
The pairwise heuristic

A method for treating uncertainty in planning and
robot localization

by

Koosha Khalvati

B.Sc., The University of Tehran, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

December 2012

c© Koosha Khalvati 2012



Abstract

One of the major challenges in the field of Artificial Intelligence is dealing
with uncertainty. Finding the optimal solution in the presence of uncertainty
is computationally quite costly. This makes it impossible to solve large
problems. In this thesis, we propose a new heuristic, named the pairwise
heuristic, which efficiently finds a near-optimal solution for such problems.
The pairwise heuristic is based on optimal solutions for the pairs of states.
For each pair, it solves the problem assuming that the uncertainty exists
only between the two states of the pair. A greedy online strategy uses these
solutions to solve the main problem. We tested the pairwise heuristic on two
problems where uncertainty plays a major role, i.e., localization and planning
under uncertainty. Our achievements in connection with both problems are
novel in their respective fields. In the field of localization, we have developed
an efficient method to localize a robot in any kind of environment in a fully
autonomous way. In the field of planning under uncertainty, our method
finds a near-optimal solution in a time shorter than the time required by
any other current method in the field.
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Preface

Chapter 3, Sections 1.1, 2.1, 5.1, 6.1, and Appendix A are based on “Ac-
tive Robot Localization with Macro Actions,” Koosha Khalvati and Alan
K.Mackworth, In Proceedings of IEEE/RSJ International Conference on In-
telligent Robots and Systems(IROS), 2012
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Chapter 1

Introduction

There has been tremendous progress in the field of Artificial Intelligence
in the last fifty years. Several optimal and efficient methods have been
proposed and many problems have been solved. However, it appears as
though Artificial Intelligence is more successful in theoretical problems than
in solving real world challenges. For example, there is no widely-used home
robot yet, autonomous vehicles are still being tested and rescue robots are
not used in disasters very often. One of the underlying reasons for this slow
progress is the existence of uncertainty in the real world. This uncertainty
is inevitable and ongoing due to the noise in actuators and sensors, and the
use of limited sensors [31]. Uncertainty makes the decision making process
much more complex. Finding an optimal or at least a near optimal solution
efficiently for a problem with uncertainty is one of the major challenges
in the Artificial Intelligence field in the recent years. In this thesis, we
introduce a new heuristic that can be used to find near optimal solutions
efficiently in two kinds of problems where uncertainty plays a major role,
namely robot localization and planning under uncertainty. Our focus is on
the perceptual ambiguity causing the agent’s unawareness of its actual state.
Our heuristic, named the pairwise heuristic, finds the optimal solution of the
problem for each pair of states assuming that the actual state is one of the
members of the pair with equal probability. It means that the problem is
solved in the case that uncertainty exists only between two states. A simple
greedy algorithm can use the pairwise heuristic to solve the main problem
efficiently.

1.1 Localization

Localization is the task of determining a robot’s position in a known en-
vironment. In this problem, the robot knows the possible observations in
different places of the environment, but it is unaware of its own location. It
should find out its position by comparing current observation with possible
observations in different places. The main issue is that sometimes one obser-
vation may arise in different places due to the symmetry in the environment
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1.1. Localization

Figure 1.1: A robot with a 360◦ range finder can not find its exact location
only with one observations.

or robot sensor limitations. Figure 1.1 shows an example of this situation.
In this kind of situation the robot should perform an action or even multiple
actions to localize itself.

Localization is an essential task in mobile robotics. A robot cannot be
called autonomous without the ability to localize itself. Furthermore, a robot
is often unable to perform other tasks without being aware of its location.
For example, robot navigation and search are tasks that are not possible
without knowing the position of the robot. A robot’s ability to localize
itself accurately and efficiently is the subject of numerous research papers in
recent years. It has been proven that localizing with minimum cost is an NP-
hard problem [6]. Therefore, researchers have sought to find near optimal
solutions efficiently. Active strategies are good candidates to fulfill these
two criteria: near optimality and efficiency. Some papers covering these
strategies have defined heuristics such as taking the robot to places with the
maximum number of new features [15] or choosing the actions that lead to
minimum expected number of possible states [4] Another active approach is
entropy-based that chooses the action that minimizes the expected entropy
[7]. In this thesis, we introduce a new active strategy based on the pairwise
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1.1. Localization

heuristic for the localization problem, that can be efficiently computed.
Our main contribution, however, is providing an algorithm to deal with

the problem of self similarity of environments. The problem is that, due to
the self similarity of the environment, the robot gains no further information
by performing basic actions. Examples of these situations are corridors,
identical offices and big rooms with no objects in them when the robot
uses a limited range laser sensor. In the first two cases, the robot merely
sees similar walls and in the third, it finds nothing in its laser range. If
the robot uses vision instead of a laser, it may find many similar places
in environments such as hospitals or schools. Many rooms look the same
in hospitals. Also, classrooms and offices may have the same pattern in
schools and the robot cannot localize itself until it exits a room. In these
cases, the robot should perform a sequence of actions instead of just one. In
this thesis, we propose an algorithm to generate optimal cost sequences that
can reduce the ambiguity in any situation. Also, this algorithm can be used
to determine whether or not a robot can localize itself in an environment.

In the pairwise heuristic, we find an optimal sequence of actions that can
localize the robot if the robot is uncertain about being in one of only two
states. For each pair of states, this optimal sequence is calculated. These
sequences are called macro actions. After finding all macro actions, a simple
greedy strategy can find the near optimal path for solving the localization
task in the main problem.

1.1.1 Related Work

Proof of NP-hardness of finding the optimal strategy for localization problem
was provided by Dudek et al. in 1995 [6]. After that, Tovey and Koenig [33]
proved that even minimizing the cost with factor c log n is NP-hard where
n is the total number of states. So researchers tried to find near optimal
solutions. Koenig et al. [17] proposed an O(log3 n)-factor algorithm on
grid-based maps and extended it to polygonal maps. The drawback of this
algorithm is that its high computational cost (Ω(n12)) allows it to be used
only in very small environments [32]. Rao et al. [27] also suggested a near
optimal randomized algorithm in polygonal maps. Both of these algorithms
assumed that actions and sensors are noise-free and hence their application
in real environments is still an open issue.

On the other hand, methods proposed for real environments address
concerns with noise and computational efficiency. Although researchers in
this area tried to minimize the action cost by choosing useful heuristics,
they did not discuss the bounds of the cost of the solutions that are found
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1.2. Planning under Uncertainty

by their active strategies. Jensfelt et al. [15] proposed a strategy based on
heuristics of going to the places with a maximum number of new features and
avoiding getting to previous positions. In the method proposed by Gasparri
et al. [9], the robot moves to the nearest obstacle in each step. Fox et al.
[7] proposed an active strategy that chooses the action that minimizes the
expected entropy in each step. Porta et al. [25] improved the computational
cost of their method by using particle filters. Murtra et al. [4] proposed
another method that minimizes the expected number of hypotheses instead
of entropy at each step. The computational cost of their algorithm was less
than the two previous algorithms that used entropy.

To solve the problem of self similarity, Fox et al. [7] put some relative
target points among their actions. The path planning from the current states
to the target points is done by the robot, but the target points themselves
are given by the domain expert. In the method proposed by Murta et
al. [4], some random target points were generated in a specific range from
possible locations and the selection process was performed among those
points. The range should be large enough to give the robot the ability to
localize in all circumstances and, in the larger ranges, many target points
are needed. This would increase the computational cost. The method we
propose generates all macro actions automatically and specifies the whole
path instead of just target points. Macro action generation is the subject of
some work in related fields as well. Work by He et al. [11][13] and Kurniawati
et al. [18] in planning under uncertainty and the work of McGovern [22] in
reinforcement learning are examples of macro action generation. However,
their approaches for generating macro actions and the reasons for using them
are quite different from ours.

1.2 Planning under Uncertainty

Planning under uncertainty has numerous applications in areas such as tar-
get tracking, robot navigation and assistive technology [5][14]. For example,
in a target tracking problem, the robot may be uncertain about target’s
exact position or its next move. As another example, a robot navigation
problem can be an extension of localization in that a robot wants to reach a
goal without knowing its current location (Figure 1.2). In these situations,
the robot should meet a goal, e.g. catching the target or getting to a specific
position, without being certain about the whole world where it is doing the
task.

Planning under uncertainty is well modeled by the POMDP framework.
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1.2. Planning under Uncertainty

Figure 1.2: Our robot in the localization example wants to reach the star
without knowing its current location. The location of the star, i.e. southeast
of the map, may help the robot choosing its first actions.

