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Abstract

The Message Passing Interface (MPI) is widely used to write sophisticated parallel appli-

cations ranging from cognitive computing to weather predictions and is almost universally

adopted for High Performance Computing (HPC).

Many popular MPI implementations bind MPI processes to OS-processes. This runtime

model has closely matched single or multi-processor compute clusters. Since 2008, however,

clusters of multicore nodes have been the predominant architecture for HPC, with the

opportunity for parallelism inside one compute node. There are a number of popular parallel

programming languages for multicore that use message passing. One notable difference

between MPI and these languages is the granularity of the MPI processes. Processes written

using MPI tend to be coarse-grained and designed to match the number of processes to the

available hardware, rather than the program structure. Binding MPI processes to OS-

processes fails to take full advantage of the finer-grain parallelism available on today’s

multicore systems. Our goal was to take advantage of the type of runtime systems used by

fine-grain languages and integrate that into MPI to obtain the best of these programming

models; the ability to have fine-grain parallelism, while maintaining MPI’s rich support for

communication inside clusters.

Fine-Grain MPI (FG-MPI) is a system that extends the execution model of MPI to

include interleaved concurrency through integration into the MPI middleware. FG-MPI

is integrated into the MPICH2 middleware, which is an open source, production-quality

implementation of MPI. The FG-MPI runtime uses coroutines to implement light-weight
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Abstract

MPI processes that are non-preemptively scheduled by its MPI-aware scheduler. The use of

coroutines enables fast context-switching time and low communication and synchronization

overhead. FG-MPI enables expression of finer-grain function-level parallelism, which allows

for flexible process mapping, scalability, and can lead to better program performance.

We have demonstrated FG-MPI’s ability to scale to over a 100 million MPI processes

on a large cluster of 6,480 cores. This is the first time any system has executed such a large

number of MPI processes, and this capability will be useful in exploring scalability issues of

the MPI middleware as systems move towards compute clusters with millions of processor

cores.
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Chapter 1

Introduction

The lessons from MPI can be summed up as follows: It is more

important to make the hard things possible than it is to make

the easy things easy.

William D. Gropp

Over the last two decades, MPI (Message Passing Interface) [97] has been hugely suc-

cessful for High Performance Computing (HPC). It is almost universally adopted for writing

sophisticated scientific parallel code and mature numerical libraries that can scale to run

on some of the world’s largest supercomputers. Most application developers for super-

computing centers regard using MPI as essential for their software [15, 49]. Some of the

factors contributing to MPI’s wide adoption include its support for software libraries, com-

posibility, portability and consistent performance over a diverse set of architectures and

network fabrics. The MPI standard is actively maintained by the MPI Forum, which is

a broad consortium of national laboratories, universities, vendors, and library developers.

The MPI standard owes its success to precisely-defined and forward-looking features based

on active collaboration with implementers, vendors, and users [55]. There are a number

of vendor-specific as well as open source MPI implementations including MPICH2 [9] and

Open MPI [141], which are extensively used worldwide.

The architecture of modern microprocessors has changed dramatically since the intro-

duction of multicore processors. Microprocessors today have multiple cores and the number

of cores per chip is increasing. There is considerable interest in the MPI middleware as it

1
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relates to multicore processors [12, 47, 55, 93]. The focus of my thesis is on the following

problem.

1.0.1 Problem Statement

Many popular implementations of the MPI library bind MPI processes

to OS-processes. Processes written using MPI, as a result, tend to be

coarse-grained and designed to match the available hardware rather than the

program structure. Binding to OS-processes fails to take full advantage of

the finer-grain parallelism available on today’s multicore systems.

The first definition of the MPI standard dates back to 1993, when many machines had

a single processor that consisted of multiple chips, and one user process was run on each

processor [55]. The MPI standard does not define the term “process”, however, many MPI

library implementations [9, 141] bind MPI processes to OS-processes. This runtime model

has been successful since it closely matched single or multi-processor compute clusters.

Since 2008, however, clusters of multicore nodes have been the predominant architecture

for HPC [145], with the opportunity for parallelism inside one compute node1. As a re-

sult of binding to OS-processes, processes written using MPI tend to be coarse-grained and

programmed to make it easy to match them to the available hardware, rather than to the

structure of the program. Although fine-grain parallelism may have benefited single pro-

cessor systems, the need for it is more critical for exploiting parallelism available on today’s

multicore systems. It is not easy to exploit fine-grain parallelism and hybrid approaches

have become common where MPI is used as a communication mechanism between nodes,

combined with pre-emptive threads or APIs such as OpenMP [108] on a node. The pre-

emptive thread model, however, introduces programming complexity [60, 86, 91] as well as

1We will be using the terms “node” and “machine” interchangeably in this document to refer to a single
computational node with multiple processor cores, operating under a single operating system.
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significant system overheads for the MPI middleware to support thread safety [13, 59, 140].

Mixing MPI with a pthread-based API such as OpenMP introduces another set of issues

related to resource contention and coordination. The interface between MPI and other

programming models is not well defined and there is no clear separation of concerns [57].

This results in different runtime systems attempting to optimize the use of threads and

processor cores independently of each other and potentially leading to contention. A recent

post in the MPICH2 mailing list highlights the problem of mixing MPI with pthreads [73].

In this user-case, a thread on the critical path delays message communication due to the

difficulty of coordinating accesses of multiple pthreads to the middleware. The locking

overhead in the middleware in this case resulted in considerably low performance. The

issues of mixing programming models as well as the programming complexity will magnify

as systems scale.

There are a number of multicore languages such as Erlang [11], Haskell [45], Scala [105]

and Go [48], that support fine-grain parallel programming as a way to take advantage

of multicore processors. The ability to express fine-grain parallelism makes it possible to

seamlessly scale with the number of cores in the node. However, these languages do not

have the extensive middleware support needed for messaging and communication over a

variety of network fabrics as provided by MPI.

MPI, by itself, is perceived to be difficult to program with the message passing model

considered as too low-level [55] and the binding to OS-processes as heavy-weight. These

perceptions, however, are not due to a requirement of the MPI specification, but a property

of the implementation of the MPI library and its runtime system. The MPI specifica-

tion does not equate an MPI process to an OS-process and does not preclude a fine-grain

interpretation. Our goal was to take advantage of the type of runtime systems used by fine-

grain languages and to integrate that into MPI to obtain the best of these programming

models; the ability to have fine-grain parallelism, while maintaining MPI’s rich support for

communication between machines.

3
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As part of my thesis, I have designed and implemented Fine-Grain MPI (FG-MPI), a

system that allows execution of millions of MPI processes on a node or communicating be-

tween nodes inside a cluster [77–81]. FG-MPI is integrated into the MPICH2 [9] middleware,

which is a popular open source implementation of the MPI library from Argonne National

Laboratory. FG-MPI decouples the MPI processes from the hardware and implements a

user-level runtime system that is integrated into the middleware to allow for interleaved

execution of multiple concurrent MPI processes inside an OS-process. This adds a new

dimension to mapping processes onto nodes, which enables us to allocate some processes to

run interleaved within an OS-process and others to run in parallel in different OS-processes

on other cores. Coroutines are used in FG-MPI to implement light-weight MPI processes

that are non-preemptively scheduled by its runtime system. The benefits of coroutine-based

non-preemptive threads include fast context-switching time, low communication and syn-

chronization overhead and ability to support thousands of MPI processes inside a single OS

process (see Chapters 4 and 5). The communication between the MPI processes is seamless,

whether it is between two processes in the same OS-process or between processes on different

cores or machines. By decoupling MPI processes from an OS process, it is possible to vary

the number of MPI processes to match the problem rather than the hardware. Moreover,

the same MPI program can be flexibly mapped to OS-processes and cores and executed,

without changes, on a laptop or on a cluster.

1.0.2 Thesis Statement

Fine-Grain MPI extends the execution model of MPI to include interleaved

concurrency through integration into the MPI middleware. FG-MPI enables

expression of finer-grain function-level parallelism, which allows for flexible

process mapping, scalability, and can lead to better program performance.
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1.1 Challenges

One of the goals of the FG-MPI project was to enable transfer of technology and have an

impact in the HPC community through extending an existing open source implementation

of the MPI standard. The MPI community follows a rigorous practise of implementing,

validating, and testing any extensions before adopting them. Our objective was to provide

a proof of concept for the effectiveness of a fine-grain execution model through a working

system. We chose to integrate our system in the MPICH2 middleware due to its extensive

and successful adoption by national laboratories, academia, industry vendors, and super-

computer centers worldwide. MPICH2 is a high quality production system and has won

awards for excellence and innovation. Integration of FG-MPI into MPICH2 enables it to

leverage its portability and rich support for communication over a variety of network fabrics.

There were a number of challenges in our decision of integrating FG-MPI into MPICH2.

Firstly, it is not straightforward to make conceptual design changes to an existing system

while leveraging their optimized code base. The little documentation available was high-

level and I had to read the code extensively in order to extend it. Secondly, it was not known

what roadblocks I would encounter and whether the project would be successful. This was

not a project that required extensions to a particular component of the middleware. A

challenge with integration into MPICH2 was that many changes were needed across all the

layers of the MPICH2 architecture (Figure 2.1, page 20) before it was possible to execute

even the simplest MPI program.

Scalability and sharing of middleware structures was another challenging aspect of the

project. There were a number of low-level design issues and subtle corner cases that had

to be addressed. Debugging a system with hundreds and thousands of processes posed

difficulties of its own. In order to manage the complexity of the project, I adopted a phased

approach to the implementation, starting with point to point communication routines and

gradually adding other functionality.
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1.2 Contributions

The main contributions of my thesis are as follows.

• FG-MPI is integrated into MPICH2, a popular open source implementation of the MPI

library, and uses its low-latency and scalable communication subsystem for intra-node

and inter-node communication. Integration in MPICH2 allows FG-MPI to leverage

its optimized code base and rich support for network fabrics in cluster environments.

The design and implementation of the FG-MPI system is described in Chapters 2

and 3.

• We investigated scalability issues related to MPI groups and communicators and de-

fined new efficient algorithms for communicator creation and storage of process maps.

Communicators in MPI allow code composition and enable development of paral-

lel libraries by defining separate communication contexts. Communicators provide

a scoping mechanism that ensures that communication within one software compo-

nent will not interfere with another component. The ability to structure and group

MPI processes becomes more important when dealing with millions of MPI processes

(Chapter 3).

• FG-MPI runtime system uses light-weight coroutines to expose massive concurrency.

The use of coroutines enables fast context-switching time as well as low communication

and synchronization overhead. (See Chapter 4).

• We designed techniques to exploit the locality of MPI processes for communication

efficiency and implement optimized communication between concurrent processes in

the same OS-process (Chapters 3 and 4).

• FG-MPI implements a MPI-aware user-level scheduler that works in concert with

MPICH2’s progress engine and is responsive to events occurring inside the middleware.
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The design of the scheduler is described in Chapter 2.

• FG-MPI’s runtime scheduler can be used to simplify programming by avoiding non-

blocking communication that often makes MPI programming difficult. The scheduler

relieves the programmer from scheduling computation and communication inside the

application and brings the performance part outside of the program specification into

the runtime (Chapter 5).

• FG-MPI adds an additional dimension to mapping processes onto nodes to allow for

interleaved execution of multiple concurrent MPI processes inside an OS-process. MPI

processes can be flexibly mapped to OS-processes and cores and seamlessly executed

without requiring changes, whether it is on a laptop or a cluster (Chapter 3).

This added degree of freedom can be used to match the granularity of processes to

better fit the cache and improve the performance of existing algorithms. This is

described in Chapter 4.

• FG-MPI enables a task-oriented programming approach that makes it easier to exploit

function-level parallelism. In Chapter 5, we compare FG-MPI with other multicore

parallel languages and runtime systems and show it achieves equal or better perfor-

mance.

• We have demonstrated FG-MPI’s ability to scale to over a 100 million MPI processes

on a large cluster of 6,480 cores. This is the first time any system has executed such

a large number of MPI processes, and this capability will be useful in exploring the

performance and scalability issues of the MPI middleware as systems move towards

exascale. (Chapter 5).
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1.3 Related Work

There is past work on thread-based implementations of MPI which introduce their own run-

time system. Prior to 1999, projects like TOMPI [36] and TMPI [130, 136] were developed

for execution on single workstations or multi-programmed shared memory machines. The

main focus of these projects was to implement MPI processes as threads and use shared

memory to reduce communication and context switching overhead among them.

The objective of TOMPI (Threads Only MPI) [36] project was to facilitate development

of parallel programs on a single workstation. TOMPI was designed to run as a single Unix

process and uses semaphores and condition variables for synchronization among threads.

TOMPI is a prototype that implements a subset of MPI routines and is primarily for testing

purposes. It does not address any middleware communication or scheduling issues.

TMPI (Threaded MPI) [130, 136], is a project designed for shared memory machines

in late 1990s with the objective to improve performance of MPI in the presence of space/-

time multiprogramming. A later version of TMPI [137] targeted Linux SMP clusters and

borrowed many design ideas from the MPICH [51, 58] implementation. TMPI maps MPI

processes to pthreads inside a single address space on a cluster node. It introduces an

additional daemon thread on each cluster node for buffering and serialization of incoming

messages. The authors identify the use of a single daemon receive thread for all incoming

messages as a potential bottleneck for scalability. The experimental results presented for

TMPI are only for dedicated SMP clusters, where the number of MPI processes does not

exceed the number of processors (numbers reported in [137] are for up to 24 MPI processes).

AzequiaMPI [37] is a more recent thread-based implementation with objectives similar

to TMPI. AzequiaMPI is layered on top of Azequia runtime system and uses pthreads mutex

and condition variables for synchronization of communication among threads. Interestingly,

the authors stress the use of locks in their implementation for portability reasons in [37],

but a later poster paper [121] mentions using lock-free queues and borrows several design
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concepts from the MPICH2 implementation. Apart from implementing more MPI routines,

it is unclear what their design offers over other pre-emptive thread-based implementations.

The results reported by AzequiaMPI are for benchmarks on a single multicore node with

up to eight MPI processes [121], where the number of MPI tasks are equal to the number

of cores.

MPI Accelerator (MPIActor) [90] is another work that implements MPI processes as

pre-emptive threads for the same reasons mentioned above, i.e., to improve intra-node com-

munication efficiency through shared memory. They implement a runtime system layered

on top of MPI, with one MPI process on each compute node. The underlying MPI li-

brary is aware of only a single MPI process on each machine and is used as an inter-node

communication mechanism. All the MPI communication routines in the program are in-

tercepted and replaced by their own MPIActor routines, which provides the abstraction of

MPI processes mapped onto threads. There are a number of limitations to their approach.

The first is that it requires the underlying MPI library to be thread-safe with support for

MPI THREAD MULTIPLE2 level. The second limitation is their choice of using the tag pa-

rameter in the MPI point-to-point communication routines as a way to map different MPI

process ranks onto threads inside an MPI process. The authors use the 32 bits in the tag

to store the communication type, the ranks of the source and the destination, as well as the

tag value. Not only does it change the semantics of the tag argument, it is not portable to

a system where the tag may be stored in a fewer or greater number of bits. As well, the

uniqueness of the tag argument cannot be guaranteed in a multi-module library, and the

authors do not explain how their system handles different communicators.

While the above projects have focused on implementing thread-based MPI for com-

munication efficiency on shared memory systems, other researchers have looked at alter-

native solutions for improving intra-node communication for existing process-based MPI

2MPI THREAD MULTIPLE is the highest of the four levels of thread safety defined by MPI. It allows multiple
threads in a process to make MPI calls simultaneously.
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implementations through efficient data transfer techniques [22, 23, 75]. A number of intra-

node communication mechanisms are available such as user-space shared memory segments,

NIC level loop-back, and kernel-based memory mapping for efficient shared message pass-

ing [23]. Techniques for mapping the memory of one process into another process’s virtual

address space through mmap or XPMEM [4] are well known. Kernel-based mapping avoids

intermediate system buffer copies that are involved in passing messages across different

address spaces, and recent research has focused on improving its performance and porta-

bility. LiMIC (Linux kernel module for MPI Intra-node Communication) [75] is a portable

kernel module interface that enables a direct copy from one process to another. LiMIC is

implemented as a runtime loadable module and was designed to provide portability across

different interconnects. The authors report substantial improvement in bandwidth and la-

tency with LiMIC on their system. KNEM [46] is another kernel module that supports

Direct Memory Access (DMA) copy and the work in [94, 99] shows promising results for

improving the performance of intra-node communication in MPI.

There is significant diversity in the design and architectures of multicore systems by dif-

ferent vendors, each providing multiple levels of cache hierarchies and topologies. Work by

Dongarra et. al. [93] proposes a framework that discovers information about the hardware

at runtime, based on the locality and topology of cores, and uses this information to tune

the point-to-point intra-node communication in the MPI library. The FG-MPI implemen-

tation can also make use of these kernel-based and topology-aware optimization schemes for

communication among the OS-processes. FG-MPI uses the Nemesis [21, 24] channel in the

MPICH2 implementation which employs a number of techniques for efficient data transfer

such as lock-free shared memory queues, a double-buffering mechanism to enable the re-

ceiver to copy data out of a shared memory region while the sender copies it in, and use of

non-temporal store operations for memory copy for high bandwidth transfer while reducing

the impact on the application’s data in the receiver’s cache [24]. The MPICH2 group has

also explored kernel-based data transfers with the Nemesis channel and shown that it can
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lead to speedup and better cache efficiency [22]. FG-MPI can leverage any communication

optimizations that are introduced into Nemesis in the future.

MPI-LITE [17], MPC [112] and AMPI [64] are three projects that enable over-subscription

of user-level MPI tasks through process virtualization. MPI-LITE is an early prototype de-

veloped in 1997 that implements MPI processes as user-level threads within an OS-process.

MPI-LITE uses MPI for communication between OS-processes and its own runtime for

inter-thread communication and requires special suffixes for MPI routines to distinguish

between the two types of communication. This project was developed for IBM SP2 sys-

tems and is no longer active. MPC is a recent project that supports user-level MPI tasks

through process virtualization. The main motivation of the MPC (MultiProcessor Com-

munications environment) project [25, 111, 112] is to improve the performance of hybrid

OpenMP+MPI programming. This work points to the complexities of mixing two program-

ming models whose runtime systems may work independently of each other and compete

for the same resources. MPC proposes a unified runtime that supports both OpenMP and

MPI through their own MPC API. MPC requires a modified GCC compiler that transforms

the OpenMP directives into MPC internal calls. It implements a custom user-level M ×N

thread library for intra-node communication where threads are spawned for MPI tasks and

OpenMP parallel regions and managed by their scheduler. Inter-node communication is

done through an underlying MPI library, which must support the MPI THREAD MULTIPLE

level. As with other thread-based approaches, MPC has to deal with synchronization for

inter-task communication among threads on different cores.

Adaptive MPI (AMPI) [64] is another system that supports added concurrency by im-

plementing MPI layered on top of Charm++ [76], which is an object oriented system based

on C++. A virtual MPI process in AMPI is represented as a collection of objects, which

passes messages to another MPI process by invoking an entry method on the remote ob-

ject. AMPI defines a number of virtual processors (VPs) and the program computation is

divided among them. These virtual processors are mapped onto the physical processors and
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managed by their runtime system. There are benefits to implementing MPI on top of a run-

time system like Charm++ since it becomes possible to support process migration, which

is the main focus of AMPI. FG-MPI takes a completely different approach that integrates

interleaved concurrency directly into the MPICH2 implementation. Our approach reduces

the overheads that arises from over-subscription of cores so that the benefits of adding con-

currency can be extended to more problems. In Chapter 4 we compare the point-to-point

messaging and barrier costs in FG-MPI to those in AMPI and show that FG-MPI outper-

forms it by a large margin. The performance advantages of AMPI have been reported on

a subset of small problem sizes of the NAS parallel benchmarks [103], but not on a wider

range and larger sizes of the benchmarks and they do not discuss issues pertaining to mul-

ticore. We have carried out an extensive set of experiments on the complete set of the NAS

parallel benchmarks over large problem sizes and discuss the trade-offs between the added

costs and benefits (Section 4.2).

Our approach in FG-MPI is very different from the thread-based implementations de-

scribed in this section. Our use of non-preemptive, MPI-aware scheduling avoids many of the

synchronization and locking overheads that arises with threads [140], while providing fast

context switching through coroutines. It is also interesting to note that sharing variables in

a thread-based implementation can result in cache performance penalties depending on the

access pattern of the variable and its placement in a NUMA system. There are trade-offs

between reducing data duplication and the increase in cache coherency traffic for variables

that are modified often [138]. Projects like Barrelfish [16, 128, 135] have shown that an op-

erating system that uses message passing instead of shared data communication is scalable

and offers tangible benefits, even on present day systems. As well, several cache-coherent

multicore systems available today use message passing hardware instead of a single shared

interconnect for scalability reasons [30, 69]. From the programming perspective, message

passing simplifies reasoning about the program’s state and is portable to multicore systems

with or without support for cache-coherence.
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A summary of the different MPI projects discussed in this section is presented in Ap-

pendix C. The earlier attempts at thread-based MPI implementations are more than ten

years old and there has been little activity on this front until the emergence of multicore

systems. As Appendix C shows these projects were designed with different goals and most

have focused on developing (a) a runtime system from scratch for intra-node communica-

tion while using MPI as a mechanism for inter-node communication, or (b) layering an MPI

implementation on top of an existing runtime system. FG-MPI takes a different approach

by integrating into MPICH2 with a focus on exposing large-scale, function-level parallelism.

