
A Parallel Active-Set Method for
Solving Frictional Contact Problems

by

Joshua Alexander Litven

B.Sc., The University of Waterloo, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

February 18, 2013

c© Joshua Alexander Litven 2012

Abstract

Simulating frictional contact is a challenging computational task and there exist

a variety of techniques to do so. One such technique, the staggered projections

algorithm, requires the solution of two convex quadratic program (QP) subprob-

lems at each iteration. We introduce a method, SCHURPA, which employs a

primal-dual active-set strategy to efficiently solve these QPs based on a Schur-

complement method. A single factorization of the initial saddle point system

and a smaller dense Schur-complement is maintained to solve subsequent saddle

point systems. Exploiting the parallelizability and warm-starting capabilities of

the active-set method as well as the problem structure of the QPs yields a novel

approach to the problem of frictional contact. Numerical results of a parallel

GPU implementation using NVIDIA’s CUDA applied to a physical simulator of

highly deformable bodies are presented.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . vi

List of Figures . vii

List of Algorithms . viii

Acknowledgments . ix

1 Introduction . 1

1.1 Problem Statement . 1

1.2 Solution Methodology . 2

1.2.1 The Primal-Dual Active-Set Method 3

1.2.2 SCHURPA . 4

1.3 Contributions of Thesis . 6

1.3.1 Notation . 7

2 Active-Set Methods for Quadratic Programming 8

2.1 Quadratic Programming . 9

2.2 Overview of Active-Set Methods 9

2.3 Classical ASMs . 13

iii

Table of Contents

2.4 The Primal-Dual ASM . 17

2.4.1 Derivation via the Semismooth Newton Method 17

2.4.2 Comparison to Classical ASMs 22

3 SCHURPA : a Method for Solving Saddle Point Systems Aris-

ing from PDASM . 24

3.1 Limitations of Updating Factorizations 25

3.2 The Schur-Complement Method 27

3.3 Details of the SCHURPA Algorithm 31

4 The Eulerian Solids Simulator . 34

4.1 Overview . 35

4.1.1 Simulating Objects Without Contact 35

4.1.2 Simulating Objects With Contact 37

4.2 Adding Friction Using Staggered Projections 40

4.2.1 Friction Model . 40

4.2.2 The Staggered Projections Algorithm 44

4.3 Applying SCHURPA to Frictional Contact 46

4.4 The SCHURPA-SP Algorithm 54

5 Solving the Contact and Friction QPs 56

5.1 Saddle Point Systems Arising in Contact and Friction 57

5.1.1 Contact . 57

5.1.2 Friction . 58

5.2 Banded SPD Systems . 63

5.3 Block Solver for Banded SPD Systems 67

6 GPU Implementation . 72

6.1 CUDA Programming on the GPU 73

iv

Table of Contents

6.1.1 CUDA Programming Model 74

6.2 Custom Kernels for SCHURPA 76

6.3 CUDA Libraries . 82

7 Results . 83

7.1 Randomly Generated QPs . 83

7.2 Frictional Contact in the Simulator 85

8 Conclusion . 93

Bibliography . 96

Appendices

A Data Storage Formats . 101

B Additional Code . 103

v

List of Tables

6.1 CPU vs. GPU comparison. 74

7.1 Statistics of the GPU-based implementations of SCHURPA and

DIRECT. 87

A.1 Data storage formats for dense and symmetric banded matrices. 102

vi

List of Figures

4.1 Nodal shape functions for a contact cell Ωc on a 2D grid. 47

5.1 Example of cell adjacency. 64

5.2 Typical banded structure of the contact Hessian. 65

5.3 Comparison of the banded Cholesky factorization and solver run-

times. 71

6.1 Computational grid of threads executed in parallel. 75

6.2 Runtimes of the symbgmm operation. 80

7.1 Runtimes of DIRECT and SCHURPA algorithms. 85

7.2 Decomposition of the GPU-based SCHURPA runtimes. 86

7.3 Simulation: Cylinder collision. 86

7.4 Simulation: Proportion of correct indices in A0
c and A0

f 89

7.5 Simulation: Number of contacts, dimensions of GC and GF 90

7.6 Simulation: Number of SCHURPA-SP solves. 90

7.7 Simulation: DIRECT and SCHURPA runtimes. 91

7.8 Simulation: Speedup ratios of SCHURPA to DIRECT. 92

vii

List of Algorithms

2.1 Generic Active-set Method . 11

2.2 Primal-dual Active-set Method 21

3.1 SCHURPA-INIT . 31

3.2 SCHURPA . 32

4.1 Staggered Projections . 46

4.2 SCHURPA-SP . 55

5.1 C0_solve . 59

5.2 F0_solve . 62

5.3 Block Substitution . 69

viii

Acknowledgments

First and foremost, I would like to thank both of my supervisors, Chen Greif

and Dinesh K. Pai, for their outstanding guidance. Their curiosity, insights,

and passion are truly inspiring. I greatly appreciate the thoughtfulness and

understanding that they have shown me.

I would like to thank David I.W. Levin for teaching me many important

things about life. Special thanks go to Ye Fan, who coded the Eulerian solids

simulator. I am also grateful to Uri Ascher for reading this thesis and providing

excellent feedback.

Finally, I would like to thank my family for their unconditional love and

support throughout the years.

ix

Chapter 1

Introduction

1.1 Problem Statement

Physical simulation, the computational process of simulating physical objects

that we observe in reality, is a profoundly important and all-encompassing area

of modern research. As such, efficient and scalable methods for simulating

physical phenomena of ever increasing size and complexity are highly desirable.

In particular, simulating realistic frictional contact has applications ranging

from computer graphics to biomechanics.

An Eulerian solids simulator, presented in (Levin et al., 2011), simulates

highly deformable solid bodies undergoing frictionless contact. The simula-

tor utilizes the finite volume method permitting a parallel implementation on

the GPU using CUDA (NVIDIA, 2012b). However, the simulator is currently

incapable of simulating frictional contact. Lacking the ability to simulate fric-

tion restricts the simulator from capturing important phenomena such as hands

grasping objects, fingers sliding across a surface etc. Incorporating frictional

contact into the simulator is therefore highly desirable.

Resolving frictional contact dynamics is a challenging, formidable task, and

several techniques have been proposed to do so (Jean, 1999; Stewart and Trinkle,

1996; Kaufman et al., 2008). The staggered projections (SP) algorithm, intro-

duced in (Kaufman et al., 2008), is an attractive method because it is robust

and can often converge rapidly. As the simulator implementation is parallel and

1

1.2. Solution Methodology

scalable, the implementation of the frictional contact solution procedure should

share these attractive properties.

The work presented in this thesis details an efficient parallel solution frame-

work which incorporates the staggered projections algorithm to resolve frictional

contact dynamics in the Eulerian solids simulator. We demonstrate the effec-

tiveness and scalability of our method with a GPU implementation.

1.2 Solution Methodology

The staggered projections algorithm resolves frictional contact by iteratively

solving a pair of convex quadratic program (QP) subproblems. A general QP

may be given as

minimize 1
2x

THx− cTx

subject to ATx ≤ b ETx = d,

(1.1)

where c, d, x ∈ Rn, A ∈ Rn×m, E ∈ Rn×p and H ∈ Rn×n. The QP (1.1) is

convex if H is symmetric and positive semi-definite.

QPs are ubiquitous in a diverse array of fields, and arise as subproblems of

general purpose optimization schemes such as the sequential quadratic program-

ming method (Nocedal and Wright, 1999, Chapter 18). As such, solving these

problems efficiently has been the subject of decades of research and remains

an active area to this day. The fruits of these laborious efforts is evidenced by

a plethora of algorithmic methodologies, each with strengths and weaknesses.

These include their ability to handle sparse data, scalability, robustness, accu-

racy etc.

One such methodology is the class of algorithms known as active-set methods

(ASMs). A particularly attractive trait of these methods is their ability to warm

start: A good initial guess of the solution to the QP being solved significantly

2

1.2. Solution Methodology

improves the convergence rate of these algorithms. A good guess of an optimal

solution in physical simulation arises naturally due to temporal coherence. More

precisely, at each time step of the simulation loop, the induced QPs are in

some sense a small perturbation of the QP solved at the previous time step,

inducing techniques to provide initial estimates. This perturbation depends on

the specific implementation, time step size and other factors. Thus ASMs are

a natural approach to solve QPs arising in physical simulation. However, there

are two fundamental limitations to the classical ASMs:

• they cannot handle sparse data, which limits their applicability to large-

scale problems, and

• they cannot be parallelized easily, often requiring many cheap but sequen-

tial iterations.

In contrast, the class of interior point methods (IPs) can handle sparse data,

and have since become the more popular method in solving large problems.

However, IPs lack the warm-starting capabilities ASMs enjoy (Wright, 1987,

Chapter 11).

To overcome the limitations of the classical ASM approaches, we leverage

the primal-dual active-set method (PDASM) (Ito and Kunisch, 2008) to retain

the benefits of ASMs whilst being able to solve large, sparse QPs efficiently.

PDASM is central to the work of this thesis.

1.2.1 The Primal-Dual Active-Set Method

Typically, each iteration of an ASM selects a working set which consists of a

subset of the constraints given in (1.1). This working set serves as a guess to the

optimal active set and yields an equality-constrained subproblem to be solved,

or equivalently, a saddle point linear system. Unlike classical ASMs which en-

sure primal or dual feasibility over iterates, PDASM can violate both primal and

3

1.2. Solution Methodology

dual feasibility. Instead, PDASM induces the subproblem by enforcing comple-

mentarity to hold. One can show that PDASM is equivalent to a semismooth

Newton method applied to the KKT conditions of (1.1) (Hintermüller et al.,

2002) (see Section 2.4). Two fundamental differences between classical ASMs

and PDASM are:

• PDASM allows multiple changes to the working set per iteration, being

able to quickly identify the optimal active set, and

• being a semismooth Newton method, PDASM super-linearly converges.

Typically very few iterations are required.

These properties imply that PDASM overcomes the previously mentioned limi-

tations of classical ASMs. Super-linear convergence allows the method to scale

well with problem size. In Chapter 3, we utilize multiple changes to the working

set in our parallel implementation.

Recently, (PDASM) has been successfully applied to constrained optimal

control (Bergounioux et al., 1999), (Kunisch and Rösch, 2002), contact and fric-

tion (Brunssen et al., 2007), (Hüeber and Wohlmuth, 2005), and others (Hin-

termuller, 2004). The convergence properties of PDASM are an active area of

research. Kunisch and Ito showed global convergence for certain classes of Hes-

sians (Ito and Kunisch, 2008). In (Kunisch and Rendl, 2003), it was observed

that PDASM quickly eliminates the inactive constraints from the current esti-

mate of the active set at a given iteration. This served as a motivation for our

work.

1.2.2 SCHURPA

Efficiency of ASMs is determined by the method of solving the saddle point sys-

tems. In classical methods, a factorization of the initial saddle point system K0

4

1.2. Solution Methodology

is produced, and the factors are then updated, e.g., by orthogonal factorizations.

This updating process is what can potentially destroy sparsity.

Another approach uses a factorization of K0 and, rather than updating fac-

tors, subsequent saddle point systems can be solved using an expanded form,

given as K0 U

UT V

y
π

 =

 c

w

 . (1.2)

Equation (1.2) is solved via the factorization of K0 and the Schur-complement

matrix

C = V − UTK−1
0 U.

This Schur-complement method was used in (Gill et al., 1990) and (Bartlett and

Biegler, 2006), which describe primal and dual methods, respectively. Assum-

ing a sufficient closeness of the initial working set to the optimal active set, the

Schur-complement matrix C remains small. This assumption depends on the

ability of the warm-starting strategy to accurately reflect the changes of the ac-

tive in time. The motivation of the previously mentioned work was to solve the

quadratic programming subproblems arising in the sequential quadratic pro-

gramming method (SQP) for nonlinear optimization. In SQP, the nonlinear

inequality constraints of the original problem are linearized, and as the solution

converges the linearized constraints’ active sets also converge. Thus, employing

warm-starts of the QPs results in rapid convergence of the ASMs. The primal

Schur-complement approach was successfully implemented in (Betts, 1994) to

solve sparse nonlinear problems.

In classical ASMs, a single change of the working set occurs per iteration.

This corresponds to a solve of the form K−1
0 u to form the Schur-complement

matrix C. In contrast, PDASM makes multiple changes to the working set per

iteration, modifying the Schur-complement method to solves of the form K−1
0 U ,

5

1.3. Contributions of Thesis

where U is a matrix encoding the changes of the working set. If warm-starting is

used, one expects that the number of columns of U will not be large. Computing

K−1
0 U amounts to l solves of the form

K0xi = ui i = 1, ..., l,

which direct methods can efficiently solve upon factorization of K0. Further-

more, a parallel implementation of the solve with K0 can significantly improve

the performance of the Schur-complement method. In an ideal sense, if the

solves were fully parallelized, the duration of an iteration of PDASM and the

classical ASMs would be roughly equal. Since PDASM requires far fewer itera-

tions than classical ASMs to make the equivalent changes to an initial working

set, PDASM is expected to perform much better. We demonstrate this improve-

ment via a parallel implementation, called SCHURPA (for SCHUR-complement

method in PArallel), on the GPU using NVIDIA’s CUDA.

1.3 Contributions of Thesis

Our contribution in this thesis is a solution framework which utilizes SCHURPA

to solve the QP subproblems of SP. To further elucidate, we:

• introduce SCHURPA: a Schur-complement approach to solving the saddle

point systems arising in PDASM;

• integrate SCHURPA into SP. We reformulate the problem of friction to

be amenable to SCHURPA, and show that in the case of the simulator

the saddle point systems may be phrased as banded SPD systems;

• demonstrate the effectiveness of SCHURPA with a GPU implementation.

6

1.3. Contributions of Thesis

The thesis is organized as follows. Chapter 2 overviews the general class of

active-set methods and introduces the primal-dual active-set method, show-

ing its equivalence to a semismooth Newton method. Chapter 3 introduces

SCHURPA, our method for solving the saddle point systems in PDASM, which

is conducive to a parallel implementation. We then describe the Eulerian solids

simulation framework in Chapter 4. The problem of adding friction to the sim-

ulator is discussed, along with the staggered projections algorithm. Chapter 5

describes how we exploit problem structure of the QP subproblems in SP to solve

them efficiently. Our parallel GPU implementation is discussed in Chapter 6.

Results of SCHURPA on synthetic data and in the simulator are presented in

Chapter 7. Conclusions and future work are given in Chapter 8.

1.3.1 Notation

For notation of quantities, we use upper case for matrices, lower case for vectors,

and Greek letters generally refer to scalars. We denote the standard basis of

Rn by {e1, ..., en} i.e. ei = [δij]j ∈ Rn. The notation V = {vi}i∈S defines the

matrix V to have column vectors vi indexed by the set S, and V =
{
vTi
}
i∈S is

defined analogously to have row vectors vTi . Quantities with bars denote values

at the next iteration (e.g. x̄), while initial quantities will be subscripted by 0

(e.g. x0). The active set of a primal variable x, denoted by A(x), is the subset

of constraints which hold with equality at x. We denote an optimal solution to

an optimization problem by x∗.

7

Chapter 2

Active-Set Methods for

Quadratic Programming

Active-set methods (ASMs) are a class of algorithmic methodologies for solving

QPs. A particularly attractive trait of ASMs is their ability to warm-start with

an estimate of the solution. In many applications an estimate of A(x∗), the

active set at the optimal solution, is known. As discussed in Section 1.2, ASMs

can effectively utilize this estimate to drastically reduce the number of iterations

required for convergence.

In this chapter we outline ASMs in the context of solving convex QPs, which

are described in Section 2.1. Section 2.2 outlines the background and derivation

of ASMs, and discusses the Karush-Kuhn-Tucker (KKT) Conditions. These

conditions are necessary and sufficient conditions for obtaining optimality of

a convex optimization problem. We then briefly review the classical ASMs in

Section 2.3, the primal ASM and the dual ASM, and describe the method of

updating factorizations common to ASMs. Unsatisfied with the limitations of

these approaches, we turn our eyes towards greener pastures in Section 2.4 to

the primal-dual ASM. Details of the algorithm can be found in (Ito and Kunisch,

2008).

8

2.1. Quadratic Programming

2.1 Quadratic Programming

Convex quadratic programs (QPs) are an important class of optimization prob-

lems which may be stated as

minimize 1
2x

THx− cTx

subject to aTi x ≤ bi, i ∈ I,
(P)

where c ∈ Rn, x ∈ Rn, I = {1, 2, ...,m}, b = {bi}i∈I ∈ Rm, A = {ai}i∈I ∈

Rn×m is the constraint Jacobian and H ∈ Rn×n, the Hessian, is a symmetric

positive semidefinite matrix so that the problem is convex. The problem could

also include equality constraints, but for the purposes of this thesis and without

loss of generality they are left out. In this work we assume strict convexity (i.e.

