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Abstract

This thesis addresses the problem of tracking bubble trajectories and velocities in

transparent fluids, in particular we deal with water. It belongs to the area known as

fluid imaging. Using long exposure images with the aid of computerized tomogra-

phy, we are able to track the trajectories of micro–bubbles by first reconstructing

the fluid volume containing the bubbly flow. From this volumetric data we then

extract bubble trajectories by following the streaks left behind by each moving

bubble. Consequently, these streaks are used to estimate bubble velocities. All of

this is achieved using a limited number of consumer quality video cameras. In ad-

dition, we show how similar data that might be obtained from tracer particles could

be used to calculate the velocity vector field within the fluid interior.
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Chapter 1

Introduction

In rivers, the water that you touch is the last of what has passed and
the first of that which comes; so with present time. — Leonardo da

Vinci

The study of fluids, known as fluid mechanics has occupied some of the great-

est minds of all times. In ancient Greece Archimedes studied buoyancy. Later,

during the early 16th century Leonardo da Vinci worked on flow visualization. He

demonstrated deep understanding of the cardio–vascular system to the point of be-

ing able to describe vortex formations in blood flow. It is believed that da Vinci

constructed a glass model to perform experiments on fluid flows [Gharib et al.,

2002]. Other great scientists researched different areas of fluid mechanics: Isaac

Newton worked on viscosity, Blaise Pascal on hydrostatics, Daniel Bernoulli pub-

lished Hydrodynamica in 1738 which lay the foundations for fluid dynamics and

countless others followed.

Hydrodynamics, or the study of fluid motion, is critical to many fields of sci-

ence. The objective is to describe temporal fluid flow, be it laminar (as parallel

streamlines) or turbulent flow. Numerous methods have been implemented to study

flow, among the more popular is Particle Image Velocimetry (PIV). PIV relies on

measuring and visualizing particle flow within media. Particle motion captured by

PIV enables analysis of the surrounding fluid dynamics. The technique has many

real world applications in areas such as medical, mechanical, aerodynamic, chem-

ical, nuclear and food engineering.
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Figure 1.1: Leonardo da Vinci, Water Eddies, 1513. Image courtesy of
wikimedia.org (no copyright required, work is in the public domain)

This thesis pertains to bubble dynamics in fluids. In contrast to classic PIV

methods that seed the fluid with tracer particles, we examine natural bubbly flows.

The study’s goal is measuring and understanding bubble trajectories and velocities

as they travel up in the liquid interior. In this work we are concerned with a method

that is not traditionally used for particle tracking and has its roots in the medical

field. Building on standard image acquisition techniques, such as X–Ray radio-

graphs, Computed Tomography (CT) allowed medical imaging take a huge leap

forwarded by constructing internal organ structure in three dimensions. We use

an optical variant of CT called Optical Projection Tomography (OPT) than enables

3D particle trajectory tracking in transparent liquids. Light waves penetrating the

transparent liquid that surrounds a bubbly flow are observed by an array of cam-

eras. The images recorded by the cameras are used to reconstruct the liquid volume

and analyze bubble motion. In contrast to classic CT where the detector is rotated

around the specimen, our camera array is static. Unlike the rotating detector setup,

the camera array facilitates capturing dynamic systems.

2
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1.1 Tracking and Visualization Methods

1.1.1 Particle Image Velocimetry

The PIV classical implementation uses a laser to illuminate a thin sheet of fluid

seeded with marker particles. Light reflected from these particles is captured using

a camera. When the particle number is low, one can obtain a good estimate of

particle position and velocity to the extent of being able to track individual parti-

cles (Particle Tracking Velocimetry (PTV)). Using more sophisticated techniques

([Prasad, 2000, Hori and Sakakibara, 2004]), fluid velocity in 3D can be obtained.

These methods produces good results when dealing with a low number of particles

and are generally applied in 2D or using limited depth.

1.1.2 Computed Tomography

Arguably the most common use of CT nowadays are the Computed Axial Tomog-

raphy (CAT) devices, also known as CAT–scanners, primarily used in hospitals. In

this case a stationary patient is instructed to lie down motionless while being in-

serted into the scanner. The scanner revolves around the patient’s body emitting

X-Rays on one end, collecting them at the detector on the other. The detector reg-

isters the accumulated density along each ray. This information is later used to

reconstruct the internal organ structure.

1.1.3 Optical Projection Tomography

Unlike X–Ray absorption based computed tomography which requires an expen-

sive lab setup, OPT uses cameras and light sources to acquire data needed for re-

flectance or absorption based tomographic reconstruction. The choice of using

OPT depends largely on the objects targeted for reconstruction. When the medium

is transparent, as it is in our case, or the objects are small enough to allow high

intensity light penetration then OPT becomes a viable alternative to X–Ray tomog-

raphy.

3



1.2 Our Method
A mandatory requirement for the methods above is the need for specimen to be

motionless during capture. This is essential to avoid motion related artifacts such

as blur, which impact the reconstruction quality. In order to produce sharp images

PTV requires fast exposures. Typically, PTV uses temporal image–sets to track

particles by performing a spatial search for neighbouring particles. In order for the

search to be successful the particle density and velocity should be low, otherwise

particle matching between images in the sets is hard to ascertain.

Our method takes a different approach: instead of trying to minimize exposure

times, we use long exposures to capture motion. Unlike common PTV where the

short exposure causes tracer particles to appear as specks, long exposures have the

effect of bubbles appearing as elongated streaks. These streaks simplify trajectory

tracking: we no longer need to perform inter frame search in order to follow the

temporal bubble positions, instead we have a complete streak representing the bub-

ble’s path. Since we are dealing with rolling–shutter video cameras and we wish

to obtain evenly illuminated images, the exposure time should last at the minimum

for the entire duration of a single video frame, otherwise frames will be unevenly

exposed (see Figure 3.11). Thus the video standard determines our minimal ex-

posure duration. We have at our disposal both short and long exposures. Short

exposures are possible by using single video frames, whereas long exposures are

produced by averaging several successive frames. Measuring streak length in the

volume reconstructed from the short exposure images offers a hint to bubble ve-

locity, whereas trajectory path is determined from the volume reconstruction using

the long exposure images.

There are several algorithms for tomographic reconstruction, the choice is de-

termined by the problem domain. Unlike CAT where rays are projected co–axially

or in parallel, ray formation in our case dictates the usage of Algebraic Reconstruc-

tion Technique (ART) or a derivative for the reconstruction algorithm. A prelimi-

nary calibration step is necessary to obtain ray projections, after which the projec-

tions along with the recorded image–sets are used as inputs to the reconstruction

algorithm.

To summarize: we employ OPT to reconstruct bubbly flows in transparent me-
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dia, using consumer quality cameras with long exposures. The recoded image–sets

depict streaks that allow us to reconstruct the volume and track bubble trajectories

and velocities.

1.3 Problem Statement
Given a transparent cylinder containing a bubbly flow, we wish to determine the

trajectory and velocity of visible bubbles. The method should handle typical ex-

amples like fish–tanks where bubble density is high. The results can be used to

simulate bubbly flows for special effects as well as study the flow when designing

bubble column reactors [Ranade, 1997, Deckwer and Schumpe, 1993].

