
Revisiting Recommendations: From Customers to
Manufacturers

by

Shailendra Agarwal

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

September 2013

c© Shailendra Agarwal, 2013

Abstract

Recommender systems exploit user feedback over items they have experienced for

making recommendations of other items that are most likely to appeal to them.

However, users and items are but two of the three types of entities participating in

this ecosystem of recommender systems. The third type of entities are the manu-

facturers of the products, and users are really their customers. Traditional recom-

mender systems research ignores the role of this third entity type and exclusively

focuses on the other two. What might item producers bring to recommender sys-

tems research? Their objectives are related to their business and are captured by

questions such as “what kind of (new) products should I manufacture that will

maximize their popularity?” These questions are not asked in a vacuum: manufac-

turers have constraints, e.g., a budget. The idea is that the user feedback data (e.g.,

ratings) capture users’ preferences. The question is whether we can learn enough

intelligence from it, so as to recommend new products to manufacturers that will

help meet their business objectives.

We propose the novel problem of new product recommendation for manufac-

turers. We collect real data by crawling popular e-commerce websites, and model

cost and popularity as a function of product attributes and their values. We incor-

porate cost constraints into our problem formulation: the cost of the new products

should fall within the desired range while maximizing the popularity. We show

that the above problem is NP-hard and develop a pseudo-polynomial time algo-

rithm for the recommendations generation. Finally, we conduct a comprehensive

experimental analysis where we compare our algorithm with several natural heuris-

tics on three real data sets and perform scalability experiments on a synthetic data

set.

ii

Preface

This thesis is the outcome of my collaborative research with my colleague Dr.

Amit Goyal and my supervisor Dr. Laks V.S. Lakshmanan. Below listed are the

contributions of each of the collaborators, including me.

Dr. Laks V.S. Lakshmanan was involved in the inital motivation of the prob-

lem solved here. He was present in many of the brainstorming sessions and gave

various suggestions to formulate the problem, to solve the problem and to conduct

experiments to test the proposed algorithm. He was also involved in refining the

content and presentation of the work.

Dr. Amit Goyal was present in all the discussions involving formally defining

the problem, proposing solutions to the problem and designing experiments. He

proposed various improvements to the algorithms. He looked at some of the pre-

vious literature in the field. He was also involved in improving the content and

presentation of the work.

Along with Dr. Laks V.S. Lakshmanan, I was involved in the initial brainstorm-

ing that led to the formulation of this problem. I looked at most of the previous lit-

erature in the field. I, along with both collaborators, defined the problem formally.

I was responsible for crawling the real data from multiple e-commerce websites.

I implemented the regression-based cost and popularity modeling. I proposed the

initial algorithm to solve the problem and conducted expeirments to test the algo-

rithm. I was responsible for keeping track of the work done during the project and

summarizing it.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

Glossary . viii

Acknowledgments . ix

1 Introduction . 1

2 Related Works . 5

3 Problem Definition . 8
3.1 Data Sets . 8

3.2 Issue of User Sparsity . 8

3.3 Our Problem Formulation . 10

4 Modeling Cost and Popularity . 12
4.1 Data Set Pre-processing . 12

4.2 Regression Analysis . 13

4.2.1 Comparison . 14

iv

4.2.2 Cost and Popularity Oracles 15

4.3 Strong Predictors . 17

5 Algorithm . 20
5.1 Complexity of RECMAN . 20

5.2 An Optimal Algorithm . 21

5.2.1 Sketch of Original Algorithm 21

5.2.2 Our Algorithm . 22

6 Experiments . 29
6.1 Evaluating our Algorithm . 29

6.1.1 Comparison of Algorithms w.r.t. Popularity 29

6.1.2 Variation in Popularity of Top-k Products 31

6.1.3 Scalability . 32

6.2 Recommended Product Designs 33

7 Conclusions and Future Work . 41

Bibliography . 43

v

List of Tables

Table 3.1 Raw Data Set Statistics . 9

Table 3.2 Frequency Distribution of User Ratings 10

Table 4.1 Pruned Data Set Statistics . 13

Table 4.2 RMSE in Predicting the Cost of Product 14

Table 4.3 RMSE in Predicting the Popularity of Product 15

Table 4.4 Top 10 Attribute-level Pairs in Cost and Popularity Modeling, in

decreasing order (a) Television (b) Camera. * denote Numerical

Attributes. 19

Table 6.1 Top 10 Attributes (in decreasing order of Popularity) of the Best

Product (a) Television (b) Camera. Right columns show all pos-

sible Levels for the particular Attribute and Level present in the

Best Product is underlined. *denote Numerical Attributes. . . . 40

vi

List of Figures

Figure 1.1 Example. 2

Figure 3.1 Frequency Distribution of Ratings from Product Perspective.

Left Y-axis: Television and Laptop; Right Y-axis: Camera. . . 11

Figure 4.1 Frequency Distribution of Percentage Prediction Error (a) Cost

(b) Popularity . 16

Figure 5.1 Television with two Attributes - Screen Size and Screen Type.

k = 3, Clb = 50 and Cub = 80 (a) Cost and Popularity of various

Levels of both Attributes (b) Dynamic Programming Table (c)

Top-3 Products . 24

Figure 6.1 Comparison of Algorithms w.r.t. Popularity in Television Cat-

egory . 34

Figure 6.2 Comparison of Algorithms w.r.t. Popularity in Camera Category 35

Figure 6.3 Comparison of Algorithms w.r.t. Popularity in Laptop Category 36

Figure 6.4 Popularity of Top-100 Products for four different Costs in Tele-

vision Category . 37

Figure 6.5 Running Time and Memory Usage with respect to Cost Upper

Bound and k on SYNTHETIC Data Set (a) Time (b) Memory . 38

Figure 6.6 Running Time and Memory Usage with respect to Number of

Feasible Products on SYNTHETIC Data Set. X-axis is Loga-

rithmic. 39

vii

Glossary

LOOCV Leave-one-out Cross-validation

OPDP Optimal Product Design Problem

MCKP Multiple-choice Knapsack Problem

RMSE Root Mean Square Error

RS Recommender Systems

RECMAN RECommendation for MANufacturers

viii

Acknowledgments

I would like to sincerely thank my supervisor Dr. Laks V.S. Lakshmanan for his

continuous support and encouragement throughout my study period. He was al-

ways excited to talk about new ideas and was a great help in completing this thesis

project. I would also like to thank Dr. Amit Goyal for the fun and insightful dis-

cussions we had during the course of this project. My thanks go to Dr. Rachel

Pottinger for patiently reading this thesis and providing suggestions for improve-

ment. I would like to thank Dr. Ruben H. Zamar, Dr. Matias Salibian-Barrera and

Fred for the various stimulating discussions during the project. Lastly, thanks to all

my friends, labmates and family for always being there.

ix

Chapter 1

Introduction

Recommender Systems (RS) exploit user feedback of items to make recommenda-

tions of other items that are most likely to appeal to them. In the ecosystem of a RS,

three types of entities participate – customers (users), products (items), and man-

ufacturers (item producers). Research in RS has mostly focused on the customer

perspective of the recommendation problem: how can we recommend high quality

products to customers in a personalized way? This is usually done by predicting

a user’s likely rating on a product she has not experienced before, by leveraging

users’ feedback on products they have experienced [17]. There is an important,

“flip” side to this problem: we still recommend products but the target population

no longer are the customers who buy the product, rather the target population now

are the manufacturers who sell the product. The perspective of this third entity

type, item manufacturers, has heretofore largely been ignored.

What might item producers bring to RS research? Their objectives are related

to their business and are captured by questions such as “what kind of (new) prod-

ucts should I manufacture that will maximize the popularity?” Here, a new product

refers to a non-existent product. E.g., a smartphone company may wish to know

how to “tune” the design of new products it would like to launch in the market

so that they achieve a high (online) popularity. A similar remark applies to the

manufacturers of other durable goods like video gaming consoles. These busi-

ness questions are not asked in a vacuum: manufacturers have constraints, e.g., a

budget. The idea is that the user feedback data (e.g., ratings) capture users’ pref-

1

Figure 1.1: Example.

erences. The question we ask is whether we can learn enough intelligence from it,

e.g., customers’ preference for products’ attribute values, so as to recommend new

products to manufacturers that will help meet their business objectives.

New product recommendations can be valuable to manufacturers: careful de-

sign of a new product before it is launched is crucial for the product’s success.

Marketing and launching a new product is expensive and critical to brand manage-

ment [11]. Once launched, it is difficult to roll back. Kotler et al. [11] identify bad

product design as one of the most frequent reasons for the failure of a new product.

Motivated by this, we bring a “dual” perspective, i.e., the business perspective, to

the long-studied customer-centric RS problem.