1.4 Thesis Synopsis

The organization of my thesis is as follows. In Chapter 1, I discuss the motivation for the

FG-MPI project and describe the contributions of my work. I also present a discussion

of the related work and how their systems differ from our implementation. The design

of the FG-MPI runtime system is presented in Chapters 2 and 3. Chapter 2 discusses

the main design issues in our integrated approach of adding interleaved concurrency to

the MPICH2 implementation. I describe the motivation for using coroutines and non-

preemptive threads, the issues involved in integrating FG-MPI into a production quality

middleware, and the design of the runtime scheduler and its interactions with the MPI

progress engine. Chapter 3 describes low-level design and implementation issues of the

different system components. In Section 3.1, I discuss the scalability of communicators and

groups and the techniques we have employed for sharing the group information and design

of scalable algorithms for communicator creation. The design of communication queues

is presented in Section 3.2, along with a discussion of how they are shared among the

co-located processes. In Section 3.3 I discuss the design and implementation of zero-copy

communication routines to optimize data transfer within a single address space.

FG-MPI enables a task-oriented programming approach and support for MPMD (Multi-
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ple Program Multiple Data) is provided through a second dimension of mapping of the MPI

processes. This extra degree of freedom and process deployment in FG-MPI is discussed in

Section 3.4. Limitations of using non-preemptive multitasking within a single address space

are described in Section 3.5.

We discuss the benefits of added concurrency to improve the performance of MPI pro-

grams on multicore systems in Chapter 4. One of the key issues for added concurrency

to be effective is to reduce the overheads related to context switches, scheduling and extra

message passing. In Sections 4.1.1 and 4.1.2 we measure these overheads and show that

FG-MPI achieves fast context switches and low message passing overhead among co-located

processes. We also show that there are potential advantages in passing more smaller mes-

sages instead of larger messages. Messaging costs and context switch overhead can have a

significant impact on collective operations. In Section 4.1.3 we describe a location-aware

implementation of the barrier operation that takes advantage of the single address space to

offset these overheads and speed up execution.

Substantial performance gains are possible by adjusting the grain-size of a program

to better fit the cache. In Section 4.1.4 we carry out a series of experiments to evaluate

the effect of finer-granularity in the program on the cache behavior. In Section 4.2, we

evaluate the use of FG-MPI on the complete set of the NAS parallel benchmarks [27] over

large problem sizes and show that substantial improvements are possible by adjusting the

program granularity. We also discuss the characteristics of the benchmarks with regards to

trade-offs between the added costs and benefits.

In Chapter 5, we discuss FG-MPI’s support for function-level parallelism and show how

it can be used as a tool for structuring parallel programs to better match the problem.

Section 5.1 describes a real-world example from the CoSMoS [31] project that was modified

to use FG-MPI and models emergent behavior through thousands of MPI processes. We

compare the performance of FG-MPI with several fine-grain multicore languages and show

that it compares favourably with them. In Section 5.2, we use FG-MPI to re-structure a
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typical use of non-blocking communication in MPI and show that having multiple MPI pro-

cesses per OS-process, with a runtime scheduler, can be used to simplify MPI programming

and achieve performance without adding complexity to the program. Finally in Section 5.3,

we test the ability of FG-MPI to scale to massively parallel programs and run over a 100

million MPI processes on the WestGrid computing facility [50]. Conclusions and directions

for future work are presented in Chapter 6.
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Chapter 2

A Fine-Grain Integrated Runtime

System

If I have seen further it is by standing on the

shoulders of giants.

Bernard of Chartres

In this chapter we describe the design of the FG-MPI runtime system and discuss the

integrated approach to adding concurrency to MPI programs by making it possible to have

multiple MPI processes per OS-process. We describe the main design issues in FG-MPI

that made it possible to support additional concurrency: (a) the use of coroutines and non-

preemptive threads, (b) the integration of FG-MPI into existing middleware (MPICH2)

rather than a layer running on top of MPI and (c) the design of an integrated scheduler

and its interactions with the MPI progress engine.

In order to avoid any ambiguity we will use the term “OS-process” when referring to

operating systems processes and at all other places the terms process, fine-grain process and

MPI process will be used interchangeably. MPI processes sharing the same address space

are referred to as co-located processes.
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2.1 FG-MPI Runtime

One major decision in the design of FG-MPI and the support for multiple MPI processes

within an OS-process was the use of coroutines as a basis for non-preemptive scheduling

of the processes. Use of coroutines to implement cooperative (i.e., non-preemptive) multi-

tasking provides a number of advantages such as minimizing the need for synchronization,

avoidance of conflicts due to race conditions [60, 100], and ease of reasoning about the

concurrency in the program [5]. Due to these benefits, there has been renewed interest in

the use of coroutines in a number of systems [5, 39, 42, 84, 134, 148]. Capriccio and other

systems [84, 132, 149] have shown that coroutine-based threads have fast context-switching

time, low communication and synchronization overhead and scale to support large numbers

of threads. The benefits of coroutines at the language level are well-known and they are

supported in many languages (Python [127, 142], Lua [67, 68]) including parallel languages

used on multicore (Erlang [11], Go [48], Occam-pi [106]).

MPI processes in FG-MPI are implemented as light-weight non-preemptive threads

which, along with the runtime scheduler, are implemented on top of coroutines. Our sys-

tem uses a modular approach and is capable of making use of different coroutine libraries

through a configuration option. We currently support Toernig’s coroutine library [143],

and PCL (Portable Coroutine Library) [89]. MPI has an added advantage in the context

of cooperative multitasking that makes coordination among MPI processes easier. Writing

an MPI program requires decomposing the work among processes and specifying the com-

munication between them. The messaging-passing and calls to the middleware provide a

natural yield point for the non-preemptive threads, where one process can cooperatively

yield control to another. Since only one co-located process is active, it was possible to share

the middleware without using locks and ensure that the middleware is in a consistent state

between scheduling points.

Use of non-preemptive processes was crucial with regard to managing large-scale concur-
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rency in the middleware. Programming with pre-emptive threads is widely acknowledged to

be difficult and even though mechanisms like locks, semaphores and monitors are available

to manage synchronization, errors often lurk in even carefully designed code. As multicore

architectures scale up and increase the amount of parallelism, finer thread interleavings will

occur and these errors will show up more frequently to cause system crashes [86, 91]. One

of the drawbacks of using pre-emptive threads is its inherent non-determinism where most

of the programmers’ effort and time is spent. Lee [86] makes a strong case for building

programs out of deterministic components and then introducing non-determinism where

needed.

Hybrid programming models like MPI+OpenMP, which use pre-emptive multi-threading

with MPI, introduce a number of challenges. Mixing models leads to contention of resources,

where each runtime system may try to optimize the use of cores independently of each

other [55]. A comparative performance study of OpenMP and MPI on a large variety of

parallel architectures identifies lack of control over memory locality as one of the factors

affecting OpenMP’s performance [133]. OpenMP does not allow direct expression of data

and work locality or specification of dependencies between tasks. The work in [119] points

to the lack of transparency provided by OpenMP constructs and how a simple integration

of those constructs in an MPI program does not yield good performance and often code

restructuring may be required [118].

Hybrid programming models also impose many thread safety requirements on the MPI

implementation and as shown in [13, 38, 59, 117, 140], there are several trade-offs between

providing thread safety in an MPI implementation and the performance. The overhead of

using locks to enable thread-safety is clearly evidenced in [13], which explores the use of

coarse-grain and fine-grain locks in detail. Their experiments show the detrimental effects

of resource contention on performance and point to the need for careful optimizations so

that too much performance is not sacrificed. Moreover, according to the MPI standard, it

is the user’s responsibility to ensure that multiple threads in the same address space avoid
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race conditions and do not make conflicting MPI calls [59]. It is interesting to note that

leading HPC systems limit the number of threads to one per core due to the overheads and

program complexity introduced by the thread model [55]. The challenges and overheads of

thread-safety of the MPI middleware are well known and it is an important problem but the

use of coroutines circumvents the need for locks to support multitasking and the guaranteed

atomicity makes it easier to reason about the state of the middleware.

The second major design decision was integration of FG-MPI directly into the MPI mid-

dleware rather than an attempt to design a new implementation of MPI or to use coroutines

and layer it on top of MPI. Adaptive MPI is an implementation of MPI that supports fine-

grain processes, however, AMPI [64] implements the MPI library on top of Charm++ [76]

rather than directly into an existing MPI implementation. This requires their own imple-

mentation of MPI and the Charm++ runtime also needs a communication layer. This can

result in an MPI sandwich, with MPI running on top of Charm++ which in turn runs over

MPI. In FG-MPI, all MPI communication directly invokes the corresponding lower level

MPI implementation of the call in the middleware, whereas in the layered approach only a

subset of the MPI communication in the lowest layer is used. More importantly, a scheduler

layered on top of MPI operates independently from the lower level MPI progress engine.

The result is multiple independent control loops and schedulers, where it is difficult to co-

ordinate their activities with regards to the scheduling of asynchronous and synchronous

messages, which was a problem highlighted by Jacobson and Felderman in the design of the

TCP stack [74].

We integrated FG-MPI into the MPI library by extending the MPICH2 middleware.

FG-MPI was implemented with the view to enable technology transfer and from the onset

we strongly believed that for our project to be successful and have an impact in the HPC

community we needed to integrate into an existing open source implementation of MPI,

rather than simply build a system from scratch. The MPI community follows the practise

of implementing, testing and validating any extensions before accepting it into the standard.
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Figure 2.1: FG-MPI Architecture. Shading shows the layers of MPICH2 that were aug-
mented in the FG-MPI implementation. Figure adapted from [10].

Integration into MPICH2 enabled us to build on a widely used, production quality imple-

mentation of the MPI standard and show that it can be used to improve the performance

of existing MPI programs as well as exploit function-level parallelism. MPICH2 efficiently

supports diverse computation and communication platforms ranging from commodity sys-

tems to high-end supercomputers. It is an optimized and well-engineered production sys-

tem with over 530,000 lines of code and was awarded the R&D 100 award as a mark of

excellence and innovation in 2005. The MPICH2 code forms the foundation of the ma-

jority of commercial and research implementations of MPI available today. Libraries such

as IBM R© PlatformTMMPI [72] for Blue Gene, Intel R© MPI library [71], MPT Cray [32],

MPICH-MX [101], and OSU MVAPICH [83] are among the several implementations that

are derived from MPICH2 [10, 153].

Figure 2.1 shows the integration of FG-MPI in the layered modular architecture of

MPICH2, with the shaded regions indicating the layers that FG-MPI augments. The first

layer, below the application, defines the MPI API and implements user abstractions such
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as MPI data types and communicators. The second ADI3 (Abstract Device Interface) layer

contains the progress engine and provides abstract middleware services to support the func-

tionality of the first layer. Representation in this layer is in terms of MPI requests/ messages

and the functions for manipulating those requests. The third layer provides the device inter-

face such as communication protocols and implements the ADI for the channels. FG-MPI

uses the Nemesis CH3 channel as the communication subsystem [21]. The Nemesis com-

munication subsystem is designed for scalability and low shared-memory communication

overhead, making it suitable for our fine-grain system. Communication among MPI pro-

cesses in different OS-processes, on the same physical node, takes place through Nemesis’s

low latency, lock-free shared memory queues. The communication through shared memory

employs optimizations to reduce L2 cache misses and techniques such as fastboxes that by-

pass message queues, to speed up message transfers [21]. Communication across different

physical nodes is enabled through its multi-network support and integration allows FG-MPI

to leverage MPICH2’s rich support for network fabrics in cluster environments. As well, we

exploit the locality of MPI processes in the system and implement optimized communication

between concurrent processes in the same OS-process.

One of the main considerations in FG-MPI was to support large amounts of concurrency

through scalable sharing of MPI middleware structures among the coroutines. To this end, a

large number of MPI storage structures such as posted receive queues, unexpected messages

queues, communicator and request pools are shared by the coroutines. Figure 2.2 shows a

high-level picture of the FG-MPI runtime system and the shaded regions show the shared

structures. Figure 2.2 contains a number of key components of the middleware and in the

following sections we describe how FG-MPI augments the middleware to support large-scale

concurrency with multiple MPI processes within an OS-process.
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Figure 2.2: FG-MPI Runtime System. Shaded regions show the MPICH2 middleware
structures shared among the co-located MPI processes.

2.1.1 Separation of Namespaces

FG-MPI decouples the MPI processes from the OS-processes, which requires separating

the namespace of the OS process’s network point of attachment from the namespace of

the MPI process ranks. In this section we describe how connection information is stored

in MPICH2 and our approach to decoupling the MPI process names from the connection

routing information.

In MPI, communicators are used to define separate communication contexts where com-

munication within one group of processes cannot interfere with another group. In order for

a process to communicate with another it must provide a communication context (i.e., com-
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municator) and the local rank of the process in that communicator. Each process also needs

to maintain connection information about the other processes with which it communicates.

The MPICH2 implementation stores the connection state information in a virtual connec-

tion (VC) object, and creates one VC for every MPI process. MPICH2 maintains a virtual

connection reference table (VCRT) for each communicator and translates the communication

context and the local rank of the process to the appropriate VC object. The VCRT is stored

as a dense array of pointers to the VC objects and is indexed by the local process rank in

the communicator. The process rank, in this case, is tightly associated with the connection

routing information.

In FG-MPI, we decouple the MPI processes from the hardware and have taken a different

approach than MPICH2 to storing process connections. The MPI process groups are not

coupled to the VCRT, but instead we maintain two tables in each OS-process:

(a) a single VCRT for all the OS-processes in the execution environment that maps OS-

processes to the virtual connections. The size of VCRT is proportional to the number of

OS-processes.

(b) a process name table that uses MPI COMM WORLD3,4 ranks and maps the MPI processes

to OS-processes.

All the MPI processes co-located within an OS-process are assigned the same point of

attachment. There is a single shared instance of each of these tables in every OS-process.

There remains the issue of efficiently storing the process group in each communicator.

As the process group is decoupled from the VCRT, this allows us to employ a number of

techniques and representations to reduce the amount of space required to store the process

groups. We describe the implementation of these techniques in FG-MPI in Sections 2.1.3

and 3.1. The ability to represent communicators more efficiently by decoupling the VCRT

3MPI COMM WORLD is a pre-defined communicator in the MPI standard, which represents the group of all
MPI processes

4We do not support MPI dynamic process management functionality.
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TAG SOURCE RANK DEST RANK CONTEXT ID

Figure 2.3: Structure of the message envelope.

in MPICH2 from the upper level code was also proposed in [47], which appeared after our

initial work.

The separation of the two namespaces requires that we have a two-level hierarchy of

ranks: (a) an OS-process namespace for virtual connection management and routing and

(b) a namespace for MPI processes in MPI COMM WORLD. We emphasize the separation of

these two namespaces because it is an example of the importance of naming in a distributed

system [125]. For example in the Internet the tight association between the name of a node

(hostname) and its network attachment point (IP address) was identified as a disadvantage

by Saltzer and others [61, 124].

Although we have not yet considered process mobility, the ability to support additional

concurrency that is decoupled from the hardware should simplify that as well. We have

experimented with new ways of supporting dynamic processes by introducing a pool of co-

located processes that stay dormant until one or more processes are activated by sending a

message to them. This creates processes that can be scheduled “on demand” without incur-

ring the overhead of spawning OS-processes [28]. The idea is for the processes to execute

a task and then be suspended again upon its completion until the next activation. This

scheme is enabled by dis-associating the structure of the program from the OS-processes

and allowing additional concurrency to be managed by FG-MPI’s runtime scheduler.

2.1.2 Message Multiplexing

An interesting issue related to separation of namespaces is the message match header (en-

velope) in MPICH2. This header (see Figure 2.3) is appended to each message that is
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communicated between processes and contains the MPI tag, rank of the sender (source)

process and the context ID of the communicator. In MPICH2, the message envelope does

not contain the rank of the receiver (destination) process because that information is im-

plicit from the OS-process identifier and hence the corresponding virtual connection used

for message transmission. In FG-MPI, since there may be multiple MPI processes inside

an OS-process, the destination rank of the process is necessary to de-multiplex the message

from the OS-process network point of attachment to the MPI process. As a result we had

to extend the message envelope as well as increase the packet header size to include the

destination rank. This destination rank is the rank of the receiver in MPI COMM WORLD and

uniquely identifies it.

A second issue is that the MPICH2 version we used as our code base used int16 t for

storing the rank. This was not sufficient for supporting an environment with millions of

MPI processes. We use 32-bit integers for both the source and destination ranks. There are

trade-offs in extending the message envelope. MPICH2’s motivation for using 16-bit ranks

was to fit the entire message header in a 64-bit field to allow 64-bit instruction comparisons

on platforms that support it and also slow communication links can benefit from a smaller

header size [14]. Although we have not done a low-level comparison we have not noticed

any performance differences at the application layer as a result of our extension.

2.1.3 Scalability of Communicators

Communicators in MPI provide an important mechanism to support code composition and

enable development of parallel libraries [62]. Communicators provide a scoping mechanism

that ensures that communication within one software component will not interfere with

another component. FG-MPI’s ability to expose large-scale concurrency allows for more

opportunities to structure and group processes, which makes it more important to support

efficient creation and storage of communicators. In this section we give a high-level overview
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Figure 2.4: Sharing of process group map inside communicators among co-located MPI
processes.

of our group sharing and communicator creation techniques and in Section 3.1 we describe

the design of the different components in detail.

In MPI, all processes belong to groups and a communicator encapsulates the communi-

cation context and the process group in one object. As mentioned in Section 2.1.1, the MPI

processes in FG-MPI are not coupled to the VCRT and we store a process group map in each

communicator that maps the local rank of that process in that communicator to its rank

in MPI COMM WORLD. In order for FG-MPI to expose large-scale concurrency the creation
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of communicators and storage of the process maps must be scalable and space efficient.

A simple calculation shows that keeping separate process maps as arrays for P processes

takes O(P 2) space, which is not feasible in a system with millions of MPI processes. We

employ three techniques for communicator creation and storage that is both time and space

efficient: (1) We enable sharing of process maps among co-located processes that are part

of the same communicator. (2) We use different memory reduction techniques for storage of

process maps and provide a framework that allows selection of different storage structures

as a configurable option. (3) We define new efficient algorithms for communicator creation

MPI Comm split and MPI Comm create and an algorithm for creation of a globally unique

context ID. The process map for MPI COMM WORLD is simply an identity vector and stored

as a function.

Figure 2.4 shows an example of three co-located processes which share the maps of dif-

ferent communicators. During the communicator creation operation, one of the members of

the communicator creates the process map and stores a pointer to it in a global hash table.

The context ID of each communicator, as described in Section 3.1.1, is globally unique in

our implementation and is used as the key for the hash table. Other co-located processes

of the same communicator lookup the pointer to this process map in the hash table and

cache it locally in their communicator structures. We thus store a single process map per

OS-process for each communicator. Sharing is also enabled if a routine like MPI Comm dup

is used to duplicate any communicator. In Figure 2.4, communicator B is created by dupli-

cating communicator A. The entry in the hash table corresponds to the new context ID for

communicator B, however, the process map is shared. Notice that the hash table lookup

is only done once to access the pointer to the process map, during communicator creation,

and then the pointer is cached locally. This allows us to use reference counting to keep

track of how many MPI processes are sharing a map. If communicator A is freed, the entry

corresponding to it in the hash table is removed, however, process map A remains until all

references to it are removed.
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MPI provides routines like MPI Comm group to access the process group associated with

a communicator. We use a uniform definition for process maps inside MPI group and

communicator structures. For certain routines like MPI Comm group, this allows us to use

reference counting, in a way similar to that described for the MPI Comm dup routine, to

share the process maps across communicators and associated MPI groups. In general,

creation of MPI groups from existing groups through routines like MPI Group incl are not

scalable, as these are local operations and store their individual maps. However, if a group

is used to create a new communicator as in MPI Comm create, then we de-allocate all of

the individual maps of the group members that are co-located and share a single map with

the new communicator. However, as mentioned in [52], routines to create new groups from

existing ones are rarely needed, and the use of MPI Comm split is recommended for creation

of communicators. We discuss low-level system details of the design and implementation of

communicators in Chapter 3.

2.1.4 MPI Environment Initialization and Synchronization

MPICH2 uses external agents called process managers to launch and manage parallel jobs.

These agents communicate with MPI processes through an interface called PMI (Process

Manager Interface) via the mpiexec command. We extended the PMI to support an nfg

(number of f ine-grain) flag to the mpiexec command. Using nfg, the user can choose how

many MPI processes to run per OS-process in combination with the n flag specifying the

number of OS-processes. The FG-MPI runtime system inside each OS-process is initialized

through a call to a function called FGmpiexec(). At the beginning of the program execu-

tion there exists a single main coroutine (MAIN CO), which communicates with the process

manager and gathers the environment settings. The main coroutine plays an additional

initialization and synchronization role in the MPI Init() and MPI Finalize() calls, but

otherwise behaves identically to the other co-located coroutines during program execution.
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MPI environment structures initialization

MAIN COROUTINE

COMMON STRUCTURES INIT

- PMI communication

- OS-process group and virtual connection setup
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Initialization of main coroutine state descriptor

SPAWNED COROUTINES

Figure 2.5: Initialization of the MPI environment during MPI Init.

When the FGmpiexec() function is called by the main coroutine, it performs two func-

tions: firstly, it initializes the MPI execution environment and secondly it spawns the other

coroutines.

Figure 2.5 shows the major structures that are created and initialized by the main

coroutine and subsequently shared among all the co-located MPI processes in an OS-process.

These include the Nemesis communication subsystem queues and shared memory segments,

progress engine initialization and creation of VCRT and communicator hash table. The MPI
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storage structures such as posted receive queues, unexpected messages queues and request

pools are also global in the middleware and shared among the coroutines. Sharing of the

request queues and progress engine not only enables scaling to large number of co-located

processes, it also allows one MPI process to cooperatively progress messages for other co-

located MPI processes. We describe message progression in more detail in Section 2.2.

