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Abstract

As users increasingly rely on collaborative rating sites to achieve mundane
tasks such as purchasing a product or renting a movie, they are facing the
data deluge of ratings and reviews. Traditionally, the exploration of rated
data sets has been enabled by rating averages that allow user-centric, item-
centric and top-k exploration. More specifically, canned queries on user
demographics aggregate opinion for an item or a collection of items such as
18-29 year old males in CA rated the movie The Social Network at 8.2 on
average. Combining ratings, demographics, and item attributes is a pow-
erful exploration mechanism that allows operations such as comparing the
opinion of the same users for two items, comparing two groups of users on
their opinion for a given class of items, and finding a group whose rating
distribution is nearly unanimous for an item. To enable those operations,
it is necessary to (i) adopt the right measure to compare ratings, and to
(ii) develop efficient algorithms to find relevant <user,item,rating> groups.
We argue that rating average is a weak measure for capturing such compar-
isons. We propose contrasting and querying rating distributions, instead,
using the Earth Mover’s Distance (EMD), a measure that intuitively reflects
the amount of work needed to transform one distribution into another. We
show that the problem of finding groups matching given rating distribu-
tions is NP-hard under different settings and develop appropriate heuristics.
Our experiments on real and synthetic datasets validate the utility of our
approach and demonstrate the scalability of our algorithms.
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Chapter 1

Introduction

1.1 Motivation

In collaborative rating systems such as Flixster, Epinions, and Yelp, users, in
their role as producers, rate items they have experienced. These ratings form
the basis for users, in their role as consumers, to explore items in order to
find what they may be interested in, or to receive recommendations. In this
paper, we focus on the kind of support a system needs to provide in order to
make the exploration of rated datasets effective and useful. We argue that the
ability to compare rating distributions of groups of 〈user,item,rating〉 tuples
is central to such exploration, as it enables choosing between different rater
populations, contrasting items with respect to the opinion of their raters,
finding groups of 〈user,item,rating〉 tuples that nearly agree on their ratings
for items in the group, etc. To achieve that, we develop a framework to
compare and find such groups given conditions on users, items and ratings.

In the physical world, asking one’s friends or acquaintances to compare
sets of items, e.g., French and American comedies, Canon and Nikon cam-
eras, is common practice. The same could be said of comparing the opinion
of two users, Mary and John, or user sets, e.g., males and females, on a spe-
cific item or a class of items such as moderately priced Chinese restaurants
in the Bay Area. Online, the most common way to do that is by contrasting
rating averages. Averages are computed on 〈user,item,rating〉 groups that
include one or multiple items, e.g., French Comedies, and where the user
dimension represents all or some users, such as movie critics or 18-29 year
old’s. Figure 1.1(a) illustrates an example of a demographics breakdown
on IMDb for the movie The Social Network. The example shows a global
average as well as averages for canned 〈user,item,rating〉 groups where item
refers to a single movie.

Several studies have established that users in different demographics,
i.e., different rater populations, may have different preferences for the same
item [6]. Table 1.1 shows average ratings for two different movies by two
rater populations – those living in NYC and those living in Nashville. One
can easily see that average rating for a given population does not necessarily
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1.1. Motivation
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Figure 1.1: Figure showing (a) Demographics Breakdown of Ratings on
IMDb (b) Movie Rating Distributions

reflect those of populations it contains. Indeed, while the first movie is
preferred in both NYC and Nashville, its average rating overall is lower than
the second movie’s. This is also known as the Simpson’s Paradox 1. Such
user groups are not always known in advance and need to be discovered.
In particular, given the large number of groups that could be derived by
sub-setting items and users in an input rated dataset 〈user,item,rating〉, a
strategy is needed to determine the most relevant of such groups according
to a query semantics. In this paper, we explore using rating distributions
as input and finding groups that compare favorably to input distributions
(referred to as query distributions).

1http://en.wikipedia.org/wiki/Simpson’s paradox
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1.2. Goals and Challenges

Group Movie1 Movie2 Winner

New York 10 = 1000
10

8 = 7200
900

Movie1

Nashville 3.5 = 3150
900

1 = 100
100

Movie1

Total 4.15 = 4150
1000

7.3 = 7300
1000

Movie2

Table 1.1: An Example of Simpson’s Paradox

To illustrate the benefit of comparing rating distributions directly instead
of relying on their averages, we use real examples from MovieLens [14] and
focus on specific groups of ratings from users in Hawäı, Boston and Portland
for the movies American Beauty (AB) and The Blair Witch Project (BWP)
(see Figure 1.1(b)). While AB was globally preferred to BWP, the average
rating of people in Portland for BWP is higher than that of middle-aged users
in Boston for AB. Moreover, while the overall population is neutral about
BWP, giving it an average of 3, people in Hawaii hated that movie while people
in Portland clearly liked it. Finally, rating averages of middle-aged users in
Boston for AB and of all users for BWP are very similar (resp., 3.17 and 3),
but their rating distributions are quite different. In the case of AB, users are
polarized and in the other case, ratings are relatively uniform, i.e., random.
Clearly, average ratings are too coarse to reveal interesting patterns and
rating distributions enable finer comparisons of 〈user,item,rating〉 groups.

1.2 Goals and Challenges

Our thesis is that the exploration of rated datasets is made effective by the
ability to identify 〈user,item,rating〉 groups that satisfy conditions on users,
items and ratings. While conditioning users and items is straightforward
and can be done with regular relational operators, conditions on ratings are
enabled with the ability to compare rating distributions. For example, a
user exploring a rated dataset may be interested in finding movies among
new releases for which the ratings are (almost) unanimously very high. Or
she may be interested in movies for which the ratings among teens, such as
herself, are polarized. In these examples, an input rating distribution is used
as a query in order to find 〈user,item,rating〉 groups that exhibit similar
distributions. In each case, users could represent the entire rater population
or a subset (teens) and the group could contain one or a class of items.
Enabling those operations raises two important challenges.

The first challenge is choosing the right measure for gauging the prox-
imity of rating distributions. Many distance measures for distributions have
been used in previous work in various contexts. These include KL-divergence

3



1.2. Goals and Challenges

and cosine distance. We show that they suffer from a fundamental problem:
they do not discriminate pairs of distributions which are intuitively close to
each other from those that aren’t. We propose to use Earth Mover’s Dis-
tance (EMD) [16], a measure that intuitively captures the minimum amount
of work required to transform one distribution into another. The closer the
distributions the lower their EMD penalty.

Our second challenge is computational: Given a set of query distribu-
tions, our problem is to find a (potentially partial) partition of the rated
dataset into reasonably sized 〈user,item,rating〉 groups such that each group
in the partition enjoys a rating distribution that has a low EMD with respect
to some query distribution. Such groups need to be dynamically discov-
ered from a potentially exponential search space and have to be describable:
“Middle aged Minnesotans in the construction business”, “Horror movies
from the 90’s” or “Comedies rated by teenagers” are examples of describ-
able groups. We show that the problem of finding such groups is NP-hard
under two different settings and propose to adapt decision trees to work
with EMD and split an input rated dataset along user and item attributes.
It has been found in the area of classification that the approach of random
forests, pioneered by Breiman [2], essentially an ensemble classifier, has a
much better performance than any one decision tree. We exploit this in-
tuition using EMD-based decision trees and explore different strategies for
combining multiple EMD-based decision trees.

We make the following contributions.

• We formalize the exploration of a rated dataset as the problem of
finding a (potentially partial) partition of the dataset into reasonably
sized 〈user,item,rating〉 groups such that each group enjoys a rating
distribution that has a low EMD with respect to some query distribution
(Section 2).

• We show that well-known rating aggregation and comparison measures
are not well-adapted for comparing rating distributions and propose
using Earth Mover’s Distance (EMD) for this purpose (Section 4.1).

• We show that the problem of finding 〈user,item,rating〉 groups that
“match” query distributions is NP-hard under two different settings
and develop appropriate heuristics. The first heuristic is based on
adapting decision trees. The second one is based on the random for-
est approach. Our decision tree construction algorithm makes use of
an elegant linear time algorithm for computing EMD along with clever

4



1.2. Goals and Challenges

pruning techniques inspired by the well-known NRA algorithm in top-
k query processing. Our random forest approach explores different
strategies for combining decision trees (Section 5.1).

• We run comprehensive experiments on two real data sets and a syn-
thetic data set and demonstrate the effectiveness of querying by rating
distributions using two kinds of offline quality evaluation. We also re-
port the scalability of several competing algorithms (Section 6). Our
results show that in general, random forest approaches are superior
and examine in detail when decision tree algorithms perform better.

Related work is discussed in Section 7. We conclude the paper with
future directions in Section 8.1.

5



Chapter 2

Data Model

A rated dataset consists of a set of users with schema SU , a set of items
with schema SI and a set of rating actions with schema SR. E.g., we could
have SU = 〈uid, age, gender,state, city〉 and a user might be represented
as 〈u1 , 18 , student ,new york ,nyc〉. Similarly, restaurants on Yelp2, can
be described with SI=〈item id, cuisine, attire, ambiance, price〉, and an
example restaurant represented as 〈i2 ,Thai ,Formal ,Romantic,Moderate〉.
Finally, a rating action can be represented using the schema SR =
〈uid, item id, rating〉, where the domain of attribute rating depends on
the application and the dataset. E.g., in MovieLens, it is {1, ..., 5} and in
BookCrossing, {1, ..., 10}. An instance in our data model consists of rela-
tions U , I, and R of users, items, and rating actions over their respective
schema.