H is positive definite) and feasibility of (P) so that the optimal solution x∗

exists and is unique.

2.2 Overview of Active-Set Methods

The class of ASMs (as well as most optimization algorithms) attempt to satisfy

the Karush-Kuhn-Tucker conditions (Nocedal and Wright, 1999), which for (P)

are given by

Hx∗ − c+
∑
i∈I

λ∗i ai = 0 (2.1a)

aTi x
∗ ≤ bi, i ∈ I (2.1b)

λ∗i ≥ 0, i ∈ I (2.1c)

(aTi x∗ − bi)λ∗i = 0, i ∈ I (2.1d)

For convex problems these are necessary and sufficient conditions for primal

9

2.2. Overview of Active-Set Methods

and dual variables x∗ and λ∗, respectively, to be an optimal primal-dual pair,

assuming some constraint qualification is satisfied. For example, the linear in-

dependence constraint qualification (LICQ) assumes the set {ai}i∈A∗ is linearly

independent. When the inequality and equality constraint functions are affine

(as in (P)), no constraint qualification is needed. For the KKT conditions we

can equivalently write

Hx∗ − c+
∑
i∈A∗

λ∗i ai = 0 (2.2a)

aTi x
∗ = bi, i ∈ A∗ (2.2b)

aTi x
∗ < bi, i ∈ I\A∗ (2.2c)

λ∗i ≥ 0, i ∈ A∗ (2.2d)

λ∗i = 0, i ∈ I\A∗. (2.2e)

Here we have used the fact that λ∗i = 0 for i ∈ I\A∗, which follows from Equa-

tion (2.1b), Equation (2.1d). Consider the equality-constrained subproblem

minimize 1
2x

THx− cTx

subject to aTi x = bi, i ∈ A∗.
(2.3)

The KKT conditions of (2.3) are

Hx̂− c+
∑
i∈A∗

λ̂iai = 0 (2.4a)

aTi x̂ = bi, i ∈ A∗. (2.4b)

By strict convexity x̂ is unique. Since Equation (2.4) is a subset of the KKT

10

2.2. Overview of Active-Set Methods

conditions Equation (2.2), the optimal solution of (P) is also the optimal solu-

tion to (2.3), and since the solutions are unique, solving the subproblem also

solves the full QP. Thus if A∗ were known a priori, one could simply solve (2.3)

to solve the original problem. Active set methods employ strategies for finding

A∗.

Beginning with a primal-dual pair (x0, λ0), Each iteration k of an ASM

updates a working set Ak ⊆ I of constraints which represents a guess of A∗.

The subproblem

minimize 1
2x

THx− cTx

subject to aTi x = bi, i ∈ Ak
(2.5)

is solved, resulting in the optimal primal-dual pair (x∗, λ∗). The step directions

p = x∗ − xk

µ = λ∗ − λk

are then used to update the primal and dual iterates. A generic ASM is given

in Algorithm 2.1.

Algorithm 2.1 Generic Active-set Method
Input: x0, λ0, A0

for k = 0, 1, 2, ... do
Solve (2.5) Defined by Ak in terms of step directions p and µ
Step xk+1 := xk + αp, α ∈ [0, 1]

λk+1 := λk + βµ, β ∈ [0, 1]
if the KKT conditions to (P) are satisfied then
DONE; x∗ = xk+1 and λ∗ = λk+1

else
Choose Ak+1

end if
end for
Output: x∗, λ∗

The computational “meat” of Algorithm 2.1 lies in solving (2.5), which may

11

2.2. Overview of Active-Set Methods

be rewritten as the symmetric indefinite linear system (called the saddle point

system)

H Ak

ATk

x
λ

 =

 c

bk

 , (2.6)

where Ak = {ai}i∈Ak and bk = {bi}i∈Ak . The saddle point matrix

Kk =

H Ak

ATk

is a special case of the symmetric indefinite matrix

M =

 A B

BT

 .

The following theorem is stated without proof (see, e.g., (Nocedal and Wright,

1999)).

Theorem 2.1. M is nonsingular iff A is positive definite on the nullspace of

BT .

Due to the assumption that H is positive definite we get the following corol-

lary.

Corollary 2.1. Kk is nonsingular iff ATk is full row rank.

From Corollary 2.1 it follows that A0 must prescribe a linearly independent

set of constraints to ensure Equation (2.6) is solvable.

12

2.3. Classical ASMs

2.3 Classical ASMs

The two classical variants of ASMs are the primal and dual algorithms. The

primal ASM, described in (Nocedal and Wright, 1999), chooses the primal step

length α such that xk+1 is always feasible. The dual ASM, described in (Gold-

farb and Idnani, 1983), chooses the dual step length β ensuring λk+1 is feasible

to the dual problem.

To ensure convergence, the primal ASM assumes the active constraints are

linearly independent at each feasible vertex; the dual requires that H be pos-

itive definite. Convergence proofs for these ASMs are based on showing that

f(xk+1) < f(xk) in the primal version and f(xk+1) > f(xk) in the dual ver-

sion; thus cycling can never occur. Since there are a finite number of active-set

subsets, the algorithms converge (Nocedal and Wright, 1999). While this theo-

retical argument allows for a possibly exponential number of steps in the size of

the input data, in practice this is rarely observed. ASMs typically add correct

and remove incorrect constraints to and from the working set; thus their running

time is proportional to |A0−A∗|. This is why ASMs benefit from warm-starting

with a good estimate of A∗.

In the primal and dual algorithms one constraint is added or removed to the

working set Ak. Each saddle point system is not solved from scratch; rather,

factorizations are updated as constraints are added and removed. In typical

implementations these factors are dense, as maintaining sparse factorizations is

difficult (Gill et al., 1987). We now give an example demonstrating the factor-

ization update process. Consider the QP

minimize 1
2x

THx− cTx

subject to x ≥ 0,
(2.7)

which is a special case of (P) where A = −I and b = 0.

13

2.3. Classical ASMs

At iteration k of Algorithm 2.1 Ak defines the set of bound and free com-

ponents of x, which we denote by xB and xF , respectively, i.e. B = Ak and

F = I\Ak . The resulting saddle point system is then

HF,F HT
B,F

HB,F HB,B

xF
xB

−
λF
λB

 =

cF
cB

 . (2.8)

Since xB = 0 and λF = 0, we get

HF,FxF = cF , (2.9)

which can then be used to solve for λB via

λB = −cB +HB,FxF . (2.10)

Solving the saddle point system this way reduces the problem to a symmetric

positive definite system of size |F |, the number of free variables.

Suppose iteration k+1 binds the ith variable of xF . Dropping the F subscript

for simplicity, we can write the current saddle point system Equation (2.9) as

H11 h21 HT

31

hT21 h22 hT32

H31 h32 H33

x1

xi

x3

 =

c1

ci

c3

 .
Then we can solve the next saddle point system by solving

H̄x̄ = c̄,

where

14

2.3. Classical ASMs

H̄ =

H11 0 HT

31

0T 1 0T

H31 0 H33

 , c̄ =

c1

0

c3

 .
Suppose we have a Cholesky factorization of HF,F which we write as

LLT =

L11

lT21 α

L31 l32 L33

LT11 l21 LT31

α lT32

LT33

 =

H11 h21 HT

31

hT21 h22 hT32

H31 h32 H33

 . (2.11)

We now wish to determine the Cholesky factorization of H̄:

L̄L̄T =

L̄11

l̄T21 ᾱ

L̄31 l̄32 L̄33

L̄T11 l̄21 L̄T31

ᾱ l̄T32

L̄T33

 =

H11 0 HT

31

0T 1 0T

H31 0 H33

 .

Writing out the relevant equations of Equation (2.11) give

L11L
T
11 = H11

L31L
T
31 + l32l

T
32 + L33L

T
33 = H33.

We can now solve for the components of the updated Cholesky factors:

15

2.3. Classical ASMs

L̄11L̄
T
11 = H11 = L11L

T
11 ⇒ L̄11 = L11

L̄11L̄
T
31 = H31 = L11L

T
31 ⇒ L̄31 = L31

L̄11 l̄21 = 0⇒ l̄21 = 0

l̄T21 l̄21 + ᾱ2 = 1⇒ ᾱ = 1

L̄31 l̄21 + ᾱl̄32 = 0⇒ l̄32 = 0

L̄31L̄
T
31 + l̄32 l̄

T
32 + L̄33L̄

T
33 = H33 = L31L

T
31 + l32l

T
32 + L33L

T
33

⇒ L̄33L̄
T
33 = L33L

T
33 + l32l

T
32.

Thus, as can be seen from the last equation above, binding a variable

amounts to a rank-one update of a Cholesky factorization. It can be shown

that freeing a variable corresponds to a rank-one down-date (Davis and Hager,

2006). Updating Cholesky factorizations from rank-one changes are detailed

in the seminal work (Gill et al., 1974). All updating procedures require O(n2)

floating point operations as opposed to O(n3) required for a full factorization.

In summary, we see that classical ASMs admit several advantages over com-

peting methods such as the interior point method (IP). As mentioned, in practice

ASMs can take advantage of warm-starting, whereas IPs have difficulty doing

so (Wright, 1987, Chapter 11). Also, updating factors is a cheap operation com-

pared to full factorizations required in the iterates of IPs. The tradeoff comes

from the large number of iterations in ASMs if the working set requires many

changes.

We are therefore limited by classical ASMs because

• They do not exploit sparsity, which limits their applicability to large-scale

problems, and

16

2.4. The Primal-Dual ASM

• The iterations are inherently sequential, and therefore they cannot be

parallelized.

As we will show in Chapter 3 the Schur-complement approach ameliorates the

first limitation by solving Equation (2.6) in a different way; rather than updating

factors, an initial saddle point system is factorized, and future saddle point

systems are expressed as solutions of the original saddle point matrix and a

smaller Schur-complement matrix. We now address the second issue.

2.4 The Primal-Dual ASM

In an attempt to utilize the advantages of ASMs, we turn to a more recent

approach: the primal-dual active-set method (PDASM). A key divergence from

its classical counterparts is the ability to make multiple changes to the active set

per iteration. We will see that combining this with a linear algebra technique to

solve the saddle point systems results in a parallel ASM we have been searching

for (see Chapter 3).

2.4.1 Derivation via the Semismooth Newton Method

We follow (Hintermüller et al., 2002) in deriving PDASM. In a nutshell, PDASM

is defined by Algorithm 2.1 by choosing α = β = 1 and selecting the next

working set as

Ak+1 =
{
i ∈ I | bi − aTi xk+1 − λk+1

i < 0
}
. (2.12)

PDASM can be derived from a generalized Newton method applied to a set of

semismooth equations. A comprehensive overview of semismooth equations and

algorithms can be found in (Ulbrich, 2011).

17

2.4. The Primal-Dual ASM

We define a function to be semismooth if it is differentiable almost every-

where, mathematically speaking (that is, everywhere except for a set of measure

zero). Consider the function

φ(a, b) = min(a, b),

which is differentiable everywhere except along the line a = b and thus is a

semismooth function. Other examples of semismooth functions include convex

functions and piecewise differentiable functions. We have the following useful

property.

Lemma 2.4.1. φ(a, b) = 0⇔ ab = 0, a ≥ 0, b ≥ 0.

Proof. Suppose φ(a, b) = 0.

Then min(a, b) = 0

⇔ a = 0 or b = 0, a ≥ 0, b ≥ 0

⇔ ab = 0, a ≥ 0, b ≥ 0,

as required.

Corollary 2.4.2. The KKT conditions to (P) may be reformulated as the

solution to the equations

F (x, λ) =

Hx+Aλ− c

Φ(x, λ)
= 0, (2.13)

where

Φi(x, λ) = φ(bi − aTi x, λi). (2.14)

18

2.4. The Primal-Dual ASM

Applying a generalized Newton method to semismooth equations was in-

troduced in (Qi and Sun, 1993) and we briefly discuss the approach here. Let

F : Rn → Rn and DF ⊆ Rn be the set of points where F is differentiable. The

set

∂BF (x) ≡
{

lim
xk→x

∇F (xk) | {xk} ⊆ DF

}
is called the B-subdifferential of F at x, where ∇F denotes the Jacobian of F .

Intuitively this is the set of Jacobians nearing the point x in the limit. If F is

differentiable at x it is clear that ∂BF (x) = ∇F (x). We may now formulate a

generalized Newton iteration as

xk+1 = xk − V −1
k F (xk), (2.15)

where Vk ∈ ∂BF (xk). If F is semismooth at a solution x∗ of F (x) = 0 and all

V ∈ ∂BF (x∗) are nonsingular, local super-linear convergence can be proved (Ito

and Kunisch, 2008). Recall that in the differentiable case, quadratic convergence

occurs if ∇F (x∗) is nonsingular.

We now apply the generalized Newton method to equations Equation (2.13).

The subdifferential of Φ is given by

∂BΦi(x, λ) = ∂Bφ(bi − aTi x, λi)

=

(−ai, 0)T if bi − aTi x < λi

(0, ei)T if bi − aTi x > λi{
(−ai, 0)T , (0, ei)T

}
if bi − aTi x = λi

We arbitrarily choose Vi = (0, ei)T ∈ ∂BΦi(x, λ) in the final case. Let

19

2.4. The Primal-Dual ASM

A =
{
i ∈ I | bi − aTi xk − λki < 0

}
Ā =

{
i ∈ I | bi − aTi xk − λki ≥ 0

}
.

Assume without loss of generality that the equations are ordered first by A

and subsequently by Ā. Then, by taking the partial subdifferentials of F , the

generalized Newton iteration Equation (2.15) applied to Equation (2.13) gives

H A

−ATA 0

0 IĀ

xk+1 − xk

λk+1 − λk

 = −

Hxk +Aλk − c

bA −ATAxk

λkĀ

 ,

where AA = {ai}i∈A, IĀ =
{
eTi
}
i∈Ā and bA = {bi}i∈A. Equivalently

Hxk+1 +Aλk+1 = c; (2.16a)

ATAx
k+1 = bA; (2.16b)

λk+1
Ā = 0, (2.16c)

and after substituting Equation (2.16c) into Equation (2.16a) we get

Hxk+1 − c+
∑
i∈A

λk+1
i ai = 0

aTi x
k+1 = bi, i ∈ A.

Notice that these are exactly the KKT conditions for solving the equality-

constrained QP

20

2.4. The Primal-Dual ASM

minimize 1
2x

THx− cTx

subject to aTi x = bi, i ∈ A.
(2.18)

Thus, we get an active-set procedure with the working set determined by A,

which is how we defined the update in Equation (2.12). Intuitively, rather

than satisfying primal or dual feasibility, PDASM satisfies the complementarity

condition

(aTi xk+1 − bi)λk+1
i = 0 i ∈ I,

which follows from Equation (2.16b) and Equation (2.16c). Since either bi −

aTi x
k+1 = 0 or λk+1

i = 0, the working set A chooses the former to hold if

bi − aTi xk < λki ; otherwise it ensures the latter holds. The super-linear conver-

gence of the generalized Newton method applies to PDASM, and in practice very

few iterations are required to obtain convergence (see Chapter 7). In combina-

tion with being an active-set method and therefore amenable to warm-starting,

these make PDASM a very attractive approach for solving QPs. Algorithm 2.2

describes this stunningly simple yet powerful algorithm.

Algorithm 2.2 Primal-dual Active-set Method
Input: x0, λ0, A0

for k = 0, 1, 2, ... do
Solve (2.5) defined by Ak to compute the solution pair

(
xk+1, λk+1)

if the KKT conditions to (P) are satisfied then
DONE; x∗ = xk+1 and λ∗ = λk+1

else
Ak+1 =

{
i ∈ I | bi − aTi xk+1 − λk+1

i < 0
}

end if
end for
Output: x∗,λ∗

Global convergence of PDASM in certain cases has been proven for several

classes of problems in (Ito and Kunisch, 2008), e.g., problems with M-matrix

21

2.4. The Primal-Dual ASM

Hessians. The two pitfalls in the successful convergence of PDASM are cycling

and a potentially singular saddle point system.

Assuming that all saddle point systems are uniquely solvable (which is true,

for example, if the constraint Jacobian has full rank), the algorithm will con-

verge if and only if it is free of cycles. Typically global convergence proofs rely

on a merit function which measures the progress of the algorithm to the solu-

tion and monotonically decreases, ensuring cycling cannot occur (Nocedal and

Wright, 1999). The quantity ||F (xk, λk)|| is a natural choice, but unfortunately

is inadequate without additional assumptions on the input data. In practice,

convergence occurs for well-conditioned problems. We observe unconditional

global convergence of PDASM for our application (see Chapter 7).