The last step of the MPI initialization is the creation of scheduler queues and the

spawning of the co-located MPI processes in each OS-process. Each of the newly spawned

processes are assigned the function that they will be executing. These functions are written

as standard MPI programs, complete with the MPI Init and MPI Finalize routines. The

mapping of functions to the MPI processes is done through a user-defined binding function5,

which maps the MPI COMM WORLD rank of each process to a function pointer. The main

coroutine yields at this point and each of the spawned processes are run by the scheduler

and they initialize their coroutine state (described in Section 2.1.5) and share the common

structures created by the main coroutine. All co-located MPI processes synchronize at the

end of their MPI Init calls and are queued for scheduling.

2.1.5 Coroutine State Descriptor

Each coroutine maintains a descriptor to store the state of execution of the MPI process

associated with it. This MPI state information per coroutine is 1,328 bytes on a 64-bit

machine and consists of the fields shown in Figure 2.6. This consists of the process’s unique

Process rank in MPI_COMM_WORLD

Pointer to built-in communicators

Pointer to communicator context ID bitmap

State of initialization

Figure 2.6: Coroutine State Descriptor.

5The binding function is passed as an argument to FGmpiexec. More details are given in Section 3.4.
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rank in MPI COMM WORLD, a pointer to the pre-defined built-in communicators, a pointer to

its context ID bitmap indicating the available and used communicator context IDs for this

process (see Section 3.1.1) and the state of initialization, i.e., whether it has called MPI Init

(and similarly for MPI Finalize). Each coroutine has its own stack with a default size of

128 Kbytes. The lower bound on the stack size for the Toernig’s and the PCL coroutine

libraries is 1K bytes and 4K bytes, respectively. We currently have a fixed stack size for

each coroutine, however, it is possible to extend FGmpiexec to provide the stack size as an

argument.

Finally, note that FG-MPI extends MPICH2 and the FG-MPI runtime is only set-up

when there is more than one MPI process in an OS-process and it is possible to freely

mix OS-processes with one process with those having multiple processes. In Section 2.2 we

describe FG-MPI’s user-level scheduler and its interactions with the middleware’s progress

engine.

2.2 Integrated MPI Scheduler

We maintain a run queue and a blocked queue for co-located MPI processes inside each

OS-process. Scheduling events inside the middleware invoke the scheduler, which according

to the scheduling policy, blocks the current process or adds it back onto the run queue, and

chooses the next process to resume. We provide a scheduler framework that allows us to add

new policies as the need may arise. The selection of the scheduler is provided as a command

line option to mpiexec. The most interesting aspect of the scheduler is its integration into

the MPI middleware and interaction with events occurring inside the progress engine.

As Figure 2.2 (page 22) shows, many of the key data structures in the middleware, such

as the message queues, the request pools and the communicator pool, are shared among all

of the co-located MPI processes. In FG-MPI, communication can be both internal (among

co-located processes) and external (between processes that are not co-located). When a
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process makes an MPI call it progresses its request as far as possible. For example, consider

the case of standard communication through MPI Send and MPI Recv between co-located

processes. If the receiver process runs first, it queues its request in the posted receive queue

and yields to the scheduler, which blocks it and resumes another co-located process to run.

When the corresponding sender process runs, it matches the pre-posted receive request and

completes its call. The sender sends a notification to the scheduler to unblock the receiver

process and continues executing. However, in case the matching receive has not yet been

posted, the send request is placed in the unexpected message queue and the sender yields

to the scheduler so that the receiver can run. When the corresponding receiver executes, it

finds and completes the matching request and continues execution.

For the case of communication between processes that are not co-located, when a process

sends a message it initiates a communication transfer over the external link to the receiver.

Depending on the size of the send request, it may be able to complete the transfer and

continue executing or it may require an acknowledgement from the receiver to complete the

call, as for example in a long message rendezvous transfer. In the latter case, the sender’s

message is queued among the pending sends in the progress engine, the sender yields to

the scheduler and another co-located process runs. Similarly, a message arriving over the

network at the message matching layer may complete a pending request or in the case of

an unexpected message will be queued until a matching receive request arrives.

In case of non-blocking MPI calls, the process does not block but continues executing

until, for example, the corresponding wait routine is called. Depending on the state of

the process’s request at that point it may be able to complete the call or yield to another

co-located process.

One important advantage to sharing the state of the progress engine is that MPI pro-

cesses can cooperatively progress pending messages for other co-located processes and notify

the scheduler. The scheduler based on these notifications can add processes to the run queue.

An example of cooperation between co-located processes is that of a pre-posted receive re-
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quest for which a ready-to-send (RTS) arrives to initiate the long message handshake. It is

possible that the MPI process which posted that receive request is not currently executing,

but a clear-to-send (CTS) can be sent by the currently executing process on its behalf.

One effect of non-preemptive scheduling is that a process that is busy computing blocks

the progress of all other co-located processes. One assumes that as long as the process is

busy it is making progress; however, we added MPIX Yield() to handle cases when a fairer

scheduling is needed. MPIX Yield() is a FG-MPI specific routine which allows the calling

process to voluntarily yield control to the scheduler.

Internal communication is optimized to take advantage of a single address space, and it

is an opportunity for the scheduler, depending on the type of the communication, to block

one process until the communication can be completed after which both processes can pro-

ceed. For co-located processes, the scheduler follows a natural order where a send message

schedules the corresponding receive process that can continue to progress the message chain.

The communication among co-located processes involves a single memcpy, avoiding any in-

termediate system copies. Similarly for external events, once a message is received and

completed the corresponding MPI process is scheduled to continue advancing the computa-

tion. As well, for collectives such as MPI Barrier, the last co-located process completing the

barrier can gang-schedule all of the processes in the barrier since they can now all proceed.

In many cases we have found that even the basic round-robin (RR) scheduler, which

keeps all the processes on the run queue, is adequate. Because the scheduling overhead is

relatively small, the RR scheduler works well as long as the co-located processes are easy to

keep busy. Another nice property of the RR scheduler is that it is deterministic and gives

more predictable executions. The deterministic property of RR has also been useful as a tool

for debugging programs. This is the advantage to introducing a user-level scheduler instead

of scheduling by the OS where the programmer has less control over how the processes are

scheduled.

It is not sufficient to have only RR since there are simple cases where RR performs ex-
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tremely poorly. For example, consider the simple ring program, the forward communication

of messages works well when it is the same order as the scheduling order, however, com-

munication in the reverse direction is slow due to re-scheduling delay of all of the processes

on the run queue. More generally, it was important to introduce a scheduling framework

rather than one or more fixed policies. The policy ultimately depends on the application

where ideally processes on the critical execution path are scheduled first. Finally, note that

the scheduling policy is local to an OS-process and the runtime inside each OS-process can

select its own scheduling policy.

One interesting problem that arises with the scheduler, that allows blocking of MPI

processes, is indefinite waiting of the processes in the scheduler’s blocked queue. Indefinite

blocking can occur, for instance, when all of the co-located processes are blocked on a

receive call, waiting for an external event, and there is no runnable process that can check

for the arrival of messages and unblock those processes. One alternative is simply not to

block all processes or to simply keep one or more processes on the queue. Deciding on

whether or not to block a process depending on the state of other co-located processes is

complicated. There are a large number of MPI calls and different scenarios that would need

to be considered including analysis of corner cases involving collectives and the different MPI

communication modes, where a change in the implementation could inadvertently introduce

subtle problems. However, there is a simple and scalable solution to this scheduling problem.

We solved the potential indefinite blocking problem by introducing a progress coroutine

in our runtime that comes into existence the first time an MPI process blocks on a receive

call. Once created, the progress coroutine remains on the run queue. When called, this

coroutine executes the progress-loop in the middleware and progresses pending incoming

and outgoing messages. Whenever there is a receive that could be matched by a message

from a remote process it ensures that we poll the external link for more data and on arrival

of such a message wakes up the blocked process. As discussed, a clear-to-send (CTS) may

be sent by the progress coroutine for a pre-posted receive. A progress coroutine avoids the
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checking that would have been necessary when blocking processes and also provides an easy

way to measure the idle time and “slackness” during runtime.

2.3 Summary

FG-MPI extends the execution model of MPI to include interleaved concurrency through

integration into the MPICH2 middleware. It decouples the notion of a process from that of

the hardware and makes it possible to adjust the granularity of the programs independently

from the hardware. Integration of the FG-MPI runtime into the MPI middleware reduces

the overhead of adding concurrency and provides an alternative to the hybrid MPI+X

model.

FG-MPI’s tight integration into MPICH2 enables sharing of the middleware structures,

optimizing communication for co-located processes and implementation of a runtime sched-

uler that works in concert with the events occurring inside the middleware. These benefits

cannot easily be obtained by layering a system on top of MPI with no visibility into the state

of the middleware. FG-MPI runs on commodity operating systems and does not require

any special support.
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Chapter 3

System Components

The best design tool is a long eraser with a pencil

at one end.

Marty Neumeier

In this chapter we describe the low-level system and implementation details of the FG-

MPI system. Prior to discussing the design aspects of the different system components,

we introduce the following notation to classify different sizes of systems in terms of the

communication hierarchy (see Figure 3.1). We specify the hierarchical structure of an MPI

execution in terms of P, the number of MPI processes per OS-process as given by nfg, O,

the number of OS-processes per machine, and M, the number of machines. N = P×O×M

is the number of MPI processes in a [P;O;M] execution. The standard “one MPI process

per OS-process” model corresponds to a [1;O;M] execution. In general, the number of fine-

grain processes (P) inside an OS-process can vary, but for our discussion we will assume the

same P for every O. Given this notation, concurrency can be added by over-subscription

(increasing O to be larger than the number of cores per machine) and/or increasing P.

3.1 Scalability of Communicators and Groups

The ability of FG-MPI to expose large-scale concurrency necessitates addressing issues

related to the scalability of MPI to a system with millions of fine-grain MPI processes.

Communicators and groups are an integral part of MPI and scalability of their implementa-
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Figure 3.1: Hierarchical view of FG-MPI runtime environment with N = P×O×M MPI
processes.

tion is a challenging aspect of the MPI middleware. In this section, we describe techniques

to allow for sharing of group information inside OS-processes and the design of scalable

operations to create the communicators. The techniques described here were implemented

for intra-communicators, however, they can be extended to inter-communicators.

Communicators and groups exist to support the development of higher level libraries [56,

62]. A communicator is an opaque object and every point-to-point and collective commu-

nication routine in MPI takes a communicator as a parameter. Communicators divide the

communication into disjoint communication contexts such that a message sent in one con-

text can only be received by a communication routine with a communicator in the same

context. Every process inside a communicator is assigned a rank from 0 to the group size

minus one. In particular, since all new communicators are derived from the pre-defined

communicator MPI COMM WORLD, the group of all processes, every process in a system with
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N processes is assigned a “world” rank from 0 to N − 1.

In order to route messages to their destination a communicator needs to know the

location of the destination process. In a [1, O,M ] system the endpoint of a communication is

an OS-process and, as done in MPICH2, one can store the information about the destination

as an array of pointers mapping group rank to a communication endpoint object. In FG-

MPI, since the communication endpoints are no longer OS-processes but MPI processes

inside OS-processes, we use a process’s world rank to uniquely identify the destination of

a message. When a message is sent in FG-MPI we add the world rank of the destination

process and the Nemesis endpoint associated with the OS-process to the message envelope.

Using the endpoint object, Nemesis routes the message to the correct OS-process and the

middleware inside the OS-process uses the world rank as part of the MPI matching criteria

to deliver the message to the correct receive buffer. Most implementations of MPI store the

mapping from group rank to destination process as an array for every destination [29, 47,

146], thus a group of size O(N) requires O(N2) space in total. Given that in general MPI

programs may contain many groups of various sizes the amount of space consumed by group

maps becomes prohibitive. Given N = P × O ×M processes in a [P,O,M ] system, one

goal was to reduce the non-scalable O(N2) space and communication time to O(PO2M2).

Note that here we use P as the maximum number of MPI processes per OS-process and O

as the maximum number of OS-processes per machine, to give upper bounds on the time

and space with respect to the total number of processes.

The space consumed by the group maps becomes all the more challenging as one at-

tempts to scale up the number of MPI processes to millions. For example, consider a

[1000, 100, 10] system with one million processes. Assuming that we can optimally en-

code each destination using
⌈

lg(106)
⌉

= 20 bits, a new communicator which re-maps

MPI COMM WORLD requires 2.5 MBytes of storage per process, 2.5 GBytes per OS-process

and 250 GBytes per machine and 2.5 TBytes in total! The techniques described in this sec-

tion reduce the memory requirements for this example to 2.5 GBytes in total, and possibly
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significantly less depending on the mapping.

It is reasonable to expect that the size of systems will continue to grow and systems

with more than 1,500,000 cores already exist today [144]. Issues related to the scalability of

the MPI specification and its implementation to millions of MPI processes are a subject of

active research [12, 47]. At this scale, and even on many smaller systems, memory saving

techniques are essential to take advantage of the benefits of communicators. Although we

do not have access to a system of this size, we are able to implement and evaluate a number

of memory saving techniques for communicators inside FG-MPI for [P,O,M ] systems of

this scale.

The first step to reduce the space requirements for communicators is to share the group

map among co-located processes. This allows us to reduce the space requirements from

O(N2) to O(PO2M2). In Section 3.1.1, we discuss the issues and optimizations involved

in sharing of data structures among processes. The second strategy, which benefits all

[P,O,M ] systems, is to reduce the N factor through different memory reduction techniques

for storage of the group map. These memory reduction techniques were implemented as

part of a Master’s thesis by Seyed Mirtaheri [98] under the supervision of Dr. Alan Wagner

and involved introduction of a framework for the use of various compact representations

of the group map. A key element of this framework is the decomposition of the group

map into a set and permutation. The representations investigated included compression,

implicit representations based on Binary Decision Diagrams (BDDs) [20], and succinct

data structures. The details of these memory reduction techniques can be found in [78].

Mirtaheri’s work was implemented as an external library that can be linked to the FG-MPI

system as a configuration option. I provided the API for this library and implemented the

interface part for FG-MPI as well as the build and configuration systems.
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3.1.1 Sharing the Group Map

The two main routines for creating intra-communicators in MPI are MPI Comm split

and MPI Comm create. Communicators are created with respect to an outer communicator,

where the new communicator or communicators is a subset of the processes of the outer

communicator. These routines are collective operations over the processes in the outer

communicator. The routines return with a local handle to the new communicator, which

contains among other fields, (a) a pointer to the process group map, and (b) a context iden-

tifier. The group map identifies the members of the group associated with the communicator

and the context identifier (context ID) is a fixed sized field inside the communicator that

must match on all communications using the communicator. As long as the context ID of a

communicator for a process is unique, the process cannot mistakenly receive a message sent

to it using a different communicator. Thus context IDs provide a scoping mechanism and

are essential to avoiding communication errors that can arise in writing of parallel libraries

in MPI.

To enable sharing the group map structure among the co-located processes belonging

to the new communicator, a hash table is used to coordinate the allocation of memory for

the structure. Consider Figure 3.2 showing two OS-processes X and Y inside one machine

where processes {2, 3, 4, 5} are creating communicator A. One of the processes inside each

OS-process creates the group map structure and stores a pointer to the structure inside

the global hash table. Subsequently, the other co-located process belonging to the same

communicator uses this hash table to lookup the group map pointer and cache the pointer

inside its own communicator structure during the communicator creation operation. For

sending messages, a process accesses the group map to find the world rank of the destination

to put in the message envelope and then finds the OS-process endpoint through the process

name table to route the message to the appropriate OS-process.

An important precondition to the use of the hash table is that all co-located processes
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Figure 3.2: The sharing of the process group inside communicator A with 6 processes inside
two OS-processes X and Y of one machine M.

belonging to the same new communicator need to have the same key to lookup the shared

group map pointer in the global hash table. Furthermore, these keys need to be different

for different communicators. Given that a context ID has to be created as part of the

communicator and the properties of a context ID are similar to that of a key, we chose to

generate a context ID that can serve both purposes.

During a communicator create routine, the context ID for a new communicator A is

constructed from a combination of a leader identifier (LID) and leader bit index (LBI)

denoted by 〈LID,LBI〉 where

• LID is the world rank of a representative chosen from the group underlying A, and

• LBI is an integer, uniquely chosen for every LID.
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For LBI, every process maintains a bitmap of size 2k, for some constant k, where a set bit

in location i of the bitmap signifies the use of that position, the bit is unset otherwise. For

a given LID, LBI is the index of a free position in the bitmap which is then set to one.

The context ID is constructed by concatenating the L bits needed to represent a world rank

and k bits6 needed to represent LBI, where each process can be chosen leader for as many

as 2k communicators. Context ID 〈LID,LBI〉 is globally unique since LID and LBI are

equal only when they belong to the same communicator. It is thus also OS-process unique

and therefore can be used as a key for sharing the group map for the communicator.

The pseudo-code for MPI Comm split is given in Procedure 1. The routine uses a leader-

based approach where one process (the root) in the outer communicator gathers and then

distributes the necessary information to all the other processes. In line 5, the color and key

information is gathered to the root. We also gather the bitmap information into B, which

is used later in Line 11. We employ an optimization that reduces the amount of data sent

to the root process by sending only the count of set bits and the location of the lowest set

bit in LBI, instead of sending the entire bitmap. The gathered data, together with ranks of

the processes stored in S, is sorted by color, key and rank. Processes belonging to the same

color class belong to the same new communicator. In lines 5 to 20, the root computes the

context ID. Although any bitmap with an unset bit can be chosen, we balance the choice

of leader by finding the one that has been chosen the least number of times. We use the

CID value to also define a local leader for each group. The root uses the world rank array

to determine which processes are co-located and for each group, and for each OS-process

it chooses a local leader. Finally, in lines 22 to 32, the root distributes the context ID and

group information to all the processes. All processes receive the context ID, but since the

group is shared, the root distributes the group map only to the local leaders as identified in

the context ID information. The remaining processes yield and are not re-scheduled until

after the local leader has created the group map. For an outer communicator (comm) of size

6See implementation notes in Section 3.1.2 for details on the value of k.
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Procedure 1 MPI Comm split(comm,color,key,ncomm)

Let: Let N be the size of comm and rank 0 the root.

1: if root then

2: // Arrays to store Colors, Keys and Bitmaps

3: Allocate C[N ], K[N ], and B[N ]

4: end if

5: MPI Gather([C,K,B], root)

6: if root then

7: Allocate S[N ] // initially S[i]=i

8: Sort S,C,K,B with respect to C, K and rank.

9: for each color class Ci do

10: Find k in B with the fewest number of bits set

11: LBI ← first unset bit in B[k]

12: Allocate CID[N ] // info for context ID

13: for each j in the color class Ci do

14: if S[k] is the first co-located process for group then

15: CID[j]← {S[k], LBI, LEADER = yes}

16: else

17: CID[j]← {S[k], LBI, LEADER = no}

18: end if

19: end for

20: end for

21: end if

22: MPI Scatter({CID,group-rank,group-size,local-leader},root)

23: Create 〈LID,LBI〉 from CID values

24: if root then

25: for each color class Ci do

26: MPI Send(group membership info to local leaders)

27: end for

28: else if local leader of a group for an OS-process then

29: MPI Recv(group membership info from root)

30: else

31: yield to wait for local leader

32: end if

33: Use 〈LID,LBI〉 to create or get pointer to group map
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N , it takes O(N lgN) time to sort the data at the root, O(N) communications, and O(N)

space.

The pseudo-code for MPI Comm create is given in Procedure 2. The main difference

Procedure 2 MPI Comm create(comm,group,ncomm)

Require: Let G be group map from parameter group and N be the size of comm.

1: if I am rank 0 of G then

2: Allocate B[|G|] where B[0]← bitmap of rank 0

3: for each i = 1 to |G| − 1 do

4: MPI Recv(B[i], from rank i in G)

5: end for

6: else

7: MPI Send(bitmap, to rank 0 in G)

8: end if

9: if I am rank 0 of G then

10: Find k in B with the fewest number of bits set

11: LBI ← first unset bit in B[k], LID ← k

12: for each i = 1 to |G| − 1 do

13: MPI Send({〈LID,LBI〉, group rank}, rank i in G)

14: end for

15: else

16: MPI Recv({〈LID,LBI〉, group rank}, rank 0 in G)

17: end if

18: Use 〈LID,LBI〉 to create or get pointer to group map.

between the MPI Comm split and MPI Comm create routines is that in MPI Comm create

each process already knows the group information. As well, since MPI 2.2, the group

parameter to MPI Comm create can differ, which can result in multiple communicators.

Because processes already have the group information, the only information missing is the

context ID. In lines 1 to 8, rank 0 of the group gathers the bitmap information from the rest

of the group members. Rank 0 computes 〈LID,LBI〉, and in lines 9 to 17 sends the context
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ID information back to the group members. Because there can be more than one group, we

cannot use collectives, and instead use explicit sends and receives to the group elements.

For multiple groups, all of the groups can be actively sending and receiving messages at the

same time since the groups are non-overlapping. In line 18 the process with the smallest

group rank uses it to create the group map and the remaining processes simply cache a

pointer to their group map.

3.1.2 Implementation Notes

In our implementation, all the fields of the message envelope (see Figure 2.3, page 24) are

stored as 32-bit integers. This allows the envelope to fit in two 64-bit fields, potentially

allowing for fast comparisons on 64-bit architectures. For the 32-bit context ID, we set

k = 6 and L = 21, because MPICH2 reserves 5 bits in the context ID for other purposes [8].