2.1 Groups and Rating Distributions

Groups. A rated dataset effectively contains tuples of the form
〈user,item,rating〉. Collaborative rating sites typically contain millions of
such tuples. We adopt the approach proposed and experimentally vali-
dated in [6], where sets of rating tuples of the form 〈user,item,rating〉, are
viewed according to groups that are structurally describable using a con-
junction of predicates on user and item attributes. E.g., a group may
represent a set of rating tuples on Thai restaurants by young males in
NY. We let g denote a group, g.idesc the set of item predicates, in this
case {cuisine= Thai}, and g.udesc the set of user predicates, in this case
{gender= male& age ≤ 35& state=new york}, that are associated with g.
In what follows, we use the term describable groups to mean groups which
are describable using a conjunction of predicates of the form Attr op val

where Attr is a user or item attribute, val is a domain value, and op is one
of =, <,≤, >,≥.3 For categorical attributes, we only allow the predicate

2http://www.yelp.com
3We found descriptions involving 6= are not very intuitive unless they are combined

with one of the other predicates above, so we disallow them w.l.o.g.

6



2.1. Groups and Rating Distributions

Attr = val. We abuse the notation and write u ∈ g, (resp., i ∈ g), to mean
that user u, (resp., item i), satisfies all the user, (resp., item), predicates in
g.udesc, (resp., g.idesc).

Rating Distributions. The set of all (describable) groups that con-
tributed ratings in a rated set R is denoted GR. Given a group g ∈ GR,
we define ratings(g,R) = {〈u, i, r〉 ∈ R | u ∈ g& i ∈ g} as the set of rating
actions of all users in g on items in g, in the rated set R. The rating dis-
tribution of g in R is defined as dist(g,R) = [1 : w1 . . . m : wm] where the

rating scale is {1, ...,m} and wj = |{〈u,i,r〉∈ratings(g,R)|r=j}|
|ratings(g,R)| is the fraction of

ratings with value j in ratings(g,R). When it causes no confusion, we blur
the distinction between g and ratings(g,R) and speak of the tuples in g or
the size |g| of g.

Figure 1.1(b) contains many example rating distributions, including
those of Portland users for two movies: [0 0 0.1 0.4 0.5] for The Blair

Witch Project (BWP) and [0 0 0 0.2 0.8] for American Beauty (AB).
Query Distributions. Users might be interested in finding groups

whose distributions are similar to query distributions of interest to
them. Some example query distributions include unanimous distributions
U1, ..., Um where Ui denotes the distribution where the mass is concentrated
at rating value i: Ui(i) = 1 and Ui(j) = 0, j 6= i; moderately unanimous dis-
tributions Ui,i+1, where the mass is concentrated on successive rating values
i, i + 1: e.g., Ui,i+1(i) = Ui,i+1(i + 1) = 0.5 and Ui,i+1(j) = 0, j 6= i, i + 1;
and polarized distribution P1,m where mass is concentrated on the extreme
ratings 1 and m: e.g., P1,m(1) = P1,m(m) = 0.5 and P1,m(j) = 0, j 6= 1,m.
Indeed, the user may use any distribution(s) as query distributions.

Example 1 (Querying by Distribution) Consider the set S of ratings
of movie BWP by all users and let the query Q = {ρ1, ρ2} contain the distri-
butions ρ1 = [0, 0, 0, 0.4, 0.6] (high ratings) and ρ2 = [0.5, 0, 0, 0, 0.5] (polar-
ized). In this case, we are interested in finding 〈user,item,rating〉 groups in
S whose rating distributions on BWP are close to a distribution in Q, be it
high or polarized. As a second example, Q may be the rating distribution of
Portland users on BWP. In this case, we are asking for groups whose rating
distribution on BWP is close to that of Portland raters. In a last example,
the user, a New Yorker, may have first explored ratings of New Yorkers
on Avatar and on AB. Treating these two distributions as query distribu-
tions, she might want to find groups whose rating distribution on BWP closely
resemble any of the query distributions. �

7



Chapter 3

Problem Definition

3.1 Exploration Problem

In this paper, we are interested in developing a framework for helping users
explore a rated dataset. At the core of this is the ability to compare rating
distributions. Our framework aims to cover different scenario where two
rating distributions may represent the opinion of the same users on different
items or the opinions of different users on the same or different items. Also,
the end user may wish to explore ratings at the granularity of individual
items (e.g., a specific digital camera) or sets of items (e.g., the class of Nikon
SLR digital cameras). Similarly, she may wish to compare the opinions of
two specific users (her friends John and Mary) or two sets of users (teens in
NY vs. teens in CA). In its general form, a user query contains conditions
on items, conditions on users and a set of rating distributions, referred to
as query distributions, that represent the desired rating distributions of
returned 〈user,item,rating〉 groups.

Given the input rated dataset R, it is easy to see that the application
of conditions on items and users is straightforward as it amounts to finding
the subset S ⊆ R where each tuple 〈user,item,rating〉 satisfies input item
and user conditions. Hence we focus on conditions on rating distributions.
For now, let us assume a generic function ratComp that compares two rating
distributions ρ1, ρ2 and returns a score to reflect how far apart ρ1 and ρ2
are. We will explore the choices for ratComp in Section 4.1. The idea is
that given S, we want to discover 〈user,item,rating〉 groups whose rating
distribution on the item(s) in the group is very close to one of the given
query distributions.

The resulting groups must be describable, reasonably sized and together
cover as many of the input tuples 〈user,item,rating〉 ∈ S as possible. Indeed,
splitting S into describable groups whose ratings are close to query distribu-
tions does not guarantee that all tuples in S will be in the resulting groups.
Also, shorter group descriptions are preferred as they are meant for end-
user consumption. Hence, there are two ways of formulating our problem.
Since we can only optimize one objective, we can either maximize coverage

8



3.1. Exploration Problem

of tuples in S or minimize the description length of resulting groups. We
call π = [g1, ..., gm] a partial partition of S if gi are pairwise disjoint and⋃
i gi ⊆ S.

Problem Statement: Maximum coverage. Given a rated dataset S ⊆
R, a group size threshold b, a set of query distributions Q = {ρ1, ..., ρk},
and a rating proximity threshold θ, find a (possibly partial) partition π =
[g1, ..., gm] of S, such that (i) each gi is a describable group, (ii) |gi| ≥ b,
∀i ∈ [1,m], (iii) ∀i ∈ [1,m], ratComp(dist(gi,Si), ρj) ≤ θ, for some j ∈ [1, k],

and (iv)
|
⋃

i gi|
|S| is maximized.

The first condition states that each block in the partition is describable
with at least one user attribute in gi.udesc or one item attribute in gi.idesc.
The second condition enforces that each group should not be too small, i.e.,
must contain at least b tuples. The third condition states that the rating
distribution of each group gi should be at a distance no more than θ to one
of the query distributions ρj . The last condition says the fraction of input
tuples S that are covered by π should be maximized.
Problem Statement: Minimum description length. Given a rated
dataset S ⊆ R, a rating proximity threshold θ, and a set of query distribu-
tions Q = {ρ1, ..., ρk}, find a (possibly partial) partition π = [g1, ..., gm]
of S, such that (i) each gi is a describable group, (ii) ∀i ∈ [1,m],
ratComp(dist(gi,Si), ρj) ≤ θ, for some j ∈ [1, k], and (iii)

∑
i∈[1,m] |gi.udesc∪

gi.idesc| is minimized.
The main difference with the first problem is that instead of maximizing

coverage, we want to minimize the total description lengths of the groups
returned. Since intuitively, shorter descriptions contain more tuples, we
don’t constrain the group size.

In the rest of the paper, by partition, we mean a possibly partial parti-
tion.

9



Chapter 4

Rating Comparison
Measures

4.1 EMD Vs. Other Measures

A key ingredient in the problem we study is the choice of the function
ratComp that quantifies the proximity between two distributions. We first
briefly review some obvious candidate choices for this function. Recall,
the rating distributions we consider are normalized so they are probabil-
ity distributions. KL-divergence [11] is a well-known measure used for
gauging the proximity between probability distributions ρ1 and ρ2. It is
defined as DKL(ρ1||ρ2) =

∑
j ρ

j
1log(ρj1/ρ

j
2). Another candidate is a sym-

metric version of KL-divergence, called JS-divergence [11], and defined as
DJS(ρ1, ρ2) = 1/2(DKL(ρ1||ρ3) + DKL(ρ2||ρ3)), where ρ3 = 1/2(ρ1 + ρ2).
Or we could interpret rating distributions as vectors (over rating values as
dimensions) and use cosine distance or Euclidean distance. Unfortunately,
all these measures have limitations which make them a poor choice, as we
next illustrate with an example.

