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Abstract

Let A be an arrangement of n sensors constituting a barrier, the resilience of A with

respect to two regions S and T , denoted ρ(A,S,T ), is defined as the number of

sensors in A that must be removed in order for there to be a path from S to T that

is not detected by any sensor.

Previous work by Bereg and Kirkpatrick [2] proved that a 3-approximation of

the resilience could be guaranteed by a polynomial time algorithm when sensors

are unit disks in the plane. This was tightened to a 5
3 -approximation when S and

T are well-separated. In this thesis, we define and analyze a Multi-Path Algorithm

(MPA) which improves on these bounds to get approximation ratios of 2 and 1.5

respectively.

Additionally, we define a new notion of barrier strength called Dc-Resilience,

which is the resilience of the barrier if regions covered by more than c distinct sen-

sors in the original arrangement are treated as inaccessible, in the sense that no part

of any path is permitted to intersect with such a region. We consider arrangements

of disk sensors with radii in range [1− ξ ,1] for any 0 ≤ ξ < 1 independent of n.

We prove that for any such arrangement and any constant c, the MPA guarantees a

constant approximation of the Dc-resilience in time polynomial in n for any con-

stant c. Furthermore, we show that this tightens to a 2-approximation under certain

conditions which are usually fulfilled when disk sensors are close to equal size.
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Chapter 1

Introduction

The use of Wireless Sensor Networks has been increasing in recent years, and there

have even been large scale projects using over a thousand sensors such as described

in the work by Arora et al. [1]. In such applications of Wireless Sensor Networks,

one of the fundamental issues is to determine the coverage provided by a particular

network [15].

While many definitions of coverage exist, two important classes of coverage

are Area and Barrier Coverage problems. In both, the input is an arrangement of

sensors A, where each sensor is associated with some point representing its posi-

tion and some area representing the region which is covered by the sensor. Area

coverage problems then ask questions related to how well-covered some region R is

by A, while barrier coverage problems ask questions related to how well-separated

some region S is from some other region T by A.

For area coverage problems, sensors in A are assumed to be associated with

possibly overlapping regions, and the strength of a coverage system is usually mea-

sured by either the fraction of R that is covered by A, or by the minimum number of

times any point in R is covered in A. The latter is referred to as k-coverage, where

is A said to guarantee k-coverage of R if every point in R is covered by at least k

distinct sensors in A [8].

By these definitions of strength, determining the exact strength of an arrange-

ment A tends to be straightforward in most practical applications, since A usually

divides R into at most some small polynomial number of subregions, each of which
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can then be efficiently checked to determine how well-covered they are. Instead,

most research reflects the fact that area coverage tends to be much more expensive

than barrier coverage and one would ideally want to minimize costs. Thus, most

research on area coverage problems ask not how strong an arrangement A is, but

ask either how to optimize the strength of the arrangement subject to some con-

straint, or ask how to maximize some function subject to the constraint that the

strength of A is kept above some minimum level.

For instance, many area coverage problems try to minimize the number of sen-

sors used in A, and ask questions like how to cycle the sensors in A on and off such

that k-coverage is still guaranteed at all times [8, 19, 25]. This is because in many

applications, allowing the sensors in A to sleep for long periods of time conserves

power and extends the lifetime of the sensor network [8, 19, 25].

Many problems also ask how to create A entirely to minimize the number of

sensors subject to some constraints. For instance, Wang et al. [23] investigate the

sensor placement problem, where they have to determine the minimum number of

sensors needed in order to have a 1-coverage of R, subject to the constraints that

there may be obstacles that block the sensors, sensors have some limited range,

and sensors must be connected to one another.

Nevertheless, for Area Coverage, the question of how strong a certain fixed

arrangement of sensors is usually has well-known efficient solutions. However,

the same does not hold for Barrier Coverage, as even when restricted to the two-

dimensional setting there exists many versions of the problem with no known

polynomial-time method for determining, or even guaranteeing a constant approx-

imation of the strength of a barrier.

For barrier coverage problems, the strength of an arrangement A is usually

much more complicated to determine due to the fact that the number of topolog-

ically or combinatorially distinct paths through any region divided into distinct

subregions is exponential in terms of the number of subregions in the worst case.

This means that if an algorithm is not allowed to have a time complexity that in-

creases exponentially with the number of sensors, it cannot check for every path

how well-covered it is in a manner similar to how it can check every subregion in

the Area Coverage problems. Furthermore, as opposed to the two main area cover-

age strength measurements, for Barrier Coverage there have been several different
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ways to measure the strength of a barrier defined, each with their own advantages

and disadvantages.

For example, one definition of barrier strength builds on the notion of the

breach of a path, defined as the minimum Euclidean distance between any point

on the path and the point representing the position of any sensor in A. Clearly the

strength of a barrier can thus be defined as the breach of the path between S and

T that has the maximum breach, otherwise known as the Maximal Breach Path.

This definition is very advantageous for applications where sensors do not have

a clear maximum distance defined but nevertheless are able to detect intruders at

close range significantly better than intruders at a far distance. For instance, se-

curity cameras when pointed horizontally usually don’t have a maximum distance

defined, but it obviously much easier to spot intruders nearby than intruders far off

in the distance. Thus rather than determine how many cameras may see the intrud-

ers, its more useful to determine how close the intruder gets to any camera. As

such, much research has been done to construct efficient algorithms for deriving

Maximal Breach Paths [3, 4, 14, 15, 17], or even working on variants on it such as

the Average Breach Paths defined by Duttagupta et al. [5].

One disadvantage of such a definition is that it doesn’t take into account the

number of sensors, or the distances to other sensors in the barrier. In other words,

an arrangement whose maximal breach path is close to only a single sensor can

be given the same strength value as an arrangement whose maximal breach path

has to be close to many sensors. In light of this disadvantage, another concept

called the Minimal Exposure Path was introduced and used as another means of

measuring barrier strength. In essence, every point along the path has some ex-

posure to the sensors in A which is inversely proportional to its distance from the

sensors, and the Minimal Exposure Path is the path whose total exposure across

all points is the smallest. Like the Maximal Breach Paths, much research has also

been done to construct efficient algorithms for deriving Minimal Exposure Paths

[12, 13, 16, 22]. However, unlike the Maximal Breach Path where breach has a sin-

gle clearly defined definition, exposure can be defined in multiple ways and thus

there actually exists multiple ways to measure the barrier strength via this method.

For instance, Veltri et al. [22] notes that there are two distinct types of exposure

functions: functions solely based on the distance to the closest sensor, and func-
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tions based on the distances to all sensors. Another advantage this has over the

Maximal Breach Path is that sensors can now be directional. In other words, while

giving sensors directions would not make much sense when computing the breach

of a path, the exposure functions can easily be changed to reflect sensors which

have better detection rates in some directions instead of others and recent work by

Liu et al. [12] investigates exactly that.

Another possible disadvantage of Maximal Breach Paths is when sensors have

some minimum range r whereby any entities at distances less than r are no easier

to detect that entities at distance r. In such situations, if the maximal breach path

has a breach value less than r, the barrier isn’t necessarily stronger than any barrier

whose maximal breach path has a breach value of r, so another notion of strength

must be used if one wants to distinguish between these arrangements.

Instead of merely using the points representing the positions of sensors in A,

this idea of a minimum range whereby detection rates do not improve any further

with decreasing distances allows one to use regions representing the detection area

of sensors in A. In other words, these regions represent the area surrounding the

sensor that is within its minimum range. This then gives rise to more ways of

defining the strength of A.

For instance, Liu et al. [11] defines a barrier as providing weak coverage if all

shortest paths through the barrier hit at least one sensor, and defines a barrier as

providing strong coverage if all paths through the barrier hit at least one region

associated with some sensor in A. This definition is useful when sensors are very

reliable or even act like walls, since a barrier providing strong coverage in this

definition would truly be impassable, while a barrier that provides only weak cov-

erage would be like a maze that crafty intruders would eventually break through. In

fact, stopping crafty intruders from breaking through weak barriers was precisely

why Liu et al. [11] chose this definition of strength and focused on developing

algorithms for strong barrier coverage.

One advantage in common for the definitions given so far is that they analyze

situations where the intruders may be extremely crafty, somehow determining the

locations of all sensors and searching for optimal paths through the arrangements.

However, they all also share the disadvantage of assuming that sensors are reliable,

or in some sense immune to failure. As such, more ways to measure the strength
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of barriers arose.

Kumar et al. [9, 10] defines the strength of a barrier by the number of distinct

sensors any path through the barrier must intersect. In other words, given a set

of sensors, if all paths through the region are detected at least k distinct sensors,

the region is k-barrier covered. In some sense, this is the k-coverage equivalent

for Barrier Coverage problems. This definition addresses the disadvantage noted

above, since a k-barrier covered region with larger k would require more sensors to

fail in order to have an uncovered path. Kumar et al. [9, 10] proceeded to provide

algorithms for determining the strength of barriers in different regions, deriving a

method of determining the exact strength of barriers when sensors are disks in a

two-dimensional open belt region, defined as a strip-like region that does not form

a ring around S or T but has to be crossed by any path from S to T .

Bereg and Kirkpatrick [2] build on this definition by clearly defining two mea-

surements of the barrier strength. The first notion is the thickness of the barrier,

defined as the minimum number of times any path from S to T has to enter a sensor

in A. The second notion is the resilience of the barrier, defined as the minimum

number of sensors that must be removed from A in order to reduce the thickness to

0. The key difference between the notions is that the thickness will count a sensor

multiple times if it enters the sensor multiple times, whereas resilience will only

count the sensor once regardless of how many visits the path makes to it. Effec-

tively the resilience of a barrier is defined the same way as the k-barrier coverage

definition by Kumar et al. [9, 10].

Bereg and Kirkpatrick [2] considered the scenario where sensors are unit disks

in a two dimensional plane. They showed that the thickness of the barrier can be

determined in time polynomial in n and illustrated topological properties that prove

the thickness forms a 3-approximation of the resilience. Furthermore, if S and T are

well-separated relative to the radii of sensors they suggested a method to guarantee

a 5
3 -approximation of the resilience [2] in time polynomial in n. The authors also

note the similarity of the problem to the NP-hard Minimum Colour Path Problem,

which suggests the possibility that computing even a close approximation of the re-

silience may be NP-hard as well. This Minimum Colour Path Problem is described

more thoroughly in the work by Yuan et al. [24], which also provides proofs of its

NP-Completeness. Furthermore, work by Tseng and Kirkpatrick [20], Tseng [21]
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has also proven that if the regions associated with sensors are line segments, the

problem of determining the resilience is NP-hard. They also extend this proof to

include other types of non-symmetric sensor regions.

In this thesis, we further build on the work by Kumar et al. [9, 10] and Bereg

and Kirkpatrick [2] to derive better approximation of the resilience of barriers.

Noting the proofs of NP-hardness by Tseng and Kirkpatrick [20], we restrict our

attention to disk-shaped sensors in a two-dimensional plane under different condi-

tions. We focus on keeping the time complexity of algorithms in polynomial time,

but do not optimize their running time beyond that. Thus some of our algorithms

have completely impractical time complexities. We also consider alternative re-

lated definitions of barrier strength, argue their usefulness in various applications,

and study algorithms for determining or approximating the new measurements.
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Chapter 2

Problem Definition

The main problem investigated by this thesis is the Barrier Resilience Problem. The

input for this problem is a tuple (A,S,T ), where A is an arrangement of n sensors

corresponding to disk-shaped regions on a two-dimensional plane, and S and T are

two regions on the same plane. The problem is to determine the resilience, denoted

ρ(A,S,T ), which is the minimum over S−T paths of the number of distinct sensors

intersected, including any sensors which cover the endpoints of the path.

As noted by Bereg and Kirkpatrick [2], this problem is similar to the Minimum-

Colour Path Problem. The input for this problem is a tuple (Â = (V,E),s′, t ′),

where:

• Â is an edge-coloured graph composed of vertices in V and directed edges in

E, with a set of at most n distinct colours denoted by SÂ, such that each edge

(i, j) ∈ E is assigned a set of the colours S(i, j) ⊆ SÂ.

• s′ and t ′ are two vertices in V .

The problem is to determine the s′− t ′ path in Â which uses the fewest distinct

colours, where a colour is considered used by a path if it is assigned to any edge in

the path. The Minimum-Colour Path Problem has been shown to be NP-hard, and

is in fact hard to approximate to within a logarithmic factor [7, 24].

There exists a variant of the Minimum-Colour Path Problem that we refer to

as the Minimum-Vertex-Colour Path Problem. The input for this problem is also a

tuple (Â = (V,E),s′, t ′), but in this variant the edges are not assigned any colours.
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Instead, each vertex i ∈ V is assigned a set of colours Si ⊆ SÂ. As before, the

problem is to determine the s′− t ′ path in Â which uses the fewest distinct colours,

where a colour is considered used by a path if it is assigned to any vertex in the

path. Note that by this definition, it is trivial to show that every s′− t ′ path must

use any colours assigned to s′ or t ′. Thus without loss of generality we only con-

cern ourselves with simplified problem instances where all such colours have been

removed from the graph.

The Minimum-Vertex-Colour Path Problem is useful because there exists a

polynomial-time approximation-preserving reduction from the Barrier Resilience

Problem:

1. Assign each of the n sensors in A a unique colour, forming the set SÂ of n

distinct colours.

2. Construct a graph Â = (V,E) such that each face in A becomes a vertex in

V and there exists an edge (i, j) in E if and only if the faces of i and j were

adjacent in the arrangement. Â is referred to as the dual graph of A, and this

construction process is illustrated in Figure 2.1.

3. Assign each vertex i in V the set of colours Si which correspond to the set of

sensors covering i’s associated face in A.

4. For each pair of vertices s′ and t ′ which correspond to faces intersecting S

and T respectively:

(a) Remove from Â all of the colours in Ss′ ∪St ′ .

