
TaTAMi

Taint Tracking for Application Migration

by

Lee Alexander Beckman

B.Sc., The University of British Columbia, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

July 2013

c© Lee Alexander Beckman 2013

Abstract

In this thesis we addressed the question of whether taint tracking could
be used to help developers make better, faster decisions when improving ex-
isting web applications. This is in the context of migration scenarios, where
one must respond to increasing demands on an application by optimizing
and generally rearchitecting. We wanted to determine if detailed dynamic
data�ow traces from web applications could support automated analyses,
the results of which would help one to better understand applications and
guide one in optimizing them.

To investigate this problem, we identi�ed a set of useful analyses from a
search of the literature and from our own experience with web applications.
These analyses were developed to run automatically over taint tracking data,
producing output which should be immediately useful to non-expert users.

Two real applications were chosen for analysis in order to determine two
important things. First, that we could write our analyses to automatically
identify their targets and produce comprehensible results. Second, that the
targets actually existed in real applications.

In the end our analyses were successful, in many cases producing clean
results which concisely described non-trivial properties of the applications
and possible optimizations to them. By focusing on how data moves through
a system, we found a natural �t for understanding its workings. The biggest
di�culties manifested as a need for further automation, to take complicated
analysis results and simplify them. Even with many challenges, we believe
that our techniques are valuable for helping developers, and should be more
thoroughly studied.

ii

Preface

This thesis is original, unpublished, independent work by the author, L.
Beckman.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

List of Programs . x

Acknowledgements . xi

Dedication . xii

1 Introduction . 1
1.1 Origins of Research . 2
1.2 Motivating Example . 3

1.2.1 The System . 4
1.2.2 The Problems . 4

1.3 Statement of Thesis . 10
1.4 Contributions . 10
1.5 Thesis Organization . 10

2 Related Work . 12
2.1 Dynamic Information Flow Tracking 12
2.2 Data Update Propagation . 14
2.3 Automated Analysis and Decision Support 14
2.4 Application Partitioning . 16
2.5 Aspect-Oriented Programming 17

iv

Table of Contents

3 Implementation . 18
3.1 Overview . 18
3.2 Taint Tracking Tool . 19

3.2.1 Tool Components . 19
3.2.2 Justi�cation of Implementation 25

3.3 Analysis Tool . 25
3.3.1 Tool Components . 25
3.3.2 Available Analyses . 30

3.4 Additional Details . 42
3.4.1 Numeric Value Tracking in TRMS 42

4 Evaluation . 44
4.1 Evaluation Strategy/Goals 44
4.2 Evaluated Applications . 45

4.2.1 RUBiS . 45
4.2.2 jGossip . 46

4.3 Completeness of Tracker . 46
4.4 Application Results . 47

4.4.1 Example Trace . 47
4.4.2 Precomputation . 49
4.4.3 Caching . 60
4.4.4 Postcomputation . 69
4.4.5 Persistent State . 76
4.4.6 User State . 78
4.4.7 Wasteful Communication 81

5 Conclusions . 84
5.1 Discussion of Results . 84
5.2 Future Work . 87
5.3 Final Words . 88

Bibliography . 90

Appendices

A Terms Used . 94

v

Table of Contents

B Input Description Files . 95
B.1 Input Source Description File Format 95
B.2 RUBiS Input Source Description File 96
B.3 jGossip Input Source Description File 97

vi

List of Tables

3.1 Taint Graph Visualization Edge Types. 28

vii

List of Figures

1.1 Example Web Store Architecture. 4
1.2 Sample Data�ow for Web Store. 5
1.3 Data�ow Indicative of Possible Caching Opportunity. 6
1.4 Data�ow Indicative of Sources to Be Careful of when Imple-

menting a Cache. 7
1.5 Simple Data�ow Indicating Persistent State which is Shared

with Only One User. 8
1.6 Example Partitioning of Application. 9

3.1 Architecture of Entire TaTAMi System. 18
3.2 Architecture of Taint Tracking Tool. 19
3.3 Examples of Backwards Taint Propagation. 21
3.4 Example of Graph Visualization. 26
3.5 Continued Example of Graph Visualization. 26
3.6 Format of Input Nodes for Database Data. 27
3.7 Format of Input Nodes for User Request Data. 27
3.8 Example of an Implied Taint Flow Edge. 29

4.1 RUBiS Browse Categories Trace. 48
4.2 RUBiS Browse Categories with Chat Tainted Output. 50
4.3 RUBiS Browse Categories With Chat Trace. 51
4.4 RUBiS Browse Categories Precomputation Results. 53
4.5 RUBiS Browse Categories With Chat Precomputation Results. 54
4.6 RUBiS Browse Categories Tainted Output. 55
4.7 RUBiS Browse Categories Precomputation Details. 56
4.8 RUBiS Browse Categories with Chat Precomputation Details. 57
4.9 jGossip Main Page Precomputation Analysis Results. 58
4.10 RUBiS Browse Categories by Region Trace. 61
4.11 RUBiS Browse Categories by Region Caching Results. 63
4.12 RUBiS Browse Region Categories Caching Details. 64
4.13 RUBiS Browse Region Categories Tainted Output. 65
4.14 jGossip View Forums Caching Results. 67

viii

List of Figures

4.15 RUBiS Sell Item Trace. 70
4.16 RUBiS Sell Item Postcomputation Analysis Results. 71
4.17 jGossip Delete Forum Postcomputation Analysis Results. . . . 74
4.18 RUBiS Browse Items State Analysis Results. 77
4.19 jGossip Login User State Analysis Results. 80
4.20 jGossip Wasteful Communication Analysis Results. 82

ix

List of Programs

2.1 Simple Taint Tracking Example. 12

3.1 Simple Taint Tracking AOP Example. 20
3.2 High Level Algorithm for Caching Analysis, Part 1. 32
3.3 High Level Algorithm for Caching Analysis, Part 2. 33
3.4 High Level Algorithm for Precomputation Analysis. 34
3.5 High Level Algorithm for Postcomputation Analysis, Part 1. . 36
3.6 High Level Algorithm for Postcomputation Analysis, Part 2. . 37
3.7 High Level Algorithm for Application State Analysis, Part 1. 38
3.8 High Level Algorithm for Application State Analysis, Part 2. 39
3.9 High Level Algorithm for User State Analysis, Part 1. 40
3.10 High Level Algorithm for User State Analysis, Part 2. 41
3.11 High Level Algorithm for Wasteful Communication Analysis. 43

x

Acknowledgements

I'd like to thank Eric Wohlstadter of the Software Practices Lab and
Rodger Lea of the MAGIC Lab, my supervisory team. Together they kept
my work on track and always moving towards completion. They were ex-
ceedingly patient and understanding in this e�ort, as this ended up taking
quite a bit longer than I'd planned, and there were many rough edges that
they helped me round out. I thank them in particular for constantly ques-
tioning my assumptions, ideas, and things I tried to be vague about.

Nima Kaviani, also of the SPL, inspired me with his work on application
partitioning and dedication to his own thesis. I thank him for his words of
encouragement and e�orts to understand what I was doing.

Finally, thanks to Ed Knorr, my second reader in a �eld somewhat re-
moved from this work. His acceptance of the task was greatly appreciated.

xi

Dedication

I dedicate this thesis to my wife, Esther, if she'll have it. She's waited too
long for me to �nish this, and gracefully provided her proofreading expertise
on top of all the support, food, and distractions.

xii

Chapter 1

Introduction

Maintaining any su�ciently large application is a di�cult task for pro-
grammers, especially for those who did not originally write it. In this thesis
we focus on web applications, and are concerned with the times in a system's
life which require it to change. This is a common event, as has been shown in
the history of many popular web applications such as LinkedIn and MySpace
[19].

The problem is straightforward; a team of developers will implement a
system to meet the needs of their current users. Let us take the RUBiS online
auctioning site (much like a simple version of eBay) as an example since we
will experiment with this system later in the paper. As RUBiS becomes more
popular and users want more features (shopping carts, faster loading times),
the demand on the application increases. Eventually the original design may
be insu�cient to serve the needs of its users, possibly necessitating a form
of migration. New resources are made available for RUBiS to use, such as
more servers, but how best to use them? By this time, new developers are
on the project, but those who originally designed the system are mostly un-
available to provide support. For these non-experts, making good decisions
about how to keep RUBiS up to date is a frustrating and time-consuming
process, wrought with many problems:

• Time is often short, so systems are needed to quickly provide correct
insight into how the application works, highlighting the key processes
and �ows of data behind the functionality the application provides.

• Changing application code without being aware of all of its side e�ects
can break it in unexpected ways. Knowledge of how the operation of
one component a�ects others down the line is needed.

• Real applications are often written poorly, and may not conform to
expected patterns, so analysis tactics need to be general and robust.

1

1.1. Origins of Research

It is here that automation is useful. We want to help these developers
by building tools which assist them in understanding their systems more
quickly. We even want to automatically make suggestions about how to ac-
tually perform optimizations. Tools of this nature [2] [19] [22] have naturally
already been researched and developed, and ours represents further explo-
ration into this area. The model of such systems is as follows:

• Automatically collect data about how the application works. This can
be done statically by looking at the code, or dynamically by monitoring
the runtime operation of the program.

• Use this data to build an intermediate representation of the application
that can be analyzed. This is often a graph model where the application
is thought of in terms of components (nodes) which are connected if
the data shows a meaningful interaction between them (one component
calls another, they exchange data, etc.).

• Run algorithms over the representation (rather than the application
itself), to discover properties of it or to �nd ways to optimize it.

• Map these properties and optimizations back to the original applica-
tion, helping developers to better understand and improve it.

We believe that our particular approach to the above model, which uses
dynamic information �ow tracking (DIFT) [26] to build the intermediate
representation, addresses the aforementioned problems well; saving users
time, being well-adjusted to tracking side-e�ects, and potentially being able
to support a wide variety of analyses on unconstrained applications.

1.1 Origins of Research

The TaTAMi project is a system which uses DIFT to support a variety
of analyses for Java web applications. DIFT is a technique where data is
tainted (or tagged) so that its progress can be tracked throughout a system.
This allows one to see what parts of the system interacts with certain data
and how new data is derived from existing data. The method has been used
almost exclusively in the security domain. By tagging untrusted data such
as user input, DIFT systems can raise alerts if that data ever propagates
to a location it should not (like a con�g �le). We realized that for many

2

1.2. Motivating Example

of the analyses that we wanted to perform, knowledge of the �ow of an ap-
plication's data throughout its components was key. We anticipated that a
heavy-weight variant of taint tracking called data�ow tomography [22] could
extract data which would support many analysis cases.

The analyses in question were inspired by works focusing on data�ow
optimization. These include application partitioning, which seeks to split
programs into functional pieces and optimally distribute them, and works
such as the Fluxo system [19]. Fluxo provides a series of automatic analyses
which could be performed over data�ow graph representations of programs.
These include discovering caches, �nding opportunities to delay computa-
tion to service user requests earlier, and di�erentiating between stateful and
stateless components. Many of the analyses developed for TaTAMi were
derived from those presented in the Fluxo paper, though TaTAMi operates
under considerably fewer constraints, as will be discussed later.

1.2 Motivating Example

To motivate the TaTAMi system and illustrate the natural �t of data�ow
tracking to the problem at hand, consider the following:

3

1.2. Motivating Example

1.2.1 The System

Figure 1.1: Example Web Store Architecture.

Presented is a simple online shopping site, the basic architecture of which
is given in Figure 1.1. The system has back-end data stores for shop inventory
and user account info, as well as the logic to access them. For interacting with
the site, there are two front-end components: the Browsing component which
accepts requests from the user to fetch shop items for display, formatted by
the page render system; and the Purchasing component, which allows users
to maintain a `shopping cart' list of items they wish to buy, and ultimately
bill an order to their account.

1.2.2 The Problems

Problem scenarios are as follows:

• More users begin using the site. The servers where the Browsing com-
ponent resides are not fast enough and computations to render pages
begin to get backed up.

• The development team has been asked to move the Purchasing compo-
nent into the cloud, but the environment there only allows for stateless
programs. 1

1Such is the case with the Google App Engine Platform. Stateful applications are re-

stricted to support transparent load balancing and virtualization, and state which remains

after requests have been served is easily lost when an application is `cycled out'.

4

1.2. Motivating Example

• The network link between the back and front-end components is car-
rying large amounts of data, and its maximum bandwidth may soon
be reached.

Figure 1.2: Sample Data�ow for Web Store.

To start, developers should have an overall picture of how the system
works. As stated, we believe that capturing the data�ow of this system will
naturally support developers in this e�ort. Figure 1.2 presents a possible
data�ow graph for the system that our tool would obtain. This is at a very
high level, the arrows indicating how data �ows from component to compo-
nent. The points to note are:

• the �ow of shop item data from the Inventory database (point 1)
through the Browsing system (point 2) to the user (point 3)

• the �ow of data from the back-end stores (point 4) and user input
(point 5) into the `Order State' shopping cart data (point 6)

This view focuses immediately on how the application transforms data
throughout its components�the key function of most web applications. It
allows a developer to quickly answer the important question: `where did
this output come from?'. Knowing such is valuable as it quickly targets
and organizes the key mechanisms by which many web applications operate.
The majority of web applications are engines which take data as input, run

5

1.2. Motivating Example

it through various computations, and ultimately write the results to a web
page for a user to consume. Being able to take a particular piece of output
and trace it back through the steps which produced it is helpful. It gives a
focused summary of how the application works for that piece of data. A de-
veloper can manually consume this information to gain understanding, but
we can go beyond this to support automated analyses.

The analyses which follow were mainly arrived at by looking at the liter-
ature and identifying the various kinds of optimizations sought after in these
works. We were also in�uenced by application partitioning research, which is
valuable in the context of moving applications to di�erent deployments. The
state identi�cation and cost analysis problems which follow are of particular
interest in this space.

1.2.2.1 Precomputation and Caching

Figure 1.3: Data�ow Indicative of Possible Caching Opportunity.

The �rst optimizations to consider, given that the Browsing component
is backed up with computation, are precomputation and caching. Consider
Figure 1.3 and Figure 1.4, which outline two possible data�ow cases. The
�rst shows how the data�ow could indicate that the data used to generate
responses to the user's browse requests are entirely from predictable sources.
By this we mean that the input data is not too random to predict�its pos-
sible values are from a small enough set to be amenable to such things as
caching. Assuming that browsing involves simply displaying all of the item

6

1.2. Motivating Example

Figure 1.4: Data�ow Indicative of Sources to Be Careful of when Implement-
ing a Cache.

names, and the set of available items rarely changes, then the output brows-
ing page would remain the same for long periods. The application could
potentially be optimized by pregenerating the browsing page and serving it
directly to the user, rather than going to the database and running the ren-
dering code.

Figure 1.4 shows an alternate data�ow where taint tracking indicates
that user input �ows into the computation for the browsing page. This
may happen if the user supplies some �lters to search for items. The input
may be non-deterministic, such as for a text search, and thus the output
browsing page may be non-deterministic and a poor candidate for any kind
of precomputation. On the other hand, if the user input occurs over some
reasonably predictable range, such as if the items were being �ltered over
a set range of categories, the various output browsing pages may be good
candidates for caching. An automated analysis could point this out, and a
developer is aided in applying this performance optimization, knowing which
data sources to use for cache keys (user input parameters) and which to check
for cache invalidation (the Inventory database).

7

1.2. Motivating Example

1.2.2.2 State Identi�cation

The next concern is moving the Purchasing component into the cloud, to
make use of the abundant computational resources there. In this example,
the cloud provider doesn't support applications which keep in-memory state.
Such would be the case if hosted applications were shut down periodically
to conserve memory. Looking to the �ow of data around the Order State
persistent store, another use of data�ow tracking emerges. Data�ow can
accurately pinpoint various places in a program where persistent data is
stored. By following data into the Order State area and observing that it
persists across multiple requests to the application, an automated analysis
can determine that this data is used to communicate data beyond the scope
of a single request. Identifying such data is useful as it marks the distinction
between stateful and stateless components in a system.

1.2.2.3 User-State Identi�cation

Figure 1.5: Simple Data�ow Indicating Persistent State which is Shared with
Only One User.

Taking the state analysis further, Figure 1.5 shows a case of data�ow
tracking which reveals how certain data items only �ow to and from certain
users. This might be personal data which is not used to communicate be-
tween multiple users, such as one's own shopping cart. Once such state is
identi�ed by an analysis, one can make decisions like moving the state from
the server into the client to make the application more robust. Such a sug-

8

1.2. Motivating Example

gestion would be valuable to the novice developer, indicating a way to get
the state out of the Purchasing server-side components so that they could
be safely moved to the cloud.

1.2.2.4 Cost Analysis

Figure 1.6: Example Partitioning of Application.

