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Abstract

Introduction of the so called “K-means” or “triangle” features in Coates,
Lee and Ng, 2011 [10] caused significant discussion in the deep learning
community. These simple features are able to achieve state of the art per-
formance on standard image classification benchmarks, outperforming much
more sophisticated methods including deep belief networks, convolutional
nets, factored RBMs, mcRBMs, convolutional RBMs, sparse autoencoders
and several others. Moreover, these features are extremely simple and easy
to compute.

Several intuitive arguments have been put forward to describe this re-
markable performance, yet no mathematical justification has been offered.
In Coates and Ng, 2011 [11], the authors improve on the triangle features
with “soft threshold” features, adding a hyperparameter to tune perfor-
mance, and compare these features to sparse coding. Both soft threshold-
ing and sparse coding are found to often yield similar classification results,
though soft threshold features are much faster to compute.

The main result of this thesis is to show that the soft threshold features
are realized as a single step of proximal gradient descent on a non-negative
sparse coding objective. This result is important because it provides an
explanation for the success of the soft threshold features and shows that
even very approximate solutions to the sparse coding problem are sufficient
to build effective classifiers.
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Chapter 1

Introduction

1.1 Setting

Image classification is one of several central problems in computer vision.
This problem is concerned with sorting images into categories based on the
objects or types of objects that appear in them. An important assumption
that we make in this setting is that the object of interest appears promi-
nently in each image we consider, possibly in the presence of some back-
ground “clutter” which should be ignored. The related problem of object
localization, where we predict the location and extent of an object of interest
in a larger image, is not considered in this thesis.

Neural networks are a common tool for this problem and have have
been applied in this area since at least the late 80’s [26]. More recently the
introduction of contrastive divergence [18] has lead to an explosion of work
on neural networks to this task. Neural network models serve two purposes
in this setting:

1. They provide a method to design a dictionary of primitives to use
for representing images. With neural networks the dictionary can be
designed through learning, and thus tailored to a specific data set.

2. They provide a method to encode images using this dictionary to ob-
tain a feature based representation of the image.

Representations constructed in this way can be classified using a standard
classifier such as a support vector machine. Properly designed feature based
representations can be classified much more accurately than using the raw
pixels directly. Neural networks have proved to be effective tools for con-
structing these representations [17, 27, 34].

A major barrier to applying these models to large images is the num-
ber of parameters required. Designing features for an n × n image using
these techniques requires learning O(n4) parameters which rapidly becomes
intractable, even for small images. A common solution to this problem is
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to construct features for representing image patches rather than full im-
ages, and then construct feature representations of full images by combining
representations of their patches.

While much effort has been devoted to designing elaborate feature learn-
ing methods [13, 14, 25, 32, 33, 35, 36], it has been shown recently that
provided the dictionary is reasonable then the encoding method has a far
greater effect on classification performance than the specific choice of dic-
tionary [11].

In particular, [10] and [11] demonstrate two very simple feature encoding
methods that outperform a variety of much more sophisticated techniques.
In the aforementioned works, these feature encoding methods are motivated
based on their computational simplicity and effectiveness. The main contri-
bution of this thesis is to provide a connection between these features and
sparse coding; in doing so we situate the work of [10] and [11] in a broader
theoretical framework and offer some explanation for the success of their
techniques.

1.2 Background

In [10] and [11], Coates and Ng found that two very simple feature encodings
were able to achieve state of the art results on several image classification
tasks. In [10] they consider encoding image patches, represented as a vector
in x ∈ RN using the so called “K-means” or “triangle” features to obtain a
K-dimensional feature encoding ztri(x) ∈ RK , which they define elementwise
using the formula

ztrik (x) = max{0, µ(x)− ||x− wk||2} , (1.1)

where {wk}Kk=1 is a dictionary of elements obtained by clustering data sam-
ples with K-means, and µ(x) is the average of ||x − wk||2 over k. In [11]
they consider the closely related “soft threshold” features, given by

zstk (x) = max{0, wT
k x− λ} , (1.2)

with λ ≥ 0 as a parameter to be set by cross validation. These feature
encodings have proved to be surprisingly effective, achieving state of the art
results on popular image classification benchmarks. However, what makes
these features especially appealing is their simplicity. Given a dictionary,
producing an encoding requires only a single matrix multiply and threshold
operation.
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We note that the triangle and soft threshold features are merely slight
variations on the same idea. If we modify the triangle features to be defined
in terms of squared distances, that is we consider

ztrik (x) = max{0, µ2(x)− ||x− wk||22} ,

in place of Equation 1.1, with µ2(x) taking the average value of ||x− wk||22
over k, we can then write

µ2(x)− ||x− wk||22 = 2wT
k x−

2

n

n∑
i=1

wT
i x− wT

k wk +
1

n

n∑
i=1

wT
i wi .

If we constrain the dictionary elements wi to have unit norm as in [11] then
the final two terms cancel and the triangle features can be rewritten as

ztrik (x) = 2 max{0, wT
k x− λ(x)} ,

which we can see is just a scaled version of soft threshold features, where
the threshold,

λ(x) =
1

n

n∑
i=1

wT
i x ,

is chosen as a function of x rather than by cross validation. In this thesis
we consider only the soft threshold features, but their similarity with the
triangle features is suggestive.

1.3 Related work

Similar approaches to feature encoding are well known in the computer
vision literature under the name of vector quantization. In this approach,
data are encoded by hard assignment to the nearest dictionary element. Van
Gemert et al. [38] consider a softer version of this idea and find that using a
kernel function for quantization rather than hard assignment leads to better
performance. Bourdeau et al. [7] consider a similar soft quantization scheme
but find that sparse coding performs better still.