(b) Solve the Minimum-Vertex-Colour Path Problem on (Â,s′, t ′) to com-

pute W ′(s′, t ′), the number of distinct colours used by the Minimum-

Colour s′− t ′ path.

(c) Readd all the colours removed.

5. Output the minimum over s′ and t ′ of W ′(s′, t ′)+ |Ss′ ∪St ′ |.

The reason this is a polynomial-time reduction stems from the following ob-

servation:
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Figure 2.1: Constructing the Dual Graph of an Arrangement

Observation 2.0.1 Both |V | and |E| are O(n2).

Proof First, observe that if the boundary of any disk-shaped sensor si does not

intersect the boundary of any other sensor, its presence in the arrangement con-

tributes only 1 to the cardinality of V and E. This means replacing si with another

sensor whose boundary intersects other sensor boundaries could increase |V | and

|E| while keeping the number of sensors at n. Thus it suffices to consider only

arrangements where all sensors have boundaries which intersect the boundary of at

least one other sensor, since we are only aiming to show upper bounds on |V | and

|E|. Note that this also excludes the scenario where n≤ 1, but clearly both |V | and

|E| are O(n2) in such a scenario.

Next, observe that for any pair of disks, the boundaries of the disks can only

intersect each other at most 2 times. Effectively, since the number of sensors is

n, the boundary of each disk-shaped sensor can have at most 2(n−1) intersection

points. These intersection points divide the boundary of the sensor into at most

2(n− 1) boundary arcs. Then consider the dual graph Â. During the construction

process, for each pair of adjacent faces i and j, we added two directed edges (i, j)

and ( j, i). We note that every pair of adjacent faces must be separated by at least

one boundary arc, and every boundary arc can be used in this manner for at most

one pair of adjacent faces. Thus the number of pairs of adjacent faces is at most

2n(n−1), meaning |E| ≤ 4n(n−1).

Furthermore, Â must be a planar graph by construction since the arrangement

was on a two-dimensional plane, so by Euler’s Formula, |V |−|E|+ |F |= 2, where

|F | is the number of faces in Â. Rearranging this and using the bound on |E|, we
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get |V |+ |F | ≤ 2+4n(n−1). Then since there must be at least one face, |F | ≥ 1,

so we get |V | ≤ 1+4n(n−1). Thus both |V | and |E| are O(n2).

Consequently, there is only a polynomial number of choices for s′ and t ′, so

there is only a polynomial number of Minimum-Vertex-Colour Path Problem in-

stances. The correctness of this reduction follows from the observation that every

S− T path through A corresponds to a s′− t ′ walk on Â which uses a colour if

and only if the corresponding sensor is entered by the path, excluding the removed

colours. The sensors covering the start and end of the path had their corresponding

colours removed in the reduction, and must clearly be intersected by the path, so

|Ss′ ∪St ′ | are added to W ′(s′, t ′) to derive the number of distinct sensors intersected

by the path.

Lastly, since each sensor corresponds to a unique colour, this reduction is

clearly approximation-preserving. In fact, if the number of colours used in the so-

lution presented by an approximation algorithm for the Minimum-Vertex-Colour

Path Problem is at most c times the actual minimum over s′− t ′ paths of the num-

ber of distinct colours used, the output of the reduction would be at most c times

the resilience of the barrier.

Unfortunately, there is also a polynomial-time approximation-preserving re-

duction from the Minimum-Colour Path Problem:

1. Assign every vertex i in V no colour. In other words, Si is the empty set.

This satisfies the constraint that both Ss′ and St ′ are empty sets.

2. For every edge (i, j) in E:

(a) Add a new vertex k to V with Sk = S(i, j).

(b) Add a new edge (i,k) to E.

(c) Add a new edge (k, j) to E.

(d) Remove the edge (i, j) from E.

3. Effectively, every edge is split into two edges, and the new vertex in between

is assigned the colours of the edges. This means every path through the graph

must use the same colours as before. Thus, we can simply output the solution

of the Minimum-Vertex-Colour Path Problem on the resulting (Â,s′, t ′).
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This is a polynomial-time reduction because the resulting graph has |V |+ |E|
vertices and 2|E| edges. It is correct and approximation-preserving because every

path through the original graph corresponds to a path in the resulting graph which

must use the same set of colours. Thus the Minimum-Vertex-Colour Path Problem

is NP-hard and hard to approximate to within a logarithmic factor as well.

Nevertheless, we note that in the reduction from the Barrier Resilience Prob-

lem, because the colours are derived from disk-shaped sensors, there is additional

structure in the resulting Minimum-Vertex-Colour Path Problem instances that nor-

mally would not be found in general problem instances. With that in mind, in

the next chapter we present the Multi-Path Algorithms, a family of deterministic

polynomial-time approximation algorithms for the Minimum-Vertex-Colour Path

Problem, and the rest of this thesis focuses on elucidating what problem settings

are sufficient to guarantee approximations within a constant factor.
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Chapter 3

Multi-Path Algorithms

As defined in Chapter 2, the input of the Minimum-Vertex-Colour Path Problem is

a tuple (Â = (V,E),s′, t ′), where Â = (V,E) is a vertex-coloured graph, and s′ and

t ′ are vertices in V . In addition, there is a set SÂ of n colours such that:

• Every vertex i in V is assigned a set of colours Si ⊆ SÂ.

• Both Ss′ and St ′ are empty sets.

The colours used by a path is defined as the union of the colours assigned to its

vertices, and W ′(i, j) is used to denote the minimum over i− j paths of the number

of distinct colours used. Note that by this definition, for any i and j in V , every

colour in S j ∪Si must be used by every i− j path. The problem is to determine

W ′(s′, t ′), the minimum number of distinct colours used by any s′− t ′ path in Â.

The Multi-Path Algorithms are a family of deterministic polynomial-time ap-

proximation algorithms for the Minimum-Vertex-Colour Path Problem. These al-

gorithms employ dynamic programming and use techniques from shortest paths

algorithms such as the Bellman-Ford algorithm and the Floyd-Warshall algorithm.

In particular, these algorithms can work for directed or undirected edges, and do

not even require the graph to be connected. If no path exists between s′ and t ′, the

algorithm will report this by having output set to ∞.
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3.1 Multi-Path Instances and Profiles
For ease of notation, given any vertex tuple Ṽ, let Ṽ[x] denote the x-th vertex in the

tuple. Before describing the Multi-Path Algorithms, we must first introduce the

concept of Multi-Path instances and Multi-Path profiles. For any positive integer

X ≥ 1, an X-Path instance is an ordered sequence of X ′ paths for some positive

integer 1≤ X ′ ≤ X .

An X-Path profile is defined as a tuple Ṽ of 2X ′ vertices in V for some positive

integer 1 ≤ X ′ ≤ X . It serves as a description of the vertices used as endpoints by

an X-Path instance. Any X-Path instance composed of X ′ paths is the realization

of the X-Path profile Ṽ if for all 1 ≤ x ≤ X ′, the x-th path in the X-Path instance

starts at Ṽ[2x−1] and ends at Ṽ[2x].

Note that by these definitions, for any positive integer X∗ ≥ X , an X-Path in-

stance is also an X∗-Path instance, and an X-Path profile is also an X∗-Path profile.

For convenience, we will also describe an X-Path instance as a Ṽ instance if it is

a realization of the X-Path profile Ṽ. Also note that each X-Path profile may be

realized by several different X-Path instances, but each X-Path instance can only

be described by one X-Path profile.

Next, observe that a pair of directed paths from i to j and from j to k can be

concatenated at j into an i− k path, in the sense that an entity starting at i can

follow the first path to j and then follow the second path to k. However, a pair of

directed paths from i to j and from k to j cannot be concatenated into an i−k path,

since the direction of the second path is reversed. In other words, the directions

and shared vertices of the paths affects whether they can be combined into a single

path.

A similar situation arises when we want to combine a pair of X-Path instances:

the ordering of the paths in each X-Path instance as well as their directions de-

termine what combinations are possible, if any. As before, each pair of paths can

only be concatenated at endpoints sharing a vertex, and the start of one path must

be the end of the other. However, there are also additional restrictions imposed

by the ordering of each X-Path instance. For example, consider any combination

where for both X-Path instances, the first path is concatenated to the last path of

the other. Such a combination would violate an ordering, since the X-Path instance
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that results from the combination would inevitably place a path that was last in the

ordering of one X-Path instance before the path that was first in the ordering for

that same X-Path instances. Thus such combinations are not allowed.

Let len(P̂) denote the number of paths in P̂. A pair of X-Path instances P̂1 and

P̂2 can be combined to form an X-Path instance P̂3 if and only if there exists an

ordered sequence of paths composed of the paths of P̂1 and P̂2, and this ordered

sequence is such that:

• For any 1 < x≤ len(P̂1), the x-th path of P̂1 is after the (x−1)-th path of P̂1

in this ordered sequence.

• Similarly, for any 1 < x ≤ len(P̂2), the x-th path of P̂2 is after the (x−1)-th

path of P̂2 in this ordered sequence.

• There exists a sequence of path combination operations on this ordered se-

quence such that:

– Each operation combines two consecutive paths in the sequence, re-

ducing the number of paths in the sequence by one. Note that this

path combination must respect the directions and shared vertices of the

paths as described above for single paths.

– The result of this sequence of path combination operations is an or-

dered sequence of paths corresponding to P̂3, in the sense that for all

1≤ x≤ len(P̂3), the x-th path in this sequence is the x-th path in P̂3.

Note that this means whether two X-Path instances can be combined depends

only on the endpoints, the ordering, and the directions of the paths. These de-

tails are all captured by the X-Path profiles of these X-Path instances. As a result,

whether two X-Path instances can be combined can be determined by only exam-

ining their X-Path profiles, and any two X-Path instances which are realizations of

the same X-Path profile can be combined with other X-Path instances in the same

manner. With this in mind, we define the predicate⊕(Ṽ1, Ṽ2, Ṽ3) as true if and only

if any Ṽ1 instance and any Ṽ2 instance can be combined into a Ṽ3 instance.
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3.2 Exposed and Hidden Colours
As previously defined, the colours used by any path is the union of the colours used

by its edges. The problem is to find W ′(s′, t ′), which was defined as the minimum

over all s′− t ′ paths of the number of distinct colours used. As a straightforward

extension, the colours used by any X-Path instance is defined as the union of the

colours used by its paths, and we will use W ′(Ṽ) to denote the minimum over all

Ṽ instances of the number of distinct colours used. Thus the problem is to find

W ′(Ṽoutput), where Ṽoutput is a 1-Path profile with Ṽoutput[1] = s′ and Ṽoutput[2] = t ′.

Let Ṽ be an X-Path profile, let P̂ be a Ṽ instance. Then consider the colours used

by P̂. We can divide these colours into two types: the exposed colours are colours

which appear on an endpoint of at least one of the paths in P̂, while the hidden

colours are the other colours used by P̂. The reason for this distinction is the fact

that exposed colours are trivial to determine: simply check the colours assigned

to each of the path endpoints in P̂. Furthermore, because these path endpoints are

described by the X-Path profile Ṽ, the exposed colours for each Ṽ instance are the

same.

On the other hand, hidden colours are harder to determine, as every vertex

in each of the paths of P̂ must be considered. In some sense, the hardness of

approximating the minimum over Ṽ instances of the number of distinct colours

used stems from approximating the number of distinct hidden colours, rather than

the number of distinct exposed colours.

This motivates a new measure W ∗(Ṽ), which denotes the minimum over Ṽ

instances of the number of hidden colours. By this definition, it is trivial to show

that W ∗(Ṽ)≤W ′(Ṽ) for all Ṽ, since a hidden colour is by definition a used colour.

Furthermore, because Ss′ and St ′ are empty sets, W ∗(Ṽoutput) =W ′(Ṽoutput).

3.3 The X-Path Algorithm
In this section, for each positive integer X > 0 we define the X-Path Algorithm.

The X-Path Algorithm is similar to an all-pairs shortest path algorithm: rather

than focusing on solving only W ′(Ṽoutput), it approximates W ∗(Ṽ) for all X-Path

profiles. It behaves very similar to the Floyd-Warshall algorithm, in that it starts

by considering trivial X-Path instances corresponding to single vertices or edges in
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the graph as realizations for some X-Path profiles, and then recursively combines

the realizations of pairs of X-Path profiles to form realizations for more X-Path

profiles.

The X-Path algorithm operates in a sequence of phases, where in each phase

y ≥ 0, it creates an array dy with a unique entry dy[Ṽ] for every X-Path profile Ṽ.

In the course of the algorithm, each array entry dy[Ṽ] will be assigned either ∞ or a

non-negative integer.

Let len(Ṽ) denote the length of Ṽ. Let Ṽ0 be an X-Path profile where for all

1 ≤ x ≤ len(Ṽ′)
2 , either Ṽ′[2x− 1] = Ṽ′[2x], or (Ṽ′[2x− 1], Ṽ′[2x]) is an edge in E.

Given these constraints, there clearly exists a realization P̂0 of Ṽ′ whose every path

is composed of either a single edge or a single vertex. In particular, P̂0 would have

no hidden colours, because all the vertices in P̂0 would be path endpoints. Thus

W ∗(Ṽ′) must be 0. In phase 0, array entries associated with such X-Path profiles

are assigned a value of 0, while all other array entries are assigned ∞.

