduce rock properties from seismic attributes. Q is an
important attribute for rock property inversion.

2.2 Mathematical Description

In dynamic mechanics, the behavior of a wave traveling in a medium is de-
rived by Hooke’s law which relates stress and strain. Generally speaking,
there are two kinds of attenuation models built from the point of view of
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Figure 2.1: Attenuation is determined by composite rock physical properties,
such as lithology, porosity, saturation, pore fluid, etc..

dynamic mechanics. One is the Voigt model and the other is the general-
ized linear solid model (Du, 1996). Mathematical models, derived directly
from observed amplitude decay and corresponding attenuation-dispersion
relations, describe seismic absorption, generally, by means of a Q parameter
(Aki and Richards, 1980; Kjartansson, 1979).

2.2.1 The Voigt Model

The Voigt model, also known as the Kelvin-Voigt model, is a widely inves-
tigated method of introducing losses that has the advantage of yielding a
linear wave equation which can be solved for arbitrary time dependence. The
assumption is made that stresses are directly proportional to strain rates,
as well as to the components of strain themselves. This assumption was
introduced independently by Stokes, Kelvin and Voigt (Ricker, 1977), and
its implications have been investigated by Ricker (1977) and White (1983).
This kind of medium is commonly called a Voigt solid and the resulting equa-
tion is called Stokes equation (Ricker, 1977). In elastic mechanics, using the
Einstein notation, Hooke’s law is expressed as

σij = λθδij + 2µǫij , (2.1)
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where σij is the stress tensor, ǫij is the strain tensor, and δij is the Kronecker
delta function. λ and µ are the two Lame’s parameters. θ is the volume
strain or dilatation. If there is no body force, using Newton’s Law

σij,j = ρ
∂2ui

∂t2
.

The constitutive relation leads to the equation of motion in term of particle
displacement

(λ+ µ)(∇ · θ) + µ∇2~u = ρ
∂2~u

∂t2
, (2.2)

where ~u is a vector of displacement, ∂2~u
∂t2

is its second derivative with respect
to time and ρ is density. For a plane wave, if we assume the displacement
is parallel to the depth z-axis (ux and uy are both zero) and that uz is
independent of x and y, equation (2.2) reduces to

(λ+ 2µ)
∂2uz

∂z2
= ρ

∂2uz

∂t2
, (2.3)

for one-dimensional wave propagation.
In absorptive media, the constitutive relation must incorporate the fact

that stress is not only proportional to strain, it is also proportional to the
time derivative of strain. The stress-strain behavior in absorptive media is
described by a modified Hooke’s law which includes strain-rate terms:

σij =

(

λ+ λ′
∂

∂t

)

θδij + 2

(

µ+ µ′
∂

∂t

)

ǫij ,

where λ′ and µ′ are perturbations of Lame’s parameters, λ and µ, due to
absorption. Equation (2.3) in an absorptive medium becomes

(λ+ 2µ)
∂2uz

∂z2
+ (λ′ + 2µ′)

∂3uz

∂t∂z2
= ρ

∂2uz

∂t2
. (2.4)

This equation is a Stokes equation without body force. If we replace Lame’s
parameters by Young’s modulus, M = λ + 2µ and M ′ = λ′ + 2µ′, and
transform equation(2.4) into the frequency domain, we have

(M + iωM ′)
∂2Uz

∂z2
= −ρω2Uz, (2.5)

where Uz = U(z, ω) designates the space-dependent wavefield at an angular
frequency ω. A wavefield satisfying equation (2.5) has the following form

U(z, ω) = U0e
±G(ω)z ,
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and

G(ω) =

[

− ρω2

M + iωM ′

]1/2

. (2.6)

This complex propagation parameter G(ω) may be expressed in terms of
attenuation ap and phase velocity vp as

G(ω) = ap + iω/vp. (2.7)

By comparing equation (2.6) and equation (2.7) and defining ω0 = M/M ′,
it can be shown that when ω2 < ω2

0 , attenuation increases as the square of
the frequency, and velocity is approximately constant (Ricker, 1977). These
observations are expressed as follows

ap =
1

2
√

M/ρ

ω2

ω0
,

and
vp =

√

M/ρ.

The expression for ap means that attenuation increases with the square of
frequency. However, many measurements have indicated a first power de-
pendence with frequency. In addition, as pointed out by White (1983)(p.87),
the Voigt model also violates causality. Regarding causality, however, there
are different observations from that of White (1983). Duren and Heestand
(1995) and Buckingham (2005) have derived independently causal solutions
to the Stokes equation (equation (2.4)).

2.2.2 The Generalized Linear Solid Model

The constitutive relation between stress σ and strain ǫ for visco-elasticity can
be formulated simply in the frequency domain as (Malvern, 1969; Carcione
et al., 1988)

σ(ω) = M(ω)ǫ(ω).

Here M(ω) is the complex, frequency dependent, visco-elastic modulus. A
generalized linear solid body can be described by

M(z, ω) = Mu(z, ω) +

N
∑

j=1

aj∆Mj(z)

iω/ωj(z) − 1
. (2.8)

For one-dimensional P wave, in this equation, Mu(z, ω) is the un-relaxed
Young’s modulus at a depth z, N is the number of absorptive mechanisms.
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aj is a constant coefficient, ωj is the jth relaxation frequency and ∆Mj(z) is
the difference between the un-relaxed Young’s modulus and the contribution
to the Young’s modulus due to the jth relaxation mechanism. These pa-
rameters can be adjusted to fit any realistic linear absorption law, according
to Carcione et al. (1988).

The two models described in this section and the previous section are
constructed by assuming that anelasticity of rocks will result in a constitu-
tive relation that is different from that of elastic models. Absorption may
also be described by directly assuming velocity dispersion relations.

2.2.3 Describing Absorption by Quality Factors

Wave speeds in rocks are determined by rock properties. When including
absorption into the wave equation, it is very straightforward to use complex
wave-numbers or complex velocities. The absorptive property determines a
real velocity dispersion relation or a complex dispersion relation depending
on different applications (Mittet et al., 1995; Claerbout, 1985).

Definition of Q

The absorptive property is often represented by the quality factor Q, which
is an intrinsic property of rocks. Formally, Q is defined as a dimensionless
measure of the anelasticity which is given by

1

Q
=

−∆E

2πE
, (2.9)

where E is the energy stored at the maximum strain in a volume, and −∆E
is the energy loss in each cycle because of anelasticity. Equation (2.9) implies
that Q−1 is the portion of energy lost during each cycle or wavelength. For
a medium with a linear stress-strain relation, the amplitude A of a wave
at a particular frequency is proportional to

√
E (Aki and Richards, 1980),

therefore
1

Q
=

−∆A

πA0
, (2.10)

where A0 is the amplitude at the start of a cycle and ∆A represents the
amplitude decay in a cycle. It is observed that amplitude varies with distance
because of absorption. We can rewrite A as a function of distance A(z) ,
and

∆A = λ
dA(z)

dz
, (2.11)
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where λ is the wavelength given in terms of frequency ω and phase velocity
v(ω) by

λ = 2πv(ω)/ω. (2.12)

From equations (2.10), (2.11) and (2.12), it can be shown that

A(z) = A0 exp

[

− ωz

2v(ω)Q

]

, (2.13)

which describes amplitude attenuation of a frequency component in an ab-
sorptive medium.

Attenuation Causing Velocity Dispersion

Absorption results in both attenuation and dispersion (Liu et al., 1976).
As mentioned before, the basic assumptions used to describe absorption
behavior are constant Q, linearity and causality. Considering a unit impulse
as input at depth z = 0, each frequency component of this impulse,

∫ ∞

−∞
δ[t− z/v(ω)]e−iωtdt = e−iωz/v(ω),

will now be attenuated by a factor e−α(ω)z with α(ω) = ω
2v(ω)Q . The prop-

agating pulse shape G(z, t), thus, has a Fourier transform eikz, and k is
complex and is given by

k =
ω

v(ω)
+ iα(ω).

If the impulse response is causal,

G(z, t) = 0, for t < z/v(∞),

it can be shown that (Aki and Richards, 1980)

ω

v(ω)
=

ω

v(∞)
+H[α(ω)]. (2.14)

Here, v(∞) is the limit of v(ω) as ω → ∞ and H[α(ω)] is the Hilbert trans-
form of the attenuation factor. This equation is equivalent to the Kramers-
Kronig relation in electro-magnetic theory (Futterman, 1962). From a math-
ematical point of view, there is no Hilbert transform pair for which this
relation can be satisfied with constant Q. We must tolerate a frequency
dependent Q which is effectively constant over the seismic frequency range.
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Under the constraint of causality, and the assumption of frequency inde-
pendentQ, a velocity dispersion relation, due to attenuation, can be derived,

v(ω0)

v(ω)
= 1 +

1

πQ
ln
(ω0

ω

)

, (2.15)

From equations (2.13) and (2.15), we can observe that wave propagation
in an absorptive medium is completely specified by two parameters, Q and
a phase velocity v(ω0) at an arbitrary reference frequency ω0. ω0 often
takes the value of the Nyquist frequency in digital signal processing for
convenience.

Kjartansson’s Absorption Model

Another method to formulate the velocity dispersion relation was proposed
by Kjartansson (1979). The absorption model is defined by means of a
complex velocity dispersion relation

v(ω)

v(ω0)
=

[−iω
ω0

]γ

, (2.16)

where γ is a parameter related to absorption. Equation (2.16) also represents
the causal, constant Q model, and it can be derived

1

Q
≈ tan(πγ).

The estimation of Q is equivalent to the estimation of γ. For γ = 0, equation
(2.16) gives a real constant velocity which means no absorption.

2.2.4 Choice and Discussion

Besides the foregoing mentioned mathematical models, there are also other
models that describe seismic attenuation with differing degrees of precision
and utility. A list of these methods can be found in the paper by Toverud
and Ursin (2005).

In this thesis, the dispersion relation of equation (2.15) is adopted. As
pointed out by Aki and Richards (1980), equation (2.15) is an important
result since it appears to be a good approximation for a variety of atten-
uation laws in which Q is effectively constant over the seismic frequency
range. Besides a reference velocity v(ω0), this visco-elastic model assumes
attenuation and dispersion are determined by only one more parameter Q.
Theoretically, this linear absorption model (equations (2.13) and (2.15), also
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Figure 2.2: Velocity dispersion comparison with Q = 30. The red curve is
for the linear Q model and the green one is for Kjartansson’s model.

called the Kolsky-Futterman model (Wang and Guo, 2004), is superior to
the Voigt model which has been contradicted by practical observations. Ap-
plication is easier than the generalized linear solid model which requires the
adjustment of two parameters when being applied to different media.

The linear Q model and Kjartansson’s model define different complex
wavenumbers. Their real parts are very close. However, the imaginary parts
are different. Figure 2.2 and Figure 2.3 compare the velocity dispersions
and amplitude attentions of theses two models. Velocity dispersion and
amplitude attenuation are both defined by Q. The red curves result from
the linear Q model and the green ones result from Kjartansson’s model. For
the same Q value, Kjartansson’s model has stronger attenuation than the
linear Q model. In seismic data processing, ideally, Q estimation and Q
compensation should be based on the same absorption model.

In this research, we only consider the comprehensive effect of attenuation,
so that, estimate and use only the effective Q values. This is based on
the premise that scattering attenuation and intrinsic attenuation have the
same effect on observed seismic data. When using Q to describe seismic
attenuation, it is assumed that Q does not change with frequency. This
assumption is valid for the seismic data acquired for oil and gas exploration
which is in the frequency range of, approximately from 10 to 200 Hz (Sams
et al., 1997).

Figure 2.4 illustrates the wave behavior in elastic media and in absorp-
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Figure 2.3: Amplitude attenuation comparison with Q = 30. The red curve
is for the linear Q model and the green one is for Kjartansson’s model.

tive media. An elastic medium is represented by ρ and v. A visco-elastic
medium is represented by ρ, v and Q. In order to extract Q information, we
need to examine the spectrum variations in observed seismic data. With-
out absorption, the wavelet tends to keep its shape during its propagation.
With absorption, the wavelet gets distorted during its propagation due to
the attenuation of high frequencies.

2.2.5 Absorption and Seismic Wave Extrapolation

Absorption causes energy loss and frequency dispersion. From equations
(2.13) and (2.15), it can be concluded that for a seismic wave traveling in
a visco-elastic medium, the wavenumber including an attenuation term is
complex:

kc(ω) =
ω

v(ω0)

[

1 +
1

πQ
ln
(ω0

ω

)

](

1 + i
1

2Q

)

. (2.17)

The real part in this equation is responsible for the wavefront propagation
and the phase distortion, the imaginary part is responsible for amplitude
attenuation.

For one-dimensional wave propagation, if the wavefield U(z, ω) at a depth
z propagates downward to a depth z + ∆z, the wavefield U(z + ∆z, ω) at
this depth in absorptive media is

U(z + ∆z, ω) = U(z, ω)A(∆z, ω) exp

(

−i ω

v(ω0)
∆z

)

, (2.18)
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Figure 2.4: Seismic wave behavior in absorptive media defined by v, ρ and
Q. (a) Without absorption. (b) With absorption.

In equation (2.18), A(∆z, ω) is an absorption related term

A(∆z, ω) = A1(∆z, ω)A2(∆z, ω), (2.19)

with

A1(∆z, ω) = exp

(

− ω∆z

2Qv(ω0)

)

(2.20)

defining an amplitude attenuation term, and

A2(∆z, ω) = exp

[

−i ω∆z

πQv(ω0)
ln

(

ω

ω0

)]

(2.21)

expressing a velocity dispersion term which causes a phase delay. For time
domain wavefield modeling, equation (2.18) can be written as

U(t+ ∆t, ω) = U(t, ω)A(∆t, ω) exp(iω∆t), (2.22)

which means that the frequency content of a wavefield is time dependant.
Using equation (2.22), we can examine the impulse response in an ab-

sorptive medium. Figure 2.5 shows five snapshots of an impulse response in
a 1-D absorptive medium at five time locations which are 400, 800, 1200,
1600 and 2000 milliseconds respectively. The impulse initiates at time zero
and the medium has a quality factor of 30. The shape of the impulse be-
comes increasingly wider as traveltime increases and its amplitude decreases
continuously due to absorption.
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Figure 2.5: Evolution of a unit impulse with time in a 1-D absorptive
medium (Q = 30).
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Figure 2.6: A Green’s function in an absorptive 2-D medium.