Following the success of [10], the triangle and soft threshold features (or
slight variants thereof) have been applied in several settings. Blum et al. [6]
use triangle features for encoding in their work on applying unsupervised
feature learning to RGB-D data using a dictionary designed by their own
convolutional K-means approach. Knoll et al. [23] apply triangle features to
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image compression using PAQ. An unthresholded version of triangle features
was used in [37] as the low-level image features for a system which extracts
and redesigns chart images in documents.

In [29] and [9] soft threshold features are used for the detection and
recognition of digits and text (respectively) in natural images. The same
features have also been employed in [12] as part of the base learning model
in a system for selecting the receptive fields for higher layers in a deep
network.

Jia et al. [22] consider both triangle and soft threshold features for en-
coding image patches and investigate the effects of optimizing the spatial
pooling process in order to achieve better classification accuracy.

The work most similar to that found in this thesis is the work of Gregor
and LeCun on approximations of sparse coding [15]. Like us, they are inter-
ested in designing feature encoders using approximations of sparse coding;
however, their technique is very different than the one we consider here.

The chief difficulty with sparse coding is that the encoding step requires
solving an `1 regularized problem, which does not have a closed form solu-
tion. For example, if we want to extract features from each frame of a video
in real time then sparse coding is prohibitively slow. In [15] the authors de-
sign trainable fixed cost encoders to predict the sparse coding features. The
predictor is designed by taking an iterative method for solving the sparse
coding problem and truncating it after a specified number of steps to give
a fixed complexity feed forward predictor. The parameters of this predictor
are then optimized to predict the true sparse codes over a training set.

Both our work and that of [15] is based on the idea of approximating
sparse coding with a fixed dictionary by truncating an optimization before
convergence, but we can identify some key differences:

• The method of [15] is trained to predict sparse codes on a particular
data set with a particular dictionary. Our method requires no training
and is agnostic to the specific dictionary that is used.

• We focus on the problem of creating features which lead to good classi-
fication performance directly, whereas the focus of [15] is on predicting
optimal codes. Our experiments show that, at least for our approach,
these two quantities are surprisingly uncorrelated.

• Although there is some evaluation of classification performance of trun-
cated iterative solutions without learning in [15], this is only done with
a coordinate descent based algorithm. Our experiments suggest that
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these methods are vastly outperformed by truncated proximal meth-
ods in this setting.

Based on the above points, the work in this thesis can be seen as compli-
mentary to that of [15].

1.4 Structure of this thesis

The remainder of this thesis is structured as follows:

• In Chapter 2 we give some general background on the proximal gra-
dient method in optimization, and introduce some extensions of this
method that operate in the dual space.

• In Chapter 3 we introduce sparse coding and outline four specific al-
gorithms for solving the encoding problem.

• Chapter 4 contains the main result of this thesis, which is a connection
between the soft threshold features and sparse coding through the
proximal gradient algorithm. Using this connection we outline four
possible variants of the soft threshold features, based on the sparse
encoding algorithms from Chapter 3.

• In Chapter 5 we report on two experiments designed to asses the use-
fulness of these feature variants.

• In Chapter 6 we conclude and offer suggestions for future work.
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Chapter 2

Optimization

This chapter provides the necessary optimization background to support
the tools used in this thesis. Focusing on objective functions with a specific
separable structure, we discuss the proximal gradient algorithm with a fixed
step size and an extension of this method that uses a Barzilai-Borwein step
size scheme. We also consider a variant of the proximal gradient algorithm
which operates in the dual space, and an alteration of that method to make
it tractable for the sparse coding problem.

Throughout this chapter we eschew generality in favour of developing
tools which are directly relevant to the sparse coding problem. All of the
methods we discuss have more general variants, which are applicable to a
broader class of problems then we are concerned with. The citations in this
chapter can be used to find expositions of these methods in more general
settings.

The presentation in this chapter assumes familiarity with some common
optimization tools, specifically the reader should be familiar with Lagrangian
methods and dualization, which are used here without justification. Exten-
sive discussions of the supporting theory of the Lagrangian dual can be found
in any standard text on convex optimization such as [4] or [5].

2.1 Setting

In what follows, we concern ourselves with the function

f(x) = g(x) + h(x) , (2.1)

where g : Rn → R is differentiable with Lipschitz derivatives,

||∇g(x)−∇g(y)||2 ≤ L||x− y||2 ,

and h : Rn → R is convex. In particular we are interested in cases where
h is not differentiable. The primary instance of that will concern us in this
thesis is

f(x) =
1

2
||Wz − x||22 + λ||z||1 ,
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where g is given by the quadratic term and h handles the (non-differentiable)
`1 norm.

We search for solutions to

min
x
f(x) (2.2)

and we refer to Equation 2.2 as the unconstrained problem. It will also be
useful to us to consider an alternative formulation,

min
x=z

g(x) + h(z) , (2.3)

which has the same solutions as Equation 2.2. Introducing the dummy
variable z gives us access to the dual space which will be useful later on. We
refer to this variant as the constrained problem.

An object of central utility in this chapter is the proxh,ρ operator, which
is defined, for a convex function h and a scalar ρ > 0 as

proxh,ρ(x) = arg min
u
{h(u) +

ρ

2
||u− x||22} .

We are often interested in the case where ρ = 1, and write proxh in these
cases to ease the notation.

2.2 Proximal gradient

Proximal gradient is an algorithm for solving problems with the form of
Equation 2.2 by iterating

xt+1 = proxαh(xt − α∇g(xt)) (2.4)

= arg min
u
{αh(u) +

1

2
||u− (xt − α∇g(xt))||22}

for an appropriately chosen step size α. It can be shown that if α < 1/L
then this iteration converges to an optimal point of f [39].