For subsequent phases, a special function referred to as the M-function is used

to assign values to the array. In order to describe it, we shall first define a few

functions. Let E be a function that takes as input a colour c and an X-Path profile

Ṽ. E outputs 1 if c is an exposed colour for every realization of Ṽ, and outputs 0

otherwise. More formally:

E(c, Ṽ) =

1 if ∃1≤x≤len(Ṽ)c ∈ SṼ[x]
0 otherwise

Next, let H be a function that takes as input a colour c and three X-Path profiles

Ṽ1, Ṽ2, and Ṽ3 where ⊕(Ṽ1, Ṽ2, Ṽ3). H outputs 1 if c is an exposed colour Ṽ1 or Ṽ2

but not Ṽ3, and outputs 0 otherwise. In other words, by combining a Ṽ1 instance

and a Ṽ2 instance into a Ṽ3 instance, the colour c goes from being an exposed

colour to being a hidden colour for the Ṽ3 instance. More formally:

H(c, Ṽ1, Ṽ2, Ṽ3) =

1 if (E(c, Ṽ1) = 1∨E(c, Ṽ2) = 1)∧E(c, Ṽ3) = 0

0 otherwise

Observation 3.3.1 Given a Ṽ1 instance P̂1 with at most d1 hidden colours, and a
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Ṽ2 instance P̂2 with at most d2 hidden colours, if P̂1 and P̂2 are combined into a Ṽ3

instance P̂3, P̂3 has at most d1 +d2 +∑c∈SÂ(H(c, Ṽ1, Ṽ2, Ṽ3)) hidden colours.

Proof Since P̂3 is the combination of P̂1 and P̂2, the colours used by P̂3 must be the

union of the colours used by P̂1 and P̂2. As defined above, a Multi-Path instance

uses all of its hidden colours and all of its exposed colours. Thus, P̂3 can only use a

colour c if it is one of the hidden colours of P̂1 or P̂2, or E(c, Ṽ1) = 1∨E(c, Ṽ2) = 1.

Then as defined above, P̂3 must have at most d1 + d2 + ∑c∈SÂ(H(c, Ṽ1, Ṽ2, Ṽ3))

hidden colours.

Finally, the M-function of the X-Path Algorithm is described as follows:

M(d1,d2, Ṽ1, Ṽ2, Ṽ3) =

d1 +d2 +∑c∈SÂ(H(c, Ṽ1, Ṽ2, Ṽ3)) if ⊕ (Ṽ1, Ṽ2, Ṽ3)

∞ otherwise

In each phase y > 0, the M-function is used to assign values to all array entries

dy[Ṽ] as follows:

dy[Ṽ] = min{dy−1[Ṽ], min
⊕(Ṽ1,Ṽ2,Ṽ3)

(M(dy−1[Ṽ1],dy−1[Ṽ2], Ṽ1, Ṽ2, Ṽ))}

The sequence of phases terminates after completing a phase Y > 0 where

dY [Ṽ] = dY−1[Ṽ] for all X-Path profiles Ṽ. The algorithm then outputs dY [Ṽoutput],

where as previously defined, Ṽoutput is a 1-Path profile with Ṽoutput[1] = s′ and

Ṽoutput[2] = t ′.

Theorem 3.3.2 The time complexity of the X-Path Algorithm is O(n|V |5X).

Proof Begin by observing that the number of distinct X-Path profiles is O(|V |2X).

Thus in each phase y> 0, a naive implementation of X-Path Algorithm would make

O(|V |6X) calls to the M-function. Furthermore, each call of M-function may require

up to O(n) time, since it has to perform a summation over the at most n colours in

SÂ. Thus each phase y > 0 would take O(n|V |6X) time.

However, observe that the M-function only produces finite output when we have

⊕(Ṽ1, Ṽ2, Ṽ3), and this constraint can only be true if the number of distinct ver-

tices in the vertex tuples of the input X-Path profiles is at most 3X . Thus by only
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making M-function calls with inputs that can produce finite output, the number of

M-function calls can be reduced to O(|V |3X). Furthermore, observe that the sum-

mation over the colours in SÂ is independent of the current phase, and can thus

be precomputed in a lookup table. This precomputation would require O(n|V |3X)

time, but would effectively reduce the time complexity of each M-function call to

O(1). Thus each phase y > 0 would take O(|V |3X) time.

Next, observe that since there are at most n colours, no array entry should ever

be assigned a finite value greater than n. Furthermore, every value assigned must

be a non-negative integer and every phase must produce an array such that all array

entries have values at most equal to the corresponding entries in the previous array.

In fact, every non-terminal phase must have at least one array entry which has a

weight strictly less than the corresponding entry in the previous array. Since there

are O(|V |2X) array entries which may be assigned at most O(n) distinct weights,

this means the number of phases must be O(n|V |2X).

Thus the total time complexity is O(n|V |5X), including the precomputation

time. Note that this is under the assumption that initialization phase 0 which reads

the input graph can be completed in O(n|V |5X) time, which we note is true when

the input graph is provided in a standard representation such as an adjacency list or

an adjacency matrix.

3.4 Valid Derivation Trees for a Multi-Path Algorithm
To make Multi-Path Algorithms easier to analyze, this section introduces the con-

cept of valid derivation trees. Observe that as defined in the previous section, in

every phase y > 0, every array entry dy[Ṽ] with a finite value must have had its

value derived from a pair of array entries in a previous array. Thus given any array

entry with a finite value, it is straightforward to construct a derivation tree to see

how its value was derived from the array entries in d0.

Let VDT be a binary tree with levels numbered in ascending order such that

the bottom level of VDT is 0. VDT is an X-Path valid derivation tree for some

positive integer X > 0 if it obeys the following constraints:

• All leaf nodes of VDT are at level 0.
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• Each internal node has exactly two child nodes.

• Each internal node must be at a higher level than its child nodes.

• Each node corresponds to an X-Path profile ṼNode.

• Each leaf node must have an X-Path profile ṼNode such that in the X-Path

Algorithm, the array entry d0[ṼNode] = 0.

• For each internal node, let Ṽ1 and Ṽ2 denote the X-Path profiles of its child

nodes. Then the internal node must have an X-Path profile ṼNode such that

⊕(Ṽ1, Ṽ2, ṼNode).

Note that by this definition, any subtree of an X-Path valid derivation tree must

also be an X-Path valid derivation tree. Furthermore, observe that any X-Path

valid derivation tree is also an (X + i)-Path valid derivation tree since every X-

Path profile is by definition an (X + i)-Path profile. Then given any X-Path valid

derivation tree VDT, we assign each node of VDT a weight wNode in ascending

order as follows:

• If the node is a leaf node, set wNode = 0. Note that as defined above, this is

equivalent to d0[ṼNode].

• If the node is an internal node, let ṼNode denote the X-Path profile of the

node and let Ṽ1 and Ṽ2 denote the X-Path profiles of its two child nodes.

Similarly, let w1 and w2 denote the weights of the two child nodes. Then set

wNode = M(w1,w2, Ṽ1, Ṽ2, ṼNode). Note that this must be a finite value since

⊕(Ṽ1, Ṽ2, ṼNode).

Note that all weights assigned are finite, non-negative integers. Similarly, we

assign each node of VDT an X-Path instance P̂Node which is a realization of its

X-Path profile ṼNode in ascending order as follows:

• If the node is a leaf node, d0[ṼNode] = 0 in the X-Path Algorithm, so there

must exist a realization of ṼNode whose every path is composed of either a

single edge or a single vertex. Simply set this realization as P̂Node.
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• If the node is an internal node, let Ṽ1 and Ṽ2 denote the X-Path profiles of

its two child nodes. Similarly, let P̂1 and P̂2 denote the weights of the two

child nodes. As defined above, it must be the case that ⊕(Ṽ1, Ṽ2, ṼNode), so

set P̂Node to the ṼNode instance formed by combining P̂1 and P̂2.

We note that by the nature of the X-Path Algorithm, it in some sense searches

over all X-Path valid derivation trees. Thus not only does every array entry have

a corresponding X-Path valid derivation tree, the X-Path Algorithm must also per-

form no worse than any X-Path valid derivation tree. However, for completeness

we shall provide proof of these claims:

Lemma 3.4.1 For any given positive integer X > 0, every array entry dy[Ṽ] with a

finite value in the X-Path Algorithm must have at least one X-Path valid derivation

tree VDT with a y-th level root node which has X-Path profile ṼNode = Ṽ and weight

wNode = dy[Ṽ].

Proof If this is false for some positive integer X > 0, consider the earliest phase

y′ where there exists a counterexample array entry dy′ [Ṽ
′] with finite value but no

X-Path valid derivation tree VDT with a y′-th level root node which has X-Path

profile ṼNode = Ṽ′ and weight wNode = dy′ [Ṽ
′].

First, observe that it is trivial to construct an X-Path valid derivation tree VDT′

with a 0-th level root node which has X-Path profile ṼNode = Ṽ′ and weight wNode =

d0[Ṽ
′]. Thus y′ cannot be 0. Then as defined in Section 3.3, observe that dy′ [Ṽ

′] must

be equivalent to M(dy′−1[Ṽ1],dy′−1[Ṽ2], Ṽ1, Ṽ2, Ṽ
′) for some pair of X-Path profiles

Ṽ1 and Ṽ2 where ⊕(Ṽ1, Ṽ2, Ṽ
′).

Next, because of how y′ was defined, there must exist an X-Path valid deriva-

tion tree VDT1 with a (y′−1)-th level root node which has X-Path profile Ṽ1 and

weight w1 = dy′−1[Ṽ1]. Similarly, there must exist an X-Path valid derivation tree

VDT2 with a y′− 1-th level root node which has X-Path profile Ṽ2 and weight

w2 = dy′−1[Ṽ2]. Let P̂1 and P̂2 be the Ṽ1 instance and the Ṽ2 instance associated

with the root nodes of VDT1 and VDT2 respectively.

Construct a binary tree VDT′ whose root node has X-Path profile ṼNode = Ṽ′

and weight wNode = dy′ [Ṽ
′], and has the root nodes of VDT1 and VDT2 as its two

child nodes. The root node of VDT′ also has X-Path instance P̂Node, which is the
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Ṽ′ instance formed by combining P̂1 and P̂2. Note that this must be possible since

Ṽ1⊕ Ṽ2 = Ṽ′. Then observe that because the subtrees of VDT′ are X-Path valid

derivation trees and the root node of VDT′ satisfies all constraints required, VDT′

is an X-Path valid derivation tree.

Finally, since the root node of VDT′ must be on level y′, there clearly exists an

X-Path valid derivation tree VDT with a y′-th level root node with X-Path profile Ṽ′

and weight dy′ [Ṽ
′]. This contradiction means there can be no phase y′ where there

exists such a counterexample array entry.

As defined in Section 3.3, a Multi-Path Algorithm only terminates its sequence

of phases after completing a phase Y > 0 where the resulting array dY is identical

to the previous array dY−1. We note that even if it was allowed to continue, all

subsequent phases would by definition perform the same operations as phase Y and

ultimately generate arrays identical to dY−1 as well. Thus for all positive integers

y > Y and all Ṽ, we say dy[Ṽ] = dY [Ṽ] since that would be the value assigned if the

algorithm was permitted to continue.

Lemma 3.4.2 No X-Path valid derivation tree has a y-th level root node with X-

Path profile ṼNode and weight wNode < dy[ṼNode].

Proof In some sense, this means the X-Path Algorithm must perform at least as

well as any X-Path valid derivation tree. This can be shown via a proof by contra-

diction. If the lemma is false, there must exist some counterexample X-Path valid

derivation tree VDT′ that has a y′-th level root node with X-Path profile Ṽ′Node and

weight wNode < dy′ [Ṽ
′
Node]. Consider the counterexample with the smallest possible

value of y′.

Firstly, y′ cannot be 0, because VDT′ would consist of a single leaf node and it

would have wNode = d0[Ṽ
′
Node] = dy′ [Ṽ

′
Node]. Therefore, the root node of VDT′ must

be an internal node.

Thus the root node of VDT′ must have exactly two child nodes. As before,

let Ṽ1, w1, and P̂1, and Ṽ2, w2, and P̂2 denote the X-Path profiles, weights, and X-

Path instances of the child nodes respectively. Then Ṽ1⊕ Ṽ2 = Ṽ′Node, and w′Node =

M(w1,w2, Ṽ1, Ṽ2, Ṽ
′
Node) where the M-function of the X-Path Algorithm is used.
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However, observe that each child node is the root node of a subtree which is

also a X-Path valid derivation tree, and since we are considering the counterexam-

ple with the smallest possible value of y′, it must be the case that w1 ≥ dy′−1[Ṽ1]

and w2 ≥ dy′−1[Ṽ2]. Then since the M-function is monotonically increasing with

the first two parameters, w′Node ≥ M(dy′−1[Ṽ1],dy′−1[Ṽ2], Ṽ1, Ṽ2, Ṽ
′
Node). Further-

more, by definition, dy′ [Ṽ
′
Node] ≤ M(dy′−1[Ṽ1],dy′−1[Ṽ2], Ṽ1, Ṽ2, Ṽ

′
Node). This means

w′Node ≥ dy′ [Ṽ
′
Node]. Thus we have proven that no counterexample X-Path valid

derivation tree can exist.

Let ṼNode, wNode, and P̂Node be the X-Path profile, weight, and X-Path instance

associated with a node in an X-Path valid derivation tree. As defined above, it must

be the case that P̂Node is a ṼNode instance. In order to describe how each array entry

dy[Ṽ] in the X-Path Algorithm relates to W ∗(Ṽ), it is also useful to describe the

relationship between wNode and P̂Node:

Lemma 3.4.3 For any X-Path valid derivation tree VDT, if a tree node has weight

wNode and X-Path instance P̂Node, then P̂Node has at most wNode hidden colours.

Proof If this lemma is false, there must exist a counterexample node which has

the lowest level in VDT. This counterexample node cannot be a leaf node, because

P̂Node would then consist of at most one edge and would by definition have 0 hidden

colours.

Thus this counterexample node must be an internal node with exactly two child

nodes. Let ṼNode denote the X-Path profile of this counterexample node, and let

Ṽ1, w1, and P̂1, and Ṽ2, w2, and P̂2 denote the X-Path profiles, weights, and X-Path

instances of the child nodes respectively. Note that because we are considering

the lowest-level counterexample, P̂1 and P̂2 must have at most w1 and w2 hidden

colours respectively.