Example 2 (Rating Comparison Example) Consider three
rating distributions ρ1 = [0.9, 0.025, 0.025, 0.025, 0.025], ρ2 =
[0.025, 0.9, 0.025, 0.025, 0.025], and ρ3 = [0.025, 0.025, 0.025, 0.025, 0.9],
illustrated in Figure 4.1. Say they correspond to ratings by the same set of
users on three different digital cameras c1, c2, c3. Intuitively, distributions
ρ1 and ρ2 are more in agreement with each other than ρ1 and ρ3: the
users have very similar opinions about cameras c1 and c2 and very different
opinions about c1 and c3. Table 4.1 shows the considered distance scores
for the two pairs of distributions. Notably, only EMD (described below)
distinguishes between the two pairs. �

Earth Mover’s Distance. The Earth Mover’s Distance (EMD) is a
widely used distance measure for distributions [16]. Intuitively, the EMD

between two distributions is the minimum amount of work done per unit
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Figure 4.1: Examples of Rating Distributions

Measure (ρ1, ρ2) (ρ1, ρ3)

Cosine 0.058 0.058
KL−Divergence 3.13 3.13
JS −Divergence 0.53 0.53

Euclidean 1.24 1.24
EMD 1 4

Table 4.1: Distance Measures

mass in converting one distribution to another, where the distributions are
viewed as piles of earth at various positions. If D is a discrete domain, EMD is
computed based on a solution to the well-known transportation problem [16].
Let ρ1 = [1 : p1, .., i : pi, .., n : pn] , ρ2 = [1 : q1, .., i : qi, .., n : qn] represent
two probability distributions over a discrete domain D = {1, 2, 3, ..., n}. The
amount of work required to convert ρ1 to ρ2 is defined as:

min
F

Work(ρ1, ρ2, F ) =
n∑
i=1

n∑
j=1

dijfij

subject to the constraints: fij ≥ 0 1 ≤ i, j ≤ n;
∑n

j=1 fij = pi 1 ≤ i ≤ n;
and

∑n
i=1 fij = qj 1 ≤ j ≤ n, where fij is the amount of mass moved

from position i to j in the process of converting ρ1 to ρ2. F = [fij ] is the
matrix representing the flows and dij is the ground distance from position i
to j, which, for our setting, is defined as the absolute difference in positions,
|i− j|.

A flow F is optimal if the work done is minimum in that flow. Therefore,
the EMD is defined as:

EMD(ρ1, ρ2) =
minF Work(ρ1, ρ2, F )∑n

i=1

∑n
j=1 fij

11



4.1. EMD Vs. Other Measures

EMD is work done per unit mass in an optimal flow. In our setting, the
region D over which EMD is calculated is always the whole domain of the
distribution, so the value of the denominator in the above equation is 1. So
we can ignore the denominator and speak of EMD as the work done itself.

The EMD definition clearly captures fine-grained differences between two
rating distributions in the form of work done. This makes EMD particularly
suitable for comparing rating distributions.

12



Chapter 5

Algorithms

5.1 Exploration Algorithms

Our problems, defined in Section 3.1, require to develop efficient algorithms
for dynamically finding and comparing relevant groups. In the next sub-
section, we outline our approach and discuss the inherent complexity of the
problems. In the following subsections, we discuss our algorithms.

5.1.1 Complexity of Problems

Given a rated dataset S ⊆ R, our first problem, Maximum Coverage, involves
finding a partition of S whose groups are describable, are large enough,
between them cover the maximum number of tuples of S and are close
enough to one of the given query distributions. Let g be a group obtained
from S and Q a set of query distributions. We abuse the notation and write
EMD(g,Q) to mean the EMD between g and its closest query distribution in
Q. We next show that Maximum Coverage is NP-hard.

Theorem 1 The Maximum Coverage problem is NP-hard.

Proof: We show the decision version of the problem to be NP-hard by
reduction from 3-SET PACKING, defined as follows. Given an instance I
consisting of a family {S1, ..., Sn} of sets containing exactly 3 elements and a
number k, the question is whether I contains k pairwise disjoint sets. This is
an NP-complete problem [8]. Given an instance I of this problem, we create
an instance J of Maximum Coverage as follows. J consists of a single rating
relation, corresponding to ratings on one item. Let

⋃
i Si = {x1, ..., xm}.

Then J contains n categorical user attributes Ai corresponding to Si and
2m tuples corresponding to 2m users; for each xj , it contains two rated
tuples r+j and r−j . The values of the tuples are set as follows: whenever

xj ∈ Si, we set r+j [Ai] = ai and r−j [Ai] = bi. The rating value of all

tuples of the form r+j is 5 (max) while that of tuples of the form r−j is 1
(min). The values of all other attributes are distinct constants appearing

13



5.1. Exploration Algorithms

uid A1 A2 A3 rating

r+1 a1 5

r+2 a1 5

r+3 a1 a1 5

r+4 a1 a1 5

r+5 a1 a1 5

r+6 a1 5

uid A1 A2 A3 rating

r−1 b1 1

r−2 b1 1

r−3 b1 b1 1

r−4 b1 b1 1

r−5 b1 b1 1

r−6 b1 1

Table 5.1: Instance of Maximum Coverage obtained by reduction from 3-
SET PACKING. Blanks represent distinct constants appearing nowhere else.

nowhere else. The query distributions are Q = {U1, U5} and set the group
size threshold to b = 3 and the rating proximity threshold to θ = 0. It
can be shown that I has k pairwise disjoint sets iff J admits a partition of
describable groups of size ≥ b that covers exactly 6k elements. For example,
if I = {{x1, x2, x3}, {x3, x4, x5}, {x4, x5, x6}}, then J = {r+1 , r

−
1 , ..., r

+
6 , r

−
6 },

illustrated in Table 5.1.

• Given a solution for I, solution to J is obtained by grouping tu-
ple corresponding to each set. In the above example solution to
I is {{x1, x2, x3}, {x4, x5, x6}}, then corresponding solution to J is
{{r+1 , r

+
2 , r

+
3 }, {r

+
4 , r

+
5 , r

+
6 }}, {r

−
1 , r

−
2 , r

−
3 }, {r

−
4 , r

−
5 , r

−
6 }}.

• Given a solution for J one can obtain solution for problem I, by choos-
ing corresponding sets in the input. The construction is designed in
such a way that a group is describable iff it corresponds to a set in I.
For instance in the above example set {r+1 , r

+
2 , r

+
3 } is describable us-

ing description A1 = a1, but the set {r+2 , r
+
3 , r

+
4 } is not describable as

negations are not allowed in the attributes. In the above example so-
lution to J is {{r+1 , r

+
2 , r

+
3 }, {r

+
4 , r

+
5 , r

+
6 }}, {r

−
1 , r

−
2 , r

−
3 }, {r

−
4 , r

−
5 , r

−
6 }},

then solution to I is {{x1, x2, x3}, {x4, x5, x6}}. �

Next, consider the problem of Minimum Description Length. We for-
malize this objective in terms of decision trees. More precisely, we seek to
find partitions by constructing decision trees, with predicates over attributes
used as split conditions, where the leaves correspond to the groups of the
partition. The descriptions can be obtained by reading the predicates off
the paths. We call such trees partition decision trees. Figure 5.2 shows an
example. Ignore paths labeled by negative predicates such as age 6= teen for
now. We will discuss this later.

Given a rated dataset S ⊆ R, a rating proximity threshold θ, we want
to find a partition of S containing groups whose descriptions are short and
whose EMD w.r.t. some query distribution is ≤ θ. When formulated in terms

14



5.1. Exploration Algorithms

of decision trees, this problem corresponds to minimizing the height of the
decision tree. More precisely, let T be such a decision tree whose leaves form
a partition π = [g1, ..., gm] of S. Then minimizing

∑
i(|gi.udesc|+ |gi.idesc|)

is equivalent to minimizing the total length of all root-to-leaf paths. This
total length is in turn minimized exactly when the height of T is minimized.
We next show:

Theorem 2 Given a rated dataset S ⊆ R, a set of query distributions Q
and an EMD threshold θ, finding a minimum height partition decision tree
for S where each group’s EMD to some distribution in Q is ≤ θ is NP-hard.

Proof Sketch. We show the decision version to be NP-hard by reduction
from the classic Minimum Height Decision Tree problem, defined as follows.
Given a set I of n m-bit vectors and a number k, the question is whether
there is a binary decision tree with height ≤ k such that, each of its leaves
is a unique bit vector in I and internal nodes are labeled by binary tests
on some bit. From this instance I, we construct an instance J as follows.
J has m binary attributes A1, ..., Am and a categorical attribute A0. For
each bit vector si, J has two tuples t+i and t−i , i ∈ [1, n], with t+i [j] and
t−i [j] set to the j-th bit of vector si, j ∈ [1,m]. Assign t+i [A0] and t−i [A0]
to two distinct constants appearing nowhere else. Finally, the rating value
for t+i (resp., t−i ) is 5 (resp., 1). Set the EMD threshold θ = 0 and let the
query distributions be Q = {U1, U5}. E.g., if I = {011, 010, 100} then J
contains the tuples (a1, 0, 1, 1, 5), (b1, 0, 1, 1, 1), (a2, 0, 1, 0, 5), (b2, 0, 1, 0, 1),
(a3, 1, 0, 0, 5), (b3, 1, 0, 0, 1), where the last value is the rating. We have:
Claim. I admits a decision tree of height ≤ k iff J admits a partition
decision tree of height ≤ k + 1 where each group at its leaf is describable
and exactly matches U1 or U5.
Only If: Given a decision tree T for I, by definition, it contains a unique
bit vector si ∈ I at each leaf. If we apply this tree to J , we will get a
tree each of whose leaves contains a group containing exactly the tuples
{t+i , t

−
i }, i ∈ [1,m]. These groups do not match either of U1, U5. Applying a

split based on A0 = ai versus A0 = bi divides this group into two singleton
groups {t+i } and {t−i } which match U5 and U1. The groups are describable.
This tree has height one more than that of T .