Alternative step size selection methods such as line search and iterate
averaging [2] are also possible. One such scheme is the Barzilai-Borwein
scheme [1] which picks the step size αt so that αtI approximates the inverse
Hessian of g. This choice of step size can be motivated by the form of
the proximal gradient updates. We consider approximating the solution to
Equation 2.2 using a quadratic model of g with diagonal covariance α−1I.
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Approximating g in this way, with a Taylor expansion about an arbitrary
point x0, leads to the problem

arg min
x
{h(x) + g(x0) +∇g(x0)T(x− x0) +

1

2α
||x− x0||22} .

Some algebra reveals that we can rewrite this problem as follows:

arg min
x
{h(x) +∇g(x0)T(x− x0) +

1

2α
||x− x0||22}

= arg min
x
{αh(x) + α∇g(x0)T(x− x0) +

1

2
||x− x0||22}

= arg min
x
{αh(x) +

1

2
xTx− xT(x0 − α∇g(x0)) +

1

2
||x0 − α∇g(x0)||22}

= arg min
x
{αh(x) +

1

2
||x− (x0 − α∇g(x0))||22}

= proxαh(x0 − α∇g(x0)) ,

showing that the proximal gradient update in Equation 2.4 amounts to min-
imizing h plus a quadratic approximation of g at each step. In the above cal-
culation we have made repeated use of the fact that adding or multiplying by
a constant does not affect the location of the argmax. The Barzilai-Borwein
scheme adjusts the step size αt to ensure that the model of g we minimize
is as accurate as possible. The general step size selection rule can be found
in [1, 40]. We will consider a specific instance of this scheme, specialized to
the sparse coding problem, in Section 3.3.

2.3 Dual ascent

We now consider the constrained problem. The constraints in Equation 2.3
allow us to form the Lagrangian,

L(x, z, y) = g(x) + h(z) + yT(x− z) ,

which gives us access to the dual problem,

max
y
q(y) = max

y
min
x,z

L(x, z, y) .

It can be shown that if y∗ is a solution to the dual problem then (x∗, z∗) =
arg minx,z L(x, z, y∗) is a solution to the primal problem [5]. Assuming that
q(y) is differentiable, this connection suggests we compute a solution to the
primal problem by forming the sequence

yt+1 = yt + α∇q(yt)
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and estimate the values of the primal variables as

(xt+1, zt+1) = arg min
x,z

L(x, z, yt) . (2.5)

Forming this estimate at each step requires no extra computation since com-
puting the update requires, ∇q(y) = xt+1 − zt+1. In in our case the mini-
mization in Equation 2.5 splits into separate minimizations in x and z,

xt+1 = arg min
x
{g(x) + (yt)Tx} , (2.6)

zt+1 = arg min
z
{h(z)− (yt)Tz} . (2.7)

This method is known as dual ascent [8], and can be shown to converge
under certain conditions. Unfortunately in the sparse coding problem these
conditions are not satisfied. As we see in Chapter 3, we are often interested
in problems where g is minimized on an entire subspace of Rn. This is
problematic because if the projection of y into this subspace is non-zero
then the minimization in Equation 2.6 is unbounded and ∇q(y) is not well
defined.

2.4 Method of multipliers

A tool to help us work around the shortcomings of dual ascent is the Aug-
mented Lagrangian, which is a family of functions parametrized by ρ ≥ 0,

Lρ(x, z, y) = g(x) + h(z) + yT(x− z) +
ρ

2
||x− z||22 .

The function Lρ is the Lagrangian of the problem

min
x=z

g(x) + h(z) +
ρ

2
||x− z||22 , (2.8)

which we see has the same solutions Equation 2.3. The quadratic term in
the Augmented Lagrangian gives the dual problem nice behaviour. The
augmented dual is given by

max
y
qρ(y) = max

y
min
x,z

Lρ(x, z, y) .

We again consider gradient ascent of the objective qρ by forming the sequence

yt+1 = yt + ρ∇qρ(yt) , (2.9)
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where ∇qρ(yt) = xt+1 − zt+1 with

(xt+1, zt+1) = arg min
x,z

Lρ(x, z, y
t) . (2.10)

This algorithm is known as the method of multipliers. The quadratic term
in Lρ ensures that ∇qρ(y) always exists and the algorithm is well defined.
The use of ρ as the step size is motivated by the fact that it guarantees that
the iterates will be dual-feasible at each step [8].

It can be shown that Equation 2.9 can be written [4]

yt+1 = arg min
λ
{−q(λ) +

1

2ρ
||λ− yt||22}

= prox−q,1/ρ(y
t) ,

where q is the Lagrangian of Equation 2.3. Comparing this to Equation 2.9
shows that in the dual space, proximal ascent and gradient ascent are equiv-
alent. The actual derivation is somewhat lengthy and is not reproduced here
(but see [5] pages 244–245). To make the connection with proximal gradient
explicit we can write an iterative formula for every other element of this
sequence

yt+2 = arg min
λ
{−q(λ) +

1

2ρ
||λ− (yt + ρ∇q(yt))||22}

= prox−q,1/ρ(y
t + ρ∇q(yt)) .

