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Abstract

For many computer vision and machine learning problems, large training sets are

key for good performance. However, the most computationally expensive part of

many computer vision and machine learning algorithms consists of finding nearest

neighbour matches to high dimensional vectors that represent the training data. We

propose new algorithms for approximate nearest neighbour matching and evaluate

and compare them with previous algorithms. For matching high dimensional fea-

tures, we find two algorithms to be the most efficient: the randomized k-d forest

and a new algorithm proposed in this thesis, the priority search k-means tree. We

also propose a new algorithm for matching binary features by searching multiple

hierarchical clustering trees and show it outperforms methods typically used in the

literature. We show that the optimal nearest neighbour algorithm and its parame-

ters depend on the dataset characteristics and describe an automated configuration

procedure for finding the best algorithm to search a particular dataset. In order to

scale to very large datasets that would otherwise not fit in the memory of a single

machine, we propose a distributed nearest neighbour matching framework that can

be used with any of the algorithms described in the thesis. All this research has

been released as an open source library called FLANN (Fast Library for Approxi-

mate Nearest Neighbours), which has been incorporated into OpenCV and is now

one of the most popular libraries for nearest neighbour matching.
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Preface

All the work in this thesis has been conducted under the supervision of professor

David G. Lowe. The following parts of the thesis are based on previously published

work:

• Chapter 3 evaluates and compares the approximate nearest neighbour algo-

rithms we found to work best for high dimensional data and proposes an au-

tomatic nearest neighbour algorithm configuration procedure. This chapter

is based on work presented orally at the International Conference on Com-

puter Vision Theory and Applications (VISAPP) [Muja and Lowe, 2009].

• Chapter 4 introduces and evaluates a new algorithm for efficient nearest

neighbour matching of binary features. This chapter is based on work pre-

sented orally at the Conference on Computer and Robot Vision (CRV) [Muja

and Lowe, 2012] where it received the Best Vision Paper award.
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Chapter 1

Introduction

The most computationally expensive part of many computer vision algorithms

consists of searching for the most similar matches to high-dimensional vectors,

also referred to as nearest neighbour matching. Having an efficient algorithm for

performing fast nearest neighbour matching in large datasets can bring speed im-

provements of several orders of magnitude to many applications. Examples of such

problems include finding the best matches for local image features in large datasets

[Lowe, 2004; Philbin et al., 2007], clustering local features into visual words using

the k-means or similar algorithms [Sivic and Zisserman, 2003], global image fea-

ture matching for human pose estimation [Shakhnarovich et al., 2003], matching

deformable shapes for object recognition [Berg et al., 2005] or performing normal-

ized cross-correlation to compare image patches in large datasets [Torralba et al.,

2008a]. The nearest neighbour search problem is also of major importance in many

other applications, including machine learning, document retrieval, data compres-

sion, bio-informatics, and data analysis.

In this thesis we evaluate the most promising nearest-neighbour search algo-

rithms in the literature, propose new algorithms and improvements to existing ones,

present a method for performing automatic algorithm selection and parameter op-

timization and discuss the problem of scaling to very large datasets using compute

clusters. We have released all this work as an open source library named FLANN

(Fast Library for Approximate Nearest Neighbours).
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7,900Target 790,000 79,000,000

Figure 1.1: Example of nearest neighbour search in a large dataset of
nearly 80 million 32×32 pixel images. The first column contains two
query images and the next 3 columns contain the top 16 nearest neigh-
bour matches of each query image in datasets of increasing size (dataset
size indicated above each column). It can be observed that as the size
the dataset increases (by orders of magnitude) the relevance of the re-
trieved results is significantly improved. Figure reproduced from [Tor-
ralba et al., 2008a], c©2008 IEEE.

1.1 Motivation for Scalable Nearest Neighbour Methods
It has been shown in several papers that using large training sets is key to obtaining

good real-life performance from many computer vision methods, particularly from

object category recognition algorithms.

The performance improvement brought by using a very large training set of

up to 80 million images has been explored in [Torralba et al., 2008a]. An object

recognition system consists of two parts, the model and the data. While the large

majority of work in the past has been focused on coming up with richer and more

complex models, the authors of [Torralba et al., 2008a] show that by using train-

ing sets that are orders of magnitude larger than what was typically used in object

recognition, simple non-parametric models such as nearest-neighbour classifica-

tion can obtain results on-par with those of leading class-specific detectors. The

performance improvements brought by using larger training sets are exemplified in

2



Original Image Input

Scene Matches Result

Figure 1.2: Automatic scene completion using millions of photographs.
Given an input image and a missing section, simple nearest neighbour
techniques and a large training set allow for similar scenes to be found
and the missing parts to be seamlessly filled in. Figure reproduced from
[Hays and Efros, 2007], c©2007 ACM.

Figure 1.1.

A similar result is demonstrated in [Hays and Efros, 2007], where the authors

tackle the task of automatic scene completion using over two million Web gathered

images (Figure 1.2). The proposed algorithm seamlessly patches holes in images,

by first locating semantically similar images using nearest neighbour matching in

a database of gist scene descriptors [Torralba et al., 2003] and then using the most

similar matches to extract the missing parts for the image to be completed. The

authors note that the results were discouraging when using a smaller dataset of

ten thousand images, but increasing the size of the dataset to two million images

resulted in a quantitative leap in performance.

3
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Figure 1.3: Geolocation performance across dataset size of system from
[Hays and Efros, 2008], c©2008 IEEE. The percentage of correct ge-
olocations within 200km increases from chance level for small dataset
to 18 times as much for the full dataset.

Using a very large database of over 6 million GPS-tagged images, Hays and

Efros [2008] propose a system capable of estimating geographic information from

an arbitrary image. As previously, simple nearest neighbour matching of an as-

sortment of different descriptors (tiny images, colour and texton histograms, line

features, gist features, geometric context) in a very large dataset resulted in very

encouraging performance (up to 30 times better than chance). Figure 1.3 illustrates

the large impact the size of the dataset has on the overall performance. For small

dataset sizes, the performance is just slightly better than chance, but increasing

the size of the dataset (by orders of magnitude) leads to a significant performance

increase.

Content Based Image Search (CBIS) is another area where using large datasets

has a big impact on the quality of the results obtained. In CBIS, a database of

images is searched using an image as a query (as opposed to text or some other

image meta-information) and the results are database images containing the same

or similar objects/scenes as the query image. In [Philbin et al., 2007] the authors

present a CBIS system which, when provided with a query in the form of a region

4



Figure 1.4: Examples of content based images search. The first column
contains the query objects, the rest of the columns show the ranked top
images retrieved by the system. Figure reproduced from [Philbin et al.,
2007], c©2007 IEEE.

of an image, returns a ranked list of images that contain the queried object from a

large dataset of over 1 million images (Figure 1.4).

All the above examples show how results are significantly improved when us-

ing large training sets. Today the Internet is a vast resource of such training data

[Deng et al., 2009], readily available to researchers. However, when working with

large datasets, as in the cases mentioned above, the performance of the algorithms

employed quickly becomes a key issue and the need for efficient algorithms that

can handle such large datasets becomes apparent.

Performing nearest neighbour search is typically a bottleneck in many com-

puter vision applications, so there’s a high incentive to make it as efficient as pos-

sible in order to speed up the overall algorithm. When working with high dimen-

sional features, as with most of those encountered in computer vision applications

(image patches, local descriptors, global image descriptors), there is currently no

known generic nearest neighbour search algorithm that is exact and more efficient

than linear search. To obtain a speed improvement, many practical applications are

forced to settle for an approximate search, where not all the neighbours returned

are exact, some are approximate but typically still close or in the same vicinity as

5



the exact neighbours. In practice it’s common for approximate nearest neighbour

search algorithms to provide more than 95% correct neighbours and still be two or

more orders of magnitude faster than linear search.

In many cases the nearest neighbour search is just a part of a larger application

containing other approximations and there is little to no loss in performance from

using approximate neighbours in place of exact ones.

1.2 Definitions and Notation
In this thesis we are concerned with the problem of efficient nearest neighbour

search in metric spaces. A metric space is a set M on which the notion of distance

is defined, d : M×M→ R, and the following hold for ∀x,y,z ∈M:

• Non-negativity: d(x,y)≥ 0 ,

• Symmetry: d(x,y) = d(y,x) ,

• Identity: d(x,y) = 0 ⇐⇒ x = y ,

• Triangle inequality: d(x,z)≤ d(x,y)+d(y,z) .

The nearest neighbour search in a metric space can be defined as follows: given

a set of points P= {p1, p2, ..., pn} in a metric space M and a query point q∈M, find

the element NN(q,P) ∈ P that is the closest to q with respect to a metric distance

d : M×M→ R:

NN(q,P) = argminx∈P d(q,x).

The nearest neighbour problem consists of finding a method to pre-process the

set P such that the operation NN(q,P) can be performed efficiently.

We are often interested in finding not just the first closest neighbour, but several

closest neighbours. In this case, the search can be performed in several ways,

depending on the number of neighbours returned and their distance to the query

point: K-nearest neighbour search where the goal is to find the closest K points

from the query point and radius nearest neighbour search, where the goal is to find

all the points located closer than some distance R from the query point.

6



We define the K-Nearest Neighbour (KNN) search more formally in the fol-

lowing manner:

KNN(q,P) = A,

where A is a set that satisfies the following conditions

|A|= K,A⊆ P,

∀x ∈ A,y ∈ P−A,d(q,x)≤ d(q,y).

The K-nearest neighbour search has the property that it will always return exactly

K neighbours (if there are at least K points in P).

The Radius Nearest Neighbour (RNN) search can be defined as follows:

RNN(q,P) = {p ∈ P,d(q, p)< R}.

Depending on how the value R is chosen, the radius search can return any num-

ber of points between zero and the whole dataset. In practice, passing a large value

R to radius search and having the search return a large number of points is often

very inefficient. Radius K-Nearest Neighbour (RKNN) search, is a combination of

K-nearest neighbour search and radius search, where a limit can be placed on the

number of points that the radius search should return:

RKNN(q,P) = A,

such that

|A|= K,A⊆ P,

∀x ∈ A,y ∈ P−A,d(q,x)< R and d(q,x)≤ d(q,y).

1.3 Contributions and Thesis Outline
In this thesis we focus on the topic of efficient approximate nearest neighbour

search in large datasets. The work presented in the thesis contains several original

contributions which can be summarized as follows:

7



• We have devised a new approximate nearest neighbour search algorithm in-

spired by the vocabulary tree of Nister and Stewenius [2006] and the GNAT

data structure of [Brin, 1995]. The new algorithm, which we call the priority

search k-means tree, was found to perform the best for particular datasets.

• We have performed extensive tests comparing the randomized kd-tree algo-

rithm of [Silpa-Anan and Hartley, 2008] to other methods. We have found it

to work very well for high dimensional points such as visual local features

(such as SIFT, SURF), in some cases being the best algorithm to use for

particular datasets.

• We have shown that the optimum algorithm and its parameters are highly

dependent on a number of factors such as the data dimensionality, dataset

size and statistics. We have proposed an algorithm configuration procedure

capable of choosing the optimum algorithm and parameters for a particular

dataset while taking into account factors such as index build time, search

time and memory usage.

• Binary descriptors are becoming more popular in computer vision due to a

series of advantages they have over the more classic vector-based descriptors

in terms of computation time, storage cost and matching efficiency. However

many nearest neighbour algorithms that work well for vector features are

not readily suitable for binary features. We have proposed a new algorithm

for fast approximate matching of binary features, based on hierarchical de-

composition and clustering of the feature space, and showed it outperforms

hashing based methods which are typically used for this purpose.

• It has been shown in the literature that scaling to very large datasets can bring

a significant performance boost in many applications. We have addressed

the issues brought by scaling to large datasets that would not fit in the main

memory of a single machine and have proposed and tested a simple way of

distributing the nearest neighbour search operations to a compute cluster.

The thesis is organized into six chapters. We start with an introduction in which

we motivate the importance of efficient approximate nearest neighbour search al-

8



gorithms (current chapter). In Chapter 2 we give the necessary background and

discuss the related work.

In Chapter 3 we present the randomized k-d forest and the priority search k-

means tree algorithms, perform extensive experiments comparing these algorithms,

show that the optimum algorithm is dependent on factors such as input data dimen-

sionality, dataset structure and desired search accuracy. We also propose such an

approach for automatically choosing the best algorithm and optimum parameters

for each problem instance.

In Chapter 4 we discuss the problem of nearest neighbour matching for binary

features and propose a new algorithm which we show to be very efficient, scalable

and provides as good or better results than previous algorithms typically used for

this purpose.

Scaling to larger datasets has been shown to lead to better performance in a

variety of image recognition tasks. When working with very large datasets the

memory capacity of most computers quickly becomes a limiting factor when using

a single computer. In Chapter 5 we discuss the difficulties of scaling nearest neigh-

bour matching to very large datasets, present a simple solution for distributing the

nearest neighbour matching to multiple machines in a compute cluster and conduct

several experiments showing the scalability and efficiency of this approach.

Finally, in Chapter 6 we offer conclusions on the topic of approximate nearest

neighbour matching and present several promising avenues for future work.

1.4 The FLANN Library
The work in this thesis has been made publicly available as an open source library

named FLANN (Fast Library for Approximate Nearest Neighbours) 1 [Muja and

Lowe].

FLANN is used by a large number of both research and industry projects (e.g.,

[Cummins and Newman, 2009], [Havlena et al., 2009a], [Havlena et al., 2009b],

[Quigley et al., 2009], [Turcot and Lowe, 2009]), and we have received very posi-

tive feedback from the community.

At the moment FLANN is probably the most well known nearest neighbour

1http:\people.cs.ubc.ca/∼mariusm/flann
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Figure 1.5: Number of FLANN downloads from the library web page.
This graph does not include downloads from other sources such as the
Linux distributions that package FLANN or its use in OpenCV.

library in the computer vision community, in part due to its inclusion in OpenCV

[Bradski and Kaehler, 2008], a popular open source computer vision library. FLANN

is used internally by several OpenCV modules, such as the ‘features2d’, ‘calib3d’

and ‘stitching’ modules. FLANN is also a main dependency for the Point Cloud

Library (PCL) project, and used extensively throughout the entire library.

FLANN has also been packaged by most of the mainstream Linux distributions

such as Debian, Ubuntu, Fedora, Arch, Gentoo and their derivatives.

As with all open-source software, it is difficult to estimate the true number of

users due to the fact that there are multiple sources from where people can get the

library: download it directly from the library web page, download the source code

from the FLANN repository, use the version included in OpenCV or install the

package included in the Linux distribution they use. Figure 1.5 shows the number

of distinct downloads from the FLANN web page during the second half of 2012.

Although not every download necessarily represents an actual FLANN installation,

the graph can be used to gauge the interest in the library. We estimate that a large

number of users use the version included in OpenCV, so this graph represents only

a fraction of the actual users.
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1.5 Chapter Summary
In this chapter we have introduced and formally defined the problem of nearest

neighbour search and motivated the importance of having efficient algorithms for

solving it.

We have shown that for some problems, in particular object and scene recog-

nition, having very large training sets allows for good performance to be obtained

using simple non-parametric algorithms. With large training sets, the need for ef-

ficient algorithms becomes a key issue. Nearest-neighbour search is part of most

computer vision applications and many times it is used as an inner loop inside a

more complex algorithm, making it a bottleneck in those applications. Since for

high dimensional spaces we don’t know any generic exact algorithm that is faster

than linear search, it is necessary to use approximate algorithms to speed up the

nearest neighbour search.

We conclude the chapter by introducing the FLANN open source library which

is a result of the work performed for this thesis.

11



Chapter 2

Background

In Chapter 1 we show that nearest-neighbour search is a fundamental part of many

computer vision algorithms. Consequently, a large body of previous work has been

devoted to this area and many nearest neighbour algorithms have been published

in the literature. This chapter presents an overview of previous work.

2.1 Nearest Neighbour Matching Algorithms
The large number of nearest neighbour algorithms proposed in the literature can

be categorized in many ways: algorithms that perform exact search or approximate

search, algorithms that work in metric spaces or require Euclidean spaces, algo-

rithms based on hierarchical space decompositions/partitioning trees or based on

various hashing/embedding methods. There is some overlap between these cat-

egories and variants of the same algorithm can be part of multiple categories (for

example the same algorithm can perform exact search or can be adapted to perform

approximate search).

In this section we present some of the best known nearest neighbour algorithms

in the literature.

