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Abstract

Wavefield reconstruction is a crucial step in the seismic processing flow.
For instance, unsuccessful interpolation leads to erroneous multiple predic-
tions that adversely affect the performance of multiple elimination, and to
imaging artifacts. We present a new non-parametric transform-based recon-
struction method that exploits the compression of seismic data by the re-
cently developed curvelet transform. The elements of this transform, called
curvelets, are multi-dimensional, multi-scale, and multi-directional. They
locally resemble wavefronts present in the data, which leads to a compress-
ible representation for seismic data. This compression enables us to formu-
late a new curvelet-based seismic data recovery algorithm through sparsity-
promoting inversion (CRSI). The concept of sparsity-promoting inversion is
in itself not new to geophysics. However, the recent insights from the field
of “compressed sensing” are new since they clearly identify the three main
ingredients that go into a successful formulation of a reconstruction prob-
lem, namely a sparsifying transform, a sub-Nyquist sampling strategy that
subdues coherent aliases in the sparsifying domain, and a data-consistent
sparsity-promoting program.

After a brief overview of the curvelet transform and our seismic-oriented
extension to the fast discrete curvelet transform, we detail the CRSI formu-
lation and illustrate its performance on synthetic and real datasets. Then,
we introduce a sub-Nyquist sampling scheme, termed jittered undersam-
pling, and show that, for the same amount of data acquired, jittered data
are best interpolated using CRSI compared to regular or random undersam-
pled data. We also discuss the large-scale one-norm solver involved in CRSI.
Finally, we extend CRSI formulation to other geophysical applications and
present results on multiple removal and migration-amplitude recovery.
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Chapter 1

Introduction

Reflection seismology is a technique widely used by the oil industry to
explore and identify potential oil-rich areas into the earth. This technique
involves the collection of seismic data that are indirect measurements of the
earth’s structure. These data are then processed to generate an image of
the subsurface that is finally interpreted by geo-scientists.

Seismic data acquisition is a complex and costly operation. On land,
dynamite or Vibroseis sources can be used to send energy into the subsurface.
This energy propagates and partially reflects at interfaces due to a change
in rock properties. The reflected wavefield is recorded at the earth’s surface
by an array of geophones. At sea, the principle remains the same but the
seismic source is typically an air gun and the receivers are hydrophones on
streamer lines towed by a seismic vessel. Fig. 1.1 schematically illustrates
these two different types of seismic surveys.

hydrophone airgun

geophone

source

well log

! ! ! !!!!!!!!

Figure 1.1: Schematic diagram of seismic acquisition.

Processing difficulties generally arise from assumptions made by algo-
rithms, that are not met by acquired data. In particular, most of the
commonly-used multi-trace processing algorithms, e.g., Surface-Related Mul-
tiple Elimination (SRME - Verschuur et al., 1992) and wave-equation mi-
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gration (WEM - Claerbout, 1971), assume a dense and regular coverage of
the survey area. Field datasets, however, are typically irregularly and/or
coarsely sampled along one or more spatial coordinates and need to be in-
terpolated before being processed to avoid artifacts in the final subsurface
image.

For regularly-undersampled data along one or more spatial coordinates,
i.e., data spatially sampled below Nyquist rate, there exists a wide variety
of wavefield reconstruction techniques:

• Filter-based methods convolve the incomplete data with an inter-
polating filter—e.g., the sinc function—in the spatial domain. The
most common of these filters are the prediction error filters (PEF’s)
that can handle aliased events (Spitz, 1991; Fomel, 2000).

• Wavefield-operator-based methods represent another type of in-
terpolation approaches that explicitly include wave propagation (Can-
ning and Gardner, 1996; Biondi et al., 1998; Stolt, 2002). They require
specific knowledge of a velocity model and they are also typically fairly
computationally intensive.

• Transform-based methods use a priori information about the wave-
field in a transform domain—e.g., shape of the temporal and/or spatial
spectrum—to solve the reconstruction problem (Sacchi et al., 1998;
Trad et al., 2003; Zwartjes and Sacchi, 2007). These methods are gen-
erally the fastest approaches and their link with the physics of wave
propagation depends on the transform used. For example, Fourier
modes correspond to eigenfunctions of a wave equation with constant
velocity and the hyperbolic Radon transform relates to the kinematics
of the reflection and, hence, to ray theory.

However, for irregularly-sampled data, e.g., binned data with some of
the bins that are empty, or data that are continuous random undersam-
pled, the performance of most of the aforementioned interpolation methods
deteriorates.

1.1 Theme

The main theme of this thesis is a practical, robust, and geometrical—
i.e., transform-based—approach to the seismic wavefield reconstruction prob-
lem. The motivation of this approach is two key features of seismic data
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that are, in our opinion, not used to their full extent in existing approaches,
namely

• High dimensionality Seismic data is typically 5D—time, two spa-
tial coordinates for the source, and two spatial coordinates for the
receiver—for a 3D survey.

• Strong geometrical structure Seismic data are a spatio-temporal
sampling of the reflected wavefield that contains different arrivals—i.e.
wavefronts—that correspond to different interactions of the incident
wavefield with inhomogeneities in the Earth’s subsurface.

To make the most of these features, our approach uses the curvelet trans-
form (Candès and Donoho, 2004) which is data-independent, multiscale, and
multidirectional. The elements of this transform, the curvelets, are local-
ized in the frequency domain and of rapid decay in the physical domain.
Because of these properties, curvelets behave as localized eigenfunctions of
wave equations with varying velocity (Candès and Demanet, 2005). They
are very efficient at representing curve-like singularities—e.g., wavefronts.
In other words, only few curvelets are needed to represent the complexity of
real seismic data. We use this piece of information, called sparsity, to help
solve the interpolation problem.

The idea of sparsity-promoting inversion is in itself not new to geo-
physics. However, we adapt and use new insights from the emerging field
of compressive sampling (CS - Candès et al., 2006; Donoho, 2006). These
insights clearly identify the three main ingredients that go into a successful
formulation of a reconstruction problem, namely a sparsifying transform, a
sub-Nyquist sampling strategy that subdues coherent aliases in the sparsi-
fying domain, and a data-consistent sparsity-promoting program.

For interest, curvelets set themselves apart from wavelets by their truly
2D and higher-dimensional nature—i.e., the curvelet transform is non-sepa-
rable unlike the wavelet transform that is extended to higher dimension by
tensor products.

1.2 Objectives

The objectives of this thesis are twofold:

• develop an in-depth understanding of successful sparsity-promoting
inversions and their key ingredients,
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• formulate a practical sparsity-promoting seismic wavefield reconstruc-
tion algorithm whose performance and limitations are well understood.

1.3 Outline

In chapter 2, we first give an overview of the curvelet transform (Candès
and Donoho, 2004) and one of its discrete implementation, the fast discrete
curvelet transform (FDCT) via wrapping (Candès et al., 2006). We then
propose an extension of this implementation that can handle typical seismic
data, i.e., data that is irregularly sampled along spatial coordinates and
regularly sampled along the time coordinate. This new implementation
is coined nonequally sampled fast discrete curvelet transform (NFDCT).
Finally, we illustrate the performance of the NFDCT on removing incoherent
and coherent noise from nonequally sampled seismic data and on binning.

Chapter 3 deals with the reconstruction of severely spatially-undersam-
pled seismic data. We start by a brief review of CS (Candès et al., 2006;
Donoho, 2006) and the key ingredients of its success. We continue by dis-
cussing the extension of CS to seismic data recovery and propose a practical
algorithm, termed curvelet reconstruction with sparsity-promoting inversion
(CRSI). We conclude by showing some reconstruction examples on synthetic
and real data sets. For interest, further readings by the author include Her-
rmann and Hennenfent (2005); Hennenfent and Herrmann (2005); Thomson
et al. (2006) and Hennenfent and Herrmann (2006, 2007a).

Chapter 4 focuses on coarse spatial sampling schemes that are favorable
for CRSI, a topic touched upon in the previous chapter. First, we pro-
pose and analyze a coarse sampling scheme, termed jittered undersampling
(Leneman, 1966; Dippe and Wold, 1992), which creates, under specific con-
ditions, a favorable recovery situation for seismic wavefield reconstruction
methods that impose sparsity in Fourier or Fourier-related domains (see e.g.
Sacchi et al., 1998; Xu et al., 2005; Zwartjes and Sacchi, 2007; Herrmann
and Hennenfent, 2008). Then, we compare the performance of CRSI on
jittered data to its performance on data acquired according to other coarse
sampling schemes. For interest, other references on the topic by the author
are Hennenfent and Herrmann (2007b,c).

Chapter 5 deals with another topic touched upon in chapter 3, namely
one-norm solvers. We draw on the work of van den Berg and Friedlander
(2007) and introduce the Pareto curve as a means to understand the com-
promises implicitly accepted when an algorithm is given limited number of
iterations. This situation virtually always occurs in geophysical processing
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due to the (extremely) large-scale of the problems.
In chapter 6, we show that other geophysical problems—e.g., focused

recovery, seismic signal separation, and migration amplitude recovery—can
be re-cast in the formulation used for CRSI. This puts in a broader perspec-
tive the insights gained during the development of CRSI. For interest, the
author also co-authored Herrmann et al. (2007b,a) on this topic.

In Chapter 7, we summarize the work done in this thesis, and discuss
some of its aspects in a broader context. Conclusions and recommendations
for future research follow.

Appendices A,B, and C contain further details about the curvelet trans-
form and pair with chapter 3. In appendix D, we re-derive a result used in
chapter 4 and originally introduced by Leneman (1966).
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Chapter 2

Seismic denoising with
non-uniformly sampled
curvelets

2.1 Introduction

Recently introduced curvelets are amongst the latest members of a grow-
ing family of multiscale, and now also multidirectional, data expansions
(Candès and Donoho, 2004; Candès et al., 2006). The primary aim of these
expansions, with respect to a collection of prototype features, is to find a
sparse representation for the data. A signal representation is sparse when
it is capable of capturing the signal as a superposition of a small number
of components. The sparser and the more generic the transformation, the
more successful the signal separation.

So what makes the curvelet decomposition an appropriate transform for
seismic data processing, and why generalize this transform to non-uniformly
sampled data? To answer these questions, let us first describe what seismic
data is. Seismic data volumes are recordings of the amplitudes of transient
waves at the Earth’s surface. These waves are either caused by man-made
sources or by naturally occuring earthquakes. Each source and receiver
pair generates a trace which is a function of time. A seismic dataset is the
collection of these traces. All these traces together provide a spatio-temporal
sampling of the wavefield which contains different arrivals that correspond
to different interactions of the incident wave field with inhomogeneities in
the Earth’s subsurface. A common denominator amongst these arrivals is
that they represent wavefronts. The main characteristic of a wavefront is
its relative smoothness in the direction along the wavefront and its relative

A version of this chapter has been published. G. Hennenfent and F.J. Herrmannn.
Seismic denoising with non-uniformly sampled curvelets. Computing in Science and En-
gineering, 8(3), May-June 2006.
c© 2006 IEEE, Inc.
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oscillatory behavior in the normal direction.
By virtue of their anisotropic shape, curvelets are well adapted to detect

wavefronts because aligned curvelets locally correlate well with the wave-
front. In that sense, curvelets act as multiscale surf boards riding the in-
coming wavefronts. However, limitations on data acquisition regarding the
positions of the sources and receivers put restrictions on the spatial sam-
pling of seismic wave fields. For instance, in land acquistion for seismic
exploration, there are obstacles such as buildings and lakes while in passive
seismology there is no control over the source position. Earthquakes occur
irregularly along major plate boundaries.

The current implementation of the FDCT assumes a regular sampling
along all axes. If we ignore the non-uniformity of spatial sampling, we can
no longer expect to detect wavefronts because of lack of continuity. We
address this issue by extending the FDCT to non-uniformly sampled data.
Through this extension, we are able to not only detect wavefronts in noise
but also bring the data to a regular grid in case each grid point contains
at least one datum. The example given in Fig. 2.1 clearly illustrates how
continuity along wavefronts is destroyed when casting non-uniformly sam-
pled data to a regular grid but is restored when dealing appropriately with
the data. Our denoising and binning algorithm is based on this extension
and exploits the sparsity of seismic data in the curvelet domain through a
nonlinear thresholding on the curvelet coefficients. The term binning refers
to interpolation towards a regular grid for the case where the number of
irregular samples exceeds the size of the regular grid.

The paper is organized as follows. First, we give a brief overview of
curvelets. We demonstrate their sparseness on seismic data, which deter-
mines the performance of our denoising. Second, we describe our non-
uniform extension to the curvelet transform by the Non-equally sampled
Fast Fourier Transform (NFFT, Kunis and Potts, 2003). We show that
this extension restores the performance of the transform for non-uniformly
sampled data. Third, we introduce a denoising and binning algorithm by
nonlinear shrinkage on the curvelet coefficients. We conclude by showing
applications to synthetic seismic data.

2.2 The curvelet transform

2.2.1 Main properties

Since their introduction, curvelet transforms (see e.g. Candès et al., 2006,
and the references therein) have received increasing interest in the seismic
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Figure 2.1: Example of synthetic seismic data. (a) uniformly (grey-scale
plot) and non-uniformly sampled (wiggle trace plot); (b) windowed regular
sampled data; (c) windowed irregular sampled data cast to a regular grid
and (d) windowed data on the non-uniformly sampled grid. Notice the con-
tinuity along the arriving wavefront in (b) and (d). Recasting irregular data
onto a regular grid destroys the continuity. In this example, the irregularity
of the non-uniformly sampled grid has been exaggerated. In this paper, we
will only deal with non-uniformly sampled grids with at least one sample
for each grid point of the regular binning grid.
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research community. The capability of curvelets to detect wavefronts is
mainly responsible, and it comes as no surprise that their original construc-
tion, through the so-called second dyadic partitioning, came from the field
of Harmonic Analysis (Smith, 1998), where curvelets were introduced as ex-
pansions for asymptotic solutions of wave equations. This connection has
well been recognized by the developers of the FDCTs (Candès et al., 2006)
and has resulted in important contributions not only to the compression of
Green’s functions (Candès and Demanet, 2003), but also to nonlinear ap-
proximations of functions with intermittent regularity (Candès and Donoho,
2004). These functions are assumed to be piece-wise smooth with singulari-
ties, regions where the derivative diverges, on piece-wise smooth curves. In
the Earth, these singularities correspond to geologic unconformities at which
waves reflect. In seismic data, these singularities correspond to wavefronts.
Geologic boundaries as well as wavefronts contain points of intermittent reg-
ularity such as faults or pinch outs along sedimentary layers, or caustics in
wavefronts.

The purpose of this paper is not to compress operators. Instead, we
are interested in separating different seismic data components which, except
for possible incoherent measurement noise, consist of components that are
the solution of a wave equation. For this purpose, we employ the curvelet
transform as a vehicle that

• is rich enough to account for the multiscale and multidirectional prop-
erties of seismic data with intermittent regularity;

• is local in phase space, the space spanned by space and spatial fre-
quency;

• exploits smoothness along, and oscillatory behavior across, the arriving
wavefronts;

• differentiates between different signal components on the basis of lo-
cation, angle and frequency content;

• obtains fast decay of nonlinear approximation error for seismic data;

• permits a fast (O(K log K) with K the data size) multi-dimensional
(2-/3-D) implementation.

As can be seen in Fig.’s 2.2 and 2.3, curvelets are local in both space and
spatial frequency and correspond to a partitioning of the 2 − D Fourier
plane by highly anisotropic elements (for the high frequencies) that obey
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the paramount parabolic scaling principle (Smith, 1998) width ∝ length2.
As opposed to discrete wavelets, designed to provide sparse representations
of functions with point singularities, curvelets provide sparse representa-
tions for functions with singularities on curves. Moreover, whereas mul-
tiscale wavelets consist of a collection of location- and scale-indexed basis
functions, curvelets represent a family of functions made out of transla-
tions, rotations and parabolic scalings. As such, a frame with moderate
redundancy is created. The elements in this transform, which we will call
prototype waveforms, are

• multiscale with frequency support on dyadic coronae in the 2-D Fourier
plane;

• multidirectional with angles that correspond to the centers of the
wedges (for every other resolution doubling, the number of angles dou-
bles);

• anisotropic, obeying the scaling law width ∝ length2;

• local allowing for thresholding which locally adapts to the non-stationary
signal.

Frames differ from orthonormal bases. Orthonormal transforms (orthonor-
mal matrices) compose an arbitrary finite-energy discretized signal vector
f ∈ RK of length K (f is a discretization of the multivariate function
f(s, t) : R2 7→ R) according to

f = B−1Bf = BHBf :=
∑

m∈M
〈f , ϕm〉ϕm, (2.1)

with BH the matrix adjoint of the decomposition matrix B, and the brack-
ets 〈〉 denoting the standard discrete inner product 〈f , ϕm〉 = fHϕm of f
with the mth column vector of BH . Because B is an orthonormal basis, its
adjoint matrix corresponds to its inverse (inverse transform). The summa-
tion in Eq. 2.1 runs over the index set M of size M = K. As opposed to
orthonormal transforms, redundant frame expansions decompose a length
K signal into a frame expansion with M > K elements. Consequently, the
composition matrix is rectangular with the number of columns exceeding
the number of rows.

The regularly-sampled FDCT is a frame represented by the matrix C.
Applying this matrix to a vector f creates a multi-index coefficient vector
x = Cf with x := {xm}m∈M with the multi-index m running over the
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locations, orientations and scales (see Candès et al., 2006, for detail in the
discrete constructions of the FDCT). We choose the numerically tight FDCT
via wrapping as our curvelet transform. For this transform, the pseudo-
inverse (denoted by the symbol †) equals the adjoint and we have f = C†x =
CHx implying CHC = I .

2.2.2 Nonlinear approximation rates

The nonlinear approximation rate expresses the asymptotic decay of
the `2-difference between the original data and the partial reconstruction
from the largest M coefficients. In dimension two, Fourier only attains an
asymptotic decay rate ofO(M−1/2) for data consisting of twice-differentiable
functions with singularities on piece-wise twice differentiable curves while
curvelets asymptotically obtain the optimal rate O(M−2) ignoring log-like
factors. Even though wavelets improve upon Fourier, their approximation
rate of O(M−1) is sub optimal.

By virtue of their multiscale and multidirectional construction, curvelets
sparsely represent seismic data. Not only do individual curvelets capture the
main characteristics of wavefronts locally – they look like little waves – but
they also jointly capture the seismic energy effectively. This performance can
be observed in Fig. 2.4 where the nonlinear approximation rates are shown
for representative seismic synthetic data. The rates are computed for each
of the following cases: curvelets and wavelets on regularly-sampled data;
curvelets on non-uniformly sampled data (treated as uniformly sampled
data); and our extension of the curvelet transform on non-uniformly sam-
pled data. For uniformly sampled data, the nonlinear approximation rate
of curvelets outperforms the Daubechies 6 wavelet by a wide margin. This
figure also shows the importance of treating non-uniformly sampled data
correctly in the curvelet transform. For instance, treating non-uniformly
sampled data as uniformly sampled seriously deteriorates the performance.

To address the non-uniformly sampled data issue, binning is used to
bring non-uniformly sampled data to the regular grid. To compare the re-
constructions, we use space-domain linear interpolation for wavelets and we
include NFFT binning as our extension to the FDCT. Fig. 2.5 shows re-
constructions for non-uniformly sampled data with binning for only 1 % of
the coefficients. The partial reconstruction with the non-uniformly sampled
curvelet transform performs nearly as well as the uniformly sampled trans-
form and outperforms the wavelets. Detailed measures on the performance
are listed in Table 2.1.
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Figure 2.2: Spatial (left) and frequency (right) viewpoints of six real
curvelets at different scales and angles. As opposed to complex curvelets,
real curvelets live in two angular wedges symmetric about the origin. Com-
parison of the curvelets in the two domains also shows their micro-local corre-
spondence (Candès and Donoho, 2002), relating the orientation of curvelets
in both domains. Because of their rapid decay in the physical space and
compact support in the Fourier space, curvelets localize in phase space.
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Figure 2.3: Discrete curvelet partitioning of the 2-D Fourier plane into sec-
ond dyadic coronae and sub-partitioning of the coronae into angular wedges.
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Figure 2.4: Decays of the nonlinear approximation error for (non-uniformly
sampled) curvelet transform (N)FDCT and discrete wavelet transform
(DWT) using Daubechies 6 on (ir)regularly sampled synthetic seismic data.
Curvelets on the regular grid (plain line) clearly outperform discrete wavelets
(alternated dash-dot line). Our extension of the curvelet transform for
non-uniformly sampled data (dashed line) retains the performance of the
regularly-sampled curvelet transform on uniformly-sampled data, as opposed
to the inferior performance obtained when irregular data is treated as regular
(line with dots).
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Figure 2.5: Partial reconstructions using 1 % of the wavelet and curvelet
coefficients for non-uniformly sampled data. (a) linear binning; (b) curvelet
binning; (c) reconstruction of (a) with 1 % of the wavelet coefficients; (d)
reconstruction of (b) with 1 % of the curvelet coefficients. Visual comparison
between the wavelet and curvelet partial reconstructions shows a drastic
improvement with the curvelets. This improvement on wavelets is consistent
with the nonlinear approximation rates. The numbers listed in Table 2.1
also show improvement for the binning with the NFFT’ed curvelets defined
below even though (a) and (b) are visually similar.
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SNR (dB)
Linear binning -1.96
NFFT binning 9.04
Denoising 13.35
NFFT binning and denoising 8

Table 2.1: Binning (Fig.’s 2.5a and 2.5b) and denoising errors measured by
‘signal-to-noise ratio’ (SNR) defined as 10 log10

‖f‖22
‖f−f̃‖22

, with f the original

function and f̃ its estimate after binning and/or denoising. The SNR is
0 dB for the initial (non-uniformly) noisy data. Notice that, even for this
bad SNR, we only lose 1 dB between noise-free NFFT binning and noisy
NFFT binning combined with denoising.