By Observation 3.3.1, PNode has at most w1 +w2 +∑c∈SÂ(H(c, Ṽ1, Ṽ2, ṼNode))

hidden colours. However, this is equivalent to M(w1,w2, Ṽ1, Ṽ2, ṼNode) = wNode.

Thus no counterexample nodes can exist.

Lemma 3.4.4 For all phases y ≥ 0 and all X-Path profiles Ṽ, if dy[Ṽ] is a finite

value, there must exist a Ṽ instance with at most dy[Ṽ] hidden colours.
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Proof By Lemma 3.4.1 there must be an X-Path valid derivation tree whose root

node has the same X-Path profile Ṽ and weight at most dy[Ṽ]. Then by Lemma 3.4.3

the root node of this X-Path valid derivation tree must be associated with a Ṽ in-

stance with at most dy[Ṽ] hidden colours.

This effectively means that dy[Ṽ]≥W ∗(Ṽ) for all y≥ 0 and all Ṽ, based on the

definition of W ∗(Ṽ). Thus we have shown that the X-Path Algorithm derives an

upper bound on W ∗(Ṽ) for every X-Path profile Ṽ.

As defined in Section 3.3, the X-Path Algorithm outputs dY [Ṽoutput], where

Y is the terminal phase and Ṽoutput is a 1-Path profile with Ṽoutput[1] = s′ and

Ṽoutput[2] = t ′. Then as previously mentioned, because Ss′ and St ′ are empty sets,

W ∗(Ṽoutput) = W ′(Ṽoutput) = W ′(s′, t ′), so the X-Path Algorithm outputs an upper

bound on W ′(s′, t ′). Although for the general case it is not clear how tight this

upper bound is, the remainder of this thesis will discuss the various settings and

values of X for which constant factor approximations can be achieved by the X-

Path Algorithm.
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Chapter 4

Valid Derivation Tree
Construction

In Chapter 3, we introduced the Multi-Path Algorithms for the Minimum-Vertex-

Colour Path Problem. Furthermore, we defined the concept of X-Path valid deriva-

tion trees and proved Lemma 3.4.1 and Lemma 3.4.2 hold for all Multi-Path Algo-

rithms. Thus for any positive integer X > 0, the output of the X-Path Algorithm is

equivalent to the minimum root node weight over all X-Path valid derivation trees

for the X-Path profile Ṽoutput, where Ṽoutput is a 1-Path profile with Ṽoutput[1] = s′

and Ṽoutput[2] = t ′. Note that this means any s′− t ′ path, treated as an X-Path in-

stance, is a realization of the X-Path profile Ṽoutput.

In particular, we showed that the output of the X-Path Algorithm must always

be an upper bound on W ′(s′, t ′), the minimum over s′− t ′ paths of the number of

distinct colours used. This means all X-Path valid derivation trees for Ṽoutput must

also have root node weights which are upper bounds on W ′(s′, t ′). In this chapter,

we continue our performance analysis of the X-Path Algorithm by investigating the

relationship between the structure of an s′− t ′ path P, the structure of an X-Path

valid derivation tree VDT for P, and the weight of the root node of VDT.
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4.1 Timeline Representation of Paths
In previous work by Bereg and Kirkpatrick [2], paths in a restricted version of the

Barrier Resilience Problem were visually represented as well-structured timelines,

and this timeline representation was heavily exploited to achieve some of their re-

sults. We note that for the Minimum-Vertex-Colour Path Problem, it is also useful

to have timeline representations, and many of the subsequent concepts and proofs

involving timeline representations are refinements of similar concepts and proofs

suggested by Bereg and Kirkpatrick [2].

Given any s′− t ′ path P, the timeline representation of P is a timeline for some

entity walking along P from s′ to t ′. For simplicity, we will only consider the case

where P is an acyclic s′− t ′ path, noting the fact that there must always be an

acyclic Minimum-Colour s′− t ′ path in every problem instance. This makes the

subsequent analysis much simpler, but we note that many of the arguments could

be generalized to work for cyclic paths as well.

The basic structure of the timeline representation of P is a horizontal chain of

vertices on a two-dimensional plane, corresponding to the vertices encountered by

the entity as it walks along the path P, such that the left endpoint of the chain is the

vertex s′ and the right endpoint of the chain is the vertex t ′. This basic structure can

be augmented with information about which vertices share colours via the addition

of a set of coloured arcs connecting pairs of vertices with the same colour. We refer

to each arc as a bracket, and a set of arcs is referred to as a bracketing.

Note that sharing a colour is a transitive relation, so a bracketing may connect

pair of c-coloured vertices indirectly via a series of c-coloured brackets rather than

directly through a single c-coloured bracket. In addition, observe that it is also a

reflexive relation, so every c-coloured vertex is trivially connected to itself via a

series of 0 brackets. Thus a bracketing is considered to be a full bracketing if it

contains exactly one spanning tree of c-coloured brackets connecting all of the c-

coloured vertices for each colour c, with no additional brackets. Note that by this

definition, there may be multiple different full bracketings for P, but they are all

connection-equivalent in the sense that for every colour c, every pair of c-coloured

vertices is connected by c-coloured brackets in one full bracketing if and only if

the pair is also connected in the other full bracketings. A partial bracketing is then
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defined as any subset of a full bracketing.

4.2 The Discount Bracketing of a Valid Derivation Tree
In Chapter 3, the performance analysis of the X-Path Algorithm showed that the

output of the X-Path Algorithm must always be an upper bound on W ′(s′, t ′). The

proof of this statement relies on Lemma 3.4.3, which claims that given any node in

an X-Path valid derivation tree, if the node has weight wNode and X-Path instance

P̂Node, wNode is an upper bound on the number of distinct hidden colours for P̂Node.

However, it does not assert anything about how tight this upper bound must be.

In effect, although we proved that the output of the X-Path Algorithm must be an

upper bound on W ′(s′, t ′), we also could not assert anything about how tight this

upper bound must be. Thus in order to give a more thorough performance analysis,

we would like a stronger claim, one which can define the exact value of wNode

rather than simply stating that it is an upper bound on another value.

In this section, we note that this is possible if we assign each node a bracketing.

As before, let P be an acyclic s′−t ′ path, and let VDT be an X-Path valid derivation

tree for P. Then we assign each node of VDT a bracketing BNode in ascending order

as follows:

• If the node is a leaf node, assign it a bracketing containing no brackets.

• If the node has exactly two child nodes, let ṼNode denote the X-Path profile of

the node and let Ṽ1 and Ṽ2 denote the X-Path profiles of its two child nodes.

Similarly, let B1 and B2 denote the bracketings of the two child nodes.

First, set BNode to be the union of B1 and B2. Then for every colour c,

let j be the c-coloured vertex in ṼNode which is earliest in the sense that

an entity walking along P from s′ to t ′ would encounter j first. If no such

vertex exists, let j be the earliest c-coloured vertex which is disappearing in

the sense that it is in (Ṽ1 ∪ Ṽ2) but not in ṼNode. Then for each c-coloured

disappearing vertex i, if i 6= j, add to BNode a c-coloured bracket with i and j

as its endpoints. Note that this means a bracket is added for each c-coloured

disappearing vertex unless it is the earliest c-coloured disappearing vertex

and there exists no c-coloured vertex in ṼNode.
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In other words, the following describes how BNode is constructed:

BNode← B1∪B2

for all c ∈ SÂ do
j← the earliest c-coloured vertex in ṼNode

if j = NULL then
j← the earliest c-coloured vertex in (Ṽ1∪ Ṽ2)− ṼNode

for all i ∈ (Ṽ1∪ Ṽ2)− ṼNode do
if i is c-coloured then

if i 6= j then
b← c-coloured bracket with endpoints i and j

BNode← BNode∪{b}

Observation 4.2.1 All brackets in BNode only have endpoints in the set of vertices

in P̂Node.

Proof If this observation is false, consider the lowest counterexample node in

VDT. As defined above, it cannot be a leaf node since the bracketing of a leaf

node must have no brackets. Thus it must be an internal node with exactly two

child nodes. Let B1 and B2 be the bracketings of these two child nodes, and ob-

serve that since these child nodes are not counterexample nodes, the brackets of

B1 and B2 can only have endpoints in the set of vertices in P̂Node. Then from the

construction procedure of BNode above, it is impossible for any bracket in BNode to

have an endpoint not in the set of vertices in P̂Node.

Observation 4.2.2 BNode does not contain any bracket which has both endpoints

in ṼNode.

Proof If this observation is false, consider the lowest counterexample node in

VDT. As before, it cannot be a leaf node since leaf node bracketings cannot contain

brackets. Thus it must be an internal node with exactly two child nodes. Combin-

ing Observation 4.2.1 with the fact that its child nodes must not be counterexample

nodes, it follows that no bracket in either of the child node bracketings can have

both endpoints in ṼNode. Then from the construction procedure of BNode above, it

is impossible for any bracket in BNode to have both endpoints in ṼNode.
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Observation 4.2.3 Let B1 and B2 be the bracketings for a pair of nodes which

share a parent node. B1∩B2 = {}.

Proof Follows directly from Observation 4.2.1 and Observation 4.2.2.

Now for any node in VDT with weight wNode, X-Path instance P̂Node, and brack-

eting BNode, we define the following functions:

Total(P̂Node,c) = Number of c-coloured vertices in P̂Node

Exposed(P̂Node,c) = Number of c-coloured path endpoints in P̂Node

Then for any set of colours S, we will extend these functions as follows:

Total(P̂Node,S) = ∑
c∈S

(Total(P̂Node,c))

Exposed(P̂Node,S) = ∑
c∈S

(Exposed(P̂Node,c))

Lemma 4.2.4 wNode = Total(P̂Node,SÂ)−Exposed(P̂Node,SÂ)−|BNode|.

Proof If this lemma is false, there must exist some counterexample nodes in VDT.

Let Nodelow denote the lowest level counterexample node in VDT, and let wlow,

P̂low, Ṽlow and Blow denote the weight, X-Path instance, X-Path profile, and brack-

eting of Nodelow respectively. Note that because its a counterexample node, wlow 6=
Total(P̂low,SÂ)−Exposed(P̂low,SÂ)−|Blow|.

First, consider the case where Nodelow is a leaf node. Observe that all ver-

tices used by P̂low must be path endpoints, so Total(P̂Node,SÂ)−Exposed(P̂Node,SÂ)

must be equal to 0. Furthermore, Blow must contain no brackets, so |BNode| is also

equal to 0. Finally, wlow must also be 0 when Nodelow is a leaf node. This means

wlow = Total(P̂low,SÂ)−Exposed(P̂low,SÂ)− |Blow|, so Nodelow cannot be a leaf

node.

Thus Nodelow must be an internal node with exactly two child nodes which are

not counterexample nodes. Let w1 and w2 denote the weights, P̂1 and P̂2 denote

the X-Path instances, Ṽ1 and Ṽ2 denote the X-Path profiles, and B1 and B2 denote

the bracketings of the two child nodes respectively. Then as defined in Chapter 3,
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wlow = w1 +w2 +∑c∈SÂ(H(c, Ṽ1, Ṽ2, Ṽlow)) = ∑c∈SÂ(Total(P̂1,c)+Total(P̂2,c)−
Exposed(P̂1,c)−Exposed(P̂2,c)+H(c, Ṽ1, Ṽ2, Ṽlow))−|B1|− |B2|.

Next, let Dis(c, Ṽ1, Ṽ2, Ṽlow) denote the number of disappearing c-coloured

vertices, such that for any colour c, Total(P̂1,c)+Total(P̂2,c)−Exposed(P̂1,c)−
Exposed(P̂2,c) = Total(P̂low,c)− Exposed(P̂low,c)−Dis(c, Ṽ1, Ṽ2, Ṽlow). Then

observe that based on the bracketing construction procedure above, when con-

structing Blow for Nodelow, the number of c-coloured brackets added for disap-

pearing vertices must be equal to Dis(c, Ṽ1, Ṽ2, Ṽlow)−H(c, Ṽ1, Ṽ2, Ṽlow). In fact,

|Blow|− |B1|− |B2|= Dis(c, Ṽ1, Ṽ2, Ṽlow)−H(c, Ṽ1, Ṽ2, Ṽlow) because of Observa-

tion 4.2.3 and Observation 4.2.2.

Finally, by substituting these equations into our expression for wlow, we de-

rive that wlow = ∑c∈SÂ(Total(P̂low,c)−Exposed(P̂low,c))− |Blow|, contradicting

the fact that Nodelow denotes a counterexample node. Thus the lemma must be

true.

Furthermore, since s′ and t ′ have no colours, Exposed(P,SÂ) = 0. With that

in mind, we refer to the bracketing assigned to the root node as VDT’s discount

bracketing Bdiscount, since the weight of the root node of VDT must be equivalent

to Total(P,SÂ)−|Bdiscount|. Finally, we end this section with the following lemmas

that are useful for proving bounds on the size of Bdiscount.

Lemma 4.2.5 For each colour c and each pair of c-coloured vertices i and j in P,

if there exists a pair of X-Path profiles Ṽ1 and Ṽ2 associated with any pair of nodes

which share a parent in VDT such that Ṽ1∪ Ṽ2 contains both i and j, then i and j

are connected by c-coloured brackets in Bdiscount.

Proof We first show that for each colour c and each pair of c-coloured vertices

i and j in P, if there exists an X-Path profile Ṽ associated with any node in VDT

such that Ṽ contains both i and j, then i and j are connected by c-coloured brackets

in Bdiscount. This is proved via contradiction as follows:

Consider the highest node Nodehigh in VDT, where Nodehigh is a counterex-

ample node in the sense that its X-Path profile Ṽhigh contains a pair of c-coloured

vertices i and j, but i and j are not connected by c-coloured brackets in Bdiscount.