If: Let T be a partition decision tree of height ≤ k + 1 for J . By
definition, each leaf of T contains a unique tuple of J . Notice that none
of the groups at the leaves can contain more than one tuple with the same
rating value, as they are not describable (without distinction’s or negations).
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Y N

Y N

Figure 5.1: Figure shows how to push a node conditioned on attribute A0

towards the leaf.

T must apply the predicates on attribute A0 to separate tuples t+i and t−i .
Suppose T applies these tests after all other tests. Then the node at which
A0 = ai vs. A0 = bi is applied must contain exactly the group {t+i , t

−
i }. By

replacing that group by the corresponding bit vector si, we get a decision
tree of height ≤ k for I. Suppose T applies one or more tests on A0 before
tests on other attributes Ai, where i > 0. Now we show that, we can ”push
down” these tests (or node) on A0 so they are applied at the parent of leaf
level, without increasing the height of the tree. Figure 5.1 illustrates how on
can push the nodes conditioned on A0. As shown in the figure 5.1, red color
node represent the node conditioned on attribute A0 and green color nodes
t+i and t−i represents two rating tuples which are separated on attribute A0.
Note that this transformation on tree, does not effect height of green nodes.
Though it decreases height of the leaf nodes under red node, it may decrease
the height of the tree but it wont increase its height. Modified tree is still a
decision tree with required height �

5.1.2 Group Discovery Algorithms

Given that finding partitions that either minimize description length or max-
imize coverage is NP-hard, a natural question is whether we can develop
efficient heuristics, which we next address. Rather than tailor the heuristics
specifically for minimizing description length or maximizing coverage, we ar-
gue that the algorithms we develop must in general favor short descriptions;
in addition to improving understand-ability, they in turn tend to favor larger
groups and thus make it more likely to satisfy the size threshold. In other
words, they help improve the coverage too. We take a top-down approach
for finding partitions, based on decision trees (recall the notion of partition
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5.1. Exploration Algorithms

decision trees defined in Section 5.1.1). Decision trees have the benefit that
group descriptions can be directly read off the root-to-leaf paths. Whereas
classic decision trees are driven by gain functions like entropy 4 and gini-
index 5, a novelty in our case is that our decision trees are designed to
discover groups whose distributions are close to query distributions. That
has the benefit of exploiting EMD properties as will be shown in Section 5.2.
In the next two subsections, we develop two algorithms – DTAlg and RFAlg.

Decision Tree Algorithm (DTAlg)

Our first algorithm, DTAlg, is based on partition decision trees. Algo-
rithm 1 gives the pseudo-code. It takes as input a set of query distributions
Q, a set S of rating tuples on any items, a group size threshold b and a rating
proximity threshold θ. For simplicity, we assume all our attributes are cat-
egorical. Numerical attributes like age and year are binned appropriately.6

Since attributes are binned, the only type of descriptions we need to focus
on are conjunctions of Attr = val. Attribute values can be organized in
a hierarchy. Figure 5.2(a), shows a partial hierarchy of attribute age from
MovieLens dataset.

Algorithm 1 repeatedly divides rating set S, in a breadth first manner,
to find interesting groups with short descriptions and large enough sizes. At
each node the algorithm checks if its corresponding group is good, i.e., it
has good description, has size ≥ b, and has EMD ≤ θ to some distribution
in Q. It adds good groups to the output list. Here, a description is good if
consists of positive atoms of the form Attr = val. We disallow descriptions
consisting of only negative atoms Attr 6= val since they are hard to under-
stand intuitively. If a group is not good, the algorithm makes the following
decisions: the group is dropped if it is too small (line 8); if the group’s EMD

to the closest query distribution in Q is > θ, the algorithm looks for a split-
ting attribute (using a procedure described in Section 5.1.2) and the group
is split accordingly; if the EMD is ≤ θ but the group has only negations in
its description, the group is split again recursively using the same attribute
until a description with no negation is found. This process is described in
Section 5.1.2.

A key operation that is repeatedly performed by the algorithm is finding
the EMD of a group w.r.t. a set of query distributions of which the smallest

4http://en.wikipedia.org/wiki/Entropy
5http://en.wikipedia.org/wiki/Gini index
6In the real datasets MovieLens and BookCrossings, these attributes are available

only as binned.
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5.1. Exploration Algorithms

Algorithm 1 DTAlg(S, Q, b, θ)
1: Initialize queue K = φ and list Output = φ.
2: Add S to K.
3: while not empty(K) do
4: parent = K.pop()
5: if goodGroup(parent) then
6: Add parent to Output.
7: else if |parent| < b then
8: continue
9: else if not hasGoodEMD(parent,Q, θ) then

10: Attribute attr = findBestAttribute(parent)
11: Array child = split(parent, attr)
12: for i = 1→ size(child) do
13: if goodGroup(child[i]) then
14: Add child[i] to Output.
15: else
16: Add child[i] to K.
17: end if
18: end for
19: else if not hasGoodDescription(parent) then
20: Array child = removeBadDecription(parent)
21: for i = 1→ size(child) do
22: if goodGroup(child[i]) then
23: Add child[i] to Output.
24: else
25: Add child[i] to K.
26: end if
27: end for
28: end if
29: end while
30: return Output
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Age

Teen
Young Middle-Age

Old

18-24 25-34

(a)
Titanic

EMD:0.57

Age != Teen Age = Teen

Age != Old Age = Old

EMD:0.44EMD:0.58

EMD:0.58 EMD:0.53

(b)
Titanic

EMD:0.57

Age = Teen Age = Young Age = Old Age = Middle-Age

EMD:0.44 EMD:0.57 EMD:0.53 EMD:0.6

OCC = Art

EMD:0.38 EMD:0.57

OCC = University

(c)

Figure 5.2: DTAlg (a) Hierarchy of Attribute Age (b) Binary Split (c) Cat-
egorical Split

EMD is picked. We anticipate users querying rated datasets with many pos-
sible query distributions. Thus it is important to minimize the work done
for this operation. In Section 5.2.1, we give an elegant algorithm inspired
by the top-k algorithm NRA [7] to accomplish this.

Group Splitting We explored two ways of splitting groups into sub-
groups that are describable: Given an attribute Ai and a value vj , binary
splitting on a group produces two child groups based on two complimentary
predicates Ai = vj and Ai 6= vj . Figure 5.2(b) shows an example of binary
splitting on ratings of movie Titanic using attribute age and value teen.
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This kind of splitting adds negation to group descriptions. For example, the
leftmost node is described with age 6= teen& age 6= old.
Categorical splitting on the other hand, results in n child groups, one for
each value vj ∈ V where V = {v1 . . . vn} is the active domain of Ai. Fig-
ure 5.2(c) shows an example of categorical splitting on ratings of movie
Titanic using attribute age, resulting in four child groups. Unlike binary
splitting, categorical splitting does not introduce negation in the description
of child groups. Thus, the check for goodness of descriptions performed by
Algorithm 1 is needed only for binary splits.

Gain Functions In order to proceed with group splitting, Algorithm 1
calculates a gain for each attribute and picks the one with maximum gain.
After experimenting with various choices, we propose using minimum aver-
age EMD. Suppose splitting a group g using an attribute Ai yields m child
groups ci1 . . . c

i
m. The gain of Ai is defined as the inverse of average EMD of

its child groups. If child groups have zero EMD then the gain is infinity. More
formally:

Gain(Ai) =
m∑m

j=1 EMD(cij , T )

Finally, an attribute may not be useful for splitting a group, if all the
rating tuples in it have the same value for that attribute. For example,
if a group has ratings of a single movie Titanic then none of the movie
attributes are useful for splitting the ratings. Such attributes, if discovered
at any group are discarded and are not considered for further splitting of any
of the children groups. Algorithm 2 describes an algorithm for categorical
splitting.

Algorithm 2 : findBestAttribute(g)

Require: Array of attributes : attribs
1: maxGain = 0
2: maxGainAttribute = −1
3: for i = 1→ size(attribs) do
4: curGain = findGain(g, attribs[i])
5: if curGain > maxGain then
6: maxGain = curGain
7: maxGainAttribute = i
8: end if
9: end for

10: return attribs[maxGainAttribute]
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Removing Bad Descriptions As discussed earlier, the description of a
group is said to be bad if it only contains negative predicates. Suppose
group g contains negation predicate Ai 6= vi for an attribute Ai. Then we
can modify the description of the group depending on two situations. In the
first situation, if all the rating tuples in the group have a unique value vj
for the attribute j 6= i, then the condition on the attribute Ai is replaced
with Ai = vj . In the second situation, if there are multiple values for Ai
in the group, we split the group recursively until all child groups have a
unique value for the attribute Ai. Algorithm 3 describes an pseudo code for
handling bad descriptions.