2.3 The NFDCT: a curvelet frame for seismic
processing

As shown in Fig. 2.4, the performance of curvelet approximations and
hence signal separation may seriously deteriorate when non-uniformly sam-
pled data is treated as regular. Because seismic data is more often than not
acquired irregularly, failure to account for non-uniformly sampled data may
have adverse effects on seismic imaging. The main purpose of this paper
is to extend the FDCT towards non-uniformly sampled grids. The FDCT
C on an arbitrary uniformly sampled vector f factors as T times F, with
F the orthonormal Fourier transform and T the curvelet tiling matrix (i.e.
Cf := TFf). Below we replace the ordinary Fourier transform with its non-
uniformly sampled counterpart, which is a natural choice since the curvelet
construction is defined in the Fourier domain.

From this point on, non-uniformly sampled N -vectors f ∈ RN are de-
noted by the underbar, and f := {f(xp)}p=1, ··· , N at the nodes xp ∈ X
where X := {xp = (sp, tp) ∈ R × N : −1/2 ≤ sp < 1/2 and 0 ≤ tp <
Nt}p=1, ··· , N , with N the total number of nodes and Nt the number of regular
time samples. We consider the number of source/receiver positions larger
than the size of the corresponding regular spatial grid.

At the heart of non-equally sampled Fourier transforms of bandwidth
limited functions lies the fast evaluation of the following sum (see e.g. Beylkin,
1995; Kunis and Potts, 2003)

f := f(xp) =
∑
k∈K

f̂ke
−2πikxp for p = 1, · · · , N. (2.2)
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This expression corresponds to the discrete inverse Fourier transform from
a uniformly-sampled grid K := {kj = (ks

j , k
t
j) ∈ Z2 : −Ks,t/2 ≤ ks,t

j <
Ks,t/2}j=1, ··· , K in the Fourier domain (denoted by the symbol ), consisting
of K = Ks×Kt samples with Kt = Nt, towards the non-uniformly sampled
grid X . In matrix-vector notation the above expression becomes

f = Af̂ . (2.3)

The NFFT is an implementation that approximately evaluates the above
sum with a fast algorithm based on ideas from (Beylkin, 1995). By replacing
the regular FFT in the implementation for the FDCT by the pseudo-inverse
of the NFFT, we arrive at a transform that takes irregularly sampled data
to the regularly sampled Fourier domain.

By limiting the maximum distance between the nodes to K−1
s and hav-

ing more irregular than regular samples (N > K), the pseudo inverse of A is
well conditioned when including an additional diagonal weighting W, pro-
portional to the number of source/receivers per unit on the interval (Kunis
and Potts, 2003). The forward non-uniformly sampled fast discrete curvelet
transform, NFDCT, is now defined as

x = Cf := TA†f (2.4)

with A† := (AHWA)−1AHW. Under the above irregular sampling con-
ditions, the non-uniformly sampled forward curvelet transform produces
curvelet coefficients that pertain to a regular Fourier grid. Hence, by ap-
plying the regular inverse curvelet transform to these curvelet coefficients
yields data on the regular grid. This process corresponds to a NFFT-based
binning.

2.4 Signal estimation and separation by
thresholding

The success of denoising and signal separation depends largely on the
ability of a transform to sparsely represent a particular type of image. Dis-
crete wavelet transforms and more recently curvelets accomplish (near) op-
timal nonlinear approximation rates for certain classes of images (see e.g.
Donoho and Johnstone, 1998). As argued before, curvelets appear to be the
appropriate choice for seismic data. We discuss estimation techniques both
for orthonormal wavelets and overcomplete curvelets.
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Denoising by shrinkage Thresholding on the coefficients of an expansion
with respect to a collection of prototype waveforms is a key component in
the solution of denoising problems with the signal model given by

d = m + n (2.5)

with m the unknown deterministic signal component and n zero-centered
white Gaussian noise with standard deviation σ. The Gaussian assumption
is fundamental in this work. Whiteness, however, is not a prerequisite.

Soft thresholding on each element of the noisy data coefficient vector
solves for the model m through

m̃ = S†Sw (Sd) . (2.6)

In this expression, S stands for an arbitrary sparse signal expansion and Sw

for soft thresholding defined element-wise as

Sw(x) :=

{
x− sign(x)w |x| ≥ w

0 |x| < w
(2.7)

with w ≥ 0 a real-valued threshold. The vector w contains the thresholds
for each coefficient. This shrinkage operation by thresholding forms the
basis for our denoising and signal separation. In Fig. 2.6 we illustrate the
estimation by shrinkage as described in (2.6).

Denoising with orthonormal bases: For arbitrary orthonormal trans-
forms S := B, we have S† = B−1 and Eq. (2.6) solves the following mini-
mization problem

x̃ = arg min
x

1
2
‖y − x‖22 + ‖x‖1,w (2.8)

with {y, x} := {Bd, Bm} the transformed coefficients and ‖x‖1,w a weighted
`1-penalty functional given by

‖x‖1,w =
∑

m∈M
wm|xm|. (2.9)

By setting each weight wm = 3 · σ, Eq. 2.6 yields an estimate for m. This
threshold corresponds to the typical rule for thresholding (see e.g. Mallat,
1998). During this estimation, the quadratic mismatch between the data
and model is minimized jointly with the weighted `1-penalty functional.
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The quadratic term is known as the log-likelihood. The model is assumed
to be a superposition of prototype waveforms with coefficients drawn inde-
pendently from a probability function Pr{xm} ∝ exp (−Const · λ|xm|) that
corresponds to the Laplace distribution which enhances sparsity Starck et al.
(2004); Elad (2006).

Denoising with tight frames: The FDCT with wrapping is a tight frame
with a synthesis matrix C† = CH that has more columns than rows. The
coefficient vector exceeds the data size by a factor of roughly 8. In this case,
CCH 6= I and Eq. 2.6 is no longer equivalent to the minimization problem
in Eq. 2.8. However, for a tight frame with a `2-norm for the columns of the
synthesis matrix close to unity, shrinkage still provides a good approximation
to the solution of the above minimization problem (Elad, 2006).

Denoising and binning with the NFDCT By combining the non-
uniformly sampled curvelet transform with shrinkage (cf. Eq. 3.7), we arrive
at our main result

m̃ = C†Sw (Cd) , (2.10)

accomplishing the joint task of (in)-coherent signal separation on non-uniformly
sampled data d and binning. In this expression, the non-uniform data vector
d is curvelet transformed with the NFDCT, followed by a thresholding and
the regular inverse curvelet transform (FDCT). Under the assumptions we
stated before on the bandwidth-limitation of the signal and the unequal sam-
pling, the pseudo-inverse used to Fourier transform the unequally-sampled
points can be computed stably. As such, we can safely assume that the
regular sampled Fourier data is still close to the Fourier transform of the
corresponding uniformly-sampled data. We proceed as if we were dealing
with the uniformly sampled case by thresholding and applying the uniformly
sampled inverse curvelet transform (IFDCT). The result of this operation is
a combined denoising and binning, where irregular bandwidth-limited noisy
data is denoised and mapped to a regular grid. This technique is demon-
strated in Fig’s. 2.7 and 2.8 discussed below.

Coherent signal separation Even though thresholding estimators are
primarily used to separate incoherent random from deterministic signal com-
ponents, extending the thresholding estimations to cases where there are two
coherent signal components has been quite successful for cases where there
exists a prediction for one of the signal components (this is the case for
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e.g. primary-multiple separation in seismic exploration, Herrmann et al.,
2007).

In this case the signal model becomes slightly more complicated

s = s1 + s2 + n, (2.11)

with s1, s2 the two coherent signal components. Given a prediction s̆2 for
the second component, the first component can be estimated through Eq. 2.6
where the weighting is defined as

w := max (3σ, δ|x̆2|) (2.12)

with x̆2 := Cs̆2. This weighting corresponds to a varying threshold defined
in terms of the curvelet transform for the predicted signal component. The
δ expresses the confidence in the prediction. The above estimator again cor-
responds to a maximum a-posteriori (MAP) estimator minimizing the log-
likelihood function with coefficients that are selected from a cross-correlation
weighted probability function Pr{xm} ∝ exp (−Const · wm|xm|) for m ∈M.
This probability function is weighted by the prediction for the second signal
component.

Shrinkage

Transform
Inverse
Transform

d m̃

Figure 2.6: 3-step estimation by shrinkage on transformed domain coeffi-
cients. Noisy data d is brought to a transformed domain. Soft thresholding
is applied on the coefficients. Finally a denoised estimate m̃ is obtained by
applying the corresponding inverse transform to the thresholded coefficients.

2.4.1 Applications to seismic data

Amongst the striking features of seismic data is that it contains wave-
fronts possibly contaminated with bandwidth limited Gaussian noise. As
shown above, removal of this random component can be accomplished by
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Figure 2.7: Incoherent noise removal through shrinkage (cf. Eq.’s 2.6 and
2.10). (a) noisy non-uniformly sampled data plotted in a regular grid and
with SNR of 0 dB; (b) denoised data including binning (see Eq. 2.10). Notice
the significant improvement reflected into the SNR listed in Table 2.1.
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forward transforming the (ir)regular data with the (N)FDCT, followed by a
simple shrinkage and reconstruction with the IFDCT. Fig. 2.7 illustrates the
performance of curvelet denoising by shrinkage. Because the performance of
denoising is, besides the binning error, as good as regular denoising, we only
show the results for non-uniformly sampled data where denoising is com-
bined with binning. These methods can be extended to the case of coherent
signal removal according to the threshold defined in Eq. 2.12. To emphasize
the added value of the NFDCT, we include an example where the signal
separation is carried out on irregular data cast into a regular grid and on
the irregular data itself with the NFDCT.

The removal of ghost events related to multiple interactions of the wave-
field with the surface is paramount to the success of seismic imaging based on
linearized inverse scattering. These ghosts, also known as multiples, violate
the linearization and cause artifacts in the image. Removing these artifacts
has proven to be difficult due to the multiple prediction error. Adaptive
subtraction techniques based on matched filtering (see e.g. Verschuur et al.,
1992) have been developed to counter the inaccuracies and robustly separate
the two signal components. Unfortunately, matched filtering suffers from in-
advertent removal of primary energy and an unwanted remainder of multiple
energy. By formulating this signal separation problem as a weighted shrink-
age in the curvelet domain, good results have been obtained as illustrated
in Fig. 2.8. These results were obtained using s̃1 = C†Sw (Cs) where the
weights w are defined as in Eq. 2.12 with s̆2 the modeled/predicted multi-
ples. The constants were set to δ = 1.6 and σ according to the noise level.
The predicted multiples are left as is. By virtue of the NFDCT, the result
for the non-uniformly sampled case is almost as good as the result for the
uniformly sampled case.

2.5 Conclusions

In this paper, we demonstrated that curvelet transforms sparsely rep-
resent uniformly-sampled seismic data. This property was used to perform
denoising and coherent signal separation, including the elimination of mul-
tiple reflection events. We also demonstrated that the performance of the
curvelet transform is restored by our curvelet transform for non-uniformly
sampled data: the NFDCT. Application of this transform to noise removal
and signal separation problems on irregular data shows that we recover the
performance of the curvelet transform on regular data up to the binning
error. The binning error can be controlled at the expense of more computa-
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Figure 2.8: Removal of ghost events related to multiple interactions of
the wavefield with the surface. (a) synthetic non-uniformly sampled data
containing primary and multiple reflections treated as regular data; (b)
predicted multiples; (c) estimated primaries using the FDCT on (a) and
weights as defined in Eq. 2.12; (d) estimated primaries using the NFDCT
on (a) and weights as defined in Eq. 2.12. By virtue of the NFDCT, the
result for the non-uniformly sampled case rivals the result for the uniformly
sampled case.
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tions. In a future paper, we hope to report on an extension of our method
to the case where the size of the interpolation grid exceeds the number of
unequally sampled data points.
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Chapter 3

Non-parametric seismic data
recovery with curvelet
frames

3.1 Introduction

The methodology presented in this paper addresses two important issues
in seismic data acquisition, namely the mediation of imaging artifacts caused
by physical constraints encountered during acquisition, and the design of
a more economic acquisition, limiting the number of source and receiver
positions within the survey. In either case, the data is incomplete and it
is our task to recover a fully-sampled seismic data volume as required by
wave-equation based multiple elimination (SRME, Verschuur and Berkhout,
1997) and imaging (Symes, 2006). This paper deals with the specific case of
seismic data recovery from a regularly-sampled grid with traces missing. As
a consequence, the data is undersampled and the Nyquist sampling criterion
is violated, giving rise to a Fourier spectrum that may contain harmful
aliases.

A multitude of solutions have been proposed to mitigate the impact of
coherent aliases on seismic imaging. Our approach derives from three key
ingredients, namely a sparsifying transform, a sampling strategy that limits
the occurrence of harmful aliases and a nonlinear recovery scheme that pro-
motes transform-domain sparsity and consistency with the acquired data.
These three key ingredients form the basis of the emerging field of “com-
pressive sampling” (Candès et al., 2006b; Donoho et al., 2006b) with sev-
eral applications that include MRI-imaging (Lustig et al., 2007) and A/D
conversion (Tropp et al., 2006). Compressive sampling can be seen as a

A version of this chapter has been accepted for publication. F.J. Herrmann and G.
Hennenfent. Non-parametric seismic data recovery with curvelet frames. Geophysical
Journal International, 173:233-248, 2008.
c© 2008 Blackwell Publishing. The definitive version is available at www.

blackwell-synergy.com

29

www.blackwell-synergy.com
www.blackwell-synergy.com


Chapter 3. Non-parametric seismic data recovery with curvelet frames

theoretically rigorous justification of empirical ideas on sparsity-promoting
inversion that existed in the geophysical literature with applications that
include “spiky deconvolution” (Taylor et al., 1979; Oldenburg et al., 1981;
Ulrych and Walker, 1982; Levy et al., 1988; Sacchi et al., 1994) analyzed
by mathematicians (Santosa and Symes, 1986; Donoho and Logan, 1992) to
Fourier and Radon transform-based seismic data recovery, an approach ini-
tially proposed by Sacchi et al. (1998) and extended by numerous authors
(Trad et al., 2003; Xu et al., 2005; Abma and Kabir, 2006; Zwartjes and
Sacchi, 2007). Amongst all these methods, it was observed that a successful
solution of these problems depends critically on the number of measure-
ments (or the frequency passband for deconvolution) and the signal’s spar-
sity in some transformed domain, e.g. spikes for deconvolution and Fourier
for sparse recovery.

Compressive sampling provides insights into the conditions that deter-
mine successful recovery from incomplete data. We leverage these new in-
sights towards a formulation of the large-scale seismic data regularization
problem, where a sparsifying transform, anti-alias sampling and a sparsity-
promoting solver are used to solve this problem for acquisitions with large
percentages of traces missing. These theoretical developments are impor-
tant since they provide a better intuition of the overriding principles that
go into the design of a recovery method and into explicit construction of
a sparsifying transform, the sampling strategy and the sparsity-promoting
solver.

In this paper, we consider a recovery method that derives from this in-
tuition by using a generic sparsifying transform that requires minimal prior
information (although our method benefits like Fourier-based interpolation
(Zwartjes and Sacchi, 2007) from dip discrimination by means of specifying
a minimum apparent velocity). In that respect our method differs from in-
terpolation methods based on pattern recognition (Spitz, 1999), plane-wave
destruction (Fomel et al., 2002) and data mapping (Stolt, 2002), including
parabolic, apex-shifted Radon and DMO-NMO/AMO (Trad, 2003; Trad
et al., 2003; Harlan et al., 1984; Hale, 1995; Canning and Gardner, 1996;
Bleistein et al., 2001; Fomel, 2003; Malcolm et al., 2005), which require, re-
spectively, the omission of surface waves, specific knowledge on the dominant
dips and a velocity model.

3.1.1 Our main contribution

The success of our recovery method for seismic data, named curvelet-
based recovery by sparsity-promoting inversion (CRSI), derives from a spar-
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sifying transform in conjunction with a sampling scheme that favors recov-
ery. With their well-documented sparsity for seismic data with wavefronts
and Fourier-domain localization property (Candès et al., 2006a; Hennenfent
and Herrmann, 2006; Herrmann et al., 2007a), curvelets render sparsity-
promoting inversion into a powerful constraint for the recovery of seismic
data. Our contribution, first reported in Herrmann (2005), lies in the appli-
cation of this transform (see e.g. Candès et al., 2006a; Ying et al., 2005, for
details on the definition and implementation of the discrete curvelet trans-
form) to the seismic recovery problem. Our work includes the adaptation
towards a geophysically feasible sampling scheme that eliminates harmful
aliases and allows for a dip discrimination by means of a minimum apparent
velocity. This combination of sparsity-promotion and sampling permits a
solution of a very large-scale `1-minimization problem at a computational
cost comparable to iterative-re-weighted least-squares (IRLS Gersztenkorn
et al., 1986).

Our formulation for the solution of the seismic data recovery problem
reads

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(3.1)

and is reminiscent of the solution of the “inpainting problem”, the problem
of infilling missing data, reported by Elad et al. (2005). In this expression,
y is the vector with the incomplete data and x the unknown coefficient
vector that generates the decimated data through the modeling matrix, A.
The solution of the recovery problem corresponds to finding the sparsity
vector, x with minimal `1 norm subject to fitting the data to within a
noise-dependent `2 error ε. The estimate for the recovered data vector, f̃ ,
is obtained by applying the inverse transform, ST , to the recovered sparsity
vector, x̃, that solves Pε. Above formulation for the recovery problem is
known to be stable and extends to (seismic) signals that are not strictly
sparse but compressible (Candès et al., 2006b). In that case, the recovery
error becomes smaller for transforms that concentrate the signal’s energy
amongst a smaller fraction of the coefficients.

At this point, the well established ability of curvelets (Candès et al.,
2006a; Hennenfent and Herrmann, 2006; Herrmann et al., 2007a) enters
into the equation. Compared to discrete wavelets, used for digital storage of
multidimensional seismic data volumes (Donoho et al., 1999), curvelets truly
honor the behavior of seismic wavefields. They correspond to localized ’little
plane waves’ that are oscillatory in one direction and smooth in the other
direction(s) (Candès and Donoho, 2000, 2004). Like directional isotropic
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wavelets, they are multiscale and multi-directional, but unlike wavelets, they
have an anisotropic shape – they obey the so-called parabolic scaling rela-
tionship, yielding a width ∝ length2 for the support of curvelets in the
physical domain. Curvelets are also strictly localized in the Fourier domain
and quasi localized in the space domain, i.e., they decay rapidly away from
the crest where they are maximal. The anisotropic scaling is necessary to
detect wavefronts (Candès and Donoho, 2005b,a) and explains their high
compression rates on seismic data (Candès et al., 2006a; Herrmann et al.,
2007a,b).

3.1.2 Outline

To maximally leverage the recent insights gained from compressive sam-
pling, we tie the important aspects of this theory into the formulation of the
seismic recovery problem. After presenting a brief overview of this theory,
including an intuitive explanation, we emphasize the importance of com-
pression rates on the quality of the recovery by means of a series of stylized
experiments. Based on this experience, the appropriate sparsifying trans-
form, sampling strategy and minimal velocity constraint that controls the
mutual coherence are reviewed, followed by the formulation of our sparsity-
promoting inversion method. We conclude by applying this method to var-
ious datasets with a focus on improvements of curvelet-based recovery over
recovery with plane-wave destruction and the additional benefits from shot-
receiver interpolation with 3-D curvelets over recovery from shot records
with 2-D curvelets.

3.2 Compressive sampling

3.2.1 The basics

Compressive sampling states that a signal with a sparse Fourier spectrum
can be recovered exactly from sub-Nyquist sampling by solving a sparsity-
promoting program that seeks, amongst all possible solutions, a spectrum
with the smallest `1 norm whose inverse Fourier transform equals the sam-
pled data. During the recovery, the rectangular modeling matrix, A, linking
the unknown sparsity N -vector, x, to the incomplete n-data vector, y, is
inverted. The recovered data is calculated by taking the inverse Fourier
transform of the recovered sparsity vector that solves (denoted by the tilde
symbol ˜ ) the sparsity promoting program. Compressive sampling pro-
vides the conditions under which this underdetermined system of equations
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(n � N) can be inverted. This theory also applies to more general situa-
tions, including the presence of noise, compressible instead of strictly sparse
signals and more general measurement and sparsity bases, replacing the
Fourier basis.