For 2-D modeling, the synthetic records can be obtained by two step
calculation. The first step does ray-tracing to calculate ray-paths in the
media and the second step extrapolates a wavelet along the ray-paths. Fig-
ure 2.6 shows the response of a diffractor in a 2-D absorptive medium with
a quality factor which is also equal to 30. Because the medium is uni-
form, the modeling does not involve ray-tracing, but a zero-phase wavelet
is convolved with the impulse response in the records. Without absorption,
wavelets on all traces should be the same, because no geometrical spreading,
angle-dependent reflectivity or other factors are involved in the calculation.
With absorption, the signal at a far offset is weaker and broader than that
at a near offset.

2.3 Summary

Seismic attenuation is a complicated process, which can be caused by hetero-
geneity, interfaces, lithology, saturation, fluid content and other properties
of the earth media. Mathematically, the absorption equation can be derived
using dynamic mechanics or using an attenuation-dispersion relation. In
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this thesis, the linear Q model (equation (2.13) and (2.15)) is adopted as a
reasonable assumption over the exploration seismic frequency bandwidth.
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Chapter 3

Quality Factor Estimation
from Seismic Peak Frequency
Variation

The fundamental idea to estimate Q from seismic data is, at first to examine
the variation of a seismic wavelet with time, and then calculate a Q value
from the variation of the wavelet shape or spectrum. By assuming that the
amplitude spectrum of a seismic wavelet is like that of a Ricker wavelet,
this chapter derives an analytical formula which allows a Q value to be
calculated from the spectral peak frequency variation. Theoretically, this
analytical approach can be used to estimate Q-factors from seismic data
of different acquisition geometries, where peak frequency variations can be
reliably examined. Applications of this approach to estimate Q-factors from
common midpoint (CMP) gathers and also from stacked seismic traces will
be discussed.

3.1 Introduction

Seismic waves traveling through the earth experience absorption, i.e., atten-
uation and dispersion, because of the anelasticity and heterogeneity of the
medium (Ricker, 1953; Futterman, 1962; White, 1983; Kneib and Shapiro,
1995). Understanding, estimating, and compensating for absorption of seis-
mic waves is important in the quest to improve the resolution of seismic
images. This in turn will allow us to better understand the effects of AVO
and, consequently, to realize the quest of inversion for material properties.

To compensate for absorption, we require an estimate of the Q-factor.
Methods for estimating Q values from surface seismic data are not well
developed (Bachrach et al., 2006; Lancaster and Tanis, 2004; Dasgupta and
Clark, 1998). However, some research has been published concerning the
estimation of Q-factor from vertical seismic profile (VSP) and cross-well
data (Spencer et al., 1982; Tonn, 1991). Almost all of these methods use
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the amplitude information of received signals, which information, however,
is often inaccurate because of noise, geometrical spreading, scattering, and
other effects.

Quan and Harris (1997) present a method for estimating seismic ab-
sorption based on the frequency shift observed in vertical seismic profiling
(VSP) data. Since the centroid frequency of the signal’s spectrum experi-
ences a shift to lower frequencies during propagation, they develop a relation
between Q and the centroid of an amplitude spectrum. The amplitude spec-
trum is represented by a Gaussian, boxcar, or triangular function.

In this chapter, an analytical equation will be developed to relate ab-
sorption to spectral peak frequency variation. This analytical approach can
be used to estimate the Q-factors from prestack common mid-point (CMP)
gathers. This approach can also be used to estimate the Q-factors from a
single trace, where the spectral peak frequency variation of a seismic wavelet
can be picked from a windowed time-variant spectrum (WTVS) or a con-
tinuous wavelet transform (CWT) spectrum.

3.2 Absorption and Peak Frequency Variation

In seismic data processing, a recorded trace is commonly modeled as the
convolution of a seismic source signature with a reflectivity series. The
seismic source signature is generally unknown. The effects of anelasticity
can be incorporated into the model by convolving with an earth filter. This
filter is causal, minimum phase, and depends on the Q-factor (Aki and
Richards, 1980).

In order to build a relation between Q and peak frequency translation,
we begin by assuming that the amplitude spectrum of the source wavelet
can be well represented by that of a Ricker wavelet.

B(f) =
2√
π

f2

f2
m

e−f2/f2
m , (3.1)

where fm is the dominant frequency or the main frequency. For convenience,
the frequency of maximum amplitude is referred to as the peak frequency,
and denoted by fp. For a wavelet at its initial state, the peak frequency is
the dominant frequency.

One point needs to be emphasized here: the derivation only requires an
assumption about the shape of the amplitude spectrum, without any as-
sumption of the phase of a seismic wavelet. The Ricker amplitude spectrum
is close to that observed in real data. Approximately, a spectrum which
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rises to the peak amplitude quickly and decays gradually can be fitted by a
Ricker spectrum.

The evolution of the amplitude spectrum with time is now modeled as
a Ricker wavelet traveling in a visco-elastic medium (geometrical spreading
and other factors are not considered). After traveling for a time t, the
amplitude spectrum is

B(f, t) = B(f)H(f, t). (3.2)

In equation (3.2), H(f, t) is the absorption filter (Varela et al., 1993), whose
frequency response is

H(f) = exp

(

−
∫

ray
a(f, l)dl

)

.

In this expression, the integral is evaluated along the ray-path l, and

a(f, l) =
πf

Q(l)v(l)
.

Here, Q(l) and v(l) are the Q-factor and velocity, respectively, defined along
each point of the ray-path. The value Q(l) is assumed to be independent of
frequency (Ricker, 1953; Kjartansson, 1979; White, 1983).

By considering the propagation of a wavefield in a half-space with a
Q-factor for t seconds, the amplitude spectrum of the received signal is

B(f, t) = B(f)e
−πft

Q . (3.3)

This equation can also be derived from equation (2.22), by only considering
the amplitude of the wavefield.

As time increases, absorption increases with frequency and results in
the peak frequency translating towards lower frequency. This phenomenon
is illustrated in Figure 3.1. Because of absorption, the time width of the
source wavelet increases and the amplitude spectrum narrows as the wave
travels. If the arrival times are known, the Q-factor can be calculated from
the spectral variation based on equation (3.3).

3.2.1 Spectral Ratio Method

A common method to estimate Q is the spectral ratio method (Spencer et al.,
1982; Tonn, 1991). By comparing the amplitude spectra at two arrival times
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Figure 3.1: (a) A reflection in a CMP gather. The medium is absorptive
with Q = 10. Traces have been normalized based on their maximum ampli-
tudes. (b) Amplitude spectra of the original source signature (black), trace
1 (red), trace 11 (green), and trace 21 (gray).
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t1 and t2 respectively, we can take the ratio of the two amplitude spectra,

B(f, t2)

B(f, t1)
=
B(f)e

−πft2
Q

B(f)e−
πft1

Q

. (3.4)

Taking logarithms of both sides, equation (3.4) becomes

ln

[

B(f, t2)

B(f, t1)

]

= −π(t2 − t1)

Q
f. (3.5)

Denoting Ar = ln
[

B(f,t2)
B(f,t1)

]

, the logarithm of the spectral ratio, and plotting

Ar as a function of frequency, f , yields a linear trend whose slope p is a
function of Q. Q then can be easily expressed in terms of observed slope p
as

Q =
−π(t2 − t1)

p
. (3.6)

The spectral ratio method is simple in principle, but in practice determining
the Q-factor is complicated by overlapping wavelets which lead to amplitude
spectra that do not reflect the wavelet spectrum. Also, the linear trend
of Ar to f is not obvious, and linear fitting is required. More seriously,
the spectral ratio method will fail if there are other factors affecting the
amplitude spectrum besides attenuation. These factors will be detailed in
the following discussions.

3.2.2 Q and Peak Frequency Variation

As stated above, the magnitude of the amplitude spectrum of seismic waves
is affected by many factors besides absorption. These factors include geo-
metrical spreading, reflection and transmission effects, and the methods of
amplitude recovery, which may be applied to balance the trace amplitude
in seismic data processing.

It is almost exclusively the Q-factor, however, that affects the shape
of the wavelet spectrum. Based on this idea, a method is developed to
estimate the Q-factor from the spectral peak frequency variation of seismic
reflections. Including all Q-factor unrelated functions into an amplitude
term, the amplitude spectrum can be written as

B(f, t) = M(t)B(f)e
−πft

Q , (3.7)

where M(t) is an amplitude factor independent of frequency and absorption.
The peak frequency fp can be determined by equating the derivative of the
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spectrum, with respect to frequency, to zero:

∂B(f, t)

∂f
= M(t)

∂B(f)

∂f
e−

πft
Q +M(t)B(f)e−

πft
Q

(

−πt
Q

)

= 0. (3.8)

Recalling the expression for the Ricker wavelet, from equation (3.1), we
obtain

∂B(f)

∂f
=

2√
π

(

2f

f2
m

)

e
− f2

f2
m +

2

f2

(

f2

f2
m

)

e
− f2

f2
m

(−2f

f2
m

)

. (3.9)

Finally, by inserting this expression into equation (3.8), the peak frequency
at time t is obtained as

fp = f2
m





√

(

πt

4Q

)2

+

(

1

fm

)2

− πt

4Q



 . (3.10)

The relation between Q and the shift of peak frequency is,

Q =
πtfpf

2
m

2(f2
m − f2

p )
. (3.11)

This expression shows that if the dominant frequency fm is known, the Q-
factor can be computed from the peak frequency at only one time location.

In practice, of course, the initial fm is not known. However, it can be
estimated if the amplitude spectrum of the initial source wavelet can be
approximated by that of a Ricker wavelet. Designating the peak frequencies
at times t1 and t2 by fp1 and fp2, respectively, we have

Q =
πt1fp1f

2
m

2(f2
m − f2

p1)
=

πt2fp2f
2
m

2(f2
m − f2

p2)
.

Thus, the dominant frequency of the source wavelet can be derived from the
peak frequencies of a reflection at two different time locations:

fm =

√

fp1fp2(t2fp1 − t1fp2)

t2fp2 − t1fp1
. (3.12)

Combining equation (3.11) and (3.12), one obtains

Q =
π(t2 − t1)fp2f

2
p1

2(f2
p1 − f2

p2)
. (3.13)
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Equation (3.13) allows us to determine the absorption property of a layer if
an event in the layer is observed at two different time locations.

Although a Ricker amplitude spectrum is assumed in the derivation,
other wavelet spectral models are also possible, depending on their similarity
to the observed amplitude spectra. One example is the Gaussian spectrum
of variance σ2:

B(f) = exp

[−(f − fm)2

σ2

]

. (3.14)

Following the above procedure, the relationship between the Q-factor and
the variation of peak frequencies is

Q =
πtσ2

fm − fp
,

and the dominant frequency is

fm =
fp1t2 − fp2t1

t2 − t1
.

Similarly, observations at two different time locations allow us to determine
a unique Q-factor

Q =
πσ2(t2 − t1)

fp1 − fp2
. (3.15)

By assuming the amplitude spectrum of a seismic wavelet has an analyti-
cal form which is unimodal, other expressions like equation (3.13) can be
derived.

For real seismic data, the amplitude spectrum of a seismic wavelet is
not exactly that of a Ricker or of a Gaussian wavelet. In many situations,
however, it can still be approximated by a Ricker spectrum (Ricker, 1953).
This approach may be used to estimate quality factors from both prestack
and poststack seismic data.

3.3 Q Estimation for Seismic Absorption
Compensation and Migration

For absorption compensation and migration in seismic data processing, Q
values are only expected for major layers defined by velocities. Therefore,
methods to estimate Q values here are based on seismic reflection event
picking.
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3.3.1 Estimation of Q from CMP Gathers

A CMP gather is very suitable for Q estimation, for two reasons: First,
a CMP gather represents multiple observations of an underground struc-
ture. It provides information in the time and offset domains, allowing for
the extraction of information concerning structure, lithology, and material
properties such as velocity and Q-factor.

Secondly, reflection arrival times are determined by interval velocities
and the geometrical structure of the subsurface. Absorption of the received
signals is only determined by the interval Q-factors and traveltimes in each
layer. If the amplitude spectrum of a seismic wavelet is assumed to be
Ricker-like, interval Q-factors can be computed solely from the variation of
the peak frequency of a spectrum as a function of time.

Equation (3.13) allows us to obtain an average Q-factor by using the
peak frequency variation along all offsets, thereby allowing us to remove the
effects of surface fluctuations and random noise, consequently improving the
accuracy of the estimated Q values.

Two-layer Case

Consider first the case of two layers with quality factors Q1 and Q2 and
traveltimes t1 and t2 in each layer, respectively, using equation (3.3), the
amplitude spectrum after t = t1 + t2 is

B(f, t) = A(t)B(f)e
−πft1

Q1 e
−πft2

Q2 . (3.16)

From the peak frequency fp associated with B(f, t) in equation (3.16), Q2

can be estimated by following the same procedure of derivation from equa-
tion (3.7) to (3.11), if Q1 and the dominant frequency fm of the source
wavelet are known. The expression of Q2 is

Q2 =
πt2Q1

αQ1 − πt1
, (3.17)

where

α =
2f2

m − 2f2
p

fpf2
m

. (3.18)

Now, using the concept of an equivalent Q, in other words, letting

e
−πft1

Q1 e
−πft2

Q2 = e−
πft
Q , (3.19)
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this allows an expression to be derived which relates the interval Q2 to the
equivalent Q-factor by

Q2 =
t2Q1Q

(t1 + t2)Q1 − t1Q
. (3.20)

The equivalent Q can be calculated from equation (3.19), using the peak fre-
quency at time t. Since the dominant frequency fm of the initial wavelet and
Q1 have already been determined from upper-layer arrivals, if traveltimes
t1 and t2 in the two layers are known, Q2 can be computed from equation
(3.20).

Multi-layer Case

Given the complexity of the subsurface, some approximations must be made
to use all offset information. For multi-layer media, we may write the am-
plitude attenuation equation (3.3) as

B(f, t) = A(t)B(f) exp

(

N
∑

i=1

−πf∆ti
Qi

)

, (3.21)

where Qi and ∆ti are the quality factor and the traveltime in layer i , re-
spectively. Following the approach used in velocity estimation, we assume
straight raypaths and compute the total traveltime of a reflection at a par-
ticular offset as

N
∑

i=1

∆ti = tN .