Finally, the bandwidth between the back-end and front-end components
is a problem where analyzing data�ow is clearly useful. Partitioning the
application is a kind of rearchitecting that might be performed on our web
store. Figure 1.6 demonstrates a such a scheme, where the two front-end
components are moved into independent environments, communicating with
the back-end over the network when database data is needed. In this sce-
nario, knowing if the network link could be a problem is vital.

Application partitioning algorithms seek to identify ways to split appli-
cation components to make e�cient use of resources while carefully manag-
ing communication overhead between partitions. This involves pro�ling the
application to determine component execution and intercomponent commu-
nication costs. Obtaining a more complete view of the data�ow provides
deeper knowledge into the communication cost. Not only can one know

9

1.3. Statement of Thesis

when components share data, but one can additionally �nd out where that
data is eventually used. In some cases, the data may never be used at all,
and thus the data�ow tracking can obtain more accurate bounds on the com-
munication cost. Thus, the heavy load on the link may be due to data which
is not actually used, and which does not need to be transmitted at all.

1.3 Statement of Thesis

We hypothesized that due to the focus on data provided by DIFT, it
would naturally help developers in understanding how web applications func-
tion, and more importantly it would support a series of automatic analyses
to optimize web applications and support other application optimization
tools. Speci�cally, DIFT will support analyses to optimize the �ow of data
and computation over it, speeding up applications by �nding ways to avoid
or delay computation. DIFT will easily identify an application's persistent
state and how that state is used, which is valuable to understand in cloud de-
ployments or places where replication of computation occurs. Finally, DIFT
will provide data useful to more speci�c analysis tools in the cloud migration
space, such as application partitioners.

1.4 Contributions

The main contributions of this work are as follows:

• The identi�cation and implementation of several analyses designed to
operate over DIFT data

• The evaluation of these analyses over real web application DIFT traces,
pointing out strengths and weaknesses of the techniques used

• Support for the hypothesis that DIFT is a useful technique for under-
standing and automating optimization of web applications

1.5 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 discusses
the body of related work to cover attempts to address related problems and
also to show how some of the techniques we use have not been su�ciently
explored in this space. It also covers some relevant background material for
technologies used in this project. Chapter 3 covers the implementation of

10

1.5. Thesis Organization

the DIFT tool and the analysis tool, breaking down their key components
and explaining important design decisions. It also presents an evaluation of
the tools, demonstrating the output of the DIFT tool and the results of the
automated analyses. Chapter 4 �nishes with a discussion of the results from
the evaluation, possible future work, and overall conclusions.

11

Chapter 2

Related Work

2.1 Dynamic Information Flow Tracking

Program 2.1 Simple Taint Tracking Example.

1: String userName = getUserNameInput();

2: // Any data from user input is tainted, so userName is marked

// as tainted.

3: String formattedData = "USERNAME:" + userName;

4: // The value of formattedData is based on userName,

// so formattedData is marked as tainted.

The main stream of research contributing to this project is that of dy-
namic information �ow tracking (DIFT). Introduced by Suh et al. [26],
DIFT refers to tagging (tainting) data used by an application at runtime so
that its �ow through the application can be tracked. One marks interesting
sources�places in an application where input is received, such as reads from
a database or input from a user�so that input data can be tainted. From
the sources, DIFT systems employ some set of propagation rules which de-
�ne how tainted data is spread through the system. As a simple case, when
a variable is produced by using a tainted input value the taint tag should
be copied from the input value to the new variable. This is shown in Pro-
gram 2.1. Finally, DIFT systems will establish a set of monitoring sink points
in the application to check and report if any tainted data �ows through there.
These could range from the arguments of a certain function to speci�c mem-
ory locations, depending on the needs of the tool. Many DIFT systems do
taint tracking at a fairly low level, down to the level of individual bytes of an
application's memory, in order to support such security analyses as memory
corruption detection.
Taint tracking has been used almost exclusively in the domain of security,
and such systems include [23] [26], where it is used to detect if bytes from
untrusted input sources like user input ever end up tainting such sinks as

12

2.1. Dynamic Information Flow Tracking

jump target addresses or executable instructions; [8], where it is used to trace
sensitive data like passwords throughout a system to see where and for how
long sensitive data is potentially accessible; [11], where the focus shifts to
higher-level SQL injection and cross-site scripting attacks, checking if user
input taints such sinks as database queries; and [1], which identi�es malware
and network protocol analysis as uses of DIFT.

The work in [1] is also interesting in that it focuses on a taint propa-
gation policy known as control �ow dependence, where values are tainted
if they are assigned values in the scope of a control �ow statement (such
as an if branch) predicated on tainted data. Such propagation is di�cult
as it often leads to an explosion of taint in the system, and must be very
carefully managed. Our own system does not use it as an intentional design
decision. [15] additionally identi�es data lineage tracing as a use of DIFT,
which focuses on determining the inputs responsible for outputs in various
scienti�c computations, which is similar to some of the analyses we do. More
security-focused systems, which the majority of taint tracking tools are, are
presented in [12], [27], and [18]. [7] and [17] describe Java taint tracking sys-
tems which modify the Java runtime to track taint in Strings. By contrast,
our system uses AspectJ to obviate the need for such modi�cations, and we
additionally have limited support for tracking taint in numerical values, as
described in Section 3.4.1. These systems are, like other e�orts, focused on
preventing untrusted data from propagating to secure locations.

Something di�erent is presented in [22], and this was one of the key
pieces in developing our own system. Unlike the previous systems, which
are security focused and generally only place sinks at critical points where
tainted data is not supposed to reach, data�ow tomography as introduced
in this work does a heavier form of tracking. In tomography, tainted data
is reported as it �ows through every function call (or even instruction) with
the ultimate goal of providing a complete end-to-end picture of how data
�ows through a system. The goal of their system, like ours, was to help
users understand a target application. Their work shares our attention to
visualization, noting the di�culty of displaying what are often very large
�ow graphs, as well as our qualitative evaluation strategy. They make the
point that while most uses of DIFT are focused on policy enforcement, as
with security, their own work is one which focuses on using the analysis for
discovery. They do not, however, give any concrete uses for their analysis
beyond general understanding. We take a tomographic analysis and use its
output to drive a set of real, varied analyses, demonstrating the value of

13

2.2. Data Update Propagation

obtaining this data. We go further than general understanding, trying to
develop tools which suggest speci�c ways to improve applications.

2.2 Data Update Propagation

Data Update Propagation (DUP) is a line of research presented by Arun
Iyengar et al. [3] [4] [5] [6] and [13] DUP is a scheme designed to help consis-
tently cache dynamic data. It does this by maintaining a dependence graph
between underlying data sources like database tables and cached objects,
through any intermediate objects along the way. When underlying data is
modi�ed, the dependence graph is traversed to discover which cached ob-
jects need to be invalidated. In the �rst paper, the chief limitation of this
strategy is the requirement that the application (and thus the developer)
maintain the dependence graph itself through the use of a provided API.
DUP is similar to the caching analysis performed in this thesis, where data
�ow graphs are searched to discover possible caches and all relevant inputs
to them. In our case, however, the graphs are created automatically, without
the requirement on the developer to manually specify them.

Degenaro et al. automatically generate dependence graphs [13], but only
because the system caches at the level of immediate query results and the
dependence graphs come from query analysis. These graphs describe only
the DBMS layer, and say nothing about what happens to the data once
it is �owing through application code where other data items may be de-
pendent on it. Our system builds dependence graphs automatically, in the
application layer. Challenger et al. introduce such useful concepts as page
pregeneration and web page fragmenting [6], where dynamic fragments of a
page are identi�ed and able to be tied to underlying data. Pregeneration
is much like another of the analyses we perform, known as precomputation,
which seeks to �nd computation results which can simply be pregenerated
due to being based on infrequently changing data. However, the work in [6]
still uses the same manual DUP strategy developed earlier.

2.3 Automated Analysis and Decision Support

We present here an assortment of works which in some way seek to au-
tomatically aide developers in similar manners to our own work, and which
use similar ideas. Fluxo [19] is a system from which we drew signi�cant
inspiration. In Fluxo, developers write applications in a restricted, higher

14

2.3. Automated Analysis and Decision Support

level language which can then be compiled into a data�ow graph representa-
tion of the program. This representation is similar to what our own system
obtains by monitoring data�ow in an application, though ours operates on
unmodi�ed, existing programs and thus the graphs tend to be less restricted
and more di�cult to work with. The paper supplies a series of transforma-
tions which can be applied to these graph representations to optimize the
programs, with the goal of reducing end-to-end latency and addressing what
they identify as a need to save developers from having to manually deter-
mine the best use of their infrastructure. These analyses include discovering
caches, identifying precomputable data, �nding computations which can be
delayed until later, and separating stateful and stateless components. In
Fluxo these optimizations can be applied automatically when found, due to
the use of the restricted programming model, whereas in our work this is
not yet the case. However, our analyses are run on real software systems de-
veloped in non-restricted programming environments. This presents many
challenges, but is more realistic if real developers are to ever bene�t from
the work, and we do direct them to make similar optimizations.

The Fluxo paper is preceded by [25], which gives greater attention to the
problem of discovering caches in a data�ow graph. Most importantly, this
paper identi�es some key points to consider when searching for caches which
were encountered in our own work. These include attempting to choose
caches which will actually provide worthwhile execution savings and being
sure that adding a cache does not violate the semantics of the application,
such as by skipping executions which have important side e�ects besides
producing the cached data.

Tralfamadore [21] is a system which shares with our own the design where
data is collected from an application dynamically at runtime to be analyzed
repeatedly o�ine. Their system provides more extensive tracing at a lower
level such that the execution of an entire OS can be replayed determinis-
tically from the collected data. Using such data and their various analysis
operators, one could even potentially build up a DIFT analysis similar to
what is presented in the data�ow tomography paper or our own system.
Like in Fluxo, the authors make the argument that developers are often
given just the source code in order to understand a system, and thus are
in great need of automated support tools to aide them. Like our system,
they provide a varied set of analyses to be performed over the data their
tool collects, though the examples presented operate at a lower level than
our own (re�ecting the binary nature of the tool), determining such things

15

2.4. Application Partitioning

as argument value distributions to instructions. The pro�ling and analyses
we investigate are less general, but as such are more easily able to support
the speci�c, higher semantic level cases we target.

Net�ow [2] mines network activity logs to obtain dependency graphs for
components in a network, such that one can answer such questions as which
servers will be a�ected when some upstream component fails. This is at a
much higher granularity than our own work, at the level of network devices
rather than method calls in a program. However, they seek similarly to help
developers understand complex systems using data�ow in order to facilitate
low-risk changes. Presumably our analyses could be applied in a broader,
distributed setting, given a more powerful taint tracking tool.

2.4 Application Partitioning

Application partitioning research seeks ways to take applications written
to run in a single location and distribute their execution across physical de-
vices and locations. The bene�ts of this include o�oading computationally
expensive parts of an application to more capable hardware or locating spe-
ci�c services closer to the users which need them. Much research has gone
into automatically analyzing applications to determine how best to partition
them. In most cases, these analyses pro�le the applications to determine the
execution costs of various components and the communication bandwidth
between them. They then apply various algorithms to �nd a partitioning
which places components to make e�cient use of available resources while
not incurring too great a communication overhead. This last point is im-
portant, as parts of an application's execution may be moved to a di�erent
physical location, and moving data to and from that location could use ex-
pensive network links.

Existing works generally use a very basic measure of communication be-
tween components, simply totaling the size of data sent in a communication
event (such as a method call) [9] [10] [14] [16] [24]. While not a partitioning
tool, the data�ows that our system extracts can be used to locate unneces-
sary �ows, where data is communicated but subsequently never used. By
�nding such �ows, we envision that our tool could obtain more accurate
bounds on optimal communication costs in a partitioning scenario, allowing
better distributions of components to be found by automated tools.

16

2.5. Aspect-Oriented Programming

2.5 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [20] is a technology that we rely
heavily on to perform our taint tracking. AOP allows one to perform high-
level instrumentation of existing programs, injecting code into them to add
functionality. In order to augment a program with AOP, one writes point-
cuts and advice. Pointcuts are descriptions of locations in a program where
code should be added, such as `before every method call of classes within
a speci�c package' or `whenever the value of a �eld on an object changes'.
Advice is the code which is injected into the program, and is associated with
pointcuts to specify what code is added where. This naturally enables the
rapid development of a high-level (at the level of methods and variables as
opposed to instructions and bytes of memory) data�ow tomography tool, as
one can create pointcuts targeting every location in a program where data
is communicated and write advice which inspects the data communicated at
those locations for tainted data.

17

Chapter 3

Implementation

3.1 Overview

Analysis Tool

Web ServerTracker Code

Log File

Output Graphs

AJC

Input Description

File

1

2 3

4

Figure 3.1: Architecture of Entire TaTAMi System.

In order to test the hypothesis developed in the thesis, two major tools
had to be developed. The �rst is the Taint Tracking Tool (TTT), which
performs a tomography-level tracking of targeted data for Java web applica-
tions. This tool collects data which is consumed by an Analysis Tool, which
produces output useful for developers.

Consider Figure 3.1, which provides an overview of the operation of our
entire system.

• At point 1, the TTT code, written in AspectJ, is mixed into the Web
Application code and its libraries using the AspectJ compiler. This
must be done for every web application analyzed.

• At point 2 the application is used, and the tracker code running inside
it causes taint tracking event logs to be dumped to a log �le.

• At point 3 the complete log �le and an Input Description File (see
Section 3.3.1.3) are fed to the Analysis Tool, which can immediately
display the taint trace data in graph form.

18

3.2. Taint Tracking Tool

• At point 4 automated analyses (Precomputation, Postcomputation,
etc.) can be invoked on the taint trace graph, producing Output result
graphs for the user to view.

3.2 Taint Tracking Tool

Our tool was implemented in 5.2K lines of Java entirely using AspectJ
and ajc as the compiler and bytecode weaver. No additional libraries were
used.

3.2.1 Tool Components

TomographyAJ

Collections Tracking

Taint Management

AJ

AJ

Basic ProfilingAJ

Taint I/OAJ

User Control

Logging

Log File

1

2

3

4

5

6

Figure 3.2: Architecture of Taint Tracking Tool.

The main components of the tool are, as shown in Figure 3.2, the follow-
ing:

• Point 1, Taint I/O System. Detects when taint enters and exits the sys-
tem. Responsible for telling the TRMS what data is initially tainted.

• Point 2, Taint Reference Management System (TRMS). Collection of
systems used to performantly determine whether various objects are
tainted.

• Point 3, Tomography System. AspectJ code which intercepts various
operations an application can perform which result in the movement
of tainted data. This system relies on the TRMS to check if data is
tainted.

19

3.2. Taint Tracking Tool

• Point 4, Basic Pro�ling. AspectJ code to provide supplementary pro-
�ling for certain analyses.

• Point 5, Logging. This system receives updates from the other compo-
nents and logs the information to a �le.

• Point 6, User Control. Provides some control to enable and disable
various systems to tweak runtime performance.

3.2.1.1 Taint I/O System

Program 3.1 Simple Taint Tracking AOP Example.

1: aspect DatabaseTaint {

2: pointcut QueryParameterSet():

3: call(QueryClass.setParam(..));

4: pointcut ResponseWrite():

5: call(ResponseClass.write(..));

6:

7: before(): QueryParameterSet() || ResponseWrite() {

8: args = Pointcut.getArgs();

9: if (TRMS.checkTainted(args))

10: TaintLogger.log("Taint Output: " + args);

11: }

12: }

13:}

This makes use of AspectJ, monitoring certain method invocations to
intercept target data as it enters an application and is written out to various
locations like a database or to an output the user sees. The system cap-
tures information about the source of data which will be useful for analysis,
marks the data as tainted so that it is tracked by the rest of the system,
and uses the logging system to record the input/output events. To catch a
database read, for example, the system monitors certain calls in the MySQL
connector library to catch the returning of ResultSets from PreparedState-
ment objects. It then reads the metadata from the PreparedStatement to
get table/column descriptions as the source of the data. It then calls the
Taint Reference Management System (TRMS) to tell it that the data read
from the ResultSet should be treated as tainted. As an example of capturing
taint output in AspectJ, consider the pseudocode in Program 3.1. Lines 2-5

20

3.2. Taint Tracking Tool

declare two pointcuts, which together target any calls to setParam methods
on QueryClass objects and to write methods on WebResponseClass objects.
This is to capture output to the database and to the user respectively. Line
7 starts a declaration of advice, which will cause the contained code to run
`before' the calls targeted by the pointcuts. Line 8 uses AspectJ to extract
the arguments to the targeted method call, and line 9 asks the TRMS if any
of the arguments are tainted. If so, they are logged for analysis.

One important point to note when marking input as tainted is how to
handle cases where arguments to methods which acquire input are tainted
themselves. For example, this is the case when a database query is con-
structed with some tainted parameters and is then subsequently used to
access data. This case is handled by the Taint I/O system, which marks
such accessed data with both its own taint identi�ers and the identi�ers of
the tainted arguments.