1.3.1 Assumptions

In order to achieve this goal the following assumptions are made: The cylinder used

is transparent with good optical qualities, i.e. minimal distortions. The contained

liquid is transparent. Transparency is necessary since we need bubbles to be visible

by all cameras without occlusions. The bubbly flow is composed of fine bubbles

with a diameter of about 1− 2mm, rising in the centre of the cylinder. We also

assume the bubbly flow density and bubble number to be similar to ones found

in modern fish tanks. Very high bubble concentrations might affect reconstruction

quality. Hardware components used are described in more detail in Chapter 3.

1.4 Thesis Outline
Chapter 2 is dedicated to related–work. This is followed by Chapter 3 on the

capture process, dealing with the calibration setup and capture. Chapter 4 details

both the theoretical and practical work for the tomographic reconstruction part.

Next, Chapter 5 talks about velocity estimation. We then conclude in Chapter 6

which also addresses future work.

5



Chapter 2

Related Work

In this chapter we offer a glimpse into several works that are related to our problem

domain. Most of these are situated around the Algebraic Reconstruction Technique

(ART) as originally described by [Gordon et al., 1970].

2.1 Particle Image Velocimetry
PIV is a significant flow field measurement and reconstruction technique in many

areas of research as illustrated below. In their book [Raffel et al., 1998] describe

PIV as a generally non obtrusive method: it does not require inserting probes into

the observed medium. This is achieved by means of observing the locations of

tracer particles, while data collection happens through cameras arranged around the

medium. The technique is of high importance in the aeronautics industry where it is

used for flow and turbulence measurements around aircraft models. Here, complex

vortical structures that form around the wings and body are meticulously examined.

The observations have impact on the shape and performance of aircraft as well as

regulations regarding takeoff/landing angles and velocities, and separation between

successive landings [Brossard et al., 2009].

Classical implementations utilize a laser to illuminate a thin sheet of tracer

particles. These particles are selected to match fluid properties so that they can be

used as flow indicators. The ratio of particle to fluid refractive indices determines

the light scattering efficiency. Light reflected from the tracer particles is observed

6



by the cameras arranged in multiple angles around the media.

With the increasing power of modern hardware, Tomographic Particle Image

Velocimetry (TOMO-PIV) gained popularity in the last decade. An implementation

very similar to our own is described in [Elsinga et al., 2006, 2008]. This work

later led to the investigation and reconstruction of vorticity patterns of cylindrical

wakes by [Scarano and Poelma, 2009]. Here, the authors used laser sheet illumi-

nation with smaller and slower tracer particles. Tomographic reconstruction was

performed on the acquired data with a small number of cameras which is suffi-

cient due to the relatively limited depth offered by the laser-sheet illumination.

[Atkinson and Soria, 2007] provide an overview of ART based algorithms that are

applicable to TOMO-PIV.

Tracking and measuring bubbly flows is an active research area which com-

monly employs PTV. Popular implementations utilizes laser illumination [Mat-

sumoto et al., 2012, Bröder and Sommerfeld, 2000] while others base captures

around X–Ray [Seeger et al., 2001].

2.2 Computed Tomography
The tomographic reconstruction method is based on work pioneered by Radon

from 1917 [Radon, 1986]. The basic principle of his work was to show how infor-

mation can be reconstructed from different projections. Based on Radon’s work,

in 1937 Kaczmarz1 showed that by solving a large linear system one can obtain

an approximation of the original information. ART, as presented by [Gordon et al.,

1970] is an iterative technique that was re-introduced to solve the same linear sys-

tem initially proposed by Kaczmarz. ART and many of its variants are widely used

today.

2.2.1 Blood Flow Field

Measuring blood flow is vital for the study of cardio–vascular diseases. The need to

perform measurement on living patients mandates the use of X–Rays to penetrate

tissues. This, in most cases, limits reconstruction to 2D. In a recent paper [Dubsky

et al., 2010] used X–Rays to measure in vivo PIV blood flow. The measurements are

1http://en.wikipedia.org/wiki/Kaczmarz method

7
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preformed by rotating the sample while capturing a frame sequence at each angle

with a high speed camera. This system is an example of a transition from limited

angle PTV to multiple angle views. The transition enables the use of tomography to

reconstruct the three dimensional blood flow field. While enabling 3D tomographic

reconstuction, the setup has the limitation of non overlapping temporal captures for

each angle, and is therefore less suitable for faster fluid flows.

2.3 Optical Projection Tomography
The traditional means of acquiring data to be reconstructed by tomography was

using X–Rays. The scanners for performing this acquisition utilize a fan beam

projector. OPT on the other hand uses light waves. Here, rays have the form of par-

allel lines. In either case, ray formation has a direct implications on the applicable

algorithm collection, thought the methods used in OPT are usually more flexible

when it comes to ray formation.

OPT has been used to a lesser extent than X–Ray tomography due to its limited

application when dealing with opaque objects because visible light hardly pene-

trates if at all. The power and simplicity of OPT shines when concerning transpar-

ent and translucent media. That is the case when capturing microscopic samples

where a high intensity light permeates the delicate tissues.

2.3.1 Visualizing Embryo Anatomy

When OPT was introduced in 2002 by [Sharpe et al., 2002, Sharpe] the first appli-

cation was visualization of embryo anatomy in outstanding clarity. In these papers

the authors captured a young mouse embryo and also mention the method is ap-

plicable for specimen of up to 15mm thick. The method proved to be instrumental

in developmental biology. The specimen was placed in a cylinder that is capable

of rotation around the central axis. The cylinder was sited inside a microscope

equipped with a CCD camera. Capture was performed while rotating the cylin-

der producing a collection of 400 images from 360◦ of the embryo. In order to

maintain sharpness of imaged details, the authors used a confocal microscope with

narrow illumination cones which minimized noise from neighbouring pixels.

8



2.3.2 Transparent Object Scanning

[Trifonov et al., 2006] used OPT to reconstruct the structure of transparent objects.

By immersing the object in a liquid tank, unwanted refractions can be reduced by

means of matching the refractive index of the liquid to that of the glass object to be

scanned. Rotating the cylindrical tank around the central axis enables capturing of

multiple angle views. This set of views is then fed into a tomographic reconstruc-

tion algorithm that reconstructs the immersed object shape. This approach works

well for static objects: the captured object formation is not affected by the temporal

shift caused by the delay between successive captures from multiple views.

The common requirement to this procedure and the one in Section 2.3.1 is

that both are observing stationary objects. The simplest way to perform a multi–

angle capture is to use a single camera while rotating the specimen. A computer

controllable rotation platform allows capturing numerous views in precise angle

increments. However when capturing dynamic objects the same configuration can-

not be applied. This usually calls for replacing the rotation platform and single

camera with a camera array encircling the objects as is described in Section 2.3.3

below.

2.3.3 Gas Flow Reconstruction

A similar setup to ours appeared in a work by [Atcheson et al., 2008] on scanning

non-stationary gas flows. In this project the same camera array was used to capture

gaseous flows. The authors made use of Background Oriented Schlieren (BOS),

which utilizes a high frequency background image for enabling the measurement

of per pixel deflection introduced by the gaseous volume. The recorded images

represent the integral of displacement that light waves undergo due to the refraction

caused by the gas volume. A tomography algorithm is then used to reconstruct the

refractive indices in this volume. Our setup utilizes some of the same hardware

components as well as the same camera synchronization code.
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Chapter 3

Capture Process

This chapter discusses the equipment setup and procedure used to capture the

image–set that is later used as a basis for reconstruction. The steps involve a

preliminary calibration stage where all the cameras are properly aligned and ray

projections are deduced. Following that, we capture some support images such as

background (for background subtraction) and then perform the bubbly flow cap-

ture.