2.5 Alternating direction method of multipliers

The main difficulty we encounter with the method of multipliers is that for
the sparse coding problem, the joint minimization in Equation 2.10 is essen-
tially as hard as the original problem. We can separate 2.10 into separate
minimizations over x and z by doing a Gauss-Seidel pass over the two blocks
instead of carrying out the minimization directly. This modification leads
to the following iteration:

xt+1 = arg min
x
Lρ(x, z

t, yt) , (2.11)

zt+1 = arg min
z
Lρ(x

t+1, z, yt) , (2.12)

yt+1 = yt + ρ(xt+1 − zt+1) ,

where we lose the interpretation as proximal gradient on the dual function
since it is no longer true that ∇q(yt) 6= xt+1 − zt+1. However, since this
method is tractable for our problems we focus on it over the method of
multipliers in the following chapters.
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Chapter 3

Sparse coding

3.1 Setting

Sparse coding [31] is a feature learning and encoding process, similar in many
ways to the neural network based methods discussed in the Introduction. In
sparse coding we construct a dictionary {wk}Kk=1 which allows us to create
accurate reconstructions of input vectors x from some data set. It can be
very useful to consider dictionaries that are overcomplete, where there are
more dictionary elements than dimensions; however, in this case minimizing
reconstruction error alone does not provide a unique encoding. In sparse
coding uniqueness is recovered by asking the feature representation for each
input to be as sparse as possible.

As with the neural network methods from the Introduction, there are
two phases to sparse coding:

1. A learning phase, where the dictionary {wk}Kk=1 is constructed, and

2. an encoding phase, where we seek a representation of a new vector x
in terms of elements of the dictionary.

In this thesis we focus on the encoding phase, and assume that the dictionary
{wk}Kk=1 is provided to us from some external source. This focus of attention
is reasonable, since it was shown experimentally in [11] that as long as the
dictionary is constructed in a reasonable way1, then it is the encoding process
that has the most effect on classification performance. When we want to
make it explicit that we are considering only the encoding phase we refer to
the sparse encoding problem.

Formally, the sparse encoding problem can be written as an optimization.
If we collect the dictionary elements into a matrix W =

[
w1 | · · · |wK

]
and

1 What exactly “reasonable” means in this context is an interesting question, but is
beyond the scope of this thesis. The results of [11] demonstrate that a wide variety of
dictionary construction methods lead to similar classification performance, but do not
offer conditions on the dictionary which guarantee good performance.
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denote the encoded vector by ẑ we can write the encoding problem as

ẑ = arg min
z

1

2
||Wz − x||22 + λ||z||1 , (3.1)

where λ ≥ 0 is a regularization parameter that represents our willingness to
trade reconstruction error for sparsity. This problem fits in the framework
of Chapter 2 with g(z) = 1/2||Wz − x||22 and h(z) = λ||z||1.

Often it is useful to consider a non-negative version of sparse coding
which leads to the same optimization as Equation 3.1 with the additional
constraint that the elements of z must be non-negative. There are a few
ways we can formulate this constraint but the one that will be most useful
to us in the following chapters is to add an indicator function on the positive
orthant to the objective in Equation 3.1,

ẑ = arg min
z

1

2
||Wz − x||22 + λ||z||1 + Π(z) , (3.2)

where

Π(z) =

{
0 if zi ≥ 0 ∀i
∞ otherwise .

In most studies of sparse coding both the learning and encoding phases
of the problem are considered together. In these cases, one proceeds by
alternately optimizing over z and W until convergence. For a fixed z, the
optimization over W in Equation 3.1 is quadratic and easily solved. The
optimization over z is the same as we have presented here, but the matrix W
changes in each successive optimization. Since in our setting the dictionary
is fixed, we need only consider the optimization over z.

This difference in focus leads to a terminological conflict with the litera-
ture. Since sparse coding often refers to both the learning and the encoding
problem together, the term “non-negative sparse coding” typically refers to
a slightly different problem than Equation 3.2. In Equation 3.2 we have con-
strained only z to be non-negative, whereas in the literature non-negative
sparse coding typically implies that both z and W are constrained to be
non-negative, as is done in [19]. We cannot introduce such a constraint here,
since we treat W as a fixed parameter generated by an external process.

In the remainder of this chapter we introduce four algorithms for solving
the sparse encoding problem. The first three are instances of the proximal
gradient framework presented in Chapter 2. The fourth algorithm is based
on a very different approach to solving the sparse encoding problem that
works by tracking solutions as the regularization parameter varies.
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3.2 Fast iterative soft thresholding

Iterative soft thresholding (ISTA) [2] is the name given to the proximal
gradient algorithm with a fixed step size when applied to problems of the
form of Equation 2.2, when the non-smooth part h is proportional to ||x||1.
The name iterative soft thresholding arises because the proximal operator
of the `1 norm is given by the soft threshold function (see [28] § 13.4.3.1):

proxλ||·||1(x) = softλ(x) = sign(x) max{0, |x| − λ} .

In the case of sparse encoding this leads to iterations of the form

zt+1 = softλ/L(zt − 1

L
WT(Wzt − x)) .

The constant L here is the Lipschitz constant referred to in the statement of
Equation 2.1 which, in the case of sparse coding, is the largest eigenvalue of
WTW . The “Fast” variant of iterative soft thresholding (FISTA) modifies
the above iteration to include a specially chosen momentum term, leading
to the following iteration, starting with yt = z0 and k1 = 1:

zt = softλ/L(yt) , (3.3)

kt+1 =
1 +

√
1 + 4(kt)2

2
, (3.4)

yt+1 = zt + (
kt − 1

kt+1
)(zt − zt−1) . (3.5)

The form of the updates in FISTA is not intuative, but can be shown to
lead to a faster convergence rate than regular ISTA [2].