3.2.1.2 Taint Reference Management System (TRMS)

The TRMS is responsible for keeping track of which objects are tainted.
Other parts of the tool will call this system to ask if a given object carries
taint, and if so, where the taint came from. At the basic level, the system
only keeps track of tainted Strings, character arrays, and numerical values
manually targetted by the user of the tool. It doesn't track taint through
primitives such as booleans and chars due to limitations of AspectJ, and
future techniques could avoid this limitation. The TRMS marks Strings as
tainted by keeping weak references to them in a map, mapping them to infor-
mation about the taint source. Weak references are used so that the objects
can still be garbage collected.

Figure 3.3: Examples of Backwards Taint Propagation.

21

3.2. Taint Tracking Tool

The main function of the TRMS is the management of a backward ref-
erence map. In order to properly track the �ow of tainted data, the system
needs to know when a Java object is reachability tainted (see Appendix A,
`Taint').

Consider the situation depicted in Figure 3.3.

• Pane 1 shows an untainted object B.

• In pane 2, B is assigned to a �eld of the object A.

• In pane 3, B becomes tainted, and so A is reachability tainted as it
refers to the tainted object B.

• In pane 4, B is set as a �eld of object C, which is already itself a �eld
of object D. C is reachability tainted as it refers to B, like A. D is
also reachability tainted, as by following the reference graph a tainted
object can be reached.

A naive strategy for determining whether an object is reachability tainted
in Java is to simply deep scan the object using re�ection, however this is a
costly operation and in practice in�icts too great a performance penalty on
target applications. A better strategy is to have a system where when taint
is assigned to an object (by setting a �eld or adding to a collection, as caught
by AspectJ), one can quickly mark the object as tainted as well as any ob-
jects from which the originally tainted object is reachable. Thus, the TRMS
maintains a map of child-parent relationships which is updated whenever a
�eld is set. When taint is removed from an object, one can similarly remove
it from any parent objects by following the child-parent mappings.

Consider again Figure 3.3.

• In pane 2, B is assigned to a �eld of the object A, and A is marked as
a parent of B in the backward reference map.

• In pane 3, B becomes tainted, and using the map the TRMS locates
its parent A and marks it as tainted as well.

• In pane 4, C marked as a parent of B and is immediately tainted due
to a tainted object being assigned to its �eld. D would have also been
marked as a parent of C, and TRMS uses the mapped relationship
to taint D as well. For the reference graph depicted in pane 4, if B
becomes untainted, all the other objects will as well, using again the
backwards reference map.

22

3.2. Taint Tracking Tool

There are, however, several problems with this strategy, due to limita-
tions of AspectJ which had to be overcome. Unfortunately, AspectJ does
not support pointcuts for array element access, nor is one able to instrument
any classes in the Java runtime. This means that wherever an array or an
object from the Java runtime is used, AspectJ is blind to reference changes
made inside of it. The solution is to track the reachability of arrays and Java
runtime objects in the same way as tainted objects themselves. Whenever
we check if an object contains taint, we also check if it contains such prob-
lematic objects. If so, the contents of these objects are scanned, recursively
checking their contents for taint/problematic objects in the same way as the
original object.

In order to boost performance further, there are a series of pointcuts and
advice for catching modi�cation operations on most Java Collections objects.
This serves the same function as �eld set pointcuts for keeping the backward
reference tree up to date, but brings it to a set of Java runtime objects which
ordinarily would be deep scanned.

This kind of bookkeeping is less important in traditional taint tracking,
where checking if data is tainted occurs at fewer points, but becomes more
useful when needing to check for taint very frequently as in tomography.

3.2.1.3 Tomography System

This relies on AspectJ to intercept various events where tainted data
�ows from one location to another. This ful�lls the main function of the
TTT, building a complete picture of where interesting data goes. The basic
events that are tracked are method calls, method returns, object instantia-
tion, and �eld set/get; and at each of these points the Tomography System
calls the TRMS to check if the arguments/return values are tainted. If they
are, the logging system is called to record these events. In the case of a
method return, the system doesn't just check the return value for taint; in
many cases values are `returned' by modifying the arguments to the call, so
the system keeps a record of what taint each argument carried before the
method was invoked and checks to see if they carry any new taint when the
method is returning.

In addition to tracking these basic events, the Tomography System ad-
vises every method on String, StringBu�er, and StringBuilder objects to
properly track taint through various string composition/modi�cation events.

23

3.2. Taint Tracking Tool

Such events include creating new strings out of multiple tainted strings, or
appending tainted data to untainted strings.

Finally, the Tomography System employs some heuristics to attempt to
track tainted Strings through methods which may `lose' the taint. By `lose',
we mean that at a semantic level the method does pass tainted data from
one location to another, but due to how it processes that data the kinds of
checks allowed with AspectJ will not be able to properly track it. Real ex-
amples of this are cases where a String is processed and used to build a new
String character-by-character, as was the case in some encoding methods
encountered in tested applications. Properly tracking this kind of taint �ow
would require instrumentation at a lower level not possible in AspectJ, likely
requiring one to taint individual bytes (as has been done in some taint track-
ing research [8]). As this was not possible in the timeframe of this thesis, the
issue was addressed using fuzzy String matching. A Levenshtein distance
measure is used to check if non-tainted String outputs from a method exe-
cution match (within some threshold) any tainted inputs, and if so the taint
is propagated from the matching inputs to the outputs. These events are
separately logged, so that one can verify the correctness of the heuristic in
each case, and in practice this works well.

3.2.1.4 Basic Pro�ling

Code is included in the tool to gather supplementary data outside of
taint tracking for the analyses. Such data could indeed be captured by
existing tools, but the implementation is provided here in order to keep the
data collection process simple, and because there would likely be problems
when instrumenting a web application with multiple pro�lers simultaneously.
Currently there is logging to build control �ow graphs, and some simple
pro�ling code to track method execution times.

3.2.1.5 Logging System

This provides a set of methods to be used by the other parts of the tool
to log the events which together form the taint traces, as well as provide
additional data useful for analysis. These logs are currently formatted in
XML and written to a log �le.

24

3.3. Analysis Tool

3.2.1.6 User Control System

This was added in order to provide some control over the dynamic oper-
ation of the tool. Rather than simply logging everything for every operation
performed in a target web application, the control system provides socket
communication with the tool in order to enable/disable various tracking
components as the application runs. This allows one to disable, for example,
tracking during web server initialization which may contain data one is not
interested in.

3.2.2 Justi�cation of Implementation

As has been discussed in this thesis, many taint tracking implementations
exist. However, an implementation that would provide Tomography-level
tracking could not be found, which was necessary to address the research
problems. Aspect-Oriented Programming (AOP) was chosen as it concep-
tually provided the high level functionality needed to perform the tracking,
saving the e�ort needed to write the system and allowing the tracker to be
implemented in the available timeframe. The alternative would likely have
been to learn the use of a Java bytecode manipulation framework, such as
ASM or BCEL, and build up the tracker from a much lower level. AspectJ
was speci�cally chosen as it was the most mature, well-documented, and
stable implementation of AOP available for Java programs.

3.3 Analysis Tool

This was tiplemented in 5.7K lines of Java using the JUNG framework
for visualizing and working with graph data.

3.3.1 Tool Components

The main components of the tool are as follows:

3.3.1.1 Visualization System

This relies primarily on the JUNG framework to provide a more user-
friendly means of working with the taint tracking data. To use the tool, a
log �le is speci�ed which is then used to generate an internal JUNG graph
representation. The presentation of taint traces in graph form is depicted in
Figure 3.4 and Figure 3.5. The points to note are as follows:

25

3.3. Analysis Tool

Figure 3.4: Example of Graph Visualization.

Figure 3.5: Continued Example of Graph Visualization.

• Point 1, Figure 3.4: A node, which is a location where tainted data
was detected. Most are method calls like this one, listing the class
name, method name (and argument types if necessary), and an object
identi�er if the call is on an object (as opposed to a class).

• Point 2, Figure 3.4: A special type of node, the input node. These
indicate and provide information about where tainted data enters an
application. Figure 3.6 and Figure 3.7 outline how to interpret these
nodes. For Figure 3.6, note that the �rst �eld, identi�ed as the 'target
column', is the most important. The rest of the �elds identify the var-
ious columns present in the data obtained from a database query, and
this �rst �eld speci�es which of these columns was actually accessed.

• Point 3, Figure 3.4: Directed edges describing each event where tainted
data �ows from one location to another, listing the type of event (Call,
Return, Field Get/Set, etc) and an identi�er. The identi�er can be
used to lookup more detailed information about the event. See Ta-

26

3.3. Analysis Tool

Figure 3.6: Format of Input Nodes for Database Data.

Figure 3.7: Format of Input Nodes for User Request Data.

ble 3.1 for a breakdown of the possible edge types.

• Point 1, Figure 3.5: A node describing a �eld of a class/object where
tainted data is stored. These list the class name and the �eld name,
along with an object identi�er if needed, much like the method call
nodes.

• Point 2, Figure 3.5: Note the text within the square brackets for the
label of this node. It is the same as the label for the node at point
1 in the same �gure. This text means that the object represented by
the node (in this case an AbstractSequentialList) was accessed from
the �eld indicated in the brackets, ServletPrinter:chattyList. This in-
formation helps to track the �ow of data in the graphs.

27

3.3. Analysis Tool

CAL Function call, directed towards the called function

RET Function return, directed towards the calling function

PAT Taint returned in modi�ed arguments, directed towards
the calling function. PAT = Post-return Argument Taint

FST Field set, directed towards the �eld

FGT Field get, directed away from the �eld

FZZ Fuzzy taint �ow, these will start and end on the same
node where fuzzy propagation was detected. See the
last paragraph of Section 3.2.1.3

IMP Implied taint �ow, directed from the input method to the
output method. See Section 3.3.1.2

RIN Input edges, directed away from input nodes

OUT Output edges, directed towards called functions
responsible for output to database or user

Table 3.1: Taint Graph Visualization Edge Types.

The entire graph can be viewed all at once, but the traces are often so
large that it is impossible to comprehend the output. To support a more
controlled viewing, it is possible to �lter the graph in various ways:

• Show only those edges for the �ow of a particular piece of tainted data.

• Show the �ow of tainted data for a single web request.

• Given an edge, show only the �ow of tainted data which follows that
edge.

• Manually �lter by allowing a user to traverse the graph node-by-node.

Having these tools for working with the graphs, while no substitute for
the automated analyses, is nevertheless very important when a user needs to
make use of the data. The results of analyses are themselves often presented
in the same graph form, which can still be di�cult to understand without
some �ltering.

3.3.1.2 Graph Preprocessing

Before the graphs are displayed or analyzed, the Analysis Tool performs
preprocessing steps on the data in order to better work with it. The �rst

28

3.3. Analysis Tool

Figure 3.8: Example of an Implied Taint Flow Edge.

is the addition of implied edges. There are cases for tracking the �ow of
tainted data where representation of it requires some care. Consider for
example the case in Figure 3.8 where a tainted String is used to construct a
new StringBuilder (line 2) which is then printed (line 3);

• Taint �ows from the calling method at point 1 to the StringBuilder
constructor at point 2.

• The StringBuilder's toString() method is then called, and taint �ows
from the toString() method at point 3 back to the calling method.

Depending on the ability of the taint tracker to see the internal data�ow in
certain objects (in this case a native Java object, StringBuilder, which As-
pectJ cannot instrument), there may be no logged taint �ow event to show
how the data gets from point 2 to point 3. Intuitively tainted data �ows
from one to the other. Solutions to this could be to group the StringBuilder
nodes somehow, or to have a node for each object rather than each object
method, but these either don't support analysis well or have lower granu-
larity. Instead, the graph is searched for such cases where taint �ows into
an object through some method call and that same taint (or taint derived
from it) �ows out of the object through a di�erent method. Implied edges
are added between the nodes in question to re�ect the �ow of tainted data,
as is shown at point 4 in the �gure.

The second preprocessing step �nds unused �ows of tainted data. These
are cases where tainted data is communicated from one location to another,
but is subsequently never used. This step examines reachability tainted

29

3.3. Analysis Tool

objects in graph edges to see if the directly tainted objects they carry are ever
accessed from them. This is done by scanning ahead in the graph, looking
for �ows carrying the directly tainted objects themselves. If not, the directly
tainted objects are marked as unused for the edge and reachability tainted
object. This preprocessing step is described in more detail in Section 3.3.2.6,
and is useful for some of the automated analyses described later.

3.3.1.3 Input Description File (IDF)

This is an XML �le created by the user which supplies information needed
by some of the analyses. Its format is given in Appendix B, along with the
data in the �les used for the evaluated applications. It is read by the analysis
tool and gives a measure of how deterministic various data sources (database
columns and user web request parameters) are, ranging from sources with
values which change rarely to non-deterministic input.

3.3.1.4 Automated Analyses

The main purpose of the Analysis Tool is to provide easy to use auto-
mated analyses over taint trace graphs. After loading a trace, a user need
only select an analysis which runs without guidance until complete. For most
analyses the results will be presented as a series of graphs, in some cases with
supplementary text explaining the results.

3.3.2 Available Analyses

These were chosen based on our review of the literature. The caching,
precomputation, and postcomputation analyses were identi�ed by the Fluxo
[19] system. These three serve to directly improve the operation of a web
application by speeding up interaction with the users, saving on computation
to do so. The state-based analyses and wasteful communication analyses
described below were chosen due to an in�uence from application partitioning
research and considerations of moving an application into the cloud [9] [10]
[16]. We wanted to provide data which could be of use in these scenarios,
potentially supporting future analysis tools.

3.3.2.1 Caching

The caching analysis seeks to �nd opportunities to save on computa-
tion/communication by suggesting locations where caches could be consid-
ered. By a cache we mean code and data storage mechanisms which take the

30

3.3. Analysis Tool

results of computations over some inputs, and store the results�mapping
the inputs to them. The next time the computations are invoked with the
same inputs, we can return the stored results rather than redoing the com-
putation. For a cache to work, we need to be aware of all inputs to the
computation. If any inputs which a�ect the results are missed, then when
those inputs vary the cache may return invalid results from the store. What
this analysis essentially does is look for regions of the graph which are only
carrying taint from mostly deterministic inputs. By mostly deterministic
we mean inputs with values over a small enough range that the cache will
be useful and not frequently missing. This analysis relies on the input de-
scription �le (IDF) described in Section 3.3.1.3 to determine whether or not
given tainted data is non-deterministic. The assumption is that if all of the
inputs to a computation, represented in the graph by a network of nodes, are
predictable enough, the computation is a good candidate for caching. The
identi�ed subgraph can then be presented to the user as an indication of a
possible cache as well as a guide for what parts of the application must be
considered when implementing it.

The high-level algorithm for performing this analysis is given in Pro-
gram 3.2.

3.3.2.2 Precomputation

This analysis is essentially the same as the one for caching. The dif-
ference is that in the case of precomputation, the inputs in question must
change very rarely. If this is the case, instead of having a cache implemented
the developer is advised to simply compute the result of the computation in
advance and have the application return it wherever the computation nor-
mally would have taken place. It is then their responsibility to update this
precomputed value if the inputs should ever change.

The algorithm for this analysis is the same as for caching, except that
the requirement on the variability of tainted data in subgraphs is set more
strictly to only allow very deterministic sources.

The high-level algorithm for performing this analysis is given in Pro-
gram 3.4.

31

3.3. Analysis Tool

Program 3.2 High Level Algorithm for Caching Analysis, Part 1.

1: // EXECUTION START

2: TG = taint trace graph

3: CG = call graph taken during taint trace,

4: with method call execution times

5:

6: TGPredictable = pruneToVariability(TG, PREDICTABLE)

7: TGRandom = pruneToVariability(TG, RANDOM)

8:

9: PredictableConnectedSubGraphs =

10: getConnectedSubGraphs(TGPredictable)

11:

12: foreach PredictableCS in PredictableConnectedSubGraphs:

13: if (checkOverCost(PredictableCS, CG, ACCEPT_THRESHOLD)):

14: /* Check that the execution of this graph does not

15: * result in the flow of non-deterministic data */

16: RandomSideEffects = getSideEffects(PredictableCS,

17: TGRandom, CG)

18: /* If there are side effects, it may be that they are

19: * cheap enough to execute even when fetching from the

20: * cache. */

21: if (checkOverCost(RandomSideEffects, CG,

22: REJECT_THRESHOLD)):

23: continue

24: /* Present the graph to the user */

25: colorOutputs(PredictableCS)

26: colorInputs(PredictableCS)

27: showGraphToUser(PredictableCS)

28: /* Indicate the side effects, if any, for the user to

29: * handle. */

30: showSideEffectsToUser(RandomSideEffects)

31:

Continued in Program 3.3

32

3.3. Analysis Tool

Program 3.3 High Level Algorithm for Caching Analysis, Part 2.