There has been good progress in solving POMDP problems more efficiently
in recent years. However, even the state of the art POMDP solvers are
still too computationally expensive for large problems. In this thesis we
propose a fast online approach for solving POMDPs. Our method achieves
total reward close to or better than the total reward gained by state of the
art POMDP solvers in much less time. This approach is a one step greedy
strategy that uses the pairwise heuristic.

The pairwise heuristic is an approximation of the optimal plan for pairs
of states. For each pair of states, we calculate the sequence of actions that
resolve the uncertainty and gain the maximum reward, if the agent is uncer-
tain about which one of the two states it is in. This calculation is done by
running the value iteration method on an MDP (Markov Decision Process)
whose states are pairs of states of the original problem. The whole process
is independent of the initial belief state and so can be done only once for
each domain. After obtaining the pairwise heuristic values, we use an online
greedy strategy using those values to choose the optimal action at each step.

We have tested our method on large classical POMDP problems in the
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1.2. Planning under Uncertainty

domains of robot navigation, target tracking and scientific exploration. The
results are very promising. The resultant solution is near optimal while
the time required is low. This is the first time that an online algorithm
gains near optimal reward with only one step look ahead search. Other
online approaches need to go deep in the search tree to get a good total
reward and that increases their computational cost [28]. In addition to
computational efficiency, unlike most of the POMDP solvers, the pairwise
heuristic is simple to understand and implement.

1.2.1 Related Work

There have been many publications on planning under uncertainty in the
last two decades. In one of the early works in 1994, Littman et al. [21]
introduced the QMDP method. QMDP tries to find the optimal strategy
assuming that the uncertainty is eliminated in the next step. This assump-
tion, however, is not realistic especially in large problems. Therefore, QMDP
does not usually work well. In 1996, Cassandra et al. [3] studied planning
under uncertainty in the domain of robot navigation. They proposed a strat-
egy that carries out localization and reward maximization simultaneously.
The problem with this strategy is that it only considers single step actions.
Localization, however, is sometimes not possible with only one action. One
of the successful early methods is the grid based approach. Examples of this
method are the work of Brafman in 1997 [1] and Poon in 2001 [24].

The point-based value iteration method was introduced by Pineau et
al. [23]. Smith and Simmons [30], Kurniawati et al. [20] and Poupart et
al. [26] also proposed algorithms that are based on point-based value itera-
tion. These methods produce significantly better results in comparison with
previous methods. However, they are computationally expensive and not
suitable for large problems. This problem of scalability led some researchers
to consider reducing the size of the problem by abstracting away some de-
tails and solving the reduced problem with a point-based solver. In 2005,
Roy et al. [29] used PCA to reduce the size of the state space and then
solve the resulted POMDP . Kaplow et al. [16] did this reduction in state
space with variable resolution decomposition. Furthermore, He et al. [19]
and Kurniawati et al. [12] proposed methods that ignored some observations
and solved the POMDP by macro actions. We should note that the reduced
POMDP in the work of He et al. is solved by forward search and not by a
point-based method.

Point-based approaches are all offline, in that all the planning is done
before execution of the strategy. Beside offline strategies, some researchers
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1.3. Organization of This Thesis

have worked on online approaches where planning and execution are inter-
leaved. As online methods focus only on the current belief state, they scale
better than offline approaches. However, the search tree in these methods
has to be expanded enough to produce a good solution. This is problem-
atic in domains with large action and observation spaces. A comprehensive
survey on online POMDP solvers was provided by Ross et al. in 2008 [28].

1.3 Organization of This Thesis

This thesis is about using the pairwise heuristic on the two problems of
localization and planning under uncertainty. Although the core concept
of the heuristic, i.e., solving the problem for pairs of states, is the same
in both problems, there are some differences between the heuristics of the
two problems due to the problems’ inherent differences. As a result, the
method and the experiments are set forth separately for each problem. The
thesis starts with the description of the problems we are focusing on in
chapter 2. We explain our method for performing localization in chapter 3.
Our algorithm for solving POMDPs is explained in chapter 4. Chapter 5
covers the experiments and the results. Finally, chapter 6 is dedicated to
discussion and conclusions.

1.4 Contributions of This Thesis

As explained above, we have invented methods based on the pairwise heuris-
tic for localization problem and planning under uncertainty. Our main con-
tribution to localization is proposing an efficient and entirely autonomous
method that can solve the localization problem in any environment. Also,
our method can be used to determine whether or not a robot can localize
itself in an environment. In the field of planning under uncertainty, our
contribution is finding a method that solves POMDPs quite efficiently. We
tested our method on large POMDP problems in different domains. The re-
sulting total reward is close to, if not better than, the total reward obtained
by other state-of-the the-art POMDP solvers while the time required to find
the solution is much less.

7



Chapter 2

Problem Definition

As with any other concept in computer science, localization and planning
under uncertainty should be studied in a mathematical framework. The
framework must be both complete enough to depict the phenomena accu-
rately and simple enough to predict the unknowns efficiently. However, these
two criteria usually compete. The Markovian framework balances these two
criteria quite well and as a result is a popular model in the field of Artificial
Intelligence. The methods in this thesis are all based on this framework.

2.1 Localization

Localization is the problem of finding a robot’s location in a given map.
The main concept in localization is the Belief which means the robot’s be-
lief about its current location. There are different classes of localization
methods based on their model for representing and updating the belief.
The most important types of localization are: Markov localization, Monte
Carlo localization, and extended Kalman filter localization, each with its
own drawbacks and advantages [31]. Our method is based on Markov local-
ization.

Localization consists of three steps: (i) action selection; (ii) performing
the action and updating the belief based on that action; and (iii) observing
and updating the belief based on that observation. First, we put aside
step (i) and explain the other two steps assuming that the action has been
selected. Next, we will go over step (i), i.e., the action selection.

In Markov localization [8], a map is a discrete set of states, S. The state
of the robot at step k is xk. The system is Markovian, in that the new
state of the robot only depends on the previous state and the action it took
in that state. In each state, the robot has an observation in a set of all
possible observations, O. The observation at step k is zk and the sequence
of all observations up to step k is Zk. A is the set of all possible actions
which the robot can perform. Each action a ∈ A in state s has a positive
cost, C(s, a). In addition, the action performed by the robot at step k is uk
and the sequence of all actions performed up to step k is Uk . A Graphical
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2.1. Localization

Figure 2.1: Graphical model of Markov localization.

Model of Markov localization is illustrated in Figure 2.1. The shaded nodes
are known.

During localization, the robot’s belief about being in state s is Bel(xk =
s).

Bel(xk = s) = p(xk = s|Uk−1, Zk) (2.1)

Since the system is Markovian, this probability is:

Bel(xk = s) = p(xk = s|uk−1, xk−1, zk) (2.2)

Suppose the robot is in xk−1 when it performs action uk−1. The belief
states will be updated as follows. In this step, belief is shown by B− because
only uk−1 and xk−1 are considered. B− does not include zk.

Bel−(xk = s) =
∑
s′

p(xk = s|xk−1 = s′, uk−1)Bel(xk−1 = s′) (2.3)

Since Bel−(xk) depends on Bel(xk−1), Bel(x1) should be given. If the
robot has some prior knowledge about its location, Bel(x1) is defined. On

9



2.2. Planning under Uncertainty

the other hand, in the case that the robot knows nothing, the probability
density of Bel(x1) is uniform across all states. That case is called global
localization.

After performing the action, when the robot observes zk, the belief states
will be updated, using Bayes’ theorem:

Bel(xk = s) = p(zk|xk = s)×Bel−(xk = s)/p(zk) (2.4)

These updates occur in steps (ii) and (iii) defined above. Even with a
random strategy in the action selection step, the robot may localize itself
after some actions. However, this accomplishment is not guaranteed, espe-
cially in self similar environments. In self-similar environments, the robot
may need to perform a sequence of actions instead of just one to observe
a change in the belief state. Even if the robot succeeds in the localization
task, it may take many actions with far higher cost than the optimal strat-
egy. Finding the optimal strategy is NP-hard [6], so the best alternative
is to find a near-optimal strategy for action selection to reduce the cost as
much as possible.

2.2 Planning under Uncertainty

In the planning under uncertainty problem, an agent wants to get the max-
imum discounted reward by performing a sequence of actions, while being
uncertain about its state. This problem is modeled by the POMDP frame-
work. There is a simpler problem in planning where the agent knows its
exact state. This problem is modeled by MDP (Markov Decision Process).
Although our main problem is POMDP, we need to explain MDPs as well
because we solve an MDP in the process of finding our heuristic. Solving
an MDP is computationally much cheaper than solving a POMDP with the
same set of states and actions.