Algorithm 3 : removeBadDecription(g)

Require: Array of attributes : attribs
1: for i = 1→ size(attribs) do
2: if hasNegation(description(g, attribs[i])) then
3: if hasUniqueV alue(g, attribs[i]) then
4: description(g, attribs[i]) = uniqueV alue
5: return R
6: else
7: Array childs = split(g, attribs[i])
8: return childs
9: end if

10: end if
11: end for

The Random Forest Approach (RFAlg)

One of the shortcomings of the DTAlg algorithm is that the condition used
to split the root will be shared by all groups. E.g., in the Figure 5.2(b) and
(c), every group obtained will have a condition on attribute age. Although
not a goal in itself, the diversity in the descriptions of groups that belong to
the same partition may matter. In particular, groups sharing the same root
attribute will have lower diversity, as measured using, e.g., the Jaccard dis-
tance between their descriptions. To mitigate this, we draw inspiration from
the work of Breiman [2] who proposed the approach of Random Forests (RF)
to dramatically improve the performance of decision tree based classifiers.
The idea is given n predictor attributes, a classical decision tree examines
all n of them to pick the best split attribute and split point at each stage.
The RF approach consists of two main steps.
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In step 1, the classical decision tree algorithm is run m times for some
parameter m, where each run examines a random subset of k predictor
attributes at each splitting node, a default value for k being

√
n. This

generates m decision trees. In step 2, the decisions of these m trees are
combined, e.g., by voting, to yield an ensemble classifier.

We adapt random forests to our setting. Step 1 of the RF approach
remains the same: we run the DTAlg algorithm on a random subset of

√
n

user/item attributes available m times. For us, step 2 should produce a
partition, not a classifier. In the next section, we examine different strategies
for combining the m partitions from step 1 into a single partition.

Combining Partitions In this section, we describe five heuristics for
combining the m partitions π1, ..., πm produced in step 1 of the RF approach
into a single partition.
1. RF-Cluster: Each partition πi intuitively captures a (possibly partial)
clustering. For each pair of rated tuples ri, rj ∈ S, we can determine the
fraction of partitions in which they are clustered together. Let kij be the
number of partitions in which ri and rj are clustered together. Then we
can define the distance between ri and rj as dij = kij/m. Now, we can
use any standard clustering algorithm to obtain a clustering of S with this
distance measure. After examining several alternate clustering algorithms,
we chose hierarchical clustering. As the desired number of clusters, we chose
the average number of groups in the partitions π1, ..., πm. Once groups are
obtained, we discard groups g for which |g| < b or EMD(g,Q) > θ holds.
The resulting groups do not necessarily have a natural exact description.
We take a pattern mining approach to solve this issue. Viewing each rated
tuple as a transaction and each (user or item) attribute as an “item”, we
obtain maximal frequent patterns, by setting the support threshold to 90%.
Any maximal frequent pattern serves as an approximate description of the
group, with an accuracy of at least 90%.
2. RF-Description: A second strategy favors a partition with diverse
groups w.r.t. their descriptions. Define the Jaccard distance between groups
gi, gj as Jaccard(gi, gj) = |desc(gi) ∩ desc(gj)|/|desc(gi) ∪ desc(gj)|. Start
with an empty output partition and successively add a group whose total
Jaccard distance to existing groups in the output is maximum until we
cannot add any more groups. The first group is picked at random. This
strategy favors diversity among the group descriptions. We will verify that
in our experiments in Section 6.

A common theme among the remaining strategies is that we order the
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groups from the various partitions π1, ...πm using some criterion. Then we
add these groups to the output partition one by one: if a group overlaps
with existing groups in the output, we discard it. Thus, the only difference
is in the way groups are ordered.
3. RF-Random: Order the groups in a random manner.
4. RF-Size: Order the groups in decreasing order of their size. The ratio-
nale is to favor larger groups, which may help with the coverage.
5. RF-EMD: Order the groups in increasing order of their EMD to their clos-
est query distribution in Q. This favors a solution where groups closer to
some query distribution are preferred.

We expect any of the RF algorithms to take more time than DTAlg since
m decision trees are constructed and further time is incurred for combining
their groups. Among them, RF-Cluster is by far the most expensive since
it requires finding the distance between all pairs of tuples in S.

5.2 EMD Algorithms

A key operation that is repeatedly performed by both DTAlg and RFAlg is
finding the EMD between a group and its closest query distribution and it is
important to do this efficiently. In general, the calculation of EMD between
two given distributions can be done using the Hungarian algorithm and
takes time O(n3log n) where n is the domain size of the distribution [10].
However, in our setting, the distributions are probability distributions and
are over the same domain (rating scale), thus it is possible to compute their
EMD in linear time [16]. A similar observation was also exploited by Li et al.
[12] in a different context. The key insight is to use a stack to manipulate
the flow that corresponds to the amount of mass moved to transform one
distribution to another. The stack helps minimize the work needed to find
the closest distribution to a given distribution, from among a set of query
distributions.

5.2.1 Computing EMD of Two Distributions

Suppose we want to measure the EMD between two rating distributions
ρ1 and ρ2. We make one pass over distributions ρ1, ρ2 starting from the
left-most positions (1). A position i is excess (resp., deficit, equal) position
if ρ1[i] > ρ2[i] (resp., ρ1[i] < ρ2[i], ρ1[i] = ρ2[i]). We keep track of each
position as we scan it. It moves mass such that ρ1 converts to ρ2, and keeps
track of the mass flow F [i, j] from position i to j. 4,5 together describe
pseudo code of the algorithm.
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Algorithm 4 : EMD(ρ1[1, n], ρ2[1, n])

1: work = 0 // work done
2: Stack S = φ
3: state = equal
4: for i = 1→ n do
5: if ρ1[i] > ρ2[i] then
6: if state = excess or equal then
7: S.push({i, (ρ1[i]− ρ2[i])})
8: else if state = deficit then
9: work + = updateStack(i)

10: end if
11: else if ρ1[i] < ρ2[i] then
12: if state = deficit or equal then
13: S.push({i, (ρ2[i]− ρ1[i])})
14: else if state = excess then
15: work + = updateStack(i)
16: end if
17: end if
18: end for
19: return work
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Algorithm 5 : updateStack(i)

1: work = 0;
2: mass = |ρ1[i]− ρ2[i]|
3: while mass >0 and S.isEmpty = false do
4: {k, kmass} = S.pop()
5: if mass ≥ kmass then
6: work = work + (kmass)(|i− k|)
7: updateFlow(kmass,i,k,state)
8: mass -= kmass
9: else

10: work = work + (mass)(|i− k|)
11: updateFlow(mass,i,k,state)
12: mass = 0;
13: S.push({k, (kmass−mass)})
14: end if
15: end while
16: if mass >0 then
17: state = !state //invert
18: S.push({i,mass})
19: end if
20: if S.isEmpty = true then
21: state = equal
22: end if
23: return work
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step stack state work

0 { φ } equal 0
1 { (1, 0.2) } excess 0
2 { (1, 0.2) } excess 0
3 { (3, 0.1) } deficit 0.4
4 { (3, 0.1), (4, 0.2) } deficit 0.4
5 { φ } equal 0.8

Table 5.2: Running Example of EMD Computation.

We may first encounter excess or deficit or equal positions. Equal posi-
tions are just ignored. Say we first see an excess position. We store it on a
stack. The stack is now said to be in excess state. Future excess positions
are pushed to the stack while deficit positions are processed by flowing mass
out of the top excess position on the stack. The stack may transition to
deficit state as deficit positions are seen. Thus the stack is always in a well-
defined state – excess or deficit. It reaches an equal state when it is empty.
For each position type, we perform the following actions.
Excess Position: This means ρ1[i] > ρ2[i]. Set the flow F [i, i] = ρ2[i]. If
the stack is in equal or excess state, push the entry (i, ρ1[i] − ρ2[i]) onto
stack. This is the excess mass available at i. If the stack is in deficit
state, pop the top element, say (j, δ), i.e., there is a deficit of δ at j. If
µ =def ρ1[i]− ρ2[i] > δ, set F [i, j] = δ and decrement δ from µ. Repeat this
for remaining deficit positions on stack until excess mass is left in µ. If µ
becomes < δ, set F [i, j] = µ, and set δ = δ − µ and µ = 0. In the end, the
stack may remain in deficit state, move to equal state (i.e., become empty).
If position i remains an excess position push its entry on stack and the stack
moves to excess state.
Deficit Position: This means ρ1[i] < ρ2[i]. It is the mirror analog of the
above case and we omit the obvious detail.
Equal Position: In this case, since ρ1[i] = ρ2[i], we set the flow F [i, i] =
ρ1[i] and simply move to the next position.

Table 5.2 illustrates the algorithm on a particular example with ρ1 =
[0.2, 0, 0.2, 0.3, 0.3] and ρ2 = [0, 0, 0.5, 0.5, 0]. As shown in the table, in step
1 since there is excess mass of 0.2 at ρ1[1], and it is pushed to stack and the
stack state changes from equal to excess. In step 2, since ρ1[2] is an equal
position, the algorithm simply moves to the next position. ρ1[3], is a deficit
position, so we use excess positions on the stack to flow mass to ρ1[3]. But
since there is not enough mass, ρ1[3] is added to stack with a deficit of 0.1
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0.2

0.2

0.1

Figure 5.3: Figure showing flows for example in Table 5.2

and the state of the stack is changed to deficit. Since there is a mass flow
of 0.2 from position 1 to 3, 0.4 work is added to current work. In the next
step, ρ1[4] is a deficit position so it is pushed to stack. Since ρ1[5] is an
excess position mass is moved from it to previous deficit positions. Figure
5.3 shows the corresponding flows. It is easy to see that EMD(ρ1, ρ2) is 0.8.