32: // HELPER METHODS

33: /* @InputGraph: A taint trace graph

34: * @Variability: Specify the variability

35: * @Return: Copy of @InputGraph with edges carrying data

36: * with variability != @Variability removed */

37: function pruneToVariability(InputGraph, Variability)

38:

39: /* @InputGraph: A taint trace graph, possibly with nodes

40: * such that no path exists between them

41: * @Return: A partitioning of @InputGraph which removes no

42: * edges and within each partition there are no

43: * disconnected nodes */

44: function getConnectedSubGraphs(InputGraph)

45:

46: /* @TaintGraph: A taint trace graph

47: * @CallGraph: A call graph taken during taint trace with

48: * method execution times

49: * @THRESHOLD: A maximum value

50: * @Return: True if and only if the total execution time

51: * for the computation represented by edges in

52: * @TaintGraph exceeds @THRESHOLD. Uses @CallGraph to

53: * compute this time */

54: function checkOverCost(TaintGraph, CallGraph, THRESHOLD)

55:

56: /* @Graph: A taint trace graph

57: * @SideEffectGraph: A taint trace graph

58: * @CallGraph: A call graph taken during taint trace

59: * @Return: Any edges in @SideEffectGraph which were

60: * caused by edges in @Graph, by checking descendent

61: * method calls of edges in @Graph using @CallGraph */

62: function getSideEffects(Graph, SideEffectGraph, CallGraph)

33

3.3. Analysis Tool

Program 3.4 High Level Algorithm for Precomputation Analysis.

1: // EXECUTION START

2: TG = taint trace graph

3: CG = call graph taken during taint trace,

4: with method call execution times

5:

6: TGStable = pruneToVariability(TG, STABLE)

7: TGPredictable = pruneToVariability(TG, PREDICTABLE)

8: TGRandom = pruneToVariability(TG, RANDOM)

9:

10: StableConnectedSubGraphs = getConnectedSubGraphs(TGStable)

11:

12: foreach StableCS in StableConnectedSubGraphs:

13: /* Check that the execution of this graph does not

14: * result in the flow of non-deterministic data or

15: * require any non-deterministic input */

16: if (getSideEffects(StableCS, TGRandom, CG) == {}):

17: if (getSideEffects(StableCS, TGPredictable, CG) == {}):

18: /* Present the graph to the user */

19: colorOutputs(StableCS)

20: colorInputs(StableCS)

21: showGraphToUser(StableCS)

34

3.3. Analysis Tool

3.3.2.3 Postcomputation

The Postcomputation analysis looks for �ows of tainted data which rep-
resent computations which could be deferred. This is in the context of a user
submitting a request to a web application, where we are interested in op-
portunities to send the user a response more quickly. For some applications,
the user may only be interested in data which composes the response web
page for a submitted request, which we call user output. Computation which
outputs to the database or other parts of the application may not need to be
complete before sending the user the response, and this analysis attempts to
locate such computations. At a high level, this is done by tracing the �ows
of tainted data in the graph, looking for subgraphs carrying only taint which
never �ows to a user output.

The high-level algorithm for performing this analysis is given in Pro-
gram 3.5.

3.3.2.4 Application State

The goal of this analysis is to locate persistent state in an application.
This does not refer to the data an application keeps in a database, but
rather to more temporary state kept in session stores and static variables.
This kind of state can be used to keep data associated with users to facili-
tate their interaction with a site over multiple requests. Examples include
shopping carts, which allow users of shopping sites to collect items as they
browse them, to be bought together on checkout; or something as simple as
a username, displayed on each page. Knowing where such state is stored is
useful for developers as it must be managed carefully in various scenarios.
When replicating computation which relies on such state, it needs to be kept
up to date and distributed to all locations where required. When migrating
an application to a new environment, certain kinds of state may not be well-
supported. For example, if migrating to the Google App Engine platform,
state in static variables would be interfered with by the system's tendency to
shut down idle applications. This analysis identi�es such state by looking for
instances where the same pieces of data are accessed over multiple requests.
It then presents subgraphs showing where the state is stored and what parts
of the application use the state.

The high-level algorithm for performing this analysis is given in Pro-
gram 3.7.

35

3.3. Analysis Tool

Program 3.5 High Level Algorithm for Postcomputation Analysis, Part 1.

1: // EXECUTION START

2: TG = taint trace graph

3: RequestSubGraphs = getRequestSubGraphs(TG)

4:

5: foreach RequestSG in RequestSubGraphs:

6: UserOutputEdges = getUserOutputEdges(RequestSG)

7: DBOutputs = getDBOutputEdges(RequestSG)

8:

9: foreach DBOutputEdge in DBOutputs:

10: PostCompEdges = {}

11: /* Start from an edge which outputs to the database.

12: * These are good candidates for blocking computation

13: * deferrable until later. Work backwards from the

14: * output to see how much computation influencing it

15: * can be deferred. Stop before the computation could

16: * influence output to the user. */

17: backwardsExpand(PostCompEdges, DBOutputEdge,

18: UserOutputEdges, RequestSG)

19: /* If we found anything, show it to the user */

20: if (PostCompEdges != {}):

21: showGraphToUser(

22: createGraphFromEdges(PostCompEdges))

23:

Continued in Program 3.6

36

3.3. Analysis Tool

Program 3.6 High Level Algorithm for Postcomputation Analysis, Part 2.

24: // HELPER METHODS

25: /* @InputGraph: A taint trace graph

26: * @Return: A partitioning of the edges of @InputGraph

27: * such that the edges in each partition are all from the

28: * same request. */

29: function getRequestSubGraphs(InputGraph)

30:

31: /* @InputGraph: A taint trace graph

32: * @Return: Any output type edges in @InputGraph for

33: * methods known to write output to the user */

34: function getUserOutputEdges(InputGraph)

35:

36: /* @InputGraph: A taint trace graph

37: * @Return: Any output type edges in @InputGraph for

38: * methods known to write output to the database */

39: function getDBOutputEdges(InputGraph)

40:

41: /* @FoundEdges: An empty set used to store results

42: * @CurrentEdge: backwardsExpand is recursive. Given an

43: * edge @CurrentEdge, work backwards to any edges which

44: * could have influenced @CurrentEdge, adding them to

45: * @FoundEdges

46: * @UserOutputEdges: Provides the condition to stop

47: * working backwards. If from a @CurrentEdge it is

48: * possible, working forwards to edges influenced by

49: * @CurrentEdge, to reach edges in @UserOutputEdges,

50: * return

51: * @Graph: A taint trace graph */

52: function backwardsExpand(FoundEdges, CurrentEdge,

53: UserOutputEdges, Graph)

37

3.3. Analysis Tool

Program 3.7 High Level Algorithm for Application State Analysis, Part 1.

1: // EXECUTION START

2: TG = taint trace graph

3: ByRequestTaintIDs = {}

4: /* Taint IDs which occur in multiple requests */

5: PersistentTaintIDs = {}

6:

7: foreach RequestSG in RequestSubGraphs:

8: ByRequestTaintIDs.add(getTaintIDSet(RequestSG))

9:

10: /* Find any taint IDs which were present in multiple

11: * Request Graphs. Such data had persisted beyond a single

12: * request, and we call such taint IDs persistent. */

13: for (i = 0; i < ByRequestTaintIDs.size(); i+=1):

14: for (j = i+1; j < ByRequestTaintIDs.size(); j+=1):

15: SetA = ByRequestTaintIDs[i]

16: SetB = ByRequestTaintIDs[j]

17: PersistentTaintIDs.add(SetA intersect SetB)

18:

19: foreach PersistentTaintID in PersistentTaintIDs:

20: foreach Edge in TG.getSortedEdges():

21: if (edge.getAllTaintIDs().contains(PersistentTaintID)):

22: /* Color any edges which carry persistent data */

23: colorEdgeRed(edge)

24: if (LastRequestID != null AND Edge.getRequestID()

25: != LastRequestID)

26: /* Find points where request ID changes to find

27: * places where persistent data is stored. Color

28: * these differently */

29: colorEdgeGreen(edge)

30: LastRequestID = Edge.getRequestID()

31:

32: showGraphToUser(TG)

33:

Continued in Program 3.8

38

3.3. Analysis Tool

Program 3.8 High Level Algorithm for Application State Analysis, Part 2.

34: // HELPER METHODS

35: /* @Graph: A taint trace graph

36: * @Return: The set of taint IDs present among the edges

37: * in @Graph */

38: function getTaintIDSet(Graph)

39:

40: /* See earlier psuedocode example */

41: RequestSubGraphs = getRequestSubGraphs(TG)

3.3.2.5 User State

This analysis is similar to the one which locates application state. It
goes beyond it by trying to determine whether a given piece of such state is
used to communicate data to only a single user. The shopping cart example
given for the application state analysis describes such state, as no other user
need view another's cart. This is opposed to persistent data which supports
interaction between users, such as a chat window for sharing messages or
a list of online users. The motivation for �nding such state is to identify
opportunities to relocate state to the user. If the data is only shared with a
single user, then it could potentially be moved from the server to the client.
A user's browser could store the items in a shopping cart and submit them
to the server only when needed. This has such advantages as allowing a
user to keep application state despite problems on the server, or easily carry
their state with them if their requests need to be directed to another server
hosting the application. Personal state is identi�ed by generating a trace
while interacting with the application with multiple users, and then looking
for data which is only ever accessed by a single remote IP address.

The high-level algorithm for performing this analysis is given in Pro-
gram 3.9.

3.3.2.6 Wasteful Communication

Section 3.3.1.2 describes a graph preprocessing step which the Analysis
Tool performs to identify instances where tainted data is communicated be-
tween locations but subsequently never used. Given this step, this analysis is
easy to perform, and merely needs to compile a report of where data is com-
municated wastefully by checking the edges in the graph for taint marked as

39

3.3. Analysis Tool

Program 3.9 High Level Algorithm for User State Analysis, Part 1.

1: // EXECUTION START

2: TG = taint trace graph

3:

4: RequestSubGraphs = getRequestSubGraphs(TG)

5: PersistentTaintIDs = As in earlier pseudocode

6:

7: /* Remove from PersistentTaintIDs any IDs which were

8: * derived from others. This saves work later. */

9:

10: MasterMap = getMasterMap(PersistentTaintIDs,

11: RequestSubGraphs)

12:

13: foreach PersistentTaintID in MasterMap.keys():

14: RequestIDToEdgeMap = MasterMap.get(PersistentTaintID)

15: foreach RequestID in RequestIDToEdgeMap.keys():

16: StartEdgeToFlowGraphMap =

17: RequestIDToEdgeMap.get(RequestID)

18: foreach StartEdge in StartEdgeToFlowGraphMap.keys():

19: FlowGraph = StartEdgeToFlowGraphMap.get(StartEdge)

20: /* This map is needed to compare the flow of taint

21: * in one request with the flow of the same taint in

22: * other requests. */

23: OtherFlows = RequestIDToEdgeMap.copy()

24: OtherFlows.remove(RequestID)

25:

26: UserStateEdges = {}

27: findUserState(UserStateEdges, {StartEdge},

28: FlowGraph, OtherFlows)

29:

30: if (UserStateEdges != {}):

31: colorEdge(StartEdge)

32: showGraphToUser(

33: createGraphFromEdges(UserStateEdges))

34:

Continued in Program 3.10

40

3.3. Analysis Tool

Program 3.10 High Level Algorithm for User State Analysis, Part 2.

35: // HELPER METHODS

36: /* @UserStateEdges: An empty set to store results

37: * @Path: @Path starts with a single edge representing a

38: * read from persistent data. findUserState recursively

39: * attempts to grow the path along matching edges in

40: * @FlowGraph. The path grows if it can be found in

41: * @FlowGraph and in at least one of @OtherFlows, but not

42: * if it can be found in a graph from @OtherFlows which

43: * serves data to a different user than @FlowGraph. When

44: * @Path is successfully grown, the new edges are added

45: * to @UserStateEdges

46: * @FlowGraph: A taint trace graph indicating the flow and

47: * propagation of a single piece of tainted data

48: * @OtherFlows: Flow graphsb for the same data as @FlowGraph

49: * but from different requests */

50: function findUserState(UserStateEdges, Path,

51: FlowGraph, OtherFlows)

52:

53: /* @PersistentTaintIDs: Set of taint IDs which occur in

54: * multiple requests

55: * @RequestSubGraphs: A partitioning of the edges of a

56: * taint trace graph such that the edges in each

57: * partition are all from the same request.

58: * @Return: A map:

59: * {PersistentTaintID -> {RequestID ->

60: * {StartEdge -> FlowSubGraph}}}

61: * This map shows, for each persistent taint ID, which

62: * request graphs carry that taint, what are the earliest

63: * edges carrying that taint, and where each bit of

64: * persistent taint flows from these points of

65: * origination. */

66: function getMasterMap(PersistentTaintIDs, RequestSubGraphs)

41

3.4. Additional Details

such.

An obvious use for such an analysis is to help a developer eliminate poten-
tially wasteful communication. Such is especially useful if the application is
to be partitioned and such communication would be crossing costly bound-
aries. Another use for this is also motivated by application partitioning,
where the data can be used to improve the analyses used in that space. Ap-
plication partitioning algorithms generally consider module execution costs
and communication costs between them when determining an optimal way to
group and separate modules. A simple strategy which monitors inter-module
communication events (such as method calls), can report the cost of the com-
munication as the total size of the data communicated. However, some of
this data may never be used, and knowing this can allow for better commu-
nication cost estimates. Such could lead to more optimal partitionings, as
long as there is a mechanism in place to avoid the wasted communication.
One could attempt to eliminate it altogether or employ a lazy communica-
tion method where the data is only communicated when it is actually needed.

The high-level algorithm for performing this analysis is given in Pro-
gram 3.11.

3.4 Additional Details

3.4.1 Numeric Value Tracking in TRMS

Tracking of numeric values, even though they are primitive, is enabled
through the following method: when a numeric value is input from a source
to be tracked, the TRMS replaces it with a randomly generated value which
is likely to be unique. The TRMS then maps the random value to information
about the source of the value, just as it does with tainted Strings. Whenever
the replaced value is output somewhere, such as to the user or as a database
query parameter, the TRMS replaces it with the original value. There are
cases where this form of tracking would change the operation of the program,
such as if the numerical value is used in a loop counter, but in practice it was
found that numeric values in need of tracking did not exhibit this behaviour.
Note that this is a temporary workaround to deal with limitations of AspectJ,
and could be replaced by something more robust in future implementations.

42

3.4. Additional Details

Program 3.11 High Level Algorithm for Wasteful Communication Analysis.

1: // EXECUTION START

2: TG = taint trace graph

3:

4: /* Look at every SubTaintedObject. These are objects not

5: * directly passed as arguments or return values, but

6: * rather those which are reachable from such. If taint is

7: * passed in this form and subsequently never found to be

8: * passed directly at the level of an argument or return

9: * value, it is never accessed and the user should be

10: * informed of this. */

11: foreach Edge in TG.getSortedEdges():

12: foreach TaintedObject in Edge.getTaintedObjects():

13: foreach SubTaintedObject in TaintedObject.

14: getSubTaintedObjects():

15: if (forwardSearch(Edge, TG, SubTaintedObject)):

16: SubTaintedObject.setUnused()

17: colorEdge(Edge)

18:

19: showGraphToUser(TG)

20:

21: // HELPER METHODS

22: /* @Edge: An edge in @Graph to start searching from

23: * @Graph: A taint trace graph

24: * @TargetTaintedObject: A tainted object with a taint ID

25: * to search for

26: * @Return: True if by working forwards from @Edge in

27: * @Graph (to edges which could be influenced by @Edge

28: * and so on, recursively, using edge context information

29: * to ensure that considered edges were in the same

30: * thread of execution), an edge can be found with the

31: * taintID for @TargetTaintedObject in the top level. Top

32: * level means actual arguments and return values as

33: * opposed to tainted objects which are merely reachable

34: * from them. */

35: function forwardSearch(Edge, Graph, TargetTaintedObject)

43

Chapter 4

Evaluation

4.1 Evaluation Strategy/Goals

To test the claims made in the thesis using the Tracking and Analysis
tools, the focus was on performing a qualitative evaluation. This was in
part due to time constraints, as a proper quantitative evaluation would have
required testing the tools with a wider range of applications, modifying each
application according to the results of the various analyses, and testing those
applications in realistic environments to assess the modi�cations. While such
would certainly be interesting, it is beyond the scope of this thesis and must
be left to future work. Additionally, a qualitative evaluation is better suited
for a succinct demonstration of the tools' usefulness. The goal was not to
provide an in-depth look at any one analysis supported by the taint tracking
data, but rather to show how the technique of taint tracking could be used
to support a variety of useful analyses, and to show that these analyses could
be applied successfully to realistic web applications. To this end, the eval-
uation strategy presented here is to take an application, apply an analysis
to it, and then justify the correctness and usefulness of the results through
manual code inspection, knowledge of the application, and light testing of
the application. By showing how each of a wide range of analyses are ac-
tually successful on such applications, taint tracking is demonstrated as a
robust application analysis technique.