2.2.1 MDP

Formally, an MDP is represented as a tuple (S,A, T,R, γ) where S is the
finite set of states, A is the finite set of possible actions, and T : S×A×S →
[0, 1] is the transition function, defining p(s′|s, a) for all s, s′ ∈ S and a ∈ A.
The system is Markovian, meaning the state in each step depends only on
the previous state and the most recent action.

10



2.2. Planning under Uncertainty

Figure 2.2: Graphical model of an MDP.

T (s, a, s′) = p(sk+1 = s′|sk = s, ak = a) (2.5)

R : S×A→ R specifies the reward for performing each action in each state.
Finally, γ is the discount factor, a positive value smaller than 1. The goal
is to choose a sequence of actions to maximize the expected total reward,
E[

∑∞
t=0 γ

tr(st, at)]. Graphical model of an MDP is shown in Figure 2.2.

2.2.2 Value Iteration

Value iteration is a method to solve an MDP. First, we need to define two
terms, policy and value function. The policy function is simply a map from
states to actions, π : S → A, defining what action the agent should perform
in each state. The total reward of a policy is called the value function. An
optimal policy is a policy which gains the maximum reward and its reward
is the optimal value function. In the planning with infinite horizon, which
is our case, the optimal value function converges to equilibrium:

V (s) = γmaxa[r(s, a) +
∑
s′∈S

V (s′)p(s′|s, a)] (2.6)

This equation is called the Bellman equation [31]. The optimal value func-
tions can be estimated by the value iteration method. In this method all
value functions are set to the minimum reward, rmin = mins,ar(s, a) and
get updated by the Bellman equation. Updating continues until the values
converge. The value iteration algorithm is shown as Algorithm 1.
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2.2. Planning under Uncertainty

Algorithm 1: Value Iteration Algorithm

Data: (S,A, T,R, γ)
Result: V (s) for all s ∈ S

1 foreach s ∈ S do
2 V (s) = rmin

3 repeat
4 foreach s ∈ S do
5 V (s) = γmaxa[r(s, a) +

∑
s′∈S V (s′)p(s′|s, a)]

6 until convergence

2.2.3 POMDP

A POMDP contains all the sets and functions of an MDP with the same
definition and also some additional concepts. A POMDP is represented as a
tuple (S,A,O, T, Z, b0, R, γ) where S, A, T , R and γ are exactly defined as
in MDP. O is the finite set of possible observations and Z : S×A×O → [0, 1]
specifies the probability of each observation after entering into a state by an
action, p(o|s, a) for all o ∈ O, s ∈ S and a ∈ A (note that s is the posterior
state). b0, S → [0, 1], is the initial belief state, the probability distribution
over possible initial states.

Z(s, a, o) = p(ok = o|sk+1 = s, ak = a) (2.7)

b0(s) = p(s0 = s) (2.8)

As the system is Markovian, the belief state in each step depends only
on the previous belief state and the most recent action and observation.

bk+1(s) ∝ Z(s, ak, ok)
∑
s′

T (s′, ak, s)bk(s′) (2.9)

As with an MDP, the goal is to choose a sequence of actions to maximize
the expected total reward, E[

∑∞
t=0 γ

tR(st, at)]. Figure 2.3 shows graphical
model of POMDP.
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2.2. Planning under Uncertainty

Figure 2.3: Graphical model of POMDP.

2.2.4 Solving POMDPs

It is possible to apply value iteration on a POMDP. However, as the states
are not observable, instead of a value function of the states, a value function
of the belief states should be calculated:

V (b) = γmaxa[r(b, a) +

∫
V (b′)p(b′|b, a)] (2.10)

This time, we are dealing with belief state space instead of original state
space. The number of different cases in belief state space grows exponen-
tially from the very first iterations. This makes the algorithm computa-
tionally very expensive. In fact, it is impossible to use value iteration for a
POMDP with more than a few states. So, we need to find another alterna-
tive to estimate the optimal policy. Point-based value iteration approaches
[23][30][20][26], grid based methods [24][1] , and heuristics [3] are some of the
alternatives to solve POMDPs. We discussed these approaches Chapter 1.
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Chapter 3

The Pairwise Heuristic for
Localization

We propose an active strategy based on the pairwise heuristic for action
selection in localization. In addition to the variables that should be defined
in Markov localization, we need to define additional variables based on those
ones for our action selection strategy. In this chapter, we will first define the
required variables for action selection. Then, we will explain our strategy
and the intuition behind using the pairwise heuristic for localization. Finally,
a method to deal with self similar environments is introduced and binded to
our active strategy.

3.1 Additional Variables

Considering the previous variables introduced in Chapter 2 for Markov lo-
calization, the new variables are: the observation difference between two
states, the transition function between states assuming the actions are de-
terministic, and the cost of an action when we deal with two states instead
of one.

d(s, s′) is the observation difference between two states s′ and s′ calcu-
lated as:

d(s, s′) =
1

2

∑
o∈O

[p(o|s)(1− p(o|s′)) + p(o|s′)(1− p(o|s))] (3.1)

Two states s and s′ are distinguishable if and only if d(s, s′) is greater than
a threshold γ. We should set a suitable value for γ based on the noise in the
observations.

Observation difference is a number in [0, 1]. When observation o has a
high probability in s and a low probability in s′, p(o|s).(1 − p(o|s′)) would
be close to 1 and when o has high probability in both states, (1− p(o|s′)) is
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3.2. Explanation of Algorithm for Action Selection

very small and as a result p(o|s).(1− p(o|s′)) is close to 0. So for the pairs
with similar high probability observations d(s, s′) is close to 0 but for the
states with different observations, it would be close to 1. Thus, when d(s, s′)
is above a threshold, for most of the expected observations s and s′ can be
distinguished from each other with high probability.

Let f∗(s, a) be the state that the robot goes to from state s with action
a in the noiseless case. We can assume that this state is the most probable
state that the robot goes to:

f∗(s, a) = argmaxs′p(s
′|s, a) (3.2)

If there is more than one s′ with maximum probability, we choose one of
them arbitrarily.

Last, we define the cost of an action for a pair of states:

C(s, s′, a) = max(C(s, a), C(s′, a)) (3.3)

3.2 Explanation of Algorithm for Action
Selection

The original idea for the strategy we are using comes from work in the
field of active learning by Golvin et al. [10]. They called their algorithm
EC2 (Equivalence Class Edge Cutting). To explain our strategy, we should
define a graph. The vertices of this graph are the states and the edges are
the actions. Two states s and s′ are connected to each other by action a if
and only if f∗(s, a) and f∗(s′, a) are distinguishable. The weight of the edge
is:

w(s, s′, a) =Bel(s)×Bel(s′)×
min(p(f∗(s, a)|s, a), p(f∗(s′, a)|s, a))/C(s, s′, a) (3.4)

If the robot assigns zero belief to either of the two states, the weight of
the edge would be 0, so there is no need to calculate the weight. We only
consider the edges between states with positive belief functions.

For each action a, w(a) is:
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3.3. Intuition

Algorithm 2: Action selection with basic actions

input : Belief states Bel(.), actions A and their costs C, observation
differences of all pairs d, and transition function f∗

output: a∗, the action to be performed by the robot

1 foreach a ∈ A do w(a) = 0
2 foreach s, s′, a do
3 if d(f∗(s, a), f∗(s′, a)) > γ then w(s, s′, a) =

Bel(s)×Bel(s′)×min(p(f∗(s, a)|s, a), p(f∗(s′, a)|s′, a))
/C(s, s′, a)

4 else w(s, s′, a) = 0

5 foreach s, s′, a do w(a) = w(a) + w(s, s′, a)
6 Select a∗ = argmaxaw(a)

w(a) =
∑
s,s′

w(s, s′, a) (3.5)

In each step of action selection, we choose the action with the highest
assigned weight:

a∗ = argmaxaw(a) (3.6)

The algorithm is shown as Algorithm 2.

3.3 Intuition

The intuitions behind the concept of weight and the action selection criteria
are explained most easily by an example. Each edge in the graph means the
action assigned to the edge can remove at least one of the two vertices from
belief states (not the states themselves but their subsequent states, f∗). So,
the action with highest weight has most power to distinguish between states,
especially the ones with higher probability.