2.4.2 Comparison to Classical ASMs

Here we recap the similarities and differences of PDASM with the classical ASMs

discussed in Section 2.3.

Similarities:

• being an ASM, PDASM yields the benefits of warm-starting and accurate

solutions,

• the standard techniques for computing and updating factorizations may

be applied to PDASM, and

• under certain conditions global convergence can be proved. PDASM is

observed to converge as long as the saddle point systems are nonsingular.

Differences:

• there is no longer any guarantee of primal or dual feasibility,

• multiple changes to the working set are made each iteration, and

22

2.4. The Primal-Dual ASM

• due to super-linear convergence, few iterations are required and thus

PDASM scales well to large problems.

In the next section, we exploit these unique features of PDASM to develop a

parallel algorithm for solving QPs.

23

Chapter 3

SCHURPA : a Method for

Solving Saddle Point

Systems Arising from

PDASM

The central ingredient for our parallel solver is the solution method to the saddle

point system Equation (2.6). In this chapter we first show that the standard

approach of updating factorizations for saddle point systems in PDASM cannot

be parallelized in Section 3.1. We then introduce the Schur-complement method

in Section 3.2, originally developed in (Gill et al., 1990). Their work used the

method in the primal ASM to solve large, sparse problems. We show that using

PDASM, the Schur-complement method not only permits the use of sparse data,

but also produces an efficient parallel solver, which we call SCHURPA. Accuracy

and complexity of SCHURPA are discussed in Section 3.3.

24

3.1. Limitations of Updating Factorizations

3.1 Limitations of Updating Factorizations

Our goal is to utilize the information PDASM provides each iteration, a set

of l changes to the working set, to develop a parallel algorithm. Recall in the

classical regime of ASMs a single change to the working set corresponds to

an update-factorization procedure. In principle then, one could apply l such

updates sequentially, but this would squander the use of parallelism and revert

the algorithm’s behaviour to that of the classical methods, i.e. each update

would be cheap, but they could be numerous and inherently sequential.

Let us return to the example discussed in Section 2.3, where Cholesky factors

of the reduced Hessian were updated via a rank-one change, corresponding to

a single change of the working set. A natural approach in the case of multiple

changes would be to update the Cholesky factors in parallel, accounting for all

changes to the working set simultaneously. For example, suppose we bind two

variables so that

LLT =

L11

lT21 α

L31 l32 L33

lT41 a lT43 β

L51 l52 L53 l54 L55

LT11 l21 LT31 l41 LT51

α lT32 a lT52

LT33 l43 LT53

β lT54

LT55

=

H11 h21 HT
31 HT

41 HT
51

hT21 h22 hT32 hT42 hT52

H31 h32 H33 H43 HT
53

hT41 h42 hT43 h44 hT54

H51 h52 H53 h54 H55

.

The updated factors for the next iteration are

25

3.1. Limitations of Updating Factorizations

L̄L̄T =

L̄11

0T 1

L̄31 0 L̄33

0T 0 0T 1

L̄51 0 L̄53 0 L̄55

L̄T11 0 L̄T31 0 L̄T51

1 0T 0 0T

L̄T33 0 L̄T53

1 0T

L̄T55

=

H11 0 HT
31 0 HT

51

0T 1 0 0T 0

H31 0 H33 0 HT
53

0T 0 0T 1 0T

H51 0 H53 0 H55

.

Working out the equations as in the previous example yields the same rank-

one update

L̄33L̄
T
33 = L33L

T
33 + l32l

T
32,

as well as

L̄T53 = L̄−1
33
(
l32l

T
52 + L33L

T
53
)

L̄55L̄
T
55 = L55L

T
55 + l52l

T
52 + l54l

T
54 + L53L

T
53 − L̄53L̄

T
53.

The last equation requires two rank-one updates as well as two the size of L53.

If the variables being bound are close together or the second variable is near

the end, this is a low rank update, but these are unknown a priori. As a second

attempt, one could attempt to re-order the factors to produce a single column-

row block change to induce a rank-l update. For example, suppose we bind l

variables so that

PHP =

H̄11 H̄T
21

H̄21 H̄22

 (3.1)

PH̄PT =

H̄11

Il

26

3.2. The Schur-Complement Method

for some permutation matrix

P =

P11 P12

P21 P22

 .
We wish to find the cholesky factors

H̄11 = L̄11L̄
T
11

via updating the Cholesky factors

H =

L11

L21 L22

LT11 LT21

LT22

 . (3.2)

Substituting Equation (3.2) into Equation (3.1) yields

PT11L̄11L̄
T
11P11 = L11L

T
11 − PT11H̄

T
21P21 − PT21H̄

T
21P11 − PT21H̄22P21. (3.3)

Unfortunately by construction P11 is not invertible unless P = I. Therefore

Equation (3.3) cannot be used as an factorization update equation. We abandon

the dream of updating factors and instead turn to another idea: the Schur-

complement method.

3.2 The Schur-Complement Method

Recall that each iteration k of an ASM computes the solution to a saddle point

system of the form

H Ak

ATk

x
λ

 =

 c

bk

 .

27

3.2. The Schur-Complement Method

A Schur-complement approach, developed in (Gill et al., 1990) for solving saddle

point systems arising in a primal active-set method, computes an initial (sparse)

factorization of the saddle point system

K0 =

H A0

AT0

 ∈ R(n+p)×(n+p), (3.4)

where p = |A0| and A0 = {ai}i∈A0 is given by the initial working set A0. The

method relies on the following key observation:

Adding or removing a constraint to the working set is equivalent to

symmetrically appending a column and a row to the current saddle point

system.

To see this, consider the first iteration after the initial factorization of K0.

Suppose we add a constraint i. Then the new saddle point system is

H A0 ai

AT0

aTi

x

λ

µ

 =

c

b0

bi

 ,

where µ is the Lagrange multiplier corresponding to the added constraint. Now

suppose an initially active constraint i is removed from the working set. The

new saddle point system can be written as

H A0

AT0 ei

eTi

x

λ

γ

 =

c

b0

0

 .

This adds the final constraint λi = 0, which is required for a non-active con-

straint, as well as modifies the equation aTi x = bi to aTi x + γ = bi, which can

be satisfied for any x. Therefore, the constraint is “ignored” and the dummy

28

3.2. The Schur-Complement Method

variable γ may be discarded.

In general, for a given iteration k suppose there are l changes made between

Ak−1 and Ak. The system to be solved is given by the form

K0 U

UT

y
π

 =

 c

w

 , (3.5)

where U ∈ R(n+p)×l and w ∈ Rl. The variables xk and λk can be obtained by

“unscrambling” yk and πk. More precisely,

xki = yki , i = 1, ..., n

and

λki =

πks if constraint iwas the sthconstraint added

0 if constraint iwas the sthconstraint removed

ykn+i otherwise

Although the system grows in size, by using the Schur-complement matrix

defined as

C ≡ −UTK−1
0 U,

solving Equation (3.5) is equivalent to solving the following systems:

K0v = c

Cπ = w − UT v (3.6a)

K0y = c− Uπ.

29

3.2. The Schur-Complement Method

Thus, the work required at each iteration involves two solves with K0 (and

updating/solving with C). However, by solving for R = K−1
0 U and noticing

that v = K−1
0 c is fixed throughout the algorithm we can write Equation (3.6)

as

C = −UTR

Cπ = w − UT v

y = v −Rπ

and we see that l solves with K0 is required to form C and solve for y and π.

As mentioned, an advantage of the Schur-complement approach is its ab-

straction of the solve with K0 in Equation (3.5). More precisely, we black-box

the solution of K0 via a function K0_solve so that

R = K0_solve (U) .

The function K0_solve is application-dependent and implementations can

take advantage of specific hardware such as the GPU. In general computing the

function requires a matrix factorization and solving requires solving with the

computed factors (see Section 3.3). We emphasize that, in contrast to updating

factors, the solves

ri = K0_solve (ui) i = 1, ..., l

are naturally parallelizable.

There is one final ingredient needed to make the algorithm above more ef-

ficient and ensure non-singularity of the Schur-complement matrix. Suppose a

constraint i ∈ A0 is removed from Ak at some iteration k, adding the lth col-

30

3.3. Details of the SCHURPA Algorithm

umn to U as described above. If at some later iteration, the constraint is then

added back to Ak, adding the lth column to U will yield a rank deficient matrix

and thus C will be singular. Instead of adding another column to U , we may

simply remove the lth column from U , as well as the lth column and lth row in

C. Thus each modification to the working set of this form decreases the number

of solves required by one. A similar argument holds for a constraint i 6∈ A0

which is added and subsequently removed from Ak. In addition to avoiding a

solve, removing a column also reduces the memory cost of the algorithm. In

our GPU implementation, U is stored as a dense matrix, and minimizing the

memory footprint on the GPU is crucial.

We are now ready to combine PDASM with the Schur-complement method,

which we call SCHURPA (SCHUR in PArallel), given in Algorithm 3.2. An ini-

tialization step, given in Algorithm 3.1, computes the function K0_solve and

solves the initial saddle point system. We describe application-specific imple-

mentations of K0_solve for the solids simulator in Chapter 5. The properties

of Algorithm 3.2 are the topic of the next section.

Algorithm 3.1 SCHURPA-INIT
Input: A0

Factorize K0 given by Equation (3.4) to produce the function K0_solve

Solve the initial saddle point system:
(
x∗

λ∗

)
= K0_solve

((
c
b0

))
Output: x∗, λ∗, K0_solve

3.3 Details of the SCHURPA Algorithm

By solving the saddle point systems via the Schur-complement method, SCHURPA

avoids the need for updating factorizations. The approach works well when

the cost of computing K0_solve is significantly more than the cost of solv-

ing with said function. This was the case in (Gill et al., 1990; Bartlett and

31

3.3. Details of the SCHURPA Algorithm

Algorithm 3.2 SCHURPA
Input: A0, x0, λ0, K0_solve
for k = 0, 1, 2, ... do

if the KKT conditions to (P) are satisfied then
DONE; x∗ = xk and λ∗ = λk

else
Ak+1 =

{
i ∈ I | bi − aTi xk − λki < 0

}
end if
Compute U based on the changes between Ak and Ak+1

Compute C = −UTR, where R = K0_solve(U)
Solve Equation (3.5) via Equation (3.7) to obtain (yk+1, πk+1)
Use yk+1 and πk+1 to obtain xk+1,λk+1

end for
Output: x∗, λ∗

Biegler, 2006), which employed the primal and dual methods, respectively, to

solve large sparse QPs arising in the sequential quadratic programming (SQP)

method. The Schur-complement method computes an initial sparse factoriza-

tion, and updating factors are avoided. As the QPs in SQP converge, few active

set changes are required to find the optimal solution. Our motivation, in con-

trast, is in physical simulation, where due to the temporal coherence the change

in active-sets between time steps may be small but never converging. Thus we

expect each iteration a nontrivial number of changes in the active-set, which

suits the parallel linear solve of Algorithm 3.2. We also emphasize that their

motivation was for solving sparse problems sequentially, while our motivation is

solving structured dense problems in parallel (see Chapter 4). This exemplifies

the utility of the block-box abstraction of K0_solve.

The computational complexity of SCHURPA depends on the number of iter-

ations, the cost of computing K0_solve, and the cost of solving with K0_solve.

Due to the super-linear convergence of any PDASM, Algorithm 3.2 typically

converges in O(1) iterations; in practice typically less than 10 iterations are

required. For a generic implementation where a sparse matrix K0 ∈ Rn×n is

factorized, Algorithm 3.1 has a complexity of O
(
n3) and solving with the result-

32

3.3. Details of the SCHURPA Algorithm

ing factors has complexity O
(
n2). The advantage is that only one factorization

is required throughout the entire algorithm.

As the number of changes from A0 from Ak grows, so does the size of the

Schur-complement matrix C. If C gets too large, the Schur-complement method

could be inefficient and a re-factorization of the current saddle point system

should be computed to create a new K0_solve. Additionally, since U is stored

as a dense matrix, memory limitations must be considered in a GPU imple-

mentation. Therefore if either C gets sufficiently large or U cannot be stored

in memory, we compute a new K0_solve from the current iteration. In our

implementation, C is re-computed and factored each iteration, as in (Bartlett

and Biegler, 2006).

Finally, we note that the Schur-complement method is less robust than meth-

ods updating factors via orthogonal transformations. If the initial saddle point

system is ill-conditioned, all subsequent saddle point systems will compromise

accuracy due to the Schur-complement approach. One possible amelioration

to this is fixed-precision iterative refinement applied when constraint drift oc-

curs. However, as our QPs are found to be reasonably well-conditioned and

non-degenerate in practice, iterative refinement was not required to identify the

optimal active set (see Chapter 7).

33

Chapter 4

The Eulerian Solids

Simulator

Equipped with SCHURPA, a parallel PDASM for solving QPs, we describe

our solution procedure for the frictional contact problem arising in an Eulerian

deformable solid bodies simulator, the subject of this chapter.

Deformable body simulations typically work by keeping track of material

points associated with the object and updating their positions in space. This

approach is called Lagrangian simulation. In contrast, Eulerian simulation fixes

points in space and simulates objects moving through this space by advecting

them through the object’s velocity field.

Introduced in (Levin et al., 2011), the Eulerian solids simulator handles

complex, highly deformable solid objects undergoing frictionless contact. By

discretizing the spatial domain into a regular grid, the simulator utilizes the

finite volume method (Versteeg and Malalasekera, 2007). A parallel implemen-

tation of the simulator was developed on the GPU using CUDA (NVIDIA,

2012b). However, the contact was assumed to be frictionless.

Simulating friction is crucial for many interesting and complex phenomena.

Consider hands grasping an object, fingers sliding across a surface, hair blowing

in the wind, or cloth sliding off of a surface. Our goal is to imbue the simulator

with the ability to simulate friction.

34

4.1. Overview

Section 4.1 provides a description of the simulator and a derivation of the

contact QP solved at each time step of the simulation. We then introduce the

frictional contact problem, and the staggered projections algorithm of (Kaufman

et al., 2008) as our solution methodology, in Section 4.2. By appropriately refor-

mulating the linearized friction cone in Section 4.3, we show that SCHURPA can

be applied to the QPs that result from SP. The final SCHURPA-SP algorithm

is outlined in Section 4.4.

4.1 Overview

4.1.1 Simulating Objects Without Contact

Here we briefly describe the method of simulating a single solid body in the

simulator, the details of which can be found in (Levin et al., 2011).

Suppose we are interested in simulating an object starting at time t0. The

object’s configuration at time t0 is said to be in its reference configuration. A

mapping between the object’s reference configuration and its configuration at

time t is given by

x : (R3,R+)→ (R3,R+)

x(X, t) = X + u(X, t).

The reference coordinate X is the coordinate of a point on the object in its

reference configuration, and u(X, t) is the change, or deformation, of that point

at time t. In typical Lagrangian solids simulations, the object is discretized

into particles. The reference coordinates X of these particles act as degrees of

freedom (DOFs) of the system, completely determining the configuration of the

object. The spatial positions of these particles are computed by integrating the

35

4.1. Overview

momentum equation

ρ
dv(X)
dt

= ∇·σ+ρb,

where v is the velocity of the particle, ρ is the density, σ is the Cauchy stress,

and b are the body forces acting on the particle. However, in the Eulerian

framework, degrees of freedom are no longer reference coordinates, but rather

spatial coordinates fixed on a grid in space. More precisely, we discretize space

by a uniform grid G = (∆x,∆y,∆z) of dimensions (Lx∆x)× (Ly∆y)× (Lz∆z)

and define our degrees of freedom by

xijk = (x0 + i∆x, y0 + j∆y, z0 + k∆z),

where

i ∈ 0, ..., Lx, j ∈ 0, ..., Ly, k ∈ 0, ..., Lz.

By writing the velocity v as a function of x, the material derivative begets the

modified momentum equation

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ + ρb. (4.1)

Integrating Equation (4.1) yields a velocity field with which the object may be

advected through. For an integration region Ω centered around a node N =

(i, j, k) we assume a constant density ρ and integrate Equation (4.1) to obtain

mN

(
∂vN
∂t

+ vN∇vN
)

= fN,

where mN is the integrated mass and fN are the integrated stress and body

forces inside Ω. To compute the velocities at time t + 1, we use vtN in the

36

4.1. Overview

advection term vN∇vN and apply a first order discretization to ∂vN

∂t , yielding

mNv
t+1
N = mNv

t
N + ∆t(fN −mND(vtN)vtN),

where the matrix D is the discrete Jacobian matrix using the first-order upwind

differencing scheme. Assembling equations over the entire spatial grid for all

objects yields the equation

Mvt+1 = f∗, (4.2)

where M ∈ Rn×n is the globally assembled diagonal mass matrix, vt+1 ∈ Rn

is the global velocity vector and f∗ ∈ Rn is the global impulse vector. Once

Equation (4.2) is solved, the reference coordinates are advected through the

velocity field via the material derivative:

DX

Dt
= 0

⇒ ∂X

∂t
+ vt+1 · ∇X = 0,

yielding the update equation

Xt+1 = Xt −∆tD(vt+1)Xt.