3.3 Sparse reconstruction by separable
approximation

Sparse reconstruction by separable approximation (SpaRSA) [40] is an opti-
mization framework designed for handling problems of the form considered
in Chapter 2. This framework actually subsumes the ISTA and FISTA style
algorithms discussed above, but we consider a specific instantiation of this
framework which sets the step size using a Barzilai-Borwein [1] scheme, mak-
ing it different from the methods described above. The development in [40]
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discusses SpaRSA in its full generality, but specializing it to the sparse cod-
ing problem we get the following iteration:

zt+1 = softλ/αt(xt − 1

αt
WT(Wzt − x)) ,

st+1 = zt+1 − zt ,

αt+1 =
||Wst+1||22
||st+1||22

.

The SpaRSA family of algorithms shares an important feature with other
Barzilai-Borwein methods, namely that it does not gaurentee a reduction in
the objective value at each step. In fact, it has been observed that forcing
these methods to descend at each step (for example, by using a backtracking
line search) can significantly degrade performance in practice [40]. In order
to guarantee convergence of this type of scheme a common approach is to
force the iterates to be no larger than the largest objective value in some
fixed time window. This approach allows the objective value to occasionally
increase, while still ensuring that the iterates converge in the limit.

3.4 Alternating direction method of multipliers

The alternating direction method of multipliers (ADMM) [8] was presented
in Chapter 2. Its instantiation for the sparse encoding problem does not
have its own name in the literature, but it can be applied nonetheless.

For the sparse encoding problem the minimizations in Equations 2.11
and 2.12 can be carried out in closed form. This leads to the updates:

xk+1 = (WTW + ρI)−1(WTx− ρ(zk − 1

ρ
yk)) ,

zk+1 = softλ/ρ(x
k+1 +

1

ρ
yk) ,

yk+1 = yk + ρ(xk+1 − zk+1) .

3.5 Boosted lasso

Boosted Lasso (BLasso) [41] is a very different approach to solving the sparse
encoding problem than those considered above. Rather than solving Equa-
tion 3.1 directly, BLasso works with an alternative formulation of the sparse
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encoding problem,

ẑ = arg min
z

1

2
||Wz − x||22 (3.6)

st ||z||1 ≤ β .

For each value of λ in Equation 3.1 there is a corresponding value of β
which causes Equation 3.6 to have the same solution, although the mapping
between values of λ and β is problem dependent. BLasso works by varying
the value of β and maintaining a corresponding solution to Equation 3.6 at
each step.

As the name suggests BLasso draws on the theory of Boosting, which
can be cast as a problem of functional gradient descent on the mixture pa-
rameters of an additive model composed of weak learners. In this setting the
weak learners are elements of the dictionary and their mixing parameters
are found in z. Similarly to the algorithms considered above, BLasso starts
from the fully sparse solution but instead of applying proximal iterations,
it proceeds by taking two types of steps: forward steps, which decrease the
quadratic term in Equation 3.6 and backward steps which decrease the reg-
ularizer. In truth, BLasso also only gives exact solutions to Equation 3.6 in
the limit as the step size ε→ 0; however, setting ε small enough can force the
BLasso solutions to be arbitrarily close to exact solutions to Equation 3.6.

BLasso can be used to optimize an arbitrary convex loss function with
a convex regularizer; however, in the case of sparse coding the forward and
backward steps are especially simple. This simplicity means that each itera-
tion of BLasso is much cheaper than a single iteration of the other methods
we consider, although this advantage is reduced by the fact that several it-
erations of BLasso are required to produce reasonable encodings. Another
disadvantage of BLasso is that it cannot be easily cast in a way that allows
multiple encodings to be computed simultaneously.
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Chapter 4

A reckless approximation

4.1 Main result

In this chapter we present the main result of this thesis, which is a connection
between the soft threshold features discussed in the Introduction, and the
sparse encoding problem. Our key insight is to show how the soft threshold
features, (as defined in Equation 1.2) can be viewed as an approximate
solution to the non-negative sparse encoding problem (Equation 3.2).

We illustrate this connection through the framework of proximal gradient
minimization. Using the tools presented in Chapter 2 we can demonstrate
this connection by writing down a proximal gradient iteration for the sparse
encoding problem and computing the value of the first iterate, starting from
an appropriately chosen initial point. We summarize this result in a Propo-
sition.

Proposition 1. The soft threshold features

zk(x) = max{0, wT
k x− λ}

are given by a single step (of size 1) of proximal gradient descent on the non-
negative sparse coding objective with regularization parameter λ and known
dictionary W , starting from the fully sparse solution.

Proof. Casting the non-negative sparse coding problem in the framework of
Chapter 2 we have

min
z
f(z) + g(z)

with

g(z) =
1

2
||Wz − x||22 ,

h(z) = λ||z||1 + Π(z) .

The proximal gradient iteration for this problem (with α = 1) is

zt+1 = proxh(zt −WT(Wzt − x)) .
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We now compute proxh(x)

u∗ = proxh(x) = arg min
u

Π(u) + λ||u||1 +
1

2
||u− x||22 .

This minimization is separable, and we can write down the solution for each
element of the result independently:

u∗k = arg min
uk≥0

λuk +
1

2
(uk − xk)2 . (4.1)

Each minimization is quadratic in uk, and therefore the optimum of Equa-
tion 4.1 is given by u∗k = max{0, u∗k} where u∗k = xk−λ is the unconstrained
optimum. We set z0 = 0 and compute

z1k = proxh(z0k − wT
k (Wz0 − x))

= max{0, wT
k x− λ} ,

which is the desired result.

Variants of the soft threshold features that appear in the literature can
be obtained by slight modifications of this argument. For example, the split
encoding used in [11] can be obtained by setting W = {wk,−wk}.