After describing the capture process we elaborate on the post capture data pro-

cessing steps.

3.1 Hardware Setup
Most of the hardware involved relies on low–cost and easy to obtain off the shelf

components. The camera array is composed of 16 HD quality Sony camcorders.

To generate bubbly flow we are using a simple air–pump and an air–diffuser that

were purchased from a pet store. The cylinder is a regular laboratory clear glass

beaker with a custom opening at the bottom for the air tube. The calibration target

structure was printed using a 3D printer to fit in the cylinder, while the pattern itself

was printed on a transparency using a regular laser printer.

10



3.1.1 Fine Bubbly Flow

The setup requires fine bubbly flow which is produced by a common 3” wooden

air–diffuser1 of the type usually found in modern aquariums. Our goal was to pro-

duce a fine bubbly flow giving bubbles with about 1−2mm in diameter. We have

experimented with several diffusers, both of the common sort found in pet stores

and industrial types, such as sintered metal (a porous material used in industrial

filters). All of these produced large bubbles with varying diameters which would

imply adding support for bubble light reflection to our model. [Puleo et al., 2004]

contains an overview of how filter materials affect bubble sizes. Our experience

showed that wooden diffusers indeed produce fine homogenous bubble curtains.

We have not been able to obtain similar results with metallic diffusers, which ac-

cording to [Puleo et al., 2004] can generate even finer bubbles. Finally, a 3” wooden

air diffuser was selected for our setup. The diffuser is placed at the bottom of the

cylinder and fed by an air tube connected to a small electrical pump. Air flow was

regulated by a tap.

In order to achieve good reconstruction results we make sure the bubbly flow

remains near the central axis of the cylinder where all cameras have good coverage.

Water is stirred to produce more complex bubbly flows.

In the interest of producing bubbly flow in the centre of the cylinder, the volume

that is covered well by all cameras, we tried blocking parts of the diffuser to restrict

the flow. This however caused the flow regime to change so that bubble sizes

became non–uniform. Since varying bubble dimensions is not desirable, we opt

for using the diffuser as is with the drawback that some of the bubble trajectories

will be leaving the ideal reconstruction volume and travelling within areas with

partial camera coverage.

3.1.2 Strobe Lights

In this setup strobe lights serve a dual purpose: they provide overhead illumination

causing light to reflect from bubbles, and they acts as a secondary synchronization

mechanism for the camera array.

1http://www.amazon.com/Lees-Wooden-Diffuser-3-Inch-2-Pack/dp/B0002QQN4Y/
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(a) Side view (b) Top view

Figure 3.1: Diffuser placement in bottom of cylinder

The Arduino2 programmable strobe controller supports the specification of

custom on/off durations. The controller is programmed to repeatably switch the

strobes on for the duration of several NTSC frames (each NTSC frame length is

29.97µs) and then off for the duration of a single NTSC frame. During the on

period, the cameras are exposed to the incoming light and the bubble traces are

recorded. Then the strobes are switched off for a single NTSC frame to allow for a

later frame synchronization as described by [Bradley et al., 2009].

3.1.3 Camera Array

The camera array is comprised of sixteen Sony HD consumer video cameras ar-

ranged in a 160◦ semicircle around the cylinder. This arrangement has the cameras

about 10◦ apart with the angle (α0,α1, . . . ,α15) of each camera measured relative

to one master camera, which for convenience was chosen as α7. Camera orien-

tation measurements are mandatory for the calibration capture (Section 3.2.1) as

well for ray coordinate transform (Section 3.3.1).

Camera orientation alignments do not need to be highly accurate since the cali-

2Arduino website: http://arduino.cc
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Figure 3.2: Camera array centred around cylinder. Dark cloth was used to
minimize reflections from glass cylinder.

bration procedure is tolerant to angular shifts. However, once the angles have been

determined, it is important for the motorized rotary stage (Section 3.1.5) to rotate

to these angles precisely.

The cameras are not required to be coplanar, some cameras are positioned on

higher mounts than others. Coplanarity is not mandatory as each camera undergoes

a separate calibration procedure. Intuitively, the fact they are not collocated in

the same elevation should improve coverage for reconstruction but we have yet to

verify this claim.

The semicircle arrangement is necessary to avoid cameras viewing each other

through the transparent cylinder. Each view has only dark background visible be-

hind the cylinder. Further background elimination is described in Section 3.2.2.
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3.1.4 Camera Control

Rudimentary camera control is achieved through an Arduino based programmable

controller board. Control is performed by sending LANC3 commands to all cam-

eras almost simultaneously. The controller supports the following commands: turn

cameras on/off, start recording, pause and toggle focus between manual and au-

tomatic. Unfortunately, the LANC protocol was not designed for multiple syn-

chronous camera control, therefore a secondary mechanism is needed for frame

synchronization. This is performed by utilizing the strobe lights (see Section 3.1.2).

Figure 3.3: An earlier setup showing the platform holding the calibration pat-
tern near the glass cylinder. The platform is inserted into the cylinder
for calibration. Here the pattern is seen in the front slot.

3An unofficial reverse engineered protocol description can be found at: http://www.boehmel.de/
lanc.htm

14

http://www.boehmel.de/lanc.htm
http://www.boehmel.de/lanc.htm


3.1.5 Calibration Platform and Pattern

Calibration is performed using a 3D printed calibration pattern mounted on a plat-

form. The pattern structure is described in [Atcheson et al., 2010]. The pattern

contains tiles with unique markings on each tile as can be seen in Figure 3.4. The

platform and pattern are inserted into the cylinder and rotated together to face each

camera at angle αi in turn, Figure 3.5). The platform structure was printed using a

3D printer and was designed to fit tightly inside the cylinder to eliminate potential

calibration errors.

The cylinder is placed on a motorized rotary stage4 controlled via USB by a

computer which also sends commands to the strobe and camera controllers via

USB.

Figure 3.4: Calibration pattern. Note that each tile contains a unique code
which helps locating grid coordinates and inferring plane orientation.

4Zaber T-RS: http://www.zaber.com/products/product group.php?group=T-RS
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3.2 Capture Procedure
The capture sequence is composed of two main parts. In the first we perform

careful camera calibration with the final goal of generating a list of ray coordinates.

In the second part we capture the bubbly flow for reconstruction. We begin with

the calibration related capture description.

3.2.1 Calibration Related Capture

The cylinder and the calibration platform in it are rotated together to face each

of the sixteen cameras using a computer controlled rotating stage. Once facing a

camera at angle αi, the camera controller sends a start recording command to that

camera, followed by a pause command after a second. This produces a short static

video sequence which is later used to extract a single frame. We opted for video

frame extraction versus the snapshot functionality in order to keep the resolution

as well as other settings equal to those used in the main capture. Calibration cap-

ture happens in two sequences. In the first sequence the pattern is placed in the

front of the platform and rotated to face each camera in turn. Once all cameras

have captured the pattern, it is moved to the rear of the platform and the capture se-

quence is repeated. After the calibration capture step is done, each camera contains

recordings of both front and rear views of the pattern facing it.

Once calibration capture is over, the platform is removed from the cylinder.