By tracking the reference coordinates, strain and stress can be properly com-

puted and an elastic object will always return to its undeformed state.

4.1.2 Simulating Objects With Contact

Contact between bodies in the simulation is resolved by invoking Gauss’ prin-

ciple of least constraint (Lanczos, 1986), a variational formulation of classical

mechanics, which states that the velocity is the solution to the following opti-

mization problem:

37

4.1. Overview

vt+1 = argmin
v

1
2v

TMv − vT f∗

subject to v ∈ V,
(4.3)

where V is the constraint set. In the case of the simulator, constraints enforce

non-interpenetration between objects.

Consider a colliding pair of objects A and B with contact surface ΓAB .

Non-interpenetration constraints are formulated on the velocity level so that

the relative velocity along the unit normal is always nonnegative along the

contact surface:

vrel · n ≥ 0, (4.4)

where vrel = vA − vB is the relative velocity and n is the unit normal to the

surface. As in typical FEM fashion, we integrate Equation (4.4) in each grid

cell Ωc where contact occurs to obtain

ˆ

Γc

vrel · ndΓ

=
ˆ

Γc

(
vA − vB

)
· ndΓ ≥ 0, (4.5)

where Γc = Ωc ∩ ΓAB . By expressing velocities in terms of nodal shape

functions we get

v (x) =
L∑

N=1
φN (x) vN , (4.6)

where vN ∈ R3 , L = LxLyLz and φN is a scalar shape function. In the

implementation of the simulator we use trilinear shape functions as in (Levin

38

4.1. Overview

et al., 2011). Substituting in Equation (4.6) to Equation (4.5) yields

L∑
N=1

ˆ
Γc

φNndΓ

 · vAN − L∑
N=1

ˆ
Γc

φNndΓ

 · vBN
= jTc v,

where

jc =

ˆ

Γc

φNnxdΓ,
ˆ

Γc

φNnydΓ,
ˆ

Γc

φNnzdΓ

T

N=1,...,L

∈ Rn

The constraints are assembled into a global constraint Jacobian matrix

J = {jc}c=1,...,m ∈ Rn×m

and the resulting QP solved at each time step is given by

vt+1 = argmin
v

1
2v

TMv − vT f∗

subject to JT v ≥ 0.
(4.7)

Because contact only occurs on surfaces of objects, the number of constraints

is much smaller than the total number of degrees of freedom, i.e., m� n. In

such cases it is useful to transform (4.7) into its dual formulation, given by

αt+1 = argmin
α

1
2α

TJTM−1Jα+ αT (JTM−1f∗)

subject to α ≥ 0,
(4.8)

39

4.2. Adding Friction Using Staggered Projections

where α ∈ Rm. The velocities can then be recovered via

vt+1 = M−1(f∗ + ct+1), (4.9)

where

ct+1 ≡ Jαt+1

can be interpreted as the generalized contact impulse with α giving the mag-

nitudes of those impulses. Reducing to the dual results in a problem of size

m. Due to the diagonal structure of M, formulating (4.8) is computationally

tractable. We now turn to the more challenging case of simulating frictional

contact.

4.2 Adding Friction Using Staggered

Projections

4.2.1 Friction Model

We begin our derivation of frictional contact with Coulomb’s law of friction.

Consider a contact point p for two objects A and B in contact. Coulomb’s law

states that the frictional impulse fp must directly oppose the relative velocity

vrel at the contact point, and must lie in the feasible set

{fp ∈ Tp : ||fp|| ≤ µα},

where Tp is the tangent plane to the contact point, α is the magnitude of the

normal impulse, and 0 ≤ µ ≤ 1 is the coefficient of friction dependent on the

material properties. We model friction using a linearized, isotropic Coulomb

friction law (Stewart, 2000). We define a set of 2l symmetric unit length vectors

40

4.2. Adding Friction Using Staggered Projections

{Ti}i=1,...,2l ∈ Tp so that

Ti+1 = −Ti i = 1, 3..., 2l − 1.

The frictional impulse is then expressed as

fp = T βp, (4.10)

where T = {Ti}i=1,...,2l ∈ R3×2l and βp ∈ R2l gives the magnitude of each

tangent direction. Note that, due to the symmetry of the tangent vectors Ti, T

is necessarily rank deficient. We address the algorithmic issues this implies in

Section 4.3. We discretize βp using piecewise constants so that for each contact

cell c the frictional impulse is

fp = T βc,

where βc ∈ R2l is a constant within the contact cell. The linearized Coulomb

law may then be described as the set of feasible points

Fc =
{
fp = T βc : eTβc ≤ µcαc, βc ≥ 0

}
, (4.11)

where e = (1, ..., 1)T , µc ≥ 0 is the coefficient of friction and αc ≥ 0 is the contact

magnitude. Fc represents the convex hull of the columns of T . The feasible set

over all contacts can now be written in terms of the tangent magnitudes as

{
β | ETβ ≤ diag(µ)α, β ≥ 0

}
, (4.12)

where β ∈ R2lm is the global tangent magnitude vector, E ∈ R2lm×m is glob-

ally assembled from e, and diag(µ) constructs the diagonal matrix of the glob-

41

4.2. Adding Friction Using Staggered Projections

ally assembled vector µ. Turning from feasibility to optimality, we rephrase

Coloumb’s law as a variational principle, given by the Maximal Dissipation

Principle (Moreau, 1973):

For a contact point p, the frictional force f maximizes the dissipation among

all feasible forces.

The dissipation is equal to the rate of negative work and defined as −fTp vrel.

We integrate over the contact surface Γc of the contact cell c to obtain the

dissipation for a given contact:

ˆ

Γc

−fTp vreldΓ

= −

ˆ
Γc

fTp v
AdΓ−

ˆ

Γc

fTp v
BdΓ

= −βTc

 L∑
N=1

ˆ

Γc

T TφNvAN −
L∑

N=1

ˆ

Γc

T TφNvBN

 (4.13)

= −βTc TTc v, (4.14)

where

Tc =

ˆ

Γc

φNT Tx dΓ,
ˆ

Γc

φNT Ty dΓ,
ˆ

Γc

φNT Tz dΓ

T

N=1,...,L

∈ Rn×l.

Equation (4.13) follows from expressing the velocities as a linear combination

of the shape functions defined by Equation (4.6). Summing over all contacts

yields the total dissipation:

−
m∑
c=1

βTc T
T
c v

= −βTTT v,

42

4.2. Adding Friction Using Staggered Projections

where

T = {Tc}c=1,..,m ∈ Rn×2lm (4.15)

is the globally assembled subspace of generalized friction impulses and

f := Tβ

is the generalized friction impulse. Maximizing the dissipation over the feasible

set Equation (4.12) yields the optimization problem

βt+1 = argmax
β

− 1
2β

TTT vt+1

subject to β ≥ 0, ETβ ≤ diag(µ)α.
(4.16)

We can transform Equation (4.16) into a QP in β by adding the generalized

frictional impulse to the momentum Equation (4.9):

vt+1 = M−1(f∗ + ct+1 + f t+1)

= M−1(f∗ + ct+1 + Tβt+1),

yielding the friction QP

βt+1 = argmin
β

1
2β

TTTM−1Tβ + βT (TTM−1(ct+1 + f∗))

subject to β ≥ 0, ETβ ≤ diag(µ)αt+1.

(4.17)

Notice that (4.17) is dependent on the solution of the contact QP (4.8).

Conversely, taking into account the generalized frictional impulse f t+1 modifies

43

4.2. Adding Friction Using Staggered Projections

(4.8) to

αt+1 = argmin
α

1
2α

TJTM−1Jα+ αT (JTM−1(f t+1 + f∗))

subject to α ≥ 0.
(4.18)

We now have two coupled convex QPs: (4.17), yielding the optimal friction

impulse magnitudes βt+1 given the contact impulse ct+1, and (4.18), yielding

the optimal contact impulse magnitudes αt+1 given the friction impulse f t+1.

This intrinsic coupling is what makes frictional contact a challenging problem,

as finding the solution of the coupled problem is equivalent to solving a global

minimization of a non-convex QP, which is in general NP-hard (Kaufman et al.,

2008). We adopt the method of staggered projections to solve the frictional

contact problem.

4.2.2 The Staggered Projections Algorithm

Staggered projections, introduced in (Kaufman et al., 2008), is a robust, com-

putationally efficient method to simulate discrete frictional contact response

for a class of systems with finite degrees of freedom described in generalized

coordinates. We briefly outline the algorithm now.

Recall the coupled friction and contact QPs (4.17) and (4.18), respectively.

Beginning with an initial estimate f0 = Tβ0 of the friction impulse, SP solves

the following set of QPs at iteration s:

αs+1 = argmin
α

1
2α

TJTM−1Jα+ αT (JTM−1(fs + f∗))

subject to α ≥ 0,
(C)

βs+1 = argmin
β

1
2β

TTTM−1Tβ + βT (TTM−1(cs+1 + f∗))

subject to β ≥ 0, ETβ ≤ diag(µ)αs+1.

(F)

44

4.2. Adding Friction Using Staggered Projections

Note that if β0 = 0 this reduces to the case of frictionless contact discussed

in Section 4.1.2. The staggered projections algorithm is given in Algorithm 4.1.

The convergence criterion is given by

rel_error = (fs+1
c − fsc)TM−1(fs+1

c − fsc)
fsTM−1fs

≤ tol (4.19)

where rel_error specifies the relative kinetic metric error and tol is a user-

specified tolerance. Similar to ASMs, SP benefits greatly from warm starts. Up

to two orders of magnitude speed-ups were observed in Kaufman (2009). Since

each QP subproblem is strictly convex and feasible, the algorithm will never fail

on a given iteration. While global convergence is not guaranteed, in practice

few iterations are required, especially if warm-starting is employed.

SP can be interpreted as a fixed point predictor correction scheme (Kaufman,

2009). The predicted impulse f∗ is corrected by the coupled projections

fs+1 = PF (αs)(f∗ − cs)

cs+1 = PC(f∗ − fs+1),

where P is the projection operator and

F (α) :=
{
Tβ | ETβ ≤ diag(µ)α, β ≥ 0

}
,

C := {Jα : α ≥ 0}

represent the set of admissible friction and contact impulses, respectively.

We are now in a position to incorporate SCHURPA into SP. Assuming for

the moment that SCHURPA can solve (C) and (F), notice that only the linear

terms of the objective function and right-hand-sides of the contact and friction

QPs change each iteration of Algorithm 4.1. In other words, the Hessians and

45

4.3. Applying SCHURPA to Frictional Contact

constraint matrices remain constant. Thus the initial factorization computed in

SCHURPA can be used not only within a single QP solve, but throughout the

entire staggered projections algorithm! This idea is formalized in Section 4.4.

However, we must first investigate the applicability of SCHURPA to the contact

and friction QPs. In particular, the friction QP (F) must be reformulated to

ensure the resulting saddle point systems occurring in SCHURPA are solvable,

which we do in the next section.

Algorithm 4.1 Staggered Projections
Given β0,A0

c ,A0
f , tol

rel_error = ∞
for s = 0, 1, 2, ... do
Solve the contact QP (C) for αs+1

Solve the friction QP (F) for βs+1

Compute rel_error given by Equation (4.19)
if rel_error <tol then
BREAK; αt+1 = αs+1 and βt+1 = βs+1

end if
end for

f t+1 = Tβt+1

ct+1 = Jαt+1

vt+1 = M−1(f∗ + f t+1 + ct+1)

4.3 Applying SCHURPA to Frictional Contact

Recall from Section 2.4 local convergence of PDASM is guaranteed under the

assumption that the saddle point systems are all nonsingular. In the case of the

contact QP (C), this assumption holds, which we prove in Theorem 4.1 using

the following lemma.

Lemma 4.1. The Jacobian matrix J of (4.7) is full rank.

Proof. We prove the lemma on a 2D grid using bilinear shape functions by as-

suming for a contradiction the Jacobian has linearly dependent columns; the

46

4.3. Applying SCHURPA to Frictional Contact

Figure 4.1: Nodal shape functions for a contact cell Ωc on a 2D grid.

extension to 3D using trilinear shape functions as in the simulator is straight-

forward. Consider the four shape functions φN for N ∈ N c := {N1, N2, N3, N4}

providing local support to a contact cell Ωc; see Figure 4.1. Assume the associ-

ated contact surface Γc has a point strictly in the interior so that

jN =

ˆ
Γc

φNnxdΓ,
ˆ

Γc

φNnydΓ,
ˆ

Γc

φNnzdΓ

 6= (0, 0, 0)T , (4.20)

where j = jc is the contact constraint and N ∈ N c. Let C ⊆ {1, ...,m} be a

subset of the constraints containing a linearly dependent set so that

∑
c∈C

αcjc = 0, (4.21)

for scalars αc 6= 0, c ∈ C. We define (xc, yc) to be the grid center of the grid

cell Ωc. The idea now is to find a constraint c̄ ∈ C for which j̄ = jc̄ has unique

positions which contain nonzero elements, thus contradicting Equation (4.21).

One can always find such a constraint c̄ by choosing the grid cell Ωc̄ ∈ {Ωc}c∈C

47

4.3. Applying SCHURPA to Frictional Contact

such that

xc̄ ≥ xc c ∈ C,

yc̄ ≥ yc c ∈ K

where K = {c ∈ C | xc = xc̄}. In other words, c̄ selects the constraint cell with

maximum x coordinates and maximal y coordinates. Notice that this cell is

the only cell with support from the shape function φN2 where N2 ∈ N c̄ (see

Figure 4.1). This implies the nonzero entry in j̄ corresponding to j̄N2 6= 0 (

which is nonzero due to Equation (4.20)) is the only constraint with a nonzero

entry in that position. Thus

j̄ 6= 1
αc̄

∑
c∈C\c̄

αcjc,

contradicting Equation (4.21). We therefore conclude the columns of J must be

linearly independent, and J is full rank.

Theorem 4.1. The saddle point systems resulting from PDASM applied to (C)

will always be nonsingular and PDASM will locally converge super-linearly.

Proof. From Lemma 4.1 J is full rank, and thus the Hessian of (C) is non-

singular. Since the constraint matrix of (C) is simply the identity, any subset

of constraints are linearly independent. Therefore by Theorem 2.1 the saddle

point systems will be nonsingular, as required.

Because SCHURPA is a PDASM, the following corollary immediately follows

from the above theorem.

Corollary 4.1. SCHURPA applied to the contact QP (C) locally converges

super-linearly.

48

4.3. Applying SCHURPA to Frictional Contact

We now tackle the friction QP. Unfortunately, in the form given by (F) the

saddle point systems can become singular because of the Hessian matrix. Recall

the tangent matrix is given by

T = {Tc}c=1,..,m,

where

Tc =

ˆ

Γc

φNT Tx dΓ,
ˆ

Γc

φNT Ty dΓ,
ˆ

Γc

φNT Tz dΓ

T

N=1,...,L

∈ Rn×l.

As previously mentioned, the symmetry of the unit length vectors Ti used to

construct the linearized friction cone results in the matrices Tc, and hence T ,

to become rank deficient. This implies (F) is a semidefinite QP with a singular

Hessian. The infinite solutions arise due to the nullspace of T which induces infi-

nite representations of a single frictional impulse. More precisely, the symmetry

implies

Ti+1 = −Ti i = 1, 3..., 2ml − 1 (4.22)

and thus

f = Tβ =
∑

i=1,...,2ml
βiTi

=
∑

i=1,3...2ml−1
(βi+1 − βi)Ti.

(4.23)

Even if we assume the set {Ti}i=1,3...2ml−1 is linearly independent, only

the differences βi+1 − βi uniquely define a friction impulse, and the Hessian

TTM−1T ∈ R2lm ×2lm of (F) has rank lm. To make matters worse, we have

2ml+m constraints vs 2ml unknowns. Both the rank deficiency of the Hessian

49

4.3. Applying SCHURPA to Frictional Contact

and possible linear dependence of working set constraints can cause a singular

saddle point system in the course of PDASM, prohibiting the direct application

to (F). These deficiencies are not just theoretical. In (Daryina and Izmailov,

2009), it was observed that if the number of constraints is greater than the

number of variables, PDASM fails a majority of the time. Their experiments

applied to generic QPs also showed that if the Hessian is fairly rank deficient

PDASM becomes an unreliable method. Therefore, we must reformulate (F)

in order to apply PDASM.