To be specific, compressive sampling theory states that Pε (cf. Eq. 3.1)
recovers in the noise-free case (for ε→ 0) the k non-zero entries of the Fourier
N -vector exactly from n ∼ k×log N samples in the vector, y = Ax0 (Candès
et al., 2006b). For random sampling, this condition was recently improved
to n = k × 2 log(N/k) by Donoho and Tanner (2007) in the regime N � k.

So, what is the rational behind these sampling criteria for k-sparse
Fourier vectors? Intuitively, one may argue that taking a single time sample
corresponds to probing the data by an inner product with a complex expo-
nential in the Fourier domain. This sinusoidal function intercepts with any
non-zero entry of the unknown Fourier spectrum. One can argue that two
intersections from two arbitrary samples should suffice to determine the am-
plitude and phase for each non-zero entry of the spectrum. Extending this
argument to a k-sparse spectrum turns this into a combinatorial problem,
seeking the smallest number of nonzero entries in the sparsity vector with
an inverse Fourier transform that fits the data. The theory of compressive
sampling provides conditions under which the above combinatorial problem
can be replaced by Pε for which practical solvers exist. This theory also
provides guidelines for sampling strategies that limit the imprint of inter-
ference that leads to coherent aliases. After illustrating the importance of
compression for the recovery on a series of stylized experiments, we discuss
the design of a compressive sampling procedure that is favorable for the
recovery of seismic data with traces missing.

3.2.2 A stylized experiment

Sparsifying transforms form the key component of compressive sampling.
As we will show below, the accuracy of the recovery depends on the degree of
compression achieved by the sparsifying transform. For signals that are not
strictly sparse but compressible, their sparsity properties can be measured
by the compression rate, r, defined by the exponent for the powerlaw decay
of the magnitude-sorted coefficients. The larger r, the faster the decay of the
reconstruction error, measuring the energy difference between the original
signal and its approximation from the k largest coefficients. Because Pε

(cf. Eq. 3.1) recovers the largest k coefficients, the recovery of compressible
signals improves in a transformed domain with a large compression rate.
The challenge is to find a sparsifying transform that also permits a favorable
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sampling condition.
A series of experiments is conducted that measures the performance of

the recovery as a function of the compression rate and the aspect ratio of the
modeling matrix, δ = n/N . This aspect ratio is related to the undersampling
rate. As before, a modeling matrix defined in terms of the decimated Fourier
matrix is used. The experiments are carried out for varying numbers of
measurements, n, and for increasing compression rates, i.e., (δ, r) ∈ (0, 1]×
(1/2, 2]. For each parameter combination, twenty different pseudo-random
realizations are generated defining the random sampling and the entries in
the sparsity vector, x0. For each r, this vector is calculated by applying
random permutations and signs flips to a sequence that decays with i−r

for i = 1 · · ·N with N = 800. The incomplete data is generated for each
realization with y = Ax0 and is used as input to StOMP (Donoho et al.,
2006a), a solver that solves Pε approximately, for ε = 0. As a performance
metric, the squared relative `2 error, err2 = ‖x̃ − x0‖2/‖x0‖2, is calculated
and averaged amongst the realizations for fixed (δ, r) ∈ (0, 1] × (1/2, 2].
This error is encoded in the greyscale of the recovery diagram, which is
included in Fig. 3.1. Bright regions correspond to parameter combinations
that favor accurate recovery. For r fixed, the relative error decays as the
number of measurements increases. For each undersampling ratio, δ = n/N ,
the error decays rapidly as a function of the compression rate, r. This
example underlines the importance of finding a representation that has a
high compression rate.

The recovery diagram contains another piece of important information.
For a user-defined recovery error and empirical decay rate, the degree of un-
dersampling can be calculated from the intercept of the appropriate contour
with a line of constant approximation rate. Conversely, for a given degree
of undersampling, the relative recovery error can be determined by looking
at the grey value at the specified parameter combination for (δ, r).

Approximately a decade ago Sacchi et al. (1998) showed that a sparse
Fourier spectrum can be recovered from sub-Nyquist sampling by a Bayesian
argument that amounted to the solution of an optimization problem close
in spirit to Pε. While this work has recently been expanded to large-scale
problems in higher dimensions by Trad et al. (2006) and Zwartjes and Sacchi
(2007), compressive sampling and the presented recovery diagram provide
new insights regarding the abruptness of the recovery as a function of the
undersampling and the sparsity, and the importance of the compression rate
on the quality of the recovery. Unfortunately, the large number of experi-
ments required to compute the recovery diagram preclude a straightforward
extension of these experiments to the seismic situation, where problem sizes
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Figure 3.1: Example of a recovery diagram for parameter combinations
(δ, r) ∈ (0, 1)× (1/2, 2) on a regular grid of 25× 25. Notice that the relative
`2 error decays the most rapidly with r. The contour lines represent 1 %
decrements in the recovery error starting at 10% on the lower-left corner
and decaying to 1% in the direction of the upper-right corner.

exceed (N = O(230)). However, this does not mean that abstract concepts of
compressive sampling are not useful in the design of a compressive sampling
scheme for seismic data.

3.3 Compressive sampling of seismic data

Application of the seismic recovery problem according to the principles
of compressive sampling requires a number of generalizations. To make these
extensions explicit, the modeling matrix is factored into A := RMST , where
ST (cf. Eq.3.1) represents the synthesis matrix of the sparsifying transform,
M the measurement matrix and R the restriction or sampling matrix. The
measurement matrix represents the basis in which the measurements are
taken and corresponds to the Dirac (identity) basis in seismology and to the
Fourier basis in MRI imaging (Lustig et al., 2007). The sampling matrix
models missing data by removing zero traces at locations (rows) where data
is missing, passing the remaining rows unchanged. The above definition for
the modeling matrix is commensurate with the formulation of compressive
sampling. As predicted by compressive-sampling theory, the recovery de-
pends quadratically on a new quantity that measures the mutual coherence,
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µ ≥ 1, between the vectors of the measurement and sparsity bases. This
mutual coherence is defined as

µ(M,S) =
√

M max
(i,j)∈[1···M ]×[1···N ]

|〈mi, sj〉| (3.2)

with mi and sj the rows of M and S, respectively. For the Dirac-Fourier
pair, where measurements are taken in Euclidean space of a signal that is
sparse in Fourier space, this quantity attains its minimum at µ = 1. Because
this property quantifies the spread of the vectors from the measurement basis
in the sparsifying domain, it explains successful recovery of signals that are
sparse in the Fourier domain from a limited number of Euclidean samples.
Compressive-sampling theory extends this idea to different measurement
and sparsity matrix pairs and this incoherence quantity proves, aside from
the compressibility of the to-be-recoverd signal, to be one of the important
factors that determines the recovery performance.

3.3.1 Choice for the sparsifying transform

Despite the presence of curved wavefronts with conflicting dips, caustics
and a frequency content that spans at least three decades, the curvelet
transform attains high compression on synthetic as well as on real seismic
data. An intuitive explanation for this behavior lies in the ’principle of
alignment’, predicting large correlations between curvelets and wavefronts
that locally have the same direction and frequency content. This principle
is illustrated in Fig. 3.2 and explains that only a limited number of curvelet
coefficients interact with the wavefront while the other coefficients decay
rapidly away from a wavefront. Remark that curvelets require no knowledge
on the location of the wavefronts and do not rely on a NMO correction to
reduce the spatial bandwidth. However, additional steps such as focusing
(see Herrmann et al., 2008) or spatial-frequency content reduction by NMO
will improve the recovery but these require extra prior information.

This compression property of curvelets leads, as shown in Fig. 3.3, to
a reconstruction from the largest 1 % coefficients that is far superior com-
pared to Fourier- or wavelet-based reconstructions from the same percentage
of coefficients. The curvelet result in Fig. 3.3(d) is artifact free while the
Fourier (Fig. 3.3(b)) and wavelet (Fig. 3.3(c)) reconstructions both suffer
from unacceptable artifacts. Both for synthetic and real data the observed
decays of the magnitude-sorted coefficients, as plotted in Fig. C.1 of Ap-
pendix C, support the superior performance of curvelets. By virtue of this
property, the curvelet transform is the appropriate choice for our sparsify-
ing transform and we set, S := C with C ∈ RN×M the discrete curvelet
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transform (Candès et al., 2006a; Ying et al., 2005) with N > M the number
of curvelet coefficients and M the size of the fully-sampled data volume,
f0 ∈ RM . See the appendices for further detail on the curvelet transform
and its performance on seismic data.

Unlike the Fourier and wavelet bases, curvelets form a frame with a
moderate redundancy. Frames share many properties with bases but their
redundancy requires care in computing the curvelet coefficients, which are
no longer unique. Despite the loss of orthogonality, a technical condition re-
quired by compressive sampling, curvelets lead to excellent recovery results,
which can be understood intuitively.
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Figure 3.2: Example of the alignment of curvelets with curved events.

3.3.2 The measurement matrix

Sampling of seismic wavefields during acquisition can be considered as
taking measurements in the Dirac basis, i.e., M := I with I the identity
matrix. This is a good approximation for omnidirectional point sources that
are impulsive and for receivers with no directivity and a flat frequency re-
sponse. For this “choice” of measurement basis – the physics of seismic
wavefield acquisition limits this choice to this specific type of measurement
basis – the recovery conditions are reasonably favorable according to com-
pressive sampling because the Dirac basis is arguably reasonably incoher-
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(a) (b)

(c) (d)

Figure 3.3: Partial reconstruction in different transform domains. (a) Origi-
nal shot record reconstructed from its 1% amplitude-largest (b) Fourier, (c)
wavelet and (d) curvelet coefficients. The curvelet reconstruction is clearly
the most accurate approximation.
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ent with curvelets, whose Fourier spectrum is confined to localized angular
wedges (see Fig. 3.4). We argue that this loss of mutual coherence with re-
spect to the Dirac-Fourier pair is offset by the improved sparsity attained by
curvelets (see also our discussion on the role of compression in the stylized
examples section). In 3-D this argument gains more strength by virtue of
improved sparsity and reduced mutual coherence, i.e., fewer 3-D curvelets
are required to capture sheet-like wavefronts while more 3-D curvelets are
necessary to cancel each other to approximate a discrete delta Dirac.

Aside from this argument, most if not all practical compressive sampling
schemes use sparsifying transforms that are not ideal. For instance, in MRI
people use Fourier measurement bases and wavelets as the sparsity basis
(Lustig et al., 2007; Candès et al., 2007). At the coarse scales, wavelets
become more Fourier-like and hence would adversely affect the recovery.
In practice, these less-than-ideal circumstances do not necessarily translate
into unfavorable recovery.

Another complication is related to the fact that seismic data is sampled
regularly in time and at a subset of source/receiver positions that belong
to the acquisition grid. This means that data is fully sampled in time and
irregularly along the source/receiver coordinates. This asymmetric trace-
by-trace sampling is unfavorable for the recovery because it introduces cor-
relations between vertically-oriented curvelets and vertically-oriented traces
along which the data is collected. Fig. 3.4 illustrates this problem schemat-
ically.

To incorporate this additional complication in our formalism, we extend
the formal definition of mutual coherence (cf. Eq. 6.1) by studying the pseudo
mutual coherence between the rows of the acquisition matrix, RM, and the
columns of the curvelet synthesis matrix. From this perspective, enforcing a
dip discrimination by means of specifying a minimum apparent velocity (see
e.g. Zwartjes and Sacchi, 2007), has a natural interpretation in the context
of compressive sampling because this discrimination removes steeply dipping
curvelets and hence reduces the “mutual coherence” (see Fig. 3.4). This dip
discrimination corresponds to Fourier-domain dip filtering and is equivalent
to replacing the Dirac measurement basis with a Toeplitz matrix derived
from a dip-filtered discrete delta Dirac. In this case, the mutual coherence
will also be reduced, yielding a more favorable recovery condition. This
observation is consistent with reports in the geophysical literature, where
maximal dip limitation for the recovered wavefields are known to improve
recovery (Zwartjes and Sacchi, 2007).

Because curvelets are angular selective, it is straightforward to imple-
ment the dip discrimination as a diagonal weighting matrix in the curvelet
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domain. This choice not only avoids having to put infinities in a weighting
for the `1-norm in Eq. 3.1 but it also allows us to redefine the synthesis
matrix as

ST := CTW with W = diag{w} (3.3)

with CT ∈ RM×N the inverse discrete curvelet transform. The weighting
vector, w, contains zeros at positions that correspond to wedges that contain
near vertical curvelets and ones otherwise (see Fig. 3.4). However, this re-
definition does not impact the actual wavefield because near vertical events
can not occur and leads to a reduced mutual coherence between the rows
of the acquisition matrix and the columns of the now restricted curvelet
synthesis matrix. This restriction removes the curvelets that correlate with
traces in the acquisition and therefore leads to a reduction of the mutual
coherence, i.e., the sum in Eq. 6.1 no longer runs over the vertically ori-
ented curvelets. The observation that reduced coherence leads to favorable
recovery conditions is consistent with the theory of compressive sampling.

t

trace
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k2

W2W2t

trace k

fWW

Figure 3.4: Illustration of the angular weighting designed to reduce the ad-
verse effects of seismic sampling. On the left, the increased mutual coherence
between near vertical-oriented curvelets and a missing trace. In the middle,
a schematic of the curvelets that survive the angular weighting illustrated
on the right.

3.3.3 The restriction/sampling matrix

Curvelet-based recovery performs less well in the presence of strong co-
herent aliases caused by regular undersampling. These coherent aliases are
harmful because they lead to artifacts that have large inner products with
curvelets, which may lead to falsely recovered curvelets. The performance of
transform-based recovery methods depends on a reduction of these aliases
that are caused by constructive interference induced by a regular decimation
of the data.
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Random subsampling according to a discrete uniform distribution – each
discrete grid point is equally probable to be sampled – is known to break
aliases. For the restricted Fourier matrix, which consists of the Fast Fourier
transform (FFT) applied to a vector with zeros inserted at locations where
samples are missing, this random sampling turns aliases into a relatively
harmless random noise (according to the slogan “noiseless underdetermined
problems behave like noisy well-determined problems” by Donoho et al.,
2006b), allowing for a separation of signal from incoherent interference by
a denoising procedure that exploits the sparsifying property of curvelets
on seismic data (Hennenfent and Herrmann, 2007a,c). Roughly speaking,
this can be understood by arguing that random subsampling according to
a discrete uniform distribution corresponds to some sort of a perturbation
of the regularly decimated grid that is known to create coherent aliases. As
shown in Hennenfent and Herrmann (2007c), this type of sampling, and our
extension to jitter sampling, creates a noisy spectrum, where for all wave
numbers aliased energy is distributed over the seismic temporal frequency
band.

The observation that irregular sampling favors recovery is well known
amongst scientists and engineers (Sun et al., 1997; Wisecup, 1998; Malcolm,
2000). Albeit not strictly necessary, we will, for the remainder of this paper,
assume that the data is sampled according to a discrete uniform distribution.
In practice, there is no need to insist on this condition as long as there is
some control on the clustering of the measurements and the size of the largest
gaps in the acquisition. Details on this important topic are beyond the scope
of this paper and the reader is referred to Donoho and Logan (1992) and to
recent applied work by the authors Hennenfent and Herrmann (2007b,c) on
jitter sampling.

3.3.4 The modeling matrix

With the sampling and sparsifying matrices in place, the representation
for noisy seismic data can now be written as

y = Ax0 + n with A := RIST , (3.4)

y ∈ Rn the noisy measurements and n ∈ Rn a zero-centered pseudo-white
Gaussian noise. According to this model, the measurements are related
to the sparsity vector x0 through the modeling matrix A ∈ Rn×N . This
modeling matrix is defined by compounding the restriction, R ∈ Rn×M ;
measurement, I ∈ RM×M ; and inverse transform, ST ∈ RM×N matrices.
The noisy measurements themselves are given by y = Rf0 + n with R ∈
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Rn×M the restriction matrix taking n � M random samples from the full
data vector, f0 ∈ RM . Because the curvelets transform is redundant, the
length of the curvelet vector exceeds the length of the full data vector (N >
M > n). Therefore, our main task is to invert the modeling matrix A for
situations where δ = n/N ≈ 0.04 in 2-D and δ ≈ 0.01 in 3-D.

3.4 Curvelet Recovery by Sparsity-promoting
Inversion (CRSI)

The seismic data regularization problem is solved with matrix-free im-
plementations for the fast discrete curvelet transform (defined by the fast
discrete curvelet transform, FDCT, with wrapping, a type of periodic exten-
sion, see Candès et al., 2006a; Ying et al., 2005) and the restriction operator.
The solution of Pε (cf. Eq. 3.1) is cast into a series of simpler unconstrained
subproblems. Each subproblem is solved with an iterative soft-thresholding
method with thresholds that are carefully lowered. For (extremely) large
problems, this cooling leads to the solution of Pε with a relatively small
number (O(100)) of matrix-vector multiplications.

3.4.1 The unconstrained subproblems

The inversion of the underdetermined system of equations in Eq. 3.4
lies at the heart of compressive sampling. The large system size of seismic
data and the redundancy of the curvelet transform exacerbate this problem.
Our main thesis is that the matrix, A, can be successfuly inverted with
an iterative solution of the sparsity-promoting program Pε (cf. Eq. 3.1) by
means of a descent method supplemented by thresholding.

Following Elad et al. (2005), the constrained optimization problem, Pε,
is replaced by a series of simpler unconstrained optimization problems

Pλ :

{
x̃λ = arg minx

1
2‖y −Ax‖22 + λ‖x‖1

f̃λ = ST x̃λ.
(3.5)

These subproblems depend on the Lagrange multiplier λ, determining the
emphasis of the `1-norm over the `2 data misfit. The solution of Pε is reached
by solving Pλ for λ ↓ λε with λε = supλ {λ : ‖y −Ax̃λ‖2 ≤ ε}. During the
solution of the nonlinear optimization problem Pλ, the rectangular matrix
A is inverted by first emphasizing the sparsity-promoting `1-norm, yield-
ing sparse approximate solutions, followed by a relaxation as λ decreases,
increasing the energy captured from the data.
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3.4.2 Solution by iterative thresholding

Following Daubechies et al. (2004), Elad et al. (2005); Candés and Romberg
(2004) and ideas dating back to Figueiredo and Nowak (2003), the subprob-
lems Pλ are solved by an iterative thresholding technique that derives from
the Landweber descent method (Vogel, 2002). According to Daubechies
et al. (2004) looping over

x← Tλ

(
x + AT (y −Ax)

)
, (3.6)

converges to the solution of Pλ with

Tλ(x) := sgn(x) ·max(0, |x| − |λ|) (3.7)

the soft-thresholding operator. This convergence requires a large enough
number of iterations and a largest singular value of A that is smaller than
1, i.e. ‖A‖ < 1. Each iteration requires two matrix-vector multiplications.

The descent update, x← x+AT
(
y−Ax

)
, minimizes the quadratic part

of Eq. 3.5. This update is subsequently projected onto the `1 ball by the soft
thresholding. Even though this procedure provably converges to the solution
of Pλ, the large scale of the seismic regularization problem precludes running
these iterations to convergence within a reasonable number of matrix-vector
multiplications.

3.4.3 Final solution by cooling

Cooling is a common strategy to solve large to extremely large-scale prob-
lems. During this cooling process, the subproblems Pλ are solved approxi-
mately for λ decreasing. Because of its simplicity, the iterative-thresholding
technique, presented in Eq. 3.6, lends itself particularly well for this ap-
proach since it offers a warm start, typically given by the previous outer
loop, and control over the accuracy. This accuracy is related to the num-
ber of iterations, L, of the inner loop. The higher L the more accurate the
solutions of the subproblems become.

The convergence of the overall problem is improved by using the ap-
proximate solution of the previous subproblem, the warm start, as input to
the next problem for which λ is slightly decreased (Starck et al., 2004; Elad
et al., 2005). Sparsity is imposed from the beginning by setting λ1 close to
the largest curvelet coefficient, i.e. λ1 < ‖ATy‖∞. As the Lagrange multi-
plier is lowered, more coefficients are allowed to enter the solution, leading
to a reduction of the data misfit. A similar approach, derived from POCS
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Choose: L, K
Initialize: k = 1, ‖ATy‖∞ > λ1 > · · · > λK , x = 0
while ‖y −Ax‖2 > ε and k ≤ K do

for l = 1 to L do
x = Tλk

(
x + AT (y −Ax)

)
end for
k = k + 1;

end while
f̃ = STx

Table 3.1: The cooling method with iterative thresholding.

(Bregman, 1965), was used by Candés and Romberg (2004) and Abma and
Kabir (2006). The details of the cooling method are presented in Table. 3.1.