We can show:

Theorem 3 Work computed by algorithm to convert ρ1 to ρ2 is optimal and
is equal to EMD(ρ1, ρ2).

The proof, omitted here for lack of space, appears in a technical report,
not cited for reasons of anonymity. It is easy to see that the algorithm takes
time O(n) where n is the length of the distribution, which in our application
is the size of the rating scale.

5.2.2 EMD for Multiple Distributions

Our algorithms for finding partitions, DTAlg and RFAlg, involve multiple
evaluations of the following query: given a distribution ρ (corresponding
to a group) and a set of query distributions Q = {ρ1, ..., ρk}, what is the
EMD of ρ to its closest distribution in Q? We anticipate the application of
our algorithm for any rated dataset where the rating scale may be large
(e.g., Yahoo!Music has a rating scale of 1–100) and where the number of
query distributions k may be large (e.g., the user may have seen several
distributions while exploring items and may want to know which groups
exhibit similar distributions on a given class of items). To make this possible,
it is essential to provide efficient support for the above query. A näıve
approach is to evaluate EMD(ρ, ρi), i ∈ [1, k] and pick the smallest EMD. But
this is inefficient. In this section, we develop a pruning strategy that relies on
maintaining a lower bound `i and an upper bound ui on the possible values of
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EMD(ρ, ρi),∀i. Then whenever `i > min{uj | j ∈ [1, k]}, we can safely discard
ρi as a candidate for being the closest query distribution to ρ. To develop
the bounds, consider an algorithm that maintains a list L of promising
candidates to be the closest EMD-neighbors of the given distribution ρ (equiv.,
group). Similar to our earlier algorithm for calculating the EMD for a pair
of distributions, this algorithm makes one concurrent pass over ρ and the
query distributions ρi. It maintains excess/deficit positions on a stack as
before. We assume there are n rating values in the rating scale.

We can show:

Lemma 1 After the algorithm has examined the first i positions, let δ be
the total mass on the stack, j, k be positions on the top and bottom of the
stack. Let γ =

∑i
t=1 ρp[t] = γ be the cumulative mass of distribution ρp ∈ Q.

Let ∆ be the work done so far for converting ρ into ρp. Then `p = ∆ + δ ×
(i+ 1− j) ≤ EMD(ρ, ρp) ≤ up = ∆ + δ× (n− k) + (1− δ− γ)× (n− i− 1).

Proof: The key intuition is that after examining i positions, in the best
scenario, all the mass (say excess) on the stack just needs to move to the
next ((i+ 1)-th) position. Thus, the EMD cannot be smaller than the current
work done plus this amount. The upper bound corresponds to the worst
case where all the mass on stack (say excess) has to move the furthest, i.e.,
from the bottom position to the very last (n-th) position. Additionally, it
is possible that there is excess mass left over at the last position n, which
needs to move to position i+ 1. The maximum possible value of this excess
mass is 1− δ − γ. �

We illustrate the pruning algorithm with a simple example. Consider
a given distribution ρ = [0.8, 0.2, 0, 0, 0] and the query distributions Q =
{ρ1 = [1, 0, 0, 0, 0], ρ2 = [0, 1, 0, 0, 0], ρ3 = [0, 0, 1, 0, 0], ρ4 = [0, 0, 0, 1, 0], ρ5 =
[0, 0, 0, 0, 1]}. After examining the first two positions, the current work done
for the various query distributions is 0.2, 0.8, 0, 0, 0. The bounds are:
`1 = u1 = 0.2; `2 = u2 = 0.8; `3 = `4 = `5 = 1; u3 = u4 = u5 = 4. At this
point, The lower bounds for ρ2, ..., ρ5 exceed the upper bound for ρ1 and we
can drop ρ2, ..., ρ5 from further consideration.
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Chapter 6

Experiments

The goal of our experiments is two-fold: validate the quality of partitions
obtained by our algorithms and study the scalability of our algorithms. In
order to assess the quality of obtained partitions, we perform offline exper-
iments that report measures used to validate clustering performance since
our partitioning can be viewed as a clustering of the input rated dataset. We
also examine coverage, description length and diversity of descriptions for
groups generated using our algorithms. Finally, we evaluate the scalability
of our algorithms as a function of the number of ratings and of trees.

6.1 Experimental Setup

We use two rated datasets, 1 million MovieLens (ML) and Book crossing
(BC) summarized in Table 6.1. ML contains { gender, age, occupation,
location} as user attributes. We combine it with IMDb to obtain attributes
{title, actor, director, writer} for each movie. Similarly BC provides
{location, age} for users and { title,author,year,publisher} for books. Some
attributes have a hierarchy. For example, the hierarchy of location is
Country → State → City. This information is readily available for every
user in BC, but for ML, we queried Yahoo! Maps to get this information.
We manually created hierarchies for attributes age, year and occupation.
Other attributes like director, gender, author have trivial hierarchies (i.e
height =0).

All experiments were done on a Xeon 2.5GHz Quad CoreWindows Server
2003 machine with 16GB RAM and a 128GB SCSI hard disk. All code is
written in Java using JDK/JRE 1.6.

Unless mentioned otherwise, EMD threshold, θ = 0.2,(2 for BC), num-
ber of trees is 4 , and minimum group size is b = 5. All our results
are averages of 3 runs. For ML, we used the query distribution Q =
{U1, U2, ..., U5, U1,2, U2,3, U3,4, U4,5, P1,5} and for BC, Q = {U1, U2, ..., U10}.
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MovieLens (+IMDB) Book Crossing
about movie ratings book ratings
users 6040 38511
items 3900 260

ratings 1000209 ( ˜million) 196842
Rating Scale 1 to 5 1 to 10

Table 6.1: Summary of datasets

Location/Age Teen Young Middle Senior Count

East Ũ1 U U U 2000

Central U Ũ5 U U 1000

West U U U Ũ2 1000
Count 2000 1000 1000 1000 5000

Table 6.2: Rating distributions of various groups in synthetic data

6.2 Offline Quality Evaluation

6.2.1 Purity, Rand-Index and F-Measure

Since our algorithms partition a rated dataset into groups, we propose to
borrow standard clustering evaluation measures like “purity”, “Rand-Index”
and “F-Measure”, to evaluate the quality of our partitions. All those mea-
sures require a gold standard. We therefore construct a gold standard by
generating synthetic data using known distributions.

We generated 5000 rating tuples for an item, in which users have three
attributes age, occupation, location. Our gold standard consists of the three
groups shown in Table 6.2. For example ratings by user in group, [age =
Teen,Location= East] are generated from slightly perturbed U1 distribution
represented as Ũ1. We do not use exact Ui, to make the data look more
realistic and also to make it more difficult for our algorithms. For this
experiment, the query distribution is Q = {U1, U2, ..., U5} .

Purity is defined as the fraction of rating tuples which are “correctly
classified” according to our gold standard. Consider a rating tuple r, let
gi be the group to which r belongs in the gold standard and gj the group
to which it belongs in the partition obtained from our algorithm. Let the
nearest query distribution (using EMD) for gi be ρi and for gj be ρj . In this
setting r is correctly classified iff ρi = ρj . Purity is defined as:

Purity =
No. of correctly classified tuples

Total no. of tuples

Purity measures whether an individual rating tuple r belongs to a
group with the same rating distribution. It does not measure pairwise co-
occurrence of tuples ri and rj . This is measured by RandIndex and Fβ
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Algorithm Purity RandIndex F1 score F2 score F0.5 score
DTAlg 0.9955 0.9058 0.8542 0.6540 0.8842

Rf-Size 0.9923 0.9687 0.9570 0.9129 0.9729
Rf-Description 0.9891 0.9420 0.9177 0.8691 0.9624

Rf-EMD 0.9891 0.8646 0.7707 0.6347 0.8620
Rf-Rand 0.9891 0.8712 0.7904 0.7002 0.8620

Table 6.3: Performance of various algorithms measured using Purity,
RandIndex, F-Measure

score. These measures look at all pairs of rating tuples and compare their
groups in the gold standard and in the algorithm output. Depending on vari-
ous combinations, each pair is recognized as True Positive (TP ) or True Neg-
ative (TN) or False Positive (FP ) or False Negative (FN). TP, TN,FP, FN
have the same meaning as in classic clustering theory. RandIndex and Fβ
score are defined as:

RandIndex =
TP + TN

TP + TN + FP + FN

Fβscore =
(1 + β2)TP

(1 + β2)TP + β2FN + FP

Values of all three measures are bounded in the range [0, 1]. Table 6.3
shows the performance of various algorithms. We do not measure these
values for algorithm RF-Cluster as it takes a long time to terminate (as
shown later). Results show that all algorithms perform equally good in
terms of purity. In fact all algorithms nearly achieve maximum value of
1 for purity. Togetherness of rating tuples is measured by RandIndex, Fβ
measure. Overall, the DT algorithm may find a smaller child group instead
of a big parent group. For example, it may not identify the group [age =
Teen, Location= East] , but may return all smaller groups in it like [age
= Teen, Location= East, Occupation=lawyer]. This may happen because
in generating trees in DTAlg, Occupation might have been chosen before
Location. For any choice of gain function, this can always happen for some
input. It is because of this that DTAlg does not perform well in terms
of these measures. RF algorithms overcome this by creating many trees.
Clearly, RF-Size and RF-Description are better heuristics than RF-EMD

and RF-Rand. In fact RF-EMD and RF-Rand perform worse than DTAlg. This
shows that the heuristic used in combining output from various DT runs
of RF plays an important role. Our experiments show that RF-Size and
RF-Description are better heuristics with RF-Size being the best.
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Figure 6.1: Figure showing coverage for two types of split Categorical and
Binary on two datasets