The bubble diffuser, situated underneath the platform is now exposed and able to

release bubbles for the volumetric capture.
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(a) Rear (b) Front

Figure 3.5: Calibration platform holding the calibration pattern at the two po-
sitions

(a) Rear (b) Front

Figure 3.6: Calibration pattern as seen by the leftmost camera in the two po-
sitions

3.2.2 Background Capture

In order to remove as much background noise as possible, a background image

(short video sequence) is captured by each camera. To minimize inconsistencies,

this capture is performed in the same manner as bubbly flow capture Section 3.2.3

without turning on the air pump.
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3.2.3 Bubbly Flow Capture

Now the air pump is switched on and the water is stirred. Flow capture begins

by switching all cameras to record mode simultaneously. At this point in time

the strobes are turned off. Once all cameras have started recording the strobes

are switched on to work in the predetermined frequency. The cameras are now

recording the bubbly flow in frame sequences separated by a single dark frame.

After recording for a couple of seconds the cameras are paused. More bubbly

flows are captured following the steps above after which the capture sequence is

complete.

3.3 Data Processing
In this step we perform all the post capture data processing to prepare the captured

images for reconstruction. This includes calculating ray equations and generating

an image–set for tomographic reconstruction. The ultimate purpose of calibration

data processing is to generate and transform the equations of all the rays observed

by each camera into this global viewer coordinate system.
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calibration pair
acquisition

start

corner detection

2D interpolation

ray derivation

ray coordinate
transform

ray equations in world coordinates

front, rear images

CALtag corner list

front, rear coordinate pairs

ray equations

Figure 3.7: Calibration procedure. After successfully obtaining a pair of
front and rear images, we follow these steps to produce the ray equa-
tions in global viewer (master camera) coordinates.

3.3.1 Deriving Ray Projections

The reconstruction algorithm projects rays that penetrate through the volume. The

goal of obtaining a front and rear image pair is to construct the ray equations from

corresponding point pairs.

Tile Corner Coordinates

The first step is to locate the coordinates of each corner of the tiles in Figure 3.4.

For each camera CALTag, see [Atcheson et al., 2010], produces a sparse mapping

from pixel coordinates to world coordinates on the pattern plane.
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Coordinate Interpolation

Once all tile corner coordinates are located, we produce the two dimensional in-

terpolated gradient pattern, see Figure 3.8a. This is implemented using a bilinear

interpolation of an OpenGL texture over the tile coordinates, then sampling the

pixels in between using an offscreen buffer. Both front and rear images undergo

the same interpolation process.

(a) Tile corner interpolation

(b) Superimposed interpolation

Figure 3.8: Front calibration pattern interpolation for the leftmost camera.
Crosses represent the detected tile corners. Green is used for the in-
terpolation along the X axis, red represents Y axis interpolation. The
concentric circles are a visual aid for verifying the 2D interpolation.
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Deducing Ray Equations

Using the front and rear interpolated planes calculated above, we select all pixel

pairs that have both front and rear interpolated values. Pixels that appear outside

the tiled area in both or one of the planes do not provide the complete information

required to produce rays.

Since the distance between the two planes is known we determine the ray as a

3D line that passes through the two coordinates (x,y,z) f ront and (x,y,z)rear. These

rays live in the coordinate system of the camera that contained the pixel pair.

front

rear

Figure 3.9: Ray projection through reconstruction volume using calibration
point pairs. Assuming a remote viewer, incident rays can be considered
to be parallel. Rays undergo refraction when hitting a material bound-
ary. By locating a pair of points on each ray (red dots) we can determine
through which voxels the ray passes.

Ray Coordinate Transform

Camera rays are transformed to the global viewer coordinate system by rotating

the rays according to the respective camera angle αi (relative to the global viewer

direction α7), see Figure 3.10. The pattern rotation angle αi for each camera was

determined during the camera array setup Section 3.1.3.

21



Figure 3.10: Approximate camera arrangement around cylinder. This setup
reduces background noise by making sure cameras do not lie on each
others direct line of sight. One angle is defined as the global view–
point and all camera rays are rotated to the viewer coordinate system.

3.3.2 Frame Extraction

The first step is to extract frames from videos. Next we search for the offset of

the first frame that is exposed by the strobe–lights, this is done with a program

that locates a frame with a sharp increase in intensity. The result is a sequence of

images per camera for the duration the strobe was on.

Background images obtained in Section 3.2.2 are subtracted from each frame

in the sequence to reduce artefacts from background and reflections on the glass

cylinder. This has the effect of removing everything that is static in the image,

leaving (almost) only the bubble traces.

3.3.3 Frame Synchronization

The challenge when using consumer quality cameras with a rolling–shutter is that

they are very hard to synchronize. The controller issues the start–recording mes-
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sage to all cameras sequentially with a short delay in between the messages. That

along with the non–deterministic camera phase does not permit exact simulta-

neous synchronization. The result is temporally shifted frames. [Bradley et al.,

2009] have addressed this issue by stitching frame segments to produce temporally

matched frames.

Figure 3.11: A typical frame artifact caused by the rolling shutter effect with
the temporal strobe exposure beginning mid–frame.

3.3.4 Radiometric Correction

Each camera frame–sequence is exposed to different amounts of light due to the

reasons listed below. This can have a large impact on our ability to reconstruct

the volume as the reconstruction algorithm treats all the cameras equally and can-

not handle illumination variance. We therefore need to perform a radiometric–

correction before reconstruction takes place so that views are not corrupted by

exposures differences.

There are several reasons for the different camera exposures, the most promi-

nent one is due to the inability to programmatically set the exposure/gain levels of

the cameras we use. The only way to set the exposure is by manually rotating a

knob until all views appear to be visually similar. Needless to say, this method is

highly inaccurate. Another reason for the different exposure levels is due to the

distance of each camera from the centre of the cylinder, this distance varies both

horizontally and vertically. A third reason is the location and shape of the strobe

light, which has varying light path distances to each camera.

23



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.3

0.4

0.5

0.6

Maximum intensity

Camera number

A
ve

ra
ge

in
te

ns
ity

0.9

1

1.1

1.2

1.3

1.4

In
te

ns
ity

fa
ct

or

Figure 3.12: Average normalized intensity (dark bars) of the same patch (a
rectangle containing all pattern tiles) as seen by all cameras and radio-
metric normalization–factor (light bars). Camera #7 shows the high-
est average intensity. The views for all cameras are multiplied by the
corresponding factor (max intensity to camera average intensity ratio
fc = Imax/Ic ).

3.3.5 Frame Averaging

Video cameras exposure duration is determined by the video standard (NTSC in our

case). Using this exposure duration bubbles appear as short lines in video frames.

In order to visualize longer bubble trails we add up several consecutive frames

together then average to maintain original intensity (energy) levels. When this is

done bubbles appear as elongated streaks as can be seen in Figure 3.13. The streak

image–set serves as a good basis for bubble trajectory reconstruction. However it

is not suitable for bubble velocity estimation. For velocity estimation we prefer

the smaller streaks that can be used to deduce instantaneous bubble velocity which

cannot be accurately estimated from the elongated streaks.
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(a) Streaks (b) Enhanced detail

Figure 3.13: Bubble trajectories appearing as elongated streaks when averag-
ing several frames together.