In practice, five inner loops, i.e., L = 5, and 10-50 outer loops, i.e., 10 ≤
K ≤ 50, suffice to solve for x with the series of subproblems Pλ. When the
cooling is appropriately chosen, the solution of the subproblems converges
to the solution of Pε. The final solution to the seismic data regularization
problem, f̃ , is obtained by applying the weighted-inverse curvelet transform
to x̃, i.e., f̃ = ST x̃. The total number of matrix-vector multiplications
required by this method is similar to those required by iterative-re-weighted
least-squares (Gersztenkorn et al., 1986).

3.5 Seismic data recovery with CRSI

The performance of our recovery algorithm is evaluated on synthetic as
well as on real data. The first synthetic example is designed to highlight our
ability to handle conflicting dips. Next, a synthetic seismic line is used to
study the potential uplift for a recovery with 3-D curvelets over a recovery
with 2-D curvelets. Finally, our method is tested on real data and compared
to a regularization method based on plane-wave destruction (Fomel et al.,
2002).

3.5.1 2-D synthetic for a layered earth model

Consider the reflection response of a medium with four plane layers,
modeled with a 50-feet (15.24-m) receiver interval, 4-ms sampling interval
and a source function given by a Ricker wavelet with a central-frequency
of 25-Hz. The dataset contains 256 traces of 500 time samples each. The
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resulting common-midpoint (CMP) gather after incomplete acquisition is
shown in Fig. 3.5(a) together with a close-up in Fig. 3.5(b) of an area with
conflicting dips. The incomplete acquisition was simulated by randomly
removing 60% of the traces. This undersampling corresponds to a sub-
Nyquist average spatial sampling of 125 feet (38.1 m).

Based on the maximum expected dip of the reflection events in the data,
a minimum velocity constraint of 5000 ft/s (1524 m/s) was used. To limit
the number of unknowns, the negative dips were excluded. Figs. 3.5(c) and
3.5(d) show the results for the CMP reconstruction with the CRSI algorithm
for 100 iterations (5 inner- and 20 outer-loops). The starting Lagrange
multiplier was chosen such that 99.5 % of the coefficients do not survive
the first threshold. Since the data is noise free, the Lagrange multiplier is
lowered such that 99% of the coefficients survives the final threshold. This
corresponds to the situation where Pε is solved with a constraint that is
close to an equality constraint, i.e., nearly all energy of the incomplete data
is captured.

Figs. 3.5(e) and 3.5(f) plot the difference between the recovered and
’ground-truth’ complete data. The SNR for the recovery, defined as SNR =
20 log ‖f̃ − f0‖/‖f0‖, is about 29.8 dB, which corroborates the observation
that there is almost no energy in the difference plots. Curvelet reconstruc-
tion clearly benefits from continuity along the wavefronts in the data and
has no issue with conflicting dips thanks to the multidirectional property of
curvelets.

3.5.2 Common-shot/receiver versus shot-receiver
interpolation

Curvelets derive their success in seismology from honoring the multi-
dimensional geometry of wavefronts in seismic data. To illustrate the po-
tential benefit from exploiting this high-dimensional geometry, a comparison
is made between common-shot interpolation with 2-D curvelets and shot-
receiver interpolation with 3-D curvelets. For this purpose, a synthetic seis-
mic line is simulated with a finite-difference code for a subsurface velocity
model with two-dimensional inhomogeneities. This velocity model consists
of a high-velocity layer that represents salt, surrounded by sedimentary lay-
ers and a water bottom that is not completely flat. Using an acoustic finite-
difference modeling algorithm, 256 shots with 256 receivers are simulated
on a fixed receiver spread with receivers located from 780 to 4620 m with
steps of 15 m. The temporal sample interval is 4 ms. The data generated
by these simulations can be organized in a 3-D data volume (shot-receiver
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Synthetic example of curvelet 2-D reconstruction. (a) Simulated
acquired data with about 60 % randomly missing traces and (b) zoom in
a complex area of the CMP gather. (c) Curvelet reconstruction and (d)
same zoom as (c). (e) Difference between reconstruction and complete
data (not shown here) and (f) zoom. Virtually all the initial seismic energy
is recovered without error as illustrated by the difference plots (SNR = 29.8
dB).
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volume) along the shot, xs, receiver, xr and time, t coordinates. The full
data and the incomplete acquisition are depicted in Figs. 3.6(a) and 3.6(b).
The incomplete acquisition is simulated by randomly removing 80 % of the
receiver positions for each shot, which corresponds to an average spatial
sampling interval of 75 m. Again the full data serves as the ground truth.

To make the comparison, we either solve a series of 2-D dimensional
problems on individual shot gathers or we solve the full 3-D interpolation
problem. This procedure is outlined in Fig. 3.7 with results for one selected
shot record summarized in Fig. 3.8. These results show a clear improvement
for the interpolation with the 3-D curvelet transform over the recovery from
individual shot records with 2-D curvelets. For both cases results were
obtained with 250 iterations and without imposing a minimal velocity con-
straint. We omitted this constraint because we want to study the uplift
without interference from this velocity constraint. Contrasting the results
in Figs. 3.8(c) and 3.8(e) confirms the improved recovery by exploiting the
3-D structure, an observation corroborated by the difference plots. The
improvement in continuity is particularly visible for the shallow near zero-
offset traces where the events have a large curvature. The SNR’s for the 2-
and 3-D curvelet-based recovery are 3.9 dB and 9.3 dB, respectively, which
confirms the visual improvement.

As a possible explanation for the observed performance gain for 3-D
curvelets, we argue that 3-D curvelets make up for the increased redun-
dancy (a factor of 24 for 3-D compared to only a factor of 8 in 2-D) by
exploiting continuity of wavefronts along an extra tangential direction. This
extra direction leads to an improved concentration of the energy amongst
relatively fewer curvelet coefficients. The increased dimensionality of 3-D
curvelets also makes intersections with areas where data is present more
likely. Finally, the theory of compressive sampling tells us that the recovery
performance is proportional to the mutual coherence. In 2-D, curvelets are
locally line like while 3-D curvelets are locally plate like. Consequently, the
mutual coherence between a vertical-oriented 3-D curvelet and a trace is
smaller than its 2-D counterpart and this also explains the improved recov-
ery. The result plotted in Fig. 3.9(a) and the difference plot in Fig. 3.9(b)
confirm the expected improvement and the recovered data displays a nice
continuity along the reconstructed wavefronts. Moreover, there is only mi-
nor residual energy in the difference plots for a time slice, common-shot and
common-receiver panels. The positions of these slices are indicated by the
vertical and horizontal in the different panels. The SNR for the 3-D recovery
with the 3-D curvelets is 16.92 dB, which is by all means acceptable.
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(a)

(b)

Figure 3.6: Synthetic data volume. (a) Complete dataset consisting of 256×
256 × 256 samples along the source, xs, receiver, xr and time coordinates.
(b) Simulated acquired data with 80% randomly missing traces.
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Figure 3.7: Illustration of common shot versus shot-receiver interpolation
on the complete data volume.

3.5.3 Comparison between CRSI and plane-wave
destruction on 2-D real data

To conclude the discussion, our method is contrasted with an interpola-
tion method based on plane-wave destruction (Fomel et al., 2002). Fig. 4.1(a)
displays a real shot record that is used for the comparison. This record is
taken from a seismic survey, collected at the offshore Gippsland basin in
Australia, and contains traces with the first 1.7 s of data received at 200
hydrophones. The data is sampled at 4 ms with a receiver spacing of 12.5 m.
The data is decimated by randomly removing 60 % of the traces, which cor-
responds to an average spatial sampling interval of 31.25 m. The results
obtained with CRSI and the plane-wave destruction method are included in
Fig. 3.10. The CRSI result shows a nice recovery with a small residual error.
The interpolation result and difference plot for the plane-wave destruction
method are included in Figs. 3.10(e) and 3.10(f). These results clearly in-
dicate the challenges imposed by real data, with the recovery performing
well for regions with low complexity. However, the plane-wave destruction
method does not perform so well for regions where there is more complex-
ity and in particular in regions with conflicting dips. In those areas our
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Comparison between common-shot (2-D) and shot-receiver (3-D)
CRSI. (a) Shot from the original data volume. (b) Corresponding simulated
incomplete data with 80 % randomly missing traces. (c) 2-D CRSI result.
(d) Difference between (c) and (a). (e) Shot extracted from 3-D CRSI
result. (f) Difference between (e) and (a). 3-D CRSI clearly benefits from
3-D information that greatly improves the reconstruction over 2-D CRSI.
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(a)

(b)

Figure 3.9: Synthetic example of curvelet volume interpolation. (a) 3-D
CRSI result based on the simulated acquired data of Fig. 3.6(b). (d) Dif-
ference between Fig. 3.6(a) and (a). Notice the continuity and the small
difference in the common-shot, common-receiver and time slice. The posi-
tions in the cube are indicated by the numbered lines.
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curvelet-based method maintains its performance while the plane-wave de-
struction creates events with erroneous dips. This problem can be related
to the inability to assign unique slopes to the reflection events. Curvelets
do not experience these difficulties because they can handle multiple dips
at the same location. Again, the improved performance is reflected in the
SNR’s, which is 18.8 dB for 2-D CRSI compared to 5.5 dB for the plane-wave
destruction.

3.6 Discussion

3.6.1 Initial findings

Compressive sampling: We showed that the concepts of compressive
sampling apply to the seismic recovery problem. Indeed, some of the ideas
of compressive sampling are not exactly new to (exploration) seismology,
where Fourier, Radon and even migration-based high-resolution approaches
have been used to solve the seismic regularization problem. However, com-
pressive sampling offers a clear and concise framework that gives insights
into the workings of a successful recovery. These insights offered guidance
while making specific choices to exploit the inherent geometry within the
seismic wavefield and to eliminate aliases and correlations due to trace-by-
trace sampling. Most importantly, compressive sampling tells us that the
largest entries of the sparsity vector are recovered thereby underlining the
importance of sparsifying transform for seismic data.

Sparsifying transform: An important factor contributing to the per-
formance of our method is the ability of curvelets to parsimoniously cap-
ture the essential characteristics of seismic wavefields. This property ex-
plains the rapid decay for the magnitude-sorted coefficients and the relative
artifact-free reconstruction from a relatively small percentage of largest co-
efficients. The moderate coherence between the seismic measurement ba-
sis and curvelets and the inclusion of the minimal-velocity constraint all
contribute to the success of our method. Finally, the results from shot-
receiver interpolation showed significant improvement over interpolation on
shot records. This behavior is consistent with findings in the literature on
Fourier-based recovery (Zwartjes and Sacchi, 2007).

The cooling method: Despite its large scale, the seismic recovery prob-
lem lends itself particularly well for a solution by iterative thresholding with
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Comparison of plane-wave destruction and curvelet-based 2-D
recovery on real data. (a) Shot-record of a seismic survey from offshore
Gippsland basin Australia. Group interval is 12.5 m. (b) Incomplete data
derived from (a) by randomly removing 60 % of the traces (corresponding
to average spatial sampling is 31.25 m). (c) Result obtained with CRSI.
(d) Difference between CRSI result and ground truth. (e) and (f) the
same as (c) and (d) but now obtained with plane-wave destruction. The
improvement of the curvelet-based method over the plane-wave destructions
is corroborated by the SNR’s which are 18.8 dB 5.5 dB, respectively.
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cooling. As the threshold is lowered, additional components enter into the
solution, which leads to an improved data misfit and controlled loss of spar-
sity. We find it quite remarkable that this relatively simple threshold-based
solver performs so well on the solution of `1 problems that can be consid-
ered as large to extremely large. In a future paper, we plan to report on the
properties of this solver compared to other recent developments in solver
technology, emerging within the field of compressive sampling (Tibshirani,
1996; Candès and Romberg, 2005; Donoho et al., 2005; Figueiredo et al.,
2007; Koh et al., 2007; van den Berg and Friedlander, 2007).

3.6.2 Extensions

Focused CRSI: Our recovery method can be improved when additional
information on the wavefield is present. For instance, as part of SRME
estimates for the primaries in the data are available. These estimates can
be used to focus the energy by compounding the modeling matrix of CRSI
with an operator defined by the estimate for the major primaries. As shown
by Herrmann et al. (2007c, 2008), this inclusion leads to a better recovery
that can be attributed to an improved compression due to focusing with the
primaries.

The parallel curvelet transform: Aside from the large number of un-
knowns within the recovery, seismic datasets typically exceed the memory
size of compute nodes in a cluster. The fact that seismic data is acquired in
as many as five dimensions adds to this problem. Unfortunately, the redun-
dancy of the curvelet transform makes it difficult to extend this transform
to higher dimensions. By applying a domain decomposition in three dimen-
sions, some progress has been made (Thomson et al., 2006). The second
problem is still open and may require combination with other transforms.

Jitter sampling: During random sampling there is no precise control over
the size of the gaps. This lack of control may lead to an occasional failed
recovery. Recently, Hennenfent and Herrmann (2007b) have shown that this
problem can be avoided by jitter sampling. During this jitter sampling, the
size of the gaps and the occurrence of coherent aliases are both controlled.
We report on this recent development elsewhere (Hennenfent and Herrmann,
2007c).

CRSI for unstructured data: The presented interpolation method as-
sumed data to be missing on otherwise regular grids. With the non-uniform
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fast discrete curvelet transform developed by the authors (Hennenfent and
Herrmann, 2006), CRSI no longer requires data to be collected on some
underlying grid. This extension makes CRSI applicable in other fields such
as global seismology, where irregular sampling and spherical coordinate sys-
tems prevail.

Fast (reweighted) `1 solvers: The success of compressed sensing de-
pends on the ability to solve large-scale `1 optimization problems. As a
result, there has been a surge in research activity addressing this important
issue (Tibshirani, 1996; Candès and Romberg, 2005; Donoho et al., 2005;
Figueiredo et al., 2007; Koh et al., 2007). One development is particularly
relevant and that is the discussion (see Candès et al., 2007, for further de-
tails) whether to solve the recovery problem according to Eq. 3.1, known as
the synthesis problem or, according to

Pa
ε : f̃ = arg min

f
‖Cf‖1 s.t. ‖RMf − y‖2 ≤ ε, (3.8)

which is known as the analysis problem. Even though there are reports in the
literature (Candès et al., 2007) that state that the analysis form (cf. Eq. 3.8)
leads to improved recovery results, our experience with (extremely) large
problems in CRSI has shown better recovery with the synthesis formulation
(cf. Eq. 3.1). Because current hardware affords only O(100) matrix-vector
multiplies, the future challenge will be the inclusion of more sophisticated
`1-norm solvers and the investigation of potential benefits from a possible
reweighting and a formulation in the analysis form. The latter corresponds
to an approximate solution for the `0 problem for which encouraging results
have been reported (Candès et al., 2007). In a future paper, we plan to
report on these issues.

3.7 Conclusions

A new non-parametric seismic data regularization technique was pro-
posed that combines existing ideas from sparsity-promoting inversion with
parsimonious transforms that expand seismic data with respect to elements
that are multiscale and multidirectional. The compression attained by these
elements, which form the redundant curvelet frame, in conjunction with an
acquisition that is not too far from random, led to a compressive sampling
scheme that recovers seismic wavefields from data with large percentages of
traces missing.

55



Chapter 3. Non-parametric seismic data recovery with curvelet frames

Treating the seismic data regularization problem in terms of a compres-
sive sampling problem enabled us to design a scheme that favored recovery.
The success of this scheme can be attributed to three main factors, namely
the compression of seismic wavefields by curvelets, the control of aliases by
(close to) random sampling and the solution of (extremely) large-scale `1

problems by a cooled iterative thresholding. This combination allowed us to
reconstruct seismic wavefields from data with up to 80% of its traces miss-
ing at a cost comparable to other sparsifying transform-based methods. Our
method was successfully applied to synthetic and real data. A significant
improvement was witnessed for shot-receiver interpolation during which the
3-D geometry of seismic wavefields is fully exploited by 3-D curvelets. Our
results also showed a significant improvement on real data with conflicting
dips amongst the wave arrivals.

Unfortunately, compressive sampling does not offer explicit sampling cri-
teria for a curvelet-based recovery of seismic wavefields. However, this theory
has given us insights that justified the design of our recovery method, where
the seismic data regularization problem is solved by sparsity promotion in
the curvelet domain.
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Chapter 4

Wavefield reconstruction via
jittered undersampling

4.1 Introduction

While the argument has been made that there is no real theoretical
requirement for regular spatial sampling of seismic data (Bednar, 1996),
most of the commonly-used multi-trace processing algorithms, e.g., Surface-
Related Multiple Elimination (SRME - Verschuur et al., 1992) and wave-
equation migration (WEM - Claerbout, 1971), need a dense and regular
coverage of the survey area. Field datasets, however, are typically irregularly
and/or coarsely sampled along one or more spatial coordinates and need to
be interpolated before being processed.

For regularly-undersampled data along one or more spatial coordinates,
i.e., data spatially sampled below Nyquist rate, there exists a wide variety
of wavefield reconstruction techniques. Filter-based methods interpolate by
convolution with a filter designed such that the error is white noise. The
most common of these filters are the prediction error filters (PEF’s) that can
handle aliased events (Spitz, 1991). Wavefield-operator-based methods rep-
resent another type of interpolation approaches that explicitly include wave
propagation (Canning and Gardner, 1996; Biondi et al., 1998; Stolt, 2002).
Finally, transform-based methods also provide efficient algorithms for seis-
mic data regularization (Sacchi et al., 1998; Trad et al., 2003; Zwartjes and
Sacchi, 2007; Herrmann and Hennenfent, 2007). However, for irregularly-
sampled data, e.g., binned data with some of the bins that are empty, or
data that are continuous random undersampled, the performance of the
aforementioned interpolation methods may deteriorate.

The objective of this paper is to demonstrate that irregular/random
undersampling is not necessarily a drawback for all interpolation methods.

A version of this chapter has been accepted for publication. G. Hennenfent and
F.J. Herrmann. Simply denoise: wavefield reconstruction via jittered undersampling.
Geophysics, 73(3), May-June 2008.
c© 2008 Society of Exploration Geophysicists.
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Particular transform-based methods and many other advanced processing
algorithms can, indeed, cope with this type of undersampling, as was already
observed by other authors (Zhou and Schuster, 1995; Sun et al., 1997; Trad
and Ulrych, 1999; Xu et al., 2005; Abma and Kabir, 2006; Zwartjes and
Sacchi, 2007). We explain why random undersampling is an advantage for
these particular transform-based interpolation methods and how it can be
used to our benefit when designing coarse sampling schemes. To keep the
discussion as clear and concise as possible, we focus on regular sampling with
randomly missing data points, i.e., discrete random (under)sampling. Our
conclusions extend to continuous random undersampling though. Unless
otherwise specified, the term random is used in the remaining of the text in
the discrete sense.

4.1.1 Motivation

Recent results in Information Theory and Approximation Theory estab-
lished that a signal can be recovered exactly from (severely) undersampled
data points provided that 1) the signal exhibits sparsity in a known trans-
form domain, 2) the artifacts introduced by undersampling look like inco-
herent random noise in the sparsifying domain, and 3) a data-consistent
sparsity-promoting procedure is used for the recovery. It is possible to build
an intuitive understanding of these theoretical results, termed Compressive
Sampling (CS - Candès et al., 2006; Donoho, 2006; Candès and Romberg,
2006), by considering a simple example.

Figure 4.1(a) shows the superposition of three cosine functions. This
signal is sparse in the Fourier domain (condition 1) and is regularly sampled
above Nyquist rate. Its amplitude spectrum is plotted in Figure 4.1(b).
When the signal is randomly three-fold undersampled according to a discrete
uniform distribution as in Figure 4.1(c), its amplitude spectrum, plotted in
Figure 4.1(d), is corrupted by artifacts (condition 2) that look like additive
incoherent random noise. In this case, the significant coefficients of the to-
be-recovered signal remain above the “noise” level. These coefficients can be
detected with a denoising technique that promotes sparsity, e.g., nonlinear
thresholding (dashed line in Figures 4.1(d) and 4.1(f)), and exactly recovered
by an amplitude-matching procedure to fit the acquired data (condition 3).
This experiment illustrates a favorable recovery from severely undersampled
data points of a signal that is sparse in the Fourier domain.

When the original signal is regularly three-fold undersampled (Figure
4.1(e)), the undersampling artifacts coherently interfere, giving rise to well-
known aliases that look like the original signal components (Figure 4.1(f)).
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In this case, the above sparsity-promoting recovery scheme may fail because
the to-be-recovered signal components and the aliases are both sparse in
the Fourier domain. This example suggests that random undersampling ac-
cording to a discrete uniform distribution is more favorable than regular
undersampling for reconstruction algorithms that promote sparsity in the
Fourier domain. In general terms, the above observations hint at under-
sampling schemes that lead to more favorable recovery conditions. Within
the field of CS, significant advances have been made regarding the main
ingredients that go into the design of an undersampling scheme that favors
sparsity-promoting recovery. In this paper, we draw on these results to
design a new coarse spatial sampling scheme for seismic data.