Nearest neighbour algorithms based on partitioning trees have been shown to

work effectively in many applications. They recursively decompose the search

space into subspaces and construct one or more trees using this decomposition,

trees which are then searched to find the nearest neighbours of the query points.

12



Various algorithms that fall into this category differ on how the space decomposi-

tion is made and on how the tree exploration is performed.

K-D Trees and Related Algorithms

Probably the most widely used partitioning tree nearest neighbour algorithm is the

k-d tree [Bentley, 1975; Friedman et al., 1977], which constructs a binary tree by

decomposing the search space using axis aligned hyperplanes that split the data

points along the axis with the highest variance. A balanced binary tree is obtained

by taking the split value as the median point on the split axis. During search, the

tree is traversed from the root to the closest leaf to locate a first nearest neighbour

candidate and then traversal is continued by backtracking until all the nodes that

may contain nearest neighbour candidates have been explored. During tree explo-

ration a large number of branches which can be determined to be further away than

the best neighbour candidate can be skipped (see Figure 2.1).

The k-d tree data structure is very effective for low dimensional features, when

during the tree exploration many subspaces can be ignored due to being further

away than the best nearest neighbour candidate. However, as the dimensionality

increases, more and more of the tree needs to be explored to the point where the

q

Figure 2.1: Example of a k-d tree in 2D. During tree exploration most of the
tree branches can be pruned away because their associated subspaces are
further away than the best neighbour candidate found.
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majority or even the entire tree needs exploring, making the algorithm no more

efficient than linear search.

The decreased performance with the increase in dimensionality, also known

under the name of curse of dimensionality, is not specific only to the k-d tree, it

affects all nearest neighbour search algorithms (as well nearly any algorithm that

organizes and analyses high dimensional data). In fact, in high dimensional spaces,

no exact nearest neighbour algorithm is currently known to be more efficient than

linear search in the general case. This has caused a lot of interest in approxi-

mate nearest neighbour (ANN) search algorithms that return a fraction of the exact

neighbours (and approximate neighbours for the rest), but which are much faster,

in many cases by several orders of magnitude, than linear search.

Arya et al. [1998] modify the original k-d tree algorithm to use it for approxi-

mate matching. They impose a bound on the solution accuracy by using the notion

of (1+ε)-approximate nearest neighbour: a point p ∈ X is an (1+ε)-approximate

nearest neighbour of a query point q ∈ X , if dist(p,q) ≤ (1+ ε)dist(p∗,q) where

p∗ is the true nearest neighbour. The authors also propose the use of a priority

queue to speed up the search in a tree by visiting tree nodes in order of their dis-

tance from the query point. This method of approximating the nearest neighbour

search is also referred to as “error bound” approximate search.

Another way of approximating the nearest neighbour search is by limiting the

time spent during the search, or “time bound” approximate search. This method

is proposed in [Beis and Lowe, 1997] who use a k-d tree data structure and stop

the search early after examining a fixed number Lmax of leaf nodes. In practice this

time-constrained approximation criterion has been found to give better results than

the error-constrained approximate search.

Silpa-Anan and Hartley [2008] propose the use of multiple randomized k-d

trees as a means to speed up approximate nearest-neighbour search. [Muja and

Lowe, 2009] examine the randomized k-d trees data structure and perform more

exhaustive tests which show that it’s a very effective data structure for matching

high dimensional data.

Sproull [1991] proposes the PCA-tree in which the partitioning hyperplanes

don’t have to be aligned with the coordinate axis, but can have arbitrary orienta-

tions. The partitioning hyperplanes are picked to be perpendicular on the principal
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eigenvector of the covariance matrix in order to obtain a better decomposition of

the search space. The paper shows that on some datasets such a decomposition

requires fewer than half of the terminal nodes having to be examined, compared to

the axis aligned decomposition. Although the PCA-tree provides a better space de-

compositions than the kd-tree, by choosing non-axis aligned splitting hyperplanes,

searching a PCA-tree is more costly because it requires projecting the query point

onto the direction perpendicular on the splitting hyperplane. This projection is a

straightforward O(1) operation for the k-d tree decomposition, but requires an in-

ner product (consisting of O(d) multiplications and O(d) additions) for a non-axis

aligned decomposition. Due to this overhead, in practice, for many high dimen-

sional problems such as local features matching, kd-trees achieve better accuracy

in a given search time.

Dasgupta and Freund [2008] introduce the random projection trees (RP-trees)

in which the splitting hyperplanes are chosen to be random directions on the unit

hypersphere and instead of splitting at the median, a small amount of ”jitter” is

added to the splitting value. The paper shows that RP-trees automatically adapt to

the intrinsic low dimensionality structure in the data, without having to explicitly

learn this structure. RP-trees also have the overhead of projecting the query point

onto the axis perpendicular on the splitting hyperplane, making them less efficient

than k-d trees in practice, for many high dimensional problems.

Jia et al. [2010] also try to improve on the way the k-d tree partitions the space

by using non axis aligned splitting hyperplanes. Similar to the PCA tree, the split-

ting hyperplanes are chosen to be perpendicular on directions with high data vari-

ance constructed as a weighted axis combination using only weights from the set

{−1,0,1}. Using only the weights -1, 0 and 1 allows for fast evaluation of the

query projection during tree search by reducing an inner product operation to a

simple sum. In our experiments, we haven’t found this to be any more efficient

than a randomized k-d tree decomposition, as the overhead of evaluating multiple

dimensions during search overcame the benefit of the better space decomposition.
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Clustering Partitioning Trees

The algorithms presented so far in this section construct binary trees by using hy-

perplanes to recursively split the data points. Another type of partitioning trees

have been proposed in the literature that are constructed by recursively partitioning

the data points using various clustering algorithms.

Fukunaga and Narendra [1975] propose a partitioning tree constructed by clus-

tering the data points using the k-means algorithm into k disjoint groups and then

recursively doing the same for each of the groups. The resulting hierarchical k-

means tree requires that the data points exist in a vector space because the mean of

each cluster needs to be computed.

Brin [1995] proposes a similar tree, called GNAT (Geometric Near-neighbour

Access Tree), in which some of the data points are used as the cluster centres

instead of computing the cluster mean points. The resulting partitioning tree does

not require the points to be located in an Euclidean space in which the dimensions

can be accessed independently, instead it only assumes the points are located in a

metric space.

Moore [2000] proposes the anchors hierarchy, a data structure and algorithm

to efficiently partition data points located in a generic metric space and construct a

ball-tree like metric tree. It shows that this data structure can be used to accelerate

some statistical learning algorithm even for high dimensional data.

Yianilos [1993] introduces another metric partitioning tree, the vp-tree (vantage

point tree). Similar to the k-d tree, the vp-tree is a binary tree, but instead of using

coordinate values for dividing the points, the vp-tree uses the distance to a selected

vantage point. The points are split in two sets, the ”near” and ”far” points and the

procedure is repeated for each set in order to construct the tree. Kumar et al. [2008]

show that vp-trees can be used to efficiently compute exact nearest neighbours for

image patches.

Cover trees [Beygelzimer et al., 2006] are another data structure designed to

accelerate nearest neighbour search in metric spaces. A cover tree is a leveled tree

structure where each point represents a node and resides on a numbered level. The

nodes of the tree must obey a set of invariants that dictate how nodes need to be sep-

arated on each level, which nodes on higher levels can be parents of nodes on lower
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levels and how the levels are nested to cover the dataset at finer scales as the tree

is descended. Cover trees have been shown to accelerate exact nearest neighbour

search for spaces with low intrinsic dimensionality, defined in terms of a measure

called the expansion constant of the space, and provide theoretical guarantees on

the performance based on this expansion constant. Cover trees can also be adapted

for ε-approximate search, however we have found that in practice for large dimen-

sional points such as visual local features (SIFT, SURF, GIST) their performance

is much lower than that of other approximate nearest neighbour methods such as

the randomized kd-trees or the priority search k-means tree.

Liu et al. [2004] propose a metric tree that allows an overlap between the chil-

dren of each node, called the spill-tree. The reason for the overlap is to mitigate

the boundary effect of a point being located just outside the boundary of the near-

est cells during the tree exploration. Although this approach has some benefits we

have found that it requires significantly more memory while the performance is

lower than that of the randomized k-d trees.

Approximate search is involved when there is a data dimensionality reduction

step that projects the data points into a lower dimensionality space. The projection

into the lower dimensionality space typically introduces a distortion of the relations

between the points and, as a consequence, the search (exact or approximate) in

the lower dimensionality space becomes approximate in the original space. Liu

et al. [2004] use this technique of projecting into a lower dimensionality space,

but perform multiple rounds of random projections to reduce the error introduced

by the dimensionality reduction and increase the probability of finding the correct

neighbour.

Mikolajczyk and Matas [2007] evaluate the nearest neighbour matching perfor-

mance for several tree structures, including the k-d tree, the hierarchical k-means

tree, and the agglomerative metric tree (ball tree). They conclude that the k-d trees

have very good performance on near queries and very low on far ones, while the

performance of metric trees is more consistent. We have obtained similar results in

Chapter 3.
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Hashing-based Nearest Neighbour Techniques

Perhaps the best known hashing based nearest neighbour technique is the locality

sensitive hashing (LSH) [Andoni and Indyk, 2008]. LSH can also be regarded as a

form of probabilistic dimensionality reduction. LSH uses a large number of hash

functions with the property that the hashes of vector points that are close to each

other are likely to also be close. At query time the hashes of the query vectors

are computed and the dataset points whose hashes fall within the same bins as the

query hashes are examined.

Multi-probe LSH [Lv et al., 2007] was proposed to improve the high storage

costs of LSH due to the fact that it requires a large number of hash tables to achieve

good performance. By probing multiple buckets that are likely to contain query

matches, multi-probe LSH manages to reduce the number of hash tables required

by up to an order of magnitude.

In [Bawa et al., 2005] the authors propose the LSH Forest, a data structure

which replaces each hash table in the classic LSH algorithm with a prefix tree. The

prefix trees can hold hash keys of variable length, allowing the LSH forest to adapt

better to the data, compared to the classic LSH for which the key length parameter

needs to be hand tuned. The LSH Forest is shown to outperform LSH for similarity

search in the text domain.

The performance of hashing methods is highly dependent on the quality of

the hashing functions they use. Consequently, a large body of research has been

targeted at improving hashing methods by using data-dependent hashing func-

tions computed using various learning techniques: parameter sensitive hashing

[Shakhnarovich et al., 2003], spectral hashing [Weiss et al., 2008], randomized

LSH hashing from learned metrics [Jain et al., 2008], kernelized LSH [Kulis and

Grauman, 2009], learnt binary embeddings [Kulis and Darrell, 2009], shift-invariant

kernel hashing [Raginsky and Lazebnik, 2009], semi-supervised hashing [Wang

et al., 2010], optimized kernel hashing [He et al., 2010] and complementary hash-

ing [Xu et al., 2011].

The different LSH algorithms provide theoretical guarantees on the search

quality and have been successfully used in a number of projects, however our ex-

periments show that for real data they are usually outperformed by algorithms us-
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ing space partitioning structures such as the randomized k-d trees and the priority

search k-means tree.

Hashing methods are particularly convenient in case of binary data points, com-

pared to the vector based data points, which require an extra step of binarization.

Hashing algorithms have been shown to be effective at matching binary visual

features, which have recently been gaining popularity in the computer vision com-

munity. In Chapter 4 we compare the multi-probe LSH algorithm with a newly

proposed hierarchical clustering algorithm on a dataset of binary features.

Nearest Neighbour Graph Techniques

Nearest neighbour graph methods build a graph structure in which points are ver-

tices and edges connect each point to its nearest neighbours. When a query point

is given, this graph is explored in different manners in order to get closer to the

nearest neighbour of the query point. In [Sebastian and Kimia, 2002] the authors

select a few well separated elements in the graph as ”seeds” and start the graph

exploration from those seeds in a best-first fashion. Similarly, Hajebi et al. [2011]

perform a best-first exploration of the k-NN graph, but using a hill-climbing strat-

egy and picking the starting points at random. They present recent experiments that

compare favourably to randomized KD-trees, so the proposed algorithm should be

considered for future evaluation and possible incorporation into FLANN.

The nearest neighbour graph methods suffer from a quite expensive construc-

tion of the k-NN graph structure. Wang et al. [2012] improve the construction

cost by building an approximate nearest neighbour graph. This is accomplished

by hierarchically and randomly dividing the data into subsets and building exact

neighbourhood graphs for each subset. The procedure is repeated several times to

generate multiple neighbourhood sub-graphs which are combined to obtain a more

accurate approximate neighbourhood graph.

2.2 Nearest Neighbour Search in Large Datasets
Nister and Stewenius [2006] present a fast method for nearest-neighbour feature

search in very large databases. Their method is based on accessing a single leaf

node of a hierarchical k-means tree similar to that proposed by Fukunaga and
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which with the cited number of 2000 stable features per

frame amounts to about 50 training images in the database.

Lowe’s approach has been used on around 5000 objects

in a commercial application, but we are not aware of an

academic reference describing these results.

For the most part, the above approaches keep amounts

of data around in the database that is on the order of

magnitude as large as the image patches themselves, or

at least the region descriptors. However, the compactness

of the database is very important for query efficiency in

a large database. With our vocabulary tree approach, the

representation of an image patch is simply one or two

integers, which should be contrasted to the hundreds of

bytes or floats used for a descriptor vector.

Compactness is also the most important difference

between our approach and the hierarchical approach used

by Grauman and Darrell [5]. They use a pyramid of

histograms, at each level doubling the number of bins along

each axis without considering the distribution of data. By

using a vocabulary adapted to the likely distribution of

data, we can use a much smaller tree, resulting in better

resolution while maintaining a compact representation. We

also estimate that our approach is around a factor 1000

faster.

For feature extraction, we use our own implementation

of Maximally Stable Extremal Regions (MSERs) [10].

They have been found to perform well in thorough

performance evaluation [13, 4]. We warp an elliptical

patch around each MSER region into a circular patch.

The remaining portion of our feature extraction is then

implemented according to the SIFT feature extraction

pipeline by Lowe [9]. Canonical directions are found based

on an orientation histogram formed on the image gradients.

SIFT descriptors are then extracted relative to the canonical

directions. The SIFT descriptors have been found highly

distinctive in performance evaluation [12]. The normalized

SIFT descriptors are then quantized with the vocabulary

tree. Finally, a hierarchical scoring scheme is applied to

retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization

that is built by hierarchical k-means clustering. A large

set of representative descriptor vectors are used in the

unsupervised training of the tree.

Instead of k defining the final number of clusters or

quantization cells, k defines the branch factor (number of

children of each node) of the tree. First, an initial k-

means process is run on the training data, defining k cluster

centers. The training data is then partitioned into k groups,

where each group consists of the descriptor vectors closest

to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary

tree. The hierarchical quantization is defined at each level by k
centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining

quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some

maximum number of levels L, and each division into k parts

is only defined by the distribution of the descriptor vectors

that belong to the parent quantization cell. The process is

illustrated in Figure 2.

In the online phase, each descriptor vector is simply

propagated down the tree by at each level comparing

the descriptor vector to the k candidate cluster centers

(represented by k children in the tree) and choosing the

closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot

products, which is very efficient if k is not too large. The

path down the tree can be encoded by a single integer and

is then available for use in scoring.

Note that the tree directly defines the visual vocabulary

and an efficient search procedure in an integrated

manner. This is different from for example defining a

visual vocabulary non-hierarchically, and then devising

an approximate nearest neighbor search in order to find

visual words efficiently. We find the seamless choice

more appealing, although the latter approach also defines

quantization cells in the original space if used consistently

and deterministically. The hierarchical approach also gives

more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of

the vocabulary in a non-hierarchical manner would be very

high, the computational cost in the hierarchical approach is

Figure 2.2: Vocabulary Tree of [Nister and Stewenius, 2006] @2006 IEEE
exemplifying a hierarchical k-means decomposition with branching fac-
tor 3.

Narendra [1975]. Due to the fact that tree is traversed a single time without any

backtracking, a large number of neighbours have to be retrieved in order to ob-

tain good overall performance. Figure 2.2 illustrates the k-means hierarchy used to

traverse to a leaf node.

In [Leibe et al., 2006] the authors propose an efficient method for clustering

and matching features in large datasets. They compare different partitional and

agglomerative clustering methods such as k-means and agglomerative clustering

and compare the quality of the resulting clusters. They propose a mixed partitional-

agglomerative clustering algorithm that is more efficient while producing clusters

of similar quality to that of an agglomerative clustering algorithm. They propose a

ball-tree data structure for fast matching in high dimensional feature spaces.