Now define t0(N) as the zero-offset traveltime of reflection N , QN as the Q-
factor value for layer N , and t0(i) as a zero-offset traveltime of a reflection
above layer N . Using the proportional property of similar triangles, the
traveltime in layer i is

∆ti =
tN

t0(N)
[t0(i) − t0(i− 1)] .

Furthermore, the amplitude attenuation operator in equation (3.21) can be
split into two factors as follows:

B(f, t) = A(t)B(f) exp

(

N−1
∑

i=1

−πf∆ti
Qi

)

exp

(−πf∆tN
Qn

)

. (3.22)
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This allows us to obtain the following equation for QN :

QN =
π∆tN
α− β

. (3.23)

where α is the same as that in equation (3.18) and

β =
N−1
∑

i=1

π∆ti
Q

.

The Q-factor values can now be calculated layer by layer by means of layer
stripping.

RMS Q and Interval Q

Since a straight raypath approximation is used, the computed QN is not the
actual interval Q-factor. Analogous to root mean square (RMS) velocities
in seismic velocity analysis, such Q values can be referred to as RMS Q
values. In a manner similar to interval velocity analysis, we can determine
the apparent interval Q-factor of the ith layer, Qint

i , from the RMS values
using a relation similar to the Dix formula (Yilmaz, 2000):

Qint
i =

√

Q2
i t0(i) −Q2

i−1t0(i−1)

t0(i) − t0(i−1)
. (3.24)

When using this equation to estimate Q-factors from CMP gathers, it is
better to notice that Qi is the average of the calculated Q values at different
offsets for layer i, and t0(i) is the zero-offset arrival time of reflection i when
the raypath is assumed to be straight across interfaces. Moreover, since
values of Qint are derived from RMS Q values, they are apparent, rather
than real, interval Q-factors.

Numerical Experiments

To estimate Q from CMP gathers, it is assumed that the arrival times for the
main reflection events are known. Fourier transforms are computed in the
window containing the reflection at each offset, each amplitude spectrum
is fitted with a Ricker spectrum and the peak frequency of the spectrum
is estimated. Using equation (3.23), we can now calculate Q factors layer
by layer from the peak frequency variations. The procedure of using the
suggested approach to estimate Q-factors from CMP gathers can be outlined
by the the pseudo code in table (3.3.1).
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/* Analyze absorption at selected CMP locations */

{

select_a_CMP ();

do while (event index < number of events)

{

pick_an_event ();

do while (offset index <number of offsets)

{

do_windowed_fft ();

spectrum_fitting ();

check_peak_frequency ();

}

calculate_Q ();

}

form_attenuation_field ();

}

Table 3.1: A pseudo code of prestack Q estimation.

Figure 3.2 shows a simple test on a synthetic CMP gather with two
events. The original Ricker wavelet has a dominant frequency of 60 Hz.
Absorption is modeled by using low Q values to emphasize the absorption
effect: the values in the two layers are 10 and 20, respectively. The actual
and estimated inverse Q curves are shown in Figures 3.2b and 3.2c, respec-
tively. The two curves are almost the same, because the estimated Q values
are close to the actual values. The corresponding dominant frequency is
estimated as 60.67 Hz. The agreement between the corresponding values
shows that the method works well for ideal synthetic data. The variation of
peak frequencies with offset is shown in Figure 3.3. Peak frequency varia-
tion with offset of the first event is shown in black and the variation of the
second event is shown in red. The remarkable decrease is, of course, due
to absorption. This example demonstrates clearly why absorption must be
compensated for if resolution of prestack data is an issue.

In theory, an event that can be examined at two offset locations allows us
to determine the Q value of one layer. By using the peak frequency variation
along all offsets, an average Q can be obtained, thereby the effects of surface
fluctuations and random noise can be reduced, thus improving the accuracy
of Q estimation.
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Figure 3.2: (a) A synthetic CMP gather of two reflections with absorption
and 10% random noise. Traces have been normalized based on their maxi-
mum amplitude. (b) Values of input quality factors (Q1 = 10 and Q2 = 20
). (c) Computed quality factors (Q1 = 10.04 and Q2 = 20.12).
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Figure 3.3: Variation of peak frequencies of the two reflections in Figure 3.2.
Peak frequencies of the first event and the second event are shown in black
and red respectively.

3.3.2 Q Estimation from a Poststack Trace

In seismic data processing, stacking after normal moveout (NMO) destroys
the original absorption characteristics by summing together signals which
experience different trajectories. In short, prestack CMP gathers before de-
convolution are more suitable for attenuation analysis than stacked traces.
Nonetheless, to perform de-absorption processing on poststack data is of-
ten necessary; hence, it is important to estimate Q-factors from vertically
incident traces or stacked traces, if corresponding CMP gathers are not avail-
able. The forgoing derived analytical approach, which computes Q values
from wavelet peak frequency variation, can be applied to different seismic
acquisition geometries. To detect peak frequency variation from a single
trace, we can use windowed time-variant spectral (WTVS) analysis or the
continuous wavelet transform (CWT) analysis.

Windowed Time-variant Spectral Analysis

The windowed Fourier transform was introduced by Gabor (1946) to mea-
sure localized frequency components of sound. A real and symmetric window
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g(t) = g(−t) is translated by u and modulated with a frequency ω:

gu,ω = eiωtg(t− u).

The resulting windowed Fourier transform of a signal f(t) is

Sf(u, ω) =

∫ ∞

−∞
f(t)g(t− u)e−iωtdt. (3.25)

This transform is also called the short time Fourier transform because mul-
tiplication by g(t − u) localizes the Fourier integral in the neighborhood of
t = u. In the windowed Fourier transform, the window function remains
unchanged as it moves along the time axis. The resolution in time and
frequency of the windowed Fourier transform depends on the spread of the
window in time.

To examine the variation of a time-variant spectrum, the support of the
window function needs to increase with time in order to accommodate the
time-variant seismic wavelet. The windowed time-variant Fourier transform
is a useful tool for seismic time-frequency analysis.

Continuous Wavelet Transform

The time-frequency localization of g in equation (3.25) can be modified by
a scaling factor s. Let gs(t) = 1√

s
g( t

s ) represent the dilation of g(t). The

choice of a particular scale s depends on the desired resolution trade-off
between time and frequency.

To analyze signal structures of different size at different localizations, it
is necessary to use time-frequency atoms with different time supports. The
wavelet transform decomposes signals by means of dilated and translated
wavelets. Supposing a mother wavelet is a function ψ(t) ∈ L2(R) (Mallat,
1999), the wavelet transform of a signal f(t) at time u and scale s is

Wf(t, s) =

∫ ∞

∞
f(t)ψ

(

t− u

s

)

dt. (3.26)

A set of wavelet bases which are wavelet functions at different scales is equiv-
alent to a set of band pass filters. Orthogonal and complete wavelet bases
can be constructed to perform multi-resolution analysis of signals (Mallat,
1999). It is important to note that the orthogonality and completeness of
wavelet bases are not required for the application to find out the peak fre-
quencies of signals.
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Both windowed time-variant spectral analysis and the continuous wavelet
transform can be used for time-frequency analysis (Zhang, 2000). The fol-
lowing presents the application of WTVS analysis for Q estimation from a
single trace.

Quality Factor Estimation from WTVS Analysis

To analyze the absorption characteristic of a trace in a poststack seismic
section, we use WTVS analysis because WTVS can reveal the variation of
frequency content with time. If a trace is assumed to be at zero offset,
from the peak frequency variation detected in a WTVS, Q values can be
calculated using equation (3.13). For a seismic section, Q can be estimated
in many CMP locations. By means of horizontal interpolation, a Q profile
can be constructed. The Q profile is like a velocity profile, it can be used in
inverse Q filtering and also in Q-migration.

Figure 3.4(a) shows a real seismic trace. Figure 3.4(b) shows a windowed
time-variant spectrum of this trace. This WTVS gives a clear indication of
the trend of the spectral variation. Picking the peak amplitude ridge from
WTVS and fitting the ridge with a piece-wise straight line in the coordinates
of f versus t, one can calculate a quality factor from each line segment using
equation (3.13) for the main events, as shown in Figure 3.4(c).

The WTVS computation initially applies a narrow window to the input
trace and calculates the conventional Fourier spectrum of the windowed
data. The window is then translated and widened successively with time
along the trace and the Fourier transform is calculated for each new position
of the window.

3.4 Summary and Discussions

This chapter has presented an analytical formula which calculates a Q value
from the spectral peak frequency variation of a seismic wavelet. The idea is
illustrated using the spectrum of a Ricker wavelet. The approach can be ap-
plied to prestack CMP gathers or to postack traces for Q-factor estimation.
This approach is superior to the traditional spectral ratio method because
it only uses the information of frequency variation caused by absorption,
instead of using amplitude information which is affected by many factors.

Seismic absorption properties are ideally expected to be estimated from
prestack CMP gathers, and absorption compensation is ideally implemented
on prestack seismic data. The reason is that stacking distorts the frequency
information of the original seismic data.
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(a) (b) (c)

Figure 3.4: Q estimation. (a) is a real seismic trace. (b) is its windowed
time-variant spectrum. The picked peak frequency points are marked by
circles and connected by straight lines. (c) is the inverse of estimated quality
factors.
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Underground lithology is characterized by its velocity, density, and Q-
factor. While the Q-factor does not affect the arrival times of reflections, it
does affect amplitude and the signal’s frequency content. Extracting velocity
information from CMP gathers is a common practice. we have devised an
analogous approach to estimate the absorption character from the variation
of spectrum with both time and offset. The equations that compute Q-
factors from observed peak frequency variation are derived based on the
reasonable assumption of a Ricker-like amplitude spectrum.

Absorption effects as a function of offset may be mistakenly interpreted
as AVO phenomena. Without prestack Q-factor compensation, the reflec-
tion amplitudes may appear to decrease with offset. Compensating for ab-
sorption in prestack data can improve the resolution of seismic data and is
important for AVO analysis. Figure 3.2 clearly shows that signals get atten-
uated with traveltime and offset. Absorption compensation, based on the
underlying physics of the absorbing process, lets us compute a section with
increased resolution. Subsequently, a stationary source wavelet can be used
to improve the resolution by means of deconvolution. It is superior to con-
ventional deconvolution techniques which rely on an adaptive formulation of
wavelet estimation. Only when Q values are available, can prestack inverse
Q-filtering be applied to compensate for attenuation on prestack seismic
data.

It is advisable to extract Q-factors from prestack seismic data that have
not been processed by frequency filtering methods (e.g. deconvolution) that
violate the assumptions of the method. Prestack processing provides an-
other dimension “offset” that increases the information available for signal
and noise separation. Q compensation performed in the prestack domain
can provide a balanced signal spectrum over offset and over time as well,
improving the vertical and lateral resolution of the final image.

Although seismic absorption estimation is ideally implemented on a CMP
gather, the introduced method applies to seismic data with different acqui-
sition geometries, wherever, the peak frequency of a seismic wavelet can
reliably estimated.

For poststack data, windowed time-variant spectral analysis or the con-
tinuous wavelet transform can be used for time-frequency analysis. In ab-
sorptive media, dispersion causes the width of a seismic wavelet to increase
with time. To allow the window to enclose an entire seismic wavelet at each
time location, WTVS analysis uses a time-variant window function, i.e., the
width of the window function increases with time.
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Chapter 4

Seismic Absorption Analysis
for Reservoir Description

In reservoir description, seismic attenuation property, Q, is ideally estimated
at all prospective layers defined by velocities or acoustic impedance. This
chapter introduces a technique called reflectivity-guided seismic attenua-
tion or Q analysis (RGQA) which is based on the idea that Q values can
be calculated from the peak frequency variation of a seismic wavelet. We
first estimate peak frequencies at a CMP location, then correlate the peak
frequency with sparsely-distributed reflectivities, and finally calculate a Q
curve from the peak frequencies at the layer interfaces using an analytical
equation. The peak frequency is estimated from the prestack CMP gather
using peak frequency variation with offset (PFVO) analysis which is similar
to amplitude variation with offset (AVO) analysis to reduce the stacking
effect on the waveform. PFVO analysis also helps to exclude the effect of
event tuning on frequencies. The estimated Q section has the same layer
boundaries as the acoustic impedance or other layer properties and can be
easily interpreted for the purpose of reservoir description.

4.1 Introduction

Seismic attenuation property, usually represented by the quality factor Q, is
an important parameter for characterizing rock types. Velocity and atten-
uation together define the propagating behavior of seismic waves through
visco-elastic media. One can expect that attenuation properties estimated in
layers defined by velocities or acoustic impedance would be a useful seismic
attribute for reservoir description.

This chapter first reviews techniques used for seismic attenuation anal-
ysis in reservoir description, and then introduces a technique to estimate
Q values based on the variation of zero-offset seismic peak frequencies at a
CMP location. In order to avoid the distortion in seismic waveforms caused
by stacking and to exclude frequency changes caused by event tuning, the
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peak frequency and its derivative along offset are estimated from a CMP
gather using peak frequency variation with offset (PFVO) analysis. Reflec-
tivities are used to define the locations where peak frequencies are required
and the layers where Q values will be computed. The technique is called
reflectivity-guided seismic Q analysis. It operates on prestack CMP gathers,
while in the meantime, it uses the reflectivity (or the interface of acoustic
impedance) information, which is usually obtained from stacked seismic sec-
tion. The estimated Q section can be used as an attribute which helps to
delineate prospective hydrocarbon reservoirs.

4.2 Review of the Methods for Seismic
Attenuation Analysis

There are mainly three categories of techniques to estimate seismic attenua-
tion properties for hydrocarbon reservoir description. They are iso-frequency
analysis, direct Q estimation and attenuation or, Q tomography.