4.1.2 Main contributions

We propose and analyze a coarse sampling scheme, termed jittered un-
dersampling (Leneman, 1966; Dippe and Wold, 1992), which creates, under
specific conditions, a favorable recovery situation for seismic wavefield recon-
struction methods that impose sparsity in Fourier or Fourier-related domains
(see e.g. Sacchi et al., 1998; Xu et al., 2005; Zwartjes and Sacchi, 2007; Her-
rmann and Hennenfent, 2007). Jittered undersampling differentiates itself
from random undersampling according to a discrete uniform distribution,
which also creates favorable recovery conditions (Xu et al., 2005; Abma and
Kabir, 2006; Zwartjes and Sacchi, 2007), by controlling the maximum gap
in the acquired data. This control makes jittered undersampling very well
suited to methods that rely on transforms with localized elements, e.g., win-
dowed Fourier or curvelet transform (Candès et al., 2005a, and references
therein). These methods are known to be vulnerable to gaps in the data
that are larger than the spatio-temporal extent of the transform elements
(Trad et al., 2005).

4.1.3 Outline

After a brief overview of the CS framework and the criteria for a favorable
recovery, the effects of different undersampling schemes are studied for sig-
nals that are sparse in the Fourier domain. Next, we discuss the advantages
of random undersampling and design our jittered undersampling strategy
that offers increased control on the acquisition grid. The performance of
this new scheme for curvelet-based recovery is illustrated on synthetic and
real data.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Different (under)sampling schemes and their imprint in the
Fourier domain for a signal that is the superposition of three cosine functions.
Signal (a) regularly sampled above Nyquist rate, (c) randomly three-fold un-
dersampled according to a discrete uniform distribution, and (e) regularly
three-fold undersampled. The respective amplitude spectra are plotted in
(b), (d) and (f). Unlike aliases, the undersampling artifacts due to random
undersampling can easily be removed using a standard denoising technique
promoting sparsity, e.g., nonlinear thresholding (dashed line), effectively re-
covering the original signal.
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4.2 Theory

4.2.1 Basics of compressive sampling

An overview of the CS framework and criteria for favorable recovery con-
ditions is given. As mentioned before, CS relies on a sparsifying transform
for the to-be-recovered signal and uses this sparsity prior to compensate
for the undersampling during the recovery process. For the reconstruction
of wavefields in the Fourier (Sacchi et al., 1998; Xu et al., 2005; Zwart-
jes and Sacchi, 2007), Radon (Trad et al., 2003), and curvelet (Hennenfent
and Herrmann, 2005; Herrmann and Hennenfent, 2007) domains, sparsity
promotion is a well-established technique documented in the geophysical lit-
erature. The main contribution of CS is the new light shed on the favorable
recovery conditions.

Recovery by sparsity-promoting inversion

Consider the following linear forward model for the recovery problem

y = Rf0, (4.1)

where y ∈ Rn represents the acquired data, f0 ∈ RN with N � n the una-
liased signal to be recovered, i.e., the model, and R ∈ Rn×N the restriction
operator that collects the acquired samples from the model. Assume that
f0 has a sparse representation x0 ∈ CN in some known transform domain S,
equation 4.1 can now be reformulated as

y = Ax0 with A def= RSH , (4.2)

where the symbol H represents the conjugate transpose. As a result, the
sparsity of x0 can be used to overcome the singular nature of A when esti-
mating f0 from y. After sparsity-promoting inversion, the recovered signal
is given by f̃ = SH x̃ with

x̃ = arg min
x
||x||1 s.t. y = Ax. (4.3)

In these expressions, the symbol ˜ represents estimated quantities and the
`1 norm is defined as ‖x‖1

def=
∑N

i=1 |x[i]|, where x[i] is the ith entry of the
vector x.

Minimizing the `1 norm in equation 4.3 promotes sparsity in x and
the equality constraint ensures that the solution honors the acquired data.
Among all possible solutions of the (severely) underdetermined system of
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linear equations (n� N) in equation 4.2, the optimization problem in equa-
tion 4.3 finds a sparse or, under certain conditions, the sparsest (Donoho
and Huo, 2001) possible solution that explains the data.

Favorable recovery conditions

Following Verdu (1998) and Donoho et al. (2006), we define the matrix
L def= AHA−αI to study the undersampling artifacts z def= Lx0. The matrix
I is the identity matrix and the parameter α is a scaling factor such that
diag(L) = 0. For more general problems and in particular in the field of
digital communications, these undersampling artifacts z are referred to as
Multiple-Access Interference (MAI).

According to the CS theory (Candès et al., 2006; Donoho, 2006), the
solution x̃ in equation 4.3 and x0 coincide when two conditions are met,
namely 1) x0 is sufficiently sparse, i.e., x0 has few nonzero entries, and 2)
the undersampling artifacts are incoherent, i.e., z does not contain coherent
energy. The first condition of sparsity requires that the energy of f0 is well
concentrated in the sparsifying domain. The second condition of incoher-
ent random undersampling artifacts involves the study of the sparsifying
transform S in conjunction with the restriction operator R. Intuitively, it
requires that the artifacts z introduced by undersampling the original signal
f0 are not sparse in the S domain. When this condition on z is not met,
sparsity alone is no longer an effective prior to solve the recovery problem.
Albeit qualitative, the second condition provides a fundamental insight in
choosing undersampling schemes that favor recovery by sparsity-promoting
inversion.

4.2.2 Fourier-domain undersampling artifacts

Undersampling artifacts in the Fourier domain are studied for two rea-
sons. Firstly, several interpolation methods are based on the Fourier trans-
form (Sacchi et al., 1998; Xu et al., 2005; Zwartjes and Sacchi, 2007). Sec-
ondly, the curvelet transform, a dyadic-parabolic partition of the Fourier
domain, forms the basis of our recently-introduced recovery scheme (Her-
rmann and Hennenfent, 2007). Curvelets are in many situations to be pre-
ferred over Fourier because of their ability to sparsely represent complex
seismic data. For a detailed discussion on this topic, we refer to Candès
et al. (2005a) and Hennenfent and Herrmann (2006).

In the coming discussion, the sparsifying transform is defined as the
Fourier transform, i.e., S def= F. For this definition, the vector generating
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the Hermitian Toeplitz and circulant matrix AHA is the discrete Fourier
transform of the (under)sampling pattern. This pattern has ones where
samples are taken, zeros otherwise. Besides, the undersampling artifacts
generated by the convolution operator L are known as spectral leakage (Xu
et al., 2005).

Regular (under)sampling

When R keeps all the data points of f0, i.e., R = I, the matrix AHA
is the identity matrix, as depicted in Figure 4.2(a), L = 0, as plotted in
Figure 4.2(d), and there is no spectral leakage. This property holds for any
orthonormal sparsifying transform.

When R corresponds to a regular undersampling scheme, the matrix
AHA is no longer diagonal. It now also has a number of nonzero off-
diagonals as depicted in Figure 4.2(b). These off-diagonals create aliases,
i.e., undersampling artifacts that are the superposition of circular-shifted
versions of the original spectrum. Since x0 is assumed to be sparse, these
aliases are sparse as well. Therefore, they are also likely to enter in the
solution x̃ during sparsity-promoting inversion. Because the `1 norm can
not efficiently discriminate the original spectrum from its aliases, regular
undersampling is the most challenging case for recovery.

In the seismic community, difficulties with regularly undersampled data
are acknowledged when reconstructing by promoting sparsity in the Fourier
domain. For example, Xu et al. (2005) write that the anti-leakage Fourier
transform for seismic data regularization “may fail to work when the input
data has severe aliasing”.

Random undersampling according to a discrete uniform
distribution

When R corresponds to a random undersampling according to a discrete
uniform distribution, the situation is completely different. The matrix AHA
is dense (Figure 4.2(c)) and the convolution matrix L is a random matrix
(Figure 4.2(f)). Consequently, we have

AHy = AHAx0 ≈ αx0 + n, (4.4)

where the spectral leakage is approximated by additive white Gaussian noise
n. For infinitely large systems (Donoho et al., 2006), this approximation be-
comes an equality. Because of this property, the recovery problem turns
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into a much simpler denoising problem, followed by a correction for the am-
plitudes. Remember that the acquired data y are noise-free (cf. equation
4.2) and that the noise n in equation 4.4 only comes from the underdeter-
minedness of the system. In other words, random undersampling according
to a discrete uniform distribution spreads the energy of the spectral leakage
across the Fourier domain turning the noise-free underdetermined problem
(cf. equation 4.2) into a noisy well-determined problem (cf. equation 4.4)
whose solution can be recovered by solving equation 4.3. This observation
was first reported by Donoho et al. (2006).

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Convolution matrix (in amplitude) for (a) regular sampling
above Nyquist rate, (b) regular five-fold undersampling, and (c) random
five-fold undersampling according to a discrete uniform distribution. The
respective convolution kernels (in amplitude) that generate spectral leak-
age are plotted in (d), (e) and (f). Despite the same undersampling factor,
regular and random undersamplings produce very different spectral leakage.

The practical requirement of maximum gap control

As shown in the previous section, random undersampling according to a
discrete uniform distribution creates favorable recovery conditions for a re-
construction procedure that promotes sparsity in the Fourier domain. How-
ever, a global transform such as the Fourier transform does not typically
permit a sparse representation for complex seismic wavefields (Hennenfent
and Herrmann, 2006). It requires a more local transform, e.g., windowed
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Fourier (Zwartjes and Sacchi, 2007) or curvelet (Herrmann and Hennenfent,
2007) transform. In this case, problems arise with gaps in the data that
are larger than the spatio-temporal extent of the transform elements (Trad
et al., 2005). Consequently, undersampling schemes with no control on the
size of the maximum gap, e.g., random undersampling according to a dis-
crete uniform distribution, become less attractive. The term gap refers here
to the interval between two adjacent acquired traces minus the interval as-
sociated with the fine interpolation grid, such that adequate sampling has
gaps of zero. We present an undersampling scheme that has, under some
specific conditions, an anti-aliasing effect, yet offering control on the size of
the maximum gap.

4.2.3 Uniform jittered undersampling on a grid

First, the undersampling grid is defined for a discrete uniform jitter.
Next, the spectral leakage caused by this scheme is studied.

Definition of the jittered grid

The basic idea of jittered undersampling is to regularly decimate the
interpolation grid and subsequently perturb the coarse-grid sample points
on the fine grid. As for random undersampling according to a discrete
uniform distribution, where each location is equally likely to be sampled,
a discrete uniform distribution for the perturbation around the coarse-grid
points is considered (see Appendix D and Leneman (1966) for more details).

To keep the derivation of our jittered undersampling scheme succinct,
the undersampling factor, γ, is taken to be odd, i.e., γ = 1, 3, 5, . . . We
also assume that the size N of the interpolation grid is a multiple of γ so
that the number of acquired data points n = N/γ is an integer. For these
choices, the jittered-sampled data points are given by

y[i] = f0[j] for i = 1, . . . , n and j =
1− γ

2
+ γ · i︸ ︷︷ ︸

deterministic

+ εi︸︷︷︸
random

, (4.5)

where the discrete random variables εi are integers independently and iden-
tically distributed (iid) according to a uniform distribution on the interval
between −b(ξ − 1)/2c and b(ξ − 1)/2c. The jitter parameter 0 ≤ ξ ≤ γ
relates to the size of the perturbation around the coarse regular grid. The
floor function of a real number q, denoted bqc, is a function that returns the
highest integer less than or equal to q. The above sampling can be adapted
for the case γ is even.
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Regular
undersampling

(γ = 5)

Discrete random 
undersampling

(γ = 5)

Jittered 

undersampling

(! = 5, " = 3)

Optimally-jittered 
undersampling
(γ = 5, ξ = 5)

ξ

ξ

Figure 4.3: Schematic comparison between different undersampling schemes.
The circles define the fine grid on which the original signal is alias-free. The
solid circles represent the actual sampling points for the different undersam-
pling schemes. The jitter parameter ξ relates to how far the actual jittered
sampling point can be from the regular coarse grid, effectively controlling
the size of the maximum acquisition gap.
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In Figure 4.3, schematic illustrations are included for samplings with in-
creasing randomness. The fine grid of open circles denotes the interpolation
grid on which the model f0 is defined. The solid circles correspond to the
coarse sampling locations. These illustrations show that for jittered under-
sampling, the maximum gap size can not exceed (γ − 1) + 2 · b(ξ − 1)/2c
data points. For regular undersampling, all the gaps are of size γ − 1 and
for random undersampling according to a discrete uniform distribution, the
maximum gap size is N − n. Remember that the number of samples is the
same for each of these undersampling schemes.

As mentioned earlier, recovery with localized transforms depends on both
the maximum gap size and a sufficient sampling randomness to break the
coherent aliases. In the next section, we show how the value of the jitter
parameter controls these two aspects in our undersampling scheme.

Fourier-domain artifacts of the jittered grid

When R describes a jittered undersampling scheme according to a dis-
crete uniform distribution, the stochastic expectation E{·} of the first col-
umn a of the circulant matrix AHA is given by

E {a[k]} ≈


n · sinc

(
ξ
N (k − 1)

)
, if k = 1 + l · n for l = 0, . . . , γ−1

2

n · sinc
(

ξ
N (k − 1−N)

)
, if k = 1 + l · n for l = γ+1

2 , . . . , γ − 1
0 otherwise,

(4.6)
where sinc(·) is the normalized sinc function defined as sinc(x) def= sin(πx)/πx.

(a) (b) (c)

Figure 4.4: Amplitude spectrum of (a) a five-fold (γ = 5) regular under-
sampling vector, (b) a three-sample wide uniform distribution (ξ = 3), and
(c) the resulting jittered undersampling vector. The first half of the vectors
contains the positive frequencies starting with zero, the second half contains
the negative frequencies in decreasing order.
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The above expression corresponds to an elementwise multiplication of
the periodic Fourier spectrum of the discrete regular sampling vector with
a sinc function. This sinc function follows from the Fourier transform of the
probability density function for the perturbation with respect to a point of
the regularly decimated grid.

In Figure 4.4 the amplitudes for this Fourier-domain multiplication are
plotted for jittered undersampling with γ = 5 and ξ = 3, i.e., on average
four-out-of-five samples are missing for a jitter that includes the decimated
grid point, one sample on the right and one sample on the left (cf. Figure
4.3, second row).

Equation 4.6 is a special case of the result for jittered undersampling
according to an arbitrary distribution introduced by Leneman (1966) and
further detailed in Appendix D. Because these results were originally derived
for the continuous case, the above expression is approximate. In practice,
however, this formula proves to be accurate, an observation corroborated by
numerical results presented below. Consider the following cases for a fixed
undersampling factor γ.

Regular undersampling (ξ = 0): As observed from the first row of
Figure 4.3, there is no jitter in this case and equation 4.6 becomes

a[k] =
{

n, for k = 1 + l · n with l = 0, · · · , γ − 1
0, otherwise.

(4.7)

The undersampling artifacts z consist of aliased energy.

Optimally-jittered undersampling (ξ = γ): Now the sampling points
are perturbed within contiguous windows, as depicted in the third row of
Figure 4.3, and equation 4.6 reduces to

E {a[k]} ≈
{

n, for k = 1
0, otherwise.

(4.8)

In this special case, the cause of the aliases is removed by the zeros of the sinc
function. As with random undersampling according to a discrete uniform
distribution, the off-diagonals of the matrix AHA (cf. Figure 4.5(b) and
4.2(c)) are random, turning aliases into noise. Again, the kernel of L does
not contain coherent energy, as observed in Figure 4.5(d), for a five-fold
undersampling (γ = 5) and a jitter parameter of ξ = 5. In that sense, this
specific relation between the jitter parameter and the undersampling factor
is optimal because it creates the most favorable conditions for recovery with
a localized transform.
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Jittered undersampling (0 < ξ < γ): In this regime, both coherent
aliases and incoherent random undersampling noise are present. Depending
on the choice for the jitter parameter, the energy either localizes or randomly
spreads across the spectrum. Again, the reduction of the aliases is related to
the locations of the zero crossings of the sinc function that move as a function
of ξ. As ξ increases, the zeros move closer to the aliases. As expected, the
matrix AHA, plotted in Figure 4.5(a), still contains the imprint of coherent
off-diagonals, resulting in a kernel of L, included in Figure 4.5(c), that is
a superposition of coherent aliases and incoherent random noise. Although
this regime reduces the aliases, coherent energy remains in the undersam-
pling artifacts. This residue creates a situation that is less favorable for
recovery. Depending on the relative strength of the aliases compared to the
magnitude n of the diagonal of AHA, recovery becomes increasingly more
difficult, an observation that can be established experimentally.

In the next section, a series of controlled experiments is conducted to
compare the recovery from regularly, randomly according to a discrete uni-
form distribution and optimally-jittered undersamplings.

4.2.4 Controlled recovery experiments for different
sampling schemes

With the favorable sampling schemes identified, it remains to be shown
that these samplings lead to an improved recovery compared to the unfa-
vorable regular undersampling. In particular, we want to experimentally
confirm that jittered undersampling behaves similarly as random undersam-
pling according to a discrete uniform distribution.

For this purpose, we define the sparsifying transform S as the Fourier
transform F, i.e., S def= F, and generate a vector x0 with k nonzero en-
tries and of length N = 600. The nonzero entries of x0 are distributed at
random with random signs and amplitudes. The to-be-recovered signal f0
is given by f0 = SHx0 and the observations y are obtained by undersam-
pling f0 regularly, randomly according to a discrete uniform distribution, or
optimally-jittered, i.e., ξ = γ. Finally, the estimated spectrum x̃ of f0 is
obtained by solving equation 4.3 with the Spectral Projected Gradient for
`1 solver (SPGL1 - van den Berg and Friedlander, 2007). Keep in mind that
the number k of nonzero entries of x0 is not known a priori. Each experi-
ment is repeated 100 times for the different undersampling schemes and for
varying undersampling factors γ, ranging from 2 to 6. The reconstruction
error is the number of entries at which the estimated representation x̃ and
the true representation x0 of f0 in the Fourier domain disagree by more

74



Chapter 4. Wavefield reconstruction via jittered undersampling

(a) (b)

(c) (d)

Figure 4.5: Jittered undersampling according to a discrete uniform distri-
bution. (a) Suboptimal and (b) optimal jittered five-fold undersampling
convolution matrices (in amplitude). The respective convolution kernels (in
amplitude) that generate spectral leakage are plotted in (c) and (d). If the
regular undersampling points are not shuffled enough, only part of the un-
dersampling artifacts energy is spread, the rest of the energy remaining in
weighted aliases. When there is just enough shuffling, all the undersam-
pling artifacts energy is spread making jittered undersampling like random
undersampling, yet controlling the size of the largest gap between two data
points.
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than 10−4. This error accounts for both false positives and false negatives.
The averaged results for the different experiments are summarized in Fig-
ures 4.6(a), 4.6(b), and 4.6(c), which correspond to regular, random, and
optimally-jittered undersampling, respectively. The horizontal axes in these
plots represent the relative underdeterminedness of the system, i.e., the ra-
tio of the number k of nonzero entries in x0 to the number n of acquired
data points. The vertical axes represent the average reconstruction error.
The different curves represents the different undersampling factors. In each
plot, the curves from top to bottom correspond to γ = 2, . . . , 6.

Figure 4.6(a) shows that, regardless of the undersampling factor, there
is no range of relative underdeterminedness for which x0 can accurately be
recovered from a regular undersampling of f0. Sparsity is not enough to
discriminate the signal components from the spectral leakage. The situa-
tion is completely different in Figures 4.6(b) and 4.6(c) for the random and
optimally-jittered sampling. In this case, one can observed that exact re-
covery is possible for 0 < k/n . 1/4. The main purpose of these plots is
to qualitatively show the transition from successful to failed recovery. The
quantitative interpretation for these diagrams to the right of the transition
is less well understood but also observed in phase diagrams published in the
literature (Donoho et al., 2006). A possible explanation for the observed
behavior of the error lies in the nonlinear behavior of the solvers and on an
error not measured in the `2 sense.

The key observations from these experiments are threefold. First, it is
possible, under specific conditions, to exactly recover by sparsity-promoting
inversion the original spectrum x0 of f0 from (very) few data points. Sec-
ondly, optimally-jittered undersampling behaves like random undersampling
according to a discrete uniform distribution. For practical purposes, the
former can thus be seen as equivalent to the latter. Thirdly, not all un-
dersampling schemes for a given undersampling factor are comparable from
a CS perspective. Regular undersampling is the most challenging. Ran-
dom and optimally-jittered undersamplings according to a discrete uniform
distribution are among the most favorable. In particular, if the signal is
sufficiently sparse, these schemes lead to a reconstruction as good as dense
regular sampling. Translated to the reconstruction of seismic wavefields,
these results hint at a new nonlinear sampling theory based on a sparsify-
ing transform for complex seismic data, e.g., the curvelet transform, and a
coarse random sampling scheme that creates favorable recovery conditions
for that transform, e.g., optimally-jittered undersampling.
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(a)

(b)

(c)

Figure 4.6: Averaged recovery errors for a k-sparse Fourier vector recon-
structed from n time samples taken (a) regularly, (b) randomly, and (c)
optimally jittered from the model. In each plot, the curves from top to
bottom correspond to an undersampling factor ranging from two to six, i.e.,
γ = 2, . . . , 6.
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4.3 Application to seismic data

Following recent work on Curvelet Reconstruction with Sparsity-promoting
Inversion (CRSI - Herrmann and Hennenfent, 2007), seismic wavefields are
reconstructed via f̃ = CH x̃ where

x̃ = arg min
x
||x||1 s.t. y = RCHx. (4.9)

In this formulation, C is the discrete wrapping-based curvelet transform
(Candès et al., 2005a). Similarly to any other data-independent transforms,
curvelets do not provide a sparse representation of seismic data in the strict
sense. Instead, the curvelet transform provides a compressible, arguably
the most compressible (Hennenfent and Herrmann, 2006), representation.
Compressibility means that most of the wavefield energy is captured by a
few significant coefficients in the sparsifying domain. Since CS guarantees,
for sparse-enough signal representations, the recovery of a fixed number of
largest coefficients for a given undersampling factor (Candès et al., 2005b),
a more compressible representation yields a better reconstruction, which
explains the success of CRSI.