Torralba et al. [2008b] use a boosting algorithm and restricted Boltzmann ma-

chines to compute a small binary code for each element of the dataset. The use of

small codes allows them to perform experiments on datasets containing millions
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of images using a standard PC. Weiss et al. [2008] compute similar binary codes

by using a different technique (spectral hashing) which they show to be superior to

that of [Torralba et al., 2008b]. Jégou et al. [2008] use binary signatures to refine

quantized SIFT descriptors in a bag-of-features image search framework.

Jégou et al. [2010] introduce a product quantization approach as a way of com-

puting short codes. The idea behind product quantizers is to construct a quantizer

of the original space as a Cartesian product of lower dimensionality quantizers and

represent each vector as short code composed of the quantization indices of its sub-

parts. The authors show that this approach outperforms those of [Torralba et al.,

2008b] and [Weiss et al., 2008].

In [Schindler et al., 2007] the authors show that the size of the dataset can

be increased while maintaining good query performance by building a vocabulary

using only the most informative features, effectively increasing the discriminative

power of the visual words. The authors also propose a different search algorithm

in a hierarchical k-means tree, called Greedy N-Best Paths (GNP), which follows

multiple branches at each level, however they don’t prioritize which branches are

explored first by their proximity to the query vector.

Philbin et al. [2007] present a large-scale object retrieval system that, when

provided with a query in the form of a region of an image, returns a ranked list of

images that contain the same object from a large dataset of over 1 million images.

The authors focus on scalable methods of building a visual vocabulary and compare

two different implementations, the hierarchical vocabulary of [Nister and Stewe-

nius, 2006] and an approximate flat vocabulary built using randomized kd-trees.

The results show that the flat approximate vocabulary outperforms the hierarchical

vocabulary.

In [Torralba et al., 2008a] the authors explore how recognition performance

can be improved by increasing the amount of training data and ask themselves

how big the dataset has to be to robustly perform recognition using simple nearest-

neighbour schemes. They collect a dataset of nearly 80 million tiny images (32

x 32 pixels), representing a dense sampling of the non-abstract nouns in Wordnet

[Stark and Riesenfeld, 1998], and show that for richly represented classes, simple

non-parametric methods such as nearest-neighbours give similar performance to

class specific detectors.
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Deng et al. [2009] introduce ImageNet, an ongoing effort to create a large

scale ontology of images built upon the structure of WordNet, aiming to populate

the majority of the 80,000+ noun synsets of WordNet with an average of 500-1000

full-resolution images, resulting in tens of millions of annotated images organized

by the semantic hierarchy of WordNet. The authors show the usefulness of Ima-

geNet through a series of experiments including object recognition, image classi-

fication and object localization experiments and confirm the findings of Torralba

et al. [2008a], that performance can be significantly improved by enlarging the

dataset.

2.3 Nearest Neighbour Algorithms for Binary Features
Matching binary features is of increasing interest in the computer vision commu-

nity with many binary visual descriptors being recently proposed in the literature

(BRIEF [Calonder et al., 2010], ORB [Rublee et al., 2011], BRISK [Leutenegger

et al., 2011] ). Binary features are attractive because of several advantages they

have over the more established vector based features such as SIFT [Lowe, 2004]

and SURF [Bay et al., 2006]: they are often very cheap to compute, usually are

more compact to store, and matching them with the Hamming distance can be

done efficiently by using fast bitwise operations.

There is also a lot of work published on the topic of learning short binary codes

through Hamming embeddings from different feature spaces. Salakhutdinov and

Hinton [2009] introduce the notion of semantic hashing when they learn a deep

graphical model that maps documents to small binary codes. When the mapping is

performed such that close features are mapped to close codes (in Hamming space),

the nearest neighbour matching can be efficiently performed by searching for codes

that differ by a few bits from the query code. If the resulting codes are small enough

to be used as indices (addresses) in a hashing table, this can be done very efficiently.

Torralba et al. [2008b] use a similar approach by learning compact binary codes

from images with the goal of performing real-time image recognition on a large

dataset of images using limited memory. Weiss et al. [2008] formalize the require-

ments for good codes and introduce a new technique for efficiently computing bi-

nary codes. Other papers in which a Hamming embedding is computed from SIFT
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visual features are those of Jégou et al. [2008] and Strecha et al. [2010].

Performing approximate nearest neighbour search by examining all the points

in a Hamming radius works efficiently when the distance between the matching

codes is small. When this distance increases, the number of points in the Hamming

radius gets exponentially larger, making the method impractical. This is the case

for visual binary features such as BRIEF or ORB where the minimum distance

between matching features can usually be larger than 20 bits. In cases such as this

exploring the Hamming radius of the query point is impractical and other nearest

neighbour matching techniques must be used.

Because computing Hamming distances between binary features can be done

very efficiently, in many previous publications linear search is the method of choice

for matching binary features. This is only practical for small to medium size

datasets and does not scale to large datasets, where it quickly becomes a bottle-

neck.

Locality Sensitive Hashing (LSH) [Gionis et al., 1999] has been shown to be

effective for fast matching of binary features in [Rublee et al., 2011] where it is

used to match ORB visual descriptors.

Min-hash [Chum et al., 2008, 2009] is an instance of Locality Sensitive Hash-

ing for sets, in which the elements are compared using the Jaccard similarity (the

ratio between the cardinality of the intersection and cardinality of the union of the

sets). Zitnick [2010] uses the min-hash technique for matching a newly introduced

binary patch descriptor, transforming each binary descriptor into a set by consider-

ing the indices assigned to 1 in the descriptor as the set elements.

Norouzi et al. [2012] introduce a way of performing exact K-nearest neighbour

search in Hamming spaces by building multiple hash tables on disjoint substrings

of the binary codes. By using short disjoint substrings (less than 32 bits), the

matching in the multiple hashing tables is done efficiently by direct indexing with

the substring codes. The proposed algorithm is shown to have sub-linear run-time

behaviour for uniformly distributed codes.

Many algorithms for fast matching typically used for vector-based descriptors,

such as kd-trees or k-means trees, are not readily suitable for binary descriptors

because they assume the features exist in Euclidean space where dimensions of

the features can be individually averaged. It’s possible to use these methods for
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binary features by considering them in a vector space where each bit is a numerical

value and match them using the Manhattan distance, however doing so results in

high dimensional features with lower matching performance compared to that of

the original binary features matched with the Hamming distance.

Since the Hamming distance is a metric distance, algorithms designed to work

in metric spaces, such as metric trees, can be used for matching binary features.

Muja and Lowe [2012] propose the use of multiple hierarchical decomposition

trees for matching binary features and show that this approach can outperform

hashing methods such as multi-probe LSH, as will be described in Chapter 4.

Trzcinski et al. [2012] show that the Voronoi diagrams in binary spaces have

thick boundaries, meaning that a large fraction of points is equidistant from two

random points, leading to bad performance from many ANN algorithms, which

assume points can be well clustered together. Based on this observation, they pro-

pose two algorithms optimized for search in binary spaces: the Parc-trees which

is based on a hierarchical decomposition of the space similar to that of [Muja and

Lowe, 2012], but without a common priority queue for searching, and the Uniform

LSH, a variation of LSH in which the bits that form the keys are distributed more

uniformly.

2.4 Automatic Configuration of Nearest Neighbour
Algorithms

There have been hundreds of papers published on nearest neighbour search algo-

rithms, but there has been little systematic comparison to guide the choice among

algorithms and set their internal parameters. One reason for this is that the relative

performance of the algorithms varies widely based on properties of the datasets,

such as dimensionality, correlations, clustering characteristics, and size.

For optimum performance, the algorithm used and its parameters should be

tuned for each case. There has been extensive research on parameter tuning meth-

ods, or in a more general sense algorithm configuration, however these methods

have not been applied for finding optimum parameters for nearest neighbour algo-

rithms. In practice, and in most of the nearest neighbour literature, setting the algo-

rithm parameters is usually a manual process carried out by using various heuristics
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and rarely more systematic approaches.

The use of a systematic approach for automatically choosing the optimal near-

est neighbour algorithm and its parameters has many benefits such as the possibility

of comparing different algorithms in a more meaningful way, allowing users to se-

lect the optimum algorithm for a specific problem and allowing users not familiar

with different algorithms to use them with the optimum parameters instead of the

default ones (which in many situations are far from optimal).

The difficulty of finding optimum parameters for an algorithm depends mainly

on the number and type of the parameters (categorical, ordinal, continuous). When

there are few parameters, usually the most convenient is to pick a limited set of

possible values for each parameter and try all possible combinations of parame-

ters, approach also known as grid search or full factorial design. When the experi-

ments involve only a selected subset of all the possible combinations, the approach

is known as fractional factorial design. With an increase in the number of pa-

rameters, the grid search is no longer feasible due to the exponential growth in

the number of possible parameter combinations. Luckily, most nearest neighbour

search algorithms have a relatively small number of parameters, making the grid

search approach feasible [Muja and Lowe, 2009].

Bawa et al. [2005] show that the performance of the standard LSH algorithm

is critically dependent on a parameter k that determines the length of the hashing

key. The optimum value for this parameter depends on multiple factors, such as the

data distribution, size of dataset and the number of nearest neighbours, and needs

to be tuned for each case when one of these parameters changes beyond a certain

threshold. A new algorithm, LSH Forest, is proposed that eliminates some of the

data dependent parameters of LSH.

Muja and Lowe [2009] show that the randomized k-d trees and the hierarchical

k-means algorithms’ performance also depends on a series of parameters such as

the number of parallel trees (for randomized k-d trees) or branching factor (for

hierarchical k-means). The optimum parameters are shown to be dependent on data

distribution as well. An automatic algorithm configuration method is proposed that

can determine the optimum algorithm and its parameters by combining grid search

with a finer grained Nelder-Mead downhill simplex optimization process [Nelder

and Mead, 1965].

25



Important parameter Important parameter

Grid Layout Random Layout

U
ni

m
po

rt
an

t p
ar

am
et

er

U
ni

m
po

rt
an

t p
ar

am
et

er

Figure 2.3: Example from [Bergstra and Bengio, 2012] illustrating why
random search is preferable to grid search for parameter spaces with low
effective dimensionality. With grid search the important dimensions are
tested in fewer places than with random search.

In the remainder of this section we present several methods for parameter tun-

ing, previously proposed in the literature, that could be used for nearest neighbour

algorithms. [Hutter, 2009] can be consulted for an in-depth review of the algorithm

configuration literature.

Coy et al. [2001] introduce a search based parameter optimization procedure

for a set of problems by running a parameter optimization routine on a small subset

(analysis set) and then combining (averaging) the resulting parameters. For each

problem instance in the analysis set they perform a set of experiments using full

or fractional factorial design with two values for each parameter, followed by a

gradient search on the response surface approximated from the experimental runs.

Adenso-Diaz and Laguna [2006] propose the CALIBRA system that uses a

similar approach of experimental design, followed by a local search. In a first

phase it uses a full factorial design with two values per parameter, followed by a

second local search phase which evaluates nine parameter configurations around

the best configuration found so far in a increasingly denser pattern. Once a local

optimum is found the search is restarted with a coarser grid, until a maximum

number of total experiments is performed. The system is limited at optimizing a

maximum of five parameters and can only handle ordinal parameter types.
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Bergstra and Bengio [2012] show that, except for very small parameter spaces,

random search can be a more efficient strategy for parameter optimization than grid

search or manual parameter selection. The reason is that some parameters are more

important to tune than others and while grid search has an even coverage in the

high dimensional parameter space, when projected into the lower sub-dimensional

space of the more important parameters, it has a poor coverage. An intuitive repre-

sentation of this can be seen in Figure 2.3.

Hutter et al. [2009] introduce ParamILS, an algorithm configuration method

based on iterated local search in the parameter space. ParamILS is initialized with

a combination of a default and random parameter configurations and it constructs

a chain of local optimum parameter configurations inside a main loop. The parts

of this loop are, (i) a solution perturbation to escape from local optima, (ii) an iter-

ative first improvement local search procedure and (iii) an acceptance criterion for

accepting better or equally well performing parameter configurations. In addition

the search is re-initialized at random with a prestart probability.

2.5 Chapter Summary
In this chapter we summarized related work in the field of nearest neighbour search.

Among the papers referenced, we emphasized the type of algorithms used (parti-

tioning tree, hashing, nearest-neighbour graphs), whether it works in a metric space

or requires an Euclidean vector space and whether it does exact or approximate

search. We have also emphasized the importance and usefulness of approximate

nearest neighbour search algorithms in most practical applications.

Next, we presented research related to nearest neighbour matching in large

datasets. This included algorithms such as the vocabulary tree, ball-tree structures,

k-means trees, short code embeddings using several techniques (spectral hashing,

product quantizers). As shown in the introduction chapter, increasing the size of

the dataset is key for improved performance in a variety of applications.

We then reviewed existing literature on the topic of fast matching of binary

features. Binary features have seen increased popularity in the recent literature due

to the fact that they allow fast computation and efficient storage and matching.

Finally, we presented several approaches for algorithm configuration that could
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be applied for finding optimum nearest neighbour algorithms for a specific problem

by tuning their parameters.
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Chapter 3

Fast Approximate Nearest
Neighbour Matching

In this chapter we discuss the problem of fast approximate nearest neighbour match-

ing and present the algorithms that we found to be the most effective for efficiently

finding nearest neighbour matches for high dimensional points.

For high-dimensional spaces, there are no generic nearest-neighbour search al-

gorithms known that are exact and more efficient than linear search. As linear

search is too costly for many applications, this has generated an interest in algo-

rithms that perform approximate nearest-neighbour search, in which non-optimal

neighbours are sometimes returned. Such approximate nearest neighbour (ANN)

search algorithms can be orders of magnitude faster than exact search, while still

providing near-optimal accuracy.

Most ANN algorithms have a way to trade-off between the search time and ac-

curacy (when accepting a lower accuracy the search is faster and when demanding

a high accuracy the search will take longer). The trade-off can usually be con-

trolled by one or more algorithm parameters and by varying these parameters we

can analyse how well an approximate nearest-neighbour algorithm performs.

To measure the accuracy of an approximate nearest neighbour algorithm we

use the term search precision or just precision, which we define as the fraction of

the neighbours returned by the approximate algorithm which are exact neighbours

(identical to what linear search would return). The search time of an algorithm
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can be measured literally, as the time required to perform a search, however we

find that it’s better to express it as the time required to perform a linear search

divided by the time required to perform the approximate search and we refer to it

as the search speedup or just speedup. Using the ratio between the linear search

time and the approximate search time, in addition to providing a useful measure

of the speedup of approximate search compared to the exact linear search, has the

advantage of being more invariant than the absolute time with respect to things like

the speed of the computer running the experiments.

Repeated distance computations between the query point and datasets points

are the most expensive part of most nearest neighbour search algorithms, so in or-

der to be more efficient most algorithms try to ”look at” as few points in the dataset

as possible. To do that and still return a large fraction of the correct neighbours, the

search algorithms have various strategies of choosing which points in the dataset

to examine and which to ignore.

There are two strategies of controlling the level of approximation during search:

an error bound search and a time bound search. In the error bound case, the re-

quirement of finding the closest neighbour is relaxed and the algorithm returns any

point that is within a factor of (1+ ε) of the true nearest neighbour, also known as

(1+ ε)-approximate nearest neighbour. When using (1+ ε)-approximate search,

parts of the dataset can be discarded more quickly compared to regular search, re-

sulting in a faster search at the expense of search accuracy. The other strategy, of

time constrained search, consists of terminating the search early, typically before a

predetermined number of dataset points have been visited. We have found the time

constrained search to give better results than (1+ ε)-NN search and for this rea-

son we are using this approach in the experiments in this chapter and by default in

FLANN (although (1+ε)-approximate search is present as an optional parameter).

We have evaluated many different algorithms for approximate nearest neigh-

bour search on datasets with a wide range of dimensionality. In our experiments,

one of two algorithms obtained the best performance, depending on the dataset and

desired precision: the priority search k-means tree or the multiple randomized k-d

trees. We show that for a particular dataset the algorithm type and it’s parameters

have a big impact on the performance and that an automatic algorithm configura-

tion procedure can greatly improve performance.
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Figure 3.1: Example of a kd-tree decomposition and the associated binary
tree data structure. The arrows indicate the way the tree is traversed to
locate the first nearest neighbour candidate for the query point q.

3.1 The Randomized k-d Tree Algorithm
This section gives a brief introduction to the classic k-d tree algorithm and de-

scribes how it can be used for approximate search. It then presents the multiple

randomized k-d tree version which we found to be very effective for some high

dimensional problems.