Consider the map in Figure 3.1. The robot is initially in one of the
shaded squares, s1 to s4, and the beliefs of the robot are:

Bel(s1) = 0.2
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3.3. Intuition

Figure 3.1: Example of localization for intuition, the map and the observa-
tions

Bel(s2) = 0.2
Bel(s3) = 0.1
Bel(s4) = 0.5

We have an observation in each square, 0 or 1, as shown in the map. In
addition, the observation in s1 to s4 is 0. We have four actions: up, down,
right and left, all with unit costs. The actions and observations are noise
free. With these assumptions we would like to localize the robot with this
active strategy myopically. Which action should be chosen next? To answer
this question we build the graph (Figure 3.2). For example, if the robot
performs up, it will observe 1 if it is in s1 and it will observe 0 if it is in s2.
So after performing up at least one of these states would be removed. The
weights of the actions are:
w(up) = Bel(s1) ∗Bel(s2) +Bel(s2) ∗Bel(s3) +Bel(s2) ∗Bel(s4) = 0.16
w(down) = Bel(s1) ∗ Bel(s3) + Bel(s1) ∗ Bel(s4) + Bel(s2) ∗ Bel(s3) +
Bel(s2) ∗Bel(s4) = 0.24
w(right) = Bel(s1) ∗Bel(s4) +Bel(s2) ∗Bel(s4) +Bel(s3) ∗Bel(s4) = 0.25
w(left) = Bel(s1)∗Bel(s2)+Bel(s1)∗Bel(s4)+Bel(s2)∗Bel(s3)+Bel(s3)∗
Bel(s4) = 0.21
So right would be chosen. After performing this action either the robot
would know its exact position by observing 0 or a state with high probability
would be removed from the belief states. In the latter case, as the state was
not a correct hypothesis, this elimination is a significant achievement. On
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3.3. Intuition

Figure 3.2: Example of localization for intuition, the graph that is built in
our strategy

the other hand, if the robot performs up, with the chance of 0.8 it would
only eliminates a state with probability of 0.2. No matter what the robot
observes, actions down and left reduce the number of states with positive
probability to 2. This reduction is a good improvement, but the high prior
probability of s4 leads the algorithm to choose right.

The presence of min(p(f∗(s, a)|s, a), p(f∗(s′, a)|s′, a)) in the formula, is
a way to deal with noise. An action with greater noise has less chance of
being selected because the states would be removed from belief set only if
the action is performed accurately. We also consider the cost of the action
in our formula, because our goal is to perform the localization task with the
least possible cost.

In the active learning field, Golovin et al. proved that the cost of the
policy that is generated by EC2 is near optimal and its bound is:

C(πEC2) ≤ (2 ln(1/pmin) + 1)C(π∗) (3.7)

In their problem, the algorithm tries to select the correct hypothesis among
many by choosing a subset of tests with minimum cost from a set of all
possible tests. π∗ is the optimal policy and pmin is the probability of the
least probable hypothesis. In that problem tests are performed without noise
and the weights only contain probabilities of two hypotheses and their cost
[10].

18



3.4. Macro Actions

3.4 Macro Actions

There are many situations where, because of the symmetry in the environ-
ment, none of the actions are useful for localization. In these cases, we need
a sequence of actions instead of a single basic action. In this section we pro-
pose an algorithm that generates minimum cost sequences of actions that
solve the problem of localization no matter where the robot is. We call these
sequences macro actions.

Our strategy of action selection is based on the actions that distinguish
between each of a pair of states. So if there is a situation where no action
can be selected, it means that there is no action for any pair of states.
Therefore, we build the macro actions based on these pairs. In other words,
for any pair of states, we find a sequence of actions that can distinguish
between them. In generating these macro actions the actions are assumed
to be deterministic, so only f∗ is used.

3.4.1 The Macro Action Generation Algorithm

Algorithm 3 generates macro actions. For each pair of states, we should find
a macro action that can resolve the localization problem. This macro action
is called macro action(s, s′) and its cost is C(macro action(s, s′)). First we
set macro action empty for all pairs. Then, for each pair of s and s′ that
are distinguishable, macro action(s, s′) is set to zero with zero cost, which
means that without any action we can distinguish between them. In the next
step, we look at each pair with an undefined macro action (Line 11) and for
each basic action a we check whether macro action(f∗(s, a), f∗(s′, a)) is de-
fined or not (Line 12). If it is, we can build a path for s and s′ by adding a to
the head of macro action(f∗(s, a), f∗(s′, a)) (Line 24). The cost of the new
path would be max(C(s, a), C(s′, a)) + C(macro action(f∗(s, a), f∗(s′, a)))
(Line 25). However, we do not set this macro action at the first step. We
merely calculate the cost for all pairs and only set the macro actions of those
with minimum costs (Line 23). After the first step of calculating new macro
actions for all pairs and setting the minimum sequences, we repeat this step
and recalculate the paths, find minimum ones (Line 14 and Line 18) and
update them (Lines 23-26). We repeat this step until no macro action can
be built. Most of the time this would happen because we have already built
the macro actions for all of the pairs, but there may be situations when
there exist two states for which we cannot find a sequence. In this situation,
we can say that if the robot is in one of these states, it can never localize
itself. In fact, our algorithm can be used as a test to see whether a robot
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3.5. Performing Active Localization with Macro Actions

can always localize itself in the map.
Algorithm 3 generates exactly one action sequence for each pair of states.

This sequence is optimal in deterministic environments and near-optimal in
noisy environments. The proof of optimality of these sequences in determin-
istic environments is given in the Appendix.

3.5 Performing Active Localization with Macro
Actions

The localization algorithm with macro actions, Algorithm 4, is quite similar
to Algorithm 2. This time, we consider not only the basic actions of the
robot, but also macro actions that were generated previously. To consider
the macro actions in the graph we should define f∗ and the cost for them. If
we have a macro action a′ that is a sequence of basic actions 〈a1, a2, ..., al〉,
then f∗(s, a′) is calculated by this recursive formula:

f∗(s, 〈a1, ..., al〉) = f∗(f∗(s, 〈a1, ...al−1〉), al) (3.8)

The cost of this macro action for states s and s′ is calculated the same way
we calculate costs in generating macro actions:

C(s, s′, 〈a1, ...al〉) =max(C(s, a1), C(s′, a1))+

C(f∗(s, a1), f
∗(s′, a1), 〈a2, ..., al〉) (3.9)

Also, p(f∗(s, a′)|s, a′) is obtained by the following formula:

p(f∗(s, 〈a1, ..., al〉)|s, 〈a1, ..., al〉) = p(f∗(s, a1)|s, a1)×
p(f∗(f∗(s, a1), 〈a2, ..., al〉)|f∗(s, a1), 〈a2, ..., al〉) (3.10)

The other parts of the algorithm are exactly the same. The algorithm is
shown as Algorithm 4.

The whole localization task consists of two main parts, i.e. offline com-
putation and online computation. Offline part is performed only once for
each environment but the online computation should be executed each time
the robot wants to localize itself. The main algorithm in offline part is Al-
gorithm 3. The online computation is performing Algorithm 4 iteratively
until the robot finds its actual location. Offline and Online computations
are discussed in detail in Chapter 6.
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Algorithm 3: Macro actions Generation

input : Set of states S, actions A and their costs C, observation
differences of all pairs d, and transition function f∗

output: Macro actions for all pairs of states

1 MAX = very large value
2 foreach s, s′ do macro action(s, s′) = ∅
3 foreach s, s′ that d(s, s′) > γ do
4 macro action(s, s′) = 0
5 C(macro action(s, s′)) = 0

6 min set = {(s1, s2, a1)} //set this value just to enter the while loop
at first

7 while min set 6= ∅ do
8 min set = ∅
9 min cost = MAX

10 foreach s, s′, a that macro action(s, s′) = ∅ do
11 if macro action(f∗(s, a), f∗(s′, a)) 6= ∅ then
12 if C(s, s′, a) + C(macro action(f∗(s, a), f∗(s′, a))) =

min cost then
13 add (s, s′, a) to min set

14 if C(s, s′, a) + C(macro action(f∗(s, a), f∗(s′, a)))
<min cost then

15 Set min set empty
16 add (s, s′, a) to min set
17 min cost =

C(s, s′, a) + C(macro action(f∗(s, a), f∗(s′, a)))

18 foreach (s, s′, a) in min set do
19 macro action(s, s′) = 〈a,macro action(f∗(s, a), f∗(s′, a)〉
20 C(macro action(s, s′)) = min cost
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Algorithm 4: Action selection with macro actions

input : Belief states Bel(.), actions A and their costs C, observation
differences of all pairs d, and transition function f∗, and
macro actions

output: a∗, the action or the sequence of actions that should be
performed by the robot

1 A′ = ∅
2 foreach s, s′ that Bel(s)×Bel(s′) > 0 do add macro action(s, s′) to
A′

3 foreach a′ ∈ A′ do w(a′) = 0
4 foreach s, s′, a′ do
5 if d(f∗(s, a; ), f∗(s′, a′)) > γ then w(s, s′, a′) =

Bel(s)×Bel(s′)×min(p(f∗(s, a′)|s, a′), p(f∗(s′, a′)|s′, a′))
/C(s, s′, a′)

6 else w(s, s′, a′) = 0

7 foreach s, s′, a′ do w(a′) = w(a′) + w(s, s′, a′)
8 Select a∗ which a∗ = argmaxa′w(a′)
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Chapter 4

The Pairwise Heuristic for
Planning Under Uncertainty

Our approach to solving a POMDP is a one step greedy search using the
pairwise heuristic. In this chapter, we first explain the intuition behind using
the pairwise heuristic for planning under uncertainty. Then, the pairwise
heuristic is explained in detail. Finally, we explain the greedy strategy that
uses the heuristic.