3.3.6 Visual Hull Mask

As can be noticed in Figure 3.13, much of the volume contains water with no bub-

bly flow. Since we are dealing with an underdetermined problem and the recon-

struction algorithm is quite time intensive, it is preferable to reduce both the num-

ber of required unknowns and calculations as much as possible. Using a visual–hull

mask also reduces ghosting since a large portion of the voxels are marked as empty

and thus do not play a role in the algebraic reconstruction. This has the effect of

a dramatic reduction in the number of the unknowns (voxels) in our linear system.

Although using a visual–hull mask also decreases the number of rays (equations

in the linear system), the impact on reduction of unknowns is much larger: O(n)

unknowns reduction per single visual–hull ray. The overall effect on the system is

that it becomes better conditioned.

This can be achieved by demarcating blank or empty rays that are not pene-

trating any bubbles, in other words their corresponding pixel value is (close to)

zero. A simple threshold can do the trick and reduce computational efforts. We set

the threshold manually to a relatively low number to avoid losing important data

(false positives). A typical threshold image such as Figure 3.14 contains two types

of values: black means the ray goes only through non–bubble voxels that should

be masked out, and white means the ray potentially penetrates bubbles and should

therefore be considered in the reconstruction process.
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Figure 3.14: Threshold image used as a visual–hull mask. Black pixels are
known not to contain any bubbles. This information assists in decreas-
ing the reconstruction runtime.

This chapter dealt with the type of data we collect, how we collect it and how

it is processed in preparation for reconstruction. In the next chapter we look at the

reconstruction procedure, how all the data collected so far are used to produce a

three dimensional volume representation of the bubbly flow.
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Chapter 4

Reconstruction

The previous chapter dealt with the acquisition sequence, all the steps necessary

to prepare a set of images for the reconstruction of the water volume with bubbly

flow. Now that we have the image–set we proceed to reconstruction. The current

chapter also covers several additional post tomographic reconstruction steps to find

the bubble trajectories.

4.1 Ray Projection
In this section for simplicity we shall be dealing with a 2D description of the prob-

lem, the real–world 3D approach is very similar.

A ray is parametrized as a straight line, rθ ,t , with angle θ and distance from

origin t on the X−Y plane. Cartesian coordinates have the following relation:

xsin(θ)+ ycos(θ) = t (4.1)

A function f (x,y) represents the presence of objects on the same X −Y plane.

In CT this function is interpreted as the density of the object while in our case it

is the reflectance of light from bubbles. We can now define the total reflectance

measured along ray rθ ,t as:

pθ ,t =
∫

rθ ,t

f (x,y)ds (4.2)
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Figure 4.1: The complete reconstruction procedure.

The next step is to discretize the problem, first the integral is replaced by a

sum. A new factor wθ ,t,x,y has to be introduced since part of the discretization is to

produce a grid G with a finite number of cells. This weight depends on the inverse

of the distance of the cell at x,y from the ray rθ ,t . Typically a Gaussian shaped
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function is used for the weights. Thus most of these weights are practically zero

and only cells in the ray’s vicinity posses weights greater than zero.

pθ ,t = ∑
x,y∈G

wθ ,tx,y f (x,y) (4.3)

For the discretized problem, pθ ,t represents the intensity of a pixel correspond-

ing to ray rθ ,t . This intensity is governed by the sum of individual bubble intensities

in the ray’s close neighbourhood.

x

y
rθ ,t

Figure 4.2: A typical voxel weight allocation for a single ray. Darker voxels
indicate higher weight values.

4.2 Reconstructing the Original Function
In Equation 4.3 the function f (x,y) is used to compute the projection for a ray.

In our case we measure the projections as pixel intensities and the rays are known

from the calibration. We do not know what the original f (x,y) is and that is exactly

what we are interested to find out from the information obtained. This is called
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an inverse problem: given some observations we wish to reconstruct the original

function that corresponds to these observations. The problem depends largely on

the number of equations M, versus number of unknowns N (for the exact values see

the sections below). The bubbles we use are quite small, requiring a high resolution

reconstruction (in other words a large number of voxels) implying a large number

of unknowns. On the other hand, the number of rays depends on camera resolution

and number of cameras, dictating the number of available equations.

This leaves us with the following set of equations (note the change of notation:

for brevity we use i to index the rays instead of the pair (θ , t), and j to index the

voxel at (x,y)):

p0 = w0,0 f (0)+ . . .+ w0, j f ( j)+ . . .+ w0,N f (N)
... =

...
...

...

pi = wi,0 f (0)+ . . .+ wi, j f ( j)+ . . .+ wi,N f (N)
... =

...
...

...

pM = wM,0 f (0)+ . . .+ wM, j f ( j)+ . . .+ wM,N f (N)

We are looking for a solution to this set of M equations that agrees with our

observations. Next we will look into how tomographic reconstruction helps us find

a valid solution corresponding to our measurements.

4.3 The Algebraic Reconstruction Technique
Tomographic reconstruction can be divided into two major categories: Fourier

based and algebraic. The latter is suitable for problem as it lends itself to deal-

ing with different ray geometries and makes it possible to add a–priori knowledge

about the reconstruction domain. Algebraic Reconstruction Technique (ART) is an

iterative approach for solving a large linear system. In our case the matrix size

is number of voxels times number of rays, which is, for practical resolutions, too

large to keep in memory. ART can be implemented as a matrix free method thus

keeping memory requirements minimal. The technique was originally developed

by [Gordon et al., 1970] in the early seventies.
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4.3.1 Problem Statement

Given a set of M rays {r0,r1, . . . ,rM}, with each ray ri having a corresponding

measured intensity value pi, and a set of N voxels {v0,v1, . . . ,vN} find the unknown

intensity value xi of each voxel vi.

In matrix notation we need to solve:

AAAx = p (4.4)

where AAA is a matrix of coefficients ai j representing how much of ray r j passes

through voxel vi.

Am,n =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n


In the notation above, the 3D voxel cube has been “flattened out” into a long

voxel list. Thus, the number of voxels N, is actually the product of the number of

voxels along each axis: N = Nx×Ny×Nz. It is usually convenient to work with

cubic volumes where all dimensions are similar, as it is in our case. Therefore we

use N = n3, where n is the same number of voxels along each of the dimensions.

4.3.2 Typical Matrix Dimension

There are several techniques to solve equation Equation 4.4, most rely on the avail-

ability of matrix A. The matrix can be precomputed or computed on the fly when an

element is accessed. Both ways of accessing the matrix lead to poor performance

as the matrix is too large to fit in memory. The relatively small diameter of the

bubbles (around 1− 2mm) while the reconstruction volume is quite large (around

150mm× 150mm× 150mm). This calls for volumes of at least 3003 voxels, and

for better results we use up to 6003 voxels. The cameras we use produce around

6 million rays. The resulting matrix is too large for modern computers to fit in

memory.
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4.3.3 The Algorithm

A camera obtains the cumulative reflections from bubbles along a ray as a pixel

intensity:

pi =
K

∑
j=1

wi jx j (4.5)

or the weighted sum of intensities of K voxels along ray ri producing a pixel

intensity of pi. And wi j representing the weight of ray ri at voxel v j produced by

our kernel–function, a Gaussian kernel. This can be observed by expanding the

product of a single row of AAA and the set of voxels from Equation 4.4.

The above is a somewhat simplified model as bubbles that are further away

from the camera or light source will appear less bright. However these differences

are minor and can therefore be ignored.