4.3.1 Synthetic data example

Figure 4.7(a) shows a synthetic dataset sampled above Nyquist rate along
both the time and receiver axes. The corresponding amplitude spectrum is
plotted in Figure 4.7(b). These two figures serve as references. Comparisons
are made between the interpolation results of three-fold spatially under-
sampled data, collected either regularly or optimally-jittered. As expected,
the amplitude spectrum (Figure 4.8(c)) of the regularly undersampled data
(Figure 4.8(a)) is severely aliased. Unfortunately, these coherent f -k under-
sampling artifacts remain coherent in the curvelet domain and hence create
a challenge for the reconstruction. To the contrary, there is no observable
coherent spectral leakage in the amplitude spectrum (Figure 4.8(d)) for the
optimally-jittered undersampled data (Figure 4.8(b)). Instead, the ampli-
tude spectrum looks noisy in the temporal frequency band of the seismic
signal.

Figure 4.9 shows the CRSI results for these two experiments. Figures
4.9(a) and 4.9(b) depict the reconstructions given data regularly (Figure
4.8(a)) and optimally-jittered (Figure 4.8(b)) sampled, respectively. Figures
4.9(c) and 4.9(d) represent the corresponding amplitude spectra. Unlike Fig-
ure 4.9(d) that is only slightly corrupted by incoherent errors, Figure 4.9(c)
still contains substantial energy from the coherent undersampling artifacts.
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This observation is corroborated by the respective signal-to-reconstruction-
error-ratios of 6.91 dB and 10.42 dB. The signal-to-reconstruction-error-
ratio, defined as 20 · log10(‖f0‖2/‖f0 − f̃‖2), accounts for the energy of the
error but not its type. It is important to keep in mind that the difference
in reconstruction quality is solely due to the difference in spatial sampling,
the undersampling factor and the recovery procedure were kept the same.
This behavior leads us to conclude that, for a given undersampling factor,
spatial optimally-jittered undersampling is (much) more favorable for CRSI
than regular undersampling.

In addition, Figure 4.10 shows a recovery experiment given randomly
three-fold spatially undersampled data. Figure 4.10(a) depicts the simu-
lated acquired data and Figure 4.10(b) the CRSI result. The signal-to-
reconstruction-error-ratio is 9.72 dB. Figures 4.10(c) and 4.10(d) contain
the corresponding amplitude spectra. As can be observed by comparing
Figure 4.8(d) with Figure 4.10(c), both random and optimally-jittered sam-
plings create favorable recovery conditions. However, the larger size of the
acquisition gaps in randomly undersampled data deteriorates the overall
performance of CRSI. This result corroborates the importance of control-
ling the size of the maximum gap in optimally-jittered undersampling for
reconstruction with curvelets.

4.3.2 Field data example

The far-offsets of a regularly-sampled shot taken from a real marine
dataset are considered. Our model consists of 255 traces separated by 6.25
m. The simulated data are obtained by three-fold undersampling this model
either regularly (Figure 4.11(a)) or optimally-jittered (Figures 4.11(d)). In
both cases, the nominal spatial sampling is 18.75 m. Again, the CRSI algo-
rithm is applied (cf. equation 4.9). No assumption is made regarding the
maximum dip in the data. Figures 4.11(b) and 4.11(e) show the CRSI results
for the data plotted in Figures 4.11(a) and 4.11(d), respectively. Figures
4.11(c) and 4.11(f) show the differences scaled by a factor of four between
the model and the CRSI results. The signal-to-reconstruction-errors are re-
spectively 12.98 dB and 15.22 dB, which corroborates our observations from
the synthetic data example. The performance of wavefield reconstruction
by CRSI improves when the input data is optimally-jittered sampled.
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(a)

(b)

Figure 4.7: Reference model. (a) Synthetic data sampled above Nyquist
rate and (b) corresponding amplitude spectrum.
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(a) (b)

(c) (d)

Figure 4.8: Synthetic data of Figure 4.7 (a) regularly and (b) optimally-
jittered three-fold undersampled along the spatial axis. Their respective
amplitude spectra are plotted in (c) and (d). For the same amount of ac-
quired data, optimally-jittered undersampling turns the harmful coherent
undersampling artifacts of regular undersampling, i.e., aliases, into incoher-
ent random noise.
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(a) (b)

(c) (d)

Figure 4.9: Curvelet reconstructions with sparsity-promoting inversion. Re-
sults given (a) data of Figure 4.8(a) and (b) data of Figure 4.8(b). The
respective signal-to-reconstruction-error-ratios are 6.91 dB and 10.42 dB.
For the same amount of data collected in the field, the reconstruction from
optimally-jittered undersampled data is much more accurate than the re-
construction from regularly undersampled data.
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(a) (b)

(c) (d)

Figure 4.10: Randomly undersampled data and curvelet reconstruction with
sparsity-promoting inversion. (a) Synthetic data randomly three-fold under-
sampled along the spatial axis and (b) curvelet reconstruction with sparsity-
promoting inversion. Their respective amplitude spectra are plotted in (c)
and (d). The signal-to-reconstruction-error-ratio is 9.72 dB. Although ran-
dom and optimally-jittered undersamplings create similar favorable recovery
conditions (compare (c) with Figure 4.8(d)), the larger size of the acquisi-
tion gaps in the randomly undersampled data deteriorates the overall per-
formance of CRSI.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Field data example. The original data (not shown) is either (a)
regularly or (d) optimally-jittered three-fold undersampled along the spa-
tial coordinate. (b) and (e) are the curvelet reconstructions with sparsity-
promoting inversion given data depicted in (a) and (d), respectively. (c)
and (f) are differences scaled by a factor of four between the original data
and the CRSI results (b) and (e), respectively. The corresponding signal-to-
reconstruction-error-ratios are 12.98 dB and 15.22 dB, which corroborates
that optimally-jittered undersampling is more favorable than regular under-
sampling.
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4.4 Discussion

4.4.1 Undersampled data contaminated by noise

Although we focused on a noise-free (severely) underdetermined system
of linear equations, the CS theory, and hence our work, both extend to
the recovery from undersampled data contaminated by noise (Candès et al.,
2005b). In this case, the noise e that corrupts the data adds to the un-
dersampling artifacts in the sparsifying domain. The quantity that relates
to the recoverability is now given by AH (Ax0 + e) − αx0 as opposed to
AHAx0−αx0 in the noise-free case. Consequently, the undersampling arti-
facts z and the imprint of the contaminating noise in the sparsifying domain,
i.e., AHe, have to be studied jointly.

4.4.2 From discrete to continuous spatial undersampling

So far, undersampling schemes based on an underlying fine interpolation
grid were considered. This situation typically occurs when binning contin-
uous randomly-sampled seismic data into small bins that define the fine
grid used for interpolation. Despite the error introduced in the data, bin-
ning presents some computational advantages since it allows for the use of
fast implementations of Fourier or Fourier-related transforms, e.g., FFTW
(Frigo and Johnson, 1998) or FDCT (Candès et al., 2005a). However, bin-
ning can lead at the same time to an unfavorable undersampling scheme,
e.g., regular or poorly-jittered. In this case, one should consider working
on the original data with, e.g., an extension to the curvelet transform for
irregular grids (Hennenfent and Herrmann, 2006). Despite the extra com-
putational cost for the interpolation, continuous random sampling typically
leads to improved interpolation results because it does not create coherent
undersampling artifacts (Xu et al., 2005).

4.4.3 Sparsity-promoting solvers and jittered
undersampling

The applicability of CS to the large-scale problems of exploration geo-
physics heavily relies on the implementation of an efficient `1 solver. De-
spite several recent attempts to overcome this bottleneck (Tibshirani, 1996;
Figueiredo et al., 2007; van den Berg and Friedlander, 2007), a wide range
of large-scale applications still uses approximate `1 solvers such as iterated
re-weighted least-squares (IRLS - Gersztenkorn et al., 1986), stage-wise or-
thogonal matching pursuit (StOMP - Donoho et al., 2006), and iterative
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soft-thresholding with cooling (Hennenfent and Herrmann, 2005; Herrmann
and Hennenfent, 2007) derived from Daubechies et al. (2004). The success
and/or efficiency of these approximate solvers depends upon the implicit-or-
explicit assumption that the MAI is incoherent. Because optimally-jittered
undersampling creates such a MAI, these solvers can be used for the sparsity-
promoting reconstruction with curvelets or other localized Fourier-based
transforms. More importantly, jittered undersampling can be useful to eval-
uate the efficiency/robustness of (approximate) `1 solvers since the jitter
parameter controls the amount of coherent energy that enters the MAI.

4.4.4 Generalization of the concept of undersampling
artifacts

Undersampling artifacts are only one particular case of MAI that specif-
ically occurs in the interpolation problem, i.e., A def= RSH . The study we
have done on these artifacts as a function of the restriction operator R can
be extended to more general cases (see e.g. Lustig et al., 2007, in magnetic
resonance imaging). For example, when A is defined as A def= RMSH with
M a modeling/demigration-like operator (Herrmann et al., 2007; Wang and
Sacchi, 2007). In this case, x0 is the sparse representation of the Earth
model in the S domain and y incomplete seismic data. The study of the
MAI now determines which coarse spatial sampling schemes are more favor-
able than others in the context of sparsity-promoting migration/inversion.
Based on observations in Zhou and Schuster (1995) and Sun et al. (1997),
we believe that discrete random, optimally-jittered, and continuous random
undersamplings will also play a key role.

4.5 Conclusions

Successful wavefield recovery depends on three key factors, namely, the
existence of a sparsifying transform, a favorable sampling scheme and a
sparsity-promoting recovery method. In this paper, we focused on an un-
dersampling scheme that is designed for localized Fourier-like signal repre-
sentations such as the curvelet transform. Our scheme builds on the funda-
mental observation that irregularities in sub-Nyquist sampling are good for
nonlinear sparsity-promoting wavefield reconstruction algorithms because
they turn harmful coherent aliases into relatively harmless incoherent ran-
dom noise. The interpolation problem effectively becomes a much simpler
denoising problem in this case.
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Undersampling with a discrete random uniform distribution lacks con-
trol on the maximum gap size in the acquisition, which causes problems for
transforms that consist of localized elements. Our jittered undersampling
schemes remedy this lack of control, while preserving the beneficial prop-
erties of randomness in the acquisition grid. Our numerical findings on a
stylized series of experiments confirm these theoretically-predicted benefits.

Curvelet-based wavefield reconstruction results from jittered undersam-
pled synthetic and field datasets are better than results obtained from regu-
larly decimated data. In addition, our findings indicate an improved perfor-
mance compared to traces taken randomly according to an uniform distribu-
tion. This is a major result, with wide ranging applications, since it entails
an increased probability for successful recovery with localized transform ele-
ments. In practice, this translates into more robust wavefield reconstruction.
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Chapter 5

New insights into one-norm
solvers from the Pareto curve

5.1 Introduction

Many geophysical inverse problems are ill posed (Parker, 1994)—their
solutions are not unique or are acutely sensitive to changes in the data. To
solve this kind of problem stably, additional information must be introduced.
This technique is called regularization (see, e.g., Phillips, 1962; Tikhonov,
1963).

Specifically, when the solution of an ill-posed problem is known to be (al-
most) sparse, Oldenburg et al. (1983) and others have observed that a good
approximation to the solution can be obtained by using one-norm regulariza-
tion to promote sparsity. More recently, results in information theory have
breathed new life into the idea of promoting sparsity to regularize ill-posed
inverse problems. These results establish that, under certain conditions, the
sparsest solution of a (severely) underdetermined linear system can be ex-
actly recovered by seeking the minimum one-norm solution (Candès et al.,
2006; Donoho, 2006; Rauhut, 2007). This has led to tremendous activity
in the newly established field of compressed sensing. Several new one-norm
solvers have appeared in response (see, e.g., Daubechies et al., 2004; van
den Berg and Friedlander, 2008, and references therein). In the context of
geophysical applications, it is a challenge to evaluate and compare these
solvers against more standard approaches such as iteratively reweighted
least-squares (IRLS - Gersztenkorn et al., 1986), which uses a quadratic
approximation to the one-norm regularization function.

In this letter, we propose an approach to understand the behavior of al-
gorithms for solving one-norm regularized problems. The approach consists
of tracking on a graph the data misfit versus the one norm of successive

A version of this chapter has been accepted for publication. G. Hennenfent, E. van
den Berg, M.P. Friedlander, and F.J. Herrmann. New insights into one-norm solvers from
the Pareto curve. Geophysics, 2008.
c© 2008 Society of Exploration Geophysicists.
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iterates. The Pareto curve traces the optimal tradeoff in the space spanned
by these two axes and gives a rigorous yardstick for measuring the quality
of the solution path generated by an algorithm. In the context of the two-
norm—i.e., Tikhonov—regularization, the Pareto curve is often plotted on a
log-log scale and is called the L-curve (Lawson and Hanson, 1974). We draw
on the work of van den Berg and Friedlander (2008) who examine the theo-
retical properties of the one-norm Pareto curve. Our goal is to understand
the compromises implicitly accepted when an algorithm is given a limited
number of iterations.

5.2 Problem statement

Consider the following underdetermined system of linear equations

y = Ax0 + n, (5.1)

where the n-vectors y and n represent observations and additive noise, re-
spectively. The n-by-N matrix A is the modeling operator that links the
model x0 to the noise-free data given by y−n. We assume that N � n and
that x0 has few nonzero or significant entries. We use the terms “model” and
“observations” in a broad sense, so that many linear geophysical problems
can be cast in the form shown in equation 5.1. In the case of wavefield recon-
struction, for example, y is the acquired seismic data with missing traces, A
can be the restriction operator combined with the curvelet synthesis oper-
ator so that x0 is the curvelet representation of the fully-sampled wavefield
(Herrmann and Hennenfent, 2008; Hennenfent and Herrmann, 2008).

Because x0 is assumed to be (almost) sparse, one can promote sparsity
as a prior via one-norm regularization to overcome the singular nature of
A when estimating x0 from y. A common approach is to solve the convex
optimization problem

QPλ : min
x

1
2‖y −Ax‖22 + λ‖x‖1,

which is closely related to quadratic programming (QP); the positive param-
eter λ is the Lagrange multiplier, which balances the tradeoff between the
two norm of the data misfit and the one norm of the solution. Many algo-
rithms are available for solving QPλ, including IRLS, iterative soft thresh-
olding (IST), introduced by Daubechies et al. (2004), and the IST extension
to include cooling (ISTc - Figueiredo and Nowak, 2003), which was tailored
to geophysical applications by Herrmann and Hennenfent (2008).
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It is generally not clear, however, how to choose the parameter λ such
that the solution of QPλ is, in some sense, optimal. A directly related
optimization problem, the basis pursuit (BP) denoise problem (Chen et al.,
1998), minimizes the one norm of the solution given a maximum misfit, and
is given by

BPσ : min
x
‖x‖1 s.t. ‖y −Ax‖2 ≤ σ.

This formulation is often preferred when an estimate of the noise level
σ ≥ 0 in the data is available. BPσ can be solved using ISTc or the spec-
tral projected-gradient algorithm (SPG`1) introduced by van den Berg and
Friedlander (2008).

For interest, a third optimization problem, connected to QPλ and BPσ,
minimizes the misfit given a maximum one norm of the solution, and is given
by the LASSO (LS) problem (Tibshirani, 1996)

LSτ : min
x

1
2‖y −Ax‖22 s.t. ‖x‖1 ≤ τ.

Because an estimate of the one norm of the solution τ ≥ 0 is typically not
available for geophysical problems, this formulation is seldom used directly.
It is, however, a key internal problem used by SPG`1 in order to solve BPσ.

To understand the connection between these approaches and compare
their related solvers in different scenarios, we propose to follow Daubechies
et al. (2007) and van den Berg and Friedlander (2008) and look at the Pareto
curve.

5.3 Pareto curve

Figure 5.1 gives a schematic illustration of a Pareto curve. The curve
traces the optimal tradeoff between ‖y−Ax‖2 and ‖x‖1 for a specific pair of
A and y in equation 5.1. Point 1© clarifies the connection between the three
parameters of QPλ, BPσ, and LSτ . The coordinates of a point on the Pareto
curve are (τ, σ) and the slope of the tangent at this point is −λ. The end
points of the curve—points 2© and 3©—are two special cases. When τ = 0,
the solution of LSτ is x = 0 (point 2©). It coincides with the solutions of
BPσ with σ = ‖y‖2 and QPλ with λ = ‖AHy‖∞/‖y‖2. (The infinity norm
‖ · ‖∞ is given by max (| · |).) When σ = 0, the solution of BPσ (point 3©)
coincides with the solutions of LSτ , where τ is the one norm of the solution,
and QPλ, where λ = 0+—i.e., λ infinitely close to zero from above. These
relations are formalized as follows in van den Berg and Friedlander (2008):
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Result 1 The Pareto curve i) is convex and decreasing, ii) is continuously
differentiable, and iii) has a negative slope λ = ‖AHr‖∞/‖r‖2 with the
residual r given by y −Ax.

For large-scale geophysical applications, it is not practical (or even feasible)
to sample the entire Pareto curve. However, its regularity, as implied by
this result, means that it is possible to obtain a good approximation to the
curve with very few interpolating points, as illustrated later in this letter.

‖y
−
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x
‖ 2

‖x‖1

τ

σ

Pareto curve
2

1

3
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(0, ‖y‖2)
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‖AH(y − Ax)‖∞
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‖AHy‖∞
‖y‖2

Figure 5.1: Schematic illustration of a Pareto curve. Point 1© exposes the
connection between the three parameters of QPλ, BPσ, and LSτ . Point 3©
corresponds to a solution of BPσ with σ = 0.

5.4 Comparison of one-norm solvers

To illustrate the usefulness of the Pareto curve, we compare IST, ISTc,
SPG`1, and IRLS on a noise-free problem and compute a solution of BPσ for
σ = 0, i.e., BP0. This case is especially challenging for solvers that attack
QPλ—e.g., IST, ISTc and IRLS—because the corresponding solution can
only be attained in the limit as λ→ 0.

We construct a benchmark problem that is typically used in the com-
pressed sensing literature (Donoho et al., 2006). The matrix A is taken
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to have Gaussian independent and identically-distributed entries; a sparse
solution x0 is randomly generated, and the “observations” y are computed
according to equation 5.1.

5.4.1 Solution paths

Figure 5.2: Pareto curve and solution paths (large enough number of it-
erations) of four solvers for a BP0 problem. The symbols + represent a
sampling of the Pareto curve. The solid (—) line, obscured by the Pareto
curve, is the solution path of ISTc, the chain (– · –) line the path of SPGL`1,
the dashed (– –) line the path of IST, and the dotted (· · · ) line the path of
IRLS.

Figure 5.2 shows the solution paths of the four solvers as they con-
verge to the BP0 solution. The starting vector provided to each solver is
the zero vector, and hence the paths start at (0, ‖y‖2)—point 2© in Figure
5.1. The number of iterations is large enough for each solver to converge,
and therefore the solution paths end at (τBP0

, 0)—point 3© in Figure 5.1.
The two solvers SPG`1 and ISTc approach the BP0 solution from the

left and remain close to the Pareto curve. In contrast, IST and IRLS aim
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at a least-squares solution before turning back towards the BP0 solution.
ISTc solves QPλ for a decreasing sequence λi → 0. The starting vector
for QPλi

is the solution of QPλi−1
, which is by definition on the Pareto

curve. This explains why ISTc so closely follows the curve. SPG`1 solves a
sequence of LSτ problems for an increasing sequence of τi → τBP0

, hence the
vertical segments along the SPG`1 solution path. IST solves QP0+ . Because
there is hardly any regularization, IST first works towards minimizing the
data misfit. When the data misfit is sufficiently small, the effect of the
one-norm penalization starts, yielding a change of direction towards the
BP0 solution. IRLS solves a sequence of weighted, damped, least-squares
problems. Because the weights are initialized to ones, IRLS first reaches the
standard least-squares solution. The estimates obtained from the subsequent
reweightings have a smaller one norm while maintaining the residual (close)
to zero. Eventually, IRLS gets to the BP0 solution.

5.4.2 Practical considerations

In geophysical applications, problem sizes are large and there is a se-
vere computational constraint. We can use the technique outlined above to
understand the robustness of a given solver that is limited by a maximum
number of iterations or matrix-vector products that can be performed.