For reference, the actual results can be found in the following sections:

• Precomputation Analysis: Section 4.4.2

• Caching Analysis: Section 4.4.3

• Postcomputation Analysis: Section 4.4.4

• Persistent State Analysis: Section 4.4.5

• User State Analysis: Section 4.4.6

• Wasteful Communication Analysis: Section 4.4.7

44

4.2. Evaluated Applications

4.2 Evaluated Applications

The applications selected for the evaluation were RUBiS, an auction site
prototype, and jGossip, a web forum. What follows is a justi�cation for the
choice of each application, as well as a brief description of their functionality
and design.

4.2.1 RUBiS

RUBiS is a realistic application, providing all the necessary functionality
for users to put items up for auction, browse running auctions, and make bids
on items. It is already a popular choice in various research e�orts, making
it a desirable representative example. The small code size made it easy to
understand and manually inspect, which was of great help when developing
and testing the analyses. However, it was not written to be easily amenable
to such analyses, and as such it served as a reasonable introductory proving
ground for the taint tracking and analysis tools.

4.2.1.1 RUBiS Details

The functionality of RUBiS is quite simple. Visiting the homepage for
the application, users are presented with links describing various actions they
can take in the auction: registering an account, browsing items for auction,
and selling an item of their own. Items are grouped by geographical region
and item category, and a user navigates through several pages to select a
region and category before bidding on or selling any items. A user does not
actually log into the application to get a persistent session, but rather sup-
plies their username and password whenever performing a sensitive action
such as selling and bidding.

Architecturally, RUBiS is a very simple servlets application, relying on no
external libraries beyond a MySQL driver for database connectivity. Every
action on the site has a servlet dedicated to it, such as the BrowseCategories
servlet, which writes out a list of item categories for the user to choose
from; or the RegisterItem servlet, which takes parameters from a web form
describing an item and creates a new auction from them. Most of the servlets
make use of a ServletPrinter object which provides a series of methods for
writing HTML output to the servlet response stream.

45

4.3. Completeness of Tracker

4.2.2 jGossip

jGossip was found by searching SourceForge for popular open-source Java
web applications of greater complexity. These were brie�y checked in the
early stages of the research to see if they contained properties which would
be amenable to interesting analyses. jGossip, along with several other ap-
plications, was deemed promising. As web forums are a commonly used
application, jGossip was chosen as a more representative example.

4.2.2.1 jGossip Details

jGossip is interesting in that it makes extensive use of libraries, such
as the Apache Struts framework, JSP, and the JSP Standard Tag Library
(JSTL). This is partially desirable as many applications use these libraries, so
jGossip serves as a more realistic example. However, the use of some libraries
presents di�culties for the kinds of analyses performed here. In particular,
JSP is problematic in that it allows application code to be created from
HTML-like markup. JSP pages are compiled into Java code, and generally a
developer never works with this generated code. JSTL compounds the prob-
lem by providing a large set of JSP tags to implement various kinds of logic
which would normally be written directly in Java. For applications which
make extensive use of JSP, it may be that automated analysis results suggest
making changes within generated code. Such may be less meaningful as the
mapping from JSP to the generated code, and thus how to modify the gen-
erated code, may not be obvious. However, as JSP is a popular technology
in Java web applications, attempting to analyze an application making use
of it is a valuable exercise.

Users log into jGossip to get a persistent session to interact with the fo-
rum. Whenever data is needed from the database, such as to get information
about a user or display a forum, a data access object generally instantiates
and �lls in various `bean' objects (serializable, with getters/setters to store
properties) from the database data. These objects are then stored as session
attributes to be loaded and reused later.

4.3 Completeness of Tracker

One of the minor goals of the research was to develop the Java taint
tracker itself. It is important that the tracker is complete, meaning that it
is capable of tracing tainted data wherever it goes. If this were not the case,

46

4.4. Application Results

the analyses would be less reliable, having incomplete data to work with.
The tracker presented here traces data in Strings read from designated input
sources, as well as primitive numeric inputs that the tracker is manually told
to trace. As most data in a Java program is ultimately held in primitives
and Strings, we only really miss data in booleans, chars, and bytes. Thus as
a �rst e�ort, we feel that our tracked data types capture enough to support
useful analyses.

As this tracker does not consider taint propagation by control depen-
dence, such as a tainted variable in�uencing the value of another through
a control-�ow statement, the completeness of the tracker can be evaluated
somewhat simply.

First, the tracker needs to intercept every operation which communi-
cates data in a program. Using AspectJ, the tracker is able to inspect the
data �owing on every method call, method return, and �eld set/get, which
captures the �ow of all program data (we do not consider data exchanged
outside of the context of the application). The only issue here concerns
code from the Java Runtime, which cannot be instrumented. It is possi-
ble, for example, for such non-instrumented code to take a tainted String,
copy it, and store it somewhere. The copy would not be tainted as the call
to the copy method would not have been intercepted due to lack of instru-
mentation. In practice, however, we found that such problems did not occur.

To check that all data which should be tainted actually was, the test
applications were supplied with random input data which could be easily
identi�ed. The applications were then driven through the operations that
we wanted to use in our evaluations, and the taint tracking system was
told to scan any data (passed through method calls, returns, etc.) for the
occurrence of the known random input data. If the data was encountered,
it was checked as to whether or not the system had properly marked it as
tainted. In all cases the data had been marked as such, and the tracker was
judged as being reasonably complete.

4.4 Application Results

4.4.1 Example Trace

In order to understand the evaluation which follows, consider Figure 4.1,
which shows a visualized taint trace taken from loading a page in the RUBiS

47

4.4. Application Results

Figure 4.1: RUBiS Browse Categories Trace.

application. The page loaded contains a list of item categories, showing the
category name to the user in a hyperlink which includes the category ID as
a parameter.

• At the labeled point 1 in Figure 4.1 are two input nodes for database
data used in displaying the page (see Figure 3.6 for the format of this
kind of node, as well as Table 3.1 for a summary of the edge types
which follow). These nodes represent the access of data �elds from
a ResultSet (which comes from the preceding call to executeQuery())
which includes the ID and name columns from the categories table in
the RUBiS catalog. A separate node is present for each �eld accessed.
The edges from these nodes are labeled `RIN' for `Returning Input',
marking them as points where tainted data originates. Edges are la-

48

4.4. Application Results

beled with numbers to indicate the ordering of events. The full graph
actually contains more edges than is shown, but for presentation multi-
ple edges of the same type between the same nodes have been reduced
to a single edge, explaining the `missing' edge numbers.

• From labeled point 1 to 2 is shown the return path of the category
names and ids through the getString and getInt methods to the cate-
goryList method on the BrowseCategories servlet.

• This data is then passed to a printCategory method on a ServletPrinter
object at point 3. This is where the data is formatted for display to
the user. Notice the group projecting from this point at point 4. This
shows how the data is formatted by concatenating it with other Strings,
which is performed by appending to StringBuilders.

• After appending, the toString method is called on the StringBuilder
to get the concatenated String, and the preprocessing described earlier
adds `IMP' (implied) edges to show how the data sent to the append
method is coming back on the toString call.

• At point 5 is shown how the data is passed to an encode method which
processes the data in a way which would have lost the data were it not
for the fuzzy propagation methods described earlier. The `FZZ' edge
is present to indicate the use of this heuristic.

• Finally, the categories are written out to the response output stream
at point 6, depicted as an `OUT' edge to a println method.

4.4.2 Precomputation

4.4.2.1 RUBiS

4.4.2.1.1 Experimental Setup First, a page which displays a list of
item categories is requested in RUBiS while performing taint tracking, pro-
ducing a log �le. RUBiS fetches the item categories from a database table
and uses them to generate the output HTML which can be seen in Figure 4.6.
Following this the same page is requested, and a message is entered into a
form �eld and submitted to display the input on the page. This causes 2
requests: one to submit the message and another to display the modi�ed
page. The output HTML is shown in Figure 4.2. These tests were chosen as
this page would likely be accessed frequently (a user must pick a category for
most actions on the site, such as viewing and creating auctions), and it was

49

4.4. Application Results

Figure 4.2: RUBiS Browse Categories with Chat Tainted Output.

1: <title>RUBiS available categories</title> [NONTAINTED]

2: <p>Chats</p><p>hello 1</p> [TAINTED]

3: <form action="SubmitChat" method=POST> [NONTAINTED]

4: <input type=text size=20 name=chatMessage /> [NONTAINTED]

5: <input type=submit value="Post" /></form> [NONTAINTED]

6: <h2>Currently available categories</h2>
 [NONTAINTED]

7: <a href="SearchItemsByCategory?category=1&

categoryName=Antiques">Antiques
 [TAINTED]

8: <a href="SearchItemsByCategory?category=2&

categoryName=Books">Books
 [TAINTED]

9: <a href="SearchItemsByCategory?category=3&

categoryName=Business">Business
 [TAINTED]

10:</body> [NONTAINTED]

11:</html> [NONTAINTED]

known to make use of database data which changed very rarely. We added
the form �eld to the application ourselves, under the pretense of providing a
simple means for users to post messages to each other and more importantly
to introduce a �ow of non-deterministic data to the page.

4.4.2.1.2 Experimental Goals For this experiment we wanted the anal-
ysis to identify computations which could be skipped completely, replaced by
precomputed data also extracted by the analysis. Since RUBiS is a simple
application, we hoped to �nd large portions of its output able to be precom-
puted. Finally, where non-deterministic data was introduced, we wanted the
analysis to adapt and �nd constrained opportunities for precomputation.

4.4.2.1.3 Analysis

Taint Flow Breakdown The log for the �rst request generates the taint
graph shown in Figure 4.1. A walkthrough of the �ow of taint was already
given in Section 4.4.1.

For the second request involving the user input �eld, the taint graph
shown in Figure 4.3 is obtained. The important thing to note is that this
graph contains the �ow of non-deterministic data�the list of messages can

50

4
.4
.
A
p
p
lica

tio
n
R
esu

lts

Figure 4.3: RUBiS Browse Categories With Chat Trace.

51

4.4. Application Results

change at any time, with random data input to them, and as such any com-
putations which rely on message data are poor candidates for caching.

Breaking this �ow down, the left side of the graph in the �gure is the
same as in Figure 4.1, while the portion outlined in the red box shows the
additional �ow of the message data. This new portion of the graph actu-
ally spans two requests to the application�one to submit the message and
another to display the list of categories along with the new message.

• The portion of the graph from labeled points 1 to 2 covers the request
which submits the message.

• Point 1 shows the source node with the relative URI of the request and
the name of the tainted parameter, `chatMessage'. This parameter is
accessed by the doGet method of the SubmitChat servlet, and passed
to the addChatMessage method of a ServletPrinter object where it is
concatenated with some formatting text.

• At Point 2 the message is appended to a LinkedList by the addLast
method. Note that the label for this addLast method call node ends in
the name of a �eld, the `chattyList' �eld of a `ServletPrinter' object.
This means that the chattyList �eld points to the LinkedList being ap-
pended to and indicates that by storing tainted data in the LinkedList
it is stored in the chattyList �eld.

• Point 3 shows where the message data �ows for the second request,
which displays the category list request along with the messages. Start-
ing with edge `18 FGT', the value of the chattyList �eld is read, which
we know is a LinkedList. Edge `19 RET' shows an iterator over this
LinkedList being returned from the LinkedList, and edge `20 RET'
shows just one of the calls to the next() method of the iterator, which
return the messages.

• The getChatBox() method combines these messages with some format-
ting text and returns the result to the printHTMLheader() method,
which writes them out for the user to see at point 4.

Analysis Results Breakdown The taint graphs, along with the IDF
given in Appendix B.2, are then input to the precomputation analysis, which
runs automatically without intervention over the data. The graph presented
in Figure 4.4 is obtained from the �ow for the �rst request (no message data).

52

4.4. Application Results

Figure 4.4: RUBiS Browse Categories Precomputation Results.

The �rst thing to notice here is that it is the same graph as the input
taint graph. Such is not always the case for this analysis, but in this instance
the analysis identi�ed the entire �ow as being precomputable. Consider the
request in question, which only needs to access the categories table to list
the names and ids of the categories to the user. Both the name and ID
columns of this table have been marked as being deterministic (stable) in
the IDF. This means that one does not expect category names or ids to be
non-deterministic�the same values will be present in the table for extended
periods of application use. Given this information about these values and the
input trace, the precomputation analysis determined that the tainted data
�owing in this graph was entirely deterministic data, and thus the output of

53

4.4. Application Results

the analysis is the entire graph with the inputs and outputs coloured orange
and red respectively.

For more detailed results, one can view what precomputable tainted data
was sent to the output nodes in the graph. Figure 4.7 shows the HTML data
for three category selection hyperlinks. Compare this to Figure 4.6, also
obtained from our tool, which shows all data written to the user along with
whether or not pieces of it are tainted. Only three lines are marked as tainted,
the same three which are shown to be precomputable in Figure 4.7. The rest
of the lines are marked non-tainted, and thus are likely from non-computed
data.

Figure 4.5: RUBiS Browse Categories with Chat Precomputation Results.

Figure 4.5 shows the result of the precomputation analysis on the trace
from Figure 4.3. It is exactly like the analysis results from Figure 4.4 ex-
cept that the graph ends at the red PrintCategory node, no longer extending

54

4.4. Application Results

to the println method call nodes. Furthermore, it obviously does not have
any of the nodes carrying message data. This is because those nodes and
the println nodes have message data �owing through them, which has been
marked in the IDF as being non-deterministic. The precomputation analysis
will not return any nodes relaying random data, because if the computation
that those nodes represented were replaced by precomputed data, the results
would be inconsistent when the inputs changed. The part of the graph shown
in Figure 4.5 only relies on deterministic data as inputs.

Figure 4.6: RUBiS Browse Categories Tainted Output.

1: <title>RUBiS available categories</title> [NONTAINTED]

2: <form action="SubmitChat" method=POST> [NONTAINTED]

3: <input type=text size=20 name=chatMessage /> [NONTAINTED]

4: <input type=submit value="Post" /></form> [NONTAINTED]

5: <h2>Currently available categories</h2>
 [NONTAINTED]

6: <a href="SearchItemsByCategory?category=1&

categoryName=Antiques">Antiques
 [TAINTED]

7: <a href="SearchItemsByCategory?category=2&

categoryName=Books">Books
 [TAINTED]

8: <a href="SearchItemsByCategory?category=3&

categoryName=Business">Business
 [TAINTED]

9: </body> [NONTAINTED]

10:</html> [NONTAINTED]

Looking to more detailed results, Figure 4.8 shows the precomputable
data which �ows into the `ServletPrinter:printCategory' node. As before,
compare this to the tainted/non-tainted data written to the user in Fig-
ure 4.2. Again there are three lines which match in these �gures, these
being precomputable, but in Figure 4.2 line 2 is also tainted and not pre-
computable.

4.4.2.1.4 Developer Interpretation and Response Interpreting the
results for the �rst request, a developer can reasonably assume that the
computations which produce the output page can all be precomputed. At
no point do these computations make use of any non-deterministic data�the
only tainted data is from sources which rarely change, and the rest of the
output isn't tainted which means it is also likely non-computed. One could

55

4.4. Application Results

Figure 4.7: RUBiS Browse Categories Precomputation Details.

Output Data:

Node: CoyoteWriter:println String:26517368

Data:

<a href="SearchItemsByCategory?category=1&

categoryName=Antiques">Antiques

Data:

<a href="SearchItemsByCategory?category=2&

categoryName=Books">Books

Data:

<a href="SearchItemsByCategory?category=3&

categoryName=Business">Business

alter the application to immediately output an entire pregenerated page in-
stead of fetching the data from the database and formatting it. If and when
the category data does happen to change, one would then have to update
the precomputed data, but it is assumed that this would happen very rarely.

For the request dealing with the message data, a developer can still
mostly precompute the output. Figure 4.2 shows that only line 2 depends
on random data. The application could be modi�ed to only dynamically
generate this small portion, while using pregenerated data for the rest of it.

In both cases computation can be saved, and the application will be
better able to serve higher loads. One could even have more freedom in the
type of server this page is served from. With signi�cantly less computation
needed, less processor power is required.

4.4.2.1.5 Summary Having identi�ed a critical page which could be
entirely pregenerated, as well as having had the analysis successfully locate
precomputable data mixed with non-deterministic data, the experimental
goals were met. The results were easy to understand, and a developer could
easily modify the application to precompute the page and serve it instead of
generating it from the database data.

56

4.4. Application Results

Figure 4.8: RUBiS Browse Categories with Chat Precomputation Details.