4.2.1 Iso-frequency Analysis

This technique is regularly implemented using spectral decomposition to de-
compose a seismic trace into a frequency gather. By examining iso-frequency
sections, one can determine frequency dependent energy variations, among
which some could be related to hydro-carbon accumulation (Castagna et al.,
2003). It is difficult to set a suitable frequency interval for iso-frequency
slices so that the low-frequency shadows may be properly identified. In the-
ory, there are numerous mechanisms that might be responsible for the low
frequency shadows beneath hydrocarbon reservoirs, as discussed by Ebrom
(2004). It is difficult to determine which mechanisms are, in fact, those
that introduce the first-order effects. Based on these observations, it may
perhaps be concluded that iso-frequency analysis is more a qualitative than
quantitative approach.

In order to illustrate the above discussion, Figure 4.1 shows a frequency
shadow caused by attenuation, whereas Figure 4.2 shows low-frequency
shadows caused by attenuation and thin-layer tuning. In Figure 4.1, the
only absorptive layer is between 0.4s and 0.6s. The high frequencies are
attenuated after the seismic wavelet traveling through the absorptive layer.
The frequency decay is irreversible, because there is no physical mechanism
to boost the frequency except the interference among waves. In Figure 4.2,
there are two closely spaced (0.008s) reflection coefficients at around 0.6s.
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Figure 4.1: Frequency decay caused by absorption. (a) is an attenuation
model, (b) is the synthetic trace and (c) is the spectrum of frequency de-
composition.

The wavelets from the two layers merge and form a composite wavelet of
lower frequency, as shown in Figure 4.2(b). In the time-frequency spectrum
of Figure 4.2(c), the composite wavelet appears as a low frequency shadow.
This frequency translation is, however, only apparent in that it does not
belong to the propagating wavelet. These two figures clearly demonstrate
that the low-frequency shadow itself is not accurate enough to define an
absorptive zone.

4.2.2 Direct Q Estimation

Conceptually, attenuation can be fully defined by the quality factor, Q.
Q can be extracted from seismic traces or from sonic logs, and represents a
straightforward way to estimate seismic attenuation for reservoir description.

A number of techniques have been introduced to estimate Q in reser-
voir applications. Dvorkin and Mavko (2006) calculated maximum Q values
based on high and low frequency P -wave bulk moduli. The extracted Q
curve from sonic logs confirms that the gas hydrate area has strong at-
tenuation. A case study presented by Hübert et al. (2005) explains how
seismic attenuation and relative acoustic impedance help to identify the gas
reservoir and exclude the AVO bright spot caused by Cretaceous shales.
Parra et al. (2006) extract intrinsic attenuation from the head P -wave of
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Figure 4.2: Frequency decay caused by thin-bed tuning and absorption.
(a) shows a reflectivity function with closely-spaced coefficients. (b) is the
corresponding absorption property. (c) is the synthetic trace and (d) is its
spectrum of time-frequency decomposition.

a full-waveform sonic log using a spectral ratio approach. The obtained Q
log, together with other well logs, helps to discriminate between anomalies
which are associated with lithology and those associated with oil and gas
saturation. Singleton et al. (2006) introduce a Q estimation method using
the Gabor-Morlet spectral ratio of an absorption compensated trace to the
original seismic trace. The absorption compensation is achieved by spatial
spectral balancing.

4.2.3 Attenuation Tomography

This approach attempts to extract attenuation structures from seismic data
by minimizing the misfit between model derived data and the observations.
Quan and Harris (1997), as well as Plessix (2006), combine traveltime to-
mography and attenuation tomography together to invert velocity and atten-
uation from cross-well transmitted data. Seismic attenuation is modeled by
means of the variation of the centroid frequency of a seismic wavelet. Pratt
et al. (2003) use waveform tomography which is based on a visco-acoustic
wave equation. This method helps to find a layered hydrate distribution with
attenuation anomalies. Hicks and Pratt (2001), Watanabe et al. (2004) and
Gao et al. (2005) also adopt waveform tomography to invert for attenuation.
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The three classes of techniques for attenuation analysis listed above, have
all experienced a degree of success in application. However, the problem of
how to obtain an interval intrinsic Q profile from seismic reflection data, or
how to obtain a Q that can be easily correlated with acoustic impedance
and/or other elastic parameters, remains a challenge in reservoir character-
ization.

4.3 Reflectivity-guided Q Analysis, RGQA

4.3.1 Theory

The following four points outline the theory behind the technique that we
have named reflectivity-guided Q analysis, RGQA in abbreviated form:

1. We assume a frequency-independent Q which is the only parameter
required to fully describe the attenuation properties of a layer. This
Q is related to lithology, porosity, pore fluid, saturation etc.. Together
with other available geological and geophysical information, Q provides
one more attribute for reservoir characterization. Like velocity, Q is an
interval property, which can be derived from the reflections occurring
at layer boundaries.

2. A Q curve can be estimated from the frequency variation of a zero-
offset trace, which describes a vertically traveling seismic wavelet.
Its time-variant spectrum describes the attenuation property of the
medium. Frequency variations can be simply described by the peak
frequency shift.

Assuming the peak frequencies of a wavelet at time t1 and t2 are fp1

and fp2 respectively, if the amplitude spectrum of the seismic wavelet
is like that of a Ricker wavelet (the second derivative of a Gaussian
function), the inverse Q value can be calculated using (from equation
(3.13))

1

Q
=

2(f2
p1 − f2

p2)

π(t2 − t1)fp2f2
p1

. (4.1)

3. The zero-offset trace is not naturally available. Seismic stacking sums
up traces in a CMP gather to reduce noise and improve overall data
quality. Furthermore, stacking distorts the frequency variation pattern
caused by seismic attenuation. The seismic wavelet at a CMP location
in a stacked seismic section is different from what is observed on the
trace of vertical-incidence.
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Figure 4.3: Flow diagram of reflectivity-guided Q analysis.

4. Required peak frequencies of seismic wavelets at zero-offset can be
estimated by means of modeling the frequency variation along offset
in a CMP gather. We call this technique PFVO analysis.

Figure 4.3 shows the flow diagram of the RGQA algorithm. Attenuation
analysis is implemented on a prestack CMP gather and requires sparsely
distributed reflectivities for interface selections.

Layer interface information can be obtained from acoustic impedance
inversion or sparse reflectivity inversion (Oldenburg et al., 1983; Ulrych and
Sacchi, 2005). Nowadays, piece-wise constant acoustic impedance informa-
tion is generally available for reservoir description (Latimer et al., 2000).
RGQA employs poststack acoustic information to help the extraction of
attenuation information from the prestack data.

Seismic data contain information concerning the interfaces between rock
layers along the path of propagation. In general, the information concerning
the layers themselves is inferred from that describing the interfaces. Acous-
tic impedance and AVO inversion are two instances where this strategy
is used to infer layer properties. Since layer boundaries defined by reflec-
tion coefficients are also representative of the boundaries of the attenuating
layers, RGQA derives rock attenuation properties pertinent to the layers
themselves.

In order to illustrate the general idea behind RGQA, we use the model
in Figure 4.1 once again. Peak frequencies at four reflectivity locations
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Figure 4.4: Peak frequencies at layer boundaries. (a) is the peak frequencies
from the trace in Figure 4.1 (b). (b) is the extracted inverse Q curve.

are picked from the spectrum in Figure 4.1(c) and these frequencies are
transformed to 1/Q values using equation 4.1. Figure 4.4 shows the peak
frequencies at these locations, as well as the estimated 1/Q curve. For this
simple case, RGQA works perfectly. This method, when applied to the
event tuning model shown in Figure 4.2(b), will fail however. The frequency
decay or rise caused by event tuning can be excluded by examining the peak
frequency variation along offset (PFVO) on CMP gathers.

4.3.2 Peak Frequency Variation with Offset (PFVO)
Analysis

Considering that NMO correction followed by stacking could distort the
shape of the wavelet and thus obscure the sought after absorption effects,
we suggest a method to estimate peak frequencies at zero offset directly
from prestack CMP gathers based on the frequency variation along offset.
This multichannel peak frequency analysis strategy makes the estimation
algorithm more robust to random noise and crossing events in a CMP gather.

PFVO analysis follows the same implementation procedure as AVO (am-
plitude variation with offset) (Aki and Richards, 1980). It fits the peak fre-
quency along offset linearly. The intercept, Pf , can be transformed into Q
values, and the gradient, Gf , serves the fundamentally important, and thus
far unresolved, task of separating Q into real attenuation and event tuning
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effects. PFVO operates on a CMP gather without NMO correction, because
NMO stretch at far offset distorts the frequency spectrum of reflections.

There are two main issues in Q estimation using frequency variation
with offset. The first is how to determine the peak frequency at each layer
boundary. The second is how to determine Q from the peak frequency
variation. Regarding the first issue, one general and reliable way is to use
spectral decomposition, i.e. to perform time-frequency analysis on each
trace, and use the instantaneous amplitude spectrum to determine a peak
frequency. Regarding the second issue, we fit the peak frequencies of an
event at different times by using a formula like equation (4.1) depending on
the spectral shape of a seismic wavelet.

For a Ricker-like amplitude spectrum, which is the assumed spectral
shape in our work, the peak frequency variation with time follows the fol-
lowing equation (also equation (3.12))

fp = f2
m





√

(

πt

4Q

)2

+

(

1

fm

)2

− π∆t

4Q



 .

where fm is the peak frequency of a wavelet at its initial state (time = 0)
and fp is the peak frequency after travel time t. It can be observed from
this equation that if the peak frequency at time t − ∆t is fp0 after a time
interval ∆t, the peak frequency is

fp = fp0





√

(

fp0π∆t

4Q

)2

+ 1 − fp0π∆t

4Q



 . (4.2)

In equation (4.2), the term
fp0π∆t

4Q is almost always less than 1 for small ∆t
and weak attenuation (large Q). In a further step, we expand the square
root via a Taylor series and keeping only the first term we obtain

fp = fp0

[

1 − fp0π∆t

4Q
+
f2

p0
π2∆t2

32Q2

]

.

In general, peak frequency fp varies with the difference of arrival times non-
linearly. For weak attention, the Q2 term can be omitted from the above
expression, yielding the following approximation:

fp = Pf −Gf∆t, (4.3)

where Pf = fp0, Gf =
πfp0
4Q . For an event in a CMP gather, ∆t is the

normal moveout for a particular offset. For an event starting from two-way
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traveltime t0 at zero-offset, ∆t is a function of t0, RMS velocity and offset,
i.e.

∆t = ∆t(t0, vrms, offset).

Equation (4.3) shows that for a seismic wavelet with a Ricker-like amplitude
spectrum, the peak frequency decay of a reflection with the difference of
arrival times in absorptive media can be simulated by a linear relation. The
intercept, Pf , of the straight line is the peak frequency at zero offset, and
the gradient, Gf , is related to seismic attenuation.

A first glance at equation (4.3) may give the impression that Q could
be computed directly from Gf . Actually, Gf can only provide root-mean
square attenuation information, (Zhang and Ulrych, 2002), rather than the
required interval Q’s. Instead of providing attenuation information directly,
Gf indicates whether there is peak frequency decay along offset. Therefore,
we use Gf as an indicator which tells us whether the frequency decay at
zero offset is caused by attenuation or by some extrinsic mechanism, e.g.
thin-bed scattering. In fact, in our method, Q is calculated from the Pf ’s
only.

4.3.3 Implementation Steps

The technique is implemented in six steps as outlined below:

1. Build a CMP super-gather to suppress the effect of random noise.
A trace in a super-gather is a stacked trace of several neighboring
traces (Ostrander, 1984). The CMP gather used for Q-factor estima-
tion needs to be free of NMO stretch, so that if normal moveout is
applied when forming a CMP super-gather, reverse NMO needs to be
applied afterwards.

2. Do time-frequency analysis on each trace using a continuous wavelet
transform or short window Fourier transform. More sophisticated
spectral decomposition like exponential pursuit decomposition (Castagna
and Sun, 2006) may help to improve the resolution of the time fre-
quency spectrum. Resolution and computation are two factors for the
choice.

3. Compute the instantaneous amplitude envelope using Hilbert trans-
form (Taner et al., 1979) to get a smooth amplitude spectrum.

4. Examine for the highest amplitude among frequencies at interface lo-
cations. The peak frequency is the frequency corresponding to the
maximum amplitude.
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5. Fit peak frequencies with normal moveout linearly using l1 norm to
get Pf and Gf , and edit Pf by removing the values corresponding to
negative or very small Gf ’s.

6. Calculate Q from the effective Pf values.

Theoretically, peak frequencies at two offset locations can fully define
the trend of peak frequency variation of a reflection. By using multi-channel
information along offset, the algorithm is robust to random noise and the
effects of crossing events.

Forming super-gathers, spectral decomposition and l1 linear fitting are
the main parts of the whole PFVO computation. Compared to traditional
AVO analysis, PFVO analysis does fewer linear fitting operations, because
linear fitting is only performed at layer interface locations, and the extra
computation is efficient reverse NMO and the spectral decomposition. The
wavelet transform can be regarded as a series of band-pass filters. Because
the filters can be precomputed before the convolutions, the computation load
of spectral decomposition is limited. PFVO analysis on a CMP gather is
computationally comparable to traditional AVO analysis. The reflectivity-
guided Q analysis is practical even for large 3D prestack data volumes.

4.4 Numerical Experiments

First, let’s look back at the model with event tuning and attenuation in
Figure 4.2 to see whether the method of the reflectivity-guided attention
analysis can help to extract actual attenuation information.

Figure 4.5(a) shows a synthetic CMP gather using the reflectivity model
(Figure 4.2(a)) and the attenuation model (Figure 4.2(b)). The data at the
near offsets on the CMP gather are purposely zeroed to simulate real seismic
data acquisition, where zero-offset data are not recorded. Pf and Gf are ex-
tracted from the CMP gather. Pf and Gf/Pf are displayed in Figure 4.5(b)
and Figure 4.5(c) respectively. The reason for displaying Gf/Pf rather than
Gf is that the value of Gf/Pf falls in a relatively narrow range. Gf/Pf is
called the relative gradient. The low frequency caused by tuning events at
0.6s is excluded from the Q computation because it does not decay with
offset (Gf/Pf ≈ 0). The estimated Q curve is shown in Figure 4.5(d) which
matches the original Q model (Figure 4.2(b)).