6.2.2 Coverage, description, diversity and EMD

We compare the quality of found groups using their coverage, description
diversity, description length and EMD. Description diversity and description
length are good indicators of the effectiveness of an algorithm, even though
the former is not a goal in itself. Diversity of a partition is defined as
the average pairwise Jaccard between groups in the partitions. That is

diversity(π) =
∑m

i6=j,i=1 Jaccard(gi,gj)

m .
In our experiments we observed that RF has better coverage when we

use categorical splitting. As shown in the figure 6.1, coverage has low value
for both the dataset when split type is binary. On close observation of
partitions, we found that, partitions obtained from binary splitting overlaps
a lot. One possible explanation of this is, in binary split, an attribute can get
picked many times. As a result an attribute which has good gain for many
attribute values, has more chance of getting picked again and again. Because
number of attributes are very few in number (4-5) in both the dataset, this
can happened a lot. As a result, partitions from different decision trees
overlap a lot. The coverage remains almost same or improves slightly when
compared to a partition from a single tree. In rest of the experiment we use
categorical splitting. We found that the gain function based on minimum
average EMD is the best.

Figure 6.2(a) shows coverage on inputs of various sizes. It can be noticed
that, all RF approaches have higher coverage than DTAlg on both datasets.
One can notice that the margin between DTAlg and RF approaches increases
as input size grows. For large input sizes, coverage by RF algorithm is
almost double that of DTAlg. This shows that, single trees may not be
sufficient to find non intersecting groups. Among different variants of RF,
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RF-Cluster has slightly more coverage than others in BC. Finally, RF-Size
and RF-Cluster have better coverage than other variants.

Figure 6.2(b) demonstrates the dependence of coverage on query dis-
tributions. Items with low variance in their ratings have higher coverage,
and coverage decreases as variance increases. Recall that the query mostly
consists of either distributions of type Ui or of type Ui,i+1. For items with
lower rating variance, most of the population gives the same rating value, so
the rating distribution for such items will be close to one of the query dis-
tributions. For such items, coverage is higher. As variance increases, rating
distributions get very far from query distributions. For these items, coverage
is less. Also obtained group size is larger for items with low variance.

Figure 6.3(a) shows how coverage varies as emd threshold increases. Cov-
erage increases in all cases as threshold increases. It is expected because,
now many in the algorithm qualify. Also note that gap between decision tree
algorithm and RF-Size initially increases as emd increases, but later both of
them converge. It is because, initially as emd increases,coverage of RF-grow
rapidly because it discover more number of new blocks than a single decision
tree algorithm. But as threshold gains large value, almost all subsets make
it to final set. Thus coverage of both the algorithms converge to 100. Figure
6.3(a) shows how coverage changes as no. random trees increase. initially
coverage increase as number of random trees increase, but it converge very
quickly to a constant value. We found it experimentally that no. of trees at
which coverage converge actually depends on size of the input.

Figure 6.2(c) shows the diversity of discovered groups as input size varies.
Notice that RF-Cluster has high diversity in description. It is because the
description for each set is chosen independently using maximal frequent
patterns. DTAlg in general has very low diversity for small input sizes. It is
because the height of DTAlg is small and leaves share many nodes resulting
in low diversity. Surprisingly, RF-Desc does not have diversity much higher
than other RF approaches. Diversity of RF approaches is almost same. We
suspect that is because the number of attributes in the datasets is small.

Figure 6.4(b) shows average EMD obtained for various algorithms in-
creases with the number of random trees generated for RF approaches. Since
DTAlg is independent of the number random trees, its curve is constant.
RF-EMD as expected has the smallest average EMD as the number of trees
increases. When the number of random trees is one, average EMD is slightly
smaller for DTAlg in ML, but almost the same for BC. The gap between
average EMD for RF approaches and DTAlg is higher in case of ML. For BC,
the values are almost identical. That is probably because of the difference
in rating values in the two datasets.
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Algorithm/No. of Ratings 500 1000 2000
DTAlg 1.2710 1.6670 1.7360

RF-CLUSTER 1.1750 1.3810 1.6340
RF-DESCRIPTION 2.2750 2.5230 2.6630

RF-SIZE 2.2950 2.5540 2.8240
RF-EMD 2.4040 2.5540 2.8610
RF-RAND 2.3860 2.6020 2.8290

Table 6.4: Table describing how description length varies with input size on
ML dataset

Table 6.4 shows the variation in average description length of groups ob-
tained as the input size grows (ML dataset). DTAlg has the least descrip-
tion length compared to other RF approaches except RF-Cluster. Recall
that the description of RF-Cluster is approximate. In general description
length increases as input size increases, although not dramatically.

6.3 Scalability Evaluation

Figure 6.4(a) shows the running times of various algorithms as input
size grows. For DTAlg the increase is unnoticeable. The time taken to
create random trees is same for all RF approaches. The difference in
running times is due to different strategies in combining partition from
different trees. For RF-Cluster, though it has good quality in terms of
coverage and diversity, its running time is very long. For large input
sizes, it takes minutes. RF-Size, RF-Rand, RF-EMD have low running
times. RF-Description time increases as input size grows as expected as
finding groups which are far apart in terms of description is a costly step.
Compared to previous work in finding groups [6] our algorithms are scalable.

Since rating distribution length (rating scale) of groups is small, to ob-
serve the effect of pruning in EMD calculation algorithms, algorithm has to
perform many such operations. This is only possible on very large datasets.
In order to understand the effect of pruning, we compare time taken by RF

approaches as the number of random trees grows since the number of EMD
calculations increases. Effect of pruning can be seen from the plot. As the
number of random trees grows, the gap between two curves increase which
justifies that bounds can prove helpful when distributions are very long. Im-
provement is not very large. It is probably because, the constant factor in
linear time algorithm also increases due maintenance of bounds.
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Figure 6.2: Figure showing plots of coverage and diversity in description for
movie Lens and Book Crossing. (a)Coverage Vs. Input Size (b)Coverage
Vs. Variance (c)Diversity Vs. Input Size(Plot legend is same as in (a))

35



6.3. Scalability Evaluation

0 5 10 15 20 25
0

10

20

30

40

50

No. Of Trees

C
o
v
e
ra

g
e

MovieLens

 

 

0 5 10 15 20 25
0

20

40

60

No. Of Trees

C
o
v
e
ra

g
e

Book Crossing

 

 

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

EMD Threshold

C
o
v
e
ra

g
e

MovieLens

 

 
DECISION−TREE

RF−CLUSTER

RF−DESCRIPTION

RF−SIZE

RF−EMD

RF−RAND

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

EMD Threshold

C
o
v
e
ra

g
e

Book Crossing

 

 
DECISION−TREE

RF−CLUSTER

RF−DESCRIPTION

RF−SIZE

RF−EMD

RF−RAND

(b)

Figure 6.3: Figure showing plots of coverage for movie Lens and Book Cross-
ing. (a)Coverage Vs. EMD Threshold (b)Coverage Vs. No. of Trees (Plot
legend is same as in (a))
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Figure 6.4: Figure showing plots of various experiments on both the
datasets: (a) Time Vs. Input size (b)Avg. EMD Vs. No. of Trees (Plot
legend is same as in (a)) (c) EMD-Naive vs EMD-Prune
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Chapter 7

Related Work

Recently, the work of Das et al. [6] introduced complex mining of rated
datasets with the goal of extracting meaningful demographic patterns that
describe groups with biased opinions. They study the problem of finding
groups that are uniform or polarized in their ratings. Our work can be seen
as a generalization of their problems as we propose to query the rating dis-
tributions of an input dataset and discover describable groups that are close
to input query distributions. Our query distributions could have any shape
including uniform and polarized ones. Moreover, unlike ours, the algorithms
proposed in that paper rely on data cubes. Exploring their applicability to
our setting is an interesting future direction.

Some data-driven studies have indicated that the observed diversity of
opinion can be the result of demographic groups reacting differently to ex-
ternal events. Choudhury et al. [5] examined opinion biases in blogosphere
communities, relying on entropy measure as an indicator of diversity in opin-
ions. Alternatively, Varlamis et al. [17] propose clustering accuracy as an
indicator of the blogosphere opinion convergence. Using this measure, they
detected a divergence in topics near few major events.