A product (or product category) possesses a number of attributes where each

attribute can have one of several possible values (also called levels). For instance,

consider the (simplified) example shown in Figure 1.1. In this example, the tele-

vision category has two attributes – Screen Size and Screen Type. Screen

Size has three values – Small, Medium and Large, while Screen Type has two val-

ues – LCD and Plasma. A product is designed by picking exactly one value for

each attribute, e.g., (Screen Size = Medium, Screen Type = LCD) is one out of six

feasible products. In real life, there may be multiple attributes, each having a large

number of possible values. The objective is to design one or more new products

maximizing their predicted popularity.

In this work, we focus on durable products. We collect data on three product

categories – camera, television and laptop – by crawling two popular e-commerce

platforms – www.shopping.com and www.bestbuy.com. Our first task is to build

predictive models for cost and popularity of products, where cost is the price per

unit of the product mentioned on the e-commerce website and popularity is the

2

www.shopping.com
www.bestbuy.com

number of customer ratings received by the product. A major challenge in building

predictive models is that these data sets suffer from acute user sparsity, that is, most

of the users rate very few products. Indeed the user sparsity issue is intrinstic to

these types of data sets: one user is unlikely to buy multiple (expensive) products

of the same kind (e.g., many cameras) and hence, may not review multiple similar

products. Thus, individual user preferences for product attributes cannot be learned

reliably. Consequently, instead of learning per-attribute user preferences, and then

estimating a new product’s popularity, we predict the popularity by directly esti-

mating the impact of various attribute values on popularity. Similarly, we build a

model for predicting the cost of a new product as a function of the attribute values

that make it up.

Since the decision of which product to launch may be driven by other external

considerations such as availability of expertise, engineering feasibility, etc., there

is a need for flexibility in the product designs recommended. To accommodate this,

we propose the problem of recommending top-k new items to the manufacturers.

Thus, similar to the k most appealing product recommendations to customers in

RS, we recommend top-k new products (k is a manufacturer specified parameter) to

manufacturers, out of which it can choose one or more products based on technical

feasibility, product diversity and other engineering concerns.

Cost is a key factor in designing new products [18, 21], as it directly influences

the quality of (attribute values in) the product. As Hauser et al. [5] note, “Price

plays a special role in consumer preferences. It is not a feature of a product per

se, but rather that which the consumer pays in return for features.” Moreover,

marketing decisions, such as which market segment to target, depend on the cost

of the product. Thus, in view of the importance of cost of a product, we allow the

manufacturer to specify a cost range such that the cost of the new products, should

satisfy the specified range, while maximizing the popularity.

In marketing research literature, the problem of optimal product design has

been extensively studied. Conjoint analysis is the popular approach that is fol-

lowed. The data is collected via conducting user surveys, and then, users’ pref-

erences are modeled based on the responses. A detailed comparison with that

problem appears in Chapter 2.

In summary, we formulate new product RECommendation for MANufacturers

3

(RECMAN) problem as follows: Given the attributes and the possible values that a

product (category) can have, lower bound Clb and upper bound Cub on cost, and a

parameter k, recommend k new products with top-k highest (predicted) popularity,

such that the (predicted) cost of each of these new products lies between the cost

bounds. We make the following contributions.

• We propose a novel problem of new product recommendation for manufac-

turers, capturing an interesting business perspective of recommender sys-

tems. Our formulation incorporates cost constraints and asks for top-k new

product designs that achieve the highest popularity with cost falling in a

specified range (Chapter 3).

• We explore various regression models to predict cost and popularity of prod-

uct and find that linear regression performs the best among them (Chapter 4).

• We show that RECMAN is NP-hard. We develop a pseudo-polynomial time

dynamic programming algorithm whose running time is polynomial in the

value of the cost upper bound. We show that our algorithm is optimal (Chap-

ter 5).

• We conduct a comprehensive set of experiments on three real data sets and

compare our algorithm with natural heuristics. The results show that our al-

gorithm outperforms the alternatives by considerable margins. Furthermore,

our algorithm scales very well w.r.t. both running time and memory usage

Chapter 6.

Related work is presented in Chapter 2, while we conclude the thesis in Chap-

ter 7.

4

Chapter 2

Related Works

A popular approach in RS is collaborative filtering, which seeks to predict the ex-

pected rating a given user may provide to an item which she hasn’t rated before.

The top items w.r.t. predicted ratings are then recommended to the user. Collabora-

tive filtering approaches can be classified into memory-based (e.g., User-based and

Item-based) and model-based (e.g., Matrix Factorization). We recommend Chap-

ters 4 and 5 of [17] as excellent surveys. As we have described above, while RS

research mostly focuses on recommending relevant items to customers, we pro-

pose a novel problem – recommending designs of new items to the manufacturers,

building and launching which, their popularity could be maximized.

Our work is partly inspired by the Optimal Product Design Problem (OPDP),

studied in the fields of Marketing and Operations Research. The objective here is

to design a new product that maximizes the number of users who buy it. In con-

joint analysis, which is the state of the art for this problem [3, 20], the utility of

a user u for a product is assumed to be additive, that is, sum of her utilities for

the values of different attributes of the product. If u’s utility for a new product

is higher than the utility of the status quo product that u owns, then u is assumed

to buy the new product. OPDP is known to be NP-hard [9] and several heuristics

have been proposed [20]. While the overall objective of OPDP is same as RECMAN,

on a higher level, there are several major differences between the two problems in

terms of input, constraints and the consequent solution approach. (i) In OPDP, the

data used is collected via conducting user surveys (see [3]), which are expensive

5

and time-consuming, while the input to RECMAN is the easily available RS data

i.e., ratings data collected from e-commerce websites. (ii) In OPDP, individual user

preferences are modeled. Whereas, as we show in Chapter 3, the durable prod-

ucts data sets have inherent acute user sparsity (each user buys and, hence, rates

very few items) and hence it is not possible to model individual user preferences

reliably. Accordingly, we look at each product as a whole and estimate the cost

and popularity of a new product as a function of product attributes of a given cat-

egory by aggregating the available social signals in the form of user ratings. (iii)

Unlike in OPDP, our problem admits cost constraints and aims to output top-k new

products instead of just one.

Das et al. [2] study the problem of web item design. They use collaborative tag-

ging data from users to identify new products that are expected to attract maximum

number of distinct desirable tags. Even though our problem, at a very high level,

bears some similarities to theirs, there are several key differences. Their objective

function is different: they take a set of desirable tags as input and try to maximize

the number of distinct desirable tags. On the other hand, our objective is to maxi-

mize product popularity. The different objective functions make way for different

solution approaches for the two problems. In particular, their approach cannot be

applied for recommending products that maximize number of ratings since their

framework ignores repeated tagging on the same item and only considers distinct

tags. Besides, unlike them, we incorporate cost constraints as input, thus providing

additionally flexibility to manufacturers.

Considerable work has been done on extracting customer opinions, by apply-

ing text mining techniques [1, 6, 16]. We recommend Chapter 5 of [13] for an

excellent survey. Archak et al. [1], in addition to mining customer opinions, apply

regression analysis to model sales (of products) as a function of opinions of product

attributes. For instance, one of their results is: a better camera has more positive

impact on sales (in category Camera and Photo) than a better battery. Our problem

is fundamentally different than that of opinion mining: our goal is to build new

products, to maximize the popularity. We do it by identifying the actual attribute-

values of products (instead of opinions). e.g., in our analysis, we find that a camera

with a memory stick is more popular than a camera with built-in memory. Note

that “memory stick” and “built-in” are two values of the attribute “memory type”.

6

Miah et al. [14] study the problem of finding top-k attributes of a product that

a seller should highlight in a marketplace such that it attracts maximum visibility.

The problems are significantly different as their goal is not to design a new product,

but to maximize the visibility of an existing product in a marketplace. Secondly,

they do not consider the identification of attribute values. Rather, the attribute

values are already known.

Real world product design is a more complex process involving product engi-

neering, advertising and other managerial decisions. Nevertheless, RECMAN tends

to provide a starting point to the decision makers regarding the set of attributes

values that are most important for maximizing popularity, given a cost constraint.

7

Chapter 3

Problem Definition

3.1 Data Sets
Before we define the problem statement formally, we explore the characteristics

of the data sets we collected. We perform our study on 3 types of durable prod-

ucts – television, camera and laptop. To collect the data, we crawled two popular

platforms – www.shopping.com for cameras and www.bestbuy.com for televisions

and laptops. From each data set, we built 3 tables as follows. The first table cor-

responds to the ratings log where each tuple 〈u, p,r〉 represents that user u rates

product p with rating r. The second table corresponds to products’ attributes data

where each tuple 〈p,a, l〉 indicates that in product p, attribute a has value (also

called level) l. Finally, the third table records the cost (sale price) of each product

as 〈p,c〉. Table 3.1 summarizes statistics of the raw crawled data. For instance,

in category television, the raw data contains 334 products, 9682 users and 9884

ratings. Each product (television) has 27 attributes, including both numerical and

categorical.