Once stated the proof of Proposition 1 is nearly immediate; however, this
immediacy only appears in hindsight. In [11], soft threshold features and
sparse coding features are treated as two separate and competing entities
(see, for example, Figure 1 in [11]). In [30], triangle features and sparse
coding are treated as two separate sparsity inducing objects.

From this Proposition we can draw two important insights:

1. Proposition 1 provides a nice explanation for the success of soft thresh-
old features for classification. Sparse coding is a well studied problem
and it is widely known that the features from sparse coding models
are effective for classification tasks.

2. On the other hand, Proposition 1 tells us that even very approximate
solutions to the sparse coding problem are sufficient to build effective
classifiers.

Even optimizers specially designed for the sparse coding problem typically
take many iterations to converge to a solution with low reconstruction er-
ror, yet here we see that a single iteration of proximal gradient descent is
sufficient to give features which have been shown to be highly discriminative.

These insights open up three questions:
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1. Is it possible to decrease classification error by doing a few more iter-
ations of proximal descent?

2. Do different optimization methods for sparse encoding lead to different
trade-offs between classification accuracy and computation time?

3. To what extent is high reconstruction accuracy a prerequisite to high
classification accuracy using features obtained in this way?

We investigate the answers to these questions experimentally in Chap-
ter 5, by examining how variants of the soft threshold features preform.
We develop these variants by truncating other proximal descent based op-
timization algorithms for the sparse coding problem. The remainder of this
chapter presents “one-step” features from each of the algorithms presented
in Chapter 3.

4.2 Approximate FISTA

Fast iterative soft thresholding was described in Section 3.2. The first it-
eration of FISTA is a step of ordinary proximal gradient descent since the
FISTA iteration (Equations 3.3, 3.4 and 3.5) requires two iterates to adjust
the step size.

Starting from z0 = 0 the one step FISTA features are given by

z1 = softλ/L(
1

L
WTx) =

1

L
softλ(WTx) ,

which we see is equivalent to the soft threshold features, scaled by a factor
of 1/L.

4.3 Approximate SpaRSA

Sparse reconstruction by separable approximation was described in Sec-
tion 3.3. SpaRSA, like FISTA, is an adaptive step size selection scheme
for proximal gradient descent which chooses its step size based on the pre-
vious two iterates. For the first iteration this information is not available,
and the authors of [40] suggest a step size of 1 in this case. This choice gives
the following formula for one step SpaRSA features:

z1 = softλ(WTx) ,

which is exactly equivalent to the soft threshold features.
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4.4 Approximate ADMM

The alternating direction method of multipliers was described in Section 3.4.
Since ADMM operates in the dual space, computing its iterations requires
choosing a starting value for the dual variable y0. Since this choice is essen-
tially arbitrary (the value of y0 does not effect the convergence of ADMM)
we choose y0 = 0 for simplicity. This leads to one step ADMM features of
the following form:

z1 = softλ/ρ((W
TW + ρI)−1WTx) . (4.2)

The parameter ρ in the above expression is the penalty parameter from
ADMM. As long as we are only interested in taking a single step of this
optimization, the matrix (WTW + ρI)−1WT can be precomputed and the
encoding cost for ADMM is the same as for soft threshold features. Unfortu-
nately, if we want to perform more iterations of ADMM then we are forced
to solve a new linear system in WTW + ρI at each iteration, although we
can cache an appropriate factorization in order to avoid the full inversion at
each step.

The choice of y0 = 0 allows us to make some interesting connections
between the one step ADMM features and some other optimization prob-
lems. For instance, if we consider a second order variant of proximal gradient
(by adding a Newton term to Equation 2.4) we get the following one step
features for the sparse encoding problem:

z1 = softλ((WTW )−1WTx) .

We can thus interpret the one step ADMM features as a smoothed step of
a proximal version of Newton’s method. The smoothing in the ADMM fea-
tures is important because in typical sparse coding problems the dictionary
W is overcomplete and thus WTW is rank deficient. Although it is possible
to replace the inverse ofWTW in the above expression with its pseudoinverse
we found this to be numerically unstable. The ADMM iteration smooths
this inverse with a ridge term and recovers stability.

Taking a slightly different view of Equation 4.2, we can interpret it as a
single proximal Newton step on the Elastic Net objective [42],

arg min
z

1

2
||Wz − x||22 + ρ||z||22 +

λ

ρ
||z||1 .

Here the ADMM parameter ρ trades off the magnitude of the `2 term, which
smooths the inverse, and the `1 term, which encourages sparsity.
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4.5 Approximate BLasso

BLasso was described briefly in Section 3.5. Unlike the other algorithms we
consider, each iteration of BLasso updates exactly one element of the feature
vector z. This means that taking one step of BLasso leads to a feature
vector with exactly one non-zero element (of magnitude ε). In contrast, the
proximal methods described above update all of the elements of z at each
iteration, meaning that the one step features can be arbitrarily dense.

This difference suggests that comparing one step features from the other
algorithms to one step features from BLasso may not be a fair comparison.
To accommodate this, in the sequel we use many more steps of BLasso than
the other algorithms in our comparisons.

Writing out the one (or more) step features for BLasso is somewhat
notationally cumbersome so we omit it here, but the form of the iterations
can be found in [41].
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Chapter 5

Experiments

5.1 Experiment 1

We evaluate classification performance using features obtained by approx-
imately solving the sparse coding problem using the different optimization
methods discussed in Chapter 3. We report the results of classifying the
CIFAR-102 and STL-103 data sets using an experimental framework similar
to [10]. The images in STL-10 are 96 × 96 pixels, but we scale them to
32 × 32 to match the size of CIFAR-10 in all of our experiments. For each
different optimization algorithm we produce features by running different
numbers of iterations and examine the effect on classification accuracy.