Because s′ and t ′ have no colours assigned to them, Nodehigh cannot be the root
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node. Thus Nodehigh must have a parent node which is not a counterexample node.

This means either i or j must not be present in Ṽparent, the X-Path profile of the

parent node. In other words, i or j must be a disappearing vertex.

However, by the discount bracketing construction procedure, there must be a

c-coloured bracket added to Bdiscount that connects each c-coloured disappearing

vertex to either the first c-coloured vertex in Ṽparent or the c-coloured disappearing

vertex closest to the start of P. If they are connected to the first c-coloured vertex in

Ṽparent, by transitivity and the fact that the parent node is not a counterexample node

it must be the case that i and j are connected by c-coloured brackets in Bdiscount.

Otherwise, i and j must both be disappearing vertices, and observe that they must

still be connected by c-coloured brackets in Bdiscount in this case. As a result no

counterexample node can exist.

Thus for each colour c and each pair of c-coloured vertices i and j in P, if there

exists an X-Path profile Ṽ associated with any node in VDT such that Ṽ contains

both i and j, then i and j are connected by c-coloured brackets in Bdiscount. Then

consider the pair of X-Path profiles Ṽ1 and Ṽ2 described in the lemma. The lemma

immediately follows from applying this result on their nodes and the shared parent

node, and the fact that if both i and j are disappearing vertices for the parent node,

c-coloured brackets would be added that connect i and j.

4.3 Pre-emptive Detection Approach
Let P be an acyclic s′− t ′ path and let B∗ be a partial bracketing on P. We would

like to prove whether there exists an X-Path Algorithm valid derivation tree VDT

for P such that the root node of VDT has weight at most Total(P,SÂ)− |B∗|. If

this can be achieved for every bracketing B∗, then the performance analysis of the

X-Path Algorithm would be much simpler given Lemma 3.4.2 and Lemma 3.4.1.

In this section, for any positive integer X ≥ 2, we present the Pre-Emptive

Detection Approach for constructing an X-Path Algorithm valid derivation tree

VDTPDA for P such that the root node of VDTPDA has weight at most Total(P,SÂ)−
|B∗| when given a partial bracketing B∗ on P. This approach uses the following

construction procedure:

1. For each edge in P, create a level-0 leaf node with X-Path profile set such
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that the edge is a realization of the X-Path profile. Note that this X-Path

profile by definition would also be a 1-Path profile.

2. For each bracket in B∗, let i and j be the vertices at the endpoints of the

bracket. Create a level-0 leaf node with X-Path profile set to the vertex 4-

tuple (i, i, j, j). Note that by definition, this X-Path profile is also a 2-Path

profile.

3. For each pair of parentless nodes whose X-Path profiles are 1-Path profiles,

if there exists a vertex û such that the following constraints hold:

• The vertex 2-tuple of one of the 1-Path profiles starts with û, while the

other ends with û.

• û is not the endpoint of any bracket in B∗.

create a node which is the parent of both nodes, and assign it the 1-Path

instance which combines the 1-Path instances of both nodes such that û is no

longer a path endpoint. Then assign it the 1-Path profile that is realized by

this 1-Path instance.

Repeat this step until there are no applicable pairs of nodes. Note that the

order in which pairs of nodes are considered does not matter. Ultimately, for

each subpath Psub of P, if Psub starts and ends at bracket endpoints of B∗ and

does not contain any other bracket endpoints of B∗, a unique node must have

been created such that its X-Path profile is a 1-Path profile that is realized by

the 1-Path instance Psub.

4. Finally, find some method of combining the X-Path instances of the remain-

ing parentless nodes to complete VDTPDA such that the root node’s X-Path

instance is the 1-Path instance P. Note that this must be done without vio-

lating the constraints on valid derivation trees described in Section 3.4. In

particular, note that this means we cannot create any additional leaf nodes

whose X-Path instances contain edges.

Note that while the first three steps can be carried out for any bracketing, the

last step will fail on some bracketings. With this in mind, we define a set of bracket-

ings called X-tree-admissible bracketings, which includes a partial bracketing B∗ if
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and only if the construction procedure of the Pre-emptive Detection Approach out-

lined above succeeds in constructing an X-Path valid derivation tree with respect

to B∗.

Lemma 4.3.1 If B∗ is an X-tree-admissible-bracketing, the weight of the root node

of VDTPDA is at most Total(P,SÂ)−|B∗|.

Proof For any colour c and any c-coloured bracket b in B∗, observe that both its

endpoints are in the X-Path profile of the node created for it in the second step.

Thus by Lemma 4.2.5, the discount bracketing of VDTPDA must connect its end-

points via c-coloured brackets. Effectively, the discount bracketing connects ev-

erything that is connected by B∗, which is only possible if the discount bracketing

is at least as large as B∗ since B∗ is a partial bracketing. Then by Lemma 4.2.4, the

root node weight must be at most Total(P,SÂ)−|B∗|.

Thus in some sense, by the second step of the construction procedure we

have already pre-emptively detected that the root node weight must be at most

Total(P,SÂ)−|B∗|, before the root node is even created. Note that by Lemma 3.4.2,

the X-Path Algorithm cannot perform worse than VDTPDA, so its output must also

be at most Total(P,SÂ)−|B∗|.
However, given any partial bracketing B∗, it is difficult to directly determine

whether it is an X-tree-admissible bracketing. Instead, in this section we will

begin by defining a set of bracketings and then prove that these bracketings are

2-tree-admissible bracketings via induction. Then in later chapters, these 2-tree-

admissible bracketings will be used in some proofs involving constant factor ap-

proximations achieved by the 2-Path Algorithm.

First, let a bracket bempty be considered an empty bracket with respect to a

partial bracketing B∗ if no bracket in B∗ has an endpoint that lies in between the

endpoints of bempty. Then let a bracket bDA1 be considered doubly-adjacent to a

bracket bDA2 in a partial bracketing B∗ if there exists two distinct subpaths of P

such that:

• Each subpath either starts at an endpoint of bDA1 and ends an endpoint of

bDA2, or starts at an endpoint of bDA2 and ends at an endpoint of bDA1.
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• Each endpoint of bDA1 is either the start or end of one subpath.

• No bracket in B∗ has an endpoint that lies in within each subpath.

Next, given any full bracketing Bfull on P, there exists 2|Bfull| partial bracketings

which are subset of Bfull. Out of these partial bracketings, we inductively define a

set B̂ of bracketings as follows:

1. The partial bracketing composed of no brackets is in B̂.

2. Let bempty be an empty bracket with respect to a partial bracketing Binduct. If

Binduct is in B̂, Binduct∪{bempty} is also in B̂.

3. Let bDA1 be a bracket which is doubly-adjacent to some bracket bDA2 in a

partial bracketing Binduct. If Binduct is in B̂, Binduct∪{bDA1} is also in B̂.

4. B̂ is the smallest set which satisfies the above.

We will prove that all bracketings in B̂ are 2-tree-admissible bracketings. For

simplicity, the following arguments are presented for the simple case where there

are no coincident bracket endpoints in Bfull. In other words, there is no vertex on P

that is used as the endpoint of more than one bracket in Bfull. However, we note that

they can be generalized to apply for all full bracketings by specifying an arbitrary

ordering for any coincident bracket endpoints, so given any two bracket endpoints

one must be strictly on one side of the other. We begin with the base case:

Lemma 4.3.2 If Binduct contains no brackets, Binduct is a 2-tree-admissible brack-

eting.

Proof If Binduct contains no brackets, then the second step in the construction pro-

cedure of the Pre-emptive Detection Approach would create no nodes. Then ob-

serve that the third step would already complete the tree. Thus Binduct must be a

2-tree-admissible bracketing.

Lemma 4.3.3 If Binduct is a 2-tree-admissible bracketing, Binduct ∪{bempty} must

be a 2-tree-admissible bracketing as well.
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Proof Since Binduct is a 2-tree-admissible bracketing, the last step of the construc-

tion procedure of the Pre-emptive Detection Approach outlined above must have

succeeded and produced a 2-Path Algorithm valid derivation tree VDTBinduct .

Let Pempty be the subpath of P that starts from one endpoint of bempty and ends

at the other endpoint of bempty. Since bempty is an empty bracket with respect to

Binduct, there must be no bracket endpoints of Binduct that lie within Pempty. Then

observe that in the construction procedure outlined above, Pempty must have a set

of level-0 nodes representing its edges created for VDTBinduct in the first step, and

these edges must have been merged into a single path Pinduct that has Pempty as a

subpath by the third step. By construction, Pinduct must have its endpoints either

at some bracket endpoints of Binduct or at s′ or t ′, and in VDTBinduct there must be a

node Nodeinduct whose X-Path instance is Pinduct.

Consider applying the Pre-emptive Detection Approach to construct a tree for

Binduct∪{bempty}. After the third step of the construction procedure outlined above,

in place of Nodeinduct there must be instead:

• A node with an X-Path instance composed of a length-0 path at each endpoint

of bempty.

• A node with an X-Path instance composed of a single path from the start of

Pinduct to the start of Pempty.

• A node with an X-Path instance composed of a single path Pempty

• A node with an X-Path instance composed of a single path from the end of

Pempty to the end of Pinduct.

Observe that given the rules on X-Path instance combinations defined in Sec-

tion 3.1, the X-Path instances associated with these four nodes can be combined

sequentially to form a new node Nodeempty whose X-Path Instance is Pinduct. Then

observe that the only difference between the resulting set of parentless nodes and

the set of parentless nodes after the third step of the construction procedure ap-

plied for constructing VDTBinduct is that Nodeinduct has been replaced by Nodeempty,

but both nodes share the same X-Path instance P̂induct and consequently the same

X-Path profile.
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Then since the last step must have succeeded for the latter set of parentless

nodes, it must clearly succeed for the former set as well since the X-Path instance

of every corresponding parentless node is identical. Thus we have shown that

Binduct∪{bempty} must be a 2-tree-admissible bracketing as well.

Lemma 4.3.4 If Binduct is a 2-tree-admissible bracketing, then Binduct ∪ {bDA1}
must be a 2-tree-admissible bracketing as well.

Proof As before, since Binduct is a 2-tree-admissible bracketing, the last step of

the construction procedure of the Pre-emptive Detection Approach must have suc-

ceeded and produced a 2-Path Algorithm valid derivation tree VDTBinduct .

Since bDA2 is in B∗, the second step of the construction procedure must have

created a node NodeDA2 whose X-Path instance is a 2-Path instance composed of a

length-0 path at each endpoint of bDA2.

Consider applying the Pre-emptive Detection Approach to construct a tree for

Binduct ∪ {bDA1}. After the second step of the construction procedure outlined

above, the only difference to the set of parentless nodes would be the addition

of another node whose X-Path instance is a 2-Path instance composed of a length-

0 path at each endpoint of bDA1. Then, because bDA1 is doubly-adjacent to bDA2,

observe that by definition the X-Path instances of the two nodes for these two

brackets can be combined with the 1-Path instances representing some edges of

P for some leaf nodes to form a node NodeDA whose X-Path instance is a 2-Path

instance composed of two paths, each containing an endpoint of bDA2.

If we perform the third step after NodeDA is created, observe that there is a one-

to-one mapping from the resulting set of parentless nodes to the set of parentless

nodes after the third step of the construction procedure applied for constructing

VDTBinduct , such that the only difference is that the absolute positions and sizes of

some X-Path instances have changed. However, which path endpoints are shared

by each pair of X-Path instances remains exactly the same. Thus as before, we

observe that the last step of the construction procedure for the Pre-emptive Detec-

tion Approach must succeed for the former set as well. Thus we have shown that

Binduct∪{bDA1} must be a 2-tree-admissible bracketing as well.

Thus by induction, all bracketings in B̂ are 2-tree-admissible bracketings.
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4.4 Sweep Span-Exploiting Approach
In this section, we present an alternative approach to constructing X-Path valid

derivation trees that is useful for some proofs later on in this thesis. Note that as

before, the goal is to construct an X-Path Algorithm valid derivation tree VDTSSA

for an acyclic s′− t ′ path P such that the root node of VDTSSA has weight at most

Total(P,SÂ)−|B∗| when given a partial bracketing B∗ on P. However, unlike the

previous section where we began by defining a construction procedure and then

proceeded to find bracketings for which the procedure would succeed, in this sec-

tion we will first define a target set of bracketings, then describe the construction

procedure of the Sweep Span-Exploiting Approach and prove that it always suc-

ceeds for the target bracketings.

To describe this target set of bracketings, we begin by defining the bracket-

span of a colour c with respect to a bracketing B on P as the set of all vertices on

P that are between the endpoints of at least one c-coloured bracket in B, including

the vertices which are at the endpoints of c-coloured brackets. Then every partial

bracketing B∗ on P is a target bracketing if and only if every vertex on P is in the

bracket-spans of at most X distinct colours with respect to B∗.

Given any target bracketing B∗, the gist of the Sweep Span-Exploiting Ap-

proach is to recursively combine the leftmost remaining edge of P into an X-Path

instance, in some sense sweeping across the timeline from left to right until it

reaches t ′. Note that this means the X-Path instance at any point in this recursion

must always be composed of X consecutive paths with no edges in between them,

in the sense that the vertex at the end of each path is the start of the next path.