3.2 Issue of User Sparsity
In the original RS problem, a user is recommended k items by predicting her likely

ratings for items she has yet not rated. To do this, user preferences are captured

using her previous interactions with the system. For example, Matrix Factoriza-

8

www.shopping.com
www.bestbuy.com

Statistic Television Camera Laptop
Number of products 334 969 304

Number of users 9682 5317 2317
Number of ratings 9884 6013 2353

Number of attributes 27 90 16
Numerical 6 27 7
Categorical 21 63 9

Table 3.1: Raw Data Set Statistics

tion [10] represents each user by a latent factor vector which is learned based on

her prior ratings. So, a natural approach to solve RECMAN would be to build a

similar model for each user to predict whether the particular user would rate the

product, following which we can return the top-k products that are rated by maxi-

mum number of users. The argument below shows the problem encountered with

such an approach and paves the way for the possible approach.

In Table 3.2, we present the frequency distribution of ratings from a user per-

spective. The table shows, that for every product category, the number of users

who rated more than 1 product is a tiny fraction of the number of users who rated

exactly 1 product and this number decays extremely fast as number of ratings in-

creases. As we argued before, this behavior is intrinsic to durable products: it is

highly unlikely that one single user will buy (and rate) more than one or two prod-

ucts from a “single product category”. The average numbers of ratings per user

are 1.02, 1.13 and 1.01 respectively for television, camera and laptop categories.

We refer to this as the user sparsity issue. Similar user sparsity issue has also been

witnessed in other data sets like www.amazon.com and www.resellerratings.com,

across a variety of product categories – Books, Music, DVD, electronics, com-

puters etc. [7, 22]. Indeed, individual user preferences learnt from such data sets

would severely suffer from overspecialization and overfitting and, hence, would be

highly unreliable. Therefore, we formulate RECMAN in an alternative way that can

mitigate the user sparsity issue.

Instead of looking at individual user preferences, we look at each product as

a whole. Figure 3.1 shows the frequency distribution of ratings from product per-

spective. The plots show that the sparsity in this case is much less compared to

9

www.amazon.com
www.resellerratings.com

Number Number of users
of ratings Television Camera Laptop

1 9499 4997 2289
2 168 218 24
3 13 50 2
4 1 19 0
5 0 12 2
≥6 1 21 0

Table 3.2: Frequency Distribution of User Ratings

user sparsity. For instance, in television, 151 products received 5 or more ratings.

Similarly, in categories camera and laptop, the number of products which received

5 or more ratings are 288 and 88, respectively. The average numbers of ratings

received per product are 30.4, 6.2 and 7.9 respectively. We further prune the prod-

ucts that have received very few ratings (< 5). This gives us the average numbers

of ratings per product as 66.7, 19 and 26.8, corresponding to the three data sets.

These numbers suggest that if we look at the product as a whole, and try to model

cost and popularity as functions of attribute values of products, we would be able

to avoid the issue of overfitting.

3.3 Our Problem Formulation
The objective of RECMAN is to recommend top-k products such that the popularity,

expressed as number of ratings they receive are maximized. Let ρ denote a product

(or product category). With m, we denote the number of attributes it can have.

An attribute can assume several values (or levels). Then, a product is built by

selecting exactly one value for each attribute. We handle a realistic setting where

manufacturers may have cost constraints, by permitting parameters for lower bound

(denoted as Clb) and upper bound (denoted as Cub). The new products should

achieve the maximum popularity while leaving the cost of each of the products

within the specified cost bounds.

In case of RS, to recommend relevant products to users, the number of prod-

ucts that need to be explored are only the products that exist in the system. In other

words, search space is linear in case of RS. By contrast, in RECMAN, we must

10

0 25 50 75 100 125
0

100

200

300

400

N
u

m
b

er
 o

f
P

ro
d

u
ct

s

Number of ratings

0

200

400

600

800

1000

N
u

m
b

er
 o

f
P

ro
d

u
ct

s

0

200

400

600

800

1000

Television
Laptop

Camera

Figure 3.1: Frequency Distribution of Ratings from Product Perspective.
Left Y-axis: Television and Laptop; Right Y-axis: Camera.

recommend new product designs that don’t exist in the system. A product is built

by selecting exactly one value for each attribute, thus making the search space ex-

ponential. We refer to this space of product designs as Ω. Its important to bear this

in mind to understand the notion of scale for new product designs. Any algorithm,

to be useful, must scale w.r.t. the size of this huge search space. Notice that the

number of products in the data set has no direct bearing on the scale issue.

To define the problem, for now, we assume that we are given an oracle COST(ρ)

that predicts the cost of the product ρ , and another oracle POPULARITY(ρ) that

predicts the popularity of ρ . Further, we assume that cost (also popularity) of a

product can be determined by its attributes and hence can be modeled as a function

of the attributes. In Chapter 4, we explore various regression models to estimate

cost and popularity, and report our findings. We next formally state RECMAN.

Problem 1. Given a product design space Ω of m attributes and their possible

levels (values), lower bound Clb and upper bound Cub on cost, and a parameter

k, design k new products P ⊆ Ω, each by selecting exactly one level for each

attribute, such that ∀ρ ∈P : [Clb ≤ COST(ρ) ≤ Cub & @ρ ′ ∈ (Ω \P) : (Clb ≤
COST(ρ ′)≤Cub & POPULARITY(ρ ′)> POPULARITY(ρ))].

11

Chapter 4

Modeling Cost and Popularity

We first report the steps taken to clean the data. Then, we describe the models

explored for implementing cost (and popularity) oracles and compare their perfor-

mance. Further, we define COST(ρ) and POPULARITY(ρ), based on linear regres-

sion, the model which performs the best among those we explored. Finally, we give

a quantitative description of some of the attribute levels that are strong predictors

of cost (and popularity).

4.1 Data Set Pre-processing
The raw data set (Table 3.1) contains both numerical and categorical attributes. We

replace missing values of numerical attributes by the mean of known numerical

values of that attribute, and ignore missing values of categorical attributes [19].

We employ K-means Clustering with number of clusters as 3, to discretize the nu-

merical attributes into 3 clusters1. Next, we binarize all attributes to derive features

for regression analysis. For instance, for the attribute Screen Type in the example

shown in Figure 1.1, there are two levels – LCD and Plasma; we create two binary

features for it – ScreenType LCD and ScreenType Plasma.

To avoid overfitting, we take the following measures, on all three data sets.

First, we prune all the products that received few (< 5) ratings and very large num-

1We also tried K-means clustering with 5 clusters on numerical attributes. We obtained similar
results in both cases, although numerical values varied slightly. For brevity, we present results only
for 3 clusters.

12

Statistic Television Camera Laptop
Number of products 136 250 75
Number of ratings 7702 3612 1525

Number of attributes 13 34 15
Total # of levels 34 85 27

Table 4.1: Pruned Data Set Statistics

ber of ratings (top 2.5% of ratings received). Second, we remove the products

which are too costly (top 2.5%) or too cheap (bottom 2.5%). We remove the (bina-

rized) features that occur rarely (< 10 times). Finally, we do feature selection using

minimal-redundancy-maximal-relevance criterion [15]. Table 4.1 summarizes the

statistics of the pruned data.

4.2 Regression Analysis
We explore the following regression models (see [4]) for modeling cost and popu-

larity.

Linear Regression. It assumes a linear relationship between the features and

the expected output values of COST(·) and POPULARITY(·). We constrain the

coefficients of regression to be non-negative since both cost and popularity assume

only non-negative values.2

Poisson Regression. This is a generalized linear model that assumes linear rela-

tionship between input and logarithm of the output, and returns only non-negative

output, as required by our problem formulation.

Regression Trees. The idea here is to recursively partition the feature space

based on the value of features. At each step, the remaining set of training data

is divided into two classes based on the value of the feature under consideration.

This continues until a certain depth, calculated using various heuristics, following

which a model such as regression is fit, within each leaf of the tree [4].

We use MATLAB implementations of linear regression (lsqnonneg), poisson

regression (glmfit) and regression trees (classregtree). We perform Leave-

2For the sake of completeness, we also performed regression analysis with unconstrained coeffi-
cients. As expected, the results were worse than for the non-negative case.

13

Model used Television Camera Laptop
Linear Regression 343.5 320.6 293.5

Poisson Regression 360.4 526.6 235.3
Regression Tree 458.8 423.1 255.3

Range of cost ($$) 140 - 4300 50 - 2549 350 - 1900

Table 4.2: RMSE in Predicting the Cost of Product

one-out Cross-validation (LOOCV) (see chapter 4 of [19]) to compare various mod-

els. In LOOCV, the test set contains only one product and the training set contains

the remaining products. Thus, the total number of models built equals total num-

ber of products. A key benefit of using LOOCV is that it uses the maximum data to

train the model, which is especially helpful in cases when the data does not contain

many samples, as in our case.