5.1.1 Procedure

Training

During the training phase we produce a candidate dictionary W for use in
the sparse encoding problem. We found the following procedure to give the
best performance:

1. Extract a large library of 6×6 patches from the training set. Normalize
each patch by subtracting the mean and dividing by the standard
deviation, and whiten the entire library using ZCA [3].

2. Run K-means with 1600 centroids on this library to produce a dictio-
nary for sparse coding.

We experimented with other methods for constructing dictionaries as well,
including using a dictionary built by omitting the K-means step above and
using whitened patches directly. We also considered a dictionary of normal-
ized random noise, as well as a smoothed version of random noise obtained
by convolving noise features with a Guassian filter. However, we found that

2http://www.cs.toronto.edu/~kriz/cifar.html
3http://www.stanford.edu/~acoates/stl10/
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the dictionary created using whitened patches and K-means together gave
uniformly better performance, so we report results only for this choice of
dictionary. An extensive comparison of different dictionary choices appears
in [11].

Testing

In the testing phase we build a representation for each image in the CIFAR-
10 and STL-10 data sets using the dictionary obtained during training. We
build representations for each image using patches as follows:

1. Extract 6 × 6 patches densely from each image and whiten using the
ZCA parameters found during training.

2. Encode each whitened patch using the dictionary found during train-
ing by running one or more iterations of each of the algorithms from
Chapter 3.

3. For each image, pool the encoded patches in a 2 × 2 grid, giving a
representation with 6400 features for each image.

4. Train a linear classifier to predict the class label from these represen-
tations.

This procedure involves approximately solving Equation 3.1 for each patch
of each image of each data set, requiring the solution to just over 4 × 107

separate sparse encoding problems to encode CIFAR-10 alone, and is re-
peated for each number of iterations for each algorithm we consider. Since
iterations of the different algorithms have different computational complex-
ity, we compare classification accuracy against the time required to produce
the encoded features rather than against number of iterations.

We performed the above procedure using features obtained with non-
negative sparse coding as well as with regular sparse coding, but found
that projecting the features into the positive orthant always gives better
performance, so all of our reported results use features obtained in this way.

Parameter selection is performed separately for each algorithm and data
set. For each algorithm we select both the algorithm specific parameters,
ρ for ADMM and ε for BLasso, as well as λ in Equation 3.1, in order to
maximize classification accuracy using features obtained from a single step
of optimization.4 The parameter values we used in this experiment are
shown in Table 5.1.

4For BLasso we optimized classification after 10 steps instead of 1 step, since 1 step of
BLasso produced features with extremely poor performance.
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Algorithm λ ρ ε

BLasso – – 0.25
FISTA 0.1 – –
ADMM 0.02 30 –
SPARSA 0.1 – –

Table 5.1: Parameter values for each algorithm found by optimizing for one
step classification accuracy (10 steps for BLasso). Dashes indicate that the
parameter is not relevant to the corresponding algorithm.

5.1.2 Results

The results of this experiment on CIFAR-10 are summarized in Figure 5.1
and the corresponding results on STL-10 are shown in Figure 5.2. The
results are similar for both data sets; the discussion below applies to both
CIFAR-10 and STL-10.

The first notable feature of these results is that BLasso leads to features
which give relatively poor performance. Although approximate BLasso is
able to find exact solutions to Equation 3.1, running this algorithm for a
limited number of iterations means that the regularization is very strong.
We also see that for small numbers of iterations the performance of features
obtained with FISTA, ADMM and SpaRSA are nearly identical. Table 5.2
shows the highest accuracy obtained with each algorithm on each data set
over all runs.

Another interesting feature of BLasso performance is that, when opti-
mized to produce one-step features, the other algorithms are significantly
faster than 10 iterations of BLasso. This is unexpected, because the itera-
tions of BLasso have very low complexity (much lower than the matrix-vector
multiply required by the other algorithms).

The reason the BLasso features take longer to compute comes from the
fact that it is not possible to vectorize BLasso iterations across different
problems. To solve many sparse encoding problems simultaneously one can
replace the vectors z and x in Equation 3.1 with matrices Z andX containing
the corresponding vectors for several problems aggregated into columns.
We can see from the form of the updates described in Chapter 3, that we
can replace z and x with Z and X without affecting the solution for each
problem. This allows us to take advantage of optimized BLAS libraries to
compute the matrix-matrix multiplications required to solve these problems
in batch. It is not possible to take advantage of this optimization with
BLasso.
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The most notable feature of Figures 5.1 and 5.2 is that for large numbers
of iterations the performance of FISTA and SpaRSA actually drops below
what we see with a single iteration, which at first blush seems obviously
wrong. It is important to interpret the implications of these plots carefully.
In these figures all parameters were chosen to optimize classification per-
formance for one-step features. There is no particular reason one should
expect the same parameters to also lead to optimal performance after many
iterations. We have found that the parameters one obtains when optimiz-
ing for one-step classification performance are generally not the same as the
parameters one gets by optimizing for performance after the optimization
has converged. It should also be noted that the parameter constellations we
found in Table 5.1 universally have a very small λ value. This contributes
to the drop in accuracy we see with FISTA especially, since this algorithm
becomes unstable after many iterations with a small λ.

This observation is consistent with the experiments in [11] which found
different optimal values for the sparse coding regularizer and the threshold
parameter in the soft threshold features in their comparisons. It should
also be stated that, as reported in [11], the performance of soft threshold
features and sparse coding is often not significantly different. We refer the
reader to the above cited work for a discussion of the factors governing these
differences.