We can reformulate the friction QP to an equivalent convex QP with a

positive definite Hessian for the case l = 2 (we shall henceforth assume l = 2).

Let T̂ be an orthonormal basis for the tangent surface Tp of a contact point p.

We can then rewrite the tangent impulse as

fp = T̂ βc, (4.24)

where βc ∈ R2 is taken as constant in a contact cell c as before. In the case of

l = 2, the linearized friction cone is simply expressed by the l1-norm

Fc =
{
T̂ βc | ||T̂ βc||1 ≤ µcαc

}
, (4.25)

which can be rewritten as

Fc =
{
T̂ βc | ÊTc βc ≤ diag(µ̂c)α̂c)

}
, (4.26)

where

50

4.3. Applying SCHURPA to Frictional Contact

Êc =

1 −1 1 −1

1 −1 −1 1

 ,

µ̂c = (µc, µc, µc, µc)T ,

α̂c = (αc, αc, αc, αc)T .

(4.27)

As before, we assemble the global quantities Ê ∈ R2m×4m, µ̂ ∈ R4m, and

α̂ ∈ R4m. The global feasible set is given as

{
β | ÊTβ ≤ diag(µ̂)α̂, β ≥ 0

}
, (4.28)

and the generalized tangent matrix is

T̂ = {T̂c}c=1,..,m ∈ Rn×2lm (4.29)

where

T̂c =

ˆ

Γc

φN T̂ Tx dΓ,
ˆ

Γc

φN T̂ Ty dΓ,
ˆ

Γc

φN T̂ Tz dΓ

T

N=1,...,L

∈ Rn×l.

The modified friction problem is now

βs+1 = argmin
β

1
2β

T T̂TM−1T̂ β + βT (T̂TM−1(cs+1 + f∗))

subject to ÊTβ ≤ diag(µ̂)α̂s+1.

(F2)

The advantage of the formulation (F2) is that T̂ has full rank.

Lemma 4.2. The tangent matrix T̂ of (F2) is full rank.

Proof. The proof is analogous to the proof of Lemma 4.1 where quantities corre-

sponding to constraint jc are replaced with quantities corresponding to T̂c.

51

4.3. Applying SCHURPA to Frictional Contact

Since T̂ is full rank, the Hessian T̂TM−1T̂ of (F2) is positive definite, and

the problem size has reduced by half from 4m in (F) to 2m. Although we have

4m constraints, the following theorem guarantees that PDASM never selects a

linearly dependent working set, and therefore the saddle point systems will be

nonsingular.

Theorem 4.2. Assuming the initial working set A0 results in a linearly in-

dependent set of constraints, The saddle point systems resulting from PDASM

applied to (F2) will always be nonsingular and PDASM will locally converge

super-linearly.

Proof. We will show by induction that each step of Algorithm 2.2 selects a

set of linearly independent constraints, which by Theorem 2.1 implies that the

resulting saddle point system is nonsingular.

Base Case: By assumption A0 is a linearly independent set of constraints,

so the initial saddle point system is nonsingular.

Induction Step: Assume at step k of Algorithm 2.2 that Ak defines a linearly

independent set of constraints from (F2), and for a contradiction assume Ak+1

selects a linearly dependent set. The form of Êc implies that Ak+1 must contain

a pair of constraints of the form

βi + βi+1 = γi and − βi − βi+1 = γi (4.30)

or

βi − βi+1 = γi and − βi + βi+1 = γi (4.31)

for some i = 1, 3, ..., 2m − 1 and γi := µ i+1
2
α i+1

2
> 0. Assume WLOG the pair

Equation (4.30) is chosen, and denote these constraints by j and j + 1. Then

by definition of Algorithm 2.2

52

4.3. Applying SCHURPA to Frictional Contact

λk+1
j > γi − (βk+1

i + βk+1
i+1) (4.32)

λk+1
j+1 > γi + βk+1

i + βk+1
i+1 . (4.33)

Case 1: λk+1
j 6= 0 or λk+1

j+1 6= 0.

Assume WLOG λk+1
j 6= 0. By our assumption Ak defined a linearly inde-

pendent set. Thus j ∈ Ak, j + 1 6∈ Ak and

λk+1
j+1 = 0 (Since j + 1was not active)

γi = βk+1
i + βk+1

i+1 (Since jwas active)

⇒ λk+1
j+1 = 0 > γi + βk+1

i + βk+1
i+1 = 2γi > 0,

(4.34)

a contradiction.

Case 2: λk+1
j = λk+1

j+1 = 0.

Combining Equation (4.32) and Equation (4.33) yields

λk+1
j + λk+1

j+1 = 0 > 2γi > 0, (4.35)

again yielding a contradiction. Thus Ak+1 cannot select a linearly dependent

set of constraints.

Therefore, by induction Algorithm 2.2 induces a nonsingular saddle point

system each iteration, and will locally converge super-linearly.

Again, as in the case of contact, the following corollary is an immediate

consequence to Theorem 4.2.

Corollary 4.2. SCHURPA applied to the friction QP (F2) locally converges

super-linearly.

53

4.4. The SCHURPA-SP Algorithm

Corollary 4.1 and Corollary 4.2 give us the theoretical confidence to integrate

SCHURPA into SP, solving the contact and friction QPs arising each iteration.

4.4 The SCHURPA-SP Algorithm

We now summarize the entire frictional contact algorithm, which employs SCHURPA

to solve the QP subproblems induced by SP. Recall that SP can benefit from

warm-starting by providing an initial guess of the working sets A0
c and A0

f close

to the optimal active sets

At+1
c := {i | αt+1

i = 0}

At+1
f := {i | ÊTi βt+1 = µ̂iα̂i

t+1}.

In such a caseA0
c andA0

f will be close to the optimal active sets of all subproblem

QPs arising in SP. We are therefore motivated to generalize SCHURPA’s initial

factorizationK0 across all SP iterations so that only one factorization for contact

and one factorization for friction is needed.

As discussed in Section 3.2, SCHURPA only performs one factorization of

the initial saddle point system K0, and subsequent iterations use this factoriza-

tion along with the Schur-complement method to solve subsequent saddle point

systems. As mentioned in Section 4.2, the Hessians and constraint matrices of

the contact and friction QPs do not change within the SP Algorithm. Therefore,

we only need to call SCHURPA-INIT during the first SP iteration to compute

the initial solutions via the functions C0_solve and F0_solve for contact and

friction, respectively. Subsequent saddle point systems across all SP iterations

are solved using these functions along with the Schur-complement method, as in

the SCHURPA algorithm. The combined algorithms of SCHURPA and SP are

given in Algorithm 4.2. Notice that each SP iteration, initial active sets must

54

4.4. The SCHURPA-SP Algorithm

be given to SCHURPA. These are determined by applying exactly the same

prediction scheme Equation (2.12) of PDASM to the current SP iterates, i.e.

As+1
c = {i | − αs+1

i − λs+1
i < 0} (4.36)

As+1
f = {i | µ̂iα̂is+1 − ÊTi βs+1 − νs+1

i < 0}, (4.37)

where λ and ν are the Lagrange multipliers for contact and friction QPs, re-

spectively. SCHURPA-SP defines our solution procedure for solving frictional

contact. Now that the high level description has been given, we move to the

efficient implementation of the C0_solve and F0_solve functions in the next

chapter.

Algorithm 4.2 SCHURPA-SP
Input: A0

c ,A0
f , tol

rel_error =∞
Run SCHURPA-INIT

(
A0
c

)
to compute α0, λ0 and C0_solve

Run SCHURPA-INIT
(
A0
f

)
to compute β0, ν0 and F0_solve

for s = 0, 1, 2, ... do
Solve the contact QP:

(
αs+1

λs+1

)
= SCHURPA(Asc, αs, λs, C0_solve)

Solve the friction QP:
(
βs+1

νs+1

)
= SCHURPA

(
Asf , βs, νs, F0_solve

)
Compute rel_error given by Equation (4.19)
if rel_error < tol then
BREAK; αt+1 = αs+1 and βt+1 = βs+1

end if
As+1
c = {i | − αs+1

i − λs+1
i < 0}

As+1
f = {i | µ̂iα̂is+1 − ÊTi βs+1 − νs+1

i < 0}
end for

f t+1 = Tβt+1

ct+1 = Jαt+1

vt+1 = M−1(f∗ + f t+1 + ct+1)
Output: vt+1

55

Chapter 5

Solving the Contact and

Friction QPs

In this chapter we describe the implementation details of Algorithm 4.2, our

solution method for solving frictional contact arising in the simulator described

in Chapter 4. Crucial to the efficiency of SCHURPA is the method of solving

systems with the initial saddle point matrix, which in the case of staggered

projections corresponds to the implementation of the functions that solve the

initial contact and friction saddle point systems. We will show that, due to the

structure of the contact and friction QPs, both functions require a factorization

of a banded SPD matrix, and application of said functions amount to solving

with these factors.

Section 5.1 describes the initial saddle point systems for the contact and

friction quadratic programs; these may be formulated as SPD systems. We then

show in Section 5.2 the afro-mentioned SPD matrices exhibit a banded structure

due to the Hessian matrices of the QPs. In particular, we utilize the nullspace

method to solve the friction QP which results in a banded reduced Hessian.

Since SCHURPA requires multiple simultaneous solves, we are motivated to

design an efficient specialized parallel solver for dense SPD banded systems

with multiple right hand sides. A parallel solver based on block substitution is

outlined in Section 5.3.

56

5.1. Saddle Point Systems Arising in Contact and Friction

5.1 Saddle Point Systems Arising in Contact

and Friction

The SCHURPA-SP loop given by Algorithm 4.2 requires the solution of the ini-

tial saddle point systems for the contact and friction QPs, which are performed

in the functions C0_solve and F0_solve, respectively. In both cases we can

rephrase these systems as the solution to an SPD system. Let us first investigate

the case for contact.

5.1.1 Contact

Consider the contact QP solved at each iteration of SCHURPA-SP, which we

restate here for convenience:

αs+1 = argmin
α

1
2α

THCα− αT c

subject to α ≥ 0,
(C)

where

c = −JTM−1(T̂ βs + f∗)

HC = JTM−1J. (5.1)

Recall A0 defines the initial working set and subsequent initial saddle point

system. We define

F = I\A0

B = A0,

57

5.1. Saddle Point Systems Arising in Contact and Friction

to be the initial set of free and bound indices of α, respectively, so that the

initial saddle point system for (C) is

HCF,F HCF,B 0

HCB,F HCB,B −IB

0 −IB 0

αF

αB

λ

 =

cF

cB

0

 . (5.2)

SCHURPA requires the solution of Equation (5.2) with arbitrary right hand

sides, i.e.
HCF,F HCF,B 0

HCB,F HCB,B −IB

0 −IB 0

αF

αB

λ

 =

cF

cB

b

 . (5.3)

Simplifying Equation (5.3) yields

αB = −b (5.4)

HCF,FαF = cF −HCF,BαB (5.5)

λ = −cB +HCB,FαF +HCB,BαB (5.6)

Thus the initial saddle point system of the contact QP amounts to solv-

ing an SPD system of size |F | × |F |, given in Equation (5.5). Algorithm 5.1

gives C0_solve. Note that a factorization of HCF,F must be computed to solve

Equation (5.5); this is performed in SCHURPA-INIT of Algorithm 4.2.

5.1.2 Friction

Due to the simple structure of the reformulated friction constraints, a sparse

nullspace can be computed explicitly; this allows us to form the reduced Hessian

58

5.1. Saddle Point Systems Arising in Contact and Friction

Algorithm 5.1 C0_solve

Input:
[
c
b

]
Set αB = −b
Solve the SPD system HCF,FαF = cF −HCF,BαB
Set λ = −cB +HCB,FαF

Output:
[
α
λ

]

without destroying sparsity. We can then reformulate the initial saddle point

system of the friction QP as an SPD system via the nullspace method (Nocedal

and Wright, 1999). Recall the friction QP of SCHURPA-SP, given by

βs+1 = argmin
β

1
2β

THFβ − βT d

subject to Êβ ≤ γ,
(F2)

where

d = −T̂M−1 (cs+1 + f∗
)

γ = diag(µ̂)α̂s+1

HF = T̂TM−1T̂ . (5.7)

Let p = |A0| denote the number of initial active constraints and

ÊA0 =

Ê1A0

Ê2A0

. . .

ÊmA0

∈ Rp×2m, (5.8)

59

5.1. Saddle Point Systems Arising in Contact and Friction

where ÊcA0 is the (possibly empty) sub-matrix of

Êc =

1 −1 1 −1

1 −1 −1 1

T

defined by A0. Theorem 4.2 ensures that SCHURPA selects at most two linearly

independent constraints of Êc to be active. If exactly two are selected, this

completely determines the unknowns β2c−1 and β2c, and they can be removed

from the problem. Therefore we may assume

ÊcA0 ∈ Rq×2, where 0 ≤ q ≤ 1. (5.9)

If q = 1 we let

Zc =

(1,−1)T if ÊcA0 = ±(1, 1)T

(1, 1)T if ÊcA0 = ±(1,−1)T
. (5.10)

Notice that ÊcA0Zc = 0. If q = 0 then there is no reduction, and we let

Zc =

1 0

0 1

 . (5.11)

Proposition 5.1.1. The matrix

Z =

Z1

Z2

. . .

Zm

∈ R2m×(2m−p) (5.12)

forms a basis for the nullspace of ÊA0 .

Proof. By construction Z is full rank since each Zc is full rank. Computing the

60

5.1. Saddle Point Systems Arising in Contact and Friction

product

ÊA0Z =

Ê1A0Z1

Ê2A0Z2

. . .

ÊmA0Zm

=

0

0
. . .

0

,

(5.13)

where we define the matrix product ÊcA0Zc to be the empty matrix if ÊcA0 is

empty. Thus Z is a basis for the nullspace of ÊA0 .

Equipped with a nullspace of ÊA0 , we can proceed to solve the saddle point

system via the null-space method, which we briefly outline here. The initial

saddle point system induced by A0 is

HF ÊTA0

ÊA0

β
ν

 =

 d

γA0

 . (5.14)

SCHURPA requires the solution of Equation (5.14) with arbitrary right hand

sides, i.e. HF ÊTA0

ÊA0

β
ν

 =

d
b

 . (5.15)

Any solution to ÊA0β = b can be written as

β = βp + Zβz, (5.16)

where βp is a particular solution. Substituting Equation (5.16) into Equa-

61

5.1. Saddle Point Systems Arising in Contact and Friction

tion (5.15) and multiplying the first equation by ZT yields the reduced Hessian

equation

(ZTHFZ)βz = −(ZTHFβp + ZT d). (5.17)

Note that we can easily compute βp by choosing

βp = ÊTAb

2 (5.18)

since

ÊAβp = ÊAÊ
T
Ab

2 = b. (5.19)

Upon solving for βp and βz, β can be computed from Equation (5.16) and the

corresponding Lagrange multipliers are

ν = ÊTA(d+HFβ)
2 . (5.20)

As in the contact QP, we have reduced the problem to an SPD system, given by

Equation (5.17), of size (2m− p)×(2m− p). The function F0_solve is given in

Algorithm 5.2 and, as in the case of contact, requires a factorization of ZTHFZ,

which is performed in SCHURPA-INIT of Algorithm 4.2.

Algorithm 5.2 F0_solve

Input:
[
d
b

]
Set βp = ÊT

Ab
2

Solve the SPD system (ZTHFZ)βz = −(ZTHFβp + ZT d)
Set β = βp + Zβz

Set ν = ÊT
A(d+HFβ)

2

Output:
[
β
ν

]

62

5.2. Banded SPD Systems

While nullspace matrices are typically dense and the reduced Hessian loses

the sparsity structure of the original Hessian, this is not the case here. We show

in the next section that, due to the structure of HC and HF , the SPD matrices

in Equation (5.5) and Equation (5.17) are banded. This banded structure is

critical to the efficient implementation of SCHURPA-SP.

5.2 Banded SPD Systems

The computational “meat” of SCHURPA-SP is the factorization and subsequent

solving with the SPD matrices

GC = HCF,F (5.21)

GF = ZTHFZ. (5.22)

These matrices are in fact banded. We first prove that HC and HF exhibit a

banded structure.

Proposition 5.1. Upon discretization using trilinear shape functions HC is a

banded matrix.

Proof. We prove the proposition on a 2D grid using bilinear shape functions; the

extension to 3D using trilinear shape functions as in the simulator is straight-

forward. Consider the four shape functions φN for N ∈ N i := {N1, N2, N3, N4}

providing local support to a given contact cell Ωi, as pictured in Figure 4.1.

The locality of the shape functions implies

JiN 6= (0, 0, 0)T ⇐⇒ N ∈ N i.