4.2.1 Comparison

Table 4.2 and Table 4.3 show the Root Mean Square Error (RMSE) associated with

cost and popularity prediction using the three models. To provide a context, we

also include the range of cost and popularity under various categories in the ta-

ble. For example, in television category, the cost varies from $140 to $4300 (after

pre-processing) and popularity varies from 5 to 172 (note that we removed prod-

ucts which received less than 5 ratings, as part of pre-processing). Consider the

prediction of cost (Table 4.2): linear regression outperforms others in television

and camera categories, with RMSE values 343.5 and 320.6, respectively. Even

though linear regression is dominated by other models in laptop category, the gap

is marginal. Besides, it has significantly less error on the other two data sets. In

case of prediction of popularity (Table 4.3), linear regression with RMSE values

41.9, 8.6 and 16.7 is clearly better than the other two methods on all three datasets.

Hence, we take linear regression as the winner.

We further look into the error characteristics of linear regression and see if they

follow intuitions. The results are presented in Figure 4.1, in terms of percentage

14

Model used Television Camera Laptop
Linear Regression 41.9 8.6 16.7

Poisson Regression 54.3 11.0 80.9
Regression Tree 51.1 10.3 19.1

Range of popularity 5 - 172 5 - 44 5 - 66

Table 4.3: RMSE in Predicting the Popularity of Product

prediction error, which is computed as

|predicted value− actual value|
actual value

×100

Figure 4.1a shows the distribution of percentage error in cost prediction. It shows

that the frequency of percentage error decreases as the percentage error increases.

Thus, we can expect reasonable prediction accuracy, with high error occurring very

few times. Similar results for popularity are shown in Figure 4.1b. One immediate

observation, differentiating Figure 4.1a and Figure 4.1b is that the prediction of

popularity is not as accurate as that of cost. One possible reason is that, unlike cost

which depends mostly on attributes of a product, popularity may depend on various

other factors like quality of implementation of various attributes, marketing, overall

consumer experience, emotional attachment of consumers to the brand, etc. Hence,

the task of predicting popularity is more challenging than predicting cost.

4.2.2 Cost and Popularity Oracles

Having shown that linear regression is best able to model the cost and popularity,

here, we define the predicted cost as

COST(ρ) = ∑
(a:l)∈ρ

COST(a, l) (4.1)

where (a : l) ∈ ρ means that the attribute a has level l in the product ρ . Simi-

larly, we define the predicted popularity as

POPULARITY(ρ) = ∑
(a:l)∈ρ

POPULARITY(a, l) (4.2)

15

0 50 100 150 200
0

20

40

60

80

Percentage prediction error

N
u

m
b

er
 o

f
p

ro
d

u
ct

s

Camera
Television
Laptop

(a) Cost

0 50 100 150 200
0

20

40

60

80

Percentage prediction error

N
u

m
b

er
 o

f
p

ro
d

u
ct

s

Camera
Television
Laptop

(b) Popularity

Figure 4.1: Frequency Distribution of Percentage Prediction Error (a) Cost
(b) Popularity

16

Here, COST(a, l) (POPULARITY(a, l)) is the coefficient of the binarized fea-

ture that corresponds to level l found in the linear regression model of COST (.)

(POPULARITY (.)), and, effectively, denotes the impact of level l on the overall cost

(popularity) of product. For simplicity, we refer to COST(a, l) (POPULARITY(a, l))

as cost (popularity) of l. Note that we have constrained both COST(a, l) and

POPULARITY(a, l) to be non-negative, so that the COST(ρ) and POPULARITY(ρ)

are also non-negative.

4.3 Strong Predictors
Table 4.4 shows the top 10 attribute-level pairs that are strong predictors of the cost

and popularity (top 10 highest regression coefficients) of television and camera

category, respectively. Recall that we binarize the attribute-value pairs, hence, one

attribute may appear multiple times in both tables. Most of the results match our

intuitions, for example, in television category, high dollar savings on a product

implies that the cost of product would be high and is a good indicator of cost.

Similarly, large size of screen significantly increases the cost of television. Ethernet

port is present only in high cost televisions and brand LG mostly has high priced

televisions compared to Dynex and Insignia.

Looking at popularity modeling, in the television category, we find that brand

is the most important predictor of popularity. Also note that, many attribute-level

pairs that have high cost don’t have high popularity. This is because the majority

of population chooses products that have neither very high nor very low cost. Such

products have medium dollar savings and 2 HDMI inputs, instead of high dollar

savings and 4 HDMI inputs which have higher cost. We further investigate the

televisions of brand Dynex, which has the highest popularity. We find that these

are only available at two stores: www.bestbuy.com and www.futureshop.ca. Since

our television data set was crawled from www.bestbuy.com, it is naturally biased

towards the popularity of this brand.

In camera category, cameras belonging to Nikon D and Canon EOS family

lines are expensive. Further, cameras with HDMI interface are costlier as opposed

to cameras with USB interface and cameras having interchangeable lens cost high.

For popularity modeling, popularity of cameras with memory stick is higher than

17

www.bestbuy.com
www.futureshop.ca
www.bestbuy.com

cameras with compact flash card. This again supports our observation, from televi-

sion category, that majority of population chooses products that have neither very

high cost (compact flash card) nor very low cost (built-in memory), but goes for

something in between (memory stick).

18

Cost Popularity
Attribute Level Attribute Level
Dollar savings* High Brand Dynex
Screen size* Large Brand Insignia
Dollar savings* Medium Refresh rate 120 Hz
Refresh rate 240 Hz Dollar savings* Medium
Brand LG Refresh rate 240 Hz
Refresh rate 600 Hz Dollar savings* High
#HDMI inputs 4 #HDMI inputs 2
Ethernet port Present Brand Samsung
Screen size* Medium Vert. resolution 768 pixel
USB port Present Screen size* Medium

(a) Television

Cost Popularity
Attribute Level Attribute Level
Family line Nikon D Memory type Memory
Family line Canon EOS stick
Interface type HDMI Compression mode Basic
Interchangeable lens Yes Resolution* Low
Width* Medium Height* Medium
32 MB Memory card Present Battery type Lithium
Memory type Compact flash Max. movie length* Medium

card type II Viewfinder Optical
Compression type TIFF Built-in memory size* Large
Software Absent 32 MB Memory Card Present
Memory type Memory stick LCD screen size* Small

(b) Camera

Table 4.4: Top 10 Attribute-level Pairs in Cost and Popularity Modeling, in
decreasing order (a) Television (b) Camera. * denote Numerical At-
tributes.

19

Chapter 5

Algorithm

5.1 Complexity of RECMAN

Next, we analyze the complexity of RECMAN. We show that it is NP-hard and is

closely related to the Multiple-choice Knapsack Problem (MCKP) [8]. MCKP is a

generalization of the classical knapsack problem. In classical knapsack, given a set

of n items, where each item j ∈ [1,n] is associated with a profit p j and a weight w j,

the goal is to pick a set of items such that their total weight is under a given bound

W , and the total profit is maximum. In MCKP, the items are partitioned into m lists

(or classes), and exactly one item must be selected from each list such that the total

cost is under W and the profit is maximum.

Theorem 1. RECMAN as defined in Problem 1 such that COST(·) and POPULARITY(·)
are defined as in Equation 4.1 and Equation 4.2, respectively, is NP-hard.

Proof. We reduce MCKP to RECMAN. Given an instance I of MCKP, create an

instance G of RECMAN as follows. Set k = 1 and Clb = 0 in instance G . For

each list Li in instance I , create an attribute ai in instance G . Next, for each

item x in a list Li in I , create a level lx for the corresponding attribute ai in G .

Set COST(ai, lx) = wix where wix is the weight of item x in list Li. Similarly, set

POPULARITY(ai, lx) = pix, where pix is the profit of item x in list Li. Finally, set

Cub =W .

Considering only top-1 product design (k = 1), a new product ρ in instance G

20

is a tuple of attribute-level pairs, which in turn corresponds to a set of items S in

instance I , exactly one from each list. Clearly, the total weight of S is same as

COST(ρ) and likewise, the profit of S is same as POPULARITY(ρ). Hence ρ is a

solution to RECMAN iff the corresponding set of items S is a solution to MCKP,

showing RECMAN is NP-hard.

5.2 An Optimal Algorithm
One may naturally believe that since the problem is NP-hard, we may need to settle

for an approximation algorithm or resort to heuristics. Interestingly, this is not the

case with RECMAN. Even though RECMAN is NP-hard, we show that the algorithm

that we develop in this section is both optimal and scalable, for real world data sets

in our context. Its running time is linear in the upper bound of the cost range

of the product, i.e., Cub. In experiments, we show that our algorithm scales well

on large data sets even when the cost upper bound Cub is as high as 100,000 $.