The technique is also tested on a real 2D dataset. Besides the prestack
CMP gathers, an acoustic impedance or reflectivity section is required to
provide the layer-boundary information. Figure 4.6 shows the test on a
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Figure 4.5: Peak frequency variation with offset. (a) is a CMP gather
built from the model shown in Figure 4.2. (b) is the corresponding peak
frequencies at zero offset. (c) is the relative gradient of peak frequencies
along offset, and (d) is the estimated Q curve.

CMP gather, the super-gather having been formed in a manner similar to
that used in AVO analysis (Ostrander, 1984), except with reverse NMO
applied to remove NMO stretch. Figure 4.6(b) shows the peak frequency
gather. Figure 4.6(c) shows the peak frequencies at zero offset. Figure 4.6(d)
illustrates the relative gradients of peak frequency along offset where posi-
tive values indicate frequency decay along offset. Figure 4.6(e) is the sparse
reflectivity obtained using the Bayesian inversion method described in Ul-
rych and Sacchi (2005). Figure 4.6(f) is the estimated Q curve which is
supposed to be piece-wise constant. In practice, the linear fitting step in
PFVO analysis needs only to be done at interface locations. The continuous
curves in Figure 4.6(c) and Figure 4.6(d) are computed at all samples. The
reason for doing so is only for the purpose of display, and this reason also
explains why Figure 4.7(a) shows a peak frequency section.

For this 2D dataset, the calculated peak frequencies at all CMP locations
are shown in Figure 4.7(a) and the estimated attenuation section is shown
in Figure 4.7(b). The attenuation section displays the values of Q−1. We
use the inverse of Q since it lies in the range of (0, 1) and is ideal for the
purpose of display. The blue background indicates small Q−1 values which
implies smaller absorption than the red areas.
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Figure 4.6: A real data example. (a) is a CMP gather. (b) is the correspond-
ing non-stationary distributed peak frequencies. (c) is the peak frequency
curve at zero offset. (d) is the relative gradient curve of peak frequencies.
(e) is the reflectivity function and (f) is the estimated Q curve.
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(a)

(b)

Figure 4.7: Real data experiment. (a) is the peak frequency section and (b)
is the attenuation section (Q−1).
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4.5 Discussion and Conclusion

In this chapter, we have introduced a technique of reflectivity-guided Q
analysis. This approach uses poststack sparse reflectivity (the interfaces
defined by acoustic impedance) to help pick the layer boundaries on prestack
CMP gathers, where peak frequencies are selected to compute Q values.
This technique basically provides a methodology that allows Q values to be
estimated at all prospective layers.

The obtained Q section may be computed with the same resolution as
other attribute sections. Therefore, the absorption property can be easily
incorporated into acoustic impedance interpretation. We do not suggest
here the use of attenuation as a direct hydro-carbon indicator but rather
as an attribute which could be combined with other parameters to give a
better understanding of rock properties.

We have also introduced an AVO-like, peak frequency estimation scheme
called PFVO. By examining the peak frequency shift along offset, PFVO
attempts to estimate a reliable peak frequency at zero offset, and at the
same time to separately identify the frequency change caused by thin-bed
scattering and that due to absorption. PFVO analysis operates on CMP
gathers without NMO to avoid the effect of NMO stretch. If a non-stretch
NMO technique (Perroud and Tygel, 2004; Masoomzadeh et al., 2004) were
available, PFVO could be done after NMO correction. AVO analysis can
be performed on an image gather from prestack time migration. Whether
PFVO analysis will benefit from being applied to a common image gather is
not clear at present. How prestack migration affects the frequency content
also needs to be investigated.

The accuracy of our method depends on the accuracy of time-frequency
analysis and on the validity of the equation used to calculate Q. Further,
we have assumed that frequency translation is caused by absorption and
event tuning only. There may certainly also exist other factors which affect
the frequency content of seismic data, in which case, such need be identified
and quantified. The success of the attenuation analysis is heavily dependent
on the accuracy of the interface information, generally represented by the
reflectivity or the gradient of acoustic impedance. Without accurate subsur-
face boundary information, the attenuation property obtained from seismic
data will be difficult to interpret.
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Chapter 5

Seismic Absorption
Compensation: a Least
Squares Inverse Scheme

This chapter addresses the problem of instability that plagues conventional
inverse Q filtering. The de-absorption problem is formulated as an inverse
problem in terms of least squares and regularization is imposed by means
of Bayes’ Theorem. The solution is iterative and non-parametric, and it
returns a reflectivity function that has been constrained to be sparse. The
inverse scheme is tested on both synthetic and real data and the results
obtained demonstrate the viability of the approach.

5.1 Introduction

The aim of seismic processing is to obtain a high resolution image of the sub-
surface. Many steps are involved in the attempt to achieve this objective.
One such step consists, or most certainly should consist, of the compensation
for the ubiquitous absorption of seismic energy in the earth, a step referred
to as de-absorption (McGinn and Duijndam, 1998). To a first approxima-
tion, the earth is a linear attenuator, the effect of which is to attenuate the
higher frequencies of the seismic signal. The mechanisms and the relevant
mathematical details have been described in Chapter 2 and in the literature
mentioned there such as Futterman (1962), Kjartansson (1979), Aki and
Richards (1980), Wang and Guo (2004) and Brillouin (1960).

The most serious setback to the application of de-absorption is the inher-
ent instability of deconvolution filters which, unless very carefully designed,
unavoidably amplify high frequency noise. Many authors have considered
this problem (Robinson, 1979; Hale, 1991; Hargreaves and Calvert, 1991;
Bickel, 1993; Varela et al., 1993; Wang, 2002; Margrave et al., 2003; Wang,
2003, 2006). Although, as a result of the effort of the aforementioned au-
thors, a variety of algorithms are now available to the industry, it is probably
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safe to say that all are very sensitive to the presence of additive noise. The
approach introduced here to this noise associated problem is by means of
the application of least squares (LS) inversion. This approach attempts to
obtain a solution to the inverse problem of de-absorption by minimizing the
misfit between observed data and theoretically modeled data. Thus, the
instability of applying an inverse operator to the random noise in the data,
is avoided.

The LS objective function may be constructed in various ways, but the
manner which we prefer is based on a probabilistic rationale (Tarantola,
1987; Ulrych and Sacchi, 2005), where the measured and modeled data
(which become the solution of the inverse problem) are considered as re-
alizations of random processes.

There are two main advantages to the LS approach proposed here as
compared to previously published methods. One advantage is that, if the
problem is formulated as under-determined, the type of its solution can be
controlled as desired. The second advantage is that the LS approach uses
only the forward operator, and does not require the unstable inverse opera-
tor. In other words, the formulation of de-absorption as an inverse problem,
allows a stable solution to be achieved. As pointed out by Claerbout (1985),
earth absorption might be compensated for by amplifying high-frequency en-
ergy during downward continuation, shifting a wavefield using an absorption
operator. This very interesting topic of migration with absorption compen-
sation will be investigated in Chapter 6.

This chapter is arranged as follows: First, we discuss very briefly, crit-
ical issues in de-absorption, which include Q information, random noise
and methods for absorption compensation. Secondly, we describe a de-
absorption approach using a LS optimization scheme based on probabilistic
inverse theory. Finally, we discuss the results of both synthetic and real
data examples using the LS algorithm.

Absorption in the earth causes both the attenuation and dispersion of
the reflections recorded on the surface. Both phenomena lead to a loss of
resolution with resulting loss of information concerning targets of poten-
tial interest. This is particularly severe for small , but hopefully profitable,
targets at depth. In seismology, absorption is characterized by the quality
factor, Q, and many different models have been developed which describe
the associated attenuation-dispersion relationship. De-absorption, the pro-
cess by which the undesirable effects of absorption are attenuated, is an
inherently unstable process when applied in the conventional manner. The
reason for this is that the model of absorption in the earth, customarily
adopted, is one where the seismic trace is convolved with a time varying

53



Chapter 5. Seismic Absorption Compensation: a Least Squares Inverse Scheme

filter. Conventional practice is to deconvolve the trace by means of the in-
verse of this filter. As is well known, deconvolution is very sensitive to high
frequencies (Varela et al., 1993) and so, therefore, is de-absorption.

The LS approach to de-absorption that is presented here differs quite
radically from the deconvolution techniques in customary use. The problem
is cast in terms of probabilistic inference where a priori information is used
to shape the solution to our view of the earth. This view is that reflectivities
are sparse.

5.2 Issues of Absorption Compensation

5.2.1 Method Choice

There are many methods available to implement absorption compensation,
the most common ones are time-variant spectral whitening, time-variant de-
convolution and inverse Q filtering (Yilmaz, 2000). Spectral whitening tries
to compensate for absorption caused amplitude decay by applying a gain
function at different frequency bands. Time-variant deconvolution imple-
ments absorption compensation by means of using a time-variant wavelet
in a moving time window. Q information is not used explicitly, because Q
information is hard to obtain. In order to compensate for attenuation more
accurately and deterministically, Inverse Q filtering or other Q dependent
compensation techniques are superior.

5.2.2 Inaccurate Q Estimation

Because the estimated values of Q-factors are always different from real
values, Q could be under or over estimated. Let us define the actual quality
factor as Qo, its estimation as Qe and the difference as ∆Q, where

Qe = Qo + ∆Q. (5.1)

The inaccuracy ∆Q 6= 0 in the estimation will affect the amplitude and
phase of the compensated signal in a manner outlined below.

Effects on the Amplitude

If Qe is used to compensate for the amplitude attenuation resulting from Qo

(equation (2.20)), after the correction, the amplitude is

Ac(ω) = exp

[

ω∆z

2v(ω)

−∆Q

(Qo + ∆Q)Qo

]

.
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If absorption is under-estimated or ∆Q > 0, Q compensation does not
recover the high frequency energy completely. If absorption is over-estimated
or ∆Q < 0, Q compensation over-amplifies the high frequency energy.

Figure 5.1 shows a test of using inaccurate Q’s in amplitude compen-
sation on a zero-phased attenuation response. Figure 5.1(a) is the input
zero-phased absorption response. Original reflection coefficients are three
unit spikes at time t = 200 ms, t = 800 ms and t = 1600 ms respectively.
Figure 5.1(b) is the result of amplitude compensation using actual Q. The
compensation recovers the original spikes. Figure 5.1(c) and Figure 5.1(d)
show the amplitude compensated responses using over-estimated and under-
estimated Q values. Larger Q values compensate part of the lost energy, and
thus, the response gets sharper but is not as sharp as a spike. Smaller Q val-
ues over-compensate the high frequencies, and thus, the compensated result
looks like strong high-frequency noise.

Effect on the Phase

If Qe is used to compensate for the phase distortion resulting from Qo (equa-
tion (2.21)), after the correction, the phase is

φc(ω) =
ω∆z

πv(ω)

−∆Q

(Qo + ∆Q)Qo
ln

(

ω

ω0

)

.

If the actual value and estimated value are very close, i.e. |∆Q| ≈ 0, after
Q compensation, φc(ω) ≈ 0, which means that the phase has no distortion.
Pure phase compensation will make the original minimum-phase absorption
response become zero-phase. This is an ideal case. If ∆Q > 0, i.e., Q is
over-estimated or absorption is under-estimated, φc(ω) < 0. This means the
arrival time of this frequency is delayed. The higher the frequency the more
the wave is delayed. If ∆Q < 0, i.e., Q is under-estimated or absorption is
over-estimated, φc(ω) > 0. This means the arrival time is advanced. The
higher the frequency, the sooner the wave component arrives.

Figure 5.2 shows phase corrected responses using under-estimated and
over-estimated Q values respectively. The under-corrected signal is minimum-
phase, and the over-corrected signal is maximum phase.

5.2.3 Random Noise

As already mentioned before, inverse Q filtering is inherently unstable since
the inverse operator will boost high frequency noise. To ensure that noise
is not unnecessarily amplified, it is important to design the inverse operator
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(d) Amplitude correction using small Q = 25.

Figure 5.1: Experiments on amplitude compensation using different Q val-
ues.
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(d) Phase correction with Q = 40.

Figure 5.2: A synthetic trace with three spikes, Q = 30, and its phase
correction using different Q values.
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Figure 5.3: The amplitude of an ideal inverse Q filter (black) and its ap-
proximation (red). The two curves are overlapping before the fork.

appropriately at high frequencies. One way to avoid the instability is to use
a band-limited version of the inverse operator, i.e., to replace the amplitude
compensation operator A−1(ω) by W (ω)A−1(ω), where W (ω) represents a
low-pass filter. This idea is illustrated in Figure 5.3, where an exponential
amplitude compensation operator is approximated by a Gaussian function
after a certain frequency limit. Of course, as can be well imagined, such a
low-pass operation causes an undesirable loss of resolution. The least squares
method being introduced is a way to achieve complete compensation while
still keeping the stability of the operation of inverse Q filtering.

5.3 Time-variant Deconvolution as an Inverse
Problem

5.3.1 Noise and Deconvolution

The instability issue is not unique to the absorption compensation problem.
It is, in fact, ubiquitous in the application of deconvolution in general. In
seismic data processing, the recorded data in the one-dimensional case can
be modeled as

x(t) = w(t) ∗ r(t) + n(t), (5.2)
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where x(t) , w(t), r(t), and n(t) represent the recorded trace, a seismic
wavelet, the earth’s reflectivity and random noise, respectively. Seismic data
deconvolution aims at obtaining the reflectivity from the observed trace. The
estimated reflectivity will be adversely affected by the random noise term,
whether or not w(t) is band limited. Defining f(t) as the inverse of w(t),
assumed known (i.e. f(t) ∗ w(t) = δ(t) ), the deconvolution result is

r̂(t) = r(t) + f(t) ∗ n(t).

Depending on the signal to noise ratio, the effect of the term f(t) ∗ n(t)
on the output reflectivity can be very severe and must be compensated for.
The required regularization always leads to a loss of resolution.

To better handle the problem of additive noise, the inverse filter is of-
ten designed using a least squares (LS) approach rather than by directly
inverting with the known or estimated seismic wavelet. The resulting filters
are called optimum Wiener filters and are well elaborated by Robinson and
Treitel (2002). We take a probabilistic approach to the LS solution here, an
approach which is believed has a flexibility which leads to improved results.
Specifically, we formulate de-absorption as an inverse problem and use a
Cauchy-Gauss objective function (Sacchi et al., 1998) to arrive, iteratively,
at the desired solution.