We define grid cells Ωi and Ωj to be adjacent iff they share a common shape

function with local support, as exemplified in Figure 5.1. Thus if Ωi and Ωj are

63

5.2. Banded SPD Systems

Figure 5.1: Example of cell adjacency on a 2D grid. Grid cells Ωi and Ωj
are adjacent as they share a common shape function, while Ωi and Ωk are not
adjacent.

not adjacent

JiNJjN = 0 N = 1, ..., L

⇒ HCij =
∑
k

JikJjk
Mkk

= 0.

In other words, HC has a bandwidth of at most ρmax, where

ρmax = max
i,j
{|i− j| | grid cells Ωiare Ωj are adjacent} (5.23)

as required.

We denote the bandwidth of HC as ρ. The constraint cells are ordered by

the standard triplet ordering (x, y, z) (i.e. first by x, followed by y, followed

by z coordinates). Assuming this order roughly groups the adjacent constraint

cells together, ρ should be small relative to m. Figure 5.2 exemplifies a typical

sparsity pattern of HC , exhibiting a banded structure. A bandwidth minimizing

64

5.2. Banded SPD Systems

Figure 5.2: Typical banded sparsity pattern of the contact Hessian HC arising
in the simulator.

procedure such as Cuthill-McKee reordering could also be performed to decrease

ρ.

Proposition 5.2. The matrix HF is banded with a bandwidth of at most 2ρ.

Proof. The proof is analogous to the proof of Proposition 5.1 where quantities

corresponding to J are replaced with quantities corresponding to T̂ .

The following corollary immediately follows from Proposition 5.1.

Lemma 5.1. The matrix GC is banded and SPD with a bandwidth at most ρ.

Proof. Since GC is a sub-matrix of HC , GC must have a bandwidth at most the

bandwidth of HC , which is at most ρ.

Finally, we show that GF is also banded.

Lemma 5.2. The matrix GF is banded and SPD with a bandwidth at most

2ρ+1.

65

5.2. Banded SPD Systems

Proof. Recall that

Z =

Z1

Z2

. . .

Zm

,

where Zc ∈ R2×q, with q = 1 or q = 2. We decompose HF into 2× 2 blocks

HF =

HF1,1 · · · HF1,p+1
... HF2,2

. . .

HFp+1,1 HFm−p,m
.

...

HFm,m−p . . . HFm,m

. (5.24)

Equation (5.24) ensures the 2ρ bandwidth of HF is captured within the block

form. Now we simply compute the product

GF = ZTHFZ

=

Z1

Z2

. . .

Zm

T

HF1,1 · · · HF1,p+1
... HF2,2

. . .

HFp+1,1 HFm−p,m
.

...

HFm,m−p . . . HFm,m

Z1

Z2

. . .

Zm

=

ZT1 H
F
1,1Z1 · · · Z1H

F
1,p+1Zp+1

... ZT2 H
F
2,2Z2

. . .

ZTp+1H
F
p+1,1Z1 ZTm−pH

F
m−p,mZm

.
...

ZTmH
F
m,m−pZm−p . . . ZTmH

F
m,mZm

. (5.25)

66

5.3. Block Solver for Banded SPD Systems

From Equation (5.25) we see that GF has a bandwidth of at most 2(ρ+1)−1 =

2ρ+ 1, as required.

We emphasize that while typically the reduced Hessian loses sparsity, this

is not the case here due to the particular structure of the nullspace matrix Z.

The final section of this chapter describes a parallel solver for the banded SPD

systems arising in the contact and friction QPs.

5.3 Block Solver for Banded SPD Systems

Both the contact and friction QP problems require the solution to a banded

SPD system. In the case of contact we have

GCαF = cF , (5.26)

and for friction we have

GFβ = −(ZTHFβp + ZT d). (5.27)

Recall that SCHURPA requires solving systems with multiple right-hand-sides

within the functions C0_solve and F0_solve. Within these functions we must

solve Equation (5.26) and Equation (5.27), respectively, implying that cF , βp,

and d may be matrices. The dimensionality of these matrices depend on the

number of changes to the working set. Thus we are interested in developing a

parallel solver to systems of the form

HX = B, (5.28)

where H ∈ Rn×n is a banded SPD matrix with bandwidth ρ � n, and X,B ∈

Rn×k, where k � n is the number of right hand sides. We write the Cholesky

67

5.3. Block Solver for Banded SPD Systems

factorization

LLT = H.

Note that L is also banded. A solution to Equation (5.28) can now be computed

via

LY = B,

LTX = Y.

Unfortunately the backward/forward substitution method is inherently sequen-

tial. Recently, approaches to parallelize sparse triangular solves have been inves-

tigated (Naumov, 2011) wherein one reorders the matrix by grouping equations

which may be solved independently. However, the results only offer a modest

speedup (e.g. 2× on average) and don’t apply to the dense banded case being

discussed here. For large, very narrow banded systems, the SPIKE algorithm

Polizzi and Sameh (2006) can work extremely well. However, our bands are not

fixed and may be small to medium sized, depending on the simulation data (see

Figure 5.2). We opt for a simple yet effective parallel approach based on block

substitution.

We decompose the Cholesky factors into blocks of size s as follows:

L =

L11

L21 L22

.

Lp,p−1 Lpp

, (5.29)

where Lij ∈ Rs×s and p = dns e. Notice that s ≥ ρ to ensure the two block-

banded structure Equation (5.29) contains all nonzero elements of L. Extracting

68

5.3. Block Solver for Banded SPD Systems

the block diagonals into the matrices

C =

L21
...

Lp,p−1

 ∈ R(p−1)s×s D =

L11
...

Lpp

 ∈ Rps×s,

we solve Equation (5.29) via Algorithm 5.3, which is simply a block version of

substitution. We implement the algorithm on the GPU using CUDA, described

in the next chapter.

Algorithm 5.3 Block Substitution
Input: Block matrices C,D from Cholesky factorization LLT = H
Y1 = D−1

1 B1
for i = 2, ..., p do
Yi = D−1

i (Bi − Ci−1Yi−1)
end for
Xp = D−1

p

for i = p− 1, ..., 1 do
Xi = D−1

i (Yi − CiXi+1)
end for
Output: Solution to HX = B

Upon computing D−1
i for i = 1, ..., p in parallel as a pre-processing step,

Algorithm 5.3 requires 4p − 2 sequential matrix-matrix multiplications which

can be performed efficiently in parallel. By choosing appropriately sized blocks,

the solving phase of SCHURPA can be significantly improved. The only addi-

tional cost is the pre-processing step of computing the inverse diagonal blocks

D−1
i . This cost is small relative to the Cholesky factorization and need only

be performed once during the initialization step of SCHURPA, after the initial

factorization phase. Explicit inversion of the diagonal blocks was also done in

(Tomov et al., 2010) to perform triangular solvers on the GPU, and perfor-

mance gains exceeding 50× that of NVIDIA’S CUBLAS triangular solvers were

observed. Figure 5.3 shows runtimes for the factorization and solve time of the

69

5.3. Block Solver for Banded SPD Systems

block banded solver implemented on the GPU compared against a sequential

substitution implemented on the CPU for a fixed bandwidth of ρ = 1000 solv-

ing for k = 10 right-hand-sides as a function of the matrix dimensions. We

used Matlab to perform the banded Cholesky factorization on the CPU. For

the GPU version we utilized the CULA library (Humphrey et al., 2010) for

CUDA. For matrices of size n ≈ 8000 we observe the GPU performs the fac-

torization twice as fast as the CPU. Solving a banded system sequentially runs

in O
(
nρ2), whereas our block banded solver (in an ideally parallelized setting)

runs in O (ρs) = O (n). Thus, while both the CPU and GPU solving runtimes

are linear in n, the GPU solver is independent of the bandwidth size. Figure 5.3

demonstrates the scalability of the GPU block substitution solver. The gains in

the solving phase come at the cost of the pre-processing step during factorization

which, as mentioned, is small relative to the cost of factorization.

70

5.3. Block Solver for Banded SPD Systems

1000 2000 3000 4000 5000 6000 7000 8000 9000

0

200

400

600

800

1000

1200

Banded Matrix Size (n x n)

R
u

n
ti
m

e
 (

m
s)

CPU Factor

GPU Factor

(a)

1000 2000 3000 4000 5000 6000 7000 8000 9000

0

50

100

150

200

250

300

350

Banded Matrix Size (n x n)

R
u

n
ti
m

e
 (

m
s)

CPU Solve

GPU Solve

(b)

Figure 5.3: Comparison of (a) the banded Cholesky factorization and (b) the
block banded solver CPU and GPU runtimes, applied to banded matrices as a
function of matrix size. The bandwidth ρ = 1000 and number of right-hand-
sides k = 10 are fixed across matrix dimensions.

71

Chapter 6

GPU Implementation

General purpose computing on Graphics Processing Units (GPUs), or GPGPU,

is a relatively recent endeavor taken up by the scientific computing community.

Before common API frameworks existed, customizing GPU functionality was

arduous and left primarily to specialists. However, two important developments

have made GPGPU popularity explode:

• the advent of programming interfaces such as OpenCL (Stone et al., 2010)

and NVIDIA’s CUDA (NVIDIA, 2012b), and

• double precision capability on GPUs.

No longer limited to computer graphics, GPUs are fast becoming a staple of

scientific computing.

This chapter outlines a parallel implementation of SCHURPA applied to the

simulator described in Chapter 4. We implement SCHURPA in the GPGPU

framework using CUDA. Our motivation for a GPU implementation is two-

fold: the simulator is also GPU-based, so CPU to GPU memory overhead is

avoided, and SCHURPA’s amenability to parallelism, as discussed in Chapter 3.

Dense linear algebra algorithms run on GPUs can lead to orders of magnitude

acceleration compared to standard CPU implementations(Tomov et al., 2010),

and this performance gap will only widen as the many-core paradigm continues

to pervade contemporary programming.

72

6.1. CUDA Programming on the GPU

Section 6.1 overviews CUDA, describing the C++ extension syntax. In

Section 6.2, we give a taste of the custom functionality implemented on the GPU

required by SCHURPA by detailing a symmetric-banded general matrix-matrix

multiplication operation. Off-the-shelf GPU libraries were also extensively used

in SCHURPA, which we outline in Section 6.3.

6.1 CUDA Programming on the GPU

CUDA (Compute Unified Device Architecture), introduced by NVIDIA in 2006,

refers to a massively parallel programming model and architecture, along with

an API to program GPUs using high level programming languages such as C++

and Fortran. It is freely available (NVIDIA, 2012b) and requires a CUDA-

capable NVIDIA GPU (GeForce 8 or greater, Tesla, Quadro etc.). CUDA uses

a SIMD (Single Instruction Multiple Data) execution paradigm to run many

concurrent threads (individual processing units) from a single function call of

a kernel: functions programmed in CUDA which are compiled and run on a

GPU. The many cores on a GPU chip allow it to perform thousands of tasks

on large sets of data in parallel, whereas CPU programs perform sequentially

(multi-core CPUs and hyper-threading attempt to improve this limitation). Due

to the increased number of cores on GPUs, theoretical floating point operation

throughput (GFLOP/s) is orders of magnitude greater than that of the CPU.

Table 6.1 on page 74 summarizes the differences between CPU and GPU pro-

gramming paradigms. SCHURPA was written in the extended C++ CUDA

API.

GPU memory, called device memory, is managed by the GPU; CPU, or host

memory, can be copied to device memory and vice versa via the CUDA API.

Host-to-device and device-to-host memory copies are slow and thus aimed to

be minimized. As the simulator computes all data on the GPU, and device-to-

73

6.1. CUDA Programming on the GPU

CPU GPU
Number of Cores Several Hundreds

Number of Threads Several Thousands
Thread Speed Fast Slow
Cache size Large Small

Table 6.1: CPU vs. GPU comparison.

device memory transfer is fast, we need not be concerned with any host memory

transfer overhead.

There are several types of GPU memory, including: global, shared, registers

and local. Global memory is the largest, with the slowest read/write access.

Pointers passed to kernel functions are typically arrays stored in global memory.

Shared memory is much smaller and shared among threads in a single processing

block. The access speed is much faster than global memory, and can be thought

of as the cache. Registers store local data for each individual thread and has

the fastest access. Local memory is again restricted to a thread and stores any

data that can’t fit into the register memory. There is also texture and constant

memory, which we shan’t discuss here.

6.1.1 CUDA Programming Model

Kernel functions are configured to execute threads partitioned into computa-

tional blocks of one, two or three-dimensions which exist on a two-dimensional

grid (see Figure 6.1). The number of threads per block is limited as they share

resources residing on the core executing the block. The blocks cannot communi-

cate or synchronize with one another; this allows them to be run independently

in any order. The computational grid is conceptually useful for decomposing a

problem domain such as a fluid simulation, or two-dimensional data such as a

matrix. Kernels require two additional parameters placed within “<�<�<>�>�>�>”

74

6.1. CUDA Programming on the GPU

Figure 6.1: Computational grid of threads, partitioned into blocks, executed in
parallel on the GPU. From CUDA Programming Guide (NVIDIA, 2012b).

brackets prefacing the regular parameter list: one int2 specifying the number

of blocks on the two-dimensional grid, and an int3 specifying the number of

threads per block. For example, suppose we want to add two matrices A ∈ Rn×n

and B ∈ Rn×n. Each thread will compute one element of the resulting matrix

C ∈ Rn×n. We decompose the matrices into 16 × 16 blocks mapped onto the

grid and run the kernel addMatrices via the following syntax:

// assume N × N matr i ce s A, B, C have been de f ined
in t2 threadsPerBlock (16 , 1 6) ;
i n t3 numBlocks (N / threadsPerBlock . x , N / threadsPerBlock . y , 1) ;

addMatrices<<<numBlocks , threadsPerBlock >>>(A, B, C) ;

Listing 6.1: Calling a CUDA kernel.

75

6.2. Custom Kernels for SCHURPA

In Listing 6.1 the number of blocks is computed to ensure there are n2

threads. Listing 6.2 shows the function body of the addMatrices kernel. The

“__global__” identifier is used to specify a kernel function, which requires a

void return type.

__global__ void addMatrices (f l o a t [N] [N] A, f l o a t [N] [N] B, f l o a t [N] [N] C)
{

i n t i = blockIdx . y ∗ blockDim . y + threadIdx . y ; // row index
i n t j = blockIdx . x ∗ blockDim . x + threadIdx . x ; // column index

i f (i < N && j < N)
C[i] [j] = A[i] [j] + B[i] [j] ;

}

Listing 6.2: Body of a CUDA kernel.

CUDA provides internal variables to determine the unique thread index and

block index, given by threadIdx and blockIdx, respectively. Notice that in

Listing 6.2 these indices are used to compute the global row and column indices.

Each thread executes the kernel in parallel on the GPU, writing the solution

to the two-dimensional array C. The arrays are all stored in global memory on

the GPU.

6.2 Custom Kernels for SCHURPA

Several operations not available in the current versions of the CUDA libraries

(see Section 6.3) were required for the implementation of SCHURPA. Here we

simply describe one kernel that performs matrix-matrix multiplication with a

symmetric banded and dense matrix, respectively, to get a flavor for the kernel

programming process in CUDA.

We denote the following operation as symbgmm, for symmetric-banded general

matrix-matrix multiplication:

76

6.2. Custom Kernels for SCHURPA

C = BA, (6.1)

where B ∈ Rn×n is a symmetric banded matrix, and A ∈ Rm×n, C ∈ Rm×n are

dense matrices. We define B to have at most ρ nonzero sub/super-diagonals,

i.e.

Bik = 0 for min (1, i− ρ) ≤ k ≤ max (1, i+ ρ)

so that Equation (6.1) can be rewritten as

Cij =
n∑
k=1

BikAkj

=
max(n,i+ρ)∑
k=min(1,i−ρ)

BikAkj.

Such an operation is required due to the banded structure of the contact and

friction Hessians described in Chapter 4, and currently the CUBLAS library

only supports general dense matrix-matrix multiplication. A sequential version

of symbgmm written in C++ is given in 6.3. The bodies of the helper functions

are omitted for brevity (see Appendix B).