The algorithm is an extension of a dynamic programming algorithm proposed for

MCKP [8]. For ease of exposition, we first describe the original algorithm adapted

to our context.

5.2.1 Sketch of Original Algorithm

It maintains a table T of size (m+ 1)× (Cub + 1) where each entry in the table

contains the popularity of the optimal partial product. If costs are real numbers,

they are rounded off to the nearest integer to facilitate table construction [8]. The

row index of the table corresponds to an attribute of the product and the column

index corresponds to the cost. All indices start with 0. We initialize row 0 with

appropriate base cases and then span the entire table T , one row at a time, starting

from index [1,0]. At any step, corresponding to index [i, j], build the optimal partial

product such that its cost is exactly j and it contains the attributes {1, · · · , i}. The

idea is that the optimal partial products for row i can be built recursively from the

optimal partial products for row i−1. When the table is built completely, pick the

product at index T [m, j] such that j ≤ Cub and T [m, j] is maximum. Finally, the

levels of attributes of the optimal product are obtained from a backtracking process

where, starting from the last row at index [m, j], the optimal level for each attribute

21

is used to arrive to the previous row. This is done until levels of all attributes are

extracted.

5.2.2 Our Algorithm

Our problem differs from MCKP in two respects. (i) First, instead of only one op-

timal product, we are interested in top-k optimal products. (ii) Second, in addition

to upper bound on cost, we also have a lower bound on it. Hence, RECMAN is

a generalization of MCKP, and we adapt the above framework according to our

needs. However, extension of the original algorithm to handle the top-k require-

ment (instead of top-1) is non-trivial as now we need to ensure that (i) no redundant

products are formed (ii) no product among the top-k optimal products is missed. In

particular, instead of maintaining one optimal partial product at index [i, j] in table

T , we maintain a list of at most k partial products.

To the best of our knowledge, this is the first work that proposes top-k solutions

to MCKP, while the existing works only consider top-1 solution [8]. The well-

known Lawler’s procedure [12] could be used to obtain a top-k algorithm. It is a

general technique to enumerate top-k solutions to any optimization problem, given

an algorithm for the optimal solution. It’s worth noting that if we use Lawler’s

procedure combined with top-1 algorithm for MCKP, the running time complexity

would be much higher than that of our top-k algorithm. We will revisit it after

describing our algorithm. Thus, this is a significant algorithmic contribution in

itself.

The overall process is presented in Algorithm 1. We represent a (partial) prod-

uct using a vector p = 〈attr, cost, depth, popularity, level, flag〉, where

p.attr is the row index, p.cost is the column index and p.depth is the depth or

rank of (partial) product p among top-k partial products at the corresponding in-

dex [p.attr,p.cost]. p.popularity stores the popularity of the partial product

p, while p.level keeps the optimal level of the attribute p.attr. The variable

flag is employed to save temporary information. We first initialize index [0,0] of

table T by inserting an empty product there with popularity 0 (line 1). Then, using

Algorithm 2, we span the table, one row at a time, starting from index [1,0] and

build the list of top-k partial products (lines 2-4). Finally, we backtrack to get the

22

top-k optimal product profiles, using Algorithm 3 (line 5). In this section, the term

product profile refers to the set of attributes and the corresponding values of the

product.

Algorithm 1 Overall process
1: Initialize [0,0] of table T by inserting an empty product with popularity 0.
2: for i← 1 : m do
3: for j← 0 : Cub do
4: Build top-k partial products at [i,j] (Algorithm 2).
5: Backtrack to get back the top-k product profiles (Algorithm 3).

We describe Algorithm 2 with the help of an example, shown in Figure 5.1,

where we revisit the toy example from the introduction. Cost and popularity in-

formation for both attributes Screen Size and Screen type for category television

are presented in Figure 5.1a. Figure 5.1b shows the dynamic programming table

T . The cost bounds Clb and Cub are set to 50 and 80, respectively, while k is set to

3. Table T has m+1 = 3 rows and potentially Cub +1 = 81 columns. The table is

sparse and we show only the columns that have at least one filled entry. Each cell

can have up to k = 3 partial products.

Algorithm 2 Build top-k products for index [i, j]

1: for depth← 1 : k do
2: Initialize a new product p with p.attr← i, p.cost← j and p.depth←

depth.
3: S← /0.
4: for each level corresponding to attribute p.attr do
5: Let p′ be the product such that p′.attr= p.attr−1, p′.cost= p.cost−

COST(p.attr, level), p′.depth= 1+ |{p′′|p′′.attr= p.attr,p′′.cost=
p.cost,p′′.level= level,p′′.depth< p.depth}|.

6: p′.flag← level; S← S∪{p′}.
7: If S = /0, break.
8: p′best ← argmaxp′∈S(p

′.popularity+POPULARITY(p.attr,p′.flag)).
9: p.level← p′best .flag.

10: p.popularity← p′best .popularity+POPULARITY(p.attr,p.level).

For each index [i, j] and each value of depth, Algorithm 2 builds a new prod-

uct p. It starts by initializing p (line 2). In S (initialized in line 3), we store

23

(a) Cost and Popularity of various Levels of both Attributes

(b) Dynamic Programming Table

(c) Top-3 Products

Figure 5.1: Television with two Attributes - Screen Size and Screen Type.
k = 3, Clb = 50 and Cub = 80 (a) Cost and Popularity of various Levels
of both Attributes (b) Dynamic Programming Table (c) Top-3 Products

24

the set of partial products of row i− 1 that help us in building p. We look at

each level that the product p may possibly assume for the current attribute p.attr

(line 4). To calculate the optimal popularity, we look at every relevant product

p′ from the previous row (line 5), store it in S (line 6), and later, pick the one

which provides the maximum popularity (line 8). For a product p′ to be relevant,

clearly it should belong to row p.attr− 1. Moreover, its cost should be exactly

p.cost− COST(p.attr, level) so that adding level level for attribute p.attr to

p′ would make it equivalent to p. Recall that COST(p.attr, level) is the cost of

the level level for attribute p.attr which can be determined with a cost oracle,

e.g., using linear regression. To ensure that we do not form redundant products,

we take the partial product p′ that has yet not been combined with level level to

build a top-k partial product for the current index [i, j]. At the same time, we want

p′ to be optimal among all partial products satisfying these conditions. Hence,

p′.depth= 1 plus the number of partial products that have previously been formed

at [p.attr,p.cost] using level level (line 5). If there exists such a product, we add

it to S (line 6). In flag, we store the corresponding level (line 6). Next, the chosen

level is saved in p.level (line 9) which is used in the subsequent backtracking

process, discussed below. Finally, the popularity of p is calculated (line 10).

Once the table T is built, we can identify the top-k products w.r.t. maximum

popularity by following Algorithm 3. We look at each product p such that p.attr=

m and p.cost ∈ [Clb,Cub] and take the top-k among them (line 1). Note that, till

now, we only have the top-k popularity (in Figure 5.1b, the top-3 popularity are

120, 100 and 90), and to get the complete product profile, we use the backtracking

process. We store the product profiles in a set Q, such that each product profile

q ∈ Q contains m entries of the form 〈a, l〉, denoting the level l for attribute a for

product q (shown in Figure 5.1c). Q is initially empty (line 2). We analyze one

product p among top-k products at a time (line 4) and initialize an empty product

profile for it (line 5). The product profile is built in lines 6-9, where the goal is to

determine the levels of the attributes that were being used to form the product in

context. To this end, we backtrack one row at a time and re-discover the partial

products. Let p′ denote such a partial product. Clearly, p′.attr = p.attr− 1 as

we move up, one row at a time. Recall that we store the optimal level in p.level,

and hence, p′.cost = p.cost−COST(p.level). Finally, there may be multiple

25

partial products p′ that satisfy these conditions. Similar to Algorithm 2, we want

p′.depth such that no redundant products are formed and, at the same time, p′ is

optimal at its depth (line 8).

Algorithm 3 Backtrack
1: P ← k-argmaxp|p.attr=m,p.cost∈[Clb,Cub]

p.popularity.
2: Q← /0.
3: while P 6= /0 do
4: p←P.pop().
5: Initialize an empty product profile q.
6: while p 6= /0 do
7: q.push(〈p.attr,p.level〉).
8: Let p′ be the product such that p′.attr= p.attr−1, p′.cost= p.cost−

COST(p.level), p′.depth = 1 + |{p′′|p′′.attr = p.attr,p′′.cost =
p.cost,p′′.level= p.level,p′′.depth< p.depth}|.

9: p← p′.
10: Q← Q∪{q}.