The classic k-d tree

The classical k-d tree [Bentley, 1975; Friedman et al., 1977] is one of the best

known nearest-neighbour search algorithms and was shown to be very efficient for

low dimensionality data. The k-d tree is a space partitioning data structure build

by splitting the data using axis-aligned hyperplanes perpendicular on the axis on

which the data has the highest variance. By recursively applying this splitting

procedure, a binary tree is constructed in which the inner nodes represent axis-

aligned hyperplane and the leaf nodes represent the points in the dataset (see Figure

3.1). Each branch of an inner node corresponds to a rectangular region of the search

space bounded by the hyperplanes corresponding to the ancestor nodes.

During search, the tree is traversed from the root to a leaf node by choosing at

each inner node the branch representing the region of space containing the query

point. The point in the leaf node becomes a first nearest neighbour candidate and

the search is continued by backtracking into the tree. Any branches that are further
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away then the distance to the nearest neighbour candidate can be ignored as it is

certain that they will not contain closer points, and the nearest neighbour candidate

is updated any time a point that’s closer to the query is located. The search ends

when the entire tree has been explored or all the remaining branches can be pruned

away due to being too far.

The above algorithm works very well for low dimensional data, managing to

quickly ignore most of the tree branches and to find the exact nearest neighbour

very efficiently. As the dimensionality increases however, the number of cells that

the algorithm has to visit quickly increases (the number of adjacent cells in the

tree increases exponential with the data dimensionality) to the point where the

algorithm needs to visit nearly all the leaf nodes. When the algorithm has to visit

almost all leaf nodes, it becomes even slower than linear search due to the overhead

of traversing the tree.

Approximate search in a k-d tree

To obtain a speedup over linear search it is necessary to settle for an approximate

nearest-neighbour search algorithm, which can greatly improve the search speed

at the cost of not always returning the exact nearest neighbours. The exact k-d

tree search can be transformed into an approximate search by using either the error

constrained (1+ ε)-search or the time constrained search. Below we describe the

time constrained search, as we found it to be more effective in practice.

For the approximate search, after descending the tree once, the algorithm doesn’t

backtrack through the tree as in the case of the exact search. Instead, during the

descend phase all the unexplored branches are placed into a priority queue ordered

by the distance from the query point to the region corresponding to the branch and

after a leaf is reached the search is resumed from the branch on top of the priority

queue. The search is terminated when a fixed number of leafs nodes have been

visited and the neighbour candidate at that point is returned.

The use of the priority queue was first proposed in Arya et al. [1998] and it

has the advantage that it increases the likelihood of visiting closer neighbours early

in the search process. This makes the search more efficient by allowing the algo-

rithm to prune away more branches during the remainder of the search. Because
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Figure 3.2: Example of randomized kd-trees. The nearest neighbour is
across a decision boundary from the query point in the first decomposi-
tion, however it’s in the same cell in second decomposition.

the search is stopped early, the answer returned is not always the correct nearest

neighbour, but the use of the priority queue makes it likely that even when it’s not

the closest point, it’s still a close one.

3.1.1 Algorithm description

When using approximate search in a single k-d tree, the data dimensionality has a

significant impact on the accuracy of the results. The season for this can be under-

stood by imagining the case when the query point is close to one of the splitting

hyperplanes. In that case the nearest neighbour lies with almost equal probabil-

ity on the other side of the hyperplane as on the same side as the query point and

further exploration of the tree is required before the cell containing the nearest

neighbour will be visited. In the case of the approximate search when the explo-

ration tree exploration is stopped early, the cell with the closest neighbour might

not get visited at all.

Silpa-Anan and Hartley [2008] proposed the use of multiple randomized k-d

trees (or randomized k-d forest) to improve the accuracy of the results when using

high dimensional data. As illustrated by Figure 3.2, with multiple randomized k-d

tree decompositions when the closest neighbour happens to lie across a decision

boundary from the query point, it’s possible that in a different decomposition the

two points will be in the same cell.

The randomized k-d trees are build in a similar manner to the classic k-d tree
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described above, with the difference that the classic kd-tree algorithm splits data

on the dimension with the highest variance, but for the randomized k-d trees the

split dimension is chosen randomly from the top ND dimensions with the highest

variance. We used the fixed value ND = 5 in our implementation, as this performs

well across all our datasets and does not benefit significantly from further tuning.

Algorithm 1 Building the randomized k-d forest
Input: features dataset D, number of trees N
Output: the randomized kd-trees data structure
procedure BUILDRANDOMIZEDKDTREES(D,N)

1: trees←{}
2: for i←{1..N} do
3: treesi← BUILDKDTREE(D)
4: end for
5: return trees

procedure BUILDKDTREE(D)
1: if |D|== 1 then
2: CREATELEAFNODE(D)
3: else
4: axesMeans[1..d]← mean of features in D along each dimension
5: axesVariances[1..d]← variance of features in D along each dimension
6: maxVarianceAxes[1..ND]← top ND dimensions with highest variance
7: splitDim← random dimension from maxVarianceAxes
8: splitValue← axesMeans[splitDim]
9: (D1, D2)← split dataset on splitDim using splitValue

10: T1← BUILDKDTREE(D1)
11: T2← BUILDKDTREE(D2)
12: CREATEINNERNODE(splitDim, splitValue, T1, T2)
13: end if

When searching the randomized k-d forest, a single priority queue is main-

tained across all the randomized trees (see Algorithm 2). The priority queue is or-

dered by increasing distance to the decision boundary of each branch in the queue,

so search will visit first the closest leaves from all the trees. Once a data point is

visited inside a tree, it is marked so that it will not be re-visited from another tree.

The degree of approximation is determined by the maximum number of leaves

to be visited (across all trees) and the search is stopped when this number is
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reached, returning the best nearest neighbour candidates found up to that point.

Algorithm 2 Searching the randomized k-d forest
Input: randomized k-d trees Ti, query point Q, number of neighbours K, maxi-

mum number of points to examine L
Output: approximate K nearest neighbours of query point
procedure SEARCHKDTREES(Ti,Q,K,L)

1: count← 0
2: PQ← empty priority queue
3: R← empty priority queue
4: for each tree Ti do
5: call TRAVERSEKDTREE(Q,Ti,PQ,R)
6: end for
7: while PQ not empty and count < L do
8: T ← top of PQ
9: call TRAVERSEKDTREE(Q,T ,PQ,R)

10: end while
11: return K top points from R
procedure TRAVERSEKDTREE(Q,T ,PQ,R)

1: if T is a leaf node then
2: add point in T to R
3: count← count +1
4: else
5: splitDim← T.splitDim
6: splitValue← T.splitValue
7: if Q(splitDim)< splitValue then
8: closestNode← T.le f t
9: otherNode← T.right

10: else
11: closestNode← T.right
12: otherNode← T.le f t
13: end if
14: add otherNode to PQ
15: call TRAVERSEKDTREE(Q,closestNode,PQ,R)
16: end if

Figure 3.3 shows the value of searching in many randomized kd-trees at the

same time. It can be seen that performance improves with the number of ran-

domized trees up to a certain point (about 20 random trees in this case) and that
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Figure 3.3: Speedup obtained by using multiple randomized kd-trees
(100K SIFT features dataset).

increasing the number of random trees further leads to static or decreasing perfor-

mance. The memory overhead of using multiple random trees increases linearly

with the number of trees, so at some point the speedup will not justify the addi-

tional memory used.

3.1.2 Analysis

We analyse the complexity of the randomized k-d forest by looking at the index

construction time, search time as well as the memory requirements. Depending on

the application domain, each of these can be of a high importance. For example,

when performing many batch nearest neighbour searches with a fixed dataset that

can be built in advance, the target is usually to minimize the search time. For online

searches, when the dataset changes often and the trees need to be rebuilt, both the

construction time and the search time should be as low as possible. In memory

constrained environments, having an index will a low memory overhead is also a

key factor.
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Construction Time Complexity

To analyse the time complexity for constructing a randomized k-d forest, we first

look at the complexity of partitioning the data points corresponding to a single

node v with nv associated data points. The computation of the mean and vari-

ance for each dimension costs O(d nv) where d is the number of dimensions. The

complexity of partitioning the set of points according to the splitting dimension and

splitting value is O(nv), so the total complexity of partitioning the points is O(d nv).

If we assume a balanced tree, we’ll have a total of n points on each level, resulting

in a complexity of O(d n) for partitioning the nodes on a level and O(logn) lev-

els, for a total tree construction complexity of O(d n log). For m parallel trees this

becomes O(md n logn).

Search Time Complexity

To perform an approximate search, a top-down traversal of the trees is performed

as many times as the number of leafs L we want to visit. During each descent the

algorithm needs to check O(logn) internal nodes and one leaf node.

For each internal node the algorithm needs to decide which side of the decision

boundary to explore next, which is a O(1) operation, and to insert the unexplored

branch into the priority queue. We are using a binary heap, which has a O(lognQ)

insertion complexity however the size of the priority queue nQ is limited by the

number of leafs visited. A binomial heap could be used for O(1) amortized inser-

tion cost. For each leaf, the distance between the query and the leaf point needs to

be computed, an O(d) operation, where d is the data dimensionality. The overall

search time complexity when examining L leaf nodes is O(Ld +L logn).

Storage Cost

The storage cost for the randomized k-d forest is low as each inner node only needs

to store the split dimension, split value and two pointers to the left and right nodes.

Each leaf node only needs to store a pointer to the data point it contains. The total

storage cost for storing m trees is O(mn) and if we include the cost of storing the

data points: O(nd +mn).
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3.2 The Priority Search K-Means Tree Algorithm
We have found the randomized k-d forest to be very effective in many situations,

however on other datasets a different algorithm, the priority search k-means tree,

has been more effective at finding approximate nearest neighbours, especially when

a high precision is required.

The priority search k-means tree tries to better exploit the natural structure ex-

isting in the data, by clustering the data points using the full distance across all

dimensions, in contrast to the (randomized) k-d tree algorithm which only parti-

tions the data based on one dimension at a time. Therefore, it can be expected for

the priority search k-means tree algorithm to be able to better discover the natural

clustering structure present in the data and to perform better on some datasets.

3.2.1 Algorithm description

The priority search k-means tree is constructed by partitioning the data points at

each level into K distinct regions using k-means clustering, and then applying the

same method recursively to the points in each region. The recursion is stopped

when the number of points in a region is smaller than K (see Algorithm 3).

Nearest-neighbour algorithms that use hierarchical partitioning schemes based

on clustering the data points have been previously proposed in the literature [Brin,

1995; Fukunaga and Narendra, 1975; Nister and Stewenius, 2006]. All these algo-

rithm differ in the way they construct the partitioning tree (whether using k-means,

agglomerative or some other form of clustering) and especially in the strategies

used for exploring the hierarchical tree.

The algorithm we propose in this section explores the k-means tree using a

best-bin-first strategy, by analogy to what has been found to significantly improve

the performance of the approximate kd-tree searches.

The tree is searched by initially traversing the tree from the root to the closest

leaf, following at each inner node the branch with the closest cluster centre to the

query point, and adding all unexplored branches along the path to a priority queue

(see Algorithm 4). The priority queue is sorted in increasing distance from the

query point to the boundary of the branch being added to the queue. After the initial

tree traversal, the algorithm resumes traversing the tree, but always starting with
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Algorithm 3 Building the priority search k-means tree
Input: features dataset D, branching factor K, maximum iterations Imax, centre

selection algorithm to use Calg
Output: k-means tree

1: if |D|< K then
2: create leaf node with the points in D
3: else
4: P← select K points from D using the Calg algorithm
5: converged← false
6: iterations← 0
7: while not converged and iterations < Imax do
8: C← cluster the points in D around nearest centres P
9: Pnew← means of clusters in C

10: if P=Pnew then
11: converged ← true
12: end if
13: P← Pnew

14: iterations← iterations + 1
15: end while
16: for each cluster Ci ∈C do
17: create non-leaf node with center Pi

18: recursively apply the algorithm to the points in Ci

19: end for
20: end if

the top branch in the queue, the branch with the closest centre to the query point.

In each traversal the algorithm keeps adding to the priority queue the unexplored

branches along the path.

The degree of approximation is controlled in the same way as for the random-

ized kd-trees, by stopping the search early after a predetermined number of dataset

points have been examined.

Algorithm parameters

The number of clusters K to use when partitioning the data at each node is a pa-

rameter of the algorithm, called the branching factor and choosing K is important

for obtaining a good search performance. In section 3.4 we propose an algorithm
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Algorithm 4 Searching the priority search k-means tree
Input: k-means tree T , query point Q, maximum number of points to examine L
Output: K nearest approximate neighbours of query point
procedure SEARCHKMEANSTREE(T ,Q,L)

1: count← 0
2: PQ← empty priority queue
3: R← empty priority queue
4: call TRAVERSETREE(T ,PQ,R)
5: while PQ not empty and count < L do
6: N← top of PQ
7: call TRAVERSETREE(N,PQ,R)
8: end while
9: return K top points from R

procedure TRAVERSEKMEANSTREE(N,PQ,R)
1: if node N is a leaf node then
2: search all the points in N and add them to R
3: count← count + |N|
4: else
5: C← child nodes of N
6: Cq← closest node of C to query Q
7: Cp←C\Cq

8: add all nodes in Cp to PQ
9: call TRAVERSETREE(Cq,PQ,R)

10: end if

for finding the optimum algorithm parameters, including the optimum branching

factor. Figure 3.4 contains a visualisation of several hierarchical k-means decom-

positions with different branching factors computed for the same dataset.

Another parameter of the priority search k-means tree is Imax, the maximum

number of iterations to perform in the k-means clustering loop. One disadvantage

of the priority search k-means tree over the randomized k-d forest is that it has

a higher tree-build time. The build time can be significantly reduced by doing a

small number of iterations in the k-means clustering stage instead of running it

until convergence. This results in a slightly un-optimal clustering (if we consider

the sum of squared errors from the points to the cluster centres as the measure of

optimality), however we have observed that even after a small number of iterations

40



Figure 3.4: Projections of priority search k-means trees constructed using
different branching factors: 2, 4, 8, 16, 32, 128. The projections are
constructed using the same technique as in [Schindler et al., 2007]. The
grey values indicate the ratio between the distances to the nearest and
the second-nearest cluster centre at each tree level, so that the darkest
values (ratio≈1) fall near the boundaries between k-means regions.

the nearest neighbour search performance is similar to that of the tree constructed

by running the clustering until convergence.

The above is illustrated in Figure 3.5 which shows the performance of the tree

constructed using a limited number of iterations in the k-means clustering step rel-

ative to the performance of the tree when the k-means clustering is run until con-

vergence. It can be seen that using as few as 7 iterations we get more than 90% of

the nearest-neighbour performance of the tree constructed using full convergence,

but requiring less than 10% of the build time.

When using zero iterations in the k-means clustering we obtain the more gen-

eral GNAT tree of [Brin, 1995], which assumes that the data lives in a generic

metric space, not in a vector space. However Figure 3.5 shows that the search

performance of this tree is worse than that of the priority search k-means tree (by
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factor of 5).

The algorithm to use when picking the initial centres in the k-means clustering

can be controlled by the Calg parameter. In our experiments (and in the FLANN

library) we have used the following algorithms: random selection, Gonzales’ al-

gorithm (selecting the centres to be spaced apart from each other) and KMeans++

algorithm [Arthur and Vassilvitskii, 2007]. We have discovered that the initial clus-

ter selection made only a small difference in terms of the overall search efficiency

in most cases and that the random initial cluster selection is usually a good choice

for the priority search k-means tree.

We have also experimented with constructing multiple randomized priority

search k-means trees and have found that using multiple trees did not bring sig-

nificant performance improvements. We suspect the reason for this to be the fact

that the k-means clustering process forced the partitioning domains of the multiple

randomized trees to overlap, eliminating the benefit of the randomization.

3.2.2 Analysis

We analyse the complexity of the priority search k-means tree algorithm with re-

spect to the data size and dimensionality, build and search parameters. As before

we consider the tree construction time, search time and the memory requirements

for storing the tree.