4.1 Intuition

In an MDP, the only goal is maximizing the reward. But when we deal
with uncertainty, information gathering and ambiguity resolution must be
considered as well. Actually, a POMDP solver implicitly does information
gathering and reward maximization simultaneously. Cassandra et al. [3]
and He et al. [12] used this fact in developing their approaches and we use
it as well. We use the term localization with a little change to its classical
meaning to explain our approach in gathering information. As mentioned
before, localization means finding the robot’s current state [31], where the
state is the robot’s position. Similarly, in our approach localization means
finding the actual current state in the problem. But this time, the state is
more general than the agent’s position. For example, in the target tracking
problem, the position of the agent and the target are both part of the state.

Let us explain the intuition with a simple example. Consider the map
shown in Figure 4.1. A robot wants to go to the goal state, cell G, knowing
that it is in cell A or cell B with equal probability at first. The actions
are deterministic. The observation in all of the states except cells C, D,
E and F is o0. In cells C and E the observation is o1 and in cells D and
F the robot observes o2. These observations are completely different, that
is o0 6= o1, o1 6= o2, o0 6= o2. How can the robot reach the goal state in
the minimum number of steps? If there were no uncertainty and the robot
knew it was in A or knew it was in B, it could reach the goal in only 4 steps.

23



4.2. The Pairwise Heuristic

But with uncertainty, going left or right doesn’t help the robot. It should
determine its exact position while traveling to the goal state. If it goes
down for 3 steps it would then know its exact position and reach the goal
in 3 steps after that. So it would reach the goal in 6 steps. Alternatively,
it could go up for two steps and find itself. After those 2 steps, the robot
could reach the goal in 6 steps. So this policy takes 8 steps and is worse
than the previous one, even though it removes the uncertainty sooner. In
this robot navigation problem the solution contains two parts, a path before
localization and a path after that. In the optimal strategy, the aggregate of
those two paths should be minimal. Actually, this structure is nearly the
same in the general robot navigation problem with uncertainty. In nearly
all of the robot navigation problems that deal with uncertainty, the robot
should remove the uncertainty during its path toward the goal and the path
should be optimal. Finding the solution for this problem is difficult if the
robot is uncertain about being in many states. But if the uncertainty is
limited to only two states, the problem is not that hard. We can solve
the problem for every pair of states and then use these solutions to solve
the main problem. In addition we can generalize this solution to cover all
problems in planning with uncertainty. Instead of minimizing the number
of steps for the paths to achieve localization and after localization, we find
the reward maximizing path for localization and after localization for each
pair of states and then use these paths as a heuristic for the main problem.

4.2 The Pairwise Heuristic

As explained above, the heuristic needs an optimal sequence of actions for
each pair. We call the reward of this optimal sequence, the value function
of the pair. To explain how to find these sequences, we assume that we only
want to do the localization task for each pair at first. A similar method to our
approach for localization in previous chapter is used for doing this task. We
use distinguishable pairs again, i.e. the pairs that do not need localization.
In fact, there is a little difference in defining distinguishable states in the
new approach in comparison to previous one as the world model is more
complex in a POMDP. For other states, we can carry out the localization
by going to distinguishable pairs. After the localization, the current state is
determined and to fulfill the reward maximization goal we just need to solve
the problem in the MDP framework. One could argue that as the states are
partially observable and the actions are not deterministic, the uncertainty
about the state may arise again. In this situation we do the localization task
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Figure 4.1: The map of the example for intuition. The robot wants to go to
cell G while being uncertain about its initial position: cell A or cell B. The
localization information is in cells C, D, E and F.

again. This task is further explained in the next sections of the chapter.
As the observation depends on both the state and the action that leads

to that state, instead of finding distinguishable states, we find states distin-
guishable by an action. Two states are distinguishable by an action if, after
performing that action, there is a high probability that different observa-
tions are recorded in the two states. Formally, s and s′ are distinguishable
by action a if and only if:

o∗ = argmaxop(o|s′′, a)
o′∗ = argmaxop(o|s′′′, a)

∑
s′′,s′′′

p(s′′|s, a)p(s′′′|s′, a)[p(o∗|s′′, a)(1− p(o∗|s′′′, a))+

p(o′∗|s′′′, a)(1− p(o′∗|s′′, a)] ≥ 2λ (4.1)

λ is a constant that is specified by a domain expert. If it is 1, the obser-
vations should be completely different. But, as in the localization problem
where a robot is usually considered localized if the probability of an state
is more than a threshold like 0.95, we can set this threshold to a value less
than 1 in noisy environments. As shown in the formula the observations that
are considered are the most probable observations of the posterior states. If
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there is more than one observation with maximum probability, one would
be chosen arbitrarily.

For states s and s′ distinguishable by action a the value is set to:

V (s, s′) = 0.5[R(s, a) +R(s′, a) + γ × (V (s) + V (s′))] (4.2)

V (s) and V (s′) are the value functions of s and s′ in the underlying MDP.
Also, u(s, s′), the optimal action of s and s′ is set to a. In the case that there
are more than one action that can distinguish between two states, the one
with maximum average reward (0.5[R(s, a) +R(s′, a) + γ × (V (s) + V (s′))])
would be chosen.

To find the value function and optimal action for indistinguishable pairs,
we use a value iteration algorithm in an MDP where the states are pairs of
states of our original problem. The transition function is determined as
follows:

s∗ = argmaxs′′p(s
′′|s, a)

s′∗ = argmaxs′′p(s
′′|s′, a)

p((s∗, s′∗)|(s, s′), a) = 1 (4.3)

∀s′′, s′′′ : s′′ 6= s∗ ∨ s′′′ 6= s′∗ : p((s′′, s′′′)|(s, s′), a) = 0 (4.4)

The equations above show that we ignore the noise of actions in the new
MDP and consider only the most probable posterior states. Again, if there
is more than one most probable state, one would be chosen arbitrarily. Also
the reward, R((s, s′), a) is equal to 0.5[R(s, a) +R(s′, a)] where R(s, a) and
R(s′, a) belong to the original problem. We run the value iteration only for
indistinguishable pairs. The initial value function for these pairs is set to
the minimum reward in the main problem. Actions are the same as actions
in the original problem. In addition, the discount factor of the new MDP is
the same as the discount factor of the original problem. This algorithm is
shown as Algorithm 5.

As shown above, we use the value of 0.5 in all of the equations for value
functions which gives the unweighted average. This means we assume equal
probability for the two states in computing their optimal action and value
function. The states may not have equal probability in the original problem,
but the pairwise value function is used as a heuristic and does not need to be
exact. By using this simplification, obtaining value functions and optimal
actions does not depend on the initial belief state and would be an offline
calculation. So for each domain, we only need to run this algorithm once.
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Algorithm 5: Finding the value functions and optimal actions for the
pairs

Data: (S,A,O, T, Z,R, γ)
Result: V (s, s′) and u(s, s′) for all pairs

1 Calculate value functions, V (S) of MDP (S,A, T,R, γ)
2 foreach pair (s, s′) do V (s, s′) = Rmin

3 foreach pair (s, s′) and action a do
4 R((s, s′), a) = 0.5[R(s, a) +R(s′, a)]

5 foreach pair (s, s′) and (s′′, s′′′) and action a do
6 p((s′′, s′′′)|(s, s′), a) = 0
7 s∗ = argmaxŝp(ŝ|s, a)
8 s′∗ = argmaxŝp(ŝ|s′, a)
9 p((s∗, s′∗)|(s, s′), a) = 1

10 foreach pair (s, s′) distinguishable by action a do
11 V (s, s′) = 0.5[R(s, a) +R(s′, a) + γ(V (s) + V (s′))]
12 u(s, s′) = a

13 repeat
14 foreach indistinguishable pair (s, s′) do
15 Vk(s, s′) =

maxa[R((s, s′), a) + γ
∑

s′′,s′′′ V (s′′, s′′′)p((s, s′)|(s′′, s′′′))
16 u(s, s′) =

argmaxa[R((s, s′), a) + γ
∑

s′′,s′′′ V (s′′, s′′′)p((s, s′)|(s′′, s′′′))