5.3.2 Bayes Probabilistic Inference

Probabilistic inference is a very powerful approach to the ubiquitous inverse
problem (Tarantola, 1987; Ulrych and Sacchi, 2005). It is common to con-
sider the measured data d (where vectors are indicated by bold symbols) as
uncertain. That is, true data do exist but are unknown. Measured data can
then be considered as random variables whose expectation, in the ensemble
sense, is the true value. Traditionally, the assumption is made that the ob-
served data are random variables with a Gaussian distribution. This leads
to the well known χ2 test for goodness of fit and to a l2 norm solution.

Let us represent the solution to the inverse problem by the model vector
m. m is not unique, in the sense that an infinity of such models may be found
that fit the data. The reason for this, of course, is that the data, even if noise
free, can never describe the continuous model completely. Our problem is
under-determined. The problem may indeed be posed as an over-determined
one, if we so choose. Wiener inversion is one such possibility. However, we
believe, having been well schooled by the late Edwin Jaynes, that an inverse
problem posed in such manner, is incorrectly posed (Jaynes, 2004). A dis-
cretized inverse problem can never be unique. The over-determined solution
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returns the “smallest model”, i.e., that model whose energy is most dis-
tributed in model space. When estimating deconvolution models describing
reflectivities of the earth, such models do not appear to be reasonable.

An infinity of models is not a useful set. We must impose a priori
knowledge, if such exists, feeling or at least hoping, associated with our
search. The manner of so doing lies at the heart of Bayes’ theorem, and at
the heart of the regularization thus imposed. This is hardly the place for a
discussion of the underlying logic, but we feel that a few remarks are in order
(for a fairly full discussion vis av̀is Bayes, inversion and a prior information,
please see Ulrych and Sacchi (2005)). The central point in the application
of Bayesian logic is in how one handles prior information. We begin with
Bayes’ Theorem, which states that

p(m|d) =
p(d|m)p(m)

p(d)
, (5.3)

where p(d|m) is the conditional probability density function(pdf) of d, the
data, given that m has occurred. This pdf is called the likelihood and is
the function that is maximized in l2 norm problems when in Gaussian form.
The Gaussian pdf for a random variable x, that we will have occasion to
use, is

p(x) =
1√
2πσ

e
−

h

x−µ

2σ2

i2

, (5.4)

where σ2 is the variance and µ the mean of the pdf, respectively.
Returning to equation (5.3), p(d) is the pdf of the observed data and

often is not a factor in the inversion. In as much as d is considered to be
a random vector, m can be treated in an equivalent manner. p(m|d) is the
pdf that we wish to obtain. It is the probability of obtaining m given the
data. Maximizing this pdf will obtain an estimated model that is referred to
as the maximum a posteriori solution. If p(m) = 1, i.e., a uniform pdf, the
formulation of the problem is exactly least squares. Now, however, comes
a point of much discord, p(m). In the opinion of a group of statisticians
known as “frequentists”, prior probabilities cannot be assigned, they must
be measured. Edwin Jaynes, like Laplace before him, fought passionately
against this philosophy, and most certainly emerged the victor. So, with
victory on our side we press on. p(m) is the pdf that we wish to associate
with our expected model. It is our choice based on our belief. It could
certainly be inappropriate, but who is to say that the l2 model, the one
most distributed in time and/or space, is any more so? What pdf to choose
when dealing with de-absorption? We follow the logic of Sacchi et al. (1998)
and use the Cauchy distribution, given by
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p(x) =

(

1 +
x2

2σ2

)−1

, (5.5)

where σ2 governs the spread of the distribution (the Cauchy pdf being one
that does not possess a theoretical variance).

The reason behind this choice is, very basically, that this pdf exhibits
long tails and, consequently, is a candidate for the pdf that characterizes
sparse reflectivities. Sparseness is of much relevance these days (Hermann,
2005; Candès et al., 2005). It is not a concept applicable in all cases, of
course. One would not model a Beethoven concerto in this manner, but
layers in the earth are, one hopes, sparsely distributed.

5.3.3 Absorption Compensation and Inversion

We now formulate our problem in light of the above discussion. Assume the
observed data to be contaminated by noise that is normally distributed as
N(0, σ2

n), where n represents the noise vector. The Gaussian assumption
stems from the principle of maximum entropy (Ulrych and Sacchi, 2005)
for a discussion and references) which, informally speaking, states that if
nothing is known, use the simplest hypothesis. In this case, the Gaussian
pdf follows from the Central Limit Theorem.

The conditional distribution of the data is given by (equation (5.3))

p(m|d, σn) =

(

1

2πσ2
n

)(M−1)/2

e−(1/2σ2
n)||d−Gm)||22, (5.6)

where M is the length of the data vector and, for our linear system

n = d − Gm,

with G the coefficient or kernel matrix.
Let p(m|σm) indicate a prior distribution for m conditional on a param-

eter σm. From Bayes’ theorem, equation (5.3), we have

p(m|d, σm, σn) =
p(d|m, σn)p(m|σm)

p(d)
.. (5.7)

The model vector, m, is the reflectivity function, and we use a sparseness
constraint in the inversion scheme.
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Cauchy-Gauss Model

In the following, we will assume that a seismic wavelet is available. It is
either obtained from check-shot survey, or from a seismic trace in some
manner. We postulate, as reasoned above, that the model, i.e., the reflec-
tivity m, with elements mk of m i.i.d. with equal variance σ2

m (a standard
hypothesis). The joint pdf of the mk is

p(m|σm) =
∏

k

p(mk|σm),

where p(mk|σm) satisfies a Cauchy distribution given by equation (5.5).
Substitution yields

p(m|σm) =
∏

k

(

1 +
m2

k

2σ2
m

)

.

By inserting this Cauchy prior and the data likelihood (equation (5.4)) into
equation (5.7) and taking logarithms of both sides, we obtain

ln[p(m|d, σm, σn)] = −c(m) − 1

2σ2
n

(d − Gm)T (d− Gm), (5.8)

where c(m) is a constraint imposed by the Cauchy distribution

c(m) =
M−1
∑

k=0

ln

(

1 +
m2

k

2σ2
m

)

.

Furthermore, denoting φcg(m) = − ln[p(m|d, σm, σn)], we obtain the cost
function for the Cauchy-Gauss model as

φcg(m) = c(m) +
1

2σ2
n

(d− Gm)T (d− Gm), (5.9)

where G is composed of time variant wavelets, bτ (t − τ). Both t and τ are
in the range of the length of a trace and

G =











b0(t− 0)
b1(t− 1)

...
bM (t−M)











.

In this manner, one dimensional absorption compensation is formulated
as an inverse problem. The model, which is related to the minimum of the
cost function, is the sparse reflectivity function we desire. The Cauchy-
Gauss model has also been used in acoustic impedance inversion, signal
interpolation and extrapolation (Sacchi et al., 1998).
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Implementation

The solution of the inverse problem, formulated above, follows the algorithm
outlined by Sacchi et al. (1998). The objective function that will be min-
imized is φcg(m) in equation (5.9). Taking the derivative of φcg(m) with
respect to m, we obtain

∂φcg(m)

∂m
=
∂c(m)

∂m
+

1

2σ2
n

GT (d − Gm) (5.10)

and
∂c(m)

∂m
=

1

σ2
m

S−1m,

where S is a M ×M diagonal matrix with elements skk = 1 +
m2

k

σm

, (k =
0, 1, . . . ,M − 1) and is m dependent. Equating the derivative in equation
(5.10) to zero, yields

m =
(

λS−1 + GTG
)

GTd, (5.11)

where λ =
2σ

n
2

m2 . This equation is nonlinear and must be solved iteratively.
To construct an iterative algorithm, equation (5.11) is written as

m = SGT
(

λIN + GSGT
)−1

d = SGTp. (5.12)

p is the auxiliary vector which is obtained from the solution of the system

(

λIN + GSGT
)

p = d. (5.13)

The iterative computation is initiated by setting the observed seismic data
as the initial model, m0, which is also used to generate the matrix S0. In
each iteration, k, we first compute

p(k−1) =
[

λIN + GS(k−1)GT
]−1

m,

and then update the model as

m(k) = S(k−1)GT p(k−1).

The algorithm, although iterative, is computationally efficient since the
coefficient matrix in equation (5.13) is Hermitian-Toeplitz and is inverted
using the Levinson recursion.

The processing flow for absorption compensation on a stacked seismic
section is implemented in the following five steps:
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1. Extract Q values by means of the WTVS approach.

2. Apply the required dispersive phase correction.

3. Use a given wavelet or extract a minimum phase wavelet from the
early part of the trace.

4. Construct the kernel matrix G.

5. Solve the inverse problem to obtain the reflectivity series.

Q and wavelet estimation need not necessarily be performed at every
CMP location. Indeed, Q values need only be estimated for selected CMP’s
and interpolated to form a Q profile.

Computations required, other than those associated with the iterative
algorithm, are trivial if both Q and the seismic wavelet do not change dra-
matically along the CMP direction, and the resulting LS scheme for seismic
absorption compensation is computationally practical.

Numerical Experiments

This section illustrates results obtained using the LS approach on both syn-
thetic and real data. The synthetic test is based on the assumption of known
wavelet and Q. Figure 5.4 shows the convergence of the inversion. Panel
(e) is the input trace with 20 percent random noise. Panels (a), (b), (c) and
(d) are the de-absorption results after 1, 2, 3 and 4 iterations, respectively.
After 2 or 3 iterations, the inverted reflectivities are very close to those in
the actual model.

Figure 5.5 imitates a section of seismic data. The signals in the five traces
shown in Figure 5.5(a) are the same, but contain different random noise. The
noise level is 20 percent. Figure 5.5(b) is the result obtained by LS time-
variant deconvolution. The rightmost trace is the original reflectivity series
plotted as a reference. It can be observed that the reflectivity function is
recovered very well both as far as locations and amplitudes are concerned.
This result shows that the Cauchy-Gauss objective function is a very viable
a priori model for obtaining accurate reflectivity inversion.

Figure 5.6(a) illustrates a stacked seismic section. The structures are
not complex and consist of several flat layers. Processing of the section is
initiated by first estimating the Q curve from a trace in the section using
the WTVS method. Second, using these extracted Q’s, the dispersive phase
correction is computed and is followed by the estimation of the minimum
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Figure 5.4: Convergence process of the inverse scheme. (e) is a synthetic
trace. (a-d) are the inverse results after iteration 1, 2, 3 and 4 respectively.
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Figure 5.5: (a) is a synthetic trace with 20% noise. (b) is the result of
absorption compensation. The rightmost trace is the original reflectivity
series plotted as a reference.
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(a) (b)

Figure 5.6: Q compensation for a real seismic section. (a) shows a real
seismic section. (b) is the result of absorption compensation.

phase wavelet from the early times of a trace. The next step involves com-
putations yielding the kernel matrix G. The inversion begins by setting a
value for the parameter λ in equation (5.13) and the result is updated it-
eratively. Following inversion, the wavelet is convolved with the extracted
reflectivities. The final results are shown in Figure 5.6(b). A number of re-
flections, which are not separated in the section shown in Figure 5.6(a), can
be observed around time t = 920 ms after de-absorption and the lateral con-
tinuity can be tracked from trace to trace. The improvement in resolution is
clear. The de-absorption result would certainly facilitate the interpretation
of this seismic section.
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5.4 Conclusions

The LS approach to de-absorption that is presented here differs quite radi-
cally from the deconvolution techniques in customary use. The main differ-
ence is that the inverse filter is designed using a Bayesian inference approach
and is robust with respect to additive noise. The technique described here
has very general application. Specifically, since robust Q compensation pro-
vides more accurate information concerning both the amplitude and location
of the earth’s reflectivity, hydrocarbon reservoir characterization is one obvi-
ous target for the introduced method. In particular, the resulting improved
resolution may have important consequences in 4D processing where the
objective is to delineate changes in reservoir properties.

Results that we have obtained on synthetic and real data confirm, we
believe, both the sparse assumption that we have made, and the viabil-
ity of the Cauchy-Gauss prior model that is used to impose it. By taking
the advantage of the Hermitian-Toeplitz property of the kernel matrix that
describes the forward problem, stable inverse solutions are achieved econom-
ically. The synthetic and real data results demonstrate the viability of the
approach and the pivotal role of de-absorption in improving the resolution
of the processed sections.

The LS Q compensation is implemented in a trace by trace manner and
does not take into account lateral continuity or the actual ray-paths that
are involved. Multi-channel Q compensation and poststack time migration
with Q compensation are interesting and important topics which will be
discussed in Chapter 6.
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Chapter 6

Refocusing Migrated Images
in Absorptive Media

This chapter investigates the blurring effect on migrated images when using
a regular migration algorithm to migrate the seismic data with absorption.
First, a numerical method is introduced to calculate the blurring functions
in layered media, and then, a least squares inverse scheme is used to remove
the absorption blurring effect in order to refocus the migrated image. The
stability and the convergence property of the refocusing algorithm will be
discussed. Experiments on synthetic and real data will be given to show
the validity of the introduced technique to compensate for absorption after
migration.

6.1 Introduction

Conventional Q-compensation is implemented in a trace by trace mode us-
ing, typically, time-variant spectral whitening, time-variant deconvolution
(Yilmaz, 2000), least squares inversion (Zhang and Ulrych, 2007), one-
dimensional wavefield extrapolation (Hargreaves and Calvert, 1991) and
many others. In reality, the spatial distribution of a Q field is similar to
that of a velocity field, i.e., Q is spatially variant. The effect of attenuation
on received seismic signals is related to wave-paths, so that absorption com-
pensation is ideally implemented based on the wave equation in the process
of seismic imaging.

Migration with absorption compensation is referred to as Q-migration.
Both prestack Q-migration and poststack Q-migration have been investi-
gated by some researchers. Mittet et al. (1995) proposed a prestack depth
migration method for accommodating absorption and dispersion effects in
a prestack depth migration scheme. Their method was presented in the
frequency-wavenumber domain using a standard linear solid model. An ex-
trapolation operator that compensates for absorption and dispersion was
designed using an optimization algorithm, which was then used to devise
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a finite-difference migration scheme. Yu et al. (2002) applied poststack
Q-migration to enhance the seismic frequencies on the top of an anticline
structure to locate a gas cap, and Wang (2008) presented his tests of a post-
stack Q-migration technique on a synthetic dataset of the Marmousi model
(Versteeg, 1994).