Output Data:

Node: ServletPrinter:printCategory String int:19112841

Data:

<a href="SearchItemsByCategory?category=1&

categoryName=Antiques">Antiques

Data:

<a href="SearchItemsByCategory?category=2&

categoryName=Books">Books

Data:

<a href="SearchItemsByCategory?category=3&

categoryName=Business">Business

4.4.2.2 jGossip

4.4.2.2.1 Experimental Setup For this test the main page of the jGos-
sip application is loaded while performing taint tracking. This page presents
the user with a list of forums to view, as well as some other information
about forum activity. The main page will likely be viewed quite frequently,
being the primary point from which the rest of the forum is accessed, and is
thus a good candidate for optimization.

4.4.2.2.2 Experimental Goals As with RUBiS, we hoped to �nd out-
put that could be precomputed rather than calculated. For the particular
page of jGossip analyzed, we hoped to �nd large portions of it which could
be precomputed. Though we knew there would be di�culties with the com-
plex execution paths created by autogenerated JSP code, we hoped that
these details could be ignored if the precomputable execution paths reached
end-to-end from database to page output.

4.4.2.2.3 Analysis

Taint Flow Breakdown We skip a breakdown of the taint �ow here due
to its size and complexity. It is not possible to even view the graph all at
once, much less make sense of it. It is much more helpful to simply run the
analysis and use the results to understand the �ow of data in the application,
as well as how to improve it.

57

4
.4
.
A
p
p
lica

tio
n
R
esu

lts

Figure 4.9: jGossip Main Page Precomputation Analysis Results.

58

4.4. Application Results

Analysis Results Breakdown Running the precomputation analysis over
the taint graph, providing the IDF given in Appendix B.3, produces the
graph shown in Figure 4.9. This graph is �ltered to show the �ow of a par-
ticular data item: the title of a forum displayed on the page.

The analysis essentially indicates that the data is able to �ow from the
database all the way to output without any dependence on inputs with non-
deterministic values. Breaking this �ow down:

• The data is read from the database at point 1. Simply note that the
input node starts with `forumtitle', identifying the database column
from which the data is read.

• The forum title data is eventually stored in the Forum:title �eld at
point 2. Continuing along the �ow, this �eld is subsequently accessed
(by re�ection, evidenced by the call to Method:invoke()) by a series of
autogenerated methods (Java JSP applications convert HTML markup
to Java code).

• From there to point 3, the data passes through a series of internal
methods from JSP-related libraries.

• The forum title is ultimately used in the doStartTag() method at point
3, a method used by JSP tag objects to write data to the user.

There are similar graphs for other pieces of precomputable data on the
main page. By comparing these with output summaries for this page similar
to what is shown in Figure 4.2 for RUBiS, one can �nd large portions of the
page which are precomputable.

4.4.2.2.4 Developer Interpretation and Response Having the data�ows
for various elements of the main page being identi�ed as precomputable all
the way from database to user output means the following: these elements
can be easily precomputed�one could even simply hardcode them in the
JSP �les to save on executing all the JSP/JSTL machinery, along with any
user output which was identi�ed as simply non-tainted. Furthermore, for the
user output which was identi�ed as being tainted by random sources, those
�ows are independent of those identi�ed by the precomputation analysis,
and so can be handled separately from them.

59

4.4. Application Results

4.4.2.2.5 Summary The experimental goals were met in that we were
able to identify large sections of a critical page which could be pregenerated.
As jGossip is much more complex than RUBiS, more developer e�ort is
needed to make use of the analysis results than with RUBiS. One would
need to go through each identi�ed precomputation result, decide if the saved
computations are worth the modi�cations, and �gure out how to modify
the application given that much of its code is generated from JSP markup.
One would need to take care not to interfere with execution responsible
for generating the dynamic content on this page. In this case gains could
be realized by simply removing the JSP tags which ultimately produce the
precomputable output, and replacing them with precomputed data.

4.4.3 Caching

4.4.3.1 RUBiS

4.4.3.1.1 Experimental Setup For a data �ow to be cacheable, it must
depend on some predictable data but not on any non-deterministic data. By
predictable data we mean data which we do not know the exact value for, but
which can only take on a small enough range of values so as to be amenable to
caching. To create such a scenario in RUBiS, we start with a page which lists
various geographical regions. Such pages are common in RUBiS, and serve to
help users limit the scope of their trading to a region they care about. From
this page a region is selected from among those available, which requests the
next page containing the list of categories from the previous precomputation
examples. This list varies, however, in that it has been in�uenced by the
user input provided by selecting a region.

4.4.3.1.2 Experimental Goals In this experiment the goal was to iden-
tify an obvious cache in the RUBiS application, with the analysis making
the cache inputs and outputs clear. As RUBiS is a simple application, we
hoped that the cache would be able to eliminate most of the computation
responsible for generating the analyzed page.

4.4.3.1.3 Analysis

Taint Flow Breakdown The log �le from the experiment request pro-
duces the taint �ow graph shown in Figure 4.10. Remember that this graph
spans 2 requests�one to display a list of geographical regions and another
to display a list of categories. Also, note that this graph had StringBuilder

60

4
.4
.
A
p
p
lica

tio
n
R
esu

lts

Figure 4.10: RUBiS Browse Categories by Region Trace.61

4.4. Application Results

method nodes removed to make it more presentable, as these are not nec-
essary for grasping the important points of the analysis. Breaking this �ow
down:

• Point 1 shows the region name data being read from the database for
the �rst request.

• At point 2 the region names are passed to an encode() which copies the
data in a way which necessitates fuzzy propagation (see Section 3.2.1.3).

• The regions are output (along with any formatting text added to them)
to the user at point 3, concluding the tracing for the �rst request.

• For the next request, a user clicks on a region, submitting its name as a
request parameter. This is shown at point 4, as the `region' parameter
handled by the `BrowseCategories' servlet.

• From point 5 along to point 6 and continuing, the region name is set as
a parameter on a PreparedStatement object to be used as a predicate
in a database query.

• When the query is executed at point 7, note how the input source
node is labeled as being tainted by not only the ID column from the
regions table, but also by the region parameter that the query was
predicated on (tainting from multiple sources is indicated with the
`&&' separator).

• The query returns region IDs, which are returned to point 5 and passed
into the categoryList() method at point 8.

• The categoryList() method also gets a list of category names and IDs
from the database, which �ow from point 9 (accessed in the same way
as they are in the precomputation example).

• The category data and region IDs are sent to point 10, the `printCat-
egoryByRegion' method, which combines them with formatting text
and passes them to the encode() method.

• The data is written out to the user, �nishing the request.

62

4
.4
.
A
p
p
lica

tio
n
R
esu

lts

Figure 4.11: RUBiS Browse Categories by Region Caching Results.

63

4.4. Application Results

Analysis Results Breakdown The caching analysis is run over this graph,
provided the IDF given in Appendix B.2 and producing the result graph
shown in Figure 4.11. First, note that this graph only has nodes from the
second request�the �rst request could simply be precomputed and was ig-
nored for the caching analysis. The graph shown was not eligible for pre-
computation due to the in�uence of the user-supplied region parameter, the
value of which will vary. However, since this parameter has been marked as
being predictable and the other inputs are stable (see Appendix A for pre-
dictable/stable de�nition), the analysis judges that a cache may be possible
for this graph.

Figure 4.12: RUBiS Browse Region Categories Caching Details.

1: Output Data:

2: Node: CoyoteWriter:println String:22693155

3: Data:

AZ--Phoenix

4: Data:

CA--Los Angeles

5: Data:

CA--Oakland

6: Data:

<a href="SearchItemsByRegion?category=1&categoryName=Antiques&

region=1">Antiques

7: Data:

<a href="SearchItemsByRegion?category=2&categoryName=Books&

region=1">Books

8: Data:

<a href="SearchItemsByRegion?category=3&categoryName=Business&

region=1">Business

4.4.3.1.4 Developer Interpretation and Response Interpreting this,
a developer can start at the red output node. Figure 4.12 shows the tainted
data �owing here. Lines 3-5 are for the �rst request, and can be ignored.
Lines 6-8 show the list of categories. Note how the link `href' contains a
region parameter with a region ID. Compare these lines to the user output
breakdown shown in Figure 4.13. The entire response is composed of non-
tainted (likely non-computed) data and the cacheable output. Looking at

64

4.4. Application Results

Figure 4.13: RUBiS Browse Region Categories Tainted Output.

<title>RUBiS available categories</title> [NONTAINTED]

<p>Popular Items</p> [NONTAINTED]

<p>Chats</p> [NONTAINTED]

<form action="SubmitChat" method=POST> [NONTAINTED]

<input type=text size=20 name=chatMessage /> [NONTAINTED]

<input type=submit value="Post" /></form> [NONTAINTED]

<h2>Currently available categories</h2>
 [NONTAINTED]

<a href="SearchItemsByRegion?category=1&categoryName=Antiques&

region=1">Antiques
 [TAINTED]

<a href="SearchItemsByRegion?category=2&categoryName=Books&

region=1">Books
 [TAINTED]

<a href="SearchItemsByRegion?category=3&categoryName=Business&

region=1">Business
 [TAINTED]

</body> [NONTAINTED]

</html> [NONTAINTED]

the input (yellow) nodes in Figure 4.11, the source data responsible for the
cacheable output comes from database tables which have all been marked
as stable (see the IDF) (unlikely to change frequently), and the predictable
region parameter.

Using the graph a cache could be implemented as follows: First, consider
the inputs. All of them, save for the region parameter, are stable, and thus
the only parameter the cache needs to store and return results (the cache key)
is the region parameter. The other inputs from the categories and regions
tables only need to be monitored to detect if they are modi�ed. If so, the
cached results are invalidated to be regenerated. As the doGet node is the
�rst to receive the region parameter, the cache check could be performed
there. If the cache hits for a given region, the output data (perhaps the
entire response page) can be returned and written to the response stream.
In the event of a cache miss, the computation can proceed as normal, and the
results can be picked up in the printCategoryByRegion node to be placed in
the cache for later.

4.4.3.1.5 Summary This experiment was successful, as the analysis iden-
ti�ed a critical page which could be entirely cached instead of generated for

65

4.4. Application Results

each request. Furthermore, the analysis results made it obvious what the
various inputs to the cache would be, and where data from the cache could
be used. It is up to the developer how exactly to rearchitect the application,
but the general guidelines are there.

4.4.3.2 jGossip

4.4.3.2.1 Experimental Setup The application was traced while se-
lecting a forum from the application's main menu, which then displayed a
page giving some information about the forum including a message from it.
We assumed that a selection from among the list of available forums could
be considered predictable data, since the set of forums it not likely to change
rapidly. Furthermore, this action is likely to occur frequently as users must
choose their desired forums to interact with them.

4.4.3.2.2 Experimental Goals As jGossip is signi�cantly more com-
plex than RUBiS, we sought only to identify the existence of a possible
cache. The details of the best place to implement the cache, and concerns
over the amount of computation saved by the cache are left to future work.
Here the concern is on identifying the inputs and outputs and ruling out the
in�uence of non-deterministic data.

4.4.3.2.3 Analysis

Taint Flow Breakdown We skip a breakdown of the taint �ow here due
to its size and complexity. It is not possible to even view the graph all at
once, much less make sense of it. It is much more helpful to simply run the
analysis and use the results to understand the �ow of data in the application,
as well as how to improve it.

Analysis Results Breakdown The caching analysis for jGossip is sig-
ni�cantly more di�cult than with RUBiS due to the much larger traces
produced by the application. This is caused by libraries, like JSTL, used
by jGossip, and typically the traces were around 40K communication events
for handling a single request (whereas RUBiS had around 400). This pre-
sented some very large, complex graphs, which would not be amenable to
any manual analysis and which were still challenging to analyze automati-
cally. Nevertheless, Figure 4.14 shows a graph obtained from the analysis
tool which indicates the existence of a possible cache.

66

4
.4
.
A
p
p
lica

tio
n
R
esu

lts

Figure 4.14: jGossip View Forums Caching Results.

67

4.4. Application Results

The trace shows the following:

• A forum ID (�d) is supplied by the user when selecting a forum at
point 1.

• The forum ID is used as the only parameter in a database query which
fetches a message heading at point 2. These headings are among vari-
ous descriptive data for a forum.

• The heading is then passed through a series of methods, ultimately
being output to the response page at point 3.

The fact that this path was identi�ed by the analysis means that the
data which �ows along the path is not in�uenced by random input. Given
a �d value, of which there are a limited set, and knowing whether or not
the heading for a forum has been updated, we can either return a cached
heading or generate one to �ll the cache.

4.4.3.2.4 Developer Interpretation and Response Given this graph,
it is up to the developer to investigate the feasibility of this cache. The only
inputs to it, as shown by the analysis, are the �d and the forum heading.
Assuming the headings are stable (and the IDF given in Appendix B.3 does
specify this), the �d could be used as a cache key while the headings could be
monitored for changes for cache invalidation. The developer would need to
investigate the traces further, along with the application code, to determine
a good place to implement such a cache. The fact that much of the logic is
buried in JSP auto-generated code will make this more di�cult than in the
case of RUBiS.

4.4.3.2.5 Summary Our goals for this experiment were met, as a pos-
sible cache was identi�ed for the analyzed page. The amount of data cached
is small, and more work is needed to plan how to best implement the cache
(non-trivial given the complexity of jGossip's architecture and use of gener-
ated code). Additionally, to obtain greater bene�ts from this analysis, one
would need to continue searching for more caching opportunities beyond this
proof of concept.

68

4.4. Application Results

4.4.4 Postcomputation

4.4.4.1 RUBiS

4.4.4.1.1 Experimental Setup For the postcomputation analysis, we
sell an item on the RUBiS Store. This simply involves �lling out a web form
describing various details of the item (name, price, etc.), and submitting
this to a RegisterItem servlet. The item is added to the database, and after
that is done the item details are displayed back to the user when the request
returns. This procedure importantly involves a write to a database, which
is a likely target for postcomputation.

4.4.4.1.2 Experimental Goals The goal here was for the analysis to
identify common computations that can be deferred. The output should
make it clear at which points in the application logic the computations occur
for the purpose of converting them to asynchronous versions.

4.4.4.1.3 Analysis

Taint Flow Breakdown The log �le produces the graph given in Fig-
ure 4.15. Breaking this down:

• At point 1 the various request parameters describing the item are read.

• Some of these parameters are converted to numeric values at point 2.
The IDF in Appendix B.2 speci�es that these values should be tracked
by the numeric tracking system (see Section 3.4.1).

• These values are passed along to point 3, where they are used to con-
struct a PreparedStatement object which will be used to perform a
database update.

• At point 4 the executeUpdate() method on the PreparedStatement is
called, which causes the item data to be written to the database.

• Following this, some of the parameters are used at point 5 to query the
database, checking if the item was successfully inserted.

• At point 6 the parameters are written back along with formatting text
to the response page, showing the user the details of the item they
submitted to sell.

69

4
.4
.
A
p
p
lica

tio
n
R
esu

lts

Figure 4.15: RUBiS Sell Item Trace.

70

4
.4
.
A
p
p
lica

tio
n
R
esu

lts

Figure 4.16: RUBiS Sell Item Postcomputation Analysis Results.

71

4.4. Application Results

Analysis Results Breakdown Figure 4.16 shows the results of running
the postcomputation analysis over the taint �ow graph. What this result
graph shows are parts of the taint �ow graph which could potentially be
delayed until later without breaking the functioning of the application.

The �gure shows that the database update and query �ows at points 3,
4, and 5 from Figure 4.15 could be deferred. None of the queries return data
which is used to generate the response page. Missing from the result graph
is reading the item properties and writing them to the response page. This
is because if these �ows were deferred until later the output that the user
sees would be incomplete.

4.4.4.1.4 Developer Interpretation and Response It is now up to
the developer to determine if the semantics of the application can tolerate
deferring these computations. It is possible that it does not make sense to
display the response page without knowing for certain whether or not the
database update was successful. However, if this is acceptable, the analysis
suggests that these queries could be done asynchronously, returning back
to the user without waiting for their completion. The application could be
altered to support this, and users would see response pages faster.

Additionally, such modi�cations tend to free up web servers which allo-
cate threads to handle individual requests. The database update request can
be queued in a DBMS, while the webserver is free to complete the request
and free up a thread. There would likely need to be additional systems in
place to deal with failed database updates in this case, such as by restarting
them or asynchronously informing the user.

4.4.4.1.5 Summary Having identi�ed a database update and subse-
quent update veri�cation which could be deferred, a commonly performed
request can potentially return back to the user more quickly. It is easy
to see where these computations occur and thus where to begin deciding
how to convert them to asynchronous versions�in the RegisterItem:doGet()
method. A developer can make the appropriate modi�cations, and from
there assess the correct and potentially improved operation of the applica-
tion.

72

4.4. Application Results

4.4.4.2 jGossip

4.4.4.2.1 Experimental Setup To test the postcomputation analysis
for jGossip, we use a trace taken while submitting a delete forum request.
This request sends a forum ID parameter to the server, which is used to
locate the forum to delete. We anticipated that this action would involve
computation and updates to the database which could potentially be de-
ferred. It is true that this operation would likely not occur very often, but
the results are still useful as a minor optimization and as a proof of concept.