Construction Time Complexity

During the construction of the k-means tree, a k-means clustering operation has to

be performed for each inner node. Considering a node v with nv associated data

points, and assuming a maximum number of iterations I in the k-means clustering

loop, the complexity of the clustering operation is O(nvdKI). Taking into account

all the inner nodes on a level, we have ∑nv = n, so the complexity of constructing a

level in the tree is O(ndKI). Assuming a balanced tree, the height if the tree will be

(logn/ logK), resulting in a total tree construction cost of O(ndKI(logn/ logK)).
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Figure 3.5: The influence that the number of k-means iterations has on the
search time efficiency of the k-means tree (top) and on the tree construc-
tion time (bottom) (100K SIFT features dataset). Both figures show the
relative search/build time compared to the case of using full conver-
gence for the k-means algorithm.
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Search Time Complexity

In case of the time constrained approximate nearest neighbour search, the algo-

rithm stops after examining L data points. Considering a complete priority search

k-means tree with branching factor K, the number of top down tree traversals

required is L/K. During each top-down traversal, the algorithm needs to check

O(logn/ logK) inner nodes and one leaf node.

For each internal node, the algorithm has to find the branch closest to the query

point, so it needs to compute the distances to all the cluster centres of the child

nodes, an O(Kd) operation. The unexplored branches are added to a priority queue,

which can be accomplished in O(K) amortized cost when using binomial heaps.

For the leaf node the distance between the query and all the points in the leaf needs

to be computed which takes O(Kd) time. In summary the overall search cost is

O(Ld +Ld(logn/ logK)).

Storage Complexity

Storing the k-means tree requires memory for O(n/K2) inner nodes and O(n/K)

leaf nodes. Each inner node stores the K centres of the child clusters and K pointers

to the associated child nodes, while the leafs store up to K pointers to the data

points. In conclusion the total storage requirements for the entire tree is O(nd/K+

n).

3.3 Experiments
In this section we present several experiments we have conducted in order to ana-

lyse the performance of the two algorithms described in this chapter.

For these experiments we used a selection of datasets with a wide range of

sizes and data dimensionality. Among the datasets used are the Winder/Brown

patch dataset [Winder and Brown, 2007], datasets of randomly sampled data of

different dimensionality, datasets of SIFT features of different sizes obtained by

sampling from the CD cover dataset of [Nister and Stewenius, 2006] as well as a

dataset of 100K SIFT features extracted from the overlapping images forming a

panorama. For each experiment, we randomly sample a query set of points from

each of these datasets.
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We analyse the performance of the algorithms presented above by looking at

the speedup over linear search of each algorithm for different search precisions.

Typically, there is a trade-off between the accuracy of the search and the search

performance, trade-off illustrated by Figure 3.6.

For each experiment we measure only the processor time used by the process

running the experiment, to not be influenced by the other processes executing on

the machine at the same time. In order to eliminate noisy variations that can occur

during an experiment, we execute each experiment multiple times (between 5 and

10 times) and present the average run times between all executions. We generally

omit the error bars on the graphs in the paper because the measurement errors are

typically small, as indicated by Figure 3.6, and the conclusions we draw from these

experiments are based on much larger differences between the different algorithms

we compare.

3.3.1 Data dimensionality.

Data dimensionality is one of the factors that has a great impact on the nearest

neighbour matching performance. The top of Figure 3.7 shows how the search

performance degrades as the dimensionality increases in the case of random vec-

tors. The datasets in this case each contain 105 vectors whose values are randomly

sampled from the same uniform distribution. These random datasets are one of

the most difficult problems for nearest neighbour search, as no value gives any

predictive information about any other value.

As can be seen in the top part of Figure 3.7, the nearest-neighbour searches

have a low efficiency for higher dimensional data (for 68% precision the approxi-

mate search speed is no better than linear search when the number of dimensions

is greater than 800). However real world datasets are normally much easier due to

correlations between dimensions.

The performance is markedly different for many real-world datasets. The bot-

tom part of Figure 3.7 shows the speedup as a function of dimensionality for the

Winder/Brown image patches1 resampled to achieve varying dimensionality. In

this case however, the speedup does not decrease with dimensionality, it actually

1http://phototour.cs.washington.edu/patches/default.htm
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Figure 3.6: Search speedup for different precisions (the priority search k-
means tree algorithm on a dataset of 100K SIFT features extracted from
the Winder/Brown patches). The error bars indicate the standard devia-
tion of the run time measurements.

increases for some precision levels. This can be explained by the fact that there

exists a strong correlation between the dimensions, so that even for 64x64 patches

(4096 dimensions), the similarity between only a few dimensions provides strong

evidence for overall patch similarity.

In the experiments of Figure 3.7, we used the randomized kd-trees and the pri-

ority k-means tree algorithms and each data point was obtained using the algorithm

performing best for that particular combination of data dimensionality and search

precision.

In Figure 3.8 we present, for illustrative purposes, four examples of nearest

neighbour search on the Trevi dataset of patches, using patches with varying di-

mensionality. For each query, we present the first five approximate nearest neigh-

bour returned by the search. The patches marked with an “X” are patches that

represent objects different than the one in the query patch.
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Figure 3.7: Search efficiency for data of varying dimensionality. We ex-
perimented on both random vector and image patches. The random
vectors (top figure) represent the hardest case in which dimensions have
no correlations, while most real-world problems behave more like the
image patches (bottom figure).
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Figure 3.8: Example of nearest neighbour queries with different patch
sizes. The Trevi Fountain patch dataset was queried using different
patch sizes. The query patch is on the left of each panel, while the
following 5 patches are the nearest neighbours from a set of 100,000
patches. Incorrect matches are shown with an X.

3.3.2 Search precision.

The desired search precision determines the degree of speedup that can be obtained

with any approximate algorithm. Looking at Figure 3.10 (the SIFT 1M dataset) we

see that if we are willing to accept a precision as low as 60%, meaning that 40% of

the neighbours returned are not the exact nearest neighbours, but just approxima-

tions, we can achieve a speedup of three orders of magnitude over linear search (us-

ing the multiple randomized kd-trees). However, if we require a precision greater

then 90% the speedup is smaller, less than 2 orders of magnitude (using the priority

search k-means tree).

We use several datasets of different dimensions for the experiments in Fig-
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Figure 3.9: Comparison of the search efficiency for several nearest neighbour
algorithms (100K SIFT features dataset).

ure 3.10. We construct a 100K and 1 million SIFT features dataset by randomly

sampling a dataset of over 5 million SIFT features extracted from a collection of

CD cover images [Nister and Stewenius, 2006]2. These two datasets obtained by

random sampling have a relatively high degree of difficulty in terms of nearest

neighbour matching, because the features they contain usually do not have “true”

matches between them. We also use the entire 31 million feature dataset from the

same source for the experiment in Figure 3.10. Additionally we use the patches

datasets described in subsection 3.3.1 and another 100K SIFT features dataset ob-

tained from a set of images forming a panorama.

We compare the two algorithms we found to be the best at finding fast ap-

proximate nearest neighbours (the multiple randomized kd-trees and the priority

search k-means tree) with existing approaches, the ANN [Arya et al., 1998] and

2http://www.vis.uky.edu/∼stewe/ukbench/data/
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Figure 3.10: Search speedup for different dataset sizes.

LSH algorithms [Andoni and Indyk, 2008]3 on the first dataset of 100,000 SIFT

features. Since the LSH implementation (the E2LSH package) solves the R-near

neighbour problem (finds the neighbours within a radius R of the query point, not

the nearest neighbours), to find the nearest neighbours we have used the approach

suggested in the E2LSH’s user manual: we compute the R-near neighbours for in-

creasing values of R. The parameters for the LSH algorithm were chosen using

the parameter estimation tool included in the E2LSH package. For each case we

have computed the precision achieved as the percentage of the query points for

which the nearest neighbours were correctly found. Figure 3.9 shows that the pri-

ority search k-means algorithm outperforms both the ANN and LSH algorithms by

about an order of magnitude. The results for ANN are consistent with the exper-

iment in Figure 3.3, as ANN uses only a single kd-tree and does not benefit from

the speedup due to using multiple randomized trees.

3We have used the publicly available implementations of ANN (http://www.cs.umd.edu/̃ mount/
ANN/) and LSH (http://www.mit.edu/̃ andoni/LSH/)
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Figure 3.11: Search speedup when the query points don’t have “true”
matches in the dataset vs the case when they have.

Figure 3.10 shows the performance of the randomized kd-trees and the prior-

ity search k-means on datasets of different sizes. The figure shows that the two

algorithms scale well with the increase in the dataset size, having the speedup over

linear search increase with the dataset size.

Figure 3.11 compares the performance of nearest neighbour matching when

the dataset contains true matches for each feature in the test set to the case when

it contains false matches. A true match is a match in which the query and the

nearest neighbour point represent the same entity, for example in case of SIFT

feature, they represent image patches of the same object. In this experiment we

used the two 100K SIFT features datasets described above. The first is randomly

sampled from a 5 million SIFT features dataset and it contains false matches for

each feature in the test set. The second contains SIFT features extracted from a set

of images forming a panorama. These features were extracted from the overlapping

regions of the images, and we use only those that have a true match in the dataset.
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Figure 3.12: Search speedup for the Trevi Fountain patches dataset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Av
er

ag
e 

di
st

an
ce

 e
rro

r

Figure 3.13: Average distance error for different precisions (SIFT features
extracted from the Trevi fountain patches dataset).
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Our experiments showed that the randomized kd-trees have a significantly better

performance for true matches, when the query features are likely to be significantly

closer than other neighbours. Similar results were reported in [Mikolajczyk and

Matas, 2007].

Figure 3.12 illustrates the difference in performance between the randomized

kd-trees and the priority search k-means tree for one of the Winder/Brown patches

datasets. In this case, the randomized kd-trees algorithm clearly outperforms the

priority search k-means algorithm everywhere except for cases where precision is

very close to 100%. It appears that the kd-tree works much better in cases when the

intrinsic dimensionality of the data is much lower than the actual dimensionality,

presumably because it can better exploit the correlations among dimensions. How-

ever, Figure 3.10 shows that the k-means tree can perform better for other datasets

(especially for high search precisions). This result demonstrates the importance of

performing algorithm selection on each dataset.

Figure 3.13 shows the average relative distance error between the neighbours

returned by an approximate search and the true neighbours for different search

precisions, using a dataset of SIFT features computed on the patches of one of

the Winder/Brown patches datasets. The relative distance error is computed as

(d−d∗)/d∗, where d is the distance between a query point and its nearest neigh-

bour returned by the approximate search and d∗ is the distance between the same

query point and its true nearest neighbour. It can be seen that the distance error

quickly decreases as the precision increases, such that for 50% search precision

(only half the neighbours returned are the exact neighbours) the distance error is

less than 10% and for 70% search precision the distance error is less than 5%. This

shows that even when the points returned by the approximate search are not the

exact neighbours, they are points close to the exact neighbours.

3.4 Automatic Selection of the Optimal Algorithm
Our experiments have revealed that the optimal algorithm for approximate nearest

neighbour search is highly dependent on several factors such as the data dimen-

sionality, size and structure of the dataset (whether there is any correlation be-

tween the features in the dataset) and the desired search precision. Additionally,

53



each algorithm has a set of parameters that have significant influence on the search

performance. These parameters include the number of randomized trees to use in

the case of kd-trees or the branching factor and the number of iterations in the case

of the priority search k-means tree.

Although there are hundreds of papers published on the topic of nearest neigh-

bour search, surprisingly little has been done in the area of systematically choosing

the optimum nearest neighbour algorithm and tuning its parameters. In practice

and in most of the nearest neighbour literature, setting the algorithm parameters is

usually a manual process carried out by using various heuristics and rarely more

systematic approaches.

The manual tuning of a nearest neighbour algorithm is a process typically

started with some parameter configuration that is believed to give good results in

general, and which is iteratively improved by changing one parameter at a time

and accepting a new parameter configuration when it results in improved perfor-

mance. The process is typically stopped when the performance obtained cannot be

improved through successive parameter changes or is adequate for the task at hand.

Having the possibility to automatically select the optimum nearest neighbour

algorithm and tune its parameters it important for several reasons:

• The variability in performance of different nearest neighbour algorithms rel-

ative to their parameters prevents them for easily being compared on an equal

footing as it’s not obvious if one algorithm has better performance or just that

its authors managed to find better parameters for it. Having an automatic and

objective way of selecting optimum parameters would allow comparisons of

different nearest neighbour algorithms to be more meaningful.

• When used in practice the performance of most nearest neighbour algorithms

depends on having the optimum parameters for the situation. Using the man-

ual parameter tuning process described above is tedious and in most cases the

users of different nearest neighbour algorithms don’t try to optimize the pa-

rameters, using the default ones instead. As we have showed in this chapter,

any default parameters, even if they work well for a large range of problems,

are bound to be sub-optimal or even perform badly for other problems.

• Users can be intimidated by the many parameters an algorithm might have
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and choose to use other algorithms not well suited for a particular problem

just because they have fewer or no parameters to adjust. An automated way

of choosing the optimum parameters would allow users to use the appropri-

ate algorithm for each situation.

By considering the algorithm itself as a parameter of a generic nearest neigh-

bour search routine A, the problem is reduced to determining the parameters θ ∈Θ

that give the best solution, where Θ is also known as the parameter configura-

tion space. This can be formulated as an optimization problem in the parameter

configuration space:

min
θ∈Θ

c(θ)

with c : Θ→ R being a cost function indicating how well the search algorithm A,

configured with the parameters θ , performs on the given input data.

We define the cost as a combination of the search time, tree build time, and

tree memory overhead. Depending on the application, each of these three factors

can have a different importance: in some cases we don’t care much about the tree

build time (if we will build the tree only once and use it for a large number of

queries), while in other cases both the tree build time and search time must be

small (if the tree is built on-line and searched a small number of times). There are

also situations when we wish to limit the memory overhead if we work in memory

constrained environments. We define the cost function as follows:

c(θ) =
s(θ)+wbb(θ)

minθ∈Θ(s(θ)+wbb(θ))
+wmm(θ) (3.1)

where s(θ), b(θ) and m(θ) represent the search time, tree build time and memory

overhead for the tree(s) constructed and queried with parameters θ . The memory

overhead represents the ratio of the memory used by the tree(s) and the memory

used by the data: m(θ) = mt(θ)/md .

The weights wb and wm are used to control the relative importance of the build

time and memory overhead in the overall cost. The build-time weight (wb) controls

the importance of the tree build time relative to the search time. Setting wb = 0

means that we want the fastest search time and don’t care about the tree build

time, while setting larger values for wb gives the tree build time increased impor-
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tance. Similarly, the memory weight (wm) controls the importance of the memory

overhead compared to the time overhead. The time overhead is computed relative

to the optimum time cost minθ∈Θ(s(θ)+wbb(θ)), which is defined as the optimal

search and build time if memory usage were not a factor. Therefore, setting wm = 0

will choose the algorithm and parameters that result in the fastest search and build

time without any regard to memory overhead, while setting wm = 1 will give equal

weight to a given percentage increase in memory use as to the same percentage

increase in search and build time.

We perform the above optimization in two steps: a global exploration of the

parameter space using grid search, followed by a local optimization starting with

the best solution found in the first step.

Because the number of parameters of various nearest neighbour search algo-

rithms is relatively low, a grid search approach is a feasible approach. In the case

of the randomized k-d trees and the priority search k-means tree we consider the

following parameter values for the grid search: {1,4,8,16,32} as the number of

random kd-trees, {16,32,64,128,256} as the branching factor for the k-means tree

and {1,5,10,15} as the number of k-means iterations.

In the second step we use the Nelder-Mead downhill simplex method [Nelder

and Mead, 1965] to further locally explore the parameter space and fine-tune the

best solution obtained in the first step. Although this does not guarantee a global

minimum, our experiments have shown that the parameter values obtained are close

to optimum.

We use random sub-sampling cross-validation to generate the data and the

query points when we run the optimization. In FLANN the optimization can be

run on the full dataset for the most accurate results or using just on a fraction of the

dataset to have a faster auto-tuning process. The parameter selection needs only be

performed once for each type of dataset, and the optimum parameter values can be

saved and applied to all future datasets of the same type.

In Table 3.1, we show the results from running the parameter selection proce-

dure described above on a dataset containing 100K randomly sampled SIFT fea-

tures. We used two different search precisions (60% and 90%) and several combi-

nations of the trade-off factors wb and wm. For the build time weight, wb, we used

three different possible values: 0 representing the case where we don’t care about
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Table 3.1: The algorithms chosen by our automatic algorithm and param-
eter selection procedure (SIFT 100K dataset). The “Algorithm” col-
umn shows the algorithm chosen and its optimum parameters (number
of random trees in case of the kd-tree; branching factor and number
of iterations for the k-means tree), the “Dist. Error” column shows
the mean distance error compared to the exact nearest neighbours, the
“Search Speedup” shows the search speedup compared to linear search,
the “Memory Used” shows the memory used by the tree(s) as a fraction
of the memory used by the dataset and the “Build Time” column shows
the tree build time as a fraction of the linear search time for the test set.