This in turn means that the number of distinct vertices which are endpoints of the

X-Path instance at any point in the recursion is at most X +1. This sweep approach

is reflected in the valid derivation tree by a long chain of nodes, each the parent of

the last, with each node representing a point in the recursion. This is more formally

described as follows:

First create a set of level-0 leaf nodes for every edge in P as before, which is

needed to ensure that the root node can have P as its X-Path instance. Next, the start

of the long chain of nodes is created as a level-0 leaf node whose X-Path instance

is composed of X length-0 paths from s′ to s′. Then to describe the procedure
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used to extend the chain in each step of the recursion, let Nodeend denote the node

at the current end of the chain, and let Ṽend and P̂end denote its X-Path profile

and X-Path instance respectively. Then let P1 to PX denote the X paths of P̂end in

sequential order. As previously mentioned, we shall maintain the invariant that

these X paths are consecutive with no edges in between them. In other words, for

any integer 1 ≤ x < X , the end of Px must be the same vertex as the start of Px+1,

and Ṽend[2x] = Ṽend[2x+1]. Furthermore, Ṽend[1] must always be s′. In light of this

fact, let SPx denote the set of colours assigned to the vertex at the end of Px, such

that SPx = SṼend[2x].

Next, let PX+1 denote the leftmost remaining edge of P not within P̂end, and

similarly let SPX+1 denote the set of colours assigned to the vertex at the end of

PX+1. Note that we must have created a level-0 leaf node Nodeleaf whose X-Path

instance is the 1-Path instance PX+1. The next node in the chain is constructed such

that its X-Path instance is formed via the combination of the X-Path instances from

Nodeend and Nodeleaf. Observe that this combination can be performed with no

problems because the end of PX must be the same vertex as the start of PX+1. In

fact, there even exists multiple choices for the resulting X-Path instance, since any

two consecutive paths in the X +1 paths P1 to PX+1 could be concatenated to form

an X-Path instance.

Let BS(c) be true if the end of PX+1 is within the bracket-span of a colour c.

We shall choose the X-Path instance that results from concatenating Px and Px+1

for the smallest positive integer x where each colour assigned to the end of Px is

either assigned to the end of another path, or the end of the chain is no longer

within the bracket-span of the colour. More formally, this is the smallest positive

integer x for which (c ∈ SPx)→ (¬BS(c)∨∃1≤ j≤X+1((x 6= j)∧ c ∈ SPj)). We

observe that such a path must always exist given our precondition that every point

on P is known to be within the bracket-spans of at most X distinct colours with

respect to the bracketing B∗. This is because any counterexample would require

every one of the X + 1 paths to be assigned a unique colour whose bracket-span

covers the end of the chain, which is not possible when every point on P is within

the bracket-spans of at most X distinct colours.

Then for every colour c, consider the bracket-span of c with respect to B∗. As

defined above, the bracket-span is the set of vertices in P that are within at least
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one c-coloured bracket, and B∗ does not need to be a full bracketing. As a result,

the bracket-span may be composed of multiple disjoint intervals.

Observation 4.4.1 If the end of PX+1 is the start of one of the disjoint intervals

that form the bracket-span of c, the end of PX+1 must be assigned the colour c.

Proof As defined above, the bracket-span of c includes the vertices at the end-

points of c-coloured brackets. The start of each of these i disjoint intervals must be

an endpoint of a c-coloured bracket, and c-coloured brackets must have c-coloured

vertices as their endpoints.

Observation 4.4.2 If the end of PX+1 is within one of the disjoint intervals that

form the bracket-span of c but not the start of the interval, there must exist a

positive integer x′ ≤ X such that the end of Px′ is assigned the colour c.

Proof By Observation 4.4.1, when the sweep reached the start of this interval, the

X-Path instance constructed must have a path which has c assigned to its end. As

stated above, for the new node in the chain we choose the X-Path instance that

results from concatenating Px and Px+1 for the smallest positive integer x where

each colour assigned to the end of Px is either assigned to the end of another path,

or the sweep is no longer within the bracket-span of the colour. Since the sweep

could not have left the bracket-span of c from the start of this interval to its current

position, observe that whenever we choose a path Px with c assigned to its end,

there must be another path in the new X-Path instance which also has c assigned to

its end. Thus when sweep reaches the current position, there must exist a positive

integer x′ ≤ X such that the end of Px′ is assigned the colour c.

Finally, when the last edge is merged into the sweep chain, we create another

leaf node with an X-Path instance which is a 1-Path instance composed of a single

0-length path at t ′. We then create the root node with an X-Path instance which is

the 1-Path instance formed via the combination of the leaf node’s 1-Path instance

and the X-Path instance from the end of the sweep chain. Note that because of the

leaf nodes we created in this procedure, this 1-Path instance must be the s′− t ′ path

P.

38



Now for every colour c, let Intervals(c) denote the number of disjoint intervals

that compose the bracket-span of c, and let Unconnected(c) denote the number

of c-coloured vertices in P which are not used as an endpoint of any c-coloured

bracket in B∗. Then B∗, being a partial bracketing, must have at least Intervals(c)+

Unconnected(c)−1 fewer c-coloured brackets than any full bracketing, since ev-

ery full bracketing by definition contains a spanning tree of c-coloured brackets

connecting all c-coloured vertices. Next, consider the c-coloured brackets in the

discount bracketing Bdiscount of the X-Path valid derivation tree constructed by this

approach.

Lemma 4.4.3 Let i be a c-coloured vertex that is within one of the disjoint inter-

vals that form the bracket-span of c but not the start of the interval. Bdiscount must

contain c-coloured brackets which connect i to a preceding c-coloured vertex.

Proof By Observation 4.4.2, when the sweep reaches i in the sense that i is the

end of PX+1, there must exist a positive integer x′ ≤ X such that the end of Px′ is

assigned the colour c. Then by Lemma 4.2.5, Bdiscount must contain c-coloured

brackets which connect i to the end of Px′ , which by definition is a preceding c-

coloured vertex.

Lemma 4.4.4 For each of the disjoint intervals composing the bracket-span of

c, all c-coloured vertices within the interval, including the start and end of the

interval, are connected by c-coloured brackets in Bdiscount.

Proof Follows immediately from Lemma 4.4.3 and the fact that being connected

by c-coloured brackets in Bdiscount is a transitive relation.

This means Bdiscount has at most Intervals(c)+Unconnected(c)− 1 fewer c-

coloured brackets than any full bracketing. As a result, Bdiscount must have at least

as many c-coloured brackets as B∗ for every colour c, meaning Bdiscount has at least

as many brackets as B∗. This allows us to state the main result of this section:

As defined at the start of this section, every partial bracketing B∗ on P is a

target bracketing if and only if every vertex on P is in the bracket-spans of at most

X distinct colours with respect to B∗.
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Lemma 4.4.5 For any target bracketing B∗, the Sweep Span-Exploiting Approach

constructs an X-Path Algorithm valid derivation tree for P has root node weight at

most Total(P,SÂ)−|B∗|.

Proof As noted in Section 4.2, the weight must be Total(P,SÂ)− |Bdiscount|. We

just showed that Bdiscount has at least as many brackets as B∗, so |Bdiscount| ≥ |B∗|
and it immediately follows that the weight is at most Total(P,SÂ)−|B∗|.
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Chapter 5

Planar Bracketing Construction

In the previous chapter, we showed that if a partial bracketing B∗ on an acyclic

s′− t ′ path P has certain properties, we can prove via tree construction approaches

and Lemma 3.4.2 that the output of X-Path Algorithm is at most Total(P,SÂ)−|B∗|.
Thus one way to guarantee the output is a close approximation is by considering

an acyclic Minimum Colour s′− t ′ path P, and proving the existence of an almost

full bracketing B∗ on P which has the properties required for one of the tree con-

struction approaches to succeed.

Unfortunately, while an acyclic Minimum-Colour s′− t ′ path P can always be

guaranteed to exist, it is not clear whether such a bracketing would exist in general

problem instances of the Minimum-Vertex-Colour Path Problem. Nevertheless, as

noted in Chapter 2, problem instances of the Minimum-Vertex-Colour Path Prob-

lem that result from the reduction from the Barrier Resilience Problem actually

have additional structural constraints on the graph. In this chapter, we show that

these structural constraints can actually be exploited to construct well-structured

full bracketings. In particular, given any acyclic Minimum-Colour s′− t ′ path P,

we can construct a full bracketing which is considered planar in the sense that all

the brackets in the bracketing can be drawn in the timeline representation without

any two brackets intersecting and without any bracket intersecting the horizontal

chain of vertices. These planar full bracketings are then exploited in later chapters

to prove that the Multi-Path Algorithms guarantee constant factor approximations

for the Barrier Resilience Problem.
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5.1 Sensor Intersection Orientations
As noted in Chapter 2, when using the reduction from the Barrier Resilience Prob-

lem to the Minimum-Vertex-Colour Path Problem, every s′− t ′ path on the graph

Â corresponds to a S−T path through A. In addition, observe that like the other

optimal path problems discussed in this thesis, there must always exist an acyclic

S−T path P which is resilience-optimal, in the sense that the number of distinct

sensors intersected by P is exactly the resilience of the barrier, and P would cor-

respond to an acyclic Minimum-Colour s′− t ′ path on the graph Â. As before, we

shall restrict our attention to these acyclic resilience-optimal paths, as they exhibit

additional properties which we can exploit.

Before we describe the procedure for constructing a planar full bracketing on P,

we shall first assign sensor intersections of P relative orientations, describing their

relationship with other intersections of the same sensor. These relative orientations

are used to guide the construction procedure described in the later sections. Note

that because the reduction to the Minimum-Vertex-Colour Path Problem removes

every sensor that covers s′ or t ′, we will only assign these relative orientations to

intersections of sensors which do not cover the start or the end of P. This means

every sensor intersection must have a unique entry point and a unique exit point on

the boundary of the associated sensor.

Let a sensor-boundary-walk be defined as a walk on the boundary of a sensor.

Each intersection of the sensor is considered to be associated with exactly two

sensor-boundary-walks. Each of these two sensor-boundary-walks starts from the

entry point of the intersection and ends at the exit point, but one sensor-boundary-

walk goes around the sensor in a clockwise manner and while the other goes around

in a counter-clockwise manner. In particular, each of these sensor-boundary-walk

is considered to be path-intersected if any other sensor intersection has its entry or

exit point within the sensor-boundary-walk.

Each sensor intersection is assigned a relative orientation based on whether its

two sensor-boundary-walks are path-intersected. If both sensor-boundary-walks

are path-intersected, the sensor intersection is considered to be an interior inter-

section and is assigned a dual orientation. Otherwise, it is considered a peripheral

intersection. Then for each peripheral intersection, if both sensor-boundary-walks
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are not path-intersected, it is assigned a null orientation. Otherwise, it must have

exactly one path-intersected sensor-boundary-walk, and a positive orientation is

assigned if the counter-clockwise sensor-boundary-walk is path-intersected, while

a negative orientation is assigned if the clockwise sensor-boundary-walk is path-

intersected.

In particular, we observe that an acyclic resilience-optimal S−T path which

makes only peripheral intersections, henceforth referred to as a peripheral traver-

sal, is significantly easier to handle than an acyclic resilience-optimal S−T path

which makes even a single interior intersection, henceforth referred to as an inte-

rior traversal. Thus the next few sections will describe how a planar full bracketing

is constructed for a peripheral traversal, and we leave the details on how a planar

full bracketing can be constructed for an interior traversal for Section 5.5.

5.2 Forbidden Configurations for Peripheral Traversals
In this section, we describe the additional constraints on peripheral traversals which

make the planar full bracketings easier to construct. Begin by considering an ar-

bitrary peripheral traversal P. The folded timeline of P can be thought of as a

sequence of vertices representing the faces intersected by P from S to T . For any

sensor si that is intersected by P more than once, any vertex in this sequence is in

exactly one of three distinct states. Either it is not inside si, or it is within a positive

intersection of si, or it is within a negative intersection of si. Note that it cannot

be within an intersection of si which has null or dual orientation because it is a

multiply-intersected sensor and P is a peripheral traversal.

Then for any pair of distinct multiply-intersected sensors, each vertex can be

described as being in exactly one of nine distinct states with respect to these two

sensors. Any sequence of vertices can then be thought of as a sequence of states.

Let a sequence of such states be called a timeline configuration, and let us de-

fine a timeline U as containing a timeline configuration if there exists two distinct

multiply-intersected sensors associated with the timeline U such that the sequence

of states represented by the timeline configuration is a subsequence of the sequence

of states associated with the timeline U with respect to these two sensors.

From this definition, we observe that certain timeline configurations can never
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be contained by a peripheral traversal through an arrangement of disk sensors. In

fact, we will argue that this is true for any arrangement of arbitrarily-shaped sensors

as long as the following axioms Axiom 5.2.1 and Axiom 5.2.2 hold.

Axiom 5.2.1 Each sensor in the arrangement defines a single detection region on

the two dimensional plane that contains no holes. In other words, for any two

points p1 and p2 and any sensor si, if the points are both inside or both outside si,

there exists a path from p1 to p2 that does not intersect the boundary of si.

For any pair of sensors si and s j, let an intersection region Ii, j be defined as a

region on the two dimensional plane that satisfies the following constraints:

• Ii, j is a subregion of the intersection of si and s j.

• Ii, j contains no holes.

• Ii, j is bounded only by the boundaries of si and s j.

Let Pi be the set of points on the boundary of Ii, j that are also on the boundary

of si. Let P j be the corresponding set for s j. We say that si is boundary-isolated

with respect to Ii, j if for any two points p1 and p2 inside the set (Pi−P j), it is

possible to walk from p1 to p2 using only points in Pi. In other words, there exists

a path from p1 to p2 that contains only points which are on the boundaries of both

si and Ii, j simultaneously. si is considered fully boundary-isolated with respect

to s j if it is boundary-isolated for every intersection region. Note that if no such

region exists, such as when si and s j are fully disjoint, we will still consider si

to be fully boundary-isolated with respect to s j. Then if both si and s j are fully

boundary-isolated with respect to each other, si and s j are considered to have a

boundary-segregated intersection.

Axiom 5.2.2 The arrangement is pairwise boundary-segregated, in the sense that

every pair of sensors has a boundary-segregated intersection.

Observe that any arrangement of disk sensors clearly satisfies both axioms.