4.4.4.2.2 Experimental Goals The goal here was to �nd potential
postcomputation opportunities. Due to the complexity of jGossip, the ap-
proach was to focus on analysis results for speci�c data suspected to be
involved in deferrable computations. We hoped to �nd in the results evi-
dence that such data underwent various computations before being written
to a database, computations which did not in�uence output immediately
visible to the user and which could be deferred.

4.4.4.2.3 Analysis

Taint Flow Breakdown We skip a breakdown of the taint �ow here due
to its size and complexity. It is not possible to even view the graph all at
once, much less make sense of it. It is much more helpful to simply run the
analysis and use the results to understand the �ow of data in the application,
as well as how to improve it.

Analysis Results Breakdown To obtain the result, the postcomputa-
tion analysis was run over the taint �ow graph. The output was still quite
complex, so we �ltered the result graph down to locate nodes which com-
municated the forum ID used to specify the forum for deletion. Following
this we looked for nodes which were from the actual jGossip code (not from
framework classes), and found the section of the result presented in Fig-
ure 4.17. This graph shows a �ow which could potentially be deferred to
allow the user to receive a response faster. Breaking it down:

• At point 1 an object containing data from the request (user provided
parameters like the forum ID) is passed into an Action object (Actions
basically provide the entry point functionality in an Apache struts
application, like the servlets do in RUBiS).

73

4
.4
.
A
p
p
lica

tio
n
R
esu

lts

Figure 4.17: jGossip Delete Forum Postcomputation Analysis Results.

74

4.4. Application Results

• Point 2 shows the accessing of the forum ID from the data object.

• At point 3 the ID is �rst passed from the deleteForum() method into
a setInt() method which sets the ID as a parameter in a query.

• This query is then executed by the executeQuery() method call, which
uses the forum ID to delete a forum from the database.

• Finally, at point 4 we see that not only can the �ow which deletes the
forum be deferred, but also a logging action.

The analysis is showing that the computation and �ow of data presented
in Figure 4.17 does not in�uence the production of output necessary to gen-
erate the user response page.

4.4.4.2.4 Developer Interpretation and Response At this point it
is up to the developer to inspect this graph and determine the feasibility of
deferring some of the computations it represents. At a high level, having
received the forum ID from the user, one could modify the application to
enqueue asynchronous computations to perform the forum deletion and log-
ging. The request handler could then immediately return to the user, letting
them know that their request had been received and was being processed.

As to the details of how exactly to implement this change, such would
require a deeper investigation into the application's architecture. This will
be made more challenging by the fact that jGossip uses a lot of generated
code. Still, the analysis is useful in that it points out the possibility of this
optimization, allowing one to recognize it and focus on how to realize it.

4.4.4.2.5 Summary A database update and logging action which could
potentially be deferred were identi�ed, as per the goals of this experiment.
The computation occurs for an infrequently performed request, which re-
duces the usefulness of the optimization. However, having shown that the
analysis can identify such cases acts as a proof of concept from which to
search for further optimizations.

75

4.4. Application Results

4.4.5 Persistent State

4.4.5.1 RUBiS

4.4.5.1.1 Experimental Setup The setup is the same as for the second
request in Section 4.4.2.1.1.

4.4.5.1.2 Experimental Goals The goal of this experiment was to lo-
cate known persistent state added to the RUBiS application, and determine
which parts of the application interacted with the state.

4.4.5.1.3 Analysis

Taint Flow Breakdown The taint �ow for this setup has already been
discussed in Section 4.4.2.1.3.

Analysis Results Breakdown The analysis searches the graph for any
data which can be found in multiple requests. This is assumed to be persis-
tent data, used for keeping state which exists beyond the scope of a single
request. Figure 4.18 shows the location of persistent state when interacting
with the RUBiS messaging system. Only the portion of the graph which deals
with the persistent state is shown here. The red node shows where the per-
sistent state is actually kept, in a variable called `chattyList' on the Servlet-
Printer class. The orange nodes are those which communicated the persistent
data in question. As expected, these orange nodes include a chatMessage
parameter and its �ow into the chattyList, as well as the output nodes which
encompass the writing of the chat messages out to the user.

4.4.5.1.4 Developer Interpretation and Response Knowing where
persistent data is kept is not in itself an optimization. The knowledge of it
is useful in general. Earlier we mentioned cases where an application may be
in an environment where persistent state is not allowed or is unsafe. If such
were the case, these analysis results could be used to target such state for
removal, either by changing the logic of the application completely or moving
the state into an acceptable store. The `chattyList' data could simply be put
into a database table.

76

4
.4
.
A
p
p
lica

tio
n
R
esu

lts

Figure 4.18: RUBiS Browse Items State Analysis Results.

77

4.4. Application Results

Another use for this analysis would be to gauge how much of the logic
relies on this kind of stateful data when performing replication. When de-
ploying the RUBiS site across multiple servers to handle greater load, this
analysis shows us what execution relies on data which must be shared and
kept consistent across the servers. The `chattyList' data could be a bottle-
neck for the computation encompassed by the orange nodes.

4.4.5.1.5 Summary The analysis successfully identi�ed the in-memory
persistent state in the application and clearly indicated which parts of the
application made use of the data. With this information, one could perform
a variety of actions depending on one's needs. One could modify the appli-
cation to store the state in a database instead of in memory. One could also
consider how the application interacts with the persistent state to assess the
viability of replicating computations which depend on the state.

4.4.5.2 jGossip

This analysis revealed several instances of persistent state in the jGossip
application, mainly session attributes storing data read from the database
for quick lookup, such as forum threads and messages. We do not present
the results here, as the analysis is a basic one and is explored su�ciently in
the RUBiS example. Furthermore, the next analysis, user state, subsumes
this one and deals with the jGossip application.

4.4.6 User State

4.4.6.1 RUBiS

The RUBiS application did not contain any persistent state which was
not shared between multiple users, mainly due to the fact that it had no
notion of sessions.

4.4.6.2 jGossip

4.4.6.2.1 Experimental Setup For this analysis we traced jGossip while
logging in with two di�erent users, each coming from a di�erent IP address.
This was done in order to generate persistent state data for both users, as
we anticipated that some of this data would only be communicated with a
single user.

78

4.4. Application Results

4.4.6.2.2 Experimental Goals The goal of this experiment was to lo-
cate unknown persistent state in the jGossip application which was only
shared with a single user, and determine which parts of the application in-
teracted with the state.

4.4.6.2.3 Analysis

Taint Flow Breakdown We skip a breakdown of the taint �ow here due
to its size and complexity. Again, it is not possible to even view the graph
all at once, much less make sense of it. It is much more helpful to simply
run the analysis and use the results to understand the �ow of data in the
application, as well as how to improve it.

Analysis Results Breakdown We ran the automated user state analysis
over the taint �ow graph, which identi�ed the �ow shown in Figure 4.19.

Though it is not shown in the �gure, the analysis tool tells us that the
tainted data in this �ow is a username used to populate a username �eld
which appears on every page of the forum.

The fact that the analysis identi�ed this �ow indicates that this username
data has been used over multiple requests, but that each instance of this data
is only ever shared with a single user (di�erent users will understandably have
their own unique usernames). Breaking down the �gure:

• At point 1 we can see where the data is stored, in a Java Map object.
The Java Map is the underlying store for the system which stores user
session data in this application, and following the data from this node
we see calls to the getAttribute() method which is an API call used to
get session data.

• The data is passed through a series of internal, auto-generated JSP/JSTL
code and is eventually written out to the user at point 2.

4.4.6.2.4 Developer Interpretation and Response Knowing that
this data is only shared with a single user, one could potentially remove
this logic from the server-side code and allow the client to store their own
username. The �ow shown gives a developer some clues about what the
implications of this would be, in that they may need to emulate some of the
operations that the JSP/JSTL code performed in order to properly display
the data to the user. This amounts to relocating the path shown in the �gure

79

4
.4
.
A
p
p
lica

tio
n
R
esu

lts

Figure 4.19: jGossip Login User State Analysis Results.

80

4.4. Application Results

from the server to the client, starting with moving the data (point 1), then
the computation, and �nally outputting it to the user (point 2).

4.4.6.2.5 Summary Satisfying our experimental goals, the analysis iden-
ti�ed data present in multiple requests which was only shared with a single
user. Additionally, it showed the sequence of components responsible for
communicating the data from where it was stored to the user. This infor-
mation could potentially be used to move state stored on the server into the
client, making the application more resistant to failures on the server.

4.4.7 Wasteful Communication

4.4.7.1 RUBiS

The RUBiS application did not exhibit signi�cant wasteful communica-
tion, due to its simple design.

4.4.7.2 jGossip

4.4.7.2.1 Experimental Setup The setup is the same as in Section 4.4.3.2.1.

4.4.7.2.2 Experimental Goals For this experiment, we hoped to �nd
widespread occurrences of data being exchanged between functions and sub-
sequently never accessed.

4.4.7.2.3 Analysis

Taint Flow Breakdown Understanding the taint �ow is not necessary
for the goals of this experiment.

Analysis Results Breakdown This analysis was a very simple one, and
serves to hint at the potential for this technique. The wasteful communi-
cation analysis was run over the taint �ow graph obtained for the jGossip
caching analysis, removing any edges which carried tainted data which was
subsequently never accessed. Figure 4.20 shows a before and after view. On
the top is shown the unprocessed trace. On the bottom is the graph with
the removed edges. The �gure is merely a visual representation of the fact
that only 5921 of the original 14693 edges remained. This does not mean
that these removed edges carried no useful data, only that some of the data
they carried was never used. In jGossip this is largely due to the use of JSP,

81

4
.4
.
A
p
p
lica

tio
n
R
esu

lts

Figure 4.20: jGossip Wasteful Communication Analysis Results.82

4.4. Application Results

which passes around objects containing references to all the data needed
to render a page, whether or not they are needed in a particular function.
The �gure serves to show that such an occurrence can be quite prevalent in
certain applications, and that our analysis tool is capable of detecting it.

4.4.7.2.4 Developer Interpretation and Response At this point we
envision this analysis being mainly useful as an input to more speci�c analysis
tools. In particular, knowing whether or not data is used after it is commu-
nicated would be useful in getting better communication cost estimates for
application partitioning algorithms. If an application is partitioned, sharing
data between partitions incurs an additional cost, and thus only communi-
cating data when it is actually needed (used) will provide savings. Wasteful
communication should be avoided in a partitioning scenario, and so the al-
gorithms which attempt to discover optimal partitionings of an application
based on its data�ow should be aware of which data�ows are used and which
aren't.

It is also possible that this analysis could be used to help a developer
locate wasteful communication for the purpose of modifying the application
to remove it, saving resources. This would be particularly useful if the com-
munication was occurring across some expensive link, such as a network.

4.4.7.2.5 Summary The analysis identi�ed almost 60% of edges as car-
rying unnecessary data in a trace of a commonly accessed page. Mainly, these
results can be used to obtain better communication cost bounds for such
tools as application partitioning algorithms. One might also use the results
to identify application modi�cations for reducing wasteful inter-component
communication.

83

Chapter 5

Conclusions

5.1 Discussion of Results

Overall we have been able to prove our hypothesis that DIFT can be used
to help developers understand and automatically optimize web applications.

The results for the precomputation analysis on both applications were
particularly successful. In both cases the analysis was able to proceed with
minimal user intervention to produce the graphs in the evaluation. All that
was needed was the initial input source description �les, as well as some
manual �ltering out of nodes for some of the jGossip graphs for presentation
purposes.

The caching analysis, especially on the RUBiS application, was able to
not only identify the existence of cacheable output, but also clearly shows
all the inputs to consider for the cache. For RUBiS, one can easily see how
the various inputs from both the user and database come together to deter-
mine the result, and thus a developer should be able to easily use this in
implementing a cache for the data in question. It is useful to see the paths
of all the relevant data, quickly indicating the computations responsible for
transforming it to what the user sees. Additionally, the small graph sizes for
RUBiS mean that the analysis results are easy for one to grasp immediately.

Another analysis which worked particularly well was the user state anal-
ysis for jGossip. Looking for data�ow paths present in multiple requests
but not shared with more than one user produced clean graphs like the one
shown Section 4.4.6. It was easy to identify the location of the persistent
data, and subsequently the sequence of communications and computations
needed to take the data to its destination.

In the case of jGossip, the much larger graph sizes meant that more in-
tervention was needed to obtain the presented results. The caching analysis
for jGossip identi�ed tainted data�ow graphs which were cacheable. How-

84

5.1. Discussion of Results

ever, they were too large to immediately grasp due to large groups of nodes
from calls into frameworks. The graph shown in Section 4.4.3.2 was obtained
by inspecting some of the jGossip source to understand how the cacheable
data was likely �owing, and then searching in the analysis results for the
occurrence of this. Following that, nodes which did not contribute to the
interesting data�ow were manually �ltered out.

Heavier manual intervention was also needed for the jGossip postcom-
putation analysis, where again some knowledge of the code and what we
expected the analysis to actually �nd helped to locate the results in the
large output graphs. For this analysis there were many nodes in jGossip
which carried tainted data that never made it to the user, and as such were
identi�ed by the analysis heuristics. Since we wanted to focus on just the
nodes which contributed to a deferrable database write, some �ltering was
needed to present the graph.

Such di�culties are examples of the challenges present in automating
these kinds of analyses. Our results with the RUBiS application were very
optimistic�the graphs produced by the analysis tool were very easy to un-
derstand mainly because of their small size. Additionally, since RUBiS uses
no added libraries, every node in the result graphs is potentially relevant to
the developer.

For a framework-heavy application like jGossip the graphs are much
larger. At their current stage, most of our analysis results are negatively
a�ected by this complexity. They su�er from a `rats nest' e�ect, and require
some manual �ltering and searching to �nd the parts which could be used to
actually support a developer in optimizing the application. In the future the
analysis tool could be improved with IDE integration to link results more
closely with source code. Such could allow a developer to focus on analysis
�ows which relate to speci�c parts of their code, making it easier for devel-
opers to navigate through the analysis results.

A related problem, again most prevalent in the large jGossip graphs, is
that of false positives. The analyses were written to be fairly general in
order to �nd their results in applications which were not written to be eas-
ily analyzed. The permissive nature of these analyses may produce a large
number of results that need to be pared down to discover which of them are
truly useful. In the caching analysis for jGossip there were results where it
was possible for some �ows to be a�ected by random data through control

85

5.1. Discussion of Results

dependence. This could make the results poor candidates for caching, but
since our taint tracking technique does not consider control-�ow propagation
of taint, these results were allowed.

A �nal problem, unrelated to the analysis results, is that of the speed
of applications during taint tracking. Slowdowns of roughly two orders of
magnitude were observed, especially in the more complex jGossip applica-
tion. This is mainly because of the use of AspectJ, which introduced ine�-
ciencies inherent in its own design and forced us to perform some wasteful
workarounds to properly track tainted data. This reality, along with the fact
that the log �les could be very massive for even small amounts of application
activity (tens of thousands of lines per request in jGossip), meant that we
generally did not perform analyses over exhaustive taint traces. By this we
mean that we did not attempt to work the application through all or even a
majority of its possible execution paths. There are issues of coverage here,
with the possibility of some analyses being invalidated by additional data.
For example, exploring more requests for the user state analysis may have
revealed that the persistent data identi�ed was actually shared among mul-
tiple users in some cases.

Even with these shortcomings, the project was still successful given the
aims of the thesis. The analyses were able to identify their targets using
only the taint tracking data and in some cases light user input. Such input
could additionally be automated, such as by monitoring an application's use
of data to categorize the variability of its inputs as in the IDFs. As the
analyses found valid results, it shows that given optimization opportunities
it is possible for a taint tracking based automated analysis to target them. It
also demonstrates that the types of optimizations we sought to locate with
our analyses actually exist in real web applications. Furthermore, though
manual intervention is currently required to produce some of the results, the
automation that was observed was promising. Our analyses are relatively
simple, being composed ad hoc from rough descriptions in the literature, and
still they were in many cases able to produce very clean results, especially
for the simpler RUBiS application. In such cases an inexperienced developer
should be able to make use of even this early version of our tools.

Finally, one of the side e�ects of this work was the identi�cation of uses
for taint tracing data that we did not initially anticipate. The wasteful com-
munication analysis was discovered by accident when seeking a way to reduce
the complexity of graphs for other analyses. Having studied application par-

86

5.2. Future Work

titioning systems in the early stages of the project, we later recognized the
potential of knowing whether communicated data was actually used. This
was particularly exciting, as the data very easily supported an analysis that
we had not originally intended.

5.2 Future Work

Given the analysis results and our experiences working with the tools,
there are a variety of improvements to be made and interesting directions
to explore. These range from simple re�nements made to the taint tracking
and analysis tools to new research directions.