Figure 5.3 shows the Pareto curve and the solution paths of the various
solvers where the maximum number of iterations is fixed. This roughly
equates to using the same number of matrix-vector products for each solver.
Whereas SPG`1 continues to provide a fairly accurate approximation to the
BP0 solution, those computed by IST, ISTc, and IRLS suffer from larger
errors. IST stops before the effect of the one-norm regularization kicks in;
hence the data misfit at the candidate solution is small but the one norm
is completely incorrect. ISTc and IRLS accumulate small errors along their
paths because there are not enough iterations to solve each subproblem to
sufficient accuracy. Note that both solvers accumulate errors along both
axes.

5.5 Geophysical example

As a concrete example of the use of the Pareto curve in the geophysical
context, we study the problem of wavefield reconstruction with sparsity-
promoting inversion in the curvelet domain (CRSI - Herrmann and Hen-
nenfent, 2008). The simulated acquired data, shown in Figure 5.4(a), cor-
responds to a shot record with 35% of the traces missing. The interpolated
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Figure 5.3: Pareto curve and optimization paths (same, limited number of
iterations) of four solvers for a BP0 problem (see Figure 5.2 for legend).
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result, shown in Figure 5.4(b), is obtained by solving BP0 using SPG`1. This
problem has more than half a million unknowns and forty-two thousand data
points.

The points in Figure 5.5 are samples of the corresponding Pareto curve.
The regularity of these points strongly indicates that the underlying curve—
which we know to be convex—is smooth and well behaved, and empirically
supports our earlier claim. However problems of practical interest are often
significantly larger, and it may be prohibitively expensive to compute a
similarly fine sampling of the curve.

Because the curve is well behaved, we can leverage its smoothness and
use a small set of samples to obtain a good interpolation. The solid line
in Figure 5.5 shows an interpolation based only on information from the
circled samples. The interpolated curve closely matches the samples that
were not included in the interpolation. The figure also plots the iterates
taken by SPG`1 in order to obtain the reconstruction shown in Figure 5.4(b).
The plot shows that the iterates remain to the Pareto curve and that they
convergence towards the BP0 solution.

(a) (b)

Figure 5.4: CRSI on synthetic data. (a) Input and (b) interpolated data
using CRSI with SPG`1.
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Figure 5.5: Pareto curve and SPG`1 solution path for a CRSI problem. The
symbols + represent a fine, accurate sampling of the Pareto curve. The
solid (—) line is an approximation to the Pareto curve using the few, circled
points, the chain (– · –) line the solution path of SPG`1.
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5.6 Conclusions

The sheer size of seismic problems makes it a certainty that there will
be significant constraints on the amount of computation that can be done
when solving an inverse problem. Hence it is especially important to explore
the nature of a solver’s iterations in order to make an informed decision on
how to best truncate the solution process. The Pareto curve serves as the
optimal reference, which makes an unbiased comparison between different
one-norm solvers possible.

Of course, in practice it is prohibitively expensive to compute the entire
Pareto curve exactly. We observe, however, that the Pareto curves for many
of the one-norm regularized problems are regular, as confirmed by the theo-
retical Result 1. This suggests that it is possible to approximate the Pareto
curve by fitting a curve to a small set of sample points, taking into account
derivative information at these points. As such, the insights from the Pareto
curve can be leveraged to large-scale one-norm regularized problems, as we
illustrate on a geophysical example. This prospect is particularly exciting
given the current resurgence of this type of regularization in many different
areas of research.
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Chapter 6

Curvelet-based seismic data
processing

6.1 Introduction

In this letter, we demonstrate that the discrete curvelet transform (Candès
et al., 2006a; Hennenfent and Herrmann, 2006b) can be used to reconstruct
seismic data from incomplete measurements, to separate primaries and mul-
tiples and to restore migration amplitudes. The crux of the method lies
in the combination of the curvelet transform, which attains a fast decay
for the magnitude-sorted curvelet coefficients, with a sparsity promoting
program. By themselves sparsity-promoting programs are not new to the
geosciences (Sacchi et al., 1998). However, sparsity promotion with the
curvelet transform is new. The curvelet transform’s unparalleled ability
to detect wavefront-like events that are locally linear and coherent means
it is particularly well suited to seismic data problems. In this paper, we
show examples including data regularization (Hennenfent and Herrmann,
2006a, 2007a), primary-multiple separation (Herrmann et al., 2007a) and
migration-amplitude recovery (Herrmann et al., 2007b). Application of this
formalism to wavefield extrapolation is presented elsewhere (Lin and Her-
rmann, 2007).

6.2 Curvelets

Curvelets are localized ’little plane-waves’ (see Hennenfent and Her-
rmann, 2006b, and the on-line ancillary material for an introduction on
this topic) that are oscillatory in one direction and smooth in the other
direction(s). They are multiscale and multi-directional. Curvelets have an

A version of this chapter has been published. F.J. Herrmann, D. Wang, G. Hennenfent,
and P.P. Moghaddam. Curvelet-based seismic data processing: a multiscale and nonlinear
approach. Geophysics, 73(1):A1-A5, January-February 2008.
c© 2008 Society of Exploration Geophysicists.
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anisotropic shape – they obey the so-called parabolic scaling relationship,
yielding a width ∝ length2 for the support of curvelets in the physical do-
main. This anisotropic scaling is necessary to detect wavefronts and explains
their high compression rates on seismic data and images (Candès et al.,
2006a; Herrmann et al., 2007b), as long as these datasets can be represented
as functions with events on piece-wise twice differentiable curves. Then,
the events become linear at the fine scales justifying an approximation by
the linearly shaped curvelets. Even seismic data with caustics, pinch-outs,
faults or strong amplitude variations fit this model, which amounts to a
preservation of the sparsity attained by curvelets.

Curvelets represent a specific tiling of the 2-D/3-D frequency domain
into strictly localized wedges. Because the directional sampling increases
every-other scale doubling, curvelets become more anisotropic at finer scales.
Curvelets compose multi-D data according to f = CTCf with C and CT

the forward and inverse discrete curvelet transform matrices (defined by the
fast discrete curvelet transform, FDCT, with wrapping, a type of periodic
extenstion, see Candès et al., 2006a; Ying et al., 2005). The symbol T

represents the transpose, which is equivalent to the inverse for this choice
of curvelet transform. This transform has a moderate redundancy (a factor
of roughly 8 in 2-D and 24 in 3-D) and a computational complexity of
O(n log n) with n the length of f . Even though CTC = I , with I the
identity matrix, the converse is not true, i.e., CCT 6= I . This ambiguity can
be removed by adding sparsity promotion as a constraint.

6.3 Common problem formulation by
Sparsity-promoting inversion

Our solution strategy is built on the premise that seismic data and images
have a sparse representation, x0, in the curvelet domain. To exploit this
property, our forward model reads

y = Ax0 + n (6.1)

with y a vector of noisy and possibly incomplete measurements; A the
modeling matrix that includes CT ; and n, a zero-centered white Gaussian
noise. Because of the redundancy of C and/or the incompleteness of the
data, the matrix A can not readily be inverted. However, as long as the
data, y, permits a sparse vector, x0, the matrix, A, can be inverted by a
sparsity-promoting program (Candès et al., 2006b; Donoho, 2006):
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Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(6.2)

in which ε is a noise-dependent tolerance level, ST the inverse transform and
f̃ the solution calculated from the vector x̃ (the symbol ˜ denotes a vector
obtained by nonlinear optimization) minimizing Pε. The difference between
x̃ and x0 is proportional to the noise level.

Nonlinear programs Pε are not new to seismic data processing as in spiky
deconvolution (Taylor et al., 1979; Santosa and Symes, 1986) and Fourier
transform-based interpolation (Sacchi et al., 1998). The curvelets’ high com-
pression rate makes the nonlinear program Pε perform well when CT is in-
cluded in the modeling operator. Despite its large-scale and nonlinearity,
the solution of the convex problem Pε can be approximated with a limited
(< 250) number of iterations of a threshold-based cooling method derived
from work by Figueiredo and Nowak (2003); Daubechies et al. (2004); Elad
et al. (2005). At each iteration the descent update (x← x + AT

(
y−Ax

)
),

minimizing the quadratic part of Equation 6.2, is followed by a soft thresh-
olding (x ← Tλ(x) with Tλ(x) := sgn(x) · max(0, |x| − |λ|)) for decreasing
threshold levels λ. This soft thresholding on the entries of the unknown
curvelet vector captures the sparsity and the cooling, which speeds up the
algorithm, allows additional coefficients to fit the data.

6.4 Seismic data recovery

The reconstruction of seismic wavefields from regularly-sampled data
with missing traces is a setting where a curvelet-based method will perform
well. As with other transform-based methods, sparsity is used to reconstruct
the wavefield by solving Pε. It is also shown that the recovery performance
can be increased when information on the major primary arrivals is included
in the modeling operator.

6.4.1 Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete data corre-
sponds to the inversion of the picking operator R. This operator models
missing data by inserting zero traces at source-receiver locations where data
is missing passing recorded traces unchanged. The task of the recovery is to
undo this operation by filling in the zero traces. Since seismic data is sparse
in the curvelet domain, the missing data can be recovered by compounding
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the picking operator with the curvelet modeling operator, i.e., A := RCT .
With this definition for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet transform, fol-
lowed by the picking, matches the data at the nonzero traces. Applying
the inverse transform (with S := C in Pε) gives the interpolated data. For
details on the conditions that determine successful recovery, refer to Hen-
nenfent and Herrmann (2007a,b) and Herrmann and Hennenfent (2007).

An example of curvelet-based recovery is presented in Figure 6.1 which
shows the results of decimating, and then reconstructing, a seismic dataset.
The original shot and receiver spacings were 25m, and 80% of the traces were
thrown out at random (see Figure 6.1(b)). Comparing the ’ground truth’
in Figure 6.1(a) with the recovered data in Figure 6.1(c) shows a successful
recovery in case the high-frequencies are removed. Aside from sparsity in the
curvelet domain, no prior information was used during the recovery, which
is quite remarkable. Part of the explanation lies in the curvelet’s ability to
locally exploit the 3-D geometry of the data and this suggests why curvelets
are successful for complex datasets where other methods may fail.

6.4.2 Focused recovery

In practice, additional information on the to-be-recovered wavefield is of-
ten available. For instance, one may have access to the predominant primary
arrivals or to the velocity model. In that case, the recently introduced fo-
cal transform (Berkhout and Verschuur, 2006), which ’deconvolves’ the data
with an estimate of the primaries, incorporates this additional information
into the recovery process. Application of this primary operator, ∆P, adds
a wavefield interaction with the surface, mapping primaries to first-order
surface-related multiples (Verschuur and Berkhout, 1997; Herrmann, 2007).
Inversion of this operator, strips the data off one interaction with the surface,
focusing primary energy to (directional) sources. This focusing corresponds
to a collapse of the 3-D primary events to an approximate line source which
has a sparser representation in the curvelet domain.

By compounding the non-adaptive, data-independent, curvelet trans-
form with the data-adaptive focal transform, i.e., A := R∆PCT , the re-
covery can be improved by solving Pε. The solution of Pε now entails
the inversion of ∆P, yielding the sparsest set of curvelet coefficients that
matches the incomplete data when ’convolved’ with the primaries. Apply-
ing the inverse curvelet transform, followed by ’convolution’ with ∆P yields
the interpolation, i.e. ST := ∆PCT . Comparing the curvelet recovery with
the focused curvelet recovery (Figure 6.1(c) and 6.1(d)) shows an overall
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(a) (b)

(c) (d)

Figure 6.1: Comparison between 3-D curvelet-based recovery by sparsity-
promoting inversion with and without focusing. (a) Fully sampled real
SAGA data shot gather. (b) Randomly subsampled shot gather from a
3-D data volume with 80% of the traces missing in the receiver and shot
directions. (c) Curvelet-based recovery. (d) Curvelet-based recovery with
focusing. Notice the improvement (denoted by the arrows) from the focusing
with the primary operator.
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improvement in the recovered details.

6.5 Seismic signal separation

Predictive multiple suppression involves two steps, namely multiple pre-
diction and primary-multiple separation. In practice, the second step ap-
pears difficult and adaptive least-squares `2-matched-filtering techniques are
known to lead to residual multiple energy, high frequency jitter and de-
terioration of the primaries (Herrmann et al., 2007a). By employing the
curvelet’s ability to detect wavefronts with conflicting dips (e.g. caustics),
a non-adaptive, independent of the total data, separation scheme can be
defined that is robust with respect to moderate errors in the multiple pre-
diction. The nonlinear program, Pε, with y defined by the total data, can
be adapted to separate multiples from primaries by replacing the `1 norm
by a weighted `1 norm, i.e., ‖x‖1 7→ ‖x‖1,w =

∑
µ |wµxµ| with µ running

over all curvelets and w a vector with positive weights. By defining these
weights proportional to the magnitude of the curvelet coefficients of the 2-D
SRME-predicted multiples, the solution of Pε with A := CT removes mul-
tiples. Primaries and multiples naturally separate in the curvelet domain
and the weighting further promotes this separation while solving Pε. The
weights that are fixed during the optimization penalize the entries in the
curvelet vector for which the predicted multiples are significant. The em-
phasis on the weights versus the data misfit (the proportionality constant) is
user defined. The estimate for the primaries is obtained by inverse curvelet
transforming the curvelet vector that minimizes Pε for the weighted `1 norm
(A = ST := CT ).

Figure 6.2 shows an example of 3-D curvelet-based primary-multiple
separation of a North Sea dataset with the weights set according to the
curvelet-domain magnitudes of the SRME-predicted multiples multiplied by
1.25. Comparison between the estimates for the primaries from adaptive
subtraction by `2-matched filtering (Verschuur and Berkhout, 1997) and
from our nonlinear and non-adaptive curvelet-based separation shows an
improvement in (i) the elimination of the focused multiple energy below
shot location 1000 m, induced by out-of-plane scattering due to small 3-D
variations in the multiple-generating reflectors and (ii) an overall improved
continuity and noise reduction. This example demonstrates that the multi-
scale and multi-angular curvelet domain can be used to separate primaries
and multiples given an inaccurate prediction for the multiples. However,
the separation goes at the expense of a moderate loss of primary energy
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which compares favorably compared to the loss associated with `2-matched
filtering (see also Herrmann et al., 2007a).

6.6 Migration-amplitude recovery

Restoring migration amplitudes is another area where curvelets can be
shown to play an important role. In this application, the purpose is to
replace computationally expensive amplitude recovery methods, such as
least-squares migration (Nemeth et al., 1999; Kuhl and Sacchi, 2003), by
an amplitude scaling (Guitton, 2004). This scaling can be calculated from
a demigrated-migrated reference vector close to the actual reflectivity.

In order to exploit curvelet sparsity, we propose to scale in the curvelet
domain. This choice seems natural because migrated images suffer from
spatially varying and dip-dependent amplitude deterioration that can be
accommodated by curvelets. The advantages of this approach are manifold
and include (i) a correct handling of reflectors with conflicting dips and (ii)
a stable curvelet sparsity-promoting inversion of the diagonal that restores
the amplitudes and removes the clutter by exploiting curvelet sparsity on
the model.

The method is based on the approximate identity: KTKr ≈ CTDrCr
with K and KT the demigration, migration operators and Dr a reference-
model specific scaling (Herrmann et al., 2007b). By defining the modeling
matrix as A := CT

√
Dr, Pε can be used to recover the migration am-

plitudes from the migrated image. Possible spurious side-band effects and
erroneously detected curvelets (Candès and Guo, 2002) are removed by sup-
plementing the `1 norm in Pε with an anisotropic diffusion norm (Fehmers
and Höcker, 2003). This norm enhances the continuity along the imaged
reflectors and removes spurious artifacts.

Results for the SEG AA’ dataset (O’Brien and Gray, 1996; Aminzadeh
et al., 1997) are summarized in Figure 6.3. These results are obtained with
a reverse-time ’wave-equation’ finite-difference migration code. To illustrate
the recovery performance, idealized seismic data is generated by demigra-
tion, followed by adding white Gaussian noise, yielding a signal-to-noise ratio
(SNR) of only 3 dB. This data is subsequently migrated and used as input.
Despite the poor SNR, the image in Figure 6.3(a) contains most reflectors,
which can be explained by the redundancy of the data, the migration op-
erator’s sophistication (diffractions at the bottom of the salt are handled
correctly) and the perfect ’match’ between the demigration and migration
operators. However, the noise gives rise to clutter and there is dimming of
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(a) (b)

(c) (d)

Figure 6.2: 3-D Primary-multiple separation with Pε for the SAGA dataset.
(a) Near-offset section including multiples. (b) The SRME-predicted mul-
tiples. (c) The estimated primaries according to `2-matched filtering. (d)
The estimated primaries obtained with Pε. Notice the improvement, in
areas with small 3-D effects (ellipsoid) and residual multiples.
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the amplitudes, in particular for steep dips under the salt. Nonlinear recov-
ery removes most of this clutter and more importantly the amplitudes for
the sub-salt steep-dipping events are mostly restored. This idealized exam-
ple shows how curvelets can be used to recover the image amplitudes. As
long as the background velocity model is sufficiently smooth and the reflec-
tivity sufficiently sparse, this recovery method can be expected to perform
well even for more complex images.

6.7 Discussion and conclusions

The presented examples show that problems in data acquisition and
imaging can be solved with a common problem formulation during which
sparsity in the curvelet domain is promoted. For curved wavefront-like fea-
tures that oscillate in one direction and that are smooth in the other di-
rection(s), curvelets attain high compression rates while other transforms
do not necessarily achieve sparsity for these geometries. Seismic images
of sedimentary basins and seismic wave arrivals in the data both behave
in this fashion, so that curvelets are particularly valuable for compression.
It is this compression that underlies the success of our sparsity promoting
formulation. First, we showed on real data that missing data can be re-
covered by solving a nonlinear optimization problem where the data misfit
and the `1-norm on the curvelet coefficients are simultaneously minimized.
This recovery is improved further with a combined curvelet-focal transform.
Sparsity also proved essential during the primary-multiple separation. In
this case, it leads to a form of decorrelation of primaries and multiples, re-
ducing the probability of having large overlapping curvelet entries between
these different events. Finally, the sparsity of curvelets on the image itself
was exploited to recover the migration amplitudes of the synthetic subsalt
imaging example. Through these three examples, the successful application
of curvelets, enhanced with sparsity-promoting inversion, opens new per-
spectives on seismic data processing and imaging. The ability of curvelets
to detect wavefront-like features is key to our success and opens an exciting
new outlook towards future developments in exploration seismology.
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(a)

(b)

Figure 6.3: Image amplitude recovery for a migrated image calculated from
noisy data (SNR 3 dB). (a) Image with clutter. (b) Image after nonlinear
recovery. The clearly visible non-stationary noise in (a) is mostly removed
during the recovery while the amplitudes are also restored. Steeply dipping
reflectors (denoted by the arrows) under the salt are also well recovered.
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Chapter 7

Conclusions

In this chapter we summarize the main contributions of this thesis and
discuss some limitations of the work presented. We also suggest follow-up
work as well as possible extensions.

7.1 Main contributions

The topic of this thesis is seismic data interpolation. The approach we
advocate is to view seismic data from a geometrical perspective. We identify
a transform, called the curvelet transform (Candès and Donoho, 2004), to
that effect and use it in a new formulation of the wavefield reconstruction
problem. This formulation, coined curvelet reconstruction with sparsity-
promoting inversion (CRSI), is solved using a large-scale one-norm solver
that we introduce and study using the Pareto curve. The reported results
on synthetic and real data show that CRSI outperforms other methods but
the results also reveal that CRSI’s performance depends on the acquisition
pattern. We leverage this observation towards the development of a coarse
sampling scheme, termed jittered undersampling, that creates, under specific
circumstances, favorable recovery conditions for CRSI.

The remainder of this section provides more details about the aforemen-
tioned contributions.

7.1.1 Curvelets for seismic data

We use the curvelet transform to exploit the high-dimensional and strong
geometrical structure of seismic data. The curvelet transform (Candès and
Donoho, 2004), designed to represent curve-like singularities optimally, de-
composes seismic data into a superposition of localized plane waves, called
curvelets. These curvelets are shaped according to a parabolic scaling law
and have different frequency contents and dips to match locally the wave-
front at best. These properties guarantee a sparse—arguably the sparsest—
data-independent representation of seismic data. In other words, the super-
position of only a “few” curvelets captures most of the energy of real seismic
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data as shown in chapter 2 using our extension of the fast discrete curvelet
transform (FDCT - Candès et al., 2006) to irregularly sampled data.

7.1.2 Curvelet reconstruction with sparsity-promoting
inversion

Following ideas from compressive sampling (Donoho, 2006; Candès et al.,
2006) and existing interpolation algorithms that promote sparsity in a trans-
form domain (Sacchi et al., 1998; Zwartjes and Sacchi, 2007), we formulate
a new optimization problem, coined curvelet reconstruction with sparsity-
promoting inversion (CRSI), to reconstruct seismic data (chapter 3). In
words, CRSI takes as inputs: i) the acquired data, ii) a mask that spatially
locates the acquired traces, and iii) an interpolation grid. CRSI returns the
sparsest set of curvelet coefficients that explain the acquired data. The inter-
polated data is reconstructed via the (weighted) inverse curvelet transform
of this set.