The choice of k=6 bits keeps the size of the bitmap small, allows each process to be a

chosen as a leader 64 times, while leaving 21 bits for the leader ID. This choice has no hard

dependencies for the system design, which allows for increasing the size of context ID in the

future for very large program sizes.

The MPICH2 middleware uses a lazy instantiation approach for storing handles to

the communicator objects in the middleware.7 This allows the middleware to specify a

large pool of objects, however, memory is only allocated when needed. It uses a two-

level storage scheme consisting of: (a) a direct array that can hold a small number of

pre-allocated objects, and (b) a large indirect array of pointers, each of which points to

a block of storage. These blocks are lazily allocated when they are needed. The default

value of number of pointers in the indirect array in MPICH2 is 1024 and each of the blocks

can contain 256 objects, allowing for allocation of 256K communicator handles in each OS-

process. This communicator pool is shared among the co-located MPI processes (Figure 2.2,

7MPICH2 uses the same storage scheme for handles to other types of MPI objects as well, such as group,
request and datatype etc.
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page 22). The number of communicators (num comms) that can be created inside an OS-

process, before exhausting this pool, is given by (
∑num comms

i=1 num colocatedi = 256K),

where num colocatedi is the number of processes in communicator i that are co-located

inside that OS-process. The usage of the communicator pool depends on the dynamic

characteristics of the application. We currently use MPICH2’s default configuration values

for the indirect array size in FG-MPI which can be increased, if needed.

3.1.3 Discussion

Assignment of a unique identifier to the process groups in MPI communicators can be viewed

as a hypergraph problem, where the design of the context ID algorithm determines the graph

structures that can be created. In this section we discuss the different graph structures used

by our context ID generation algorithm and compare it to MPICH2’s algorithm.

In an MPI environment, the set of vertices V in a hypergraph H(V,E) represent the set

of MPI processes in MPI COMM WORLD and the set of edges E, such that E ⊆ P(V ), represent

the process groups.8 Our context ID creation algorithm, where each edge e ∈ E in a

hypergraph can be a leader at most 2k times, is equivalent to the problem of s-orientability.

S-orientability of a hypergraph is defined as follows [43].

Definition 3.1. A hypergraph H = (V,E) is called s-orientable, if there is an assignment

of each edge e ∈ E to one of its vertices v ∈ e such that no vertex is assigned more than s

edges.

Our algorithm balances the choice of leader by finding the one that has been previously

selected as the leader the least number of times. Ties are broken by selecting the leader

with the smallest local rank in the group. The structure of the hypergraph is dynamically

determined based on the program execution and our algorithm uses a greedy approach that

finds the local minimum.

8The empty set can be viewed as corresponding to MPI COMM NULL, the null communicator.
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In MPICH2, the context ID is directly generated from a bitmap of size 2k that is

allocated for each process at start-up with all bits initially set to one.9 A new context ID is

generated by performing a bitwise AND in MPI Allreduce, where all processes in the outer

communicator of the operation obtain the result of the bitwise AND operation where a one

bit in the ith position is an available context ID. As long as all processes agree on which bit

to choose, then they will all agree on the same k-bit value to use to generate the context

ID (the lowest set bit is selected in MPICH2 [59]). The MPICH2 algorithm is equivalent to

the edge coloring of a hypergraph, which is defined as follows [110].

Definition 3.2. A s-edge coloring of hypergraph H = (V,E) is an assignment of s colors

to the edges of H so that distinct intersecting edges receive different colors.

Notice, that in the case of MPI Comm split every new communicator receives the same

context ID. This is sufficient to ensure “safe” communication because the underlying groups

for the new communicators are all disjoint, thus the context ID is guaranteed to be unique

for all the communicators of which a process is a member.

The algorithm used for context ID generation determines the structure of the hypergraph

that is dynamically created during the execution of the program. In the case of MPICH2,

a process can be a member of at most 2k communicators, independent of the size of the

world. As well, the limit on the number of context IDs can only be increased by increasing k,

which essentially doubles the size of the bitmap and the amount of data for MPI Allreduce.

The context ID we have defined can be created as long as there is one process in the new

communicator that has not been a leader 2k times. Thus, the opportunity to create new

context IDs grows with the size of the group which in turn depends on the size of the

world. The difference is, in our case, the number of context IDs scales with the size of

MPI COMM WORLD and k does not need to scale. Illustrations of the hypergraph structures

9MPICH2 stores the context ID as a 16 bit integer, where 5 bits are reserved for other purposes [8]. In
MPICH2, k=11, allowing the context ID to fit into 16 bits. The size of the bitmap is 2 Kbits.
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and the limiting cases for MPICH2 and FG-MPI context ID algorithms are presented in

the boxed section on pages 49 and 50.

The other major difference in communicator creation is the use of leader-based communi-

cation where one process (the root) in the outer communicator gathers and then distributes

the necessary information to all the other processes. This avoids the “ALL” type collectives,

like MPI Allgather, which in the worst case consumes O(N2) for an outer communicator G

of size N . As well, our MPI Comm create algorithm does not perform any collective opera-

tions on the outer communicator and uses local leaders within each of the multiple groups.

This allows the processes in each of the groups to communicate independently of each other.

An advantage of MPICH2’s context ID is that it can be generated with a single

MPI Allreduce operation, and in the case of MPI Comm create no further communication

is needed. However, in the case of MPI Comm split, this is possible only after an earlier

MPI Allgather operation which temporarily requires O(N2) space. This is a good example

of the trade-offs between communication time and space where originally a [P,O,M ] system

uses O(P 2O2M2) communications and O(P 2O2M2) space now takes O(POM) communi-

cation and O(PO2M2) space. The same techniques can be used to extend group sharing to

OS-processes, but it would incur some additional shared memory synchronization overheads.

The use of leaders is a key part of the design of FG-MPI. Not only does it avoid the

scalability problems for creating communicators, leaders played an important role in defin-

ing location-aware collectives that can take advantage of the hierarchical communication

structure in a [P,O,M ] system.
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Hypergraph structures

The context ID generation algorithms used by MPICH2 and FG-MPI exploit very

different hypergraph structures. The s-edge coloring algorithm used by MPICH2

allows context ID reuse for non-overlapping groups, however, the total number

of unique context IDs that can be generated is a fixed value, irrespective of the

number of processes in MPI COMM WORLD. The limiting case for MPICH2’s algorithm

occurs if at least one MPI process is part of every communicator, where a total of

2k context IDs (i.e., edge colors) can be generated (see Figure 3.3).

Figure 3.3: An example of s-edge coloring of hypergraph using MPICH2’s context
ID algorithm, where one process is member of all four communicators.

FG-MPI’s s-orientability algorithm incorporates a process’s MPI COMM WORLD

rank as part of the context ID, which gives us an important property of being

able to scale with the size of the group. The leader-based approach uses a greedy

algorithm to balance the orient of the hypergraph to one that has been selected

the leader the least number of times.

Continued on page 50.
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Figure 3.4: An example of s-orientability of hypergraph using FG-MPI’s context ID
algorithm, where the communicators form a ring structure in which each member
of a group of size two is part of two communicators.

The limiting case for FG-MPI are small groups that are duplicated 2k× group-

size. For example, Figure 3.4 shows groups of size two overlapping in a ring struc-

ture. The maximum number of times that this ring structure can be duplicated is

2k×2 before running out of potential leaders. This example, where we are using a

uniform group size, is similar to (l, s)-orientation of hypergraphs, which is defined

as follows [87].

Definition 3.3. A h-uniform hypergraph H = (V,E) is called (l, s)-orientable if

there exists an assignment of each hyperedge e ∈ E to exactly l of its vertices v ∈ e

such that no vertex is assigned more than s hyperedges.

Although the algorithms used by MPICH2 and FG-MPI create different hy-

pergraph structures it is not clear which one can create more. Moreover, the

group structure is dynamically determined by the application. As mentioned in

Section 3.1.2 (on page 45), the value of k, indicating the size of the bitmap, can

be increased when necessary.
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3.2 Message Matching Queues

MPICH2 has a modular architecture as shown in Figure 2.1 (page 20) and the implemen-

tation of the communication part is spread over the CH3 device layer and the channel layer

below it. The CH3 device layer defines the device interface such as the communication pro-

tocols and the interface to the channel layer. The channel layer implements device specific

features.

The message matching inside the middleware broadly works as follows. The middleware

creates an MPI Request object, which describes the type of the communication, whenever a

message is posted for sending or receiving by a process. MPICH2 maintains two main queues

for message matching: (a) a posted receive queue (PRQ) for pending receives posted by a

process and, (b) an unexpected message queue (UMQ) for messages arriving for a process that

has not yet posted a corresponding receive. The Request object is searched in one of these

queues for a possible match depending on whether it is a send request or a receive request.

For example, in case of a receive call by the application, the CH3 layer first searches the

unexpected message queue to check if a matching message has already arrived. If so, then

the data is copied into the receiver’s user buffer and the request is marked as completed.10

However, if a match cannot be found in the unexpected message queue, then the receive

request is queued in the posted receive queue. A similar search happens when a message

arrives for a process. This message is checked for a match in the posted receive queue. If

found, the request is completed, otherwise the incoming message is queued in the unexpected

message queue.

In MPICH2, the unexpected message queue and the posted receive queue are both im-

plemented as singly linked-lists. In the MPICH2 implementation these queues were meant

10Copying of data and completion of request is for the simple case when the message being transferred
is a short message, which is sent eagerly and is buffered by the middleware. For other cases, there are a
number of events that can occur depending on the type of the send or receive call, the size of the message,
whether the message transfer was buffered or not and the communication protocol (e.g., rendezvous, etc.)
used for the message transfer.
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for a single MPI process and a linked-list structure provides an efficient queueing and search

mechanism as long as the queues remain small. In FG-MPI, it is possible to share the exist-

ing MPICH2’s queues to store pending requests for all co-located processes. However, since

there are now nfg co-located processes using the linked-list structure, the lists can become

large, adding to the overhead in matching. Depending on the communication pattern the

search time in either of the queues may become as large as O(
∑nfg

i=1 num requestsi), where

num requestsi is the number of un-matched requests for process i (MPI process with world

rank i).

The problem is how to reduce the overhead in matching requests in these queues while

allowing for large number of co-located processes. We had the following objectives in the

design of the UMQ and PRQ queues.

• Reduce the search time overhead for each processi so that it is O(num requestsi).

• Match and complete requests as soon as possible, irrespective of whether the co-located

process that posted the request is currently scheduled or not. To allow cooperation

among co-located processes, the UMQ and PRQ structures should be shared among them.

• Structure the queues so that the search overhead is the same, whether it is a wild-

carded receive or not. The request matching criteria in MPI is based on the context

ID, tag and the sender process and receiver process ranks as shown in Figure 2.3

(page 24). MPI allows a process issuing a receive request to use wildcards such as

MPI ANY SOURCE that allows them to receive from any sending process.

In order to achieve O(recv requestsi) search time, we de-multiplexed the single linked-

list in MPICH2 of Request objects into separate linked-lists for each of the co-located

processes. As shown in Figure 3.5, the UMQ and PRQ queues are implemented as an array of

linked-lists, with the size of the array equal to nfg.

Selecting the array index in these queues is key to limiting the search, for a possible
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MPI Request

object

Array of nfg queues

Figure 3.5: Structure of the Unexpected Message Queue (UMQ) and the Posted Receive
Queue (PRQ).

match to a Request object, to only one of these linked-lists. This is particularly important

in the case of MPI ANY SOURCE wildcards since we want to avoid a linear search through

all the linked-lists. To solve this problem we selected the array index to be what is always

known in any Request object and that is the receiving process’s world rank (see Figure 2.3

on page 24). The UMQ is indexed by the destination rank in the incoming message header,

while the PRQ is indexed by the world rank of the receiver process who issued the receive call.

The index choice is based on the fact that the sender process always specifies the destination

(receiver’s) rank when sending a message and an incoming message when matched against

PRQ should only check that receiver’s list. A receiver process may not know the rank of

its matching sender but always knows its own rank. Whenever a receiver processi posts

a receive request that cannot be matched immediately, it can use its own world rank i to

enqueue it at the end of its list in PRQ. The case for UMQ is similar. While separate lists are

maintained for the Request objects for each of the co-located processes in the UMQ and the

PRQ, the complete structure itself is accessible by all co-located processes. This allows an
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MPI process to progress and complete requests by other processes.

In terms of space complexity, the array of linked lists introduces an extra overhead of

O(nfg) over a single linked-list, but provides considerable speedup with respect to search

time. One limitation of using an array is that it assumes that the co-located processes have

contiguous MPI COMM WORLD ranks. This, however, is not a limitation of the design and the

array can be replaced by a hash table.

Even in the case of a single MPI process per OS-process, as in MPICH2, optimizations

have been proposed for reducing the search time in UMQ and PRQ through further levels of

de-multiplexing based on the context ID and tag [156]. These techniques can be applied to

the FG-MPI implementation as well. However, the impact of the search time in message

queues on the latency has been shown to have a wide variation depending on the application

characteristics [82, 147]. It has been proposed in [82] that the queue usage be used to

detect and remove bottlenecks in the application and avoid accumulation of messages. One

advantage of having many fine-grain processes is that each of them will likely not post

a large number of outstanding messages and the individual linked-lists for each of them

remain small, reducing the search overhead. In Section 5.2, we present an example of using

FG-MPI to re-structure a typical use of non-blocking communication in MPI, where the

number of outstanding requests for each of the fine-grain processes is kept small.

3.2.1 Nemesis Queues

MPICH2 supports a number of channels as shown in Figure 2.1, with the Nemesis chan-

nel designed specifically for scalability and low latency of communication. The design of

the Nemesis communication subsystem was based on a number of goals with the follow-

ing priority: (a) scalability, (b) low intra-node communication overhead, (c) low inter-node

communication overhead, and (d) support for multi-network inter-node communication [24].

Nemesis uses a number of techniques to achieve this, such as, (a) lock-free queues to avoid
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locking overhead, (b) maintaining a single receive queue for each process to avoid the over-

head of polling multiple queues, which is important for scalability on large SMP systems,

and (c) several optimizations to reduce cache misses.

In FG-MPI, we leverage Nemesis’s design for communication among OS-processes mapped

to different cores and machines. The Nemesis implementation provides a uniform interface

for sending messages, whether they are sent to a remote OS-process on a different node or to

a local OS-process on the same node. For intra-node communication, each OS-process has

a single lock-free receive queue that other OS-processes use to enqueue messages through

shared memory on the node. For inter-node communication, its network module imple-

ments a send queue and messages are enqueued in it in the same way that they are onto

a local OS-process’s receive queue. In FG-MPI, the Nemesis queues are shared among all

the co-located MPI processes in an OS-process and in a [P,O,M ] system, the number of

Nemesis queues is O(O).

3.3 Zero-copy Communication Among Co-located Processes

A common criticism of MPI’s communication routines for shared address space is that they

require making one or more11 copies of the message buffer [44, 102]. In FG-MPI, standard

MPI communication among co-located processes is optimized to a single memcpy, avoiding

intermediate system copies, however, it still corresponds to passing messages by value,

requiring a deep copy of the message buffer. Given that the co-located processes share a

single address space, there is a potential to avoid this copy overhead through passing a

pointer to the message buffer instead. Conceptually, it is similar to defining the message

buffer as a “single-owner” resource, where only the current owner has exclusive read or

write access to it. The sending process explicitly hands over ownership of this resource

11Implementations of some routines may require intermediate system copies due to hardware or operating
system limitations [53].
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to the receiver process through an MPI routine and agrees not to access it again. Single

ownership has been explored for mobile-space objects in the Occam-pi language [106] and in

use of contracts to guarantee safe passing of references in systems like Singularity OS [65].

Enabling of safe ownership transfer is also well studied in the Actor model of message

passing, where messages can be efficiently sent using pointers, without the introduction of a

shared state between the concurrent entities. Ownership type systems to annotate messages

are used in libraries like Scala Actors and Kilim [132], and tools have been proposed to infer

safe transfer of ownership of messages without annotation [102].

We investigated extending MPI to support zero-copy communication among co-located

MPI processes.12 The potential benefits are in avoiding deep copies of data structures that

incur the overhead of serialization and de-serialization. Enabling zero-copy communication

in MPI involved looking at a number of design issues, which we discuss below.

3.3.1 Symmetry and Interoperability

MPI defines a large and rich set of library routines, however, these routines were designed

around a small number of concepts, keeping simplicity and symmetry in mind. As mentioned

by Gropp [53], one of the objectives of the MPI design was to require the user to learn only

a few concepts in order to use MPI. Our goal also was to define the zero-copy routines in

terms of the existing point-to-point routines and support the same properties of simplicity

and symmetry. Some of the main considerations in defining the zero-copy routines were as

follows.

• Interoperability of zero-copy routines with existing MPI communication routines, i.e.,

be able to use different routines on the sender and receiver sides. This functional-

ity already exists for the standard MPI routines and is supported by the zero-copy

12The term “zero-copy transfer” is somewhat loosely used in the context of MPI. Passing messages through
a direct copy of data between receiver and sender, without intermediate copies, is also sometimes referred
to as zero-copy transfer [53]. In our discussion, however, we define it as passing a pointer to the data buffer
in a message, with the sender process relinquishing the ownership of the buffer to the receiver process.
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implementation as well.

• Interoperability of different communication modes (such as blocking and non-blocking

etc.,) on the sender and receiver sides.

• Transparency of the communication to the user, i.e., the user need not be concerned

about whether the sender and receiver are co-located or not. If the communication is

among processes that are not co-located then the zero-copy routines will communicate

like the standard MPI routines. This property is important to support seamless

mapping of MPI processes onto OS-processes, cores and nodes. This property also

enables the use of MPI ANY SOURCE wildcards on the receiver side, as is possible with

existing routines.

int MPIX_Zrecv(void ** buf_handle, int count, MPI_Datatype datatype, 

int source, int tag,  MPI_Comm comm, MPI_Status *status)

int MPIX_Zsend(void **buf_handle, int count, MPI_Datatype datatype, 

int dest, int tag, MPI_Comm comm)

int MPIX_Izrecv(void ** buf_handle, int count, MPI_Datatype datatype, 

int source, int tag, MPI_Comm comm, MPI_Request *request)

int MPIX_Izsend(void **buf_handle, int count, MPI_Datatype datatype, 

int dest, int tag, MPI_Comm comm, MPI_Request *request)

Figure 3.6: Syntax of the zero-copy routines

• Zero-copy routine call semantics are similar to those of other point-to-point routines

and thus already familiar to the user. Figure 3.6 shows the syntax of the new routines.

The user can also continue to make use of the rich set of MPI datatypes due to this

symmetry in the design.
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Figure 3.6 shows both the blocking and non-blocking versions of the zero-copy routines.

The only syntactical difference between the zero-copy routines and the corresponding MPI

ones is that the sender process passes a reference to the message buffer pointer (void**)

as the first argument. The message buffer must be allocated on the heap and the sender

transfers ownership of the buffer to the receiver by agreeing not to access it again. The

implementation of zero-copy involved extension to the request structure and introduction of

a zero-copy request type inside the middleware. The message matching component was aug-

mented to incorporate the new request type into the search procedure for the posted receive

queue and the unexpected message queue. If both the sender and receiver processes are co-

located and communicate through the zero-copy routines, then the reference to the message

buffer pointer is passed to the receiver and the communication avoids memory copy of the

data. For interoperability and backward compatibility, if only one of the sender or receiver

processes uses the zero-copy routines, or they are not co-located, then the communication

will be the same as if both processes had used the corresponding standard MPI routines. The

sender buffer is de-allocated by the middleware in case of a MPI Zsend/MPI Izsend pairing

with a non-zero-copy receive routine or with a receiver process that is not co-located. Recall

that the receiver buffer is allocated by the user in case of standard MPI Recv/MPI Irecv

calls. If MPI Zrecv/MPI Izrecv is paired with a non-zero-copy send routine or with a sender

process that is not co-located, then the receiver buffer is allocated by the middleware. As

a safety check, MPI Zsend and MPI Izsend routines check that the buf handle does not

specify a null buffer, and likewise the MPI Zrecv and MPI Izrecv routines check that the

buf handle has been initialized to NULL.

MPI provides a set of predefined basic datatypes as well as routines to allow the users

to construct their own datatypes, which can be used to describe non-contiguous data [52].

User-defined datatypes allow description of complex data structures, however, they have

an associated serialization and de-serialization cost when used with standard MPI rou-

tines. The zero-copy routines avoid both the copying and serialization costs for user-defined
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datatypes for the case when both the sender and receiver are co-located. In this case only

the pointer to the data buffer is passed to the receiver and the layout information of the

data in the MPI datatype field of the zero-copy routines (Figure 3.6, page 57) is ignored as

it is not needed for the pointer transfer. Note that although information about the layout

of the user-defined datatype is not used for co-located zero-copy communication, the user

must construct a proper datatype to allow the middleware to interpret and serialize/ de-

serialize the data items when the sender and receiver are not co-located. MPI also allows

specialized functionality where datatypes on the sender and receiver can be placed in a

different memory order [44]. The zero-copy functionality does not cover this scenario.

3.3.2 Discussion

In this section we discuss some design choices we considered when implementing the zero-

copy functionality. One consideration was whether to introduce a special “pointer” datatype

(e.g., MPI PTR) for the MPI communication routines that would indicate that a pointer to

the data buffer is being passed, instead of introducing new MPIX Zxxxx routines. One basic

limitation of the datatype approach is that the zero-copy transfer indicates a communication

mode, which is semantically different from the concept of a datatype. The MPI send/receive

semantics are based on message copying and the message matching is agnostic to the type

of the data sent. Information about the datatype is not part of the message header or the

request matching logic. The middleware would, in essence, treat a MPI PTR type as a 8 byte

message13 with the onus placed on the programmer to treat it as a pointer. This requires the

programmer to be cognisant of whether the sender and receiver are co-located before using

a special datatype to communicate among them. This restricts the flexibility of process

mapping and the ability to specify a different mapping of MPI processes to OS-processes

on the command-line. In our approach of defining MPIX Zxxxx routines, the communication

13Assuming an 8 byte pointer on 64-bit machines.
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mode is transparent to the user and the middleware ensures interoperability with existing

MPI routines.