First of all, the tools need to be made more e�cient. The speed of the
tracker has to be improved signi�cantly, and here we suggest looking to recent
taint tracking research which has focused on ways to speed up the technique.
Even just moving away from AspectJ to a handwritten, byte-code level taint
tracking tool would provide large speedups. For the analysis tool, the prob-
lem is more on the memory side. When dealing with very large taint traces
like those obtained from jGossip, the graphs are so large that they may not
�t in memory. Addressing this could mean �nding a way to compress the
traces, possibly by ignoring/summarizing communication events which are
not particularly valuable to analysis (framework activity is a good candidate
for such measures). One could also modify the analyses to work e�ciently
with disk resident data, or to be more clever about how they use available
memory.

Moving away from AspectJ for the taint tracker could also allow a more
complete tracking. With AspectJ there was no perfect solution for tracking
the �ow of primitive data types, and what we have in place for tracking
numeric values is really a temporary measure. Implementing the tracker at
a lower level, such as Java byte-code, would provide the control necessary to
tag and track such values. One could also explore the e�ects of control-�ow
propagation on the analyses presented here. As has been discussed in the
literature, this may lead to many false positives, but there have been e�orts
to control the proliferation of tainted data in such scenarios which may o�er
useful lessons. Tracking in this way may capture dependencies between data
items that we miss, and allow for more accurate analyses.

Concerning the actual interaction with the analysis tool, the needs are

87

5.3. Final Words

mostly related to automation. If the tool was to be truly used to support
developers' understanding of applications, it needs to be able to o�er cleaner
results without expert intervention. Additional study is needed to re�ne the
analyses: to more accurately identify their targets and �nd ways of more
concisely presenting their results. Taking things much further, it would be
interesting to attempt to perform some optimizations automatically, as is
done in the Fluxo system. There are many challenges here, as the applica-
tions targeted by our system were not developed in restricted programming
models which make automatic changes easier. Following the improvements
to the analysis tool, it would be valuable to conduct a user study to deter-
mine if non-expert developers can actually use the tool to make optimization
decisions about web applications they are unfamiliar with.

Related to improving the analysis tool, the analyses themselves can be de-
veloped further. In the future we would like to do a more thorough evaluation
of speci�c analyses, taking the results from the tool and using them to mod-
ify applications. Modi�ed applications could be evaluated under typical use
scenarios to assess the quality of the optimization suggestions. Thoroughly
testing the possible execution paths over a wide variety of applications could
enable more accurate analyses as we discover what kinds of data�ow patterns
are common and exploitable for optimization. Further study of applications
and the literature would also likely reveal additional analyses supported by
the taint tracking data, as our set was not intended to be an exhaustive one.

Finally, once the tools are mature enough, we would like to attempt to
integrate their operation into other analysis tools to support them. In partic-
ular, we would start by augmenting an application partitioner by supplying
it with more data upon which to make better partitioning decisions. The
wasteful communication analysis would be of great use here in obtaining
better intermodule communication estimates. The work of combining our
tools with a real application partitioner has actually already begun.

5.3 Final Words

We have demonstrated a proof of concept taint tracker for Java web ap-
plications, and a series of analyses to consume the data and identify useful
properties. The goal was to show that taint tracking data could be used to
support a wide variety of analyses. Furthermore, the results of these anal-
yses would be geared to supporting developers in modifying applications to

88

5.3. Final Words

better deal with migration scenarios. By choosing analyses identi�ed in the
literature as useful to this end, we feel that we have made a sound �rst e�ort.
As all of the analyses were generally successful, �nding correct results in real
applications, we see promise in this technique. It is no trivial task to take
an application written in a non-restricted environment and attempt to auto-
matically optimize it, as there are many unexpected patterns which can arise.

The success we had was a result of focusing on getting a complete picture
of application data�ow, for which taint tracking was necessary. The primary
function of most web applications is the processing and serving of data for
their users. Data is the most natural thing to follow when seeking to un-
derstand and improve upon the functioning of these applications. Because
of the nature of the data we were collecting, and analyses were conceptually
quite simple, while still providing useful results.

Though there are many points of re�nement to be made in our tools and
additional testing to be done with real applications, we feel that the work
here is a signi�cant �rst step which should be taken further. By obtaining
comprehensive taint tracking, analyses without user intervention, and auto-
matic optimization of applications, a powerful resource for developers facing
migration scenarios can be realized.

89

Bibliography

[1] Mohammed I. Al-Saleh and Jedidiah R. Crandall. On information �ow
for intrusion detection: what if accurate full-system dynamic informa-
tion �ow tracking was possible? In Proceedings of the 2010 workshop
on New security paradigms, NSPW '10, pages 17�32, New York, NY,
USA, 2010. ACM.

[2] Alexandru Caracas, Andreas Kind, Dieter Gantenbein, Stefan Fusseneg-
ger, and Dimitrios Dechouniotis. Mining semantic relations using net-
�ow. In BDIM, pages 110�111, 2008.

[3] J. Challenger, A. Iyengar, and P. Dantzig. A scalable system for consis-
tently caching dynamic web data. In INFOCOM '99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 1, pages 294 �303 vol.1, mar 1999.

[4] James R. Challenger, Paul Dantzig, Arun Iyengar, Mark S. Squillante,
and Li Zhang. E�ciently serving dynamic data at highly accessed web
sites. IEEE/ACM Trans. Netw., 12(2):233�246, April 2004.

[5] Jim Challenger, Paul Dantzig, Arun Iyengar, and Karen Witting. A
fragment-based approach for e�ciently creating dynamic web content.
ACM Trans. Internet Technol., 5(2):359�389, May 2005.

[6] Jim Challenger, Arun Iyengar, Paul Dantzig, Daniel M. Dias, and
Nathaniel Mills. Engineering highly accessed web sites for performance.
In Web Engineering, Software Engineering and Web Application Devel-
opment, pages 247�265, London, UK, UK, 2001. Springer-Verlag.

[7] Erika Chin and David Wagner. E�cient character-level taint tracking
for java. In Proceedings of the 2009 ACM workshop on Secure web
services, SWS '09, pages 3�12, New York, NY, USA, 2009. ACM.

[8] Jim Chow, Ben Pfa�, Tal Gar�nkel, Kevin Christopher, and Mendel
Rosenblum. Understanding data lifetime via whole system simulation.
In Proceedings of the 13th conference on USENIX Security Symposium -

90

Bibliography

Volume 13, SSYM'04, pages 22�22, Berkeley, CA, USA, 2004. USENIX
Association.

[9] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. Clonecloud: elastic execution between mobile device and
cloud. In Proceedings of the sixth conference on Computer systems,
EuroSys '11, pages 301�314, New York, NY, USA, 2011. ACM.

[10] Byung-Gon Chun and Petros Maniatis. Dynamically partitioning ap-
plications between weak devices and clouds. In Proceedings of the 1st
ACM Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond, MCS '10, pages 7:1�7:5, New York, NY, USA,
2010. ACM.

[11] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: a �exi-
ble information �ow architecture for software security. SIGARCH Com-
put. Archit. News, 35(2):482�493, June 2007.

[12] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Tainting is not
pointless. SIGOPS Oper. Syst. Rev., 44(2):88�92, April 2010.

[13] Louis Degenaro, Arun Iyengar, Ilya Lipkind, and Isabelle Rouvellou.
A middleware system which intelligently caches query results. In
IFIP/ACM International Conference on Distributed systems platforms,
Middleware '00, pages 24�44, Secaucus, NJ, USA, 2000. Springer-Verlag
New York, Inc.

[14] Xiaohui Gu, Klara Nahrstedt, Alan Messer, Ira Greenberg, and Dejan
Milojicic. Adaptive o�oading inference for delivering applications in
pervasive computing environments. In Proceedings of the First IEEE In-
ternational Conference on Pervasive Computing and Communications,
PERCOM '03, pages 107�, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[15] Rajiv Gupta, Neelam Gupta, Xiangyu Zhang, Dennis Je�rey, Vijay
Nagarajan, Sriraman Tallam, and Chen Tian. Scalable dynamic infor-
mation �ow tracking and its applications. In IPDPS, pages 1�5, 2008.

[16] Mohammad Hajjat, Xin Sun, Yu-Wei Eric Sung, David Maltz, Sanjay
Rao, Kunwadee Sripanidkulchai, and Mohit Tawarmalani. Cloudward
bound: planning for bene�cial migration of enterprise applications to
the cloud. SIGCOMM Comput. Commun. Rev., 40(4):243�254, August
2010.

91

Bibliography

[17] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint
propagation for java. In Proceedings of the 21st Annual Computer Secu-
rity Applications Conference, ACSAC '05, pages 303�311, Washington,
DC, USA, 2005. IEEE Computer Society.

[18] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and An-
gelos D. Keromytis. libdft: practical dynamic data �ow tracking for
commodity systems. SIGPLAN Not., 47(7):121�132, March 2012.

[19] Emre Kiciman, Benjamin Livshits, Madanlal Musuvathi, and Kevin C.
Webb. Fluxo: a system for internet service programming by non-expert
developers. In Proceedings of the 1st ACM symposium on Cloud com-
puting, SoCC '10, pages 107�118, New York, NY, USA, 2010. ACM.

[20] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP, pages 220�242, 1997.

[21] Geo�rey Lefebvre, Brendan Cully, Christopher Head, Mark Spear,
Norm Hutchinson, Mike Feeley, and Andrew War�eld. Execution min-
ing. SIGPLAN Not., 47(7):145�158, March 2012.

[22] Shashidhar Mysore, Bita Mazloom, Banit Agrawal, and Timothy Sher-
wood. Understanding and visualizing full systems with data �ow tomog-
raphy. SIGARCH Comput. Archit. News, 36(1):211�221, March 2008.

[23] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for
automatic detection, analysis, and signaturegeneration of exploits on
commodity software. In NDSS, 2005.

[24] Shumao Ou, Kun Yang, and Jie Zhang. An e�ective o�oading middle-
ware for pervasive services on mobile devices. Pervasive Mob. Comput.,
3(4):362�385, August 2007.

[25] Alexander Rasmussen, Emre Kiciman, Benjamin Livshits, and Madan-
lal Musuvathi. Improving the responsiveness of internet services with
automatic cache placement. In Proceedings of the 4th ACM European
conference on Computer systems, EuroSys '09, pages 27�32, New York,
NY, USA, 2009. ACM.

[26] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
program execution via dynamic information �ow tracking. SIGPLAN
Not., 39(11):85�96, October 2004.

92

[27] Angeliki Zavou, Georgios Portokalidis, and Angelos D. Keromytis.
Taint-exchange: a generic system for cross-process and cross-host taint
tracking. In Proceedings of the 6th International conference on Ad-
vances in information and computer security, IWSEC'11, pages 113�
128, Berlin, Heidelberg, 2011. Springer-Verlag.

93

Appendix A

Terms Used

• Predictable: This describes data with deterministic values over some
range. A predictable data source will return an unknown value, but
it will be from a small enough set of values that the result could be
usefully cached.

• Stable: This describes data with strongly deterministic values. Gen-
erally, a stable data source should return the same known value for
extended periods.

• Taint: Where this is used, such as when saying that a piece of data in
an application is `tainted', it refers to data which has been tagged to be
tracked by the tracking system. Whenever tainted data is detected at
some monitoring point in an application, the system reports it. Taint
can include information about where the data came from, as is the
case for the system described here, referred to as the `taint source'.
In this thesis is made a minor distinction between objects which are
directly tainted and those which are reachability tainted. Directly
tainted objects include a set of basic types which, once tainted, are
always tainted. These include Strings, StringBu�ers, StringBuilders,
character arrays, and some numeric values. Reachability tainted means
that a directly tainted object is reachable through an object's reference
graph, such as by following a heirarchy of �eld references.

• Tomography: This refers to the nature of the taint tracking in question.
Tomography-level taint tracking is a heavy form of the analysis where
tainted data is not only tagged at a source and identi�ed at predeter-
mined monitoring points, but is rather tracked along its complete path,
indiscriminantly through many monitoring points. The basic goal of
tomography is to get a complete trace of where tainted data goes in a
program.

94

Appendix B

Input Description Files

B.1 Input Source Description File Format

<root>

<databasesourceinfo catalog="..."

table="..."

column="..."

variability="STABLE|PREDICTABLE|RANDOM"

numtracking="true|false" />

<requestsourceinfo uri="..."

parameter="..."

variability="STABLE|PREDICTABLE|RANDOM"

numtracking="true|false" />

</root>

As is shown here, the input source description �le has two types of
tags. databasesourceinfo tags describe inputs from database reads, and re-
questsourceinfo tags describe inputs from user web request parameters. For
database inputs, one can specify the catalog (database name), table, and
column names of data. For request parameters, one speci�es the uri of the
servlet which received the user data, as well as the name of the parameter
associated with it.

For both tags, one also speci�es the variability as being either STABLE,
PREDICTABLE, or RANDOM. These are used by the caching and precom-
putation analyses. Basically:

• STABLE sources have values which are not expected to change. When
the application reads data from these, generally the same values should
always be expected.

• PREDICTABLE sources have values over a reasonably predictable
range. While one does not always know what a read from one of

95

B.2. RUBiS Input Source Description File

these sources will produce, one does have some con�dence over the set
of possible values.

• RANDOM sources have non-deterministic values. They could produce
a di�erent value every time.

Finally, one can optionally, for columns and parameters producing nu-
meric values, indicate that the numeric values should be tracked by the taint
tracker, using the numtracking �ag. These values should not in�uence con-
trol statements in the program, due to how our system tracks numeric values,
so numtracking is best suited for things like identi�ers and values which are
not predicated on in the application. If not speci�ed, this defaults to false.

B.2 RUBiS Input Source Description File

The contents are specified in a non-XML, condensed format:

<databasesourceinfo ... />:

Database: catalog/table/column - variability: ...

- numtracking: ...

<requestsourceinfo ... />:

Request: uri:parameter - variability: ...

- numtracking: ...

Database: rubis/categories/id - variability: STABLE -

numtracking: true

Database: rubis/categories/name - variability: STABLE

Database: rubis/regions/id - variability: STABLE

- numtracking: true

Database: rubis/regions/name - variability: STABLE

Database: rubis/users/id - variability: STABLE

- numtracking: true

Request: SubmitChat:chatMessage - variability: RANDOM

Request: BrowseCategories:region - variability: PREDICTABLE

Request: BrowseCategories:nickname - variability: PREDICTABLE

Request: BrowseCategories:password - variability: PREDICTABLE

Request: RegisterItem:initialPrice - variability: RANDOM

- numtracking: true

Request: RegisterItem:reservePrice - variability: RANDOM

- numtracking: true

Request: RegisterItem:buyNow - variability: RANDOM

96

B.3. jGossip Input Source Description File

- numtracking: true

Request: RegisterItem:quantity - variability: RANDOM

- numtracking: true

Request: RegisterItem:userId - variability: PREDICTABLE

- numtracking: true

Request: RegisterItem:categoryId - variability: PREDICTABLE

- numtracking: true

B.3 jGossip Input Source Description File

The contents are specified in a non-XML, condensed format:

<databasesourceinfo ... />:

Database: catalog/table/column - variability: ...

- numtracking: ...

<requestsourceinfo ... />:

Request: uri:parameter - variability: ...

- numtracking: ...

Some column names have been modified here for clarity

Database: forum_db/jrf_forum/forumtitle - variability: STABLE

Database: forum_db/jrf_forum/forumdesc - variability: STABLE

Database: forum_db/jrf_forum/forumid - variability: STABLE

- numtracking: true

Database: forum_db/jrf_forum/locked - variability: STABLE

Database: forum_db/jrf_group/groupname - variability: STABLE

Database: forum_db/jrf_group/groupid - variability: STABLE

- numtracking: true

Database: forum_db/jrf_group/groupsort - variability: STABLE

Database: forum_db/jrf_message/content - variability: RANDOM

Database: forum_db/jrf_message/from - variability: RANDOM

Database: forum_db/jrf_message/heading - variability: STABLE

Database: forum_db/jrf_message/id - variability: RANDOM

- numtracking: true

Database: forum_db/jrf_thread/timestamp

- variability: PREDICTABLE

Database: forum_db/jrf_thread/tid - variability: PREDICTABLE

- numtracking: true

Database: forum_db/jrf_thread/sortby - variability: PREDICTABLE

97

B.3. jGossip Input Source Description File

Database: forum_db/jrf_whois/id - variability: PREDICTABLE

- numtracking: true

Database: forum_db/jrf_whois/ip - variability: RANDOM

Database: forum_db/jrf_whois/sessionid - variability: RANDOM

Database: forum_db/jrf_whois/username - variability: PREDICTABLE

Database: forum_db/jrf_skinparams/paramname - variability: STABLE

Database: forum_db/jrf_skinparams/paramvalue

- variability: STABLE

Database: forum_db/jrf_constants/name - variability: STABLE

Database: forum_db/jrf_constants/value - variability: STABLE

Request: DeleteForum:fid - variability: PREDICTABLE

- numtracking: true

Request: ShowForum:fid - variability: PREDICTABLE

- numtracking: true

98