The main difference between Q-migration and regular migration is that
the amplitude of the wavefield continuation operator used in Q-migration
is greater than 1, while the amplitude of the continuation operator used in
regular migration is equal to or less than 1. In practice, a Q-migration al-
gorithm must deal with the instability problem caused by the amplification
of high frequency random noise in its implementation. Conventionally, if
a Q-migration operation is based on wavefield extrapolation, a noise sup-
pression step is required in the wavefield continuation process in order to
stabilize the computation. Another option is to use least squares migration
(LSM) (Nemeth et al., 1999; Zhang, 2000). A LSM scheme for wavefield
Q-compensation may be useful in stabilizing the solution, but to obtain a
solution iteratively is computationally expensive.

Traditional trace by trace inverse Q filtering neglects the 3D features
of wavefield propagation, and regular Q-migration suffers from the amplifi-
cation of high frequency random noise. This chapter aims to find another
approach to do wavefield Q-compensation, which can be considered as a
multi-dimensional Q compensation technique. This multi-dimensional Q-
compensation problem will be handled as a problem of multi-dimensional
deconvolution like other blurring problems in seismic migration.

The blurring problem in seismic imaging includes coarse spatial sam-
pling, inaccurate migration operators, and limited acquisition aperture, all
of which lead to a blurred migration image. The blurring function is also
termed as a point scatter function (PSF) (Jansson, 1997), an illumination
function (Xie et al., 2006), a migration Green’s function (Schuster and Hu,
2000), Hessian or a migration resolution function (Rickett, 2003; Guitton,
2004; Toxopeus et al., 2004), etc.. The blurring function has been well in-
vestigated in recent years in order to obtain more accurate images of the
earth’s structures.

While many efforts are focused on trying to design accurate migration
operators for the migration algorithm, some issues which affect the qual-
ity of seismic imaging can be handled after migration. Schuster and Hu
(2000), Hu et al. (2001) and Yu et al. (2006) developed a thread of tech-
niques called migration deconvolution to handle the problem of acquisition
footprint in prestack and poststack migrated images. The key in migration
deconvolution techniques is how to calculate the blurring function. The next
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important step is how to remove it. This chapter borrows the idea of migra-
tion deconvolution to handle the blurring problem caused by using a regular
migration operator to migrate attenuated seismic data.

In the following, we will discuss the attenuation effect on the migration
blurring function. Removing the blurring influence from seismic images is
a problem of a 2D or 3D non-stationary deconvolution which can be solved
using a least squares inverse scheme. The stability and efficiency of the least
squares solver will be discussed.

6.2 Blurring Function caused by Seismic
Absorption

According to Claerbout (1992), operations of seismic migration and mod-
eling are conjugate pairs. Assuming data acquisition is a modeling process
L, the migration process is equivalent to applying the conjugate LT to the
recorded data Lm0, i.e.

m = LTLm0, (6.1)

where m0 is the true image or the real earth structure, and m is the migrated
image, or the blurred earth structure, because LT is not the exact inverse
of L.

For seismic waves traveling in absorptive media, mathematically, a mi-
gration blurring function can be defined as

Γ(r|r0) = LTLqδ(r0), (6.2)

where δ(r0) stands for a delta function at location r0 and Lq stands for
an operator of wave propagation in an absorptive medium. Equation (6.2)
implies that when regular migration is applied to the attenuated seismic
data, the blurring effect caused by absorption is mixed with other blurring
effects in regular migration as those mentioned before.

A direct solution to obtain the actual image from equation (6.1) is

m0 =
[

LTL
]−1

m.

However, the inverse of LTL is generally difficult to calculate directly. One
way to obtain an approximation of the inverse is to use a conjugate gradient
algorithm to solve a least squares problem (Nemeth et al., 1999; Sacchi et al.,
2006). The same statement applies to the operator LTLq in equation (6.2).
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6.2.1 Analytical Analysis

Assuming that there is a monochromatic source of angular frequency ω
starting from a point scatterer located at r0 in a homogeneous medium with
velocity v and quality factor Q, the wavefield at a receiver location rg is the
solution of the Helmholtz Green’s function (Schuster and Hu, 2000),

G(rg|r0, ω) =
e
−j ω

c(ω)
|rg−r0|

|rg − r0|
.

In this expression, ω
c(ω) is a complex wavenumber. Absorption caused wave-

field attenuation and dispersion are represented through the complex veloc-
ity c(ω). Its expression will be given in equation (6.7).

The complex conjugate of the Green’s function is the operator used in
migration which is equivalent to the wavefield of an impulse starting from a
receiver rg down to an image point r,

G(r|rg , ω) = G∗(rg|r, ω) =
e
j ω

v0
|rg−r|

|rg − r| .

The migration blurring function in an absorptive medium, if the migration
is implemented without absorption compensation, is

Γ(r|r0, ω) =

∫

rg

e
−j ω

c(ω)
|rg−r0|

|rg − r0|
e
j ω

v0
|rg−r|

|rg − r| drg. (6.3)

The blurring function in the time domain is the integral of all frequency
components

Γ(r|r0, t) =

∫

[

∫

rg

e
−j ω

c(ω)
|rg−r0|

|rg − r0|
e
j ω

v0
|rg−r|

|rg − r| drg

]

dω. (6.4)

The closed form of this integral is difficult to derive. However, Schuster and
Hu (2000) derived closed forms of both 2D and 3D blurring functions, for
acoustic media. For an acquisition with a large aperture, it is assumed that
the receivers are symmetrically distributed above a point scatterer. The
main energy of a migration blurring function is localized in the shadow area
as that shown in Figure 6.1 for homogeneous media.

6.2.2 Numerical Computation

Algorithm Choice

If an analytical function were derivable, at most, it could be applied to ho-
mogeneous media. For layered Q and/or v media, it is difficult to calculate
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Figure 6.1: Diagram of the energy distribution of a migration blurring func-
tion. Symbol “V” represents a receiver location.

a migration function analytically, but a migration blurring function can be
calculated numerically. The calculation is implemented as follows: first com-
pute synthetic data with attenuation Lqδ(r) and then migrate the synthetic
to obtain the migration blurring function LTLqδ(r).

The synthetic data can be computed using phase-shift modeling, or us-
ing ray-tracing plus wavelet continuation along the ray-paths. Phase-shift
modeling is based on the following wavefield extrapolation operator

H(ω, z) = e−jz
√

k2
a−k2

x , (6.5)

and assumes an impulse begins at a point scatterer. In equation (6.5), ka is
a complex wavenumber (refer to equations (2.13 and 2.15)) , and

ka =
ω

v0

[

1 − 1

πQ
ln

(

ω

ω0

)] [

1 + j
1

Q

]

, (6.6)

or ka = ω
c(ω) , with

1

c(ω)
=

1

v0

[

1 − 1

πQ
ln

(

ω

ω0

)][

1 + j
1

Q

]

. (6.7)

Phase-shift modeling is easy to compute but the synthetic always contains
Fourier wrap-around noise. Ray-tracing synthetic computation is expen-
sive due to the cost of ray-bending ray-tracing (Cerveny, 2005). Once a
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ray-path is defined in the media, the waveform at an arrival time can be cal-
culated through extrapolating a wavelet along the ray-path. If the purpose
of Q-compensation is purely to enhance the frequency without considering
velocity dispersion, a wavelet can be added to a record at an arrival time
based on the following expression (equation (3.3))

B(ω, t2) = B(ω, t1)e
−ω(t2−t1)

4πQ ,

where B(ω, t1) and B(ω, t2) are the wavelet spectra at two different time
locations t1 and t2. Q is the quality factor in the layer between t1 and t2.

Ray-tracing modeling and corresponding Kirchhoff migration (Berkhout,
1981) can apply to different velocity and Q models. Phase-shift modeling
and phase-shift migration (Gazdag, 1978) only apply to vertically variant
media. The migration algorithm is the adjoint of the modeling algorithm.
Therefore, when computing a migration blurring function, if phase-shift mi-
gration is used for the imaging, the modeling algorithm is better to use the
phase-shift method. If Kirchhoff migration is used for the imaging, corre-
spondingly, the modeling algorithm is better to use ray-tracing.

Fast Migration Blurring Function Updating

When the phase-shift method is used to calculate the migration blurring
function, there exists a fast algorithm for extrapolating a blurring function
from one depth step to another depth step or from one time step to another
time step. For vertically layered media, vi is the reference velocity of layer
i, and ci(ω) is complex velocity of layer i including the effect of seismic
absorption. If there is a unit impulse at a depth z0 = n∆z, and its response
on the surface is

U(kx, z = 0, ω|z0) =
n
∏

i=0

e
j∆z

r

ω2

ci(ω)2
−k2

x
,

and the response of a unit impulse right below it at depth z0 + ∆z is

U(kx, z = 0, ω|z0 + ∆z) = e
j∆z

r

ω2

cn+1(ω)2
−k2

x

U(kx, z = 0, ω|z0).

To migrate the impulse response U(kx, z = 0, ω|z0) from the surface to an
image point z = m∆z using downward wavefield continuation, the blurring
function is

Γ(kx, z, ω|z0) = U(kx, z = 0, ω|z0)
m
∏

i=0

e
−j∆z

r

ω2

v2
i

−k2
x

. (6.8)
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To migrate the impulse response U(kx, z = 0, ω|z0 + ∆z) from the surface
to the same image point z = m∆z, the blurring function is

Γ(kx, z, ω|z0 + ∆z) = U(kx, z = 0, ω|z0 + ∆z)

m
∏

i=0

e
−j∆z

r

ω2

v2
i

−k2
x

. (6.9)

Examining equations (6.8) and (6.9), we can observe that, in layered me-
dia, the blurring function can be derived from one depth to another depth
without going through the full process of forward modeling and migration,
i.e.

Γ(kx, z, ω|z0 + ∆z) = e
j∆z

r

ω2

cn+1(ω)2
−k2

x

Γ(kx, z, ω|z0). (6.10)

This observation helps to save the calculations of the blurring functions.
Figure 6.2 shows two blurring functions in an absorptive medium at two

different time locations. The main energy of a blurring function lies in an
area, whose shape is like that sketched in Figure 6.1. As time increases, the
energy distribution of the migration blurring function extends to a larger
area.

For layered media, if velocity v and attenuation propertyQ do not change
laterally, the migration blurring function needs only to be computed at one
reference location. To allow for lateral v and Q variation, practically we can
divide the image into sub-regions or patches (Hu et al., 2001; Yu et al., 2006),
and compute a migration blurring function for each sub-region, assuming
that in each patch, the lateral variations of velocity and Q are very gentle.

6.3 Removing Absorption Blurring Function

using a Least Squares Method

As discussed in the foregoing sections, the migration blurring function Γ =
LTLq is not an identity matrix. In our case, the migrated image is a blurred
image due to using an inaccurate migration operator,

m = LTLqm0. (6.11)

In order to compensate for absorption after migration to get a solution closer
to the right image m0, the blurring function needs to be removed or at least
to be shrunk.

Generally, the inverse of LTLq cannot be solved directly. There are
examples of using the diagonal to approximate the effects of the matrix on
the image amplitude (Sacchi and Wang, 2007; Hu et al., 2001). In fact,
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Figure 6.2: Examples of the blurring functions in an absorptive medium.
(a) at time t = 400 ms. (b) at time t = 700 ms.
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the migrated image can be considered as the real image convolved with the
migration blurring function. The blurring function is multi-dimensional (2D
or 3D) and non-stationary in time, i.e. equation (6.11) can be written in a
form of convolution

m(~x, t) = γ~xref ,tj (~x, t) ∗md m0(~x, t) + n(~x, t). (6.12)

In equation (6.12), symbol ∗md represents md dimensional convolution, md
is either equal to 2 or 3. ~x represents 1 or 2 lateral spatial coordinates,
and t could be z for depth imaging. γ~xref ,tj(~x, t) represents the migration
blurring function at a reference location (~xref , tj). n(~x, t) is random noise.
The inverse problem could be unstable because of two reasons: the inverse
of γ is unstable or even does not exist, and the inverse filtering could raise
the energy of random noise.

Solving equation (6.12) for the real image m0(~x, t) is a problem of multi-
dimensional non-stationary deconvolution. Time-variant deconvolution can
be formulated as a least squares inverse problem (Zhang and Ulrych, 2007).
Similarly, the image refocusing process can be solved using the least squares
inversion in the wavenumber domain. To expedite the computations, we
assume that γ(r|r0) is shift invariant in the horizontal coordinates. After
Fourier transform on the spatial axes, equation (6.12) becomes

m̂(~k, t) = γ̂~xref ,tj (
~k, t) ∗ m̂0(~k, t) + n̂(~k, t). (6.13)

Equation (6.13) changes the multi-dimensional convolution problem to a one
dimensional time-variant convolution. Accordingly, the multi-dimensional
deconvolution can be solved as a one-dimensional time-variant deconvolution
at each wavenumber.

Similar to that discussed in Zhang and Ulrych (2007), the time-variant
deconvolution can be formulated as a least square problem using Bayes’
theory. The objective function to be minimized is,

φ(m̂0) = c(m̂0) +
1

2σ2
n

(d̂ − Gm̂0)
T (d̂ −Gm̂0). (6.14)

In this equation, the first term c(m̂0) on the right-hand side is a model
regularizer, and the second term is the misfit which could be interpreted as
Gaussian noise in the observed data. m̂0 and d̂ represent model and data
in the wavenumber domain respectively.

The objective function can be minimized through solving the following
equation,

m̂0 =
(

GTG + λW−1
)−1

GT d̂, (6.15)
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where G is the kernel matrix of the inverse problem, W is a regularizer for
the image at a wavenumber and λ is a hyper-parameter. The kernel matrix
G is formed from a serials of time-variant complex γ̂ functions, and

G =





















γ̂0(t− 0∆t)
γ̂1(t− 1∆t)

...
γ̂i(t− i∆t)

...
γ̂N (t−N∆t)





















. (6.16)

In equation (6.16), N is the number of trace samples. γ̂i(t− i∆t) represents
a migration blurring function in the wavenumber domain at time i∆t with
a time shift of i∆t. The weights at wavenumber kj are determined by the
weights and the obtained image at lower wavenumber kj−1

Wii[kj ] = αs(mi[kj−1]) + (1 − α)Wii[kj−1], (6.17)

where α ∈ [0, 1] is a “viscosity” parameter (Hugonnet et al., 2001) which
means the similarity of energy distribution from low wavenumber to high
wavenumber. s(mi) is a function of model parameters,

s(mi) = (|mi| + ǫ)/(max
i

|mi| + ǫ).