Recent work by Friedley et. al. [44] have considered providing zero-copy functionality

as a user-level library (OPI-HMPI) that runs on top of MPI. Independently to our work,

they defined a syntax of the zero-copy routines that is similar to the one specified in Fig-

ure 3.6. Their implementation approach is fundamentally different from ours in that their

library is a wrapper that is layered between the application and the underlying MPI im-

plementation [18]. The HMPI wrapper library implements MPI processes as pre-emptive

threads and intercepts messages that are communicated among MPI processes on the same

node and uses a single address space to send pointers to the message data among them.

For inter-node communication, it uses the standard MPI routines for communication. This

layered approach uses two different communication paths for intra-node and inter-node

communication, with the consequence that separate message passing mechanisms have to

be implemented for intra-node along with management and allocation of memory buffers

and maintenance of communication buffer pools in a thread-safe manner. OPI-HMPI imple-

ments one memory pool per MPI process to avoid global synchronization and reduce locking

overheads. In our design, which can expose massive concurrency, one memory pool per MPI

process does not scale. We chose to implement the zero-copy functionality by extending the

existing message matching engine and request structure inside the middleware. This has

the important property of providing a single communication path and a uniform method

for sending and receiving messages for both intra-node and inter-node communication. As

discussed in Section 3.2 (page 51), the request queues and communication structures are

shared which allows the system to scale. As well, the zero-copy routines in Figure 3.6 can

interoperate with other standard MPI routines, which relieves the programmer from the

necessity of replacing all routines like MPI Send and MPI Recv in the program with spe-

cial user-level library calls, which is the approach used by OPI-HMPI. One advantage of

the OPI-HMPI scheme is that it works across cores on the same machine and it would be
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interesting to investigate if MPICH2’s intra-node communication can be extended to use

zero-copy communication across OS-processes.

3.4 Process Deployment

Process deployment is an important part of the process management environment. We had

two main goals for process deployment in FG-MPI: (1) to make the system flexible and

transparent to allow the programmers to optimize process mapping, and (2) to allow easy

porting of existing MPI programs to FG-MPI.

MPICH2 uses the mpiexec command-line utility to launch MPI processes and the map-

ping of processes to cores and machines can be flexibly configured through a hostfile.

mpiexec -f hostfile -n Y program

A model of execution commonly used is SPMD (Single Program Multiple Data), where, for

example, all the Y MPI processes launched in the above command execute program. Inside

the program, statements like if-else or switch may be used to selectively assign a set of

instructions to processes based on their ranks. This adds extra complexity to the program.

Often these condition statements based on the MPI process rank are used in places where

process behavior is different for different ranks. These type of condition statements are

scattered throughout the code making the program difficult to read.

Support for MPMD (Multiple Program Multiple Data) is through the colon notation

along with mpiexec to assign different executables to different processes.

mpiexec -f hostfile -n Y prog1 : -n Z prog2

FG-MPI adds another dimension by mapping multiple MPI processes to OS-processes.

The user can use mpiexec with the nfg flag to specify the number of MPI processes per

OS-process in addition to the n flag specifying the number of OS-processes.

For example, the command:

61



3.4. Process Deployment

mpiexec -f hostfile -nfg X -n Y program

starts up X×Y MPI processes with X MPI processes inside each of the Y OS-processes. In

the current implementation, the co-located MPI processes are assigned ranks in consecutive

blocks. In the above example, the first OS-process will contain MPI processes of ranks

[0 ... X − 1] and the next one will have processes with ranks [X ... 2X − 1] and so on. It is

possible to specify a different number of MPI processes in each OS-process using the colon

notation.

mpiexec -nfg T -n U prog1 : -nfg V -n W prog2

: -nfg X -n Y prog3

One important feature of this approach is the flexibility of mapping co-located MPI

processes among OS-processes, from the one extreme of executing them all inside a single

OS-process to the other extreme of having only one MPI process per OS-process. The num-

ber of MPI processes that can be launched per OS-process is limited only by the available

memory on the system. The mpiexec command is backward compatible, so omitting the

nfg parameter equates one MPI process with one OS-process.

The second level of mapping introduces new opportunities for executing MPMD pro-

grams, where each of the co-located MPI processes invoke functions instead of main pro-

grams. We treat SPMD as a special case of the MPMD program, where each process invokes

the same function. The boilerplate code in Listing 3.1 gives an example of converting an

existing SPMD MPI program to a FG-MPI program. There are two steps required: (1)

Rename main to FG Process14 and, (2) Add the boilerplate code in Listing 3.1 at the

beginning of the program.

The boilerplate contains two user-defined functions; binding func and map lookup.

The binding func function takes the MPI COMM WORLD rank as input and maps it to the

function pointer that the corresponding MPI process will be executing. The map lookup

14The FG Process function name is simply being used as an example in the boilerplate and there is no
restriction that this particular name be chosen.
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function takes a string as its third parameter and uses it to select a binding function.

The purpose of the map lookup and binding func combination is to allow the ability to

determine mapping of processes at runtime in addition to compiled mappers. This allows

experimentation with different bindings of the MPI processes to functions without re-writing

and re-compiling the program. Since the mapping is localized to each OS-process, it is also

possible to specify a different binding function for each OS-process.

/* ****** FG -MPI Boilerplate begin ******** */

#include "fgmpi.h"

int FG_Process ( int argc , char ** argv ); /* forward declaration */

FG_ProcessPtr_t binding_func (int argc , char ** argv , int rank ){

return (& FG_Process );

}

FG_MapPtr_t map_lookup (int argc , char ** argv , char * str ){

return (& binding_func );

}

int main ( int argc , char *argv [] )

{

FGmpiexec (&argc , &argv , & map_lookup );

return (0);

}

/* ****** FG -MPI Boilerplate end ******** */

Listing 3.1: Boilerplate code to convert an existing SPMD MPI program to a FG-MPI

program.

In the SPMD example in Listing 3.1, the binding func maps all process ranks in

MPI COMM WORLD to FG Process. However, the real flexibility of mapping comes from the

ability to assign different functions for each MPI process. Listing 3.2 gives a simple MPMD

example where the odd numbered ranks are mapped to ProcessA function and the rest to
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ProcessB function.

The str parameter of the map lookup function is not being used in the examples in

Listings 3.1 and 3.2 and a single binding func is returned. The str parameter can be

specified on the mpiexec command line to allow selection of different binding functions at

runtime.

/* ****** FG -MPI Boilerplate begin ******** */

#include "fgmpi.h"

int ProcessA ( int argc , char ** argv ); /* forward declaration */

int ProcessB ( int argc , char ** argv ); /* forward declaration */

FG_ProcessPtr_t binding_func (int argc , char ** argv , int rank ){

if (rank % 2) return (& ProcessA );

else return (& ProcessB );

}

FG_MapPtr_t map_lookup (int argc , char ** argv , char * str ){

return (& binding_func );

}

int main ( int argc , char *argv [] )

{

FGmpiexec (&argc , &argv , & map_lookup );

return (0);

}

/* ****** FG -MPI Boilerplate end ******** */

Listing 3.2: An example of a simple MPMD mapping

Apart from the boilerplate, the MPI routines used in the program are exactly the same

as in a standard MPI program, without any special prefixes or suffixes. All the functions

invoked by the MPI processes e.g., FG Process in Listing 3.1 and ProcessA and ProcessB

in Listing 3.2, are written as regular MPI applications beginning with MPI Init and ending

with MPI Finalize routines. The argc and argv arguments provided to these functions
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are the same that are passed to the main function in a MPI program. In Appendix B, we

present the complete code of a small application to demonstrate writing a program using

FG-MPI.

3.5 Limitations

In this section we discuss the limitations of implementing MPI processes as user-level non-

preemptive threads sharing a single address space. One limitation of multiple co-located

MPI processes is that global and static variables in the program can cause undesired side

effects. Such variables, unless they are read-only, must be removed from the code for it

to work correctly. The side effects of using shared global variables and static variables is

an issue that has been well studied in other systems that allow multiple user-level threads

per core. There are tools available for both FORTRAN [114] and C [2] that re-factor the

source code to privatize global variables. We use one such tool to re-factor the NAS parallel

benchmarks for our experimentation in Chapter 4.

The current implementation of FG-MPI maintains a fixed-sized stack of size 128K bytes

for each coroutine. There is a potential for stack overflows if the programmer allocates large

sized stack-based arrays. It is recommended that large allocations be made on the heap

instead of the stack. However, as mentioned in Section 2.1.5 (page 30), this stack size can

be provided as a configurable option. It is also possible to replace fixed-sized stacks with

those that grow dynamically, similar to the linked stacks proposed by Capriccio [149].15

One effect of non-preemptive scheduling is that a computationally intensive process may

block the progress of other co-located processes. We added a MPIX Yield() routine that

allows one process to voluntarily yield to the scheduler. This can be used to balance the

amount of computation and communication in the application. If the currently executing

15It is interesting to note, however, that a choice between stackless and stack-based implementations for
languages like Python [3] and Scheme [40] are available.
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process is the only one on the run queue of the scheduler, then MPIX Yield() is simply a

no-op operation.

Execution of blocking file I/O by one process is another operation that can impede the

progress of other co-located processes. One possibility is to structure the code so that I/O

system calls are placed in an OS-process of their own. This can help avoid blocking other

processes during I/O execution. Another scheme that is used for cooperative multitasking

is to wrap the I/O library function so that the process initiating the I/O operation yields

control to another process. The wrapper is then responsible for notifying the original process

when the I/O completes [5, 67]. MPI, as well, provides the ability for users to define non-

blocking operations through a feature called generalized requests. Work by Latham et.

al. [85] proposes extending the generalized request interface to simplify the implementation

of non-blocking I/O operations by the users.

The advantages and dis-advantages of user-level threads are well-known and solutions

like scheduler activations [7] exist. Scheduler activations are not supported in Linux, how-

ever, kernel extensions like FlexSC and others [34, 131] exist that decouple the execution

of a system call from its invocation. FlexSC provides a M -on-N user-mode scheduler that

implements cooperative scheduling among the user-mode threads where the system calls

act as yield points. It would be interesting to use FlexSC to schedule and batch system

calls to the kernel making it possible for the user-level scheduler to coordinate with the OS

scheduler.

3.6 Summary

In this chapter we discussed the low-level system components of the FG-MPI runtime sys-

tem. We described the techniques used to share the process group maps and algorithms for

creation of communicators. We also discussed communication among co-located processes

and the structure of message queues in the middleware and how they are shared among
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the co-located MPI processes. We defined a way to avoid copying of messages among co-

located processes through zero-copy routines that can be used to pass a pointer to the

message buffer instead. These routines can interoperate with existing MPI point-to-point

communication routines. Process deployment is an important part of the MPI execution

environment and we described how MPI processes are mapped to OS-processes and cores

and support for deployment of MPMD programs. Lastly, limitations of implementing MPI

processes as user-level threads were discussed.
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Chapter 4

Experimentation

The process is really just Iterate, Iterate, Iterate.

Chris Clark

MPI programs are typically written as SPMD where the program is parameterized by

“N”, the number of MPI processes. Parameter N determines the granularity of the program

and gives the amount of available concurrency. In executing MPI programs, one typically

matches the number of MPI processes to the number of cores, the amount of available

parallelism. Matching the concurrency to the available parallelism fixes the granularity of

the program to make it as coarse-grain as possible. However, maximizing the granularity is

not always optimal because of the effect it has on the cache behavior and the number and

sizes of the messages sent and received. There are also MPI programs where N is partly

determined by the problem size and may not exactly match the parallelism available in

the machine. For these reasons it should be possible to be able to adjust the granularity

independently from the amount of parallelism and be able to expose more concurrency than

can be executed in parallel.

Introducing added concurrency by over-decomposing the problem is a well-known per-

formance optimization technique for SPMD scientific computing programs. Since data

decomposition is typically hard-coded and difficult to change, over-decomposition for MPI

programs depends on its runtime environment. One simple technique that is commonly

used is to over-subscribe the number of cores by starting more MPI processes and thereby

more OS-processes. A recent paper [66] studied the use of over-subscription on multicore
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machines and report a 10% performance degradation for the NAS parallel benchmarks with

MPI. As discussed in their paper, a problem with increasing the amount of over-subscription

is that the OS scheduler is not aware of the cooperative nature of the parallel application

on a dedicated machine. “Over-subscription” in FG-MPI is done through interleaved con-

currency managed by the user-level scheduler integrated with the MPICH2 progress engine

and the effects of OS-noise [41] is reduced by not over-subscribing cores.

The key issue in a system that adds more concurrency than available parallelism is to

minimize the overheads in order to maximize the benefits and make it effective over a wider

range. The tight integration of FG-MPI runtime system in the MPI middleware made it

possible to address overhead issues related to context switches, MPI-aware scheduling, as

well as added synchronization costs, which was also highlighted as a problem in [66].

In this chapter we evaluate the benefits of added concurrency for cache awareness and

message size and show that performance gains are possible by using FG-MPI to adjust the

grain-size of a program to better fit the cache and potential advantages in passing smaller

versus larger messages. In Section 4.1.1, we discuss the scheduling of non-preemptive threads

built on top of coroutines and show that switching between them is an order of magnitude

faster than an OS-level context switch. In Section 4.1.2 we measure the overheads of the

extra message passing that can occur to show that it is similar to that of a memory copy

when using standard MPI routines. This overhead can be further reduced by using zero-

copy routines. Adding concurrency also affects the communication time for collectives since

now these collectives are over a larger collection. In Section 4.1.3 we describe the use of

location-aware implementation of collectives that takes advantage of the single address space

to speed up the collectives for co-located processes. We measure this added overhead for the

MPI Barrier() call. In Section 4.1.4 we look at the potential performance improvements for

better cache behavior. Lastly, in Section 4.2, we evaluate the use of FG-MPI on the complete

set of the NAS parallel benchmarks over large problem sizes and discuss the characteristics

of the benchmarks with regards to trade-offs between the added costs and benefits.
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4.1 Overheads in Added Concurrency

For the experiments the test setup consisted of a cluster with 16 nodes connected by a

10GigE Ethernet interconnection network. Each of the nodes in the cluster is a quad-core,

dual socket (8 cores per node) Intel Xeon R© X5550, 64-bit machine, running at 2.67 GHz.

All machines have 12 GB of memory and run Linux kernel 2.6.18-194.8.1.el5.

4.1.1 FG-MPI Context Switch

One important cost that is a consequence of adding concurrency is the time taken to switch

between processes. FG-MPI’s non-preemptive runtime is build on top of coroutines, each

with it own stack. The runtime is partially derived from Capriccio [149], a scalable thread

library for high-concurrency servers. We use Toernig’s coroutine (coro) library [143], which

provides highly efficient yield for switching context between coroutines. We also extended

the system to be able to use any similar type of coroutine package and provide the option

for using PCL (Portable Coroutine Library) [89].

In FG-MPI every MPI call is a potential de-scheduling point where, depending on the

call and the state of the middleware, the scheduler chooses the next process to run. MPI

communication calls provide a natural yield point for switching between coroutines where

one process when it enters the middleware can progress messages for all of the co-located

processes.

Switching between processes involves switching to the runtime scheduler, selection of

next runnable MPI process by the scheduler and switching to the new process. We measured

this switching time for both of the coroutine packages that FG-MPI can use. The coro

library provides the fastest switching time (0.13 µs) while the PCL library switching time

is 0.81 µs. This time is an order of magnitude faster than OS-level context switch which

takes 6.85 µs. Our results are similar to the numbers reported for threading benchmarks

in Capriccio. In a comprehensive study, they demonstrated that coroutines outperform
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NPTL (Native Posix Thread Library) and LinuxThreads (Linux kernel threads) for both

raw performance and scalability [148, 149].

Coroutines provide very efficient context switch time in comparison to other types of

threads and this makes it easier to scale to support massive amounts of concurrency. We

have tested FG-MPI with thousands of co-located processes and, when not constrained by

memory, have used it for debugging with gdb to run an entire MPI application in a single

OS-process.

4.1.2 Messaging Costs

In FG-MPI one of the effects of adding more concurrency is that we send more smaller

sized messages. A potential overhead is the cost of the inter-process communication that

is not present in a coarse-grain program. However, the conventional wisdom that it is

faster to share a memory location versus copying is not always the case on multicore. Not

only is cache coherence a power hungry operation that is constantly on, as shown in the

Barrelfish [128] project, in modern multicore machines passing a message can be faster than

shared memory access between cores associated with different caches.

In the case of communication between co-located processes, we provide two mechanisms.

The first is through standard MPI communication routines, where we exploit the single

address space to optimize point-to-point communication by simply doing a memcpy. The

second is through the zero-copy routines described in Section 3.3, that pass a pointer to the

message buffer from the sender to the receiver process. Our objective was to achieve low

messaging overhead through synchronous communication between co-located processes and

avoid intermediate system copies.

We first discuss the messaging costs of the standard MPI routines. For co-located

processes, there are two cases to consider depending on whether the sender or the receiver

executes first. The two cases are symmetric, therefore, we describe in detail the one where
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a receiver process executes a receive call before it can be completed; i.e., the sender process

has not yet executed a matching send call.

In this case, the receiver process first determines that the sender has not yet executed a

send call by looking in the unexpected-message-queue and queues its request in the posted-

receive-queue. It then blocks waiting for the data arrival. When the sender process executes

the send call, it first checks in the posted-receive-queue and finds the matching receive. The

sender then copies the data directly into the receiver’s buffer and unblocks it. Note that

there is only one memory copy in this operation and no intermediate system copies are made.

The additional overheads over a simple memcpy in this case are the context switch costs,

looking in the unexpected-message-queue and queueing the receive request in the posted-

receive-queue by the receiver and finding the matching request in the posted-receive-queue

by the sender.

For processes that are not co-located, MPICH2 treats messages of 64 KBytes or above

as long messages that require a rendezvous protocol for communication. For co-located

communication we avoid the extra cost of rendezvous and the communication between two

co-located processes is the same as described above, irrespective of the size of the message.

In order to measure the cost of message communication within co-located MPI processes,

we designed a benchmark that compares sending MPI messages, picked randomly from a

memory location, between two co-located processes with the cost of doing a memory copy

inside one process. We measured the overhead (difference between a message send/receive

and a memcpy) for different messages sizes. The reason for randomly picking from a memory

location was to isolate the effect of messaging only (i.e., without any cache effects). We also

ran a test where the same message is being sent and the overhead of messaging over memcpy

compared to the random selection case was less, but we report the numbers for the random

selection as it is closer to what we would expect in an application. Our results showed

that the average overhead of co-located messaging in comparison to a memcpy operation

was 0.43µs with a standard deviation of 0.065 µs for messages ranging in size from 2 bytes
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to 128 Kbytes. For messages in the range 256 Kbytes to 1 Mbytes, the message overhead

increased from 1µs to 2.3µs. Note these measurements include the context switching and

scheduling time to complete the operation.

It was also interesting to measure the co-located messaging cost for a system like AMPI

that layers MPI on top of the Charm++ runtime system. Using the same benchmark,

we measured the cost for AMPI. For message sizes in the range 2 bytes to 256 bytes,

AMPI was slightly faster than FG-MPI, the difference between messaging times for FG-

MPI and AMPI was in the range 0.12 µs to 0.15µs. For messages 512 bytes and above the

difference increased sharply with FG-MPI outperforming AMPI by a large margin as shown

in Table 4.1. Interestingly, AMPI failed to execute for message sizes 64 Kbytes and higher,

reporting that it cannot allocate memory. With FG-MPI we successfully tested for message

sizes of several megabytes on the same machine without any problems.

Message size FG-MPI time AMPI time

2 bytes 0.47µs 0.32 µs

32 bytes 0.475 µs 0.34 µs

64 bytes 0.48µs 0.36 µs

256 bytes 0.57µs 0.44 µs

512 bytes 0.587 µs 0.585 µs

1 Kbytes 0.6µs 0.8µs

8 Kbytes 1.4µs 3.6µs

32 Kbytes 4.23µs 15.1 µs

64 Kbytes 7.9µs fails

Table 4.1: Comparison of FG-MPI and AMPI co-located messaging times.

As discussed in Section 3.3, further optimization is possible with co-located processes in

a single address space by using zero-copy message passing where processes pass a reference

to the data. We tested the above benchmark in FG-MPI by replacing the standard MPI

send and receive routines with the corresponding zero-copy routines. The messaging cost

in this case was 0.4µs for all message sizes.

73



4.1. Overheads in Added Concurrency

One potential benefit to adding concurrency for communication between remote pro-

cesses is that by sending more smaller messages, rather than one large one, we can avoid

the long-message protocol that requires a rendezvous between the processes. In effect, the

added concurrency acts like packetization where the packets (smaller messages) can be

pipelined between the two OS-processes [23]. Messages can be split up into smaller pieces

and the MPI processes at the receiver can begin working on the smaller pieces without

having to wait for the entire message to arrive. In order to study this effect, we designed a

benchmark where processes alternate between computation and communication for a num-

ber of iterations. In the coarse-grain MPI case we have two processes doing a fixed amount

of computation (Cp) and communication (Cm) per iteration. In the finer-grain case, Cp and

Cm per OS-process is divided among the number of processes defined by the nfg flag while

keeping the total volume of computation and computation the same in both cases. In coarse-

grain MPI fewer number of large messages are communicated whereas in FG-MPI the size

of messages is smaller (divided by P=nfg), but the total number of messages communicated

is multiplied by the nfg parameter.