Furthermore, Axiom 5.2.1 allows us to keep the same definitions for sensor in-

tersection orientations. Let a timeline configuration be considered realizable if
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there exists a timeline U that both contains the timeline configuration and repre-

sents a peripheral traversal through an arrangement subject to Axiom 5.2.1 and

Axiom 5.2.2. It is considered unrealizable or impossible otherwise. Then there ex-

ists three different transformation methods on timeline configurations that preserve

realizability. These transformation methods are:

Mirror Image If the mirror image of the arrangement is examined, clearly if the

peripheral traversal associated with U existed in the original arrangement,

the traversal still exists for this new arrangement. In the new configuration

associated with the traversal, the order of points and sensors remains the

same, but all orientations are reversed.

Label Swap If we swap the labels of the two sensors, clearly if there existed the

peripheral traversal associated with U existed in the original arrangement,

the traversal still exists for the new arrangement. In the new configuration

associated with this path, the order of points and orientations remains the

same, but all points are covered by the opposite sensor instead.

Reverse Path If the peripheral traversal associated with U is reversed, clearly the

traversal still exists and must still enter the same set of sensors the same

number of times. In the new configuration associated with this path, all

points are still covered by the same sensors as before, but the order of points

and all orientations are reversed.

Observe that this definition also means that if a timeline configuration is not

realizable, no supersequence of it can be realizable either, since the timeline U that

contains such a realizable supersequence must clearly contain the original timeline

configuration as well.

In this section, we examine ten timeline configurations, which are considered

distinct in the sense that no timeline configuration is a supersequence or transfor-

mation of another. These configurations are shown in Figure 5.1. Each black line

represents a subchain of vertices of a timeline. The colours red and blue represent

two distinct sensors, and coloured shorter lines are drawn above a vertex to show

that it is within a positive intersection of a sensor associated with the colour, and
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Figure 5.1: 10 Forbidden Configurations

drawn below for negative intersections. In each of these ten timeline subchains, a

timeline configuration is formed by the states of the vertices.

We shall define Forbidden Configurations as every timeline configuration that

is a result of some sequence of transformations from these ten. As their name

implies:

Theorem 5.2.3 Forbidden Configurations are unrealizable.

Proof See Section A.1.

5.3 Timeline Unfolding for Peripheral Traversals
The planar full bracketing construction procedure begins with a process we refer to

as timeline unfolding. Given any peripheral traversal P, the timeline representation
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of P described in Section 4.1 is referred to as the folded timeline of P. In particular,

given any vertex i on the folded timeline of P, if i is c-coloured for some colour c,

i must be within an intersection of the sensor which corresponds to the colour c.

Thus we assign each colour of i the orientation of the associated sensor intersec-

tion. The timeline unfolding process uses the folded timeline to create an unfolded

timeline using these orientations:

1. For each vertex i other than s′ in the horizontal chain of vertices from s′

to t ′ in the folded timeline, create a vertex labelled −i, and split the colours

assigned to i between i and−i such that all colours with negative orientations

are transferred to −i.

2. Connect all of the vertices to form a horizontal chain of vertices from −t ′ to

s′ to t ′ such that:

• −t ′ is on the left end of the chain.

• s′ is in the exact center of the chain.

• t ′ is on the right end of the chain.

• All negative vertices are to the left of s′.

• The chain is palindromic in the sense that the sequence of vertices en-

countered from −t ′ to s′ must be encountered in reverse order from s′

to t ′.

Much like the folded timeline, the unfolded timeline can be augmented with

brackets connected vertices of the same colour. In addition, this timeline unfolding

process is fully reversible, in the sense that unfolded timelines can be refolded to

form folded timelines. In fact, this can be performed even after the addition of

brackets, since bracket endpoints can be transferred to and from negative vertices

along with their colours.

However, for the unfolded timeline, we will add another constraint on bracket-

ings: no part of any bracket may be drawn below the horizontal chain of vertices.

Thus a planar full bracketing on an unfolded timeline is a full bracketing where

every bracket can be drawn above the horizontal chain such that no two brackets

intersect and no bracket intersects the horizontal chain. The motivation for adding
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s' t'-t'

s' t'

Figure 5.2: Example of a planar full bracketing on an unfolded timeline and
the corresponding planar full bracketing on the folded timeline after
timeline refolding.

this constraint is that the timeline refolding process would now preserve the pla-

narity of bracketings, as illustrated by Figure 5.2.

As a result, the problem of constructing a planar full bracketing for a folded

timeline is now reduced to the problem of constructing a planar full bracketing

on the unfolded timeline. Furthermore, observe that because of this additional

constraint, a bracketing on an unfolded timeline is planar if and only if there does

not exist a pair of brackets whose endpoints are interleaved such as in Figure 5.3.

Thus it becomes much simpler to determine whether a bracketing is planar.

Finally, observe that the unfolded timeline of P can also be thought of as a

sequence of vertices representing faces in the sensor arrangement. With respect to

each sensor, each vertex on the unfolded timeline is considered to be in one of two

states: either it is within the sensor, or it is not. Note that this corresponds exactly
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Figure 5.3: A pair of intersecting brackets with interleaved endpoints.

to whether the vertex is assigned the colour associated with the sensor. Thus for

any pair of sensors, each vertex is in one of four distinct states, and any sequence

of vertices could be thought of as a sequence of such states. Then let a sequence

of such states be called an unfolded timeline configuration, and an unfolded time-

line U contains an unfolded timeline configuration if there exists a pair of sensors

such that the sequence of states represented by the timeline configuration is a sub-

sequence of the sequence of states associated with U with respect to this pair of

sensors.

The main motivation for the reduction to the unfolded timeline is the Unfolded

Forbidden Configuration, which is the unfolded timeline configuration described

as α−β β−αα−β β−α , where α−β denotes a vertex on the unfolded timeline that is

within an intersection of sensor α but not within an intersection of sensor β . We

observe that any folded timeline which does not contain a Forbidden Configura-

tion described in Section 5.2 cannot have an unfolded timeline that contains the

Unfolded Forbidden Configuration. In other words, all possible timeline configu-

rations on the folded timeline that could unfold to form the Unfolded Forbidden

Configuration are Forbidden Configurations, or supersequences of Forbidden Con-

figurations. The proof of this is included in Section A.2.

Thus the unfolded timeline of the peripheral traversal P cannot contain the Un-

folded Forbidden Configuration. This is fortunate because as mentioned above, a

bracketing on an unfolded timeline cannot be planar if there exists a pair of brack-

ets whose endpoints are interleaved such as in Figure 5.3, which is inevitable in a
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Figure 5.4: An example illustrating why carelessly constructing brackets can
render planar full bracketings Impossible.

full bracketing if the unfolded timeline contains the Unfolded Forbidden Configu-

ration.

5.4 Planar Bracketing Construction for Peripheral
Traversals

The goal of this section is to prove that all peripheral traversals have a full brack-

eting which is planar in the sense that no two brackets intersect. In Section 5.3,

we reduced the problem to constructing a planar full bracketing for an unfolded

timeline. Then given that this unfolded timeline does not contain the Unfolded

Forbidden Configuration, we can now describe the procedure for constructing this

planar full bracketing. Note that even with these constraints, constructing a planar

full bracketing is not a trivial task, as carelessly constructing brackets can easily

render planar full bracketings impossible. This is illustrated in Figure 5.4, where

the red brackets constructed make it impossible to connect the blue vertices without

violating planarity.

We begin by representing the unfolded timeline as a two-dimensional boolean

matrix. The rows of this matrix represent the different colours and the columns

represent the vertices in the horizontal chain, with each cell [c,r] marked if and only

if the vertex associated with column c is assigned the colour associated with row r.

Brackets can then be defined to connect the different columns and have endpoints
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0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 1 0

Table 5.1: Matrix Representation of the Timeline shown in Figure 5.4.

1 0 1 0
0 1 0 1

Table 5.2: First of the two possible 2 by 4 matrices of alternatingly marked
cells representing the Unfolded Forbidden Configuration.

only at columns. For instance, Table 5.1 illustrates the matrix representation of the

timeline shown in Figure 5.4, where the first row is associated with blue and the

second is associated with red.

First off, there is one important constraint on the matrices derived from the

constraints on timelines described in Section 5.2:

Observation 5.4.1 Any matrix derived from an unfolded timeline without the Un-

folded Forbidden Configuration must not contain a 2 by 4 submatrix of alternat-

ingly marked cells that represents the Unfolded Forbidden Configuration. In other

words, it must not have Table 5.2 or Table 5.3 as submatrices.

Proof Immediately follows by construction and by definition.

We note that in previous work by Bereg and Kirkpatrick [2], for some restricted

problem instances of the Barrier Resilience Problem, they showed that all acyclic

resilience-optimal paths can be represented as unfolded timelines, and planar full

bracketings could be constructed for these unfolded timelines by recursively split-

ting the problem into two subproblems. The following procedure is a refinement

of their procedure, and within this chapter we will show that our planar full brack-

eting construction procedure can successfully construct planar full bracketings for

0 1 0 1
1 0 1 0

Table 5.3: Second of the two possible 2 by 4 matrices of alternatingly marked
cells representing the Unfolded Forbidden Configuration.
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all problem instances of the Barrier Resilience Problem which are reduced to the

Minimum-Vertex-Colour Path Problem.

Let a Splittable Column be defined as a column csplit in the matrix other than

the first or last column such that each row of the matrix is in at least one of the

following states:

• The row has no marked cells to the right of csplit.

• The row has no marked cells to the left of csplit.

• The row has a marked cell in csplit.

• The row has marked cells in both the first and last columns.

Let M be the matrix representation of an unfolded timeline for a peripheral

traversal P. As M cannot have Table 5.2 or Table 5.3 as submatrices, we observe

that all submatrices of M must either have at most two columns, or contain at least

one Splittable Column. The proof of this observation is included in Appendix B.

This allows us to solve the problem of constructing a planar full bracketing for M

as follows:

1. Let cfirst be the first column of M, and let clast be the last column of M. For

each row r in M, if r has marked cells in both cfirst and clast, construct an

r-coloured bracket with endpoints at the vertices corresponding to cfirst and

clast.

2. If M has more than two columns, let csplit be a Splittable Column of M.

Note that if M contains multiple Splittable Columns, any one of them would

suffice. Then let M1 be the submatrix of M that only has the columns between

cfirst and csplit inclusive, and let M2 be the submatrix of M that only has the

columns between csplit and clast inclusive. Note that both M1 and M2 have all

the rows of M. Solve the subproblems of constructing planar full bracketings

for M1 and M2.

Lemma 5.4.2 If the bracket construction procedure above is applied to a matrix

M, the bracketing constructed is planar.
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Proof As observed in Section 5.3, a bracketing on an unfolded timeline is planar if

and only if there does not exist a pair of brackets whose endpoints are interleaved

such as in Figure 5.3. The bracket construction procedure above only constructs

brackets in the first step, and these brackets only have endpoints in the first and

last columns. Furthermore, when the problem is split into two subproblems in the

second step, the matrices of both subproblems only share the csplit column. Thus it

is impossible to find a pair of brackets whose endpoints are interleaved such as in

Figure 5.3.

Lemma 5.4.3 For every colour r, if the bracket construction procedure above is

applied to a matrix M, all r-coloured vertices of M would be connected by the

r-coloured brackets constructed.

Proof Note that this is trivially true if M contains less than two columns, since the

number of vertices of M would be at most 1 and by definition any r-coloured vertex

is considered to be connected to itself.

Then consider the case where M has exactly two columns, representing two

consecutive vertices. Observe that in the first step of the bracket construction

procedure, if both vertices are r-coloured, an r-coloured bracket must have been

created to connect them. Thus all r-coloured vertices must be connected.

Finally, consider the case where M has more than two columns. Because the

second step solves the subproblems for M1 and M2, all r-coloured vertices in M1

must be connected, and all r-coloured vertices in M2 must be connected. If either

M1 or M2 does not contain any r-coloured vertices, then all r-coloured vertices in

M are already connected.

If both M1 and M2 contain r-coloured vertices, then by the definition of Split-

table Columns, either the vertex corresponding csplit is r-coloured, or the vertices

corresponding to cfirst and clast are r-coloured. If the vertex corresponding csplit is r-

coloured, M1 and M2 must contain this r-coloured vertex, so all r-coloured vertices

in M are already connected.

Alternatively, if the vertices corresponding to cfirst and clast are r-coloured, the

first step would have constructed an r-coloured bracket connecting these two ver-

tices. Then since the r-coloured vertex corresponding to cfirst is in M1 while the
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the r-coloured vertex corresponding to clast is in M2, by the transitive nature of the

relation, all r-coloured vertices in M must be connected.

Note that this bracket construction procedure can sometimes create more brack-

ets than a full bracketing. However, any subset of a planar bracketing must clearly

be planar as well. Thus to derive a planar full bracketing, for every colour r it

suffices to choose a spanning tree of r-coloured brackets connecting all r-coloured

vertices and remove all other r-coloured brackets.

In particular, note that we can always choose a spanning tree of r-coloured

brackets connecting all r-coloured vertices such that every pair of consecutive r-

coloured vertices is directly connected by an r-coloured bracket, since ultimately

every pair of consecutive vertices must form one of the subproblems solved in the

recursion.

Theorem 5.4.4 Any unfolded timeline U that does not contain the Unfolded For-

bidden Configuration must have a planar full bracketing.

Proof Immediately follows from Lemma 5.4.2 and Lemma 5.4.3.

Corollary 5.4.5 There exists a planar full bracketing for any folded timeline U of

a peripheral traversal.

Proof Follows directly from Theorem 5.2.3 and Theorem 5.4.4.