This model constraint implies that the inversion favors strong energy. If
the weights are equal, the solution is standard least squares (Robinson and
Treitel, 2002). Although the theoretical soundness of this constraint still
needs to be further investigated, it works for the two data examples which
will be discussed in the following sections.

A pseudo code in C language of the refocusing algorithm for 2D migrated
time section is listed in table (6.3). The main computation of the refocusing
process has two parts: one is the calculation of the blurring functions, an-
other is to solve for m0 using equation (6.15). To extend the algorithm from
2D to 3D is very straightforward. The code needs to be modified to handle
one extra spatial dimension y. For phase-shift migration, the blurring func-
tion is easy to compute using equation (6.10). For Kirchhoff migration, the
computation of the migration blurring function relies on the speed of ray
tracing. The algorithm is implemented wavenumber by wavenumber which
is easy to be parallelized for distributed computations. In each wavenum-
ber the main computation is matrix multiplication of size (N ×N) which is
substantial but not excessive. Therefore, the implementation is practical.
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/* part 1 calculate the blurring function */

{

do while (time<maximum_time);

{

calculate_synthetic ();

do_migration ();

do_fft_x2kx (a_blurring_function);

keep_blurring_function ();

time += time_step;

}

}

/* part 2 deconvolution using least squares inversion */

{

do_fft_x2kx (a_section);

for (ikx=0, ikx<maximum_kx; ikx++)

{

form_kernel_matrix ();

solve_for_m0 ();

}

do_fft_kx2x (kx_section);

}

Table 6.1: A pseudo code of the refocusing algorithm.
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Figure 6.3: Amplitude of a kernel matrix G.

The algorithm is stable because GT G is a diagonally dominant Hermi-
tian matrix. The diagonal elements are close to its eigenvalues because the
energy of a blurring function is mainly concentrated in a time window cen-
tered at the point scatterer. The magnitudes of the elements decay along
the diagonal due to amplitude attenuation, but they are greater than zero,
which means the kernel matrix is not singular. Figure 6.3 shows an exam-
ple of the element amplitude of this matrix. The ripples at the top right
corner and the bottom left corner are Fourier wrap-around noise in phase
shift modeling and migration. They need to be muted out in real data pro-
cessing, because they do not exist in observed real data. G can also be
considered as a band-shaped matrix because of the localization of blurring
functions. By considering this characteristic, the computation required by
matrix manipulation could be greatly reduced. There are also efforts made
to approximate G by a diagonal matrix in order to save computation with
the trade-off with accuracy (Sacchi and Wang, 2007). Here, the solution is
obtained by solving equation (6.15) using the full matrix of G.

Theoretically, the refocusing technique used here is only valid for hori-
zontally layered media. Consequently, it is better to be applied to refocusing
a migrated time image without strong lateral v and/or Q variation. Other-
wise, the migrated image needs to be processed in patches based on v and/or
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Q variation. These patches are, regularly, overlapping rectangles. In each
rectangular area, the refocusing operation is applied independently. Images
in overlapping areas are the mathematical average of those involved patches.
The final result will depend on the accuracy of the computed blurring func-
tions, the inversion algorithm, the regularization parameter and also patches
being divided.

6.4 Data Experiments

The refocusing algorithm is first tested on a synthetic model where its mi-
gration blurring functions are known. Figure 6.4(a) shows a sine-function
shaped structure obtained in an absorptive medium. Figure 6.4(b) shows
the refocusing result. Because the refocusing process compensates for the
attenuation effect, the resolution of the obtained image is enhanced.

The algorithm is also tested on a 2-D field data-set. Its migration blur-
ring functions are computed based on the velocity and Q fields. The velocity
field is shown in Figure 6.5(a) and its inverse Q field is in Figure 6.5(b). The
inverse Q field is obtained using the procedure described in table 3.3.1, which
shows that the major absorption is before 1.4 s with less attenuation after-
wards. This absorption profile is generally in line with geologic structures
at different environments, because rocks at deep places are relatively harder
and better compacted. The refocusing process does not require the Q in-
formation, but Q values are required when doing the forward modeling to
calculate the absorption blurring functions. Both velocity and Q fields are
laterally smoothed and the values at the center CMP (400) location are used
to calculate the blurring functions at each time sample. Figure 6.6(a) shows
a local area from the image obtained by time-variant spectral whitening
(TVSW) plus phase-shift migration. Figure 6.6(b) shows the corresponding
area from the image obtained using phase-shift migration plus a migration
refocusing process. The section obtained by the refocusing process shows
that the algorithm shrinks migration noise and increases the seismic resolu-
tion. The overall quality of images has been enhanced. For example, those
small vertical faults at time 2.25 s are much clearer in Figure 6.6(b) than
that in Figure 6.6(a). The comparison shows the difference between 1D
absorption compensation and 2D absorption compensation. The resolution
improvement of Figure 6.6(b) compared to Figure 6.6(a) shows the validity
of the refocusing algorithm in compensating for the absorption after migra-
tion. If the image were processed in patches, the quality of the refocused
image would be, hopefully, further improved.
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Figure 6.4: A synthetic example. (a) shows an absorption-blurred sine-
function shaped structure. (b) is the refocusing result.
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(a)

(b)

Figure 6.5: Input information. (a) is the velocity section and (b) is the
inverse Q section.
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Figure 6.6: Migration results. (a) Time-variant spectral whitening plus
phase-shift migration. (b) Phase-shift migration plus refocusing.
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6.5 Conclusion and Discussion

To obtain the real seismic image, the Hessian matrix (LTL) needs to be
close to an identity matrix, or the migration blurring function should be a
spatial delta function in 2D or 3D domain. Schuster and Hu (2000), Hu et al.
(2001) and Yu et al. (2006) investigated the acquisition footprint, or non-
uniform illumination resulting from limited recording aperture by means
of migration Green’s functions. Here, we have put aside the acquisition
geometry blurring function and only discuss the blurring effect caused by an
inaccurate migration operator when migrating data without considering the
absorption. The numerical implementation of refocusing a migrated image
in an absorptive medium includes the following three steps:

1. Make synthetic data with attenuation.

2. Migrate the synthetic data without attenuation to get blurring func-
tions.

3. Remove absorption blurring functions from the image using least squares
inversion.

Compared to the Q-migration algorithm (Mittet et al., 1995; Yu et al.,
2002), the refocusing process is able to address the problem of instability on
high frequency noise. Compared to the least squares migration algorithm
(Nemeth et al., 1999; Sacchi et al., 2006), the refocusing algorithm is cost
effective in implementation.

When computation is not a big issue, the refocusing process can be ap-
plied to process common offset sections. In doing so, this method can be
extended to prestack seismic processing. If the blurring function includes
the effect of a seismic wavelet, the refocusing process is equivalent to post-
stack multi-dimensional deconvolution. In practice, the migration blurring
function is related to many factors, such as acquisition geometry, seismic
wavelet, velocity structure and absorption properties. This chapter blends
the absorption effect with other blurring effects into a comprehensive mi-
gration blurring function, and multichannel Q-compensation is achieved in
the process to refocus the migrated image by time-variant deconvolution in
the wavenumber domain.
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Discussion and Conclusions

The results of this research provide new techniques for handling signal ab-
sorption in seismic data imaging and inversion. The following paragraphs
delineate the specific contributions contained in this thesis.

The introduced analytical formula (equation(3.13)) relates Q-factor to
spectral peak frequency variation. The assumption in the theoretical deriva-
tion is that the source wavelet has an amplitude spectrum similar to that of
a Ricker wavelet (equation(3.1)). Although an actual amplitude spectrum
may not, of course, exactly conform to this assumption, in many cases, the
amplitude spectrum can still be well approximated by a Ricker spectrum.
This implies that this assumption is not rigorously required. This approach
can be used to estimate Q from CMP gathers, from a post-stack trace, and
from seismic data acquired from other geometries like VSP (vertical seismic
profiling) as well, as long as the peak frequency variation can be reliably
examined.

To estimate Q-factor from a prestack CMP gather, variation of a wavelet
spectrum of an event is analyzed along offset. To obtain spectral peak fre-
quency variation from a poststack trace, we can use windowed time-variant
spectral analysis or a continuous wavelet transform analysis. In a WTVS,
controlling points can be picked in a way similar to velocity analysis (Fig-
ure 3.4). These controlling points divide a trace into layers and their coor-
dinates are used to calculate the quality factors of each layer.

In two respects, the analytical method is superior to the spectral ratio
method. First, the analytical method only uses the information of frequency
variation. Besides absorption, it is not affected by other amplitude factors
such as reflection, transmission and geometrical spreading. Second, the ana-
lytical method is robust to random noise. For the two-dimensional case, the
robustness is achieved by means of using multi-fold information at different
offsets. For the one-dimensional case, the robustness is achieved by means
of using the frequency trend analysis.

Event-based Q estimation can provide the absorption information for Q
compensation. For reservoir description, seismic attenuation property, Q-
factor, is ideally estimated at all prospective layers defined by velocities or
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acoustic impedance. Techniques to analyze seismic attenuation properties
for hydrocarbon reservoir description generally include iso-frequency analy-
sis, direct Q estimation and attenuation or Q tomography.

The introduced reflectivity-guided seismic attenuation analysis is poten-
tially another useful technique. It operates on prestack CMP gathers, and
uses the location information of structure interfaces to select layer bound-
aries. The interface information could be obtained from poststack acous-
tic impedance inversion or well logs. This technique basically provides a
methodology to allow Q values to be estimated at all prospective layers.
The obtained Q section can have the same resolution as other attribute
sections. To estimate spectral peak frequency variation at zero offset, an
AVO-like, peak frequency estimation scheme called PFVO which operates
on CMP gathers is introduced. The advantage of PFVO over post-stack fre-
quency analysis is that it avoids the distortion caused by seismic stacking on
frequency characteristics. PFVO tries to estimate a reliable peak frequency
at zero offset, and at the same time to identify the frequency change caused
by real attenuation and that caused by event tuning.

Absorption compensation or de-absorption is an important step in seis-
mic data processing; it helps to improve the resolution of seismic data, and
to balance the frequency contents. In order to stabilize traditional inverse
Q filtering, the inverse Q filtering is formulated as a least squares inverse
problem based on Bayes’ theory. The prior information imposed on the
model parameters is the sparseness of reflectivity, which is represented by a
Cauchy model, and random noise in observed data is assumed to be a Gaus-
sian. The inverse problem is solved iteratively. Experiments performed on
both synthetic and real data show that the inverse scheme can produce ideal
results for absorption compensation.

To preserve both the amplitude and waveform of seismic signals dur-
ing imaging, it is necessary to incorporate de-absorption and migration to-
gether. This may be implemented through standard migration with random
noise attenuation at each continuation step, or through least squares migra-
tion which is implemented by casting the standard migration problem as
an optimization problem and solving the optimization problem iteratively.
Based on the concept of migration deconvolution, a post-migration refocus-
ing scheme is introduced which could be considered as an alternative to
conventional migration with Q compensation. The refocusing scheme can
be used to remove the absorption effect on seismic imaging, at the same
time to remove the other migration artifacts.

Compared to regular migration with Q compensation, the refocusing
method handles the instability problem caused by the amplification of the
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high frequency noise by means of inversion. Compared to the least squares
migration, the refocusing method is cheaper in implementation. The refo-
cusing method can be applied to common offset sections by using different
operators at different offsets. In doing so, this method can be extended
to prestack seismic processing. If the blurring function includes the effect
of seismic wavelet, the refocusing process is equivalent to multidimensional
deconvolution.

The work presented in this thesis cover just two areas of seismic absorp-
tion research: seismic absorption estimation and compensation. Q-factor
estimation from seismic data is the first step to use attenuation proper-
ties for seismic data imaging and inversion. To confirm the accuracy of
the estimated Q values, numerical modeling, such as reflectivity modeling
(Kennett, 1983) or waveform modeling (Carcione, 1995), may be required to
check whether synthetic records match observations. For seismic modeling,
a mathematical model is expected to describe wave behavior in absorptive
media. Generally, a Q model (see equations (2.13) and (2.15)) is enough to
describe the absorption phenomenon in visco-elastic media.

To use an estimated Q section as an attribute to invert for reservoir prop-
erties not only requires accurate Q information, but also depends on reliable
rock physics models like those suggested by Biot (1956a), Biot (1956b), Pride
et al. (2004) and Dvorkin and Mavko (2006). A rock physics model to relate
Q with permeability, porosity, saturation and fluid properties etc. is ide-
ally expected. Rock physical properties cannot be inverted using Q-factor
information only. However, integrated inversion of using absorption prop-
erty, AVO, velocity and well log information is possibly one practical way
for obtaining useful parameters for hydrocarbon reservoir description.

All aforementioned seismic information could be of P-waves, S-waves or
both. Recent developments in multi-component seismic wave acquisition
make it possible to obtain S-wave velocities, S-wave AVO effects, and S-
wave absorption properties as well. There are reports showing applications
of using the relation between P-wave and S-wave Q factors as an indicator
to identify brine saturated and gas filled layers in seismic sections (Mavko
et al., 2005a; Bale and Stewart, 2002). Integrated inversion of using both
P-wave and S-wave absorption properties, velocities, AVO effects and other
geophysical information for rock properties could be an interesting topic for
future research.

Accurate Q estimation from CMP gathers provides critical information
for prestack Q compensation. With quantitative attenuation information,
it may be possible to separate AVO effects from seismic absorption in CMP
super-gathers. That is to say, AVO information extracted from seismic data
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would be more reliable if absorption effects on AVO had been taken into
account in the analysis accurately. The attenuation effect on AVO needs to
be further investigated.

Absorption compensation can be performed using the introduced refo-
cusing method after post-stack migration. It can also be implemented on
prestack common offset sections. More research is expected to investigate
the difference between poststack and prestack refocusing operations when
underground structures have strong lateral velocity and Q variations.
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