17 until convergence

4.3 The Greedy Strategy

To solve the POMDP, we only need a one step greedy strategy that uses the
value functions of the pairs. In each step, the selected action should maxi-
mize the expected total value function of the pairs. However, the expected
instant reward of the actions should be considered as well. We ignore the
noise of actions in the greedy strategy. As a result the selected action is:

s∗ = argmaxs′′p(s
′′|s, a)

s′∗ = argmaxs′′p(s
′′|s′, a)

a∗k = argmaxa
∑
s,s′

[(0.5(R(s, a) +R(s′, a)) + γV (s∗, s′∗))bk(s)bk(s′)] (4.5)
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Algorithm 6: Choosing the optimal action in step k

Data: (S,A,O, T, Z, bk, R, γ), compare ratio
Result: Optimal action, a∗k

1 maxBel = maxsbk(s)
2 S′ = {s|bk(s) ≥ maxBel/compare ratio}
3 A′ = {a|a = u(s, s′) s, s′ ∈ S′}
4 if |S′| = 1 then
5 a∗k = optimal action of S′ in the MDP

6 else
7 foreach a ∈ A′ do
8 foreach s ∈ S′ do s∗ = argmaxs′p(s

′|s, a)
H(a) =

∑
s,s′ [(0.5(R(s, a) +R(s′, a)) + γV (s∗, s′∗))bk(s)bk(s′)]

9 a∗k = argmaxa∈A′H(a)

We should note that maximization is not done over all possible actions
and the selected action should be the optimal action for at least one pair
of states. Also, one may argue that using value functions of the pairs is
a kind of localization strategy (to be precise both localization and reward
maximization) and the algorithm may get stuck in localization and never
collect rewards. This is, in fact, true; so to resolve this issue only the
states with probability greater than a specified threshold are considered in
the heuristic. This threshold is relative and is equal to the probability of
the most likely state divided by a constant greater or equal to 1 which is
specified by the domain expert. This constant is called the compare ratio. If
in one of the steps of the planning the probabilities of all states, except the
most likely one, become less than the threshold, the selected action would
be the optimal action of the underlying MDP for that most likely state in
that step. Obviously, as the compare ratio is greater than or equal to 1, the
probability of the most likely state is always above threshold. The whole
strategy is shown as Algorithm 6.

The whole algorithm for solving the POMDP contains two main com-
putations, i.e. offline and online. The offline part, Algorithm 5, is executed
only once for each problem no matter what the belief state is. On the other
hand, the online part, which is performing Algorithm 6 iteratively, should
be performed every time we want to solve the problem. We shall discuss
these two computations in detail in Chapter 6.
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Chapter 5

Experiments and Results

For our experiments, we use test benchmarks and methods that test our
main contributions to the field. In localization our main contribution is
accomplishing the task in self-similar environments. The most important
part of our algorithm that helps us in these environments is the part where
we use macro actions. As a result, our test benchmark in localization is a
self-similar environment. We tested the pairwise heuristic both with and
without using macro actions to show the advantage of using macro actions.
In planning under uncertainty, our main contribution is the computational
efficiency. Therefore, our test benchmarks are large problems. Also, we
include the results of the state of the art POMDP solvers in our reporting
to show the efficiency of the pairwise heuristic.

5.1 Experiments on Localization

We simulated a robot with a noisy laser range finder in a 30m × 18m self
similar environment, shown in Fig. 5.1. It has long corridors (14m) that
are usually the main cause of similarity in real environments for laser range
finder robots. The angular resolution of the range finder is 1◦ and its max-
imum angular range is 240◦. The maximum laser range is 10m. The basic
actions are going 20cm forward, backward, left and right and also turning
5◦ clockwise or counterclockwise, all with unit costs. All actions are per-
formed accurately only 85% of the time. The grid size for the state space
is (20cm, 20cm, 5◦) and as a result, there exist 2,881,196 pairs of indistin-
guishable states.

Our macro action generation method generated 6,073 macro actions with
lengths of 1 to 31 for this environment. To show the effect of macro actions,
we tested our method with and without macro actions. In the case where we
only used basic actions, when there was no action able to reduce uncertainty,
a random basic action was generated. In both tests the robot is considered
localized, if and only if its certainty about its position is greater than 0.95
or the number of basic actions performed exceeds 500. We ran 1000 trials
of global localization and tested both strategies in each trial. In each trial,
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5.1. Experiments on Localization

Figure 5.1: The map of the self similar environment used in the experiment.
The environment is 30m× 18m. The width of the corridors is 2m and their
maximum length is 14m.

Table 5.1: Fraction accomplished in the localization task with fewer than
500 basic actions with and without macro actions

Method Fraction accomplished

Macro actions 100%

Basic actions and random walk 86.2%

the initial location was selected randomly from the locations which have
the same observation in the noiseless case with at least one other location,
meaning that the robot has to perform at least one action to accomplish
the localization task. The strategy of using macro actions, succeeded in all
the trials in less than 500 actions. The other strategy failed to accomplish
the task in less than 500 actions in 138 trials (Table 5.1). Moreover, in
the trials where both strategies accomplished the task, the macro action
strategy performed the localization task significantly better than the other
one on average, using fewer than one third the basic actions. The average
number of basic actions that are needed for localization in successful trials
is shown in Table 5.2.
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Table 5.2: Number of average basic actions for localization in successful with
and without macro actions

Method Average number of basic actions

Macro actions 25.61

Basic actions and random walk 79.13

5.2 Experiments on Planning under Uncertainty

We tested our algorithm on three large problems in the POMDP literature
in three different domains: robot navigation, target tracking and scientific
sampling. We also tested two state of the art POMDP solvers, HSVI2 and
SARSOP, and compared the total reward and the time required for these
approaches with our method. For both solvers we used the implementations
available from the inventors of those methods, ZMDP 1.1.7 for HSVI2 1 and
APPL 0.94 for SARSOP 2. The problems are as follows:

Fourth: This is a robot navigation task in a topological map constructed
from the fourth floor of the CIT building, Brown University. Fourth was
introduced by Anthony Cassandra in his Ph.D. thesis [2]. The description of
the problem including all states, actions, observations, the discount factor is
available in an standard format3. There are 1052 states, 4 actions of {Rotate
left, Rotate right, Go forward, Catch Goal} and 28 different observations in
this problem. Action Catch Goal has a reward of +1 in the goal states
and −1 in other states. All other actions have zero reward everywhere. The
robot is uncertain about where it starts. Its initial position may be anywhere
except goal states. The discount factor is 0.99. The size of this problem does
not seem great, but the noise in actions and observations make this problem
very challenging. Another feature of this problem is that it models a real
environment and it is a good example of a practical problem in planning
under uncertainty.

Homecare: This is a target tracking problem for care-taking, introduced
by Kurniawati et al. in their paper on SARSOP [20]. In this problem, a
robot should follow an elderly person who moves in a fixed path. However,
the motion of the person is non-deterministic. In each time step, the person
may stop or continue his path with equal probability. Also, the visual field

1http://www.cs.cmu.edu/ trey/zmdp/
2http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
3http://www.cs.brown.edu/research/ai/pomdp/examples/
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5.2. Experiments on Planning under Uncertainty

Figure 5.2: The map for Homecare. The figure is from [20].

of the robot is limited and the robot can observe the person only if he is close
enough. There is a bathroom along the path where the person may stay for
some time. A call button is at the bathroom which calls the robot to come for
help. This button stays on for a non-deterministic duration. The robot gets
reward only if it arrives when the button is on. The robot should stay close
to the person to know its current position and more importantly reach the
bathroom in time. On the other hand, it should minimizes its movements for
power consumption. The environment of this problem including the path,
the bathroom, and the visual field of the robot is illustrated in figure 5.2.
This problem has 5, 408 states and 30 observations. The actions are North,
South, East, West, North East, North West, South East, South West, Stay.
The robot gets +100 reward if it reaches the bathroom in time. Action Stay
has 0 value reward and the reward of moving in the main directions is −1.
Other directions lead to −1.44 reward. The discount factor is 0.95.