Figure 4.1(a) shows the effect of sending fewer long messages versus several short mes-

sages16 over the network. The advantages of avoiding the rendezvous protocol for network

communication are clear in this figure. We also see that the overhead of additional messag-

ing in FG-MPI is small (even for substantially large values of nfg). Figure 4.1(b) shows the

best times achieved in FG-MPI for different communication volumes compared with MPI.

In conclusion, FG-MPI makes it possible to adjust the message size independently from

the size of the machine and the added concurrency results in a more fluid communication

with more messages flowing potentially requiring less synchronization with more overlap

between communication and computation. We expect this benefit to become more evident

16MPICH2 treats messages of 64 KBytes or above as long messages that require a rendezvous protocol for
communication. For the fine-grain results, The nfg parameter is chosen to divide the message size so that
it is less than 64 KBytes.
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Figure 4.1: (a) Execution time of sending long messages in MPI versus short messages in
FG-MPI for the same total amount of computation and communication volume. (b) The
best times achieved in FG-MPI compared to MPI for part (a).

on programs computing on larger datasets.
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4.1.3 Collective Communication

Concurrency adds overhead to the collectives since it results in more MPI processes and

hence more messages and more context switches. The cost of synchronization has a sig-

nificant impact on MPI programs that use collectives and may offset any of the potential

advantages of added concurrency. Collective operations in FG-MPI are implemented in

terms of point-to-point operations and it leverages the algorithm optimizations for collec-

tives employed by MPICH2. However, it is possible to reduce the synchronization overhead

by taking advantage of the single address space and optimize the collective communication

for those processes that are co-located. We demonstrate this approach for the MPI Barrier

operation. For synchronization of MPI processes on the same node, we used a counter and

signal based mechanism typically used in shared memory barrier algorithms [96].

For MPI Barrier, one leader per OS-process is selected from the co-located MPI pro-

cesses and one leader is selected for all of the OS-processes on the machine. Inside the OS-

process, a shared variable is used to count the co-located processes that enter the barrier.

Processes inside the OS-process increment the counter and block waiting for the co-located

leader to clear the barrier and re-schedule them. Similarly, the OS-process leaders uses

MPICH2 Nemesis’s shared memory to coordinate with the leader of all the OS-processes

on the machine. Once processes on each multicore node have synchronized then all those

leaders communicate after which the leader of the OS-processes signals that they can leave

the barrier which in turn allows the co-located processes to leave the barrier. This type of

location-aware implementation of the MPI Barrier is optimized for each level of the com-

munication hierarchy and is supported by the scheduler to minimize its interactions with

the middleware. The naive approach of simply relying on the MPI’s point-to-point can take

advantage of memcpy for the communication among co-located processes but it results in

more interactions than necessary with the middleware and the progress engine.

Table 4.2 presents the barrier latency as concurrency (P) per OS-process in a [P;O;M]
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system is increased from 1 to 256 for [P;1;1], [P;8;1] and [P;8;16] executions. O (the number

of OS-processes) is kept equal to the number of physical cores per machine to reduce the

influence of the OS scheduler. In [66] over-subscription was found to have a detrimental

effect on the performance of MPI programs containing collectives.

P [P;1;1] [P;8;1] [P;8;16]
(nfg) time (µs) N time (µs) N time (µs) N

1 - 1 1 8 122 128
2 1 2 1 16 126 256
4 1 4 2 32 129 512
8 1 8 3 64 129 1024
16 3 16 4 128 137 2048
32 5 32 10 256 149 4096
64 10 64 20 512 183 8192
128 22 128 41 1024 259 16384
256 45 256 84 2048 438 32768

Table 4.2: Barrier latency time (µs) with varying concurrency (P) for three [P;O;M] ex-
ecutions, where P is the number of MPI processes per OS-process, O is the number of
OS-processes per node and M is the number of nodes. N=P×O×M is the total number of
MPI processes.

Table 4.2 shows that the increase in barrier latency with concurrency is sublinear, e.g.,

on a single multicore node ([P;8;1]), the latency increased from 1µs to 84µs as concurrency

increased from 1 to 256. These results were obtained by iteratively calling the barrier

operation several thousand times and averaging the result. As such, they are a lower

bound estimate on the cost of barrier communication. It is also interesting to compare this

approach to AMPI. In AMPI we have MPI on top of the Charm++ runtime which in turn

uses MPI as a communication layer. Its implementation of MPI can still take advantage of

the single address space, but the Charm++ scheduler and lower level MPI progress engine

operate independently with the potential for the same types of delays that occur between

the progress engine and the OS scheduler. Using the same program, we measured the cost

of MPI Barrier for AMPI on [P;8;1]. For P=1 the time was 18µs, versus 1µs for FG-MPI,
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and for P=256 was 662µs versus 84µs for FG-MPI. On multicore, this shows the advantage

of reducing the layers by supporting concurrency inside the communication middleware.

4.1.4 Cache Behavior

In order to demonstrate the potential benefits of using added concurrency to improve the

cache behavior, we designed several experiments to measure the cache effects. We focused

on block structured algorithms as they provide the best case for measuring the extent to

which we can improve performance.

Block structured algorithms in MPI are commonly used for parallel scientific computa-

tions. The blocks generally represent the working set size of a task and blocking is used to

exploit both temporal and spatial locality for efficient execution. Today’s systems of multi-

ple cores on a single chip have a multi-level hierarchical memory model with smaller caches

per core [6]. Applications need to be able to express fine-grain parallelism with smaller

working set sizes to fit in caches. FG-MPI provides the ability to achieve better memory

locality and cache hit ratios simply through the use of the nfg parameter on the command

line.

The tests are run on a single multicore machine with the specification described in

Section 4.1. The multicore machine has 8 cores with three-level cache; L1(data/instr) is

32K/32K, L2 cache is 256K/core and L3 cache is 8M /socket. The total memory on the

machine is 12 GB.

Experiment A

This benchmark algorithm takes two square matrices as input and partitions them into

square blocks of size determined by the total number of MPI processes. It then assigns

each pair of sub-matrices to the MPI processes. Each process computes on these sub-
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matrices and then exchanges its sub-matrices with its neighbours.17 After the exchange,

each process computes with new values in its sub-matrices and this process repeats for a

number of iterations. This benchmark requires the total number of MPI processes to be a

square because the sub-matrices are evenly distributed among them.

Figure 4.2 shows the effect of added concurrency on execution times compared with

MPI on input matrices of size 4096. The P=nfg parameter on the bottom axis is the

concurrency for different [P;O;1] executions for a total number of P×O MPI processes. The

hashed bars correspond to the traditional MPI [1;O;1] executions, while added concurrency

is represented by solid bars. Notice that the hashed bars for MPI are not present for [1;2;1]

and [1;8;1] because they are not equal to a square number of processes. FG-MPI, however,

can use all the cores by appropriately setting P=nfg so that the product of P and O is a

square.

As the total number of the MPI processes (P×O) increases, the block sizes that each

of them operate on decreases. Figure 4.2 shows substantial performance improvements

by adjusting the block size through added concurrency, without any serial cache blocking

optimizations. The best time obtained with FG-MPI is 12.55 seconds with a [512;8;1]

execution. Note that our node has 8 physical cores and the FG-MPI best results correspond

to the case where the amount of parallelism equals the number of cores. For interest,

Figure 4.2 also shows the effects of over-subscription for this example using [P;16;1] (two OS-

processes per core). The time achieved with MPI is 70.49 seconds with [1;16;1] execution,

which is more than 5 times slower than the best time of 12.55 seconds achieved with FG-

MPI mentioned above. Note that serial blocking techniques can be used to improve cache

hit ratios but such techniques require modifications to the algorithms and are tuned for

particular architectures and are not portable.

In order to quantify the effect of cache on our results, we collected memory access data

using Intel’s R© VTuneTMAmplifier XE [70] advanced hardware analysis for the Nehalem R©

17The computation is Cannon’s matrix multiplication in our benchmark.
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micro-architecture. This analyzer has low overhead and uses event-based sampling for data

collection. Table 4.3 shows there is a significant difference in the last-level (LL) cache18

misses for the best times in Figure 4.2 with added concurrency, which shows that the

performance benefits are the result of better cache locality.

Time (sec) LL Cache misses
MPI [1;16;1] 70.49 396,000,000

FG-MPI [512;8;1] 12.55 75,000,000

Table 4.3: LL cache misses for the best times achieved with MPI and FG-MPI best times
in Experiment A.

The effect of added concurrency was repeated in matrices of other sizes, as shown in

Table 4.4, with the performance improvement over MPI increasing with larger matrix sizes.

This is expected as in the MPI case, the block granularity is fixed to the amount of paral-

lelism and with larger matrices the mismatch with the cache size increases.

Matrix size FG-MPI [P;O;1] MPI [1;16;1]
S P=nfg O Time (sec) Time (sec)

2048 128 8 1.47 3.7

4096 512 8 12.55 70.49

8192 2048 8 134.5 944.58

Table 4.4: Best execution times for MPI and FG-MPI on different matrix sizes for Experi-
ment A.

It is interesting to note from Table 4.4, that the ( S2

P×O
) ratio is the same for the best times

achieved for different matrix sizes. This indicates that it may be possible to analytically

determine the value of P.

18The last-level (L3 in this case) cache misses influence the runtime the most because it masks accesses
to the main memory [104].

81



4.1. Overheads in Added Concurrency

Experiment B

In general, block structured algorithms, especially matrix multiplication, use libraries like

the BLAS for matrix operations. Although the previous experiment may be indicative of

more general algorithms, there is the question of whether the use of these libraries may

eliminate the need to add concurrency for block-structured matrix operations.

Matrix size BLAS (FG-MPI) Intel MKL
P=nfg O Time (sec) Time (sec)

2 8 0.31
2048 8 8 0.31 0.25

32 8 0.44
128 8 0.73

2 8 1.78
4096 8 8 1.81 1.27

32 8 1.88
128 8 3.20

2 8 12.70
8192 8 8 11.95 8.14

32 8 11.43
128 8 13.15

2 8 107.33
16384 8 8 86.02 58.04

32 8 80.03
128 8 81.39

Table 4.5: Effect of added concurrency while using BLAS GEMM routines on a single
multicore machine

We implemented a version of the Cannon’s Matrix Multiplication algorithm, where FG-

MPI is used to decompose the input square matrices into blocks and each of the blocks

are multiplied through the ATLAS (Automatically Tuned Linear Algebra Software) BLAS

GEMM [152] serial routine. We set O to 8 to take advantage of all the cores on the

multicore machine and increased the concurrency (nfg) from 2 to 128. Because the number
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of processes needs to be a square nfg=2 is the closest to executing it with just MPICH2.19

The middle column in Table 4.5 shows that for the smaller matrix sizes using the minimum

amount of concurrency is best, however, for larger matrix sizes we see an improvement

centered around P = 32. Even with the use of the BLAS routines, added concurrency

improves performance for larger matrices.

It is also interesting to compare this to other techniques such as the Intel’s MKL library

that is specific to Intel architectures with a completely different runtime. The MKL library

is optimized for the architecture on our Intel Xeon R© system and it was compiled with the

optimizations enabled. In the last column of Table 4.5, we report the results with Intel

MKL’s GEMM threaded parallel routine.20 Although FG-MPI is slower than Intel’s MKL,

the performance is within 70% of the Intel’s optimized runtime. The Intel MKL library

is based on OpenMP and runs on one machine whereas for FG-MPI there is the ability

distribute computation across multiple nodes for matrix sizes greater than 16K, which may

not fit on a single node.

4.2 NAS Benchmarks

The NAS Parallel Benchmarks (NPB2.4) [27] are a set of eight standard benchmarks that

are used to evaluate the performance of parallel systems. Each of the eight benchmarks

can be compiled for different problem classes (CLASS) and the number of MPI processes

(NPROCS). The problem classes range from A (smallest) to D (largest). Class D was introduced

to provide more challenging benchmark sizes for high-performance computer systems that

have grown significantly in size and capacity in the last decade. Class D benchmark involves

about 20 times as much work, and a data set that is approximately 16 times larger than the

Class C benchmark. The NAS benchmarks do not contain an implementation for IS class D,

19The maximum square matrix size tested was 16K due to the amount of memory available on our node.
20Threading in Intel MKL is based on OpenMP specification and the GEMM routines used all 8 cores on

the node.
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and SP and BT run on a square number of MPI processes. Most of the NAS benchmarks are

written in Fortran and we used a tool called Photran [103] to privatize the global variables

in the benchmarks.21 In this section we evaluate the effects of added concurrency on the

performance of the NAS benchmarks. For the experiments, we use the cluster described in

Section 4.1.

4.2.1 Performance of the NAS Benchmarks

We ran an extensive set of experiments for each of the benchmarks using different CLASS

and [P;O;M] combinations. We explored the execution space for the 32 problem sizes (4

classes: A,B,C,D for the 8 benchmarks) with P (concurrency) ranging from 1 to 1024, O

(OS-processes per node) in the range 1 to 8 and M (number of nodes) varying from 1 to 16.

The maximum number of OS-processes (O) per node was fixed to the number of physical

cores per node. The mapping of OS-processes to nodes was done in blocks of eight, with the

first eight on the first node and next eight on the next, etc. We do not over-subscribe OS-

processes to cores for reasons discussed in [66, 88], which report performance degradation

for the NAS benchmarks with MPI. Our goal in these experiments is to focus on the effects

of added concurrency on MPI performance.

We view nfg as a variable to the execution that can be used to adjust cache locality

and message sizes independently from the size of the cluster. For each of the benchmark

problem sizes, we experimentally varied nfg to determine the best FG-MPI performance for

different [P;O;M] (P > 1) executions, and compared that to the MPI performance achieved

with [1;O;M] executions. We present our results by normalizing the MPI performance and

reporting the FG-MPI results as a percentage increase or decrease. We roughly characterize

problem sizes running under a minute as short-lived and above that as long-lived. For the

benchmarks considered, our results show that added concurrency has different effect on short

21We wish to thank Stas Negara, developer of Photran, who shared the tool with us and answered questions
related to it.
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and long-lived problem sizes. Figure 4.3 presents our results.22 We are omitting results

for class A as this is a small problem size that is mostly relevant for testing purposes.

Each of the bars represent the percentage effect of added concurrency on the execution

time of the benchmarks over the best performance achieved for MPI [1;O;M]. Cores=O×M

represent the number of physical cores for the best MPI performance. Concurrency in

[P;O;M] executions is the value of P=nfg per OS-process for the same values of O and M

as above. Figure 4.3 also shows the MPI execution times in seconds to allow differentiation

between short and long-lived applications.

4.2.2 Discussion of Results

Figure 4.3 shows a clear trend for short and long-lived applications, which are discussed

below.

• For the long-lived benchmarks like BT, SP and FT the performance improvement

increases with larger class sizes. The results discussed in Section 4.1.4 on cache be-

havior corroborate these findings that added concurrency can result in lower working

set sizes and better cache locality for general programs with a mix of communication

and computation. Also, as shown in Section 4.1, these benefits outweigh the extra

overheads due to messaging and context switches.

• We achieve substantial performance improvements of 30% for problem sizes like BT-D

and SP-D which execute for more than 15 minutes under MPI and 20% improvement

for FT-D which executes for around 6 minutes with MPI.

• The performance improvements for long-lived applications were achieved with con-

currency per OS-process that ranged from 4 to 16.

22The NAS benchmarks do not contain an implementation for IS class D.
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• For short-lived applications like IS, MG-B, MG-C, CG-B and CG-C, there was per-

formance decrease with added concurrency ranging from 2 to 8. The amount of

performance degradation, however, decreased with larger class sizes and for MG-D

we see an improvement of 38%. Note that IS and MG both lie towards the lower

spectrum of short-lived; i.e., their execution times for class B were a fraction of a

second and class C less than 2 seconds. Because of the small data size and the rela-

tively short execution time, the opportunity to take advantage of cache locality and

smaller message is slight and, as expected, there is only the added costs of the added

concurrency. The short execution time magnifies the overheads in terms of relative

performance. In absolute terms, the degradation ranges from 0.03 to 1.99 seconds,

however, in this case there is no advantage to using added concurrency.

• EP (Embarrassingly Parallel) application is computationally intensive and was mostly

agnostic to added concurrency. We saw modest improvements of around 4% with this

benchmark.

• LU-D was an exception to the performance improvement trend seen for long-lived

applications. LU-C which ran in around 18 sec and LU-D which ran in 336 sec (5.6

mins) with MPI, showed a performance decrease of 21% and 1% respectively. The

amount of degradation, however, was substantially lower for the larger class D. One

reason that the LU benchmark behaves differently may be due to the inherent load

imbalance of the application [154]. It is also more communication intensive compared

to the other benchmarks and as hypothesized in [154], large synchronization time due

the load imbalance may mask the benefits of added concurrency.

• The CG benchmark showed an interesting behavior in terms of resource utilization,

which is discussed below.
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There are two performance benefits to using FG-MPI that are not shown in Figure 4.3.

The first one is due to the decoupling of the problem from the hardware. For benchmarks

like BT and SP that have a restriction that the number of MPI processes be square, it is

possible for us to run on a non-square number of cores (e.g. 128) as long as the P×O×M

product is a square. The performance improvements with [P;8;16] over MPI [1;8;8] go up

significantly, ranging from 36.7% to 63.5%, with SP and BT, class sizes C and D.

Another interesting result is for the CG benchmark. We noticed FG-MPI can achieve

performance comparable to MPI for CG while using fewer cores. That is, FG-MPI provides

better resource utilization while achieving similar execution times.

CLASS P=nfg O×M Time (sec)
MPI 1 32 0.14

A FG-MPI 2 32 0.17
MPI 1 128 3.92

B FG-MPI 2 64 4.03
MPI 1 128 9.17

C FG-MPI 2 64 9.35
MPI 1 128 229.5

D FG-MPI 8 64 271.5

Table 4.6: Comparing MPI and FG-MPI for CG benchmark.

Table 4.6 shows the results for CG, where FG-MPI uses half the number of cores (O×M)

as compared to MPI. This indicates that communication costs may be the limiting factor

for CG and keeping it more localized helps.

In conclusion, for the benchmarks considered, added concurrency showed substantial

benefits for the long-lived applications and larger problem sizes. For short-lived applications

and more communication intensive applications FG-MPI did not provide any improvements.

FG-MPI makes it easy to add concurrency to the runtime execution of MPI programs, since

it is a runtime parameter it can be adjusted, without re-compilation, to different problem

sizes and one can always omit the nfg option when its use is not indicated.
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4.3 Summary

A problem is often mapped onto MPI processes based on the number of physical processors

available, with one process assigned to each processor. Often we come across algorithms

that will only run on a certain number of processors. This approach inhibits a natural

decomposition of the problem that may be more simply described, algorithmically, using

finer granularity. From a software engineering point of view, it is important to decouple the

problem decomposition from the number of processing units.

In this chapter we have shown the effectiveness of decoupling the MPI processes from the

underlying hardware. We measured the benefits of added concurrency for cache awareness

and message sizes and described ways in which FG-MPI minimizes the resulting overheads

for context switching and communication on multicore machines. Using the NAS bench-

marks we showed that substantial performance gains are possible on long-lived benchmark

programs where the gains out-weigh the overheads. For existing MPI programs, FG-MPI

provides a flexible runtime parameter to improve cache locality and message-size indepen-

dently from the number of cores and machines in the cluster.
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Chapter 5

Concurrency >> Parallelism

Controlling complexity is the essence

of computer programming.

Brian Kernigan

Concurrency is a tool for structuring programs [126]. Concurrency is an application level

property and a programming environment that supports concurrency allows a program to

be expressed as a set of tasks and the synchronization relationships between them. Parallel

execution is a property of the machine and the mapping of concurrent tasks onto physical

processors defines which tasks are executed in parallel and which are interleaved on the

same processor.23 Many real world problems are concurrent and expressing additional

concurrency in a program can often simplify the problem by matching the processes to the

program structure instead of the hardware [126, 150]. In this chapter we explore the use of

added concurrency per OS-process to enable function-level parallelism in FG-MPI.

There are a number of popular parallel programming languages for multicore [11, 48,

105] that use message passing. One notable difference between MPI and these parallel

languages is the granularity of the MPI processes. Processes in MPI are coarse-grained and

programmed to make it easy to match the number of processes to the available hardware,

whereas many parallel languages support finer grain to match processes to the structure of

the program. By fine-grain we mean function-level parallelism where processes may have

23Sebesta [129] defines two categories of concurrency: (a) Physical concurrency that is characterized
by multiple independent processors and multiple threads of control and, (b) Logical concurrency where
concurrent units are executed in an interleaved manner by time-sharing a single processor.
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tens of instructions rather than the thousands of instructions in coarse grain program-level

parallelism. One can have function-size programs in MPI but it is not done because over-

subscribing processes to nodes is inefficient due to the context switch time between OS-level

processes and because the OS scheduler is unaware of the cooperative nature of the MPI

processes.

In the first two sections of this chapter we examine how added concurrency in FG-MPI

can be used to structure parallel programs. In Section 5.1, we use FG-MPI to implement

an application from the CoSMoS [31] project that models emergent behavior and compare

the results with several popular fine-grain parallel languages on a multicore system. In

Section 5.2, we use FG-MPI to re-structure a typical use of non-blocking communication

in MPI and show that having multiple MPI processes per OS-process, with a runtime

scheduler, can be used to simplify MPI programming and achieve performance without

adding complexity to the program. Lastly, in Section 5.3, we test the ability of FG-MPI to

scale to massively parallel programs and present the results of running over a 100 million

MPI processes on the WestGrid [50] computing facility.