Pr.(%) wb wm Algorithm
Configuration

Dist.
Error

Search
Speedup

Memory
Used

Build
Time

60%

0 0 k-means, 16, 15 0.096 181.10 0.51 0.58
0 1 k-means, 32, 10 0.058 180.9 0.37 0.56

0.01 0 k-means, 16, 5 0.077 163.25 0.50 0.26
0.01 1 kd-tree, 4 0.041 109.50 0.26 0.12

1 0 kd-tree,1 0.044 56.87 0.07 0.03
* ∞ kd-tree,1 0.044 56.87 0.07 0.03

90%

0 0 k-means, 128, 10 0.008 31.67 0.18 1.82
0 1 k-means, 128, 15 0.007 30.53 0.18 2.32

0.01 0 k-means, 32, 5 0.011 29.47 0.36 0.35
1 0 k-means, 16, 1 0.016 21.59 0.48 0.10
1 1 kd-tree,1 0.005 5.05 0.07 0.03
* ∞ kd-tree,1 0.005 5.05 0.07 0.03

the tree build time, 1 for the case where the tree build time and search time have

the same importance and 0.01 representing the case where we care mainly about

the search time but we also want to avoid a large build time. Similarly, the memory

weight was chosen to be 0 for the case where the memory usage is not a concern,

∞ representing the case where the memory use is the dominant concern and 1 as a

middle ground between the two cases.

Examining Table 3.1 we can see that for the cases when the build time or the

memory overhead had the highest weight, the algorithm chosen was the kd-tree

with a single tree because it is both the most memory efficient and the fastest

to build. When no importance was given to the tree build time and the memory
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overhead the algorithm chosen was k-means, as confirmed by the plots in Figure

3.10. The branching factors and the number of iterations chosen for the k-means

algorithm depend on the search precision and the tree build time weight: higher

branching factors proved to have better performance for higher precisions and the

tree build time increases when the branching factor or the number of iterations

increase.

3.5 Chapter Summary
In this chapter we discuss the problem of fast approximate nearest neighbour search

in high dimensional spaces.

We present the two algorithms we have found to work best in this domain: the

randomized k-d forest and the priority search k-means tree. We describe the two

algorithms, analyse their behaviour with respect to construction and search time as

well as memory requirements and discuss the effect that the algorithm parameters

have on their performance.

We also present a series of experiments comparing the two algorithms on sev-

eral criteria, such as data dimensionality, dataset size as well as with other ap-

proximate nearest neighbour algorithms. Our experiments show that the optimum

algorithm and algorithm parameters are dependent on the dataset used and the de-

sired accuracy which emphasize the importance of automatic algorithm selection

for nearest neighbour search applications.

Finally, we propose a method for automatic selection of the best algorithm

and its optimal parameters for a specific dataset. This has been implemented in

FLANN and provides a simple interface for selecting the optimum algorithm and

its parameters.
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Chapter 4

Binary Feature Matching

A number of binary visual descriptors have been recently proposed in the liter-

ature, including BRIEF [Calonder et al., 2010], ORB [Rublee et al., 2011], and

BRISK [Leutenegger et al., 2011]. These have several advantages over the more

established vector-based descriptors such as SIFT [Lowe, 2004] and SURF [Bay

et al., 2006], as they are cheaper to compute, more compact to store, and faster to

compare with each other.

Binary features are typically compared using the Hamming distance, which for

binary data can be computed by performing a bitwise XOR operation followed by

a bit count on the result. This involves only bit manipulation operations which

can be performed quickly on many bits at a time, especially on modern computers

where there is hardware support for counting the number of bits that are set in a

word (the POPCNT instruction1).

Even though computing the distance between pairs of binary features can be

done efficiently, using linear search for matching can be practical only for smaller

datasets. For large datasets, linear matching becomes a bottleneck in most appli-

cations. The typical solution in such situations is to replace the linear search with

an approximate matching algorithm that can offer speedups of several orders of

magnitude over linear search, at the cost that a fraction of the nearest neighbours

returned are approximate neighbours (but usually close in distance to the exact

1We are referring to the x86 64 architecture, other architectures have similar instructions for
counting the number of bits set.
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neighbours).

Many algorithms typically used for approximate matching in the case of vec-

tor features, which perform a hierarchical decomposition of the search space, are

not readily suitable for matching binary features because they assume the features

exist in a vector space where each dimension of the features can be continuously

averaged. Examples of such algorithms are the kd-tree algorithm, the vocabulary

tree and the priority search k-means tree.

For matching binary features, the approximate nearest neighbour search algo-

rithms used in the literature are mostly based on various hashing techniques such as

locality sensitive hashing [Rublee et al., 2011], semantic hashing [Salakhutdinov

and Hinton, 2009] or min-hash [Zitnick, 2010].

In this chapter we introduce a new algorithm for matching binary features,

based on hierarchical decomposition of the search space. We compare the per-

formance of this algorithm to the approximate nearest neighbour algorithms im-

plemented by the FLANN library for both binary and vector-based features. We

show that when compared with an LSH implementation, which is what is typi-

cally used in the literature for matching binary features, our algorithm performs

comparatively or better and scales favourably for larger datasets.

4.1 Matching Binary Features
We introduce a new data structure and algorithm which we have found to be very

effective at matching binary features. The algorithm performs a hierarchical de-

composition of the search space by successively clustering the input dataset and

constructing a tree in which every non-leaf node contains a cluster centre and the

leaf nodes contain the input points that are to be matched.

4.1.1 Building the tree

The tree building process (presented in Algorithm 5) starts with all the points in the

dataset and divides them into K clusters, where K is a parameter of the algorithm,

called the branching factor. The clusters are formed by first selecting K points at

random as the cluster centres followed by assigning to each centre the points closer

to that centre than to any of the other centres. The algorithm is repeated recursively
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for each of the resulting clusters until the number of points in each cluster is below

a certain threshold (the maximum leaf size), in which case that node becomes a

leaf node.

The decomposition described above is similar to that of k-medoids clustering

(k-medoids is an adaptation of the k-means algorithm in which each cluster centre

is chosen as one of the input data points instead of being the mean of the cluster

elements). However, we are not trying to minimize the squared error (the distance

between the cluster centres and their elements) as in the case of k-medoids. Instead

we are simply selecting the cluster centres randomly from the input points, which

results in a much simpler and more efficient algorithm for building the tree and

gives improved independence when using multiple trees as described below. We

have experimented with minimizing the squared error and with choosing the cluster

centres using the greedy approach used in the GNAT tree [Brin, 1995] and neither

brought improvements for the nearest neighbour search performance.

Algorithm 5 Building one hierarchical clustering tree
Input: features dataset D
Output: hierarchical clustering tree
Parameters: branching factor K, maximum leaf size SL

1: if size of D < SL then
2: create leaf node with the points in D
3: else
4: P← select K points at random from D
5: C← cluster the points in D around nearest centers P
6: for each cluster Ci ∈C do
7: create non-leaf node with center Pi

8: recursively apply the algorithm to the points in Ci

9: end for
10: end if

We found that building multiple trees and using them in parallel during the

search results in significant improvements for the search performance. The ap-

proach of using multiple randomized trees is known to work well for randomized

kd-trees [Silpa-Anan and Hartley, 2008], however in chapter 3 we mentioned that

it is not effective for multiple priority search k-means trees. The fact that using

multiple randomized trees is effective for the algorithm we propose is likely due to
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the fact that we are choosing the cluster centres randomly and perform no further

iterations to obtain a better clustering (as in the case of the priority search k-means

tree). When using hierarchical space decompositions for nearest neighbour search,

the hard cases occur when the closest neighbour to the query point lies just across

a boundary from the domain explored, and the search needs to backtrack to reach

the correct domain. The benefit of using multiple randomized trees comes from the

fact that they are different enough such that, when exploring them in parallel, the

closest neighbour probably lies in different domains in different trees, increasing

the likelihood of the search reaching a correct domain quickly.

4.1.2 Searching for nearest neighbours using parallel hierarchical
clustering trees

The process of searching multiple hierarchical clustering trees in parallel is

presented in Algorithm 6. The search starts with a single traverse of each of the

trees, during which the algorithm always picks the node closest to the query point

and recursively explores it, while adding the unexplored nodes to a priority queue.

When reaching the leaf node all the points contained within are linearly searched.

After each of the trees has been explored once, the search is continued by extracting

from the priority queue the closest node to the query point and resuming the tree

traversal from there.

The search ends when the number of points examined exceeds a maximum

limit given as a parameter to the search algorithm. This limit specifies the degree

of approximation desired from the algorithm. The higher the limit the more exact

neighbours are found, but the search is more expensive. In practice it is often

useful to express the degree of approximation as search precision, the percentage

of exact neighbours found in the total neighbours returned. The relation between

the search precision and the maximum point limit parameter can be experimentally

determined for each dataset using a cross-validation approach.

4.2 Evaluation
We use the Winder/Brown patch dataset [Winder and Brown, 2007] to evaluate the

performance of the algorithm described in section 4.1. These patches were ob-
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Algorithm 6 Searching parallel hierarchical clustering trees
Input: hierarchical clustering trees Ti, query point Q
Output: K nearest approximate neighbours of query point
Parameters: max number of points to examine Lmax

1: L← 0 {L = number of points searched}
2: PQ← empty priority queue
3: R← empty priority queue
4: for each tree Ti do
5: call TRAVERSETREE(Ti,PQ,R)
6: end for
7: while PQ not empty and L < Lmax do
8: N← top of PQ
9: call TRAVERSETREE(N,PQ,R)

10: end while
11: return K top points from R
procedure TRAVERSETREE(N,PQ,R)

1: if node N is a leaf node then
2: search all the points in N and add them to R
3: L← L+ |N|
4: else
5: C← child nodes of N
6: Cq← closest node of C to query Q
7: Cp←C\Cq

8: add all nodes in Cp to PQ
9: call TRAVERSETREE(Cq,PQ,R)

10: end if

tained from consumer images of known landmarks. We first investigate how the

different parameters influence the performance of the algorithm and then compare

it to other approximate nearest neighbour algorithms described in [Muja and Lowe,

2009] and implemented by the FLANN library [Muja and Lowe]. We also imple-

mented the hierarchical clustering algorithm on top of the open source FLANN

library in order to take advantage of the parameter auto-tuning framework pro-

vided by the library. To show the scalability of the algorithm we use the 80 million

tiny images dataset of [Torralba et al., 2008a].
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Figure 4.1: Random sample of query patches and the first three nearest neigh-
bours returned when using different feature types.

4.2.1 Algorithm parameters

The behaviour of the algorithm presented in section 4.1 is influenced by three pa-

rameters: the number of parallel trees built, the branching factor and the maximum

size of the leaf nodes for each tree. In this section we evaluate the impact of each

of these parameters on the performance of the algorithm by analysing the speedup

over linear search with respect to the search precision for different values of the

parameters. Speedup over linear search is used both because it is an intuitive mea-

sure of the algorithm’s performance and because it’s relatively independent of the

hardware on which the algorithm is run.

For the experiments in this section we constructed a dataset of approximately

310,000 BRIEF features extracted from all the patch datasets of [Winder and Brown,

2007] combined (the Trevi, Halfdome and Notredame datasets).

Figure 4.2 shows how the algorithm’s performance depends on the number of

parallel trees used. It can be seen that there’s a significant benefit in using more

than a single tree and that the performance generally increases as more trees are

used. The optimum number of trees depends on the desired precision, for example,

for search precisions below 70% there is no benefit in using more than two parallel

trees, however for precisions above 85% a higher number (between 4 and 8 trees)

gives better results. Obviously more trees implies more memory and a longer tree

build time, so in practice the optimum number of trees depends on multiple factors

such as the desired search precision, the available memory and constraints on the
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Figure 4.2: Speedup over linear search for different number of parallel ran-
domized trees used by the index (branching factor = 16, max leaf size =
150).

tree build time.

The branching factor also has an impact on the search performance, as figure

4.3 shows. Higher branching factors perform better for high precisions (above

80%), but there is little gain for branching factors above 16 or 32. Also very large

branching factors perform worse for lower precisions and have a higher tree build

time.

The last parameter we examine is the maximum leaf size. From figure 4.4 we

can see that a maximum leaf size of 150 performs better than a small leaf size

(16, which is equal to the branching factor) or a large leaf size (500). This can

be explained by the fact that computing the distance between binary features is

an efficient operation, and for small leaf sizes the overhead of traversing the tree

to examine more leaves is greater than the cost of comparing the query feature to

all the features in a larger leaf. If the leaves are very large however, the cost of
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Figure 4.3: Speedup over linear search for different branching factors (trees
= 8, max leaf size = 150).

linearly examining all the features in the leaves ends up being greater than the cost

of traversing the tree.

The above experiments show that the best parameters to choose depend on

several factors and are often a trade-off between memory usage/tree build time and

search performance. A similar cross-validation approach to the one proposed in

[Muja and Lowe, 2009] can be used for choosing the optimum parameters for a

particular application.

4.2.2 Comparison to other approximate nearest neighbour
algorithms

We compare the nearest neighbour search performance of the hierarchical cluster-

ing algorithm introduced in section 4.1 to that of the nearest neighbour search algo-

rithms implemented by the publicly available FLANN library. For comparison we
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Figure 4.4: Speedup over linear search for different number leaf node sizes
(branching factor = 16, trees = 8).

use a combination of different features types, both vector features such as SIFT,

SURF, image patches and binary features such as BRIEF and ORB. The image

patches have been downscaled to 16x16 pixels and are matched using normalized

cross correlation (NCC). Figure 4.1 shows a random sample of 5 query patches

and the first three neighbour patches returned when using each of the descriptors

mentioned above.

Figure 4.5 shows the nearest neighbour search speedup for different feature

types. Each point on the graph is taken as the best performing algorithm for that

particular feature type (randomized kd-trees or priority search k-means tree for

SIFT, SURF, image patches and the hierarchical clustering algorithm introduced in

section 4.1 for BRIEF and ORB). In each case the optimum choice of parameters

that maximizes the speedup for a given precision is used.

Examining figure 4.5 it can be seen that the hierarchical clustering tree gives
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Figure 4.5: Speedup over linear for different popular features types (both bi-
nary and vector).

significant speedups over linear search ranging between one and two orders of

magnitude for search precisions in the range 50-99%. This is less impressive than

the search speedups obtained for the vector features, but this is because the linear

search is much more efficient for binary features and all the speedups are computed

relative to the linear search time for that particular feature. To better compare the

efficiency of the nearest neighbour search between different features types, we

show in figure 4.6 the same results, but this time using the absolute search time

instead of search speedup. It can be seen that the search time for binary features

(BRIEF, ORB) is similar to that of vector features (SIFT, SURF) for high search

precisions.

In figure 4.7 we compare the hierarchical clustering tree with a multi-probe lo-

cality sensitive hashing implementation [Lv et al., 2007], also available in FLANN.

For the comparison we used datasets of BRIEF and ORB features extracted from
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Figure 4.6: Absolute search time for different popular features types (both
binary and vector).

the Winder/Brown datasets and from the recognition benchmark images dataset of

[Nister and Stewenius, 2006]. The first dataset contains approximately 100,000

features, while the second contains close to 5 million features. It can be seen

that for the first dataset the hierarchical clustering tree performs better for high

search precisions (> 80%), while the LSH implementation performs better for

lower search precisions (< 80%), while for the second dataset the hierarchical tree

is faster than LSH for all precisions. This also shows that the algorithm proposed

scales well with respect to the dataset size.

Another thing to note is that the LSH implementation requires significantly

more memory compared to the hierarchical clustering trees for when high precision

is required, as it needs to allocate a large number of hash tables to achieve the high

search precision. In the experiments from figure 4.7 LSH required 6 times more

memory than the hierarchical search in case of the larger dataset. Having both
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Figure 4.7: Comparison between the hierarchical clustering index and
LSH for the Winder/Brown dataset of about 100,000 features (top) and
the Nister/Stewenius recognition benchmark images dataset of about 5
million features (bottom).
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LSH and the hierarchical clustering trees implementations in FLANN makes it

possible to use the automatic algorithm configuration from FLANN, which takes

into account both memory constraints as well as computation time to select the

optimal algorithm for a specific dataset.

4.3 Chapter Summary
In this chapter we introduced a new algorithm for fast approximate matching of

binary features using parallel search of randomized hierarchical trees.