Note that, we can identify a position of a partial product in table T by a smaller-

sized tuple 〈attr,cost,depth〉, which contains only the first three elements of

the entire product tuple. In the example, we can see that while building the partial

product at position 〈2,60,2〉 (filled rectangle in Figure 5.1b), S consists of partial

products at positions 〈1,20,1〉 and 〈1,40,2〉 (ovals in Figure 5.1b). Note that, S

does not contain the partial product at 〈1,40,1〉 since it has already been used

to construct the product at 〈2,60,1〉. The value of flag for partial products at

〈1,20,1〉 and 〈1,40,2〉 would correspond to levels LCD and Plasma, respectively.

The level chosen by the algorithm corresponding to position 〈2,60,2〉 is LCD,

because p′best would be at position 〈1,20,1〉 (filled oval in Figure 5.1b).

We next show that our algorithm is optimal.

Theorem 2 (Optimality). The algorithm described above correctly finds the opti-

mal solution to RECMAN.

Proof. For brevity, we only show the proof that the popularity found by the algo-

rithm is the correct optimal popularity. The correctness of Algorithm 3 in finding

the optimal product profile is straightforward. The proof is by induction.

26

Base Case: The base case corresponds to row index i being 0. Index [0,0]

contains the empty product (with no attributes) with cost and popularity 0. Any

other index [0, j] for j ∈ 1, . . . ,Cub doesn’t contain any product, as the cost of an

empty product cannot be more than 0. This is trivially correct.

Induction Step: Assume the optimality for row i− 1, i.e., the algorithm cor-

rectly discovers all the top-k optimal products corresponding to row i−1. Consider

any index [i, j], for any j. Let Sa
i be the set of partial products at index [i, j] found

by our algorithm, and S∗i be the top-k optimal products at index [i, j]. Assume

there exists a product x ∈ S∗i : x /∈ Sa
i , that is, x is among the top-k optimal prod-

ucts at index [i, j], but our algorithm didn’t find it. To be precise, x.attr = i,

x.cost = j. Let x′ be the partial product we obtain after removing attribute i

from x. Then, x′.attr = i− 1, x′.cost = x.cost−COST(x.attr,x.level) and

x′.popularity = x.popularity− POPULARITY(x.attr,x.level). Let S∗i−1 be

the top-k optimal products at index [i−1,x′.cost]. and Sa
i−1 be the products iden-

tified by our algorithm.

Three possible cases arise: (i) x′ does not exist, in which case x does not exist

(which is a contradiction). (ii) x′ exists but x′ /∈ S∗i−1. In this case, we can obtain

k better products (in terms of popularity) than x at index [i, j], by adding level

x.level for attribute i (to products in S∗i−1). Hence, x /∈ S∗i , which is a contradiction.

(iii) x′ exists and x′ ∈ S∗i−1. In this case, because of the induction hypothesis which

assumes the optimality for row i− 1, all products in S∗i−1, including x′, must have

been identified by our algorithm. As x′ is already discovered by our algorithm,

then it must have been already considered by the algorithm to build top-k products

at index [i, j]. Since x is not found by the algorithm, for every product p ∈ Sa
i , we

must have p.popularity≥ x.popularity and |Sa
i |= k. Hence, x cannot be in S∗i .

Again, this is a contradiction. This completes the proof.

Complexity of the Algorithm. It can be shown that space complexity of our

algorithm is O(Cub · k ·m), while time complexity is O(Cub · k ·∑i∈[1,m] Li), where

Li is the number of levels for attribute i. In comparison, if we use Lawler’s proce-

dure [12] along with the optimal (top-1) algorithm for MCKP, then space complex-

ity would be O(Cub ·m) and time complexity would be O(Cub · k · (∑i∈[1,m] Li)
2).

Our algorithm runs faster than Lawler’s procedure, but uses more memory. Hence,

27

we provide an alternative method to find top-k solutions of MCKP, that trades space

for time.

28

Chapter 6

Experiments

The goals of our experiments is two-fold. (1) Evaluating our algorithm by com-

paring it to other intuitive and natural heuristics. Studying the effect of parameter

k on the popularity achieved and, finally, showing the scalability of our algorithm,

by running it on a larger (synthetic) dataset (Section 6.1), and (2) Reporting the

configuration of the best product generated by our algorithm (Section 6.2).

6.1 Evaluating our Algorithm

6.1.1 Comparison of Algorithms w.r.t. Popularity

In Theorem 2, we proved that our algorithm outputs the top-k optimal product

recommendations. Here, we compare the algorithm with other natural heuristics,

empirically. Before we study the effect of k, we compare the following algorithms

and heuristics, for the case when k = 1. Recall that our algorithm is exact and

hence, we expect the popularity achieved from it to be an upper bound. The aim

of this comparison is to look at the difference in popularity achieved by the exact

algorithm and various heuristics. We use attr(p) to denote the level assumed by

the product p for the attribute attr. We let E denote the set of existing products in

a given data set.

OPTIMAL: This is our algorithm as described in Section 5.2. Note that costs

(linear regression coefficients) of individual levels in general are real-valued. We

29

round them off to turn them into integers with no significant loss of accuracy in

modeling the cost of product.

RANDOM: We generate 100,000 random products by randomly selecting a

level corresponding to each attribute. Based on its cost, each product is binned into

one of the cost ranges and average popularity is calculated for each bin. Note that

the popularity returned might not correspond to an actual product, rather it is the

popularity that one can expect when a product is chosen at random. We take this

as a baseline.

EXISTING: Given the cost bounds, this method selects an existing product in

the data set that has cost within the bounds and has maximum popularity. That is,

a “new” product ρ is chosen such that

ρ = argmax
p∈E:COST(p)∈[Clb,Cub]

POPULARITY(p)

The idea is to see how the optimal product found by our algorithm compares in

terms of popularity with the best existing product whose cost falls in the range

[Clb,Cub].

GREEDY: This is a relatively sophisticated heuristic. For each attribute attr,

a level is selected such that

attr(ρ) = argmin
level

COST(attr,level)

For all levels l (except attr(ρ)) corresponding to attribute attr, the efficiency is

defined as Efficiency(attr, l) =

POPULARITY(attr, l)−POPULARITY(attr,attr(ρ))

COST(attr, l)−COST(attr,attr(ρ))

At any step, attr(ρ) is replaced by another level l corresponding to attr that

has the current maximum efficiency. Further, efficiency of the remaining levels

of attr is updated. This is done until COST(ρ) does not exceed Cub. Popularity

for all products which have cost within the cost range are noted and the maximum

popularity becomes the greedy solution. It may happen that during this process,

30

COST(ρ) jumps directly from below Clb to above Cub. In this case, instead of

maximum efficiency, the level corresponding to lower efficiencies are considered

until a product is formed within the cost range or no unseen level is left. In the

latter case, greedy heuristic returns the null product.

In all experiments, we set the size of the cost range to be Cub−Clb = 100, and

Cub is the cost shown on the plots. Work done would be almost the same even if

the size of cost range were varied for a given value of the cost upper bound.

In Figure 6.1, Figure 6.2 and Figure 6.3, we compare various methods de-

scribed above w.r.t. popularity achieved, where the popularity are predicted using

linear regression, for television, camera and laptop, respectively. The results show

that our OPTIMAL algorithm beats other algorithms, including GREEDY, by a com-

fortable margin, on all 3 data sets. For instance, in television category (Figure 6.1),

for the cost bound of 1900-2000, OPTIMAL achieves the popularity of 174, an im-

provement by 30% over GREEDY, which achieves 134. For the same cost bound,

EXISTING and RANDOM achieve the popularity of 67 and 96, respectively. Hence,

for the same cost bound, there is significant room for improvement in the prod-

ucts currently existing in the market. Note that, at certain cost bounds, popularity

achieved by GREEDY is the same as popularity achieved by OPTIMAL. Similarly,

in camera category (Figure 6.2), for the cost bound of 1900-2000, while the pop-

ularity achieved using OPTIMAL algorithm is 50, it is 37 from using the GREEDY

algorithm. Interestingly, for laptop (Figure 6.3), we observe that GREEDY performs

very well, almost as good as OPTIMAL, for most cost bounds. Overall, OPTIMAL

outperforms other methods and GREEDY is the next choice.

6.1.2 Variation in Popularity of Top-k Products

Figure 6.4 shows the variation in the popularity of top-k products, for different val-

ues of cost (i.e., Cub), in category television. As expected, the popularity decreases

as the value of k increases. Interestingly, the decrease in popularity is slow. For

instance, when the cost is 1500, the popularity of the top-1 product is 185 while

the popularity of 100th product is 162, i.e. the average decrease in popularity is

only 0.23 for unit increase in k. This observation suggests that there is not much

of a difference in popularity among top products (in the real data sets we tested),

31

strengthening our hypothesis that it is important to recommend multiple products

to the marketing decision maker as she can look at variety of products, all with

high popularity, and choose one from among them.