5.1 Comparison with Fine-grain Multicore Languages

In this section we compare the performance of the FG-MPI implementation with Pthreads

and three other languages that support fine-grain parallelism: Erlang, Haskell, and Occam-

pi [106]. We wanted to show that it is not only possible but easy to express an application,

requiring thousands of fine-grain tasks, through MPI processes. To make the test concrete,

we have intentionally chosen an application with the type of fine-grain parallelism favourable

to languages like Erlang, Haskell and Occam-pi in a shared memory environment. In fact,

this application was developed for process oriented programming and presented in [122] and

its dynamic nature is well suited for the automatic process migration strategies supported

in the runtime system for Occam-pi. As well, all tests were run on a shared memory system,
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which favoured the concurrency techniques used in some of the languages. We describe the

application in the next section.

5.1.1 Simulation of Flocking Behavior

The application is based on modelling of emergent behavior as part of the CoSMoS [31]

project and a benchmark has been developed based on occoids (Occam-pi processes) to

simulate bird flocking behavior. A detailed description of the benchmark can be found

in [122] and its source code, implemented in different languages, is available at [107].

In this application, a number of birds move in a space represented by a two-dimensional

torus. Each grid point in the torus represents a location and the position of birds is defined

with respect to the center of their current location. The birds are able to see each other

within nine adjacent locations. Using an internal bias that produces randomized behavior,

the birds calculate a repulsive force from all those visible and use that force to decide if

they should move to a new location or stay at the current one. The bias depends on the

position of the bird and how many other birds are visible to it.

We developed an MPMD MPI application to simulate the bird flocking behavior. From

the implementation perspective, each bird is represented as an MPI process. Each grid

point on the two-dimensional torus is a location process and it maintains information about

all the birds that are currently present at that location. Another process called view is

also associated with each location, and all the birds at that location communicate with it.

At each simulation step, the birds query the view associated with their current location

for information about visible birds at the adjacent locations. The view communicates

with all the adjacent locations and compiles an aggregated list of birds and sends that to

the querying birds. That information is then used by the birds to calculate the repulsive

forces and decide if they should move to another location or not. In either case, the birds

communicate their decision to their location process, so that it can update its information.
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Barrier synchronizations are used between communication phases in each simulation step,

so that each bird has a consistent view of the environment.

5.1.2 Test Setup

Our test setup consists of a single socket, 4-core Intel R© CoreTM i7 Nehalem workstation.

The system has 6 GB of memory and the processors run at 2.67GHz. The workstation runs

Linux kernel 2.6.28-15-Generic with hyper-threading enabled.

The following versions of the software for the languages reported in our test results were

used. We used the Glasgow Haskell Compiler (GHC) version 6.10.4 for multicore systems

and compiled with optimization options. The Haskell code was run with the +RTS -N option

so that it could run on multiple CPUs. We experimented with different values for N, the

number of threads, and -N8 gave the best results. Erlang version 5.6.5, both with and

without HiPE [113], and the POSIX threads interface available through GNU C version

4.3.3 were used. For Occam-pi, we used the KRoC compiler version 1.5.0-pre5 with the

CCSP runtime system. All tests were run to take advantage of the thread-level parallelism

available on all processors with hyper-threading. For FG-MPI tests, we evenly distributed

the fine-grain processes across eight OS-processes.

5.1.3 Performance Results

The application was run for different grid sizes and in each case the mean value of three

independent test runs is reported. The measurements were stable with very little variation

across different runs.24 The runtime is reported for a total of 1024 simulation steps. The

number of birds at each location at the start of the simulation is twelve. Table 5.1 shows

the number of MPI processes with increasing grid sizes.

24The Pthreads application runs showed some variation at certain grid points. In those cases the mean of
a total of 6 independent runs was taken.
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(G×G)× (B + 2)

where G is the grid size and B is the
initial number of birds in each grid
area. Sample experiments for B = 12
included:

Grid size MPI processes

5x5 350

10x10 1,400

15x15 3,150

20x20 5,600

Table 5.1: Number of MPI processes with increasing grid sizes.

Figure 5.1 compares the performance of FG-MPI implementation with the other lan-

guages. As the figure shows, FG-MPI outperforms Pthreads, Haskell and Erlang and is

competitive with Erlang-HiPE. The only language that out-performed FG-MPI is Occam-

pi. For this application, there are a number of optimizations that the other implementations

use, which ours does not. Firstly, the FG-MPI application communicates through standard

message passing routines and each process owns its data. In Pthreads, for example, the

application maintains a linked list of the birds at each location and communicates that by

simply passing pointers. There is no ownership of data as one thread can change variables

used by another. We do not use zero-copy routines in this test and a sending process con-

structs a message, which is then copied into the receive buffer of the receiver. Our MPI

application also does not use any grid resizing strategies to adapt to the dynamic nature of

this application. Secondly, Haskell, Erlang, Pthreads, and Occam-pi all use compiler opti-

mizations, which we do not. The performance difference between Erlang with and without

HiPE shows the potential for compiler optimizations.
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Figure 5.1: Comparison of the execution times of the bird flocking application for different
grid sizes.

Despite these optimizations by the other implementations, FG-MPI does better than

many of them. For example, for the 15x15 grid size, Erlang takes 58.28 seconds, Erlang-

HiPE takes 26.42 seconds while FG-MPI takes 22.95 seconds. The run times for Pthreads

(69.23) and Haskell (138.27) are much higher. The code for MPI processes has a low

context switching overhead and scales well.

The Pthreads results in Figure 5.1 show that the synchronization overheads of using

locks and condition variables quickly become very large and it does not scale. Haskell

performs even worse and as mentioned in [45], much work needs to be done on optimizing

placement of threads.

The language that consistently did better than FG-MPI is Occam-pi. They employ a

highly optimized runtime system and scheduler. The KRoC compiler provides support for

the language features and optimizations for code generation specific to Occam-pi. Occam-pi
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results clearly demonstrate the performance potential of using cooperating non-preemptive

light-weight processes. Unlike Occam-pi, MPI is a library not a language, however, code

transformations to improve performance of MPI programs through compiler optimizations

is an active area of research and the types of techniques used in Occam-pi may benefit MPI

in future [33, 116].

We ran all tests on a single shared memory multicore machine. This setup is especially

favourable to the implementations we compared against. FG-MPI, however, has the benefit

that the same application can execute in a distributed memory environment without any

code modifications. The other languages require modification to their codes to enable them

to run in a distributed environment.

In a cluster environment, where the program is distributed between cores on one machine

as well as across machines, MPI has the advantage of performing well over a wide variety

of network fabrics in various cluster environments. Given the many years worth of effort in

ensuring performance portability of MPI programs in distributed environments we expect

MPI programs to perform better in comparison to a multicore language with added on

network support.

5.2 Programmability and Non-blocking Communication

One technique widely used in MPI programs that adds to their complexity is the use of non-

blocking communication. Non-blocking communication makes it possible to have multiple

outstanding messages that increases asynchrony and allows one to overlap communication

with computation. This can reduce the idle time that results when processes are blocked

waiting for a message to arrive. To avoid idle time the programmer tries to post messages

as soon as possible, overlap that with some computation while periodically checking for new

messages to process as well as posting new ones. Optimizing the messaging in this manner

to reduce idle time and increase “slackness” breaks the cohesion of the program structure,
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adds complexity, and is less portable with respect to performance. As well, in MPI programs

written as a collection of modules, there is no simple way to schedule communication with

computation without exposing the module’s functionality. In this section we describe how

FG-MPI can be used to reduce reliance on non-blocking communication without adding

complexity to the code.

int main ( int argc , char *argv [] )

{ ...

MPI_Irecv (..., recvRequests [0]);

MPI_Irecv (..., recvRequests [1]);

do {

compute_local (...);

MPI_Waitany (2, recvRequests , &index , recvStatus );

switch(recvStatus ->MPI_TAG) {

case tag1 :

compute_A ();

MPI_Send (...);

MPI_Irecv (..., recvRequests [index ]);

break;

case tag2 :

compute_B ();

MPI_Send (...);

MPI_Irecv (..., recvRequests [index ]);

break;

}

}while (...);

}

Listing 5.1: Scheduling communication and computation by non-blocking operations

Non-blocking communication typically involves structuring the code into stages and

scheduling these stages inside the application code. Exposing and scheduling even a modest

number of stages in the application can result in complex code that is difficult to read and

97



5.2. Programmability and Non-blocking Communication

maintain [54, 55, 95]. One of the advantages of our approach is that it reduces the need for

non-blocking communication.

Consider the program in Listing 5.1, showing a simple use of non-blocking communi-

cation, which tries to post as many messages as possible to keep the process busy. There

are three main parts to the program: (a) allocating and managing message request buffers,

(b) checking for message completions and then processing the messages, (c) a compute part

that may or may not depend on the messages sent and received. Some of the complexities

in Listing 5.1 are:

(i) The compute and communication parts of the code are interleaved and the program-

mer needs to balance the computation with the polling of the link via the middleware.

(ii) The user needs to manage the request buffers for the multiple outstanding messages.

The programmer also needs to be aware of all the different types of outstanding mes-

sages and how messages are matched. This often results in the use of MPI ANY SOURCE

and MPI ANY TAG.

With FG-MPI, as shown in Listing 5.2, we can achieve a similar overlap by re-organizing

the code fragment into three smaller processes: compute local(), process A() and

process B(). As opposed to Listing 5.1, there are no non-blocking requests and associated

structures in Listing 5.2 and no need to remember that the posted requests have to be

checked for completion. Listing 5.1 has requests that are global over the entire program

and no clear demarcation between different types of requests. FG-MPI places all of corre-

sponding computation and communication code pertaining to one activity into one process.

This adds to the cohesiveness of the program and makes it easier to read and change the

code.

The purpose of the control loop in Listing 5.1 is to schedule different parts of the code

based on the message events from MPI Waitany(). In the FG-MPI version of the code there

is no MPI Waitany(). The control loop is now handled by the FG-MPI scheduler, which
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int main ( int argc , char *argv [] ){

FGmpiexec (&argc , &argv , & binding_func );

return (0);

}

int process_A ( int argc , char ** argv ){

MPI_Init (...); ...

do{

MPI_Recv (...,tag1 ,...);

compute_A ();

MPI_Send (...);

}while (...);

MPI_Finalize ();

}

int process_B ( int argc , char ** argv ){

MPI_Init (...); ...

do{

MPI_Recv (...,tag2 ,...);

compute_B ();

MPI_Send (...);

}while (..);

MPI_Finalize ();

}

int compute_local ( int argc , char ** argv ){

MPI_Init (...); ...

do{ ...

if (...) MPIX_Yield ();

}while (...);

MPI_Finalize ();

}

Listing 5.2: Defining MPI processes as concurrent functions all mapped to the same OS-

process. Each MPI process also calls MPI Init and MPI Finalize.
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acts as an abstraction device, so that the programmer does not have to hand-code it into

the program.

In Listing 5.2, should process A() now require we receive two messages rather than

one, we only need to add another MPI Recv(), however, for Listing 5.1 there are questions

as to whether we need to introduce another case and tag and how it might be matched.

In both listings it is important that the compute local() code invoke the progress engine

sufficiently often to not unduly delay the remaining computation and communication. In

Listing 5.2, MPIX Yield() can be appropriately placed when needed to provide an explicit

de-scheduling point that automatically resumes at the proper place. In Listing 5.1, changing

the rate at which the network is polled requires reorganizing the computation, which is yet

another complication.

Expressing additional concurrency in the program gives us the opportunity to exploit

it, however, it does require additional effort to structure the code and map MPI processes

to functions using a MPMD process model. In Listing 5.2, we encapsulate different re-

ceive actions in separate MPI processes and the sender process needs to use the appropri-

ate receiver process’s rank to trigger the right computation. As discussed in Section 3.4

(page 61), FGmpiexec spawns the co-located MPI processes and the mapping of process

ranks to functions is specified through the user-defined binding func, which takes as input

the MPI COMM WORLD rank of a process and returns a pointer to the function that the process

is bound to. The extra-level of mapping gives us more flexibility in mapping to OS-processes

and cores. As well, we can match the OS-processes to the cores to minimize the effect of OS-

noise [41] and not rely on the OS scheduler, which introduces yet another control loop that

is unaware of the synchronization between the MPI processes. Finally, FG-MPI extends

MPI so the programmer can manage as little or as much of the non-blocking communication

as they wish.

We created a benchmark program, similar to the codes in Listings 5.1 and 5.2, to evaluate

the effect of exposing function-level parallelism and the overhead of the scheduler in FG-
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Figure 5.2: Mapping of one sender process, N − 1 receiver processes and one compute
process to each OS-process in the FG-MPI code of the benchmark.

MPI. The MPI code of the benchmark launches N MPI processes as OS-processes, each

of which uses non-blocking MPI Isend and MPI Irecv calls to pre-post send and receive

requests for all the other processes. The MPI code carries out some local computation

and then calls MPI Waitany on these requests to progress them. The local computation

and progression of the requests is done in a loop until all the requests are completed. The

FG-MPI code also launches N OS-processes, however, each of these OS-processes contain

N+1 co-located MPI processes (see Figure 5.2). The MPI processes within each OS-process

are organized as follows. (A) There is one MPI sender process that calls MPI Send N − 1

times to send to one receiver in each of the N OS-processes. (B) There are N − 1 receiver

processes that call MPI Recv. Each of these receivers is matched with the sender in one of

the OS-processes. (C) There is one compute process that does local computation similar

to compute() function in Listing 5.2. To allow computation and communication overlap,

all messages sent in this benchmark are long messages that use the rendezvous protocol in

MPICH2. The MPI code introduces asynchrony by pre-posting non-blocking operations and
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then manages scheduling of the computation and the communication through explicit calls

to the middleware via the MPI Waitany calls. On the other hand, the FG-MPI version re-

structures the code so that there is a separate MPI process for each of the receive calls. The

scheduling of computation and communication is outside of the application specification

and is managed by the runtime scheduler. In order to isolate the effects of introducing

additional concurrency by mapping MPI processes to functions, we did not introduce any

dependency between the computation and the communication in this benchmark.
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Figure 5.3: Performance comparison of non-blocking code using MPI Waitany with function-
level parallelism in FG-MPI. Number of OS-Processes is same in both cases.

Figure 5.3, shows the results of this benchmark. For the MPI non-blocking code, the

number of MPI processes are equal to the number of OS processes, while in the FG-MPI

code the number of MPI processes are a multiple of the nfg parameter and the number of

OS-processes. The time reported is for ten iterations of the benchmark. Our results show

that even with the introduction of more than 24,000 fine-grain MPI processes compared to

156 coarse-grain processes, the performance remains the same.
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As the number of MPI processes increase beyond this to more than 43,000 processes,

there is a small overhead of 8.7%. We are not sure of the reason for the deviation after

24,000 processes, however, the MPI code has an advantage in this benchmark, since it pre-

posts all the send requests. Multiple of these pre-posted send requests can be progressed in

the MPI Waitany call. The FG-MPI code has a single sender process which makes MPI Send

calls one after the other. This benchmark stress tests asynchrony at a large scale and shows

that the overhead incurred by exposing function-level parallelism remains low.

5.3 A 100 million MPI processes on Westgrid

The past few years have seen rapid advances and growth in computer hardware. The lat-

est TOP500 [144] list reports systems with more than 1,500,000 cores in operation today.

An interesting statistic on the current state of the art is a brain simulation experiment25,

that was run on the world’s second fastest supercomputer at the Lawrence Livermore Na-

tional Laboratory (LLNL). This experiment was executed on 1,572,864 processor cores using

98,304 MPI processes with 64 threads per process (a total of 6,291,456 threads) [120, 155].

Development is underway of exascale systems with a 100 million cores that are capable of

executing an exaflop and are expected by the end of this decade. These systems bring with

them significant challenges for the development of software that can scale and exploit the

computing power of these systems. Development of software models for these systems is an

open and active area of research [1].

MPI faces a number of challenges in this changing parallel computing environment and

key among them are issues of scale [12, 55, 92, 139]. We wanted to test the scalability

of FG-MPI to see whether we would be able to execute a 100 million MPI processes on

thousands of cores. In collaboration with the Western Canada Research Grid (WestGrid)

25This work was among the six finalists for the Best Paper Award at Supercomputing 2012 (SC12).
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computing facility26, we were able to access a large number of cores and ran a series of

experiments in several stages and successfully scaled to over a 100 million MPI processes

using 6,480 processor cores [63, 151].27

Our test setup on Westgrid consisted of a cluster of 540 nodes, where each of the nodes

is a dual-socket 6-core (12 cores per node) Intel Xeon X5650, 64-bit machine, running at

2.67 GHz, connected by an InfiniBand network and runs IPoIB on the QDR IB links. All

nodes have 24 GB of memory and run Linux kernel 2.6.18-194.el5.

We ran a number of programs that used both point-to-point and collective MPI routines

to test the scalability and performance of FG-MPI. These experiments included a pi calcu-

lation program that uses MPI Bcast and MPI Reduce, and a MPI Barrier benchmark. Each

of these programs were run on 6,480 cores where the number of OS-processes was equal to

the number of cores, with 16,000 co-located MPI processes in each OS-process. The total

number of MPI processes in each application was thus 16,000 x 6,480 = 103,680,000.

The pi-calculation program took 9.84 seconds to execute. This includes the time for

MPI Bcast, local computation and MPI Reduce operations on MPI COMM WORLD. In this ex-

periment communication takes place at all levels of the communication hierarchy, i.e., within

co-located MPI processes, between MPI processes in different OS-processes on the same

node and across different nodes.

Our location-aware implementation of MPI Barrier is optimized for the three levels of

the communication hierarchy (Section 4.1.3). The time to do a barrier operation on 103

million MPI processes took only 0.207 seconds.

In the absence of exascale machines, our tests approximated execution of massively

parallel programs. It shows that FG-MPI’s approach allows the basic routines in MPI and

in particular the MPICH2 middleware to scale to 100 million processes - something that

26We wish to acknowledge the help of WestGrid’s support staff Roman Baranowski and Brent Gawryluik
in setting up our experiments

27FG-MPI’s 100 million MPI processes experiment was featured on the HPCwire and WestGrid websites
as well as on the Argonne National Laboratory’s MPICH homepage.
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no other system has demonstrated. As bigger systems become available, FG-MPI makes it

possible to explore the performance and scalability issues of the MPICH2 middleware. As

well, it will enable the development of algorithms and applications that can benefit from

millions of processes without requiring as many cores.

5.4 Summary

Fine-Grain MPI (FG-MPI) supports function-level parallelism by having multiple MPI pro-

cesses per OS-process. We compared FG-MPI with several commonly used fine-grain mul-

ticore languages. Our experimental results show that for a highly dynamic fine-grain ap-

plication, well-suited to these languages, FG-MPI outperformed Pthreads and Haskell, and

achieved similar performance to that of Erlang.

We gave an example of using FG-MPI to re-structure a typical use of non-blocking com-

munication in MPI. FG-MPI enables a task-oriented programming approach and support

for MPMD that makes it easier, by exposing more concurrency, to overlap communication

with computation. This relieves the programmer from scheduling computation and com-

munication inside the application and focus on what needs to be scheduled rather than how

to manage it.

Lastly, we demonstrated that FG-MPI’s approach can scale to hundreds of millions of

MPI processes and reported the results of our experiments on Westgrid.
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Chapter 6

Conclusions

What we call the beginning is often the end. And

to make an end is to make a beginning. The end is

where we start from.

T.S.Elliot

One of the main challenges of the FG-MPI project involved integrating it into the

MPICH2’s middleware. Our goal from the beginning of this project was to have an impact

in the HPC community through extending an existing open source implementation of MPI,

rather than write our own library or layer it on top of another runtime system. There were a

number of challenges in integrating FG-MPI into an existing production-quality middleware

and it was not known what problems we would encounter. In addition to the major design

issues like decoupling of the namespace, extension of the runtime and scalability, there

were a host of low-level system details that had to be addressed including extension of

the message format, sharing of MPI structures, management of two-level process ranks,

interfacing with external libraries, and development of build and debug subsystems. Based

on our experience we believe this type of integration is possible with other implementations

of MPI. In the next sections I discuss some of our experiences in using FG-MPI and future

work.
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6.1 Our Experiences with FG-MPI

6.1.1 Vehicle to Investigate Scalability Issues

We have found FG-MPI to be a useful vehicle for investigating and testing scalability issues

of the MPI middleware. During its development, I identified a number of structures in the

MPICH2 middleware which did not scale, such the tight-coupling of the process names and

the routing tables, the creation and storage of process maps and communicators and the

message envelope format and matching. FG-MPI’s ability to expose large-scale concurrency

allows us to explore different designs and algorithms inside an MPI implementation without

access to a facility with hundreds and thousands of processing cores. The are a number of

issues at scale related to the MPI API, the middleware implementation and the standard

itself, that are highlighted by Balaji et. al. in [12]. These are challenging issues and we

believe FG-MPI can help in development and testing of scalable algorithms to address some

of these issues.

From the application perspective, it enables programmers to develop and test appli-

cations that can scale to millions on their laptops or desktops without requiring as many

physical cores. Access to resources in a supercomputing center can often be limited, time

consuming and costly. This allows testing on a smaller system before deployment on a

larger one.

6.1.2 Deterministic Execution

Debugging parallel programs is notoriously difficult, and their non-deterministic nature

makes it hard to predict interactions or reproduce errors [91, 123]. Programmers can benefit

from the ability to restrict the amount of non-determinism and test with a limited number of

program interleavings [86, 134]. FG-MPI provides the ability to flexibly move the boundary

of the interleaved concurrency and parallelism through command-line, without recompila-

tion. The selection of scheduler can, as well, be specified on the mpiexec command-line and
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it is possible to test the execution of the program with different schedulers. This helps to

the control the program interleavings and judiciously introduce non-determinism for testing.