Rock Sample: This problem was introduced by Smith and Simmons in
their paper on the HSVI approach [30]. Rock sample is a scientific explo-
ration problem where a rover wants to collect rocks in an n× n map. Some
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Figure 5.3: The map of RockSample[7,8], showing the initial location of the
rover and all rocks. The figure is from [30].

of the rocks are good and some of them are bad. The robot gains +10
reward by sampling good rocks and gains −10 by sampling the bad ones.
Also exiting the map has the reward of +10. The rover’s position and the
locations of the rocks are fully observable, but the robot is uncertain about
the value of each rock (good or bad). The action set is {North, South, East,
West, Sample, Check1,. . . , Checkk} where k is the number of the rocks. All
actions except Sample have zero reward. The action Checki gives the rover
information about the value of rocki. The accuracy of this information de-
pends on the distance of the rover to rocki. The information is 100 percent
accurate if the robot is in the location of rocki and the accuracy decreases
when the robot goes further form the rock. The problem of rock sampling
in an n × n map with k rocks is specified as RockSample[n,k]. The map of
RockSample[7,8] which we use in this paper is shown in Figure 5.3. In this
problem, the discount factor is .95 as in Homecare.

The general parameters of the problems are shown in Table 5.3.
All approaches were tested on a personal computer with Intel core i7-

2600K 3.40 GHz CPU and 16GB DDR3 RAM. The operating system was
Ubuntu 10.4 and the programming language for all methods was C++. All
methods were compiled with g++ 4.4.3. We tested HSVI2 and SARSOP
on the problems many times to find the optimum reward that they could
gain and the minimum time needed for that reward. In the cases that these
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5.2. Experiments on Planning under Uncertainty

Table 5.3: General parameters of the POMDP problems

Problem |S| |A| |O| γ

Fourth 1,052 4 28 .99
RockSample[7,8] 12,545 13 2 .95

Homecare 5,408 9 30 .95

Table 5.4: The parameters of the pairwise heuristic in the POMDP problems

Problem λ compare maximum
ratio iterations

Fourth .56 6 551
RockSample[7,8] .85 3 151

Homecare 1 6 201

strategies could not reach optimal reward the reported reward is the reward
of running theses algorithms for an hour. For all three methods we found
the average reward for performing the test on a run of 1000 trials. We then
determined the range of average rewards achieved over a set of 10 runs of
the methods, and report the range and its midpoint. The time needed is
not the same in all trials for our approach as it is online and in one trial the
agent may reach the goal in fewer steps. Because of this, we reported the
maximum total time (including all steps) among all trials. We should add
that in performing a test, the code would continue until the agent reaches
the goal states or the possible instant reward gets lower than 0.005. It means
that the loop terminates when for the loop variable, t, γtmaxs,a|R(s, a)| is
less than 0.005. The maximum number of iterations, compare ratio and λ in
all four problems are shown in Table 5.4. The reward and the time needed
for all problems and methods are in Table 5.5. We could not find the reward
of HSVI2 for the Fourth problem as we got a “bad alloc” error after a few
seconds of running the method.

As shown in Table 5.5, the pairwise heuristic gains a higher reward than
HSVI2 and SARSOP in the Fourth problem and its reward in the other two
problems is close to the reward of the other methods with only one step
search and in much less time. The offline time column in Table 5.5 is a
little confusing especially because we put zero for our method. Actually,
the offline computation in HSVI2 and SARSOP is different from our offline
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5.2. Experiments on Planning under Uncertainty

Table 5.5: The average reward and the time required for the methods on
the POMDP problems

Average Offline Online
Method reward time(s) time(s)

Fourth
Pairwise Heuristic .56± .02 0 0.06

SARSOP .53± .01 3651.56 0

RockSample[7,8]
Pairwise Heuristic 18.76± .23 0 0.03

HSVI2 21.20± .15 80.00 0
SARSOP 21.22± .12 31.33 0

Homecare
Pairwise Heuristic 15.79± 0.81 0 0.45

HSVI2 16.44± .85 1108.00 0
SARSOP 16.85± .63 302.19 0

Table 5.6: The time required for the offline stage of the pairwise heuristic

Problem Time (s)

Fourth 4.68
RockSample[7,8] 231.69

Homecare 77.96

computation. Unlike our method, the offline computation in HSVI2 and
SARSOP is dependent on the initial belief state. As a result, they should
be performed again each time the initial belief state changes. But, our
offline part should be performed only once for each problem, no matter
what the initial belief state is. Table 5.6 shows the time required for the
offline computation in our pairwise heuristic method. Also, note that the
total online time is the time needed to find and execute the entire plan; it
is not the time required for just one step.

Table 5.5 shows that the pairwise heuristic is definitely a better approach
for solving the Fourth problem and its time needed for solving RockSam-
ple[7,8] and Homecare is much less than the time needed for other methods.
In regards to RockSample[7,8] and Homecare, one may argue that even
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5.2. Experiments on Planning under Uncertainty

Table 5.7: The rewards gained by SARSOP and HSVI2 for different times
on RockSample[7,8] compared to the pairwise heuristic

Average Total
Method reward time(s)

Pairwise Heuristic 18.76± .23 0 + 0.03
SARSOP 7.35± .00 0.22 + 0
SARSOP 17.57± .30 0.37 + 0

HSVI2 10.43± .00 2.00 + 0
HSVI2 13.87± 0.12 4.00 + 0

Table 5.8: The rewards gained by SARSOP and HSVI2 in different times
on Homecare compared to the pairwise heuristic

Average Total
Method reward time(s)

Pairwise Heuristic 15.79± .81 0 + 0.45
SARSOP 14.44± .67 230.12 + 0

HSVI2 14.36± .52 250.00 + 0

though SARSOP and HSVI2 need more time to gain the optimum reward,
they might gain the same or even higher reward than our method in its
required time (0.03s for Rocksample and 0.6 for Homecare). For Rocksam-
ple problem, we tested these methods in 0.22s, 7 times our time needed and
0.37s, 10 times our time needed for SARSOP and 2.00s and 4.00s for HSVI2
and show the results in Table 5.7. As shown, they achieve less reward in 10
times the time required by the pairwise heuristic.

For Homecare, SARSOP needs 208s only for initialization, meaning that
it can not generate any policy in less than 460 times the time required by
the pairwise heuristic. Initialization time is 244s for HSVI2. We report the
reward of SARSOP in 230.12s, and HSVI in 250s in Table 5.8 showing that
these methods gain less reward in more than 500 times the time required by
our method.

Our experiments on localization show the necessity of macro actions
for performing the task successfully in self-similar environments. Also, the
experiments on different POMDP problems illustrate the computational ef-
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ficiency of the pairwise heuristic.
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Chapter 6

Discussion and Conclusions

In this chapter, we will first go over the computational and memory costs of
our algorithms, and the methods that can be used to reduce this cost. Also
advantages and drawbacks of pairwise heuristics are discussed. Finally, the
conclusion and possible future work are represented.

6.1 The Pairwise Heuristic in Localization

Our method puts most of the computational work into the offline computa-
tion that is done only once per map and can be used many times. The most
time consuming algorithm in this computation is the algorithm for macro
action generation. On the other hand, we try to make the online part of our
method as fast as possible and use a common technique to reduce its time
complexity.

6.1.1 Offline Computation

The first precomputation is calculating p(o|s) for all observations and states
and putting them in a lookup table as in [7]. This lookup table reduces the
time needed for updating beliefs after an observation and also finding distin-
guishable pairs. The second precomputation is generating macro actions for
all pairs of states. This algorithm is quite expensive and in the case where all
actions have unit cost, it takes O(|S|2 × k) where k is the maximum length
optimal path required to distinguish two states. In the worst case k would
be O(|S|) and the total time needed is O(|S|3). But usually k is far less than
|S|. For actions with different costs, if the cost of the maximum cost action
is Cmax and the cost of minimum cost action is Cmin, in the worst case, the
computational cost would be O(|S|3×Cmax/Cmin). Cmax/Cmin is the max-
imum length of a sequence of actions that could be replaced by one single
action. For each pair the macro action should be stored and this requires
|S|(|S| − 1)/2 memory. For memory usage efficiency, we need only store the
macro actions for the states that are not distinguishable, not storing empty
sets.
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6.2. The Pairwise Heuristic in Planning under Uncertainty

6.1.2 Online Computation

In the online stage of the method, if there are n states with positive prob-
ability, action selection takes O(n2 × |A′|) where A′ is the set of candidate
actions and macro actions. A common method for reducing computational
cost is to assume the probability density is a mixture of Gaussians [7] [4]. To
do this, states with a probability higher than a threshold would be selected
and assumed to be the mean of Gaussian densities that model the probabil-
ity of all states. If the number of these means is m, the complexity of the
action selection is O(m2× |A′|). This computational cost is O(n×m× |A|)
for entropy based localization [7] and as m� n our approach is much more
efficient.

In the case where the robot has no prior knowledge about its position
(global localization), to avoid high computational cost the robot selects the
first few (3 to 10) actions randomly because the number of possible states
is very large, but it would drastically reduce in the first few steps.