We begin with an initial guess, in our case an empty volume. This implies

setting each voxel–intensity to zero:

xi = 0 i = 1, . . . ,N

Next we begin iterating until convergence as specified below. Each ray is pro-

jected through the volume, summing up the voxel intensities for the K voxels that

lie close to the ray. This step is called the forward projection:

p̂i =
K

∑
j=1

wi jx j (4.6)

Now we compare the calculated intensity p̂i with the measured one pi, and

write down the difference between the two:

∆pi = p̂i− pi (4.7)

The back–projection step is to distribute the above residual between all the

voxels along the ray according to each voxel’s weight.
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x̂ j = x j +λ
wi j

K
∑

k=1
wk

∆pi k = 1, . . . ,K (4.8)

∆pi can be negative if other rays/iterations with common voxels assigned val-

ues that produce an intensity sum larger than the measurement pi. When this hap-

pens, the intensity for all participating voxels is reduced.

For the residual distribution we are using a parameter λ to control how much of

the residual we wish to incorporate into the next iteration x̂ j. This factor affects the

convergence rate. From time to time, due to the iterative nature of the algorithm, an

updated voxel value x̂ j might be negative. In this case it is set to zero, as negative

values are meaningless.

When the algorithm has run for a predetermined number of iterations or total

residual is less than a specified threshold the algorithm terminates and we have our

result.

4.3.4 ART Variations

Over the years many flavours of ART have been developed. For the sake of brevity

we will not go over the details of the various flavours. For more details on ART

variants see [Herman, 2009, Slaney and Kak, 1987, Andersen and Kak, 1984].

The variants differ mostly in the way voxels are updated: for each ray or after

every iteration, the way weights are assigned, and whether the relaxation factor

is constant or dynamic. Also some of the algorithms have special treatments for

reducing noise by using bilinear elements instead of pixels, as well as many other

heuristics for improving the reconstruction results and accuracy.

4.3.5 An Underdetermined System

Our setup can be categorized as limited view tomogoraphy, which generally pro-

duces more unknowns than equations. This situation is called an underdetermined

system, meaning the problem has more than one possible solution. Historically,

some effort has been done to improve solution quality by using priors, see [Hanson

and Wecksung, 1983, Hanson, 1993] but we have not pursued this path. A future

direction for improving reconstruction quality can be to apply priors on bubble
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shape, dimension, density etc.

4.3.6 Ray Extension

Each ray is associated with a single camera pixel, the measurement of pixel inten-

sity represents the sum of all voxel intensities that lie on the ray’s path. Since rays

inside the cylinder travel in straight lines, we extend the ray coordinates from the

front and rear planes until they intersect the cylinder coordinates along the same

straight line equation.

0 0

0 0

front

rear

Figure 4.3: Ray extension within cylinder bounds. Given two points (in red)
for each ray representing the intersection with the front and rear planes,
we extend the rays to intersect with cylinder boundaries. Any voxel
within the cylinder may contain information while voxels outside of the
cylinder are known to be empty.

4.3.7 Visual Hull

The reconstruction algorithm takes a considerable time to converge. To alleviate

this process we use the visual–hull that specifies which rays and voxels contain

relevant information and which do not. The process begins by selecting all the rays

which produce a zero intensity sum pi = 0. All voxels vi that lie on the ray’s path

(x,y) ∈ ri must contain an intensity value of zero since the total intensity sum is

zero and ∀i,vi ≥ 0. These voxels’ values are set to zero f (x,y) = 0, and they are
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marked as non participating in the back–projection process, so that residuals are

not distributed to them. This enables faster convergence and reduces artifacts since

all marked voxels remain empty throughout the iterations.

4.4 Post Reconstruction
At this point we have obtained a three dimensional reconstruction of the bubbly

flow. We have a volume where each voxel contains an intensity value. Our next

task is to trace the trajectories. Trajectories can be interpreted as connected voxels

whose intensity level is above a certain value indicating the presence of a bubble’s

path.

4.4.1 Applying a Threshold

The first step therefore is to apply a threshold to the volume voxels in order to

get rid of reconstruction artifacts. The threshold zeros out voxels containing low

intensity values which are left over from the iterative nature of the reconstruc-

tion procedure. Unfortunately, according to our knowledge, there is no automatic

method to decide upon the desired threshold value that can safely reduce artifacts

while maintaining reconstruction fidelity. Thus we have to visually inspect the vol-

ume and decide which value seems good enough for the streaks to be visible while

reducing the artifact noise to a minimum. As is always the case when applying a

threshold, care must be taken not to use a value which is too high as this will cause

important voxels (non noisy ones) to be dropped out (false negatives). The value

we chose is one that reduces noise considerably while preserving connected streak

patterns as can be seen in Figure 4.4.
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(a) Original reconstruction (b) Top 0.1% high intesity voxels

Figure 4.4: Reducing low intensity reconstruction noise by thresholding.
Figure 4.4b still contain some noise, this will be reduced later on.

4.4.2 Connected Components

The next step is to associate neighbouring voxels as belonging to the same streak.

This is done by running a connected component labeller on the thinned streaks.

The labeller issues a distinct numeric value to each streak. Theoretically, two or

more streaks can intersect and will thus be labelled as a single streak but this rarely

happens in our setup. Had this been a real concern we could have analyzed the

intersection point and separate the streak into distinct streaks by comparing the

gradients before and after the intersection.
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(a) Before (b) After

Figure 4.5: The output of running the connected-components filter (on the
right). The results are showing components with 10 pixels or more.

4.4.3 Thinning

Once the threshold has been applied to the volume and noise reduced, the streaks

appear as thick elongated blobs. The next step is to perform 3D thinning so that

only the core of the streaks remain. As this functionality was originally missing

from our toolkit, it was consequently implemented based on the work of [Ma and

Sonka, 1996, Wang and Basu, 2007]. We have looked at several solution to the 3D

thinning problem and selected this one as it seemed to handle most cases more thor-

oughly than the rest. The method and the improvement boil down to an iterative

scheme that removes voxels by looking–up their neighbourhood in a predefined

dictionary. Neighbourhoods that are found in the dictionary cause the voxel to be

set to zero. This continues until the last iteration completed did not have any vox-

els that were zeroed, signalling a convergence and the termination of the thinning

algorithm.

4.5 Implementation
The implementation of most of the code mentioned above was done in C++ using

an in–house toolkit called MDA. MDA provides functionality to manipulate arrays
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of any dimension. Much of the support code for the functionality in this chapter

had to be implemented as it was lacking from MDA. More efforts went into com-

pleteness and correction than into performance tuning. Many of the above routines

can be parallelized as well as modified to take advantage of GPUs, but this was

not our goal. The main goal was producing a complete reconstruction workflow

leaving fine–tuning for a later stage.

In this chapter we have seen how the raw data obtained in the calibration and

capture steps are used to reconstruct streak patterns. Next we shall look at the

problem of how to determine velocity from the reconstructed data.
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Chapter 5

Fluid Velocity Estimation

The previous chapter completed the reconstruction process and left us with three

dimensional representations of streaks. In this chapter we produce velocity estima-

tion based on the reconstructed streaks. Our problem lives in the domain of two

phase flows: gaseous (air bubble) flow and liquid (water) flow. The complete fluid

dynamics of our system are characterized by both the bubbly flow and fluid flow.