We have shown that the proposed algorithm, although simple to implement and

efficient to run, is very effective at finding nearest neighbours of binary features.

We have also shown that the performance of the algorithm is in many cases better

than that of multi-probe LSH, the algorithm most often used at present for binary

feature matching, and that it scales well for large datasets.
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Chapter 5

Scaling Nearest Neighbour
Matching

As previously discussed in chapter 1, many papers have shown that using simple

non-parametric methods in conjunction with large scale datasets can lead to very

good recognition performance. Torralba et al. [2008a] use a large dataset of nearly

80 million tiny 32x32 pixel images to perform several recognition experiments

using simple nearest neighbour techniques and obtain very good results compara-

ble to leading class specific detectors for the richly represented classes. Hays and

Efros [2007] demonstrate an automatic scene completion algorithm that uses near-

est neighbour searches in a large scale dataset to find semantically similar images

that can be used to complete missing parts of a query image. Hays and Efros [2008]

propose a system that, using nearest neighbour lookups in a very large database of

images, can guess the location where a picture was taken. Similar results have

been shown in linguistics, where machine translation and speech recognition us-

ing large n-grams models outperform more elaborate models using grammars and

phrase structure [Halevy et al., 2009].

All the above papers mention that when using small datasets the result obtained

were not impressive, but increasing the size of the dataset by orders of magnitude

leads to quantifiable leaps in performance.

Scaling to large datasets such as those used in the above papers is a difficult

task. One of the main challenges is the impossibility of loading the data into the
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main memory of a single machine. For example the size of the raw tiny images

dataset of [Torralba et al., 2008a] is about 240 GB, which is greater than what can

be found on most computers at present. For this reason, the authors of [Torralba

et al., 2008a] only used the first 19 principal components to perform the nearest

neighbour search, in order to be able to keep the data in memory. When they used

a k-d tree to speedup the search, they had to limit the principal components to 17

due to the k-d tree memory overhead.

Fitting the data in memory is even more problematic for datasets of the size of

those used in [Deng et al., 2009; Hays and Efros, 2007, 2008]. When dealing with

such large amount of data there are several possible solutions:

• Perform some data dimensionality reduction and transform the data points

into a space of lower dimensionality so that the data fits into memory. This

approach is used in several papers in the literature [Jégou et al., 2010; Tor-

ralba et al., 2008a,b; Weiss et al., 2008]. Although it has the advantage of

significantly reducing the storage requirements, this solution has some dis-

advantages as well: projecting the data into a lower dimensionality space

typically involves a distortion of the relations between the points, introduc-

ing further approximations. There is a limit on how much the dimensionality

of the new space can be reduced before the performance is significantly de-

graded. Even with the dimensionality reduction, when the size of the data

increases past some point, the problem of fitting all the data in memory still

remains.

• Another option is to only load parts of the data into the main memory at a

time. This approach involves storing the data on a secondary memory, such

as a hard drive, and only loading into main memory the parts of the data

that are needed. The main issue with this approach is that currently there

is a performance gap of several orders of magnitude between the primary

and secondary memory, which significantly impacts the efficiency of most

algorithms. Additionally, nearest neighbour methods usually require a large

number of random accesses to points distributed throughout the dataset. Due

to the fact that reading from the secondary memory is done in blocks of typ-

ically much higher granularity than the size of a data point, a large amount
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of data has to be exchanged between the main and the secondary memory

and many random accesses in the secondary memory are required, causing a

significant decrease in performance for the nearest neighbour search opera-

tions.

• A third approach is to distribute the computation to more than one machine.

This is the most common approach for scaling to large amounts of data at the

moment, used in many places in the industry and well as academia. A typical

example from the industry is Google who has popularised the Map-Reduce

algorithm [Dean and Ghemawat, 2008] and successfully used it to process

large amounts of data spread across a very large numbers of servers. This is

also the approach we take in FLANN, and present in this chapter.

In addition to the memory limitation that needs to be overcome, scaling to very

large datasets also involves increased computational burdens. From this point of

view as well the approach of spreading the computation across a compute cluster

is the most appealing as it decreases the amount of computation required for one

machine, increasing the overall efficiency.

5.1 Scaling Nearest Neighbour Matching on a Compute
Cluster

As mentioned above, in order to scale to very large datasets, we use the approach

of distributing the data to multiple machines in a compute cluster and perform the

nearest neighbour search using all the machines in parallel. The data is distributed

equally between the machines, such that for a cluster of N machines each of them

will only have to index and search 1/N of the whole dataset (although the ratios

can be changed to have more data on some machines than others). The final result

of the nearest neighbour search is obtained by merging the partial results from all

the machines in the cluster once they have completed the search.

Since each machine indexes and searches only a fraction of the data, each ma-

chine needs to do less work to obtain the same overall performance compared to the

non-distributed case. We perform several experiments that examine how the num-

ber of machines (and number of processes running on each machine) influence the
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overall performance.

In order to distribute the nearest neighbour matching in FLANN on a compute

cluster we implemented a Map-Reduce like algorithm using the Message Passing

Interface (MPI) specification.

MPI is a standardized and portable message passing system design for efficient

communication between a group for parallel processes. MPI was designed with

high-performance distributed computing in mind and it allows for a rich range

of capabilities such as synchronous and asynchronous point-to-point operations

(send, receive), collective operations (broadcast, scatter, reduce, gather), node syn-

chronization (barrier operation) as well as obtaining network topology related in-

formation such as total number of processes running in a compute cluster and the

rank of each process.

There are several implementations of the MPI specification and FLANN can

use any of them. In our experiments we have used OpenMPI, a popular open

source MPI implementation

Since we are using a “Map-Reduce like” algorithm for distributing nearest

neighbour searches across a compute cluster, an obvious question would be why

not use one of the Map-Reduce frameworks available, such as Apache Hadoop, an

open source Map-Reduce implementation. The main reason for choosing MPI over

a Map-Reduce framework is the better latency MPI offers compared to most Map-

Reduce frameworks, allowing for better overall performance. In addition, MPI of-

fers a richer set of primitives for better control over the operations executed by the

parallel process executing a particular algorithm. However, MPI is currently lack-

ing the fault-tolerance functionality present in map-reduce implementations such

as Hadoop, adding fault tolerance to MPI is being discussed for future versions of

the specification.

Algorithm 7 describes the procedure for building a distributed nearest neigh-

bour matching index. Each process in the cluster executes in parallel and reads

from a distributed filesystem a fraction of the dataset. The fraction of the dataset

assigned to each process is determined by using the rank of the process in the MPI

cluster topology (each process in the MPI cluster has an unique rank between 0 and

the number of processes). The allocation of the data to processes can be random-

ized in order to avoid the case when the dataset assigned to one process contains
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Figure 5.1: Scaling nearest neighbour search on a computer cluster using
Message Passing Interface (MPI) standard.

most of the close neighbours of a query while the rest contain far neighbours.

After a fraction of the dataset is assigned to each process, all processes build

in parallel their own nearest neighbour indexes using the corresponding dataset

fractions. The index built by each process can be any of the algorithms supported

in FLANN, such as the randomized k-d tree or the priority search k-means tree. At

the end all the processes are synchronized to make sure the index construction has

completed on all of them and they are ready to receive queries.

In order to search the distributed index the query is sent from a client to one

of the computers in the MPI cluster, which we call the master server (see figure

5.1). By convention the master server is the process with rank 0 in the MPI cluster,

however any process in the MPI cluster can play the role of master server.

The master server broadcasts the query to the all the processes in the cluster

and then each process can run the nearest neighbour matching in parallel on its

own fraction of the data. When the search is complete an MPI reduce operation is
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Algorithm 7 Constructing a distributed index on a compute cluster
Input: dataset D, index parameters P
procedure BUILDINDEX(D,P)

1: i← MPI rank()
2: Di← read portion of the dataset D corresponding to rank i using the distributed

filesystem
3: build index in parallel on each process with dataset Di and parameters P
4: MPI barrier() // synchronize all processes

used to merge the results back to the master process and the final result is returned

to the client.

The master server is not a bottleneck when merging the results. The MPI re-

duce operation is also distributed, the partial results are merged two by two in a

hierarchical fashion from the servers in the cluster to the master server. Addition-

ally, the merge operation is very efficient, the distances between the query and

the neighbours don’t have to be re-computed as they are returned by the nearest

neighbour search operations on each server.

Algorithm 8 Searching a distributed index on a compute cluster
Input: query Q, search parameters P
procedure SEARCHINDEX(Q,P)

1: MPI broadcast(Q,P) // broadcast query and parameters to all processes
2: NNi ← run nearest neighbour search with query Q and parameters P on each

process i
3: NN←MPI reduce(NNi) // merge results using a MPI reduce operation
4: return NN

When distributing a large dataset for the purpose of nearest neighbour search

we chose to partition the data into multiple disjoint subsets and construct indepen-

dent indexes for each of those subsets. During search the query is broadcast to

all the indexes and each of them performs the nearest neighbour search within its

associated data. Aly et al. [2011] introduce a distributed k-d tree implementation

where they propose an alternative method of partitioning the data and querying the

distributed trees. They place a root k-d tree on top of all the other trees (leaf trees)

with the role of selecting a subset of trees to be searched and only send the query
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to those trees. They show the distributed k-d tree has higher throughput compared

to using independent trees, due to the fact that only a portion of the trees need to

be searched by each query.

The partitioning of the dataset into independent subsets, as described above and

implemented in FLANN, has the advantage that it doesn’t depend on the type of

index used (randomized kd-trees, priority search k-means tree, hierarchical cluster-

ing, LSH) and can be applied to any current or future nearest neighbour algorithm

in FLANN. In the distributed k-d tree implementation of [Aly et al., 2011] the

search does not backtrack in the root node, so it is possible that subsets of the

data containing near points are not searched at all if the root k-d tree doesn’t select

the corresponding leaf k-d trees at the beginning. However, we consider it an ap-

proach worth investigating as a possible future extension to the distributed nearest

neighbour matching framework in FLANN.

5.2 Experiments
In this section we present several experiments that demonstrate the effectiveness

of the distributed nearest neighbour matching framework in FLANN. For these

experiments we have used the 80 million patch dataset of Torralba et al. [2008a].

In an MPI distributed system it’s possible to run multiple parallel processes

on the same machine, the recommended approach is to run as many processes as

CPU cores on each machine. Figure 5.2 presents the results of an experiment in

which we run multiple MPI processes on a single machine with 8 CPU cores. It

can be seen that the overall performance improves when increasing the number of

processes from 1 to 4, however there is a decrease in performance when moving

from 4 to 8 parallel processes. This can be explained by the fact that increasing the

parallelism on the same machine also increases the number of request to the main

memory (since all processes share the same main memory), and at some point

the bottleneck moves from the CPU to the memory. Increasing the parallelism

past this point results in decreased performance. Figure 5.2 also shows the direct

search performance obtained by using FLANN directly without the MPI layer. As

expected, the direct search performance is identical to the performance obtained

when using the MPI layer with a single process, showing no significant overhead
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Figure 5.2: Distributing nearest neighbour search on a single multi-core
machine. When the degree of parallelism increases beyond a certain
point the memory access becomes a bottleneck. The “direct search”
case corresponds to using the FLANN library directly, without the MPI
layer.

from the MPI runtime. For this experiment and the one in figure 5.3 we used a

subset of only 8 million tiny images to be able to run the experiment on a single

machine.

Figure 5.3 shows the performance obtained by using 8 parallel processes on

one, two or three machines. Even though the same number of parallel processes

are used, it can be seen that the performance increases when those processes are

distributed on more machines. This can also be explained by the memory access

overhead, since when more machines are used, fewer processes are running on

each machine, requiring fewer memory accesses.

We use the full 80 million tiny images dataset to demonstrate the scalability
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Figure 5.3: The advantage of distributing the search to multiple ma-
chines. Even when using the same number of parallel processes, dis-
tributing the computation to multiple machines still leads to an im-
provement in performance due to less memory access overhead. “Di-
rect search” corresponds to using FLANN without the MPI layer and is
provided as a comparison baseline.

of the distributed nearest neighbour matching framework presented in this chapter.

Figure 5.4 shows the search speedup for a dataset of 80 million BRIEF features

extracted from the images in the dataset. For this experiment we have used the

Hierarchical Clustering Tree introduced in chapter 4. It can be seen that the search

performance scales well with the dataset size and it benefits considerably from

using multiple parallel processes.

In the experiment presented in figure 5.5 we match the images directly using
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Figure 5.4: Scaling binary feature matching using distributed nearest
neighbour search on a dataset of 80 million BRIEF features

the Euclidean distance (after we normalize them first), instead of extracting visual

features. The algorithm used is the radomized k-d tree forest as it was determined

by the auto-tuning procedure to be the most efficient in this case. In this case we

obtain very high speedups over the linear search, as the multiple k-d trees can effec-

tively exploit the correlations present between image dimensions. We still observe

performance benefits from distributing the nearest neighbour matching between

multiple processes/machines.

All the previous experiments have shown that distributing the nearest neigh-

bour search to multiple machines results in an overall increase in performance.

Ideally, when distributing the search to N machines the speedup would be N times

higher, however in practice for approximate nearest neighbour search the speedup

is smaller due to the fact that the search on each of the machines has sub-linear
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Figure 5.5: Matching 80 million tiny images directly using a compute cluster.

complexity in the size of the input dataset. Additionally, the performance of a

distributed nearest neighbour search is influenced by factors such as the memory

bandwidth (as shown in figures 5.2 and 5.3) and network latency.

5.3 Chapter Summary
In this chapter we presented a framework for distributing the nearest neighbour

search on a compute cluster in order to be able to scale to vary large datasets, that

would otherwise not fit into the main memory of a single computer. In addition to

the advantage of overcoming the memory limitation, the performance is improved

as well by distributing the computation across multiple machines.

We use the Message Passing Interface (MPI) standard for a high performance,

portable way of exchanging data between multiple parallel processes. The solu-
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tion proposed is implemented in the FLANN library and works with any nearest

neighbour algorithm in the library.

We also present a set of experiments that show the scalability of the approach

and the performance benefits obtained from using a compute cluster to perform

distributed nearest neighbour matching.
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Chapter 6

Conclusions

This thesis addresses the problem of fast nearest neighbour search in high dimen-

sional spaces, a core problem in many computer vision and machine learning algo-

rithms and which is often the most computationally expensive part of these algo-

rithms. We looked at approximate nearest neighbour algorithms, which can speed

up nearest neighbour search in applications where exact search is too inefficient.

This thesis presents and compares the algorithms we have found to work best at

fast approximate search in high dimensional spaces and addresses the issues aris-

ing when scaling to very large size datasets. The work presented in this thesis has

been included in an open source library called FLANN (Fast Library for Approxi-

mate Nearest Neighbours) which has become very popular in the computer vision

community.

In chapter 3 we present the two algorithms we have found to work best for

matching high dimensional features: the randomized k-d trees and the priority

search k-means tree. The randomized k-d trees, previously proposed in [Silpa-

Anan and Hartley, 2008], constructs a forest of k-d trees which are searched in

parallel using a priority queue. The priority search k-means tree is a new algorithm

that we propose and which constructs a search tree by recursive k-means clustering

and then searches the tree using a best-bin-first strategy. We compare and evaluate

these algorithms on a wide range of datasets and find that the best algorithm and its

optimal parameters depend on dataset characteristics such as data dimensionality,

dataset size and the statistics of the data stored in it (whether there are correla-
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tions between the dataset features or not). We propose a method for automatically

choosing the optimum algorithm and its parameters by using a grid search in the

parameter space followed by a fine grained optimization using the Nelder-Mead

downhill simplex method.

Binary features have recently become popular in the computer vision literature

due to their compactness (requiring less storage) and the fact that they can be ef-

ficiently matched using bitwise operations and popcnt (population count) machine

instructions. Many algorithms that worked well for classic vector features are not

applicable or not efficient for binary features. In chapter 4 we introduced a new

algorithm for fast approximate matching of binary features, which we found to

perform as well or better than algorithms typically used in the literature for match-

ing binary features.

Using very large training sets has been shown to improve the performance of

many recognition algorithms. In chapter 5 we have addressed the issues arising

from scaling to very large datasets that don’t fit in the memory of a single machine.

We introduced an algorithm for distributed nearest neighbour matching on compute

clusters and presented several experiments that show its effectiveness.