6.1.3 Advantages and Drawbacks

The two main advantages of pairwise heuristic in localization are compu-
tational efficiency and success in self-similar environments. However, this
heuristic has one major drawback. Our method is based on Markov local-
ization which means that we need to represent states explicitly. A large
number of states is needed for large environments especially for 3D naviga-
tion. As a result, our method is more useful for 2D navigation in small to
medium-sized self-similar environments where single action-based methods
do not work.

6.2 The Pairwise Heuristic in Planning under
Uncertainty

As in localization, most of the computational work is in the offline part
of the method. This part is run only once per environment and is totally
independent of the initial belief state. In fact, the computational cost of
our method, even in the offline part, is not very high and does not create
any problems. The major drawback of the pairwise heuristic is its memory
requirement.
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6.2.1 Offline Computation

The first stage in our method is solving the underlying MDP of the problem.
The value iteration method is used for this part. Each iteration of this
method takes O(|S|2 × |A|) in the worst case. In fact, the actual time is a
lot less, usually. In the Bellman equation, we need to consider only the states
where the agent can go from the source. We borrow the terms neighbor and
degree from graph theory. State s′ is considered as a neighbor of state s
if and only if there exists an action a ∈ A which p(s′|s, a) is larger than
zero. Each iteration takes O(D) where D is the total degree of the states.
Usually, D = Θ(|S|) so each iteration takes O(|S|). The value functions
converge very quickly. We ran only 1000 iterations to obtain them in our
experiments.

The most important component of the offline computation, and also
the whole method is the algorithm for finding value functions of the pairs.
In fact, this algorithm is a value iteration of an MDP with the set of all
pairs as the state space. To be more precise, it is a value iteration only on
indistinguishable pairs. But the number of indistinguishable pairs could be
very close to the total number of pairs. As a result, each iteration should
take O(|S|4×|A|) time in the worst case. However, as we only consider most
probable states in the transition function, each iteration takes O(|S|2×|A|).
Again, we ran 1000 iterations for our problems.

6.2.2 Online Computation

In each step, we only need to calculate the heuristic for each action which
needs the value functions of the pairs. As the total number of the pairs
is |S|2, the worst time for each step is O(|S|2 × |A|). However, only the
states with the probability of larger than a certain threshold are selected
and the number of these states is much less than the total number of states,
|S′| << |S|. As a result, the time needed for each step, O(|S′|2), is usually
much less than the time of the worst case scenario. Also, updating the
belief state, which is common to all methods, takes O(|S|2) in the worst
case. Similar to the analysis in the offline part, the time it takes to update
the belief state can be presented as O(D) and as a result is usually O(|S|).

6.2.3 Memory usage

In addition to the memory that is needed to represent the POMDP, we need
to save |S|2 value functions of the pairs, |S|2 optimum actions of the pairs,
|S| value functions of the underlying MDP and |S| optimum actions of the
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underlying MDP. As a result, additional memory usage is O(|S|2) which
is not a problem for solving a POMDP in general since representing the
transition function alone needs O(|S|2 × |A|).

6.2.4 Advantages and Drawbacks

The most important advantage of the pairwise heuristic in solving POMDPs
is computational efficiency. Large problems with thousands of states can be
solved in less than a second, turning the algorithm into a real-time approach.
The resulting reward of the pairwise heuristic is close to or even better
than the reward gained by the state of the art POMDP solvers while its
execution time is much less than the time required by those solvers. Despite
its computational efficiency, there is one bottleneck that makes the pairwise
heuristic useless for problems with very large state spaces, such as those with
more than 1 million states. That is memory usage. Although we mentioned
that a POMDP needs O(|S|2 × |A|) memory to be represented, usually a
transition function can be represented in O(|S| × |A|). Actually, this fact
helps us in the offline and online computation as explained before. However,
it also makes some problems representable yet unsolvable by the pairwise
heuristic. We should add that this drawback is not major in comparison to
the other solvers as in most cases, other solvers could not even solve these
problems because of their high computational cost. Another advantage of
the pairwise heuristic is its simplicity. Unlike most of the POMDP solvers,
the pairwise heuristic is simple to understand and implement.

6.3 Conclusion

Uncertainty often makes a problem so complex that finding an optimal so-
lution for it in an efficient time is almost impossible. The solution time is
an important factor and in many practical application only real-time ap-
proaches are acceptable. For example, in a target tracking problem, if the
robot does not respond quickly enough, the target would soon go out of its
visual range. On the other hand, in most cases, a near-optimal solution is
good enough. In the target tracking problem, catching the target quickly
and minimizing power consumption are the two most important criteria.
However, as long as the robot can catch the target, the exact optimality of
the time required and power usage is not crucial. As another example, in a
robot navigation problem, as long as the robot does not hurt itself or others
or wander aimlessly around the room, its path may be acceptable. In gen-
eral, in practical applications, the time needed for decision making is more
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important than the exact optimality of the solution. In these situations,
an algorithm that can find the solution very quickly is a perfect candidate
even if the solution is not perfectly optimal. An active strategy with a
good heuristic has both the parameters of efficiency and near optimality. In
this thesis, we introduced a heuristic to deal with uncertainty, the pairwise
heuristic. This heuristic solves the problem assuming that uncertainty ex-
ists only between two states. Then, an online strategy uses the solutions of
all pairs of states for decision making in the main problem. We tested our
approach on two kinds of problems where uncertainty plays an important
role, that is, localization and planning under uncertainty. Experiments on
complicated benchmarks show that this heuristic gives us the near-optimal
solution in an efficient time and can be used as a real-time approach on
practical applications.

6.4 Future Work

It is possible that the pairwise heuristic could also be used in other kinds of
problems, especially in problems where constraints are given. An example
is the scheduling problem. It may be useful to solve the scheduling problem
for each pair of the tasks first and then use these solutions in the main
problem. However, that is just a hypothesis and should be examined as a
new research topic.

Another future topic could be modeling large practical applications as
POMDPs and solving them by the pairwise heuristic. Currently, most prac-
tical problems are very small because the previous solvers are computation-
ally expensive. With the pairwise heuristic, large problems may be solved as
well. For example, we can solve large target tracking or navigation problems
in the real world. Modeling the problem, however, is not always easy and
may itself be the topic of further research.

In the end, modifying the pairwise heuristic or the online approach may
lead to better results. Finding ways to improve the pairwise heuristic would
be an interesting and challenging research topic.
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Appendix A

Optimality of Macro Actions
Generation Algorithm

Theorem: In a deterministic environment, for any pair of states, Algo-
rithm 3 finds the minimum length macro action that can distinguish between
them.

Proof : We do this by induction:
Basis: The algorithm finds the macro action for the states that are

distinguishable by zero cost.
As costs of all actions in any state are positive, zero cost means that

the states are distinguishable and there is no need for macro action. We set
these macro actions to zero in the line 3 of Algorithm 2 which means there
is no need for a macro action. Therefore, costs and macro actions of all of
those pairs are defined initially in our algorithm.

The inductive step: Assuming that macro actions of all pairs with min-
imum cost macro action of less than cost P are defined and no other macro
action is set, the macro action of pairs with minimum cost macro action of
cost P will be defined in the next step.

If the minimum cost macro action of si and sj costs P , first of all it is not
defined yet because only macro actions with cost of less than P have been
defined. If this macro action is a single action a with cost P , it will be defined
in this step because f∗(si, a) and f∗(sj , a) are distinguishable and macro ac-
tions of all distinguishable pairs are proven to be set in basis. Macro action
of (si, sj) will be set to a attached to macro action(f∗(si, a), f∗(sj , a)) which
is zero, meaning no action. And if this macro action is not a single action
we show it by 〈b1, b2, ..., bk−1, bk〉 that each bi is one basic action. As all ac-
tions have positive cost, C(si, sj , b1) is positive and (C(f∗(si, b1), f

∗(sj , b1),
〈b2, ..., bk〉)) is less than P . Thus macro action(f∗(si, b1), f

∗(sj , b1)) has
been already defined and as both 〈b2, ..., bk〉 and macro action(f∗(si, b1),
f∗(sj , b1)) are minimal, the costs of them are exactly equal. macro action
(f∗(si, b1), f

∗(sj , b1)) is minimal by the induction assumption and 〈b2, ..., bk〉
is minimal because if it is not, we can put the minimal path after b1 and
find another path with less cost for distinguishing between si and sj . This
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Appendix A. Optimality of Macro Actions Generation Algorithm

contradicts the assumption that the minimum cost macro action of si and
sj costs P . So macro action of si and sj will be defined by attaching b1 to
macro action(f∗(si, b1), f

∗(sj , b1)) with cost P .
As a macro action with cost P is defined, all macro actions with cost of

greater than P are not minimum and would not be defined in this step.
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