The two are related but not identical.

Instantaneous bubble velocities are obtained from data gathered during trajec-

tory reconstruction. On the other hand, the fluid velocity field is typically deter-

mined by using tracer particles. In this chapter we show how fluid interior velocity

is estimated from measurements on such passive advected particles. Since our

current data collection only provides bubble tracking, we use the available bubble

velocity vectors as if they were tracer particle velocities to reconstruct the fluid

interior velocity. We acknowledge the fact that bubbles do not behave as passive

advected particles, thus the resulting fluid velocities are inaccurate. However, once

measurements are performed using proper tracer particles, applying the exact same

procedure will produce the sought after results. At this point the two phase velocity

field reconstruction is complete.
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5.1 Fluid Velocity
One of the key goals of PTV systems is to measure or infer the fluid velocity within

the medium where the particles are travelling. For this to be achieved a good

control of particle density and density uniformity is required. These are typically

needed in order to match particles between frames to determine particle trajectory,

which is in turn used to calculate the velocity.

5.2 Bubble Velocity
Our setup differs from other PTV setups (for instance the recent implementation

in [Matsumoto et al., 2012]) since bubble control is quite limited. In addition to

that bubble velocity is not under our direct control as we have no means to apply

pressure to the water cylinder. Thus, bubbles are flowing freely from the diffuser

at the bottom to the water surface top. The consumer quality video cameras also

pose restrictions on the exposure duration. The end result is that we are unable

to produce sharp looking bubble images, where bubbles appear as separate points.

Instead we obtain images where bubbles appear as streaks. This temporal blur can

be used to our advantage: instead of locating matching bubbles as points between

image sets, each bubble appears as a separate streak and bubble velocity is mani-

fested as streak length. In contrast, PTV locates the positions of the same bubble in

two successive frames and uses the displacement information to calculate velocity.
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Figure 5.1: Velocity vectors in volume. This vector field represents bubble
velocity magnitudes constructed from 4 consecutive frames. Note the
imperfections in air diffuser as it is releasing air from several clusters
(bottom) instead of an ’air curtain’.

5.2.1 Estimating Fluid Velocity from Particle Velocity

In order to obtain the complete dynamics of a two phase flow system, we need to

track both the bubbles and the fluid itself. Tracking the fluid is traditionally done

by using smaller tracer particles that move along with the fluid flow (see [Bröder

and Sommerfeld, 2000]). [Seeger et al., 2001] used X–ray in conjunction with

regular cameras to obtain the fluid dynamics using X–ray absorbing particles.

Unfortunately, our setup does not currently allow tracking tracer particles. We

have tested different materials but did not find any of them suitable for water flow

tracking: most would either float or drown too quickly. Since we preferred to

capture fast moving bubbles, we did not consider other transparent fluids such as

Glycerin, which is more viscous and has a wider availability of tracer particles.

Therefore we have limited our captures to tracking bubble trajectories only. In the

remainder of this chapter we treat the bubble samples as if they were samples of

tracer particles. There is non negligible difference between fluid and gas veloci-
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ties due to the density differences and surface tension between the gaseous/liquid

layers. However, the same procedure applies for both when building the velocity

vector field. Of course the resulting velocity field obtained from bubbles will not

be equal to the one we ideally wish to reconstruct, however it can provide us with

a clue of how fluid dynamics work.

Fluid close to the particle is being dragged along with the particle by the wake

created by the bubbly flow moving upward. Tracking the trajectories of tracer

particles allows reconstructing the neighbouring fluid velocity. Using this data as

boundary conditions we can estimate the overall fluid velocity field everywhere in

our volume.

5.2.2 Flow Theory

Flow is usually categorized as either laminar, turbulent or in transition. Flow type

is governed by the Reynolds Number, which is defined as:

Re =
ρUtd0

η

where ρ is the fluid density, Ut is the terminal velocity of the bubble, d0 is the

bubble diameter and η is the liquid viscosity. Given our measurements, we obtain

large Reynolds Numbers (magnitude of 105) indicating highly turbulent flows. This

result implies that we cannot reliably estimate fluid velocity from bubble velocity

alone.

5.3 The Minimization Problem
Taking a note of our incomplete fluid measurements, we now continue to describe

our implementation for velocity estimation in the volume interior based on the

sparse bubble measurements. The same implementation would apply had we ob-

tained proper particle trajectories.

Since we are dealing with incompressible flows, we assume the flow is diver-

gence free or ∇ ·U = 0. Instead of estimating the velocity directly, we use the

velocity potential ψ which is defined as ∇×ψ =U . Applying a curl operator here

has the effect of restricting the velocity field to be divergence free.
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Given a set of measured particle (bubble) velocities which are used as bound-

ary conditions Û = {u1,u2, . . . ,un} at positions X = {x1,x2, . . . ,xn} we want to

estimate the continuous spatially varying velocity field U within the fluid. The

sparse samples yield an underdetermined problem which has more than one solu-

tion. We use least–squares minimization to find the velocity field. Next we define

the energy which is used for minimization. Our goal is to keep the velocity field

close to the original measurements for points that contain the predetermined veloc-

ity boundary–condition vectors, thus:

Ebc(U(x)) =
∫

x∈X
‖U(x)−Û(x)‖2

2 dx

This leads to an interpolated field that tends to be very similar to the known

boundary–condition samples, however we also want the velocity field to be smooth

in between the samples. We enforce smoothness across all the domain Ω by adding

another component to the overall energy to be minimized.

Es(U(x)) =
∫

x∈Ω

‖∇2U(x)‖2
2 dx

This produces smoothness across the entire domain. In order for these two en-

ergy functions to be useful for minimization we introduce a weighted linear combi-

nation of both functions. The weights can be tweaked in order to tune the algorithm

to prefer sample fitting vs. smoothness.

E(U(x)) = wbcEbc(U(x))+wsEs(U(x))

Another component we found useful is overall kinetic energy. This should take

care of over–fitting noisy samples by preferring fields with low kinetic energy.

Ek(U(x)) =
∫

x∈Ω

‖U(x)‖2
2 dx

The weight associated with this component will typically be much smaller. The

combined energy function is:

E(U(x)) = wbcEbc(U(x))+wsEs(U(x))+wkEk(U(x))
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At this point we incorporate the divergence free constraint and change our en-

ergy functions to use the velocity potential ψ . Using the energy functions above

we obtain:

Ebc(ψ(x)) =
∫

x∈X ‖∇×ψ(x)−Û(x)‖2
2 dx

Es(ψ(x)) =
∫

x∈Ω
‖∇2(∇×ψ(x))‖2

2 dx

Ek(ψ(x)) =
∫

x∈Ω
‖∇×ψ(x)‖2

2 dx

(5.1)

The total weighted energy sum becomes:

E(ψ(x)) = wbcEbc(ψ(x))+wsEs(ψ(x))+wkEk(ψ(x)) (5.2)

5.3.1 Discretization

In order to solve Equation 5.2 we need to discretize our equations. This calls for

selecting basis functions, in this case we choose finite–differences. The Laplace

and curl operators are discretized using centered differences. There are of course

other possibilities however our selection is relatively simple to implement. The

integrals become sums over the fluid interior. The discrete curl (∇×) is denoted

as C and the Laplacian (∇2) as L. The velocity potential function becomes Ψ =

[ψ1,ψ2, . . . ,ψn]
T . The boundary conditions do not need discretization as they are

already represented by samples. In addition to the velocity measurements we set

the boundary–conditions to be zero everywhere outside the cylinder.