We have found it particularly useful to run all the MPI processes co-located inside a single

OS-process for detecting program safety issues such as deadlock. We have also found using

a deterministic scheduler like round-robin as a useful tool to reproduce program executions.

6.1.3 Porting of Existing Programs

The boiler-plate code described in Section 3.4 was developed to simplify porting of existing

MPI programs to FG-MPI. In addition to the NAS benchmarks we have ported a number

of libraries to test the ease of porting existing programs to FG-MPI. One of those libraries

is MR-MPI [115] library from Sandia National Laboratories, which is an open source im-

plementation of the MapReduce model popularized by Google [35]. MR-MPI is a very

well structured library, and very few source code changes were required to use it with FG-

MPI programs. We successfully ran FG-MPI programs using this library and were able

to specify and control the mapping of fine-grain processes by a simple invocation of the

nfg parameter on the command-line. Our experience has been that, barring the removal

of global and static variables in the existing code, porting is straight forward and requires

the addition of only a few lines of the boilerplate code discussed in Section 3.4. A number

of tools [2, 114] are available for automatic privatization of global variables that can help

reduce the programmer’s effort.

6.1.4 Matching the Processes to the Program Structure

Expressing additional concurrency in a program can often make it simpler and lead to

greater efficiency and enhanced opportunities for structuring of parallel programs [126]. We

have looked at a number of applications that would normally not be implemented using

MPI due to its coarse-grained nature. These include the bird flocking application presented
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in Section 5.1 as well as graph applications where each node is modelled as an MPI pro-

cess. Our experience has been that the ability to match MPI processes to the program

structure simplifies the program logic. Over the past two years, FG-MPI has been used

by other Master’s students at UBC in their theses work to develop novel program designs.

These include design of a CSP-like (Communicating Sequential Process) program that uses

MPMD-style of programming where multiple processes communicate using Pilot [26], an

MPI library that provides CSP-like channel abstraction [19]. Another work involved inves-

tigation of different scalable storage representations for process maps using FG-MPI as a

testbed [98]. Currently, work is being done on the design and implementation of concur-

rent data structures using FG-MPI. We are also experimenting with new ways to support

dynamic processes in MPI by leveraging our runtime scheduler.

6.2 Moving Forward

Our hope is that the FG-MPI design and its proof of concept in a working system may

provide a way for other MPI implementations to augment MPI to support this fine-grain

model. Secondly we hope, by way of illustration in this thesis, that extending MPI’s exe-

cution model to fine-grain can make MPI programming easier and a better overall solution

that can scale from a multicore node to multiple machines in a cluster. The potential ben-

efits of our fine-grain approach are for multicore as the number of cores increase. As well,

it is based on message-passing and it will be portable to multicore nodes with or without

support for cache-coherence.

The success of MPI is due in a large part to the MPI Forum’s focus on concisely defined

features and a forward-looking view of the parallel computing landscape [55]. MPI faces

a number of challenges as the needs of parallel computing change in ways that are funda-

mentally different from the past. The MPI Forum continues to introduce enhancements to

the standard and has recently approved the MPI 3.0 standard and the Argonne National
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Laboratories (ANL) has released its latest version of MPICH2. The Forum has always

followed a formal practise of seeking input from library implementers, vendors and users

prior to introducing any enhancements into the standard. The enhancements are based on

validation through a working implementation and the strength of the use-cases. Through

our work on FG-MPI, we hope to work closely with the MPI Forum and the MPICH2 team

at ANL and integrate FG-MPI in the latest version for release to the research community.
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Appendix A

FG-MPI Specific Routines

Form follows function.

Louis Sullivan

Following is a list of the MPIX routines, introduced by FG-MPI, to provide additional

functionality related to co-located MPI processes. The boiler-plate code was described in

Section 3.4.

MPIX_Yield

The calling processes performs a voluntary yield to the scheduler.

Prototype:

void MPIX_Yield(void)

MPIX_Usleep

The calling processes yields to the scheduler which blocks it for at least utime microseconds

before placing it back on the run queue.

Prototype:

int MPIX_Usleep(unsigned long long utime)
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MPIX_Get_collocated_size

Determines the number of co-located MPI processes in an OS-process, as specified by nfg

flag with mpiexec.

Prototype:

int MPIX_Get_collocated_size(int *size)

size is the number of co-located MPI processes (integer)

MPIX_Get_collocated_startrank

Determines the smallest MPI COMM WORLD rank from among the co-located processes in an

OS-process.

Prototype:

int MPIX_Get_collocated_startrank(int *startrank)

startrank is the smallest rank (integer).

MPIX_Comm_translate_ranks

Translates the ranks of MPI processes in one communicator to another communicator.

Prototype:

int MPIX_Comm_translate_ranks(MPI_Comm comm1,

int n, int *ranks1,

MPI_Comm comm2, int *ranks2)

The input parameters are comm1 (communicator handle), n is the number of ranks in

ranks1 and ranks2 arrays (integer), comm2 (communicator handle). The output param-

eter is ranks2 which is an array of corresponding ranks in comm2.
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Following are the zero-copy routines discussed in Section 3.3.

int MPIX_Zrecv(void ** buf_handle, int count,

MPI_Datatype datatype, int source,

int tag, MPI_Comm comm,

MPI_Status *status)

int MPIX_Zsend(void **buf_handle, int count,

MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPIX_Izrecv(void ** buf_handle, int count,

MPI_Datatype datatype, int source,

int tag, MPI_Comm comm,

MPI_Request *request)

int MPIX_Izsend(void **buf_handle, int count,

MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm,

MPI_Request *request)

FG-MPI does not currently support inter-communicators, dynamic process management

functionality and remote memory access operations.
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Example of a Program Using

FG-MPI

In this section we present the code of a small application to demonstrate writing a program

using FG-MPI. This application creates the sieve of Eratosthenes by composing several

fine-grain MPI processes to form a pipeline. A pipeline is a commonly used pattern in

process-oriented environments for creating process networks within programs and is also

used in dataflow applications [126]. This application demonstrates the use of two different

mapping functions for composing the pipeline of processes. These mappings can be selected

on the command-line to allow experimentation with load-balancing of processes without

recompiling the code.

generator sieveElement sieveElement sieveElement lastElement

Figure B.1: A pipeline of processes, where numbers generated by the generator are
streamed through the chain to be processed by each element.

As Figure B.1 shows we have three types of MPI processes:

(a) A generator process that generates odd numbers that are passed down the pipeline.

The generator keeps the prime number 2 for itself.

(b) sieveElement process that keeps the first prime number it sees and filters the re-
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maining numbers by either discarding them or passing them to the next process in the

chain.

(c) A lastElement process that terminates the prime number generation at the end of

the sieve.

The number of prime numbers generated is equal to the length of the pipeline (i.e., the

total number of MPI processes in this application). For example, the following command

will generate 40 prime numbers.

mpiexec -nfg 10 -n 4 ./primeSieve

The listing on pages 138 and 139 shows the code for the three functions generator(),

sieveElement() and lastElement() bound to these processes. As discussed in Sec-

tion 3.4 (page 61), map lookup function takes a string as its third parameter and uses it

to select a binding function. In this example we provide two different binding functions:

(a) sequential mapper that binds the generator to process rank 0, lastElement

to the highest rank in MPI COMM WORLD and the remaining processes are all of type

sieveElement. The pipeline is composed by specifying the previous and next neigh-

bours of a process in the chain (see who are my neighbors function on page 139).

In this case we have a sequential assignment where process of rank − 1 is the previous

neighbour and process rank + 1 is the next neighbour. Process rank i will generate

the i+ 1th prime number. Due to the packed assignment of MPI process ranks inside

OS-processes, this mapping is not the most efficient since the processes appearing later

in the pipeline do not become active until a large number of primes are found. The

random mapper binding function addresses this problem.

(b) random mapper uses a technique similar to the shuffling of a deck of cards to create

a random chain sequence. It uses two user-defined parameters (seed and cuts) to
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randomize the next and previous neighbours of a process. This allows a more even

distribution among processes and the parameters can be used for experimentation with

load-balancing.

We also define two special constants MAP INIT ACTION and MAP FINALIZE ACTION

that can be used inside the binding functions. MAP INIT ACTION can be used by the

user for any initialization of structures or actions prior to the actual binding of functions

to process ranks. An example of this is in the random mapper binding function, where

MAP INIT ACTION is used to allocate a temporary array for storing the random permuta-

tion of ranks that is later read by all the newly spawned processes when they start executing

and call the who are my neighbors() function. MAP FINALIZE ACTION can be used

by the user in the binding function for any action subsequent to the binding operation. Note

that at this stage only the binding of functions to MPI process ranks has been completed,

but the processes have not executed yet.

The environment variable FGMAP is used to select a binding function on the mpiexec

command line. For example, the random function can be specified as follows.

mpiexec -nfg 10 -n 4 -genv FGMAP random ./primeSieve

<seed> <cuts>

Whereas, the following specifies the sequential binding function.

mpiexec -nfg 10 -n 4 -genv FGMAP seq ./primeSieve

It is possible to specify a scheduling policy in a similar manner. For example, the block

scheduler discussed in Section 2.2 (page 31) can be specified as follows (the round-robin

(rr) is the default scheduler if none is specified).

mpiexec -nfg 10 -n 4 -genv SCHEDULER block -genv FGMAP

random ./primeSieve <seed> <cuts>
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#include <stdio.h>  

#include <stdlib.h> 

#include <stdint.h>

#include <string.h>

#include <mpi.h>

#include "fgmpi.h"

#define MAXINT 1000000

#define FALSE 0

#define TRUE !FALSE

#define DATA_TAG 111

#define STOP_TAG 999

/* forward declarations */

int lastElement(int argc, char **argv);

int sieveElement(int argc, char **argv);

int generator(int argc, char **argv);

int who_are_my_neighbors(int rank, int size,

                         int *prevproc_ptr, int *nextproc_ptr);

FG_ProcessPtr_t sequential_mapper(int argc, char** argv, int rank);

FG_ProcessPtr_t random_mapper(int argc, char** argv, int rank);

FG_MapPtr_t map_lookup(int argc, char** argv, char* str) {

    /* Two mapping functions */

    if ( str && !strcmp(str, "random")) {

        return (&random_mapper); 

    } else if ( str && !strcmp(str, "seq")) {

        return (&sequential_mapper); 

    }    

    /* Default mapper if FGMAP environment variable is not specified */

    return (&sequential_mapper); 

}

int main( int argc, char *argv[] )

{

    FGmpiexec(&argc, &argv, &map_lookup);    

    return (0);

}

int sieveElement(int argc, char **argv) {

    int nextproc, prevproc;

    int rank, size;

    MPI_Status status;

    MPI_Init(&argc,&argv);

    MPI_Comm_rank(MPI_COMM_WORLD, &rank);

    MPI_Comm_size(MPI_COMM_WORLD, &size);

    who_are_my_neighbors(rank, size, &prevproc, &nextproc); 

    uint32_t num,myprime=0;    

    int notdone = TRUE;

    while ( notdone ) {     

        MPI_Recv(&num,1,MPI_INT,prevproc,MPI_ANY_TAG,MPI_COMM_WORLD,&st

atus);

        if ( status.MPI_TAG == DATA_TAG ) {

            if ( myprime == 0 ) {

                myprime=num;

                printf("%u, ",myprime);

            }

            else if ( num % myprime ){/*not divisable by this prime*/

                MPI_Send(&num,1,MPI_INT,nextproc,DATA_TAG,MPI_COMM_WORL

D);

            }

            else { ; }

        } else if ( status.MPI_TAG == STOP_TAG ) {

            notdone = FALSE;

            /* Send the terminate_TAG*/

            num=1;

            MPI_Send(&num,1,MPI_INT,nextproc,STOP_TAG,MPI_COMM_WORLD);

        } else  {

            fprintf(stderr, "ERROR ERROR bad TAG \n");

            MPI_Abort(MPI_COMM_WORLD,rank);

        }

    }

    MPI_Finalize();

    return 0;

}       

int generator(int argc, char **argv) {

    int nextproc, prevproc;

    int rank, size;

    MPI_Init(&argc,&argv);

    MPI_Comm_rank(MPI_COMM_WORLD, &rank);

    MPI_Comm_size(MPI_COMM_WORLD, &size);

    MPI_Request request;

    MPI_Status  status;

    who_are_my_neighbors(rank, size, &prevproc, &nextproc);

    

    uint32_t myprime=2;

    uint32_t num=myprime+1;

    printf("%u, ",myprime);

    /* Set up a MPI_Irecv to stop the sieve */

    MPI_Irecv(&num,1,MPI_INT,prevproc,STOP_TAG,MPI_COMM_WORLD,&request)

;

    while ( num <= MAXINT ) {

        int result=FALSE;

        MPI_Send(&num,1,MPI_INT,nextproc,DATA_TAG,MPI_COMM_WORLD);

        num+=2;

        MPI_Test(&request,&result,&status);

        if ( result == TRUE) break;

    }

    num=0;

    MPI_Send(&num,1,MPI_INT,nextproc,STOP_TAG,MPI_COMM_WORLD);

    MPI_Finalize();

    return 0;

}

int lastElement(int argc, char **argv) {

    int nextproc, prevproc;

    int rank, size;

    MPI_Init(&argc,&argv);

    MPI_Comm_rank(MPI_COMM_WORLD, &rank);

    MPI_Comm_size(MPI_COMM_WORLD, &size);

    MPI_Status status;

    uint32_t num,myprime=0;

    who_are_my_neighbors(rank, size, &prevproc, &nextproc);

        

    int notdone = TRUE;
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    while ( notdone ) {

        MPI_Recv(&num,1,MPI_INT,prevproc,MPI_ANY_TAG,MPI_COMM_WORLD,&st

atus);

        if ( status.MPI_TAG == DATA_TAG ) {

            if ( myprime == 0 ) {

                myprime=num;

                printf("%u \n",myprime);

                /* Send STOP_TAG to generator */

                num=1;

                MPI_Send(&num,1,MPI_INT,nextproc,STOP_TAG,MPI_COMM_WORL

D); 

            }

        } else {

            /* Received a STOP_TAG */

            notdone = FALSE;

        }

    }

    MPI_Finalize();

    return 0;

}

FG_ProcessPtr_t sequential_mapper(int argc, char** argv, int rank){

    int worldsize;

    MPI_Comm_size(MPI_COMM_WORLD, &worldsize);    

    if ( (rank == MAP_INIT_ACTION) || (rank == MAP_FINALIZE_ACTION) ) 

        return (NULL);

    if ( 0 == rank ) return (&generator);

    if ( worldsize-1 == rank ) return(&lastElement);    

    return (&sieveElement);

}

/* proc is a temporary shared array that holds the random

 * permutation of the processes created by random mapper.

 * This array is only read by the co-located processes once

 * to discover their previous and next neighbors and is

 * de-allocated after that */

int *proc = NULL;

FG_ProcessPtr_t random_mapper(int argc, char** argv, int rank){

    int first=FALSE;

    int last=FALSE;

    int nfg, size;

    MPI_Comm_size(MPI_COMM_WORLD, &size);

    MPIX_Get_collocated_size(&nfg);

     

    int cuts= (size/nfg)-1;       

    int seed=0;

    if ( rank == MAP_INIT_ACTION ) {

        if ( argc == 2 ) {            

            seed = atoi(argv[1]);

        } else if ( argc ==  3 ) {            

            seed = atoi(argv[1]);

            cuts = atoi(argv[2]);

        } else {

            printf("USAGE:  primeSieve [seed] [cuts]\n");

            exit(-1);

        }

        /* do the cuts and swaps */

        srand(seed);

        int i;

        proc = malloc(sizeof(int)*size);

        int *procswap = calloc(sizeof(int),size);

        for ( i=0; i<size; i++) proc[i] = i;

        for ( i=0; seed && i<cuts; i++){

            int k = rand() % size;

            /* swap the k to size portion of array with 0 to k-1 */

            if ( k != 0 ) {

                memcpy(procswap,&(proc[k]), sizeof(int)*(size-k));

                memcpy(&(procswap[size-k]),proc, sizeof(int)*k);

                int *tmp=proc; proc = procswap; procswap=tmp;

            }

        }

        free(procswap);

        return (NULL);

    }

    if ( rank == MAP_FINALIZE_ACTION )

        return (NULL);    

    if  ( proc[size-1] == rank ) { last=TRUE; }

    if  ( proc[0] == rank ) { first=TRUE; }    

    if ( first )

        return (&generator);

    else if ( last )

        return (&lastElement);

    else

        return (&sieveElement);

}

int who_are_my_neighbors(int rank, int size,

                         int *prevproc_ptr, int *nextproc_ptr){

    int prevproc = -1, nextproc = -1;

    char *mapstr = getenv("FGMAP");

    

    if ( mapstr && !strcmp(mapstr, "random")){

        static int times_called = 0;

        int i;

        times_called++;

        for ( i=1; i<size-1; i++)

            if ( proc[i] == rank)

                { prevproc = proc[i-1]; nextproc = proc[i+1]; }

        if  ( proc[size-1] == rank )

            { prevproc = proc[size-2]; nextproc = proc[0];}

        if  ( proc[0] == rank )

            { prevproc = proc[size-1]; nextproc = proc[1];}

        if (times_called == size){

            free(proc);

        }

    }

    else {

        prevproc = (0==rank) ? size-1 : rank-1; 

        nextproc = (size-1==rank) ? 0 : rank+1;

    }

    *prevproc_ptr = prevproc;

    *nextproc_ptr = nextproc;

    return (0);
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Appendix C

Summary of Different MPI

Projects

Figure C.1 on page 141 presents a summary of the different thread-based MPI projects

discussed in Section 1.3 (page 8).
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Project Name Year Objectives Target Environment Runtime system Custom software requirements Status

TOMPI  (Threads-

only MPI)
1997

TOMPI is designed to run MPI programs on a single 

computer. Its objective is to enable efficient 

development of parallel programs on a single 

workstation by reducing context-switching overhead 

among MPI processes.

Single workstation

Runs as a single Unix process and  supports 

POSIX and Solaris threads and Cthreads. Uses 

semaphores and condition variables for 

synchronization.

Requires thread packages such as 

Cthreads for user-level thread support.

Source code last updated 

in March 1998. 

MPI-LITE 1997

Maps MPI processes to user-level threads to reduce 

communication overhead between threads mapped to 

the same processor.

IBM SP2

Uses MPI to communicate between OS-

processes and its own runtime for inter-thread 

messaging.

Requires special suffixes for MPI 

routines to distinguish between inter-

thread and inter-process 

communication. Implementation for 

IBM SP2.

Inactive. Link to source 

code broken.

TMPI (Threaded 

MPI)

1999-

2001

Implements MPI processes as pre-emptive threads to 

reduce overheads arising from process context 

switches, synchronization and copying.

Linux SMP clusters. Earlier 

versions for 

multiprogrammed shared 

memory machines (SGI 

Machines).

TMPI maps MPI processes to pthreads inside a 

single address space on a

cluster node. Uses daemon threads for 

communication between cluster nodes.

Readme file reports that gcc header files 

are non-ANSI compliant.

Source code last updated 

in May 2002. 

AMPI (Adaptive 

MPI)
2003

Implements a MPI library that  uses process 

virtualization and is layered on top of the Charm++ 

framework. It supports dynamic load balancing and 

migration of MPI tasks.

Commodity clusters AMPI is layered on top of Charm++ runtime. Charm++ runtime system Active

MPC

(MultiProcessor

Communication)

2008
Provides a unified runtime to improve performance 

of hybrid approaches such as OpenMP + MPI.
Commodity clusters

Uses a custom MPC MxN thread library for 

intra-node communication and MPI for inter-

node communication.

Compilation requires mpfr and gmp 

libraries. Uses a modified version of 

GCC for OpenMP. Not safe to mix 

Posix threads with MPC Posix threads.

Active

Phoenix 2009

The focus of this work is to implement a runtime 

tuned for chip multiprocessors. It uses processor 

virtualization and attribute tagging to identify 

different execution characteristics such as compute, 

network and I/O to schedule on a group of virtual 

processors.

Chip Multiprocessors

MPI layered on top of Phoenix runtime. 

Phoenix defines the basic unit of execution as 

execution contexts (EC), which are 

implemented as a pthreads. In order to negate 

the effects of the OS-scheduler, Phoenix uses 

condition variables and semaphores so that the 

number of runnable ECs matches the physical 

processors.

Unavailable Unavailable

AzequiaMPI 2009

Implements MPI tasks as preemptive threads to 

reduce context switch time and avoid intermediate 

system copies.

Linux clusters and MMU-

less machines

AzequiaMPI is layered on top of the Azequia 

runtime system. 

Requires Azequia for AzequiaMPI can 

run on top of it. Azequia in turn requires 

MPD daemons on each node  to execute 

applications.

AzequiaMPI is active but 

maintenance of Azequia 

has been discontinued 

since April 2010. 

MPI Accelerator 2010
Pre-emptive thread-based MPI to improve intra-node 

communication.
Linux clusters

Runtime system layered on top of another MPI 

implementation. The underlying MPI library is 

used as inter-node communication mechanism.

Requires a custom MPIActor C 

compiler (MAcc).

Early prototype. 

Unavailable.

FG-MPI 2010
Extends the execution model of MPICH2 to support 

large-scale, fine-grain function-level parallelism.
Commodity clusters Integrated into the MPICH2 middleware. None. Active

Figure C.1: A summary of the different MPI projects discussed in Section 1.3 (page 8).
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