6.1 Future Directions
We conclude this thesis by proposing several directions for future exploration:

• Evaluate search performance on different datasets from other domains.
The nearest neighbour search algorithms presented in this thesis and imple-

mented in FLANN are generic and applicable to any data from any domain

(with some restrictions, for example the Randomized K-D Trees and the Hi-

erarchical K-means require the data to be in an Euclidean space). Although

we have reports of FLANN being used in other domains such as text or au-

dio, we have evaluated FLANN mainly on computer vision specific datasets

consisting of visual features and image patches. It would be interesting to

perform further experiments to see how FLANN performs on datasets of

various sizes and data dimensionality from other domains.

• Extend the library with new methods that prove to be effective on par-
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ticular datasets. We have shown in chapter 3 that the optimum nearest

neighbour search algorithm depends on the dataset on which it is used. Al-

though we have tested and compared the algorithms implemented in FLANN

against many other algorithms proposed in the literature and found them to

perform the best, it is possible that some other algorithms will be found to

work better than the ones in FLANN on specific datasets.

FLANN has a flexible architecture and can easily be extended with new

nearest neighbour algorithms. One possible such algorithm is the k-nearest

neighbour graph algorithm presented in [Hajebi et al., 2011] and which the

authors claim to compare favourably to the randomized k-d trees. It would

be interesting to do more extensive comparisons and possibly include this

algorithm in FLANN if it proves to work better in certain cases.

Because FLANN is an open source library other users can extend it with

special purpose nearest neighbour algorithms that work better for specific

applications. Any external contributions can be evaluated and merged in the

library.

• Extend/improve the automatic algorithm configuration. The automatic

algorithm configuration procedure described in chapter 3 uses a grid search

approach to determine the best parameters to use for a specific dataset. Grid

search is used to find the best parameters because it is known to be an ef-

fective strategy when there are relatively few parameters involved, as is the

case for the nearest algorithms presented in this thesis. However, the grid

search cost increases exponentially with the number of parameters, making

the addition of a nearest neighbour algorithm with many adjustable parame-

ters problematic.

An interesting future direction is the addition of other algorithms for param-

eter tuning such as the random search proposed by [Bergstra and Bengio,

2012] or the ParamILS proposed by [Hutter et al., 2009].

• Scale to larger datasets. In chapter 5 we showed that the cluster computing

algorithm implemented in FLANN scales well to large datasets bringing sig-

nificant performance benefits while overcoming the memory limitations of a
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single machine. It would be useful to experiment with even larger datasets

using bigger compute clusters.

• Improve the throughput of the distributed nearest neighbour search.
The distributed nearest neighbour search algorithm proposed in chapter 5

has the advantage that it is independent of the nearest neighbour algorithm

implemented by each cluster node. However, during a search, each of the

cluster nodes have to search their respective sub-datasets and all the results

get merged at the end. Aly et al. [2011] show that using a root tree that selects

which machines in the compute cluster participate in the search based on the

search query can significantly increase the search throughput.

Exploring this direction of adding an “selector” tree at the top of the ma-

chines in a distributed nearest neighbour search cluster, is an interesting di-

rection for future research. The addition of the selector tree can hurt the

accuracy of the results by excluding parts of the data from potentially being

explored and further research is warranted to see how the performance is

affected in practice.

• Implement a cluster computing layer based on Map/Reduce. The clus-

ter computing framework currently implemented in FLANN and descried

in chapter 5 is based on the Message Passing Interface (MPI) specification,

due to the better latency MPI has compared to existing Map/Reduce frame-

works. However, MPI currently lacks the fault tolerance guarantees that

most Map/Reduce frameworks offer. For environments where fault toler-

ance is critical, a Map/Reduce distribution framework could be preferable

and make be a good addition to the library.

87



Bibliography

B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional
experimental designs and local search. Operations Research, 54(1):99–114,
2006. → pages 26

M. Aly, M. Munich, and P. Perona. Distributed kd-trees for retrieval from very
large image collections. In British Machine Vision Conference (BMVC),
Dundee, UK, 2011. → pages 77, 78, 87

A. Andoni and P. Indyk. Near-Optimal hashing algorithms for approximate
nearest neighbor in high dimensions. COMMUNICATIONS OF THE ACM, 51
(1):117, 2008. → pages 18, 50

D. Arthur and S. Vassilvitskii. K-Means++: the advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics
Philadelphia, PA, USA, 2007. → pages 42

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions.
Journal of the ACM (JACM), 45(6):891–923, 1998. → pages 14, 32, 49

M. Bawa, T. Condie, and P. Ganesan. LSH forest: self-tuning indexes for
similarity search. In Proceedings of the 14th international conference on World
Wide Web, page 651–660, 2005. → pages 18, 25

H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up Robust Features.
European Conference on Computer Vision, page 404–417, 2006. → pages 22,
59

J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces. In Computer Vision and Pattern
Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on,
page 1000–1006, 1997. → pages 14

88



J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975. → pages 13, 31

A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using
low distortion correspondences. In Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, page
26–33, 2005. → pages 1

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. The
Journal of Machine Learning Research, 13:281–305, 2012. → pages 26, 86

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In
Proceedings of the 23rd International Conference on Machine learning, ICML
’06, page 97–104, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-2. →
pages 16

G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with the OpenCV
library. O’Reilly Media, 2008. → pages 10

S. Brin. Near neighbor search in large metric spaces. In VLDB, pages 574–584,
1995. ISBN 1-55860-379-4. → pages 8, 16, 38, 41, 61

M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary Robust
Independent Elementary Features. In European Conference on Computer
Vision, Sept. 2010. → pages 22, 59

O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash
and tf-idf weighting. In Proceedings of the British Machine Vision Conference,
volume 3, page 4, 2008. → pages 23

O. Chum, M. Perdoch, and J. Matas. Geometric min-hashing: Finding a (thick)
needle in a haystack. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, page 17–24, 2009. → pages 23

S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil. Using experimental
design to find effective parameter settings for heuristics. Journal of Heuristics,
7(1):77–97, 2001. → pages 26

M. Cummins and P. Newman. Highly scalable appearance-only
SLAM-FAB-MAP 2.0. In Proceedings of Robotics: Science and Systems
(RSS), volume 5, 2009. → pages 9

S. Dasgupta and Y. Freund. Random projection trees and low dimensional
manifolds. In Proceedings of the 40th annual ACM symposium on Theory of
computing, page 537–546, 2008. → pages 15

89



J. Dean and S. Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008. → pages 74

J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei. ImageNet: a
large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, page 248–255, 2009. →
pages 5, 21, 73

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical
Software (TOMS), 3(3):209–226, 1977. → pages 13, 31

K. Fukunaga and P. M. Narendra. A branch and bound algorithm for computing
k-Nearest neighbors. IEEE Trans. Comput., 24:750–753, 1975. → pages 16,
19, 38

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In Proceedings of the International Conference on Very Large Data
Bases, page 518–529, 1999. → pages 23

K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang. Fast approximate
nearest-neighbor search with k-nearest neighbor graph. In Proceedings of the
Twenty-Second international joint conference on Artificial Intelligence-Volume
Volume Two, page 1312–1317, 2011. → pages 19, 86

A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data.
Intelligent Systems, IEEE, 24(2):8–12, 2009. → pages 72

M. Havlena, A. Torii, M. Jancosek, and T. Pajdla. Automatic reconstruction of
mars artifacts. In European Planetary Science Congress 2009, held 14-18
September in Potsdam, Germany. http://meetings. copernicus. org/epsc2009, p.
280, page 280, 2009a. → pages 9

M. Havlena, A. Torii, J. Knopp, and T. Pajdla. Randomized structure from motion
based on atomic 3D models from camera triplets. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, page 2874–2881,
2009b. → pages 9

J. Hays and A. A. Efros. Scene completion using millions of photographs. In
ACM Transactions on Graphics (TOG), volume 26, page 4, 2007. → pages 3,
72, 73

90



J. Hays and A. A. Efros. IM2GPS: estimating geographic information from a
single image. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, page 1–8, 2008. → pages 4, 72, 73

J. He, W. Liu, and S. F. Chang. Scalable similarity search with optimized kernel
hashing. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, page 1129–1138, 2010. → pages 18

F. Hutter. Automated configuration of algorithms for solving hard computational
problems. PhD thesis, University of British Columbia, 2009. → pages 26

F. Hutter, H. H. Hoos, and K. Leyton-Brown. ParamILS: an automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:
267–306, 2009. → pages 27, 86

P. Jain, B. Kulis, and K. Grauman. Fast image search for learned metrics. In
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, page 1–8, 2008. → pages 18

H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric
consistency for large scale image search. European Conference on Computer
Vision (ECCV), page 304–317, 2008. → pages 21, 23

H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern, page 1–15, 2010. ISSN 0162-8828. →
pages 21, 73

Y. Jia, J. Wang, G. Zeng, H. Zha, and X. S. Hua. Optimizing kd-trees for scalable
visual descriptor indexing. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, page 3392–3399, 2010. → pages 15

B. Kulis and T. Darrell. Learning to hash with binary reconstructive embeddings.
Advances in neural information processing systems, 22:1042–1050, 2009. →
pages 18

B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable
image search. In Computer Vision, 2009 IEEE 12th International Conference
on, page 2130–2137, 2009. → pages 18

N. Kumar, L. Zhang, and S. Nayar. What is a good nearest neighbors algorithm
for finding similar patches in images? Computer Vision–ECCV 2008, page
364–378, 2008. → pages 16

91



B. Leibe, K. Mikolajczyk, and B. Schiele. Efficient clustering and matching for
object class recognition. In Proc. BMVC, 2006. → pages 20

S. Leutenegger, M. Chli, and R. Siegwart. BRISK: Binary Robust Invariant
Scalable Keypoints. In IEEE International Conference on Computer Vision
(ICCV), 2011. → pages 22, 59

T. Liu, A. Moore, A. Gray, and K. Yang. An investigation of practical
approximate nearest neighbor algorithms. In Neural Information Processing
Systems, 2004. → pages 17

D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004. → pages 1, 22,
59

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe LSH:
efficient indexing for high-dimensional similarity search. In Proceedings of the
33rd international conference on Very large data bases, page 950–961, 2007.
→ pages 18, 68

K. Mikolajczyk and J. Matas. Improving descriptors for fast tree matching by
optimal linear projection. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1–8, 2007. ISBN 1550-5499. → pages 17,
53

A. W. Moore. The anchors hierarchy: Using the triangle inequality to survive high
dimensional data. In Proceedings of the Sixteenth conference on Uncertainty in
artificial intelligence, page 397–405, 2000. → pages 16

M. Muja and D. G. Lowe. FLANN: Fast Library for Approximate Nearest
Neighbors. http://people.cs.ubc.ca/˜mariusm/index.php/FLANN/FLANN. →
pages 9, 63

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. In International Conference on Computer Vision
Theory and Application VISSAPP’09), page 331–340, 2009. → pages iii, 14,
25, 63, 66

M. Muja and D. G. Lowe. Fast matching of binary features. In Computer and
Robot Vision (CRV), 2012 Ninth Conference on, page 404–410, 2012. → pages
iii, 24

J. A. Nelder and R. Mead. A simplex method for function minimization. The
computer journal, 7(4):308–313, 1965. → pages 25, 56

92



D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In
CVPR, volume 2, pages 2161–2168. Ieee, 2006. ISBN 0-7695-2597-0. →
pages 8, 19, 20, 21, 38, 44, 49, 69

M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in Hamming space with
multi-index hashing. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, page 3108–3115, 2012. → pages 23

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with
large vocabularies and fast spatial matching. In IEEE Conference on Computer
Vision and Pattern Recognition, 2007. CVPR’07, page 1–8, 2007. → pages 1,
4, 5, 21

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng. ROS: an open-source robot operating system. In International
Conference on Robotics and Automation, Open-Source Software workshop,
2009. → pages 9

M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from shift-invariant
kernels. The Neural Information Processing Systems, 22, 2009. → pages 18

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: an efficient alternative
to SIFT or SURF. In International Conference on Computer Vision, Barcelona,
2011. → pages 22, 23, 59, 60

R. Salakhutdinov and G. Hinton. Semantic hashing. International Journal of
Approximate Reasoning, 50(7):969–978, 2009. → pages 22, 60

G. Schindler, M. Brown, and R. Szeliski. City-Scale location recognition. In
CVPR, pages 1–7, 2007. → pages 21, 41

T. B. Sebastian and B. B. Kimia. Metric-based shape retrieval in large databases.
In Pattern Recognition, 2002. Proceedings. 16th International Conference on,
volume 3, page 291–296, 2002. → pages 19

G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with
parameter-sensitive hashing. In Computer Vision, 2003. Proceedings. Ninth
IEEE International Conference on, page 750–757, 2003. → pages 1, 18

C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor
matching. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, page 1–8, 2008. → pages 8, 14, 33, 61, 84

93



J. Sivic and A. Zisserman. Video google: A text retrieval approach to object
matching in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on, page 1470–1477, 2003. → pages 1

R. F. Sproull. Refinements to nearest-neighbor searching in k-dimensional trees.
Algorithmica, 6(1):579–589, 1991. → pages 14

M. M. Stark and R. F. Riesenfeld. Wordnet: An electronic lexical database. In
Proceedings of 11th Eurographics Workshop on Rendering, 1998. → pages 21

C. Strecha, A. Bronstein, M. Bronstein, and P. Fua. LDAHash: improved
matching with smaller descriptors. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, (99):1–1, 2010. → pages 23

A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Rubin. Context-based
vision system for place and object recognition. In Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on, page 273–280, 2003. →
pages 3

A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data
set for nonparametric object and scene recognition. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 30(11):1958–1970, 2008a. ISSN
0162-8828. → pages 1, 2, 21, 22, 63, 72, 73, 78

A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for
recognition. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, page 1–8, 2008b. → pages 20, 21, 22, 73

T. Trzcinski, V. Lepetit, and P. Fua. Thick boundaries in binary space and their
influence on Nearest-Neighbor search. Pattern Recognition Letters, 2012. →
pages 24

P. Turcot and D. G. Lowe. Better matching with fewer features: The selection of
useful features in large database recognition problems. In Computer Vision
Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on,
page 2109–2116, 2009. → pages 9

J. Wang, S. Kumar, and S. F. Chang. Semi-supervised hashing for scalable image
retrieval. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, page 3424–3431, 2010. → pages 18

J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li. Scalable k-NN graph
construction for visual descriptors. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, page 1106–1113, 2012. → pages 19

94



Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances in neural
information. NIPS, 2008. → pages 18, 21, 22, 73

S. Winder and M. Brown. Learning local image descriptors. In CVPR, pages 1–8,
2007. → pages 44, 62, 64

H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu. Complementary hashing for
approximate nearest neighbor search. In Computer Vision (ICCV), 2011 IEEE
International Conference on, page 1631–1638, 2011. → pages 18

P. N. Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In Proceedings of the fourth annual ACM-SIAM
Symposium on Discrete algorithms, page 311–321, 1993. → pages 16

C. Zitnick. Binary coherent edge descriptors. European Conference on Computer
Vision, page 1–14, 2010. → pages 23, 60

95


	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 Motivation for Scalable Nearest Neighbour Methods
	1.2 Definitions and Notation
	1.3 Contributions and Thesis Outline
	1.4 The FLANN Library
	1.5 Chapter Summary

	2 Background
	2.1 Nearest Neighbour Matching Algorithms
	2.2 Nearest Neighbour Search in Large Datasets
	2.3 Nearest Neighbour Algorithms for Binary Features
	2.4 Automatic Configuration of Nearest Neighbour Algorithms
	2.5 Chapter Summary

	3 Fast Approximate Nearest Neighbour Matching
	3.1 The Randomized k-d Tree Algorithm
	3.1.1 Algorithm description
	3.1.2 Analysis

	3.2 The Priority Search K-Means Tree Algorithm
	3.2.1 Algorithm description
	3.2.2 Analysis

	3.3 Experiments
	3.3.1 Data dimensionality.
	3.3.2 Search precision.

	3.4 Automatic Selection of the Optimal Algorithm
	3.5 Chapter Summary

	4 Binary Feature Matching
	4.1 Matching Binary Features
	4.1.1 Building the tree
	4.1.2 Searching for nearest neighbours using parallel hierarchical clustering trees

	4.2 Evaluation
	4.2.1 Algorithm parameters
	4.2.2 Comparison to other approximate nearest neighbour algorithms

	4.3 Chapter Summary

	5 Scaling Nearest Neighbour Matching
	5.1 Scaling Nearest Neighbour Matching on a Compute Cluster
	5.2 Experiments
	5.3 Chapter Summary

	6 Conclusions
	6.1 Future Directions

	Bibliography