CIFAR10 Accuracy

BLasso 66.7

FISTA 77.5

ADMM 77.3

SpaRSA 77.5

STL10 Accuracy

BLasso 47.0

FISTA 62.8

ADMM 63.2

SpaRSA 62.5

Table 5.2: Test set accuracy for the of the best set of parameters found in
Experiment 1 on CIFAR-10 and STL-10 using features obtained by each
different algorithm.

5.2 Experiment 2

This experiment is designed to answer our third question from Chapter 4, re-
lating to the relationship between reconstruction and classification accuracy.
In this experiment we measure the reconstruction accuracy of encodings ob-
tained in the previous experiment.
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5.2.1 Procedure

Training

The encoding dictionary used for this experiment was constructed using
the method described in Section 5.1.1. In order to ensure that our results
here are comparable to the previous experiment we actually use the same
dictionary in both.

Testing

In order to measure reconstruction accuracy we use the following procedure:

1. Extract a small library of 6× 6 patches from randomly chosen images
in the CIFAR-10 training set and whiten using the ZCA parameters
found during training.

2. Encode each whitened patch using the dictionary found during train-
ing by running one or more iterations of each of the algorithms from
Chapter 3.

3. For each of the encoded patches, we measure the reconstruction error
||Wz − x||2 and report the mean.

5.2.2 Results

The results of this experiment are shown in Figure 5.3. Comparing these
results to the previous experiment, we see that there is surprisingly little
correlation between the reconstruction error and classification performance.
In Figure 5.1 we saw one-step features give the best classification perfor-
mance of all methods considered, here we see that these features also lead
to the worst reconstruction.

Another interesting feature of this experiment is that the parameters we
found to give the best features for ADMM actually lead to an optimizer
which makes no progress in reconstruction beyond the first iteration. To
confirm that this is not merely an artifact of our implementation we have
also included the reconstruction error from ADMM run with an alternative
setting of ρ = 1 which gives the lowest reconstruction error of any of our
tested methods, while producing inferior performance in classification.
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Figure 5.1: Classification accuracy versus computation time on CIFAR-
10 using different sparse encoding algorithms. For FISTA, ADMM and
SpaRSA the markers show performance measured with a budget of 1, 5,
10, 50, 100 iterations. The left-most marker on each of these lines shows
performance using an implementation optimized to perform exactly one step
of optimization. The line for BLasso shows performance measured with a
budget of 10, 50, 200, 500 iterations. In all cases early stopping is allowed if a
termination criterion has been met (which causes some markers to overlap).
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Figure 5.2: Classification accuracy versus computation time on STL-10 us-
ing different sparse encoding algorithms. For FISTA, ADMM and SpaRSA
the markers show performance measured with a budget of 1, 5, 10, 50, 100
iterations. The left-most marker on each of these lines shows performance
using an implementation optimized to perform exactly one step of optimiza-
tion. The line for BLasso shows performance measured with a budget of 10,
50, 200, 500 iterations. In all cases early stopping is allowed if a termination
criterion has been met (which causes some markers to overlap).
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Figure 5.3: Mean reconstruction error versus computation time on a small
sample of patches from CIFAR-10. FISTA, ADMM and SpaRSA were run
for 100 iterations each, while BLasso was run for 500 iterations. ADMM30
corresponds to ADMM run with parameters which gave the best one-step
classification performance. ADMM1 was run with a different ρ parameter
which leads to better reconstruction but worse classification.
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Chapter 6

Conclusion

In this thesis we have shown that the soft threshold features, which have
enjoyed much success recently, arise as a single step of proximal gradient
descent on a non-negative sparse encoding objective. This result serves to
situate this surprisingly successful feature encoding method in a broader
theoretical framework.

Using this connection we proposed four alternative feature encoding
methods based on approximate solutions to the sparse encoding problem.
Our experiments demonstrate that the approximate proximal-based encod-
ing methods all lead to feature representations with very similar performance
on two image classification benchmarks.

The sparse encoding objective is based around minimizing the error in
reconstructing an image patch using a linear combination of dictionary ele-
ments. Given the degree of approximation in our techniques, one would not
expect the features we find to lead to accurate reconstructions. Our second
experiment demonstrates that this intuition is correct.

An obvious extension of this work would be to preform a more thorough
empirical exploration of the interaction between the value of the regulariza-
tion parameter λ and the degree of approximation. From our experimenta-
tion we can see only that such an interaction exists, but not glean insight
into its structure. Some concrete suggestions along this line are:

1. Preform a full parameter search for multi-step feature encodings.

2. Evaluate the variation of performance across different dictionaries.

A full parameter search would make it possible to properly asses the use-
fulness of performing more than one iteration of optimization when con-
structing a feature encoding. In this thesis we evaluate the performance
of different feature encoding methods using a single dictionary; examining
the variability in performance across multiple dictionaries would lend more
credibility to the results we reported in Chapter 5.

Another interesting direction for future work on this problem is an in-
vestigation of the effects of different regularizers on approximate solutions
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to the sparse encoding problem. The addition of an indicator function to
the regularizer in Equation 3.2 appears essential to good performance and
proximal methods, which which we found to be very effective in this setting,
work by adding a quadratic smoothing term to the objective function at
each step. The connection between one-step ADMM and the Elastic Net is
also notable in this regard. Understanding the effects of different regularizers
empirically, or better yet having a theoretical framework for reasoning about
the effects of different regularizers in this setting, would be quite valuable.

In this work we have looked only at unstructured variants of sparse cod-
ing. It may be possible to extend the ideas presented here to the structured
case, where the regularizer includes structure inducing terms [16]. Some po-
tential launching points for this are [20] and [21], where the authors inves-
tigate proximal optimization methods for structured variants of the sparse
coding problem.
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