6.1.3 Scalability

The three key factors affecting the running time and space complexity of our algo-

rithm are: Cost upper bound Cub, number of products returned k and the number

of levels in each attribute. Note, in Figure 6.2, the maximum possible cost of any

camera is 2700, which is not representative of all real-world products. Thus, to

cover most actual products in real life, we create a SYNTHETIC dataset by scaling

the costs in category camera (camera is the biggest of all three real data sets). The

scaling is done so that the sum of the cost coefficients of the maximum cost levels

of each attribute becomes 100,000, i.e., the maximum cost of possible products is

100,000, which, we believe, covers the cost of most actual products in real life.

We also add dummy attributes-level pairs to double the number of attribute-level

pairs in the original camera data set. This is done to show the scalability of the

algorithm w.r.t. number of feasible products. We show results in Figure 6.5 and

Figure 6.6. Figure 6.5 shows the results for five different costs (Cub) between 0 and

100,000, at equal intervals, and three different values of k (note the two y-axes in

the figure). We vary k over 1, 10 and 100. It is clear that the algorithm is scalable

both in running time (Figure 6.5a) and memory (Figure 6.5b). For example, for

Cub = 50,000, the time taken for k=1, 10 and 100 is just 5, 6 and 13 seconds, re-

spectively. Similarly, the memory used is 0.5, 0.8 and 3.0 GB, respectively. Thus,

the increase in time and memory is not huge even when the number of products

recommended is increased by orders of magnitude.

In Figure 6.6, we plot the time and memory performance against the number

of feasible products. The plot has two Y-axes, on the left we have running time

and on the right, we have memory usage. We fixed Cub = 100,000 and k = 100.

To vary the number of feasible products, we remove ten attributes at a time from

the SYNTHETIC data set. As we can see, the algorithm scales well with respect

to number of feasible products and finishes within 25 seconds using only 5 GB

memory even when the number of feasible products is 1025.

To summarize, OPTIMAL algorithm, as expected, provides the upper bound on the

32

popularity that can be achieved by any algorithm, given the cost bound. More inter-

estingly, there is considerable difference in the popularity achieved by OPTIMAL

and all other heuristics. Not only it is optimal, it is scalable, w.r.t. both running time

and memory usage. Finally, our experiments show that the top-k products for k up

to 100 have close value for popularity. Thus, recommending multiple top products,

instead of just one, is important as it provides flexibility to the manufacturer to

select the product they’d like to launch based on external considerations.

6.2 Recommended Product Designs
In Table 6.1, we report the top-10 attributes (w.r.t. popularity) and the levels for

the best product returned by OPTIMAL in categories television and camera, respec-

tively. The cost bound has been fixed to 900-1000. These results would convey

various interesting insights to the manufacturer, e.g., refresh rate of most popular

television is 120 Hz, as opposed to other higher refresh rates. Similarly, televisions

with LCD flat-panels are more popular than LED flat-panels. In the camera cat-

egory, cameras with memory stick and CMOS sensor type are more popular than

cameras with built-in memory and CCD sensor type. This is especially enabled by

the fact that our algorithm is highly scalable, allowing the manufacturer to vary the

cost bounds at will and seeing what kind of recommendations come out.

33

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

140

160

180

200

Cost

P
o

p
u

la
ri

ty

Optimal
Greedy
Existing
Random

Figure 6.1: Comparison of Algorithms w.r.t. Popularity in Television Cate-
gory

34

500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40

45

50

55

Cost

P
o

p
u

la
ri

ty

Optimal
Greedy
Existing
Random

Figure 6.2: Comparison of Algorithms w.r.t. Popularity in Camera Category

35

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

40

Cost

P
o

p
u

la
ri

ty

Optimal
Greedy
Existing
Random

Figure 6.3: Comparison of Algorithms w.r.t. Popularity in Laptop Category

36

0 20 40 60 80 100
130

140

150

160

170

180

190

k

P
o

p
u

la
ri

ty

Cost = 500
Cost = 1500
Cost = 2500
Cost = 3500

Figure 6.4: Popularity of Top-100 Products for four different Costs in Tele-
vision Category

37

0 25 50 75 100
0

5

10

15

20

25

T
im

e
(i

n
 s

ec
o

n
d

s)

Cost (in thousands)

K = 100
K = 10
K = 1

(a) Time

0 25 50 75 100
0

1

2

3

4

5

M
em

o
ry

 (
in

 G
B

)

Cost (in thousands)

0 25 50 75 100
0

1

2

3

4

5

K = 100
K = 10
K = 1

(b) Memory

Figure 6.5: Running Time and Memory Usage with respect to Cost Upper
Bound and k on SYNTHETIC Data Set (a) Time (b) Memory

38

10
5

10
10

10
15

10
20

10
25

0

5

10

15

20

25

T
im

e
(i

n
 s

ec
o

n
d

s)

Number of feasible products

10
5

10
10

10
15

10
20

10
25
0

1

2

3

4

5

M
em

o
ry

 (
in

 G
B

)

Memory
Time

Figure 6.6: Running Time and Memory Usage with respect to Number of
Feasible Products on SYNTHETIC Data Set. X-axis is Logarithmic.

39

Attribute Levels
Brand Dynex, Sony, Insignia, LG, Samsung
Refresh rate 120 Hz, 60 Hz, 240 Hz, 600 Hz
Dollar savings* Medium, Low, High
#HDMI inputs 2, 3, 4
Television type LCD flat-panel, LED flat-panel
Weight* Small, Large
Height* Small, Large
Mount bracket pattern 200mm X 200mm, 400mm X 400mm
Max. hori. resolution 1366 pixel, 1920 pixel
Width* Large, Small

(a) Television

Attribute Levels
Memory type Memory stick, Built-in, Compact flash card

type I, Compact flash card type II, IBM
microdrive, SD card, SDHC card

Compression modes Basic, Fine, Normal, Uncompressed
Resolution* Low, Medium, High
Battery type Lithium, 2XAA, Li-lion
Max. movie length* Short, Long
LCD screen size* Small, Medium, Large
Max. image resolution* Medium, Low, High
Height* Small, Medium, Large
16 MB Memory Card Present, Absent
Image sensor type CMOS, CCD

(b) Camera

Table 6.1: Top 10 Attributes (in decreasing order of Popularity) of the Best
Product (a) Television (b) Camera. Right columns show all possible Lev-
els for the particular Attribute and Level present in the Best Product is
underlined. *denote Numerical Attributes.

40

Chapter 7

Conclusions and Future Work

Previous RS research almost exclusively focuses on generating recommendations

to customers. In this thesis, we direct the attention of the community to an impor-

tant third entity type of this ecosystem – the product manufacturers, and propose a

novel problem from their business perspective: new product recommendations for

manufacturers. Our problem is to recommend top-k new products that maximize

the popularity while satisfying the cost constraints given by the manufacturer. We

explored various regression models to predict cost and popularity of product. We

show that the problem is NP-hard and develop a scalable pseudopolynomial time

algorithm, by exploiting the connection to MCKP. We perform a comprehensive

empirical analysis on 3 real data sets, and show that our exact algorithm outper-

forms various natural heuristics by a significant margin in terms of the popularity

achieved, while remaining highly scalable.

This work opens up a rich area for future research. Below, we briefly discuss

some interesting directions.

Alternative Objectives. We studied RECMAN with the objective of maximiz-

ing popularity, expressed in terms of number of ratings in the data sets we could

gather. If data sets with page views or store sales information could be made avail-

able, they will be valuable in further validating our research. Indeed, alternative

objectives can be formulated and optimized in place of popularity: e.g., maximiz-

ing the number of satisfied users (say as measured by the ratings/reviews provided)

or maximizing the company’s profit [20], given manufacturer’s profit margins. Our

41

framework is general enough to accommodate the optimization of different objec-

tive functions, with minimal changes to the approach.

Constraints. Not every attribute that is a strong predictor of the popularity or

cost of a product is necessarily actionable for a manufacturer. E.g., we found that

brand is one of the most important attributes in predicting popularity. But a man-

ufacturer cannot just assume a top-selling brand, rather this really implies building

a good reputation for your brand is important. Similarly, real-world product design

often has technical feasibility constraints: e.g., a very light-weight laptop with a

DVD-ROM and very large storage (hard disk) may not be feasible. It is important

to extend our product recommendation algorithm for manufacturers to incorporate

such constraints. The aim of this thesis is not to replace the manufacturers, or their

engineering design experts, rather the idea is to recommend promising candidates

for new product designs to the manufacturers, whose expertise is still required for

postprocessing the set of designs recommended. As an example of this postpro-

cessing, keeping abreast of the technological advances in the field is essential for

ultimately deciding on the new product(s) that a manufacturer may want to launch.

Cost and Popularity Oracles. We presented some approaches for building

cost and popularity oracles in Chapter 4. There is considerable room for improve-

ment in their prediction accuracy. Part of the challenge in improving the accuracy

is the availability of relevant data. It would be desirable to include additional infor-

mation such as quality of implementation of various attributes, marketing, overall

consumer experience, etc. as input to the cost/popularity prediction oracles. Fur-

ther, it might be a good idea to normalize the popularity of a product based on the

length of time it has been present in the market, to compensate for the fact that

products that have been in the market longer have an unfair advantage over recent

products, in terms of their popularity achieved.