Several dimensionality reduction techniques, such as Subspace Cluster-
ing and Principle Component Analysis (PCA), were developed in order to
describe a large structured dataset as labeled clusters. In particular, sub-
space clustering has been used extensively for data exploration in a variety
of domains, see [9, 15] for reviews. While Subspace Clustering may be
extended to handle the detection of groups in our setting, it needs to be
modified to account for our rating distribution comparison measure (EMD)
and for describability and scalability. CLIQUE [1] is the first bottom-up
subspace clustering algorithm that relies on a global notion of density - the
percentage of the overall dataset that falls within a particular subspace. EN-
CLUS [4] uses information entropy as the clustering objective, and shows a
relationship between entropy and density, correlation, and coverage. Sev-
eral extensions of the original algorithm were developed: CLTree [13] uses
a decision-tree approach to identify high-density regions, while Cell-Based
Clustering [3] improves scalability by partitioning the data so as to produce
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fewer clusters. Finally, PCA relies on pre-determining the set of attributes
to use to describe clusters instead of discovering them on the fly, as in our
work.
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Chapter 8

Conclusion

8.1 Conclusion

In this paper, we present the first work that enables scalable exploration of
rated datasets in a rating distribution-centric manner. Our solution returns
a set of <user,item,rating> groups whose rating distribution is as close as
possible to input query distributions. We show that the problem is NP-hard
under two different settings and develop two heuristics: the first one is based
on adapting decision trees and the second is based on the random forest ap-
proach. At the center of our work is the use of Earth Mover’s Distance, a
measure that intuitively captures the minimum amount of work required to
transform one distribution into another. In future work, we would like to
explore the relationship between different definitions of diversity and cover-
age and describability. We would also like to investigate the applicability of
other algorithms such as subspace clustering for finding groups.
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Appendix A

Algorithm Optimality

In this section we prove that EMD calculation algorithm 4 is indeed optimal
and correct. That is we prove the following statement:

Theorem 4 Distance computed by algorithm 4 is optimal and is equal to
EMD

Suppose you we are calculating EMD between distributions ρs (source) and
ρt(target). Algorithm 4 makes a pass over distribution ρs and keeps track
of deficit and excess positions using a stack. As algorithm while keeping
track of workdone, uses positions in the stack to move mass such that ρs is
converted to ρt. Its a greedy algorithm because, it moves masses between
nearest position (top element of stack)

A.1 Notations/Definitions

Before going into details of proof, we explain various notation used in the
proof:

1. ρs[i, j] - represents an array of probability values from i to j in ρs

2. ρs[i : j] =
∑j

k=i ρs[k], i.e sum of the probabilities for values i to j

3. In process of converting ρs to ρt, mass is flown between the positions.
Such flows are represented using a flow matrix. F represent any flow
matrix which convert ρs to ρt.

4. F opt represent flow matrix of the optimal solution

5. G represent flow matrix obtained from greedy algorithm 4

6. If F is the flow matrix, Fij = F [i, j] =flow from position i to position
j.

7. W (F ) represents work done due to flow F

8. Given ρs, ρt, the region ρs[1, i] is
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A.2. Lemmas & Facts

• self-sufficient(SS) if ρs[1 : i] = ρt[1 : i]

• deficit if ρs[1 : i] < ρt[1 : i]

• excess if ρs[1 : i] > ρt[1 : i]

9. F [1, k][1, k] represents submatrix of F of size k × k and it has flows
between position 1 to k

A.2 Lemmas & Facts

In this section we state lemmas and proofs which are useful in proving the
theorem 4

Fact 5 If region ρs[1, l] is deficit then there must be inflow to this region
from other positions. That is ∃k, j s.t F optkj > 0, k > l, 1 ≤ j ≤ l

Fact 6 If region ρs[1, l] is excess then there must be outflow from this re-
gion to other positions. That is ∃k, j s.t F optjk > 0, k > l, 1 ≤ j ≤ l

Lemma 2 If region ρs[1, l] is deficit or SS then in an optimal flow F opt,
there cannot be any out flow from this region. That is if ρs[1, l] is deficit

or SS then
∀F opt, F optik = 0 ∀k > l & 1 ≤ i ≤ l (A.1)

Figure A.1: Figure shows how to modify optimal flow F opt to obtain new
flow F opt

′

Proof: We use contradiction to prove that, such a flow does not exist. Let
us suppose in optimal solution, there exists a flow such that F optik = δ1 > 0

s.t k > l. Since region P [1, l] is deficit or SS , by fact 5 ∃ p, q s.t F optpq =
δ2 > 0, p > l and 1 ≤ q ≤ l. Now we show that, F opt is not optimal flow
W.l.og let q > i and k > p. Similar contradiction can be shown for other
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three cases. Let δ = min(δ1, δ2). Intuition here is to disturb the optimal flow
such that total amount of work done decreases. Let the new Flow matrix
obtained be F opt

′
. Figure A.1 describes how optimal flow is modified to

obtain new flow. The values in the F opt
′

are as follows:

F opt
′

ik = δ1 − δ

F opt
′

pq = δ2 − δ

F opt
′

pk = F optpk + δ

F opt
′

iq = F optiq + δ

At other position, flow of F opt
′

are identical to flows of F opt. Lets cal-
culate the change in the work

WF opt −WF opt′ = δ2(k − i) + δ1(p− q)
− [(δ2 − δ)(k − i) + (δ1 − δ)(p− q)
+ δ(q − i) + δ(k − p)]

4W = δ(k − i+ p− q − q + i− k + p)

4W = 2δ(p− q)
4W > 0

Thus change in the work is positive. It means, WF opt > WF opt′ which is a
contradiction because F opt is an optimal solution. Hence lemma is proved

Lemma 3 If region ρs[1, l] is excess or self-sufficient then in an optimal
flow F opt, there cannot be any in flow to this region. That is if ρs[1, l] is
excess or SS then

∀F opt, F opt[k, i] = 0 ∀k > l & 1 ≤ i ≤ l (A.2)

Proof: This lemma can be proved following similar steps as in proof of
Lemma 2. So proof is not written in detail.

Corollary 7 Given, ρs, ρt, there can either be an inflow or outflow from
position 1, in optimal solution. More precisely:

1. ρs[1] > ρt[1], then F opt[j, 1] = 0 ∀j 6= 1

2. ρs[1] < ρt[1], then F opt[1, j] = 0 ∀j 6= 1
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A.3 Proof

In this section we give proof of the theorem using lemmas and facts proved
above. Recall that G represents the flows obtained from our greedy algo-
rithm.

Theorem 8 Let k be the maximum value such that, G[1, k] ≥ 0 or G[k, 1] ≤
0. If Fopt is an optimal flow matrix of EMD(ρs, ρt)such that

F opt =


F opt[1, k][1, k] = A F opt[1, k − 1][k + 1, n] = B

F opt[k + 1, n][1, k] = C F opt[k, n][k + 1, n] = D


then

1. F opt[1, k − 1][k + 1, n] = B = 0

2. F opt[k + 1, n][1, k − 1] = C = 0

3. Workdone due to flow W (F opt[1, k][1, k]) = work done due to flow
W (G[1, k][1, k])

4. F opt[k, n][k, n] is the optimal flow of another smaller sub-problem
EMD(ρ

′
s[k, n], ρ

′
t[k, n])

where ρ
′
s[k] = ρs[k]−

∑k−1
j=1(F opt[j, k]+F opt[k, j]), ρ

′
s[k+1, n] = ρs[k+1, n]

and ρ
′
t[k] = ρt[k]−

∑k−1
j=1(F opt[j, k] + F opt[k, j]), ρ

′
t[k + 1, n] = ρt[k + 1, n]

Proof: Theorem states that, if k is the farthest position from 1 such
that there is either inflow or outflow between positions 1 and k in greedy
solution, then 1,2,3,4 are true.
(1) & (2) : ρs[1, k] is a deficit or SS region. Thus using lemma
2 F opt[1, k − 1][k + 1, n] = 0. Similarly, then using lemma 3
F opt[k + 1, n][1, k] = 0

We use induction technique to prove statement (3) is true
∀k = m, 1 ≤ m ≥ n.

• k = 1: It implies ρs[1] = ρt[1], thus there is no out-flow or in-flow at
position 1. Thus W (F opt[1, 1]) = W (G[1, 1]), proving the statement is
true.
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• k = m− 1: Let workdone due to W (F opt[1,m− 1][1,m− 1]) is equal
to workdone due to W (G[1,m− 1][1,m− 1])

• k = m: W.l.og let G[1,m] > 0. That is first position is excess mass
position. Now idea is to move excess mass at position 1 to position
2 and use induction hypothesis to prove the statement. To be more
precise, form a new sub problem, such that all flows from ρs[1] appear
as flows ρs[2]. That is move all the extra mass at from ρs[1] to ρs[2].
Let resulting distribution be ρ

′′
s . Length of ρ

′′
s is m−1. Using induction

hypothesis one can say that statement (3) is true for corresponding
optimal (F opt

′′
) and greedy (G

′′
) flow matrices of EMD(ρ

′′
s , ρt[2, n]). One

can extend and modify flow matrice F opt
′′
, G
′′

of EMD(ρ
′′
s , ρt[2, n]) to

obtain flow matrices F opt, G of EMD(ρs, ρt) by just adjusting flows
at position one. It is easy to argue that such increase in workdone
for both optimal and greedy flows is same amount and it is equal to
workdone in moving at extramass at position 1 to 2. This proves that
statement (3) is for F opt, G.

(4) states that this problem exhibits optimal substructure property, which
is essential for a greedy algorithm. That is Solution to EMD(ρ

′′
s , ρ

′′
t ) is equal

to W (F opt[k, n][k, n]). Otherwise one can derive a contradiction. Proof of
(4) completely shows that solution obtained by greedy algorithm is optimal.
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