From a theoretical standpoint, the success of CRSI depends, of course,
on the validity of the sparseness assumption but also on the severity of the
undersampling, and on the way the data is acquired. The latter point is
of particular interest because i) it allows us to give a new interpretation to
the minimum velocity constraint that is already successfully used in other
interpolation methods, and ii) it motivates the development (chapter 4) of a
coarse sampling scheme, termed jittered undersampling, that creates, under
specific circumstances, favorable recovery conditions for CRSI. We further
discuss this topic in section 7.1.3.

From a practical standpoint, CRSI would not be possible without a ro-
bust large-scale one-norm solver. We introduce iterative soft thresholding
with cooling (ISTc) to that effect (chapter 3). ISTc is an extension of the it-
erative soft thresholding algorithm proposed by Daubechies et al. (2004). It
reaches an approximation to the desired solution in a (very) limited number
of iterations by solving a carefully-chosen sequence of sub-problems. Each
of these optimization sub-problems becomes increasingly harder to solve but
benefits from an approximate solution of the previous problem as a “warm”
start. The solution path is studied in more detail using the Pareto curve
(chapter 5). We further discuss this topic in section 7.1.4.

Reported results illustrate that CRSI performs well on synthetic and
real data sets and comparatively better than other methods (chapter 3 and
Hennenfent and Herrmann, 2006b). We also show on synthetic data that
the quality of the reconstruction improves with the dimensionality of the
problem.
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7.1.3 Wavefield reconstruction via jittered undersampling

The performance of CRSI depends on the acquisition pattern. We ex-
plain this phenomenon (chapter 4) by looking at the interpolation problem
from a denoising perspective as suggested by Donoho et al. (2006). Indeed,
undersampling seismic data in the physical domain translates into adding
noise to its curvelet representation. Hence, interpolating consists in sepa-
rating the undersampling noise from the few significant curvelet coefficients
that represent the full data. Because this separation is done by promoting
sparsity—i.e., signal’s representation is the few large entries—problems arise
if an acquisition pattern creates sparse undersampling noise.

We leverage this new insight towards the development of a coarse sam-
pling scheme, termed jittered undersampling, for which CRSI performs at
best. At the core of this work is a noise-shaping problem. We show that,
under specific circumstances, jittered undersampling creates incoherent ran-
dom noise in the Fourier and curvelet domains. Furthermore, its construc-
tion avoids large acquisition gaps. The combination of these two properties
proves to be key in the formulation of a versatile sparsity-promoting wave-
field recovery scheme in the curvelet domain as illustrated on a series of
examples.

7.1.4 Insights into one-norm solvers from the Pareto curve

We introduce the Pareto curve as a means to understand the behavior
and evaluate the performance of one-norm solvers (chapter 5). The tech-
nique consists of tracking on a graph the data misfit versus the one norm of
successive iterates. By comparing the solution paths to the Pareto curve—
the best possible tradeoff between data misfit and sparsity—we are able to
assess the performance of the solvers and the quality of the solutions. This
prospect is particularly exciting given the current resurgence of one-norm
regularization in many different areas of research. In geophysics, such an as-
sessment is relevant, for example, to understand the compromises implicitly
accepted when an algorithm is given a limited number of iterations.

Reported results show that ISTc is a robust and reasonably accurate
solver under limited number of iterations. These results also reveal that the
recently-introduced spectral projected-gradient algorithm (SPG`1 - van den
Berg and Friedlander, 2007) could be an interesting alternative to ISTc if
its algorithmic complexity scales well with the size of problems.
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7.1.5 Curvelet-based seismic data processing

Beside the seismic wavefield reconstruction problem, we recast a few
other processing steps—signal separation, migration-amplitude recovery, and
deconvolution—in a sparsity-promoting program that exploits the high de-
gree of sparsity attained by curvelets on seismic data and images (chapter 6
and Hennenfent et al., 2005b,a). The promising results obtained shows that
the insights gained from the developments of CRSI can be leveraged towards
a much broader range of applications. This prospect opens an exciting new
outlook towards future developments in exploration seismology.

7.2 Follow-up work

We suggest a few ideas that go beyond the reported experiments.

7.2.1 Interpolation comparisons on complex data

CRSI was tested on different data sets and, in some cases, the results
were compared to those of competing algorithms (chapter 3 and Hennenfent
and Herrmann, 2006b). We recommend to study further the algorithm on a
broader range of complex data. Preliminary experiments on data with strong
aliased ground-roll (Hennenfent and Herrmann, 2006a; Yarham et al., 2007)
show, for example, that CRSI performs well and may have a competitive
advantage over other interpolation methods. Another type of interesting
data that comes in mind is data containing diffractions.

7.2.2 Interpolation impact on processing flow

We evaluate the quality of the reported results by comparing the interpo-
lated wavefield to the true wavefield, if available. Although this comparison
gives a precise idea of the quality of the reconstruction, it does not mea-
sure the impact on processing steps following interpolation—e.g., multiple
prediction and elimination—and on what matters most, the final subsurface
image. Hence, we recommend to include CRSI in a complete processing flow
and compare the final image to the one obtained using a standard flow.

7.3 Current limitations

We examine both the practical and the fundamental weaknesses of the
current CRSI, which motivates the extensions we propose in the next section.
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7.3.1 Curvelet code

The CRSI results presented in this thesis were obtained using the FDCT
based on the wrapping of specially selected Fourier samples (Candès et al.,
2005). This implementation breaks down the input image or volume into
a number of scales depending on the length of the shortest axis. In other
words, if one axis is much shorter than the others, the decomposition along
the long axes is unnecessarily limited. Despite an increased implementation
complexity, an alternative would be to treat separately the different axes,
an idea also proposed by H. Douma (personal communication, 2007). This
alteration of the curvelet code would immediately improve, for example, the
interpolation of 3D data in the shot domain if the cross-line axis is much
shorter than the in-line and time axes.

A more fundamental limitation of the FDCT is related to the redun-
dancy of the transform. Indeed, the FDCT is around 8-redundant in 2D
and around 24-redundant in 3D, which precludes, at least for now, tractable
higher-dimensional FDCTs. Lu and Do (2007) propose a less redundant
N -dimensional (N ≥ 2) implementation, termed surfacelet transform, by
combining a directional filter bank with a multiscale pyramid. However,
preliminary results using surfacelets for wavefield reconstruction are not as
good as CRSI results (E. Lebed, personal communication, 2007). Another
option is to combine the curvelet transform with another transform (Her-
rmann, 2003; Neelamani et al., 2008) to reduce redundancy and reach higher
dimensions. The different treatment of the axes is unsatisfactory in several
applications (see, e.g., Neelamani et al., 2008), though. For interest, Ku-
tyniok and Labate (2005) propose yet another N -dimensional (N ≥ 2) trans-
form, called shearlet transform, but no discrete implementation is available
at this point to determine the redundancy and the effectiveness of shearlets
for wavefield reconstruction.

7.3.2 CRSI

In chapter 4 we show that CRSI is sensitive to the size of the acquisition
gaps. Indeed, CRSI uses localized elements—curvelets—to represent seismic
data. If the physical support of these elements is smaller than the acquisition
gap (Figure 7.1), these elements will not enter the solution even though they
might be useful to interpolate an event obvious to the human eye. We discuss
in the next section possible extensions of CRSI to overcome this particular
issue.

In chapter 4 we also show that CRSI performs better on irregularly
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Figure 7.1: Curvelets and large acquisition gap. If the physical support of a
curvelet is smaller than the acquisition gap, this curvelet will not participate
to the CRSI solution even though this element might be useful to interpolate
an event obvious to the human eyes.

undersampled data than on regularly undersampled data. The difference
comes from the effectiveness of the sparsity prior to discriminate signal from
undersampling noise in either case. Hence, there is an intrinsic difficulty for
CRSI as-is to deal with coarse regularly-sampled data. We discuss in the
next section the addition of more prior information than sparsity to handle
this type of data.

7.4 Extensions

In this last section, we propose some ideas for future work. The common
theme of most ideas is the addition of more prior information than sparsity
to reconstruct seismic wavefields. In particular, we suggest to incorporate
more physics so that CRSI becomes more robust to large acquisition gaps
and to regularly-undersampled data.

7.4.1 Curvelet chaining

Seismic data has a sparse curvelet representation but the superposition
of a few randomly-selected curvelets is not, in general, a meaningful phys-
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ical signal. Hence, sparse is only a crude description of seismic wavefields
in the curvelet domain. We suggest to use also the relationships between
the coefficients to achieve a more accurate description. Indeed, a wavefront
is typically represented by a cluster of curvelets that are close one to the
other in phase space. La and Do (2005) already use a similar idea with
wavelet coefficients of natural images to reach a better solution faster com-
pared to the standard sparsity-promoting program. Their solver, termed
tree-based orthogonal matching pursuit (TOMP), searches for a sparse tree
representation rather than just a sparse representation.

7.4.2 Physic-based forward model

Rather than adding regularization terms to incorporate more prior infor-
mation, one can also refine the formulation of the wavefield reconstruction
problem—i.e., write a new forward model.

Interpolation with NMO/DMO operators

Zwartjes (2005) uses a normal moveout operator (NMO) or dip moveout
operator (DMO) to flatten the input gathers— i.e., to reduce their spatial
bandwidth—prior to interpolation. A pseudo-inverse of the NMO/DMO
operator is then applied to the reconstructed gather to generate the final
result. The advantage of this formulation lies in the reduced spatial band-
width of the solution that can be enforced during the inversion. We propose
to combine this approach with CRSI such that the interpolated data is given
by f̃ = DHCH x̃ where

x̃ = arg min
x
‖Wx‖1 s.t. ‖y −RDHCHx‖2 ≤ σ. (7.1)

In these expressions, the matrices R, D, and C represent a restriction
operator, an NMO/DMO operator, and a curvelet analysis operator, respec-
tively. The matrix W is a diagonal weighting in the curvelet domain that
enforces a limited spatial bandwidth for the solution. The vectors y and x
are the acquired data and the curvelet representation of the reconstructed
gather flattened, respectively. The symbol H denotes the conjugate trans-
pose and ˜ represents estimated quantities. Finally, σ relates to the noise
level in the acquired data.
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Interpolation with migration operators

Although computationally more intensive, one can also interpolate with
a migration operator (see, e.g., Trad, 2002; Malcolm, 2005; Wang and Sacchi,
2007). In this case, the matrix D in Equation 7.1 is replaced by the migration
operator and the unknown vector becomes the curvelet representation of the
subsurface image.
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Appendix A

The discrete curvelet
transform

The FDCT by wrapping perfectly reconstructs data after decomposition
by applying the transpose of the curvelet transform, i.e., we have f = CTCf
for an arbitrary finite-energy vector f . In this expression, C ∈ RN×M repre-
sents the curvelet decomposition matrix. The curvelet coefficients are given
by x = Cf with x ∈ RN . The curvelet transform is an overcomplete sig-
nal representation. The number of curvelets, i.e, the number of rows in
C, exceeds the number of data (M � N). The redundancy is moderate
(approximately 8 in two dimensions and 24 in three dimensions). This re-
dundancy implies that C is not a basis but rather a tight frame for our choice
of curvelet transform. This transform preserves energy, ‖f‖2 = ‖Cf‖2. Be-
cause CCT is a projection, not every curvelet vector is the forward transform
of some function f . Therefore, the vector x0 can not readily be calculated
from f = CTx0, because there exist infinitely many coefficient vectors whose
inverse transform equals f .

A version of this appendix has been accepted for publication. F.J. Herrmann and
G. Hennenfent. Non-parametric seismic data recovery with curvelet frames. Geophysical
Journal International, 173:233-248, 2008.
c© 2008 Blackwell Publishing. The definitive version is available at www.

blackwell-synergy.com
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Appendix B

Curvelet properties

Curvelets are directional frame elements that represent a tiling of the
two-/three-dimensional frequency domain into multiscale and multi-angular
wedges (see Fig’s 2.2 and 2.3). Because the directional sampling increases
every-other scale, curvelets become more and more anisotropic for finer and
finer scales. They become ’needle-like’ as illustrated in Fig. 2.2. Curvelets
are strictly localized in the Fourier domain and of rapid decay in the phys-
ical domain with oscillations in one direction and smoothness in the other
direction(s). Their effective support in the physical domain is given by ellip-
soids. These ellipsoids are parameterized by a width ∝ 2j/2, a length ∝ 2j

and an angle θ = 2πl2bj/2c with j the scale, j = 1 · · ·J and l the angular
index with the number of angles doubling every other scale doubling (see
Fig. 2.3). Curvelets are indexed by the multi-index γ := (j, l, k) ∈M with
M the multi-index set running over all scales, j, angles, l, and positions k.
Therefore, conflicting angles are possible.

A version of this appendix has been accepted for publication. F.J. Herrmann and
G. Hennenfent. Non-parametric seismic data recovery with curvelet frames. Geophysical
Journal International, 173:233-248, 2008.
c© 2008 Blackwell Publishing. The definitive version is available at www.

blackwell-synergy.com
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Appendix C

Compression properties of
curvelet frames

For 2-D functions that are twice-differentiable and that contain singu-
larities along piece-wise twice differentiable curves, the Fourier transform
(ignoring log-like factors in this discussion) only attains an asymptotic de-
cay of the k-term nonlinear approximation error of O(k−1/2). For this class
of functions, this decay is far from the optimal decay rate O(k−2). Wavelets
improve upon Fourier, but their decay O(k−1) is suboptimal. Curvelets, on
the other hand, attain the optimal rate O(k−2). In three dimensions, similar
(unpublished) results hold and this is not surprising because curvelets can
in that case explore continuity along two directions.

Continuous-limit arguments underly these theoretical estimates, some-
what limiting their practical relevance. Additional facts, such as the compu-
tational overhead, the redundancy and the nonlinear approximation perfor-
mance on real data, need to be taken into consideration. The computational
complexity of the curvelet transform is O(M log M). The redundancy of the
curvelet transform, however, maybe of concern. Strictly speaking wavelets
yield the best SNR for the least absolute number of coefficients, suggesting
wavelets as the appropriate choice. Experience in seismic data recovery,
backed by the evaluation of the reconstruction and recovery performance in
the ’eye-ball norm’, suggest otherwise. Performance measures in terms of
the decay rate as a function of the relative percentages of coefficients are
more informative. For instance, when the reconstruction in Fig. 3.3 of a typ-
ical seismic shot record from only 1 % of the coefficients is considered, it is
clear that curvelets give the best result. The corresponding reconstructions
from Fourier and wavelets coefficients clearly suffer from major artifacts.
These artifacts are related to the fact that seismic data does not lent itself

A version of this appendix has been accepted for publication. F.J. Herrmann and
G. Hennenfent. Non-parametric seismic data recovery with curvelet frames. Geophysical
Journal International, 173:233-248, 2008.
c© 2008 Blackwell Publishing. The definitive version is available at www.

blackwell-synergy.com
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Appendix C. Compression properties of curvelet frames

to be effectively approximated by superpositions of monochromatic plane
waves or ’fat’ wavelet ’point scatterers’. This superior performance of the
curvelet reconstruction in Fig. 3.3 is also supported by comparisons for the
decay of the normalized amplitude-sorted Fourier, wavelet and curvelet co-
efficients, included in Fig. C.1. In three dimensions, we expect a similar
perhaps even more favorable behavior by virtue of the higher dimensional
smoothness along the wavefronts. These observations suggest that curvelets
are the appropriate choice for the sparsity representation so we set S := C.
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(a)

(b)

Figure C.1: Decay of the transform coefficients for a typical synthetic (the
fully sampled data set that corresponds to Fig. 3.2) and real data set
(Fig. 3.3(a)). Comparison is made between the Fourier, wavelet and curvelet
coefficients. (a) The normalized coefficients for a typical 2-D synthetic seis-
mic shot record. (b) The same for a real shot record. Coefficients in the
Fourier domain are plotted with the blue – dashed and dotted line, the
wavelet coefficients with the red – dashed line, and the curvelet coefficients
with the pink – solid line. The seismic energy is proportionally much better
concentrated in the curvelet domain thus providing a sparser representation
of seismic data than Fourier and wavelets.
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Jittered undersampling

Jittered sampling locations rn are given by

rn = nγ + εn for n = −∞, . . . ,∞ (D.1)

The continuous random variables εn are independent and identically dis-
tributed (iid) according to a probability density function (pdf) p on [−ζ/2, ζ/2].
The corresponding sampling operator s is given by

s(r) =
∞∑

n=−∞
δ(r − rn). (D.2)

Computing the Fourier transform of the previous expression yields

ŝ(f) =
1
γ

∞∑
n=−∞

δ

(
f − n

γ

)
e−i2πfεn (D.3)

which implies that

E {ŝ(f)} = E
{

e−i2πfε0

}
· 1
γ

∞∑
n=−∞

δ

(
f − n

γ

)
(D.4)

since the variables εn are iid. By definition, the expected value of e−i2πfε0

is given by

E
{

e−i2πfε0

}
=

∫ ζ/2

−ζ/2
p(t) · e−i2πftdt (D.5)

which is the Fourier transform of the pdf of ε0. Hence,

E {ŝ(f)} = p̂(f) · 1
γ

∞∑
n=−∞

δ

(
f − n

γ

)
. (D.6)

A version of this appendix has been accepted for publication. G. Hennenfent and
F.J. Herrmann. Simply denoise: wavefield reconstruction via jittered undersampling.
Geophysics, 73(3), May-June 2008.
c© 2008 Society of Exploration Geophysicists.
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Finally, for a pdf that is continuous uniform on [−ζ/2, ζ/2], the expected
spectrum of the sampling operator is

E {ŝ(f)} = sinc (fζ) · ζ
γ

∞∑
n=−∞

δ

(
f − n

γ

)
. (D.7)

This result leads us to equation 4.6 since the columns of AHA are circular-
shifted versions of the Fourier transform of the discrete jittered sampling
vector, i.e., diag(RHR).

134


	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Preface
	Acknowledgments
	Dedication
	Statement of Co-Authorship
	Introduction
	Theme
	Objectives
	Outline

	Bibliography
	Seismic denoising with non-uniformly sampled curvelets
	Introduction
	The curvelet transform
	Main properties
	Nonlinear approximation rates

	The NFDCT: a curvelet frame for seismic processing
	Signal estimation and separation by thresholding
	Applications to seismic data

	Conclusions
	Acknowledgements

	Bibliography
	Non-parametric seismic data recovery with curvelet frames
	Introduction
	Our main contribution
	Outline

	Compressive sampling
	The basics
	A stylized experiment

	Compressive sampling of seismic data
	Choice for the sparsifying transform
	The measurement matrix
	The restriction/sampling matrix
	The modeling matrix

	Curvelet Recovery by Sparsity-promoting Inversion (CRSI)
	The unconstrained subproblems
	Solution by iterative thresholding
	Final solution by cooling

	Seismic data recovery with CRSI
	2-D synthetic for a layered earth model
	Common-shot/receiver versus shot-receiver interpolation
	Comparison between CRSI and plane-wave destruction on 2-D real data

	Discussion
	Initial findings
	Extensions

	Conclusions
	Acknowledgments

	Bibliography
	Wavefield reconstruction via jittered undersampling
	Introduction
	Motivation
	Main contributions
	Outline

	Theory
	Basics of compressive sampling
	Fourier-domain undersampling artifacts
	Uniform jittered undersampling on a grid
	Controlled recovery experiments for different sampling schemes

	Application to seismic data
	Synthetic data example
	Field data example

	Discussion
	Undersampled data contaminated by noise
	From discrete to continuous spatial undersampling
	Sparsity-promoting solvers and jittered undersampling
	Generalization of the concept of undersampling artifacts

	Conclusions
	Acknowledgments

	Bibliography
	New insights into one-norm solvers from the Pareto curve
	Introduction
	Problem statement
	Pareto curve
	Comparison of one-norm solvers
	Solution paths
	Practical considerations

	Geophysical example
	Conclusions
	Acknowledgments

	Bibliography
	Curvelet-based seismic data processing
	Introduction
	Curvelets
	Common problem formulation by Sparsity-promoting inversion
	Seismic data recovery
	Curvelet-based recovery
	Focused recovery

	Seismic signal separation
	Migration-amplitude recovery
	Discussion and conclusions
	Acknowledgments

	Bibliography
	Conclusions
	Main contributions
	Curvelets for seismic data
	Curvelet reconstruction with sparsity-promoting inversion
	Wavefield reconstruction via jittered undersampling
	Insights into one-norm solvers from the Pareto curve
	Curvelet-based seismic data processing

	Follow-up work
	Interpolation comparisons on complex data
	Interpolation impact on processing flow

	Current limitations
	Curvelet code
	CRSI

	Extensions
	Curvelet chaining
	Physic-based forward model


	Bibliography
	The discrete curvelet transform
	Curvelet properties
	Compression properties of curvelet frames
	Jittered undersampling