42

Bibliography

[1] N. Archak, A. Ghose, and P. G. Ipeirotis. Show me the money!: deriving the
pricing power of product features by mining consumer reviews. In
Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’07, pages 56–65, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-609-7.
doi:10.1145/1281192.1281202. URL
http://doi.acm.org/10.1145/1281192.1281202. → pages 6

[2] M. Das, G. Das, and V. Hristidis. Leveraging collaborative tagging for web
item design. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’11, pages
538–546, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0813-7.
doi:10.1145/2020408.2020493. URL
http://doi.acm.org/10.1145/2020408.2020493. → pages 6

[3] P. Green, A. Krieger, and Y. Wind. Thirty years of conjoint analysis:
Reflections and prospects. In Y. Wind and P. Green, editors, Marketing
Research and Modeling: Progress and Prospects, volume 14 of
International Series in Quantitative Marketing, pages 117–139. Springer
US, 2004. ISBN 978-0-387-24308-5. doi:10.1007/978-0-387-28692-1 6.
URL http://dx.doi.org/10.1007/978-0-387-28692-1 6. → pages 5

[4] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. 2001. → pages 13

[5] J. Hauser and V. Rao. Conjoint analysis, related modeling, and applications.
In Y. Wind and P. Green, editors, Marketing Research and Modeling:
Progress and Prospects, volume 14 of International Series in Quantitative
Marketing, pages 141–168. Springer US, 2004. ISBN 978-0-387-24308-5.
doi:10.1007/978-0-387-28692-1 7. URL
http://dx.doi.org/10.1007/978-0-387-28692-1 7. → pages 3

43

http://dx.doi.org/10.1145/1281192.1281202
http://doi.acm.org/10.1145/1281192.1281202
http://dx.doi.org/10.1145/2020408.2020493
http://doi.acm.org/10.1145/2020408.2020493
http://dx.doi.org/10.1007/978-0-387-28692-1_6
http://dx.doi.org/10.1007/978-0-387-28692-1_6
http://dx.doi.org/10.1007/978-0-387-28692-1_7
http://dx.doi.org/10.1007/978-0-387-28692-1_7

[6] M. Hu and B. Liu. Mining and summarizing customer reviews. In
Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’04, pages 168–177, New
York, NY, USA, 2004. ACM. ISBN 1-58113-888-1.
doi:10.1145/1014052.1014073. URL
http://doi.acm.org/10.1145/1014052.1014073. → pages 6

[7] N. Jindal and B. Liu. Opinion spam and analysis. In Proceedings of the
2008 International Conference on Web Search and Data Mining, WSDM
’08, pages 219–230, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-927-2. doi:10.1145/1341531.1341560. URL
http://doi.acm.org/10.1145/1341531.1341560. → pages 9

[8] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer,
2004. ISBN 978-3-540-40286-2. → pages 20, 21, 22

[9] R. Kohli and R. Krishnamurti. Optimal product design using conjoint
analysis: Computational complexity and algorithms. Eur. Journal of
Operational Research, 40(2):186 – 195, 1989. ISSN 0377-2217.
doi:10.1016/0377-2217(89)90329-9. URL
http://www.sciencedirect.com/science/article/pii/0377221789903299. →
pages 5

[10] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, (8), 2009. ISSN 0018-9162.
doi:10.1109/MC.2009.263. URL http://dx.doi.org/10.1109/MC.2009.263. →
pages 9

[11] P. Kotler, G. Armstrong, V. Wong, and J. Saunders. Principles of Marketing.
Financial Times Prentice Hall, 2008. ISBN 9780273711568. → pages 2

[12] E. L. Lawler. A procedure for computing the k best solutions to discrete
optimization problems and its application to the shortest path problem.
Manage. Sci., 18(7):pp. 401–405, 1972. ISSN 00251909. URL
http://www.jstor.org/stable/2629357. → pages 22, 27

[13] B. Liu. Sentiment Analysis and Opinion Mining. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool Publishers, 2012. →
pages 6

[14] M. Miah, G. Das, V. Hristidis, and H. Mannila. Determining attributes to
maximize visibility of objects. IEEE Trans. on Knowl. and Data Eng., 21

44

http://dx.doi.org/10.1145/1014052.1014073
http://doi.acm.org/10.1145/1014052.1014073
http://dx.doi.org/10.1145/1341531.1341560
http://doi.acm.org/10.1145/1341531.1341560
http://dx.doi.org/10.1016/0377-2217(89)90329-9
http://www.sciencedirect.com/science/article/pii/0377221789903299
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://www.jstor.org/stable/2629357

(7):959–973, July 2009. ISSN 1041-4347. doi:10.1109/TKDE.2009.72.
URL http://dx.doi.org/10.1109/TKDE.2009.72. → pages 7

[15] H. Peng, F. Long, and C. Ding. Feature selection based on mutual
information criteria of max-dependency, max-relevance, and
min-redundancy. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 27(8):1226–1238, 2005. ISSN 0162-8828.
doi:10.1109/TPAMI.2005.159. → pages 13

[16] A.-M. Popescu and O. Etzioni. Extracting product features and opinions
from reviews. In Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Language Processing, HLT
’05, pages 339–346, Stroudsburg, PA, USA, 2005. Association for
Computational Linguistics. doi:10.3115/1220575.1220618. URL
http://dx.doi.org/10.3115/1220575.1220618. → pages 6

[17] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. Recommender
Systems Handbook. Springer, 2011. ISBN 978-0-387-85819-7. → pages 1, 5

[18] C. Schön. On the optimal product line selection problem with price
discrimination. Manage. Sci., 56(5):896–902, May 2010. ISSN 0025-1909.
doi:10.1287/mnsc.1100.1160. URL
http://dx.doi.org/10.1287/mnsc.1100.1160. → pages 3

[19] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2005. ISBN 0321321367. → pages 12, 14

[20] S. Tsafarakis and N. Matsatsinis. Designing optimal products: Algorithms
and systems. In J. Casillas and F. Martnez-Lpez, editors, Marketing
Intelligent Systems Using Soft Computing, volume 258 of Studies in
Fuzziness and Soft Computing, pages 295–336. Springer Berlin Heidelberg,
2010. ISBN 978-3-642-15605-2. doi:10.1007/978-3-642-15606-9 19. URL
http://dx.doi.org/10.1007/978-3-642-15606-9 19. → pages 5, 41

[21] X. J. Wang, J. D. Camm, and D. J. Curry. A branch-and-price approach to
the share-of-choice product line design problem. Manage. Sci., 55(10):
1718–1728, Oct. 2009. ISSN 0025-1909. doi:10.1287/mnsc.1090.1058.
URL http://dx.doi.org/10.1287/mnsc.1090.1058. → pages 3

[22] S. Xie, G. Wang, S. Lin, and P. S. Yu. Review spam detection via temporal
pattern discovery. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’12, pages

45

http://dx.doi.org/10.1109/TKDE.2009.72
http://dx.doi.org/10.1109/TKDE.2009.72
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.3115/1220575.1220618
http://dx.doi.org/10.3115/1220575.1220618
http://dx.doi.org/10.1287/mnsc.1100.1160
http://dx.doi.org/10.1287/mnsc.1100.1160
http://dx.doi.org/10.1007/978-3-642-15606-9_19
http://dx.doi.org/10.1007/978-3-642-15606-9_19
http://dx.doi.org/10.1287/mnsc.1090.1058
http://dx.doi.org/10.1287/mnsc.1090.1058

823–831, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1462-6.
doi:10.1145/2339530.2339662. URL
http://doi.acm.org/10.1145/2339530.2339662. → pages 9

46

http://dx.doi.org/10.1145/2339530.2339662
http://doi.acm.org/10.1145/2339530.2339662

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	2 Related Works
	3 Problem Definition
	3.1 Data Sets
	3.2 Issue of User Sparsity
	3.3 Our Problem Formulation

	4 Modeling Cost and Popularity
	4.1 Data Set Pre-processing
	4.2 Regression Analysis
	4.2.1 Comparison
	4.2.2 Cost and Popularity Oracles

	4.3 Strong Predictors

	5 Algorithm
	5.1 Complexity of RecMan
	5.2 An Optimal Algorithm
	5.2.1 Sketch of Original Algorithm
	5.2.2 Our Algorithm

	6 Experiments
	6.1 Evaluating our Algorithm
	6.1.1 Comparison of Algorithms w.r.t. Popularity
	6.1.2 Variation in Popularity of Top-k Products
	6.1.3 Scalability

	6.2 Recommended Product Designs

	7 Conclusions and Future Work
	Bibliography