A straightforward extension to CUDA is given in Listing 6.4. As in the

matrix addition example Listing 6.2, the two outer loops indexing rows i and

column j are replaced with a unique thread for each element Cij . However, due

to slow global memory access this kernel is not ideal. For example, a row bTi

is required by multiple threads to compute the dot product bTi aj , yet need not

be read from global memory by each thread. Rewriting Equation (6.1) in block

form yields

CIJ =
∑
K

BIKAKJ . (6.2)

We map the computation of the s×s block CIJ to a block on the computational

77

6.2. Custom Kernels for SCHURPA

s t r u c t Matrix{
i n t width ;
i n t he ight ;
i n t ld ; // l ead ing dimension
f l o a t ∗ e lements ;

} ;
s t r u c t BandedMatrix : Matrix{

i n t rho ; // # subd iagona l s
} ;

// he lpe r f u n c t i o n s
f l o a t getElement (const Matrix A, i n t i , i n t j) ;
f l o a t getElement (const BandedMatrix B, i n t i , i n t j) ;
void setElement (Matrix A, i n t i , i n t j , f l o a t va lue) ;

// computes C = B ∗ A, where B i s a symmetric banded matrix
void symbgmmHost(BandedMatrix B, Matrix A, Matrix C){

f l o a t Cval ;

// loop through each element o f C
f o r (i n t i = 0 ; i < C. he ight ; i ++){

f o r (i n t j = 0 ; j < C. width ; j ++){

Cval = 0 . 0 ;

// compute the dot product bT
i aj

f o r (i n t k = max(0 , i − B. rho) ;
k < min (B. width − 1 , i + B. rho) ; k++)
Cval += getElement (B, i , k) ∗ getElement (A, k , j) ;

setElement (C, i , j , Cval) ;
}

}
}

Listing 6.3: Sequential function of the symbgmm operation.

78

6.2. Custom Kernels for SCHURPA

grid. To avoid redundant memory fetching, sub-matrices BIK and AKJ can be

loaded into shared memory for each block, with each thread loading a sub-

matrix element in parallel. A thread computes an element of the sub-matrix

product CS = BIKAKJ and stores the result in register memory. Summing all

such products over K yields the desired block CIJ , which is then written to

device memory. Due to the banded structure of B we have

K = (k0 : k0 + s), ..., (kf : kf + s),

where k0 = max(1, I1s − ρ), kf = min(n − s, I1s + ρ). A kernel using this

shared memory approach is given in Listing 6.5. The __shared__ prefix

of the sub-matrix arrays defines them to be stored in shared memory. The

__syncthreads() function synchronizes all threads of a given block, so that all

previous code has been executed. The observant reader will notice that reading

sub-matrices in memory may fail when for example requesting an element below

the band of B, or when the block size s does not divide n or m. In such a case

the sub-matrix element is set to 0, which produces the desired result. These

details are abstracted away in the helper bodies, given in Chapter B.

Figure 6.2 compares the runtimes of the different symbgmm routines, along

with a comparison to NVIDIA’s CUBLAS matrix multiplication for general

matrices. The shared implementation significantly outperforms the naive im-

plementation.

Along with the symgbmm operation, several other custom kernels were written

to perform the following operations:

• forming the contact and friction Hessians HC and HF , respectively,

• forming the free contact Hessian GC , and

79

6.2. Custom Kernels for SCHURPA

// computes C = B ∗ A, where B i s a symmetric banded matrix
__global__ void symbgmmNaive(BandedMatrix B, Matrix A, Matrix C){

i n t i = blockDim . y ∗ blockIdx . y + threadIdx . y ; // row index
i n t j = blockDim . x ∗ blockIdx . x + threadIdx . x ; // column index

i f (i >= C. he ight | | j >= C. width)
re turn ;

f l o a t Cval = 0 . 0 ;

// compute the dot product bT
i aj

f o r (i n t k = max(0 , i − B. rho) ;
k < min (B. width − 1 , i + B. rho) ; k++)

Cval += getElement (B, i , k) ∗ getElement (A, k , j) ;

setElement (C, i , j , Cval) ;
}

Listing 6.4: Naive kernel of the symbgmm operation.

1000 2000 3000 4000 5000 6000 7000 8000 9000

0

50

100

150

200

250

300

350

400

450

Banded Matrix Size (n x n)

R
u

n
ti
m

e
 (

m
s)

CPU

CUBLAS

symbgmmNaive

symbgmmShared

Figure 6.2: Runtimes of symbgmm, the symmetric-banded general matrix-
matrix multiplication operation, as a function of the matrix size. For compar-
ison, we also show the performance of CUBLAS (NVIDIA, 2012a) for general
matrix-matrix multiplication.

80

6.2. Custom Kernels for SCHURPA

#d e f i n e BLOCK_SIZE 16 // block s i z e loaded in to shared memory

// computes C = B ∗ A, where B i s a symmetric banded matrix
__global__ void symbgmmShared(BandedMatrix B, Matrix A, Matrix C){

i n t blockRow = blockIdx . y ;
i n t blockCol = blockIdx . x ;

i n t row = threadIdx . y ;
i n t c o l = threadIdx . x ;

i n t i = blockRow ∗ BLOCK_SIZE + row ; // row index
i n t j = blockCol ∗ BLOCK_SIZE + c o l ; // column index

i f (i >= C. he ight | | j >= C. width)
re turn ;

f l o a t Cval = 0 . 0 ;

// loop through each nonzero block o f row blockRow
i n t s ta r tB lock = max(0 , blockRow ∗ BLOCK_SIZE − B. rho) ;
i n t endBlock = min (B. width −1, blockRow ∗ BLOCK_SIZE + B. rho + BLOCK_SIZE − 1) ;

f o r (i n t m = sta r tB lock ; m <= endBlock ; m += BLOCK_SIZE){

__shared__ f l o a t Bs [BLOCK_SIZE] [BLOCK_SIZE] ;
__shared__ f l o a t As [BLOCK_SIZE] [BLOCK_SIZE] ;

// each thread loads an element o f the submatr ices
Bs [row] [c o l] = getElement (B, i , m + c o l) ;
As [row] [c o l] = getElement (A, m + row , j) ;

__syncthreads () ; // ensure submatr ices are loaded

// compute the submatrix product BsAs

f o r (i n t k = 0 ; k < BLOCK_SIZE; k++)
Cval += Bs [row] [k] ∗ As [k] [c o l] ;

__syncthreads () ; // ensure dot product i s computed
}

setElement (C, i , j , Cval) ;
}

Listing 6.5: Kernel of the symbgmm operation using shared memory.

81

6.3. CUDA Libraries

• forming the reduced friction Hessian GF .

The details of these functions are left out of this thesis, but they all follow

similar design principles to Listing 6.5.

6.3 CUDA Libraries

Several publicly available libraries were crucial in the efficacy of the SCHURPA

GPU implementation. These include :

• CUBLAS (NVIDIA, 2012a) - a GPU implementation of the BLAS API,

developed by NVIDIA,

• CUSPARSE (NVIDIA, 2012c) - a GPU library for manipulating sparse

data and performing sparse matrix operations, developed by NVIDIA,

• CULA (Humphrey et al., 2010) - a GPU implementation of the LAPACK

API, developed by EM Photonics, and

• Thrust (NVIDIA, 2012d) - a high-level templated interface analogous to

the STL library of C++, developed by Jared Hoberock and Nathan bell.

Thrust was used for device memory management as well as vector operations

such as reduction. CUSPARSE handled the sparse matrix data and opera-

tions including the constraint Jacobian and tangent matrices in the simulator.

CUBLAS provided the low level functionality such as device-to-device memory

copying, dot products, matrix vector products etc. in the SCHURPA algo-

rithm. The highly optimized banded cholesky solve in CULA was used for the

factorization of the matrices GC and GF .

82

Chapter 7

Results

We demonstrate the effectiveness of our SCHURPA implementation in the con-

text of generic QPs and the friction and contact QP subproblems arising in

the staggered projections algorithm. We compare our method with a direct ap-

proach that computes a new factorization in each iteration of PDASM, which

we call DIRECT.

In Section 7.1 we randomly generate and solve QPs of fixed dimension. Run-

times are compared against CPU and GPU-based implementations of DIRECT

and SCHURPA. We show that as the initial working set A0 approaches the

optimal active set A∗, SCHURPA significantly outperforms the direct version.

We then leverage the staggered projections algorithm with SCHURPA to resolve

frictional contact in the Eulerian solids simulator discussed in Chapter 4 . The

results are given in Section 7.2.

All experiments were performed on an Intel i7 2.80GHz CPU running a 64-bit

Windows 7 OS, with an NVIDIA GeForce GTX 580 GPU. A Matlab interface

was created using mex (Matlab executable) files to allow fast prototyping of

the experiments as well as visualization capabilities.

7.1 Randomly Generated QPs

To investigate the warm-starting capabilities of SCHURPA, we randomly gen-

erated QPs of the form

83

7.1. Randomly Generated QPs

minimize 1
2x

THx− cTx

subject to x ≥ 0,
(7.1)

where x, c ∈ Rn and H ∈ Rn×n is a banded SPD matrix with bandwidth ρ.

In our experiments, n = 8000 and ρ = 1000 were held fixed. The solution to

a randomly generated QP was first computed to determine A∗, and A0 was

constructed via altering A∗. Specifically, we reverse the inclusion of the first

δ constraints to obtain A0, so that |A0 − A∗| = δ, where A0 − A∗ represents

the set difference. CPU and GPU implementations of SCHURPA and DIRECT

were then run on the QPs using A0. The CPU implementations were done in

Matlab. The saddle point systems of (7.1) were solved using the reduced

Hessian method, as discussed in Section 5.1.1. Figure 7.1 shows the runtimes

of the algorithms as a function of the working set perturbation, i.e., |A0 −A∗|.

We observe that the GPU versions significantly outperform their CPU coun-

terparts, with the GPU version of SCHURPA being the most efficient. Notice

that as the perturbation increases, the runtimes of both versions of SCHURPA

increase, but the GPU version significantly less so than the CPU version; this

occurs due to the parallel block solver discussed in Section 5.3. Figure 7.2 shows

a breakdown of the GPU-based SCHURPA runtimes. We observe that the fac-

torization runtime is constant as only one factorization occurs, independent of

iteration number. The solve runtime increases as the perturbation increases due

to a larger Schur-complement solve. Table 7.1 details the statistics of the GPU-

based DIRECT and SCHURPA algorithms. We denote factorization runtimes

by f(ms) and factorization count by #f, solving the saddle point system run-

times by s(ms) and the number of solves by #s, and total runtimes by t. The

number of iterations for both methods are identical as they are both PDASMs.

Notice that one factorization of SCHURPA is more expensive than one factor-

84

7.2. Frictional Contact in the Simulator

0 5 10 15 20 25 30 35 40 45 50

0

500

1000

1500

2000

2500

3000

PDASM runtimes for n =8000. ρ = 1000

Perturbation from optimal active set

R
u

n
ti
m

e
s

(m
s)

Direct (CPU)

Schurpa (CPU)

Direct (GPU)

Schurpa (GPU)

Figure 7.1: Runtimes of the CPU and GPU implementations of the DIRECT
and SCHURPA algorithms, applied to (7.1), as a function of |A0 − A∗|. For
these experiments the matrix size n = 8000 and bandwidth ρ = 1000 were held
fixed.

ization of DIRECT due to the pre-processing step of the block banded solver

as explained in Section 5.3. Finally, we observe that the speedup SCHURPA

attains over DIRECT is proportional to the number of iterations required by

PDASM. For the case of |A0 −A∗| ≤ 50 a speedup of over 2× is observed.

These results show that SCHURPA can successfully take advantage of warm-

starting, and our GPU implementation scales well as a function of |A0 − A∗|.

Compared to DIRECT, SCHURPA is significantly more efficient, especially

when the number of PDASM iterations is large.

7.2 Frictional Contact in the Simulator

We now show the results of the SCHURPA-SP method given by Algorithm 4.2

applied to a simulation involving frictional contact in the simulator. The sim-

ulation involves a collision of 3× 3 grid of cylinders, as depicted in Figure 7.3.

Each cylinder has a length of 5m and diameter 3m, and moves toward the center

with a speed of 4m/s. The frictional coefficient µ = 1 was used throughout the

85

7.2. Frictional Contact in the Simulator

0 10 20 30 40 50

0

50

100

150

200

250

300

350

400

Schurpa runtime for n =8000. ρ = 1000

Perturbation from optimal active set

R
u

n
ti
m

e
s

(m
s)

factor time

solve time

other

Figure 7.2: Decomposition of the GPU-based SCHURPA runtimes, applied to
(7.1), as a function of |A0−A∗|. For these experiments the matrix size n = 8000
and bandwidth ρ = 1000 were held fixed.

(a) (b) (c)

Figure 7.3: Cylinder collision simulation. (a) The initial setup of the cylinders.
(b) Contact begins, denoting t = t0 = 0 seconds. (c) Resolution of the collision
at t = T = 0.5 seconds.

86

7.2. Frictional Contact in the Simulator

SC
H

U
R

PA
D

IR
E

C
T

#
It

er
at

io
ns

|A
0
−
A
∗ |

f
(m

s)
#

f
s

(m
s)

#
s

t
(m

s)
f

(m
s)

#
f

s
(m

s)
#

s
t

(m
s)

0
27
9.
57
4

1
44
.5
66
7

1
35
0.
91
2

19
3.
12
8

1
45
.9
46
6

1
26
3.
92
6

1
10

28
2.
66

1
16
9.
64
3

15
48
4.
10
4

76
7.
98
5

4
18
3.
74
5

4
10
04
.6
3

4
20

27
8.
66
9

1
22
7.
72
7

31
54
0.
22
2

93
8.
09
4

5
22
9.
48
3

5
12
29
.0
5

5
30

28
1.
97
2

1
25
7.
62
1

42
57
4.
07

96
7.
22
1

5
22
9.
82
8

5
12
60
.1
5

5
40

28
4.
37
7

1
27
4.
52
2

54
59
3.
34
3

95
9.
71
5

5
23
0.
71
5

5
12
53
.2
8

5
50

28
3.
50
4

1
35
9.
45
8

72
67
8.
07
2

97
2.
87
7

5
22
9.
68
7

5
12
65
.2
5

5

Table 7.1: Statistics of the GPU-based implementations of SCHURPA and DI-
RECT applied to (7.1). We denote factorization runtimes by f(ms) and fac-
torization count by #f, solving the saddle point system runtimes by s(ms) and
the number of solves by #s, and total runtimes by t. 87

7.2. Frictional Contact in the Simulator

simulation. We used a constant time step of ∆t = 0.005 seconds, for a total time

of T = 0.5 seconds. We compared the performance of DIRECT and SCHURPA

by solving the contact and friction QP subproblems in SP using GPU-based

implementations of both methods.

Recall that Algorithm 4.2 requires the initial working sets A0
c and A0

f for

contact and friction, respectively, and the quality of these estimates is crucial

for effective warm-starting. For our warm-starting strategy we chose a con-

straint c to be active if its corresponding grid cell Ωc had a constraint that was

active in the previous time step’s optimal active set. As contact is initiated

the warm-starting strategy fails as there are no constraints during the previous

time step. More sophisticated warm-starting techniques which predict contact

could improve this limitation. Figure 7.4 shows the proportions A
0
c

A∗c
and A

0
f

A∗
f

over the course of the simulation. Once contact begins the ratios stay above 0.8

throughout the simulation, yielding very good initial estimates. As a result, SP

required at most 2 iterations and SCHURPA required at most 8 iterations for

contact and 11 iterations for friction throughout the simulation, demonstrating

the utility of warm-starting both SP and SCHURPA. The warm-starting also

reduces the number of solves required for Algorithm 4.2, which are shown for the

contact and friction phases in Figure 7.6. Observe that near t = 0.35 seconds,
A0

c

A∗c
and A

0
f

A∗
f
increase which improves the warm-starting and as a result the num-

ber of solves decreases. If the number of solves required by SCHURPA exceeds

a threshold max_solve, we reset the algorithm as described in Section 3.3. In

our implementation we set max_solve = 500. Over the course of the simulation

resetting was required at eight time steps in the friction solving phase. These

were near the beginning of the simulation when the warm-starting algorithm

failed to adequately predict A∗f . In the contact solving phase restarting never

occurred.

88

7.2. Frictional Contact in the Simulator

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Sim time (s)

C
o

rr
e

c
t

R
a

ti
o

Contact

Friction

Figure 7.4: The proportion of correct indices in A0
c and A0

f over the course of
the simulation.

Let ρC denote the bandwidth of the contact Hessian HC ; the ratio rC = ρC

m ,

where m is the number of contacts, determines the sparsity of HC . Over the

simulation we observed max
(
rC
)

= 0.48, min
(
rC
)

= 0.04 and mean
(
rC
)

= 0.18,

corroborating our previous postulate that our bands being small to medium

sized. Solving the contact and friction QPs require factorizing and solving with

the free Hessian GC given by Equation (5.21) and the reduced Hessian GF given

by Equation (5.22), respectively. The number of contacts, dimensions of GC and

dimensions of GF are given in Figure 7.6. These quantities peak at the time of

maximum impact (≈ 0.1 seconds), and then decrease as the cylinders bounce

apart (see Figure 7.3).