Ebc(Ψ) =
m
∑

i=1
‖Cψi− ûi‖2

2

Es(Ψ) =
n
∑

i=1
‖L(Cψi)‖2

2

Ek(Ψ) =
n
∑

i=1
‖Cψi‖2

2

(5.3)

The corresponding total energy remains as it was before, a weighted linear

combination of the energy components:

E(Ψ) = wbcEbc(Ψ)+wsEs(Ψ)+wkEk(Ψ) (5.4)
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5.3.2 The Solver

In order to solve Equation 5.4 we utilize the L–BFGS method. This is an iterative

quasi–newton optimization method with low memory requirements, which is criti-

cal for solving large volumes. It has a theoretical quadratic convergence rate. As an

input L–BFGS requires computing the energy gradient ∇E(Ψ) for every iteration

taken.

The derivatives used by L–BFGS for each of the energy components are:

∇Ebc(Ψ) =
m
∑

i=1
2CT (Cψi− ûi)

∇Es(Ψ) =
n
∑

i=1
2LT (Lψi)

∇Ek(Ψ) =
n
∑

i=1
2CTCψi

(5.5)

5.3.3 Results

Fluid velocity estimation requires the use of tracer particles to track fluid motion.

Because we were unable to perform tracer particles captures the results below were

obtained using the bubble trajectories. Although bubble dynamics are different

than fluid (tracer particle) dynamics, when it comes to velocity estimation the same

procedure applies for both. We now proceed with velocity estimation based on

bubbly flows, which should be treat as tracer particles.

Due to the relatively large dimensions (150×175×150 voxels) of our velocity

vector grid, the L–BFGS algorithm requires a large number of iterations in order to

achieve a solution that is smooth enough in the points that do not hold boundary–

conditions while maintaining similar values to the points that do. Our data is quite

sparse as bubbles appear to travel in very specific paths leaving large portions of the

volume’s interior without any measurements. We calculate the root–mean–square

error every 10 iterations for points that have corresponding boundary–conditions

only. The root–mean–square error defined as:

ERMS =

√
1
m

m

∑
i=1

(Ui−∇×ψi)2 (5.6)

This error measurement is calculated by averaging the sum of difference be-
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tween the boundary–condition velocities to the velocity in the resulting vector–

field. Only points that originally contain boundary–condition values take part in

the sum.
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Figure 5.2: Error and residuals for a smaller grid. After 1000 iterations or so
the error does not decrease as fast as it initially did. The overall residual
(energy) as defined above continues to vary as the optimizer continues
looking for a solution.

As is evident from Figure 5.2 the RMS error tends to stabilize after several

hundred iterations. The only benefit from running more iterations is to smooth out

the flow field into the fluid interior where no prior boundary–conditions were ap-

plied. With proper fluid interior velocity samples, smoothing produces the desired

solution approximation. The optimizer can be stopped once a predetermined en-

ergy limit has been reached or if the fluid interior velocity vectors do not change

much between iterations.
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Figure 5.3: Fluid interior velocity vectors. Red for higher velocity magni-
tude, moving upward and blue for low magnitude, moving downward
(direction indicators removed for the sake of clarity). This reconstruc-
tion from bubble velocity vectors is inaccurate overall as it was not done
from tracer particle velocities but it does offer a clue to how flow in
the fluid interior looks like. Note how the slower fluid flow is directed
downward in parts remote from the upward bubbly flow in the centre.
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Figure 5.4: Velocity vectors restricted to bubble proximity. Velocity vectors
that are further away from bubble position are masked out. If we work
under the assumption that fluid in close proximity to the bubbly flows
is moving in similar velocities, this vector field suggest how the fluid
behaves.
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Chapter 6

Conclusions

The investigation of bubbly flows is an ongoing research area. In this work we

have seen how a simple consumer grade camera array can be effectively used to

reconstruct bubbly flows in fluids. The bubble trajectories can be traced and bubble

position and velocity can be obtained by relatively simple means. Similarly, using

data obtained from capturing tracer particles we should be able to reconstruct fluid

flow.

We have shown how long exposure frames, which are generally avoided due

to motion blur, can be used to our advantage, to obtain both the bubble trajectories

and bubble velocities. These elongated streaks can be combined to provide the

full path a bubble takes, with velocity measurements along the way. The same

procedure applied to tracer particles is used to obtain the fluid dynamics, then by

utilizing finite–differences an optimization problem yields the dynamics of the fluid

interior.

6.1 Future Work
Here we look into some improvements and research directions where this project

can be taken to.
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6.1.1 Fluid Tracer Particles

Fluid dynamics in a multiphase flow cannot be complete without proper measure-

ments of fluid flow. We have covered gaseous dynamics in terms of position and

velocity, by reconstructing bubbly flow from measurements. The next step is ac-

quiring similar data for tracer particles to obtain a fluid velocity field. Although

these particles are usually opaque, their miniature dimensions should not require

modifications to the reconstruction procedure. The cameras we used as well as

the reconstruction volume dimensions allowed a resolution of about 0.25mm and

should be sufficient for sub 1mm tracer particles. The particles should have a dis-

tinctive colour so they can be distinguished from bubbles which appear as white

blobs or streaks. Different colours can be used as an aid during reconstruction as

was suggested by [Bendicks et al., 2011].

6.1.2 Tomographic Reconstruction Improvements

As previously mentioned, there have been several efforts in the past to incorporate

various types of constraints into the tomographic reconstruction procedure in order

to find a more accurate solution for this over–determined problem. Incorporating

domain knowledge can improve reconstruction results albeit require considerable

modifications and more sophisticated algorithms.

Incorporating Incompressible Flow Constraints

A very interesting approach has been recently applied to fluid tomography. [Ne-

mirovsky et al., 2011] suggested incorporating flow incompressibility as a con-

straint into reconstruction. This, according to their paper, produces higher fidelity

reconstructions. The method, Incompressible Fluid Tomography, relies on captur-

ing successive temporal frames. They choose one frame to be the anchor frame,

then step from one point in time to the next while applying density moment con-

straints.

Algorithmic Variants

ART has many variants, we have chosen one that produced good results. More

effort can be put into a comprehensive comparison between the numerous methods.
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Methods that work well for sparse samples should work best for this problem.

6.1.3 Varying Bubble Dimensions

The aerator used in this work produced bubbles of about 1− 2mm in diameter.

These were not accurately measured, the sizes were estimated from captured im-

ages. Reducing bubble dimensions is possible as long as it does not reach the

capture resolution (about 0.25mm). Increasing bubble diameter beyond a certain

size will produce bubbles that are no longer a perfect sphere, they transform into

a concave shape when rising up. In addition to that, partial specular light reflec-

tions will be visible due to the top illumination. All of this will make it harder to

distinguish between the different trajectories.

Using a fine controlled aerator we could modify the air pressure to produce

different bubble densities as well as modify the bubbly flows.

6.1.4 Verification of Flow Models

We have manually verified the resulting trajectories and velocities magnitudes are

in a similar range to the ones that result from measurements. Next, it will be

interesting to compare the velocities and trajectories with the theory of multiphase

flow fluid dynamics.
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