Figure 7.7 gives runtime comparisons of DIRECT and SCHURPA applied

to the QP subproblems arising in SP. During the peak impact phase (≈ 0.1 sec-

onds), SCHURPA outperforms DIRECT substantially. This occurs due to the

more efficient factoring phase. Notice that the solving runtimes for SCHURPA

are only marginally more than DIRECT, even though SCHURPA requires many

solves per time step (see Figure 7.6). In contrast, DIRECT performed at most

89

7.2. Frictional Contact in the Simulator

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

200

400

600

800

1000

1200

1400

1600

Sim time (s)

D
im

e
n

si
o

n
s

Contacts

Contact Dims

Friction Dims

Figure 7.5: The number of contacts, dimensions of GC and dimensions of GF
over the course of the simulation.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

50

100

150

200

250

300

350

400

450

Sim time (s)

N
u

m
b

e
r

o
f

S
o

lv
e

s

Contact

Friction

Figure 7.6: The number of solves performed in SCHURPA-SP for the contact
and friction phases over the course of the simulation.

90

7.2. Frictional Contact in the Simulator

0 0.1 0.2 0.3 0.4 0.5

0

200

400

600

800

Sim time (s)

R
u

n
ti
m

e
 (

m
s)

Direct total

SCHURPA total

0 0.1 0.2 0.3 0.4 0.5

0

500

1000

1500

2000

Sim time (s)

R
u

n
ti
m

e
 (

m
s)

Direct total

SCHURPA total

0 0.1 0.2 0.3 0.4 0.5

−200

0

200

400

600

800

Sim time (s)

R
u

n
ti
m

e
 (

m
s)

Direct factor

SCHURPA factor

0 0.1 0.2 0.3 0.4 0.5

0

500

1000

1500

2000

Sim time (s)

R
u

n
ti
m

e
 (

m
s)

Direct factor

SCHURPA factor

0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

Sim time (s)

R
u

n
ti
m

e
 (

m
s)

Direct solve

SCHURPA solve

0 0.1 0.2 0.3 0.4 0.5

0

50

100

150

Sim time (s)

R
u

n
ti
m

e
 (

m
s)

Direct solve

SCHURPA solve

Figure 7.7: Runtimes of DIRECT and SCHURPA for the contact (left) and
friction (right) solving phases over the course of the simulation. The total,
factor and solve runtimes are given by the top, middle and bottom subfigures,
respectively.

8 and 11 solves in the contact and friction phases, respectively, exemplifying

the parallelization of the banded block solver. The total runtime speedup ratios

of SCHURPA to DIRECT is given in Figure 7.8. We observe approximately a

4× and 3× speedup during the maximum impact for the contact and friction

solving phases, respectively.

The presented results show the utility of SCHURPA applied to the contact

and friction QP subproblems of SP. Equipped with a simple yet effective warm-

starting technique, the number of iterations in SCHURPA and SP remained

low. The multiple solves required by SCHURPA were efficiently handled by the

parallel block solver, yielding superior performance as compared with DIRECT.

91

7.2. Frictional Contact in the Simulator

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

1

2

3

4

5

6

7

Sim time (s)

S
p

e
e

d
u

p
 R

a
ti
o

Contact

Friction

Figure 7.8: Total runtime speedup ratios of SCHURPA to DIRECT for the
contact and friction phases over the course of the simulation.

92

Chapter 8

Conclusion

In this thesis we have developed a solution framework for frictional contact

which incorporates the staggered projections algorithm, along with an efficient

parallel implementation which exploits the underlying matrix structure of the

QP subproblems. Doing so enabled an Eulerian solids simulator the ability to

simulate frictional contact dynamics.

We first argued the merits of using active-set methods in the context of solv-

ing QPs arising in physical simulation due to their warm-starting capabilities. In

particular, we desired a parallel active-set method to solve the QP subproblems

of the staggered projections algorithm (Kaufman et al., 2008) to complement

the parallel implementation of the simulator (Levin et al., 2011). We showed

that there were two fundamental limitations attributed to parallelizing classical

ASMs and their implementations. These were:

• classical ASMs could require many sequential iterations, and

• these iterations updated factorizations, an inherently sequential process.

To overcome these limitations, we introduced SCHURPA: a parallel implemen-

tation of PDASM using the Schur-complement method. The super-linear con-

vergence property of PDASM overcomes the first limitation above, and the

Schur-complement solution method to solving the saddle point systems arising

in PDASM overcomes the second limitation by circumventing the factorization

updating process.

93

Chapter 8. Conclusion

We then reformulated the friction problem so as to be solvable by PDASM,

and therefore SCHURPA. The reformulation incorporated a simplified linearized

friction cone as the feasible set to the friction QP; convergence of PDASM

applied to the reformulation could then be proven. We integrated SCHURPA

into staggered projections to produce SCHURPA-SP, which only required the

use of a single factorization for contact and friction, respectively, to solve all QP

subproblems arising in staggered projections.

Further investigation of the structure of the contact and friction QPs in the

simulator showed both problems may be phrased as banded SPD systems. A

simple yet effective parallel block substitution method for banded SPD systems

was designed and incorporated into a SCHURPA-SP implementation on the

GPU using CUDA (NVIDIA, 2012b) to imbue the simulator with the ability to

handle frictional contact.

The merits of SCHURPA were confirmed by the speedup attained over DI-

RECT, an implementation of PDASM which produces a factorization each it-

eration. Experiments run on generic randomly generated QPs demonstrated

that, when using an initial working set defined by relatively small perturbations

of the optimal active set, SCHURPA excels over DIRECT on both CPU and

GPU implementations. The GPU implementation showed better performance

for larger perturbations due to the parallelizability of the block solver; such per-

turbations are to be expected for large problems arising in physical simulation as

the active-set is unknown and, unlike SQP-methods utilizing warm-starts, there

is no active-set the QPs are converging to. Finally, we showed the improved

performance of SCHURPA over DIRECT on a large-scale simulation using the

simulator involving frictional contact.

Several avenues of future work could significantly improve SCHURPA’s us-

ability. More sophisticated warm-starting techniques could significantly reduce

94

Chapter 8. Conclusion

the runtime of SCHURPA. A heterogenous CPU-GPU implementation would

not only improve performance, but also broaden the algorithm’s applicability to

other simulations not confined to a GPU implementations. Along these lines,

SCHURPA could be integrated into other simulation frameworks. For exam-

ple, rigid body simulations share many of the same properties as the Eulerian

solids simulator. Integration of SCHURPA would simply require the function

that solves the initial saddle point system and could be extremely beneficial.

Finally, ideas from SCHURPA could be used in a hybrid iterative-direct solver

for the saddle point systems arising in ASMs to solve large, sparse problems.

95

Bibliography

Bartlett R.A. and Biegler L.T. QPSchur: A dual, active-set, Schur-complement

method for large-scale and structured convex quadratic programming. Opti-

mization and Engineering, 7(1):5–32, 2006.

Bergounioux M., Ito K., and Kunisch K. Primal-dual strategy for constrained

optimal control problems. SIAM Journal on Control and Optimization,

37(4):1176, 1999.

Betts J.T. A Sparse Nonlinear Optimization Algorithm. Journal of Optimization

Theory and Applications, 82(3):519–541, 1994.

Brunssen S., Schmid F., Schäfer M., and Wohlmuth B. A fast and robust it-

erative solver for nonlinear contact problems using a primal-dual active set

strategy and algebraic multigrid. International Journal for Numerical Meth-

ods in Engineering, 69(3):524–543, 2007.

Daryina A.N. and Izmailov A.F. Semismooth newton method for quadratic

programs with bound constraints. Computational Mathematics and Mathe-

matical Physics, 49(10):1706–1716, 2009.

Davis T.A. and Hager W.W. Row modifications of a sparse cholesky factor-

ization. SIAM Journal on Matrix Analysis and Applications, 26(3):621–639,

2006.

96

Bibliography

Gill P.E., Golub G., Murray W., and Saunders M. Methods for modifying

matrix factorizations. Mathematics of Computation, 28(126):505–535, 1974.

Gill P.E., Murray W., Saunders M.A., and Wright M.H. Maintaining LU factors

of a general sparse matrix. Linear Algebra and its Applications, 88:239–270,

1987.

Gill P.E., Murray W., Saunders M.A., and Wright M.H. A Schur-complement

method for sparse quadratic programming. In Reliable numerical computa-

tion, Oxford Sci. Publ., 113–138. Oxford Univ. Press, New York, 1990.

Goldfarb D. and Idnani A. A numerically stable dual method for solving strictly

convex quadratic programs. Mathematical Programming, 27(1):1–33, 1983.

Hintermuller M. The primal-dual active set method for a crack problem with

non-penetration. IMA Journal of Applied Mathematics, 69(1):1–26, 2004.

Hintermüller M., Ito K., and Kunisch K. The primal-dual active set strategy as a

semismooth newton method. SIAM Journal on Optimization, 13(3):865–888,

2002.

Hüeber S. and Wohlmuth B. A primal-dual active set strategy for non-linear

multibody contact problems. Computer Methods in Applied Mechanics and

Engineering, 194(27):3147–3166, 2005.

Humphrey J.R., Price D.K., Spagnoli K.E., Paolini A.L., and Kelmelis E.J.

CULA: Hybrid GPU Accelerated Linear Algebra Routines. In SPIE Defense,

Security, and Sensing. International Society for Optics and Photonics, 2010.

Ito K. and Kunisch K. Lagrange multiplier approach to variational problems

and applications. Society for Industrial and Applied Mathematics, 2008.

Jean M. The non-smooth contact dynamics method. Computer methods in

applied mechanics and engineering, 177(3):235–257, 1999.

97

Bibliography

Kaufman D.M. Coupled principles for computational frictional contact mechan-

ics. Ph.D. thesis, New Brunswick Rutgers, The State University of New

Jersey, 2009.

Kaufman D.M., Sueda S., James D.L., and Pai D.K. Staggered projections

for frictional contact in multibody systems. ACM Transactions on Graphics

(TOG), 27(5):164:1–164:11, 2008.

Kunisch K. and Rendl F. An infeasible active set method for quadratic problems

with simple bounds. SIAM Journal on Optimization, 14(1):35–52, 2003.

Kunisch K. and Rösch A. Primal-dual active set strategy for a general class

of constrained optimal control problems. SIAM Journal on Optimization,

13(2):321–334, 2002.

Lanczos C. The variational principles of mechanics. Dover Publications, 1986.

Levin D.I.W., Litven J., Jones G.L., Sueda S., and Pai D.K. Eulerian solid

simulation with contact. ACM Transactions on Graphics (TOG), 30(4):36,

2011.

Moreau J. On unilateral constraints, friction and plasticity. New Variational

Techniques in Mathematical Physics, 172–322, 1973.

Naumov M. Parallel Solution of sparse triangular linear systems in the precon-

ditioned iterative methods on the GPU. NVIDIA Technical Report, NVR-

2011-0, 2011.

Nocedal J. and Wright S. Numerical optimization. Springer Verlag, 1999.

NVIDIA. Cublas : http://docs.nvidia.com/cuda/cublas/index.html. 2012a.

NVIDIA. Cuda : http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html. 2012b.

98

Bibliography

NVIDIA. Cusparse : http://docs.nvidia.com/cuda/cusparse/index.html. 2012c.

NVIDIA. Thrust : http://docs.nvidia.com/cuda/thrust/index.html. 2012d.

Polizzi E. and Sameh A.H. A parallel hybrid banded system solver: the SPIKE

algorithm. Parallel Computing, 32(2):177–194, 2006.

Qi L. and Sun J. A nonsmooth version of Newton’s method. Mathematical

Programming, 58(1-3):353–367, 1993.

Stewart D.E. Rigid-body dynamics with friction and impact. SIAM Review,

42(1):3–39, 2000.

Stewart D.E. and Trinkle J.C. An implicit time-stepping scheme for rigid body

dynamics with inelastic collisions and coulomb friction. International Journal

for Numerical Methods in Engineering, 39(15):2673–2691, 1996.

Stone J.E., Gohara D., and Shi G. OpenCL: A parallel programming standard

for heterogeneous computing systems. Computing in science and engineering,

12(3):66–73, 2010.

Tomov S., Nath R., Ltaief H., and Dongarra J. Dense linear algebra solvers for

multicore with GPU accelerators. In Parallel Distributed Processing, Work-

shops and Phd Forum (IPDPSW), 2010 IEEE International Symposium, 1–8.

IEEE, 2010.

Ulbrich M. Semismooth newton methods for variational inequalities and con-

strained optimization problems in function spaces. Society for Industrial &

Applied Mathematics, 2011.

Versteeg H. and Malalasekera W. An Introduction to Computational Fluid Dy-

namics: The Finite Volume Method. Prentice Hall, 2007.

99

Wright S.J. Primal-dual Interior-point Methods. Society for Industrial & Ap-

plied Mathematics, U.S., 1987.

100

Appendix A

Data Storage Formats

Dense matrices are stored in column-major order, which is defined for a matrix

A as

Aij = a[i+ j ∗ lda],

where a is the associated pointer to device memory and lda is the leading di-

mension, or stride, of the allocated memory storing A. A symmetric banded

matrix B with kb sub-diagonals is stored in a (kb+1)×n matrix where row i

contains the ith sub-diagonal, beginning with the main diagonal, so that

Bij = b[i− j + j ∗ ldb] max(0,i-kb)≤j≤i,

where ldb is the leading dimension of B.Table A.1 describes the data storage

formats for dense and banded matrices on the GPU.

101

Appendix A. Data Storage Formats

Matrix Type array Data mapping
A Dense a Aij = a[i+ j ∗ lda]

B Symmetric Banded b Bij = b[i− j + j ∗ ldb],
max(0, i− kb) ≤ j ≤ i

Table A.1: Data storage formats for dense and symmetric banded matrices. For
matrices A and B, a and b are their two-dimensional stored representation on
GPU memory, respectively. lda and ldb are the leading dimensions of the arrays
a and b, respectively, and kb is the number of sub/super diagonals of the matrix
B.

102

Appendix B

Additional Code

The code B.1 contains the helper body code of the methods 6.3,Listing 6.4, and

Listing 6.5. If a memory access other than a legal matrix element is attempted, 0

is returned, which pads the block with zeros. The resulting matrix multiplication

of the sub-matrices in Equation (6.2) is then

BIK 0

0 0

AKJ 0

0 0

 =

CS 0

0 0

 ,
obtaining the desired sub-matrix.

103

Appendix B. Additional Code

// he lpe r f u n c t i o n s
f l o a t getElement (const Matrix A, i n t i , i n t j){

prec va l = 0 ;

i f (i < A. he ight && j < A. width)
va l = A[i + j ∗ A. ld] ;

r e turn va l ;
}

f l o a t getElement (const BandedMatrix B, i n t i , i n t j){

prec va l = 0 . 0 ;

// i f j > i , swap i & j
i n t temp ;
i f (j > i){

temp = j ;
j = i ;
i = temp ;

}

i n t min_j = max(0 , i − B. rho) ;

i f (i < A. he ight && j < A. width && min_j <= j)
va l = B[i − j + j ∗ ldb] ;

r e turn va l ;
}
void setElement (Matrix A, i n t i , i n t j , f l o a t va lue){

i f (i < A. he ight && j < A. width)
A[i + j ∗ A. ld] = value ;

}

Listing B.1: Helper bodies for kernels.

104

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Acknowledgments
	Introduction
	Problem Statement
	Solution Methodology
	The Primal-Dual Active-Set Method
	SCHURPA

	Contributions of Thesis
	Notation

	Active-Set Methods for Quadratic Programming
	Quadratic Programming
	Overview of Active-Set Methods
	Classical ASMs
	The Primal-Dual ASM
	Derivation via the Semismooth Newton Method
	Comparison to Classical ASMs

	SCHURPA : a Method for Solving Saddle Point Systems Arising from PDASM
	Limitations of Updating Factorizations
	The Schur-Complement Method
	Details of the SCHURPA Algorithm

	The Eulerian Solids Simulator
	Overview
	Simulating Objects Without Contact
	Simulating Objects With Contact

	Adding Friction Using Staggered Projections
	Friction Model
	The Staggered Projections Algorithm

	Applying SCHURPA to Frictional Contact
	The SCHURPA-SP Algorithm

	Solving the Contact and Friction QPs
	Saddle Point Systems Arising in Contact and Friction
	Contact
	Friction

	Banded SPD Systems
	Block Solver for Banded SPD Systems

	GPU Implementation
	CUDA Programming on the GPU
	CUDA Programming Model

	Custom Kernels for SCHURPA
	CUDA Libraries

	Results
	Randomly Generated QPs
	Frictional Contact in the Simulator

	Conclusion
	Bibliography
	Data Storage Formats
	Additional Code