5.5 Planar Bracketings for Interior Traversals
In Section 5.4, we showed that planar full bracketings could always be constructed

for peripheral traversals due to the absence of the Unfolded Forbidden Configu-

ration on their unfolded timelines. However, for interior traversals, the presence

of interior sensor intersections allows the folded timeline to contain the Forbid-

den Configurations discussed in Section 5.2. Consequently, even if we attempt to

construct an unfolded timeline for an interior traversal, the Unfolded Forbidden

Configuration may be present and thus the previous arguments cannot be directly

applied to construct a planar full bracketing.
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In this section, we present a method to get around this issue and construct a

planar full bracketing for any interior traversal P. Note that as before, we will

assume that the start and end of P are not covered by any sensors, so each sensor

intersection is uniquely associated with an entry point and an exit point on the

boundary of the sensor.

We begin by splitting every sensor in the arrangement along every sensor in-

tersection made by P. This split is performed such that for each sensor intersec-

tion, two subsensors are created which overlap only along the sensor intersection

such that the sensor intersection becomes two perfectly overlapping sensor inter-

sections to the two subsensors. The immediate consequence of this sensor split is

that there are no longer any interior sensor intersections made by P, since every

interior sensor intersection is effectively split into two perfectly overlapping sensor

intersections of the two subsensors, where one sensor intersection is positive and

the other is negative. In other words, P is transformed into a peripheral traversal

on the arrangement of subsensors.

However, this raises another problem: the subsensors are not disk shaped. In

fact, it is difficult to describe the exact shape of each subsensor since the path P

could be quite arbitrarily shifted around while maintaining the same sequence of

faces intersected. Nevertheless, we can prove the following:

Lemma 5.5.1 Both Axiom 5.2.1 and Axiom 5.2.2 hold for this arrangement of sub-

sensors.

Proof First, observe that Axiom 5.2.1 must hold since the P is an acyclic path and

we only split sensors along P.

Then we can show via a proof by contradiction that Axiom 5.2.2 must hold as

well. If Axiom 5.2.2 does not hold, there must exist a pair of subsensors sα and sβ

that do not have a boundary-segregated intersection. Let α and β be the original

sensors which sα and sβ were derived from respectively.

By definition, this means there exists an intersection region I on the two di-

mensional plane that satisfies the following constraints:

• I is a subregion of the intersection of sα and sβ .

• I contains no holes.
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• I is bounded only by the boundaries of sα and sβ .

• Either sα or sβ is not boundary-isolated with respect to I.

Let Psα
be the set of points on the boundary of I that are also on the boundary

of sα . Let Psβ
be the corresponding set for sβ .

Without loss of generality, assume sα is not boundary-isolated with respect to

I. Then there must exist two points p1 and p2 inside the set (Psα
−Psβ

) such that

it is impossible to walk from p1 to p2 using only points in Psα
. By definition, this

means that each of the two ways to walk from p1 to p2 along the boundary of I

must use some points inside the set (Psβ
−Psα

).

Then observe that since every sensor is split along P, any point inside the set

(Psα
−Psβ

) must have been on the boundary of α and inside β . Similarly, any

point inside the set (Psβ
−Psα

) must have been on the boundary of β and inside

α . Inevitably, this means α and β cannot have a boundary-segregated intersection,

since the points inside the above sets must also exist in the same relative order in

some intersection region of α and β .

However, since α and β are the original disk-shaped sensors, they must have

a boundary-segregated intersection. This contradiction proves that Axiom 5.2.2

holds for the arrangement of subsensors.

Corollary 5.5.2 There exists a planar full bracketing for any folded timeline U of

a interior traversal.

Proof Let U ′ be the corresponding folded timeline through the arrangement of

subsensors after we split every sensor at every sensor intersection. By Lemma 5.5.1

and Theorem 5.2.3, there are no Forbidden Configurations in U ′, meaning the un-

folded timeline of U ′ would not contain the Unfolded Forbidden Configuration.

Thus by Theorem 5.4.4 there exists a planar full bracketing for U ′. Then observe

that this planar full bracketing for U ′ can be used as a planar full bracketing for

U by replacing every colour corresponding to a subsensor with the colour corre-

sponding to the original sensor.

Thus for any problem instance of the Minimum-Vertex-Colour Path Problem

derived from the reduction from the Barrier Resilience Problem, we can state the

following:

56



Corollary 5.5.3 The folded timeline of any acyclic s′− t ′ path has a planar full

bracketing.

Proof Follows directly from Corollary 5.5.2 and Corollary 5.4.5.
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Chapter 6

Resilience Approximations for
Intersection-Limited Problem
Scenarios

As stated in Chapter 2, the Barrier Resilience Problem is to determine the resilience

of a barrier, defined as the minimum over S−T paths of the number of distinct sen-

sors intersected. We note that the work by Bereg and Kirkpatrick [2] defined a sim-

ilar measure referred to as thickness, which is defined as the minimum over S−T

paths of the number of sensor intersections. The difference between the resilience

and the thickness is that the resilience counts each sensor in the arrangement at

most once, whereas the thickness counts each sensor once for each intersection of

the sensor.

Thus in general, the thickness may be arbitrarily higher than the resilience.

However, there exist many restricted versions of the Barrier Resilience Problem

where the thickness actually serves as a constant factor approximation of the re-

silience.

For ease of notation, let an acyclic S−T path P be defined as an (m,i)-traversal

if P intersects each sensor at most m times and at most i of these intersections are

interior intersections. Note that by this definition, P is a peripheral traversal if

i= 0.

A intersection-limited problem scenario is a set of Barrier Resilience Problem
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instances for which there exists some finite integer m such that the existence of a

resilience-optimal (m,i)-traversal for an arbitrary integer i is guaranteed. Thus for

these problem instances, the thickness must be a m-approximation of the resilience.

We are motivated to study these intersection-limited problem scenarios because the

work by Bereg and Kirkpatrick [2] has proven the following to be intersection-

limited problem scenarios:

Theorem 6.0.4 (Bereg and Kirkpatrick [2]) In the special case where sensors in

A are unit disks and the distance between S and T is greater than 2
√

3, there exists

a resilience-optimal (2,0)-traversal.

Theorem 6.0.5 (Bereg and Kirkpatrick [2]) In the case where sensors in A are

unit disks, there exists a resilience-optimal (3,0)-traversal.

In this chapter, we will analyze these intersection-limited problem scenarios

and explore the constant factor approximations guaranteed by the 2-Path Algo-

rithm. In particular, we will improve on the approximation factors achieved in the

work by Bereg and Kirkpatrick [2] for unit disk sensors.

We begin by defining any bracket as a mini-bracket if its two endpoints are two

consecutive vertices on the path. Then given any intersection-limited problem sce-

nario, let P be one of the resilience-optimal (m,i)-traversals that must exist. Fol-

lowing the reduction from the Barrier Resilience Problem to the Minimum-Vertex-

Colour Path Problem described in Chapter 2, we note that by Corollary 5.5.3, we

can create a planar full bracketing on the folded timeline of P. In particular, as

noted in Section 5.4, we can choose a planar full bracketing Bfull such that every

pair of consecutive vertices that share a colour c must be directly connected by a

c-coloured mini-bracket in Bfull. Let Bmini denote the set of mini-brackets in Bfull,

and let Brem be the set of brackets in Bfull−Bmini.

In Section 6.1, we will show how to split the brackets in Brem into two well-

structured bracketings B1 and B2. Then in Section 6.2, we will show that both

B1 ∪ Bmini and B2 ∪ Bmini are 2-tree-admissible bracketings, and discuss the ap-

proximation factors guaranteed by the 2-Path Algorithm.
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6.1 Splitting the Brackets into Two Partial Bracketings
In this section, we will split the brackets of Brem into two well-structured partial

bracketings B1 and B2. Before describing the actual splitting procedure, we must

first define some terms that allow us to describe the structure of the brackets.

As Bfull is a planar bracketing, by definition there must be some way to draw the

brackets of Bfull on the folded timeline such that no pair of brackets intersect and

no bracket intersects the horizontal chain of vertices. Given this definition, observe

that when drawing a bracket to connect a pair of vertices, the ends of the bracket

could be drawn such that they approach the vertex from the bottom or from the

top. Let an endpoint be considered negative if it approaches its vertex from below,

and positive otherwise. As there are two endpoints, this allows us to classify the

brackets into 4 distinct types.

Let the first endpoint of a bracket be the endpoint that is closer to the start

of the path. Then let a wraparound bracket be defined as any bracket whose two

endpoints approach their vertices from opposite directions. For each wraparound

bracket, if the first endpoint is negative, the bracket is considered a clockwise

wraparound bracket. Otherwise it is considered a counter-clockwise wraparound

bracket. For the non-wraparound brackets, if both endpoints are positive, the

bracket is considered a positive bracket, whereas if both endpoints are negative,

the bracket is considered a negative bracket.

Next, because our goal is to eventually show some subsets of Bfull are 2-tree-

admissible bracketings, we shall define a total ordering for any set of coincident

bracket endpoints. In particular, observe that the drawing of the planar bracketing

already defines a partial ordering, in the sense that some of the endpoints must

be ordered in certain patterns to maintain planarity. For instance, if two positive

brackets shares the same vertex at their first endpoint, one bracket must be drawn

such that it lies between the other bracket and the horizontal chain of vertices.

This inner bracket must have its first endpoint after the first endpoint of the outer

bracket, otherwise the planarity of the drawing would be violated. We will assign

each set of coincident bracket endpoints some total ordering which matches the

partial ordering defined by the drawing.

Then let direct interference be a binary relation on the set of wraparound brack-
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S T

Figure 6.1: Illustration of the Interference Relation between Wraparound
Brackets in a Planar Bracketing

ets such that for any pair of wraparound brackets bi and b j, bi is considered to

directly interfere with b j if there is an endpoint of bi in between the endpoints of

b j on the folded timeline. Then let interference be the transitive closure of direct

interference, in the sense that any pair of wraparound brackets bi and b j interfere if

and only if there exists a sequence of wraparound brackets from bi to b j such that

each wraparound bracket in the sequence directly interferes with its neighbours.

This is illustrated in Figure 6.1, where the brackets have been coloured with

respect to their relation to the red bracket. All black brackets are considered to

be directly interfering with the red bracket, as they have an endpoint between the

endpoints of the red bracket. Note that by definition, they are also considered to be

interfering with the red bracket. All blue brackets are not directly interfering with

the red bracket since they do not have an endpoint between the endpoints of the

red bracket. However, all blue brackets are still considered to be interfering with

the red bracket since there exists a sequence of directly interfering wraparound

brackets from each blue bracket to the red bracket. In contrast, all the dashed green

brackets do not interfere with the red bracket at all, as no such sequence of directly

interfering wraparound brackets exists.

A few observations can be made about the structure of these wraparound brack-

ets:
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Observation 6.1.1 For any two wraparound brackets bi and b j, if the first endpoint

of b j is after the first endpoint of bi, the last endpoint of b j must be after the last

endpoint of bi.

Observation 6.1.2 For any two wraparound brackets bi and b j, if bi is clockwise

while b j is counter-clockwise, bi cannot interfere with b j.

The proofs of these observations is included in Section C.1.

We will begin the splitting procedure by assigning all positive brackets to B1

and all negative brackets to B2. Then we will divide the folded timeline into maxi-

mal non-overlapping intervals, henceforth referred to as Total Interference Blocks,

under the following constraints:

• Each wraparound bracket has both of its endpoints in the same Total Inter-

ference Block.

• Each pair of wraparound brackets in the same Total Interference Block must

interfere with each other. Note that by Observation 6.1.2, this means no Total

Interference Block may contain both a clockwise wraparound bracket and a

counter-clockwise wraparound bracket.

• Each pair of wraparound brackets in different Total Interference Blocks must

not interfere with each other.

Note that if there are no wraparound brackets, there would only be one Total

Interference Block that spans the entire timeline.

Let the brackets of Brem be ordered by increasing distance between S and their

first endpoint. Then for each Total Interference Block that contains wraparound

brackets, we will split the wraparound brackets between the bracketings B1 and B2

as follows:

1. Let b∗ denote the first wraparound bracket in the Total Interference Block. If

b∗ is clockwise, assign b∗ to B2. Otherwise, assign b∗ to B1.

2. For each remaining bracket bDI in the Total Interference Block, if bDI directly

interferes with b∗, assign bDI to the same bracketing as b∗.
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3. If there remains a wraparound bracket in the Total Interference Block, by

definition it must interfere with b∗. Assign the first remaining wraparound

bracket to the bracketing that does not contain b∗. Then let b∗ denote this

wraparound bracket instead and repeat from the previous step.

We argue that B1 and B2 are well-structured bracketings, because if we consider

each of them independently, we can make the following observations:

Observation 6.1.3 For any pair of wraparound brackets bi and b j, if bi interferes

with b j, bi must directly interfere with b j.

Observation 6.1.4 No non-wraparound bracket that contains endpoints from both

a clockwise wraparound bracket and a counter-clockwise wraparound bracket.

Observation 6.1.5 If a non-wraparound bracket contains a pair of bracket end-

points corresponding to a pair of wraparound brackets, the pair of wraparound

brackets must directly interfere with each other.

The proofs for these observations are included in Section C.2.

6.2 Tree-Admissibility of the Partial-Bracketings
In this section, we will show that given B1 and B2 derived from the splitting pro-

cedure in Section 6.1, both B1 ∪Bmini and B2 ∪Bmini are 2-tree-admissible brack-

etings. For simplicity, we will only show this for B1 ∪Bmini, but observe that a

symmetric argument can be applied to show the same for B2∪Bmini as well.

First, observe that because each bracket bi in Bmini is a mini-bracket which

connects two consecutive vertices, for all bracketings B∗ and all brackets b j ∈ B∗,

b j cannot have an endpoint in between the endpoints of bi, simply because there is

no vertex in between the endpoints of bi for b j to use as an endpoint. As a result,

all brackets in Bmini can be treated as empty brackets. Thus by Lemma 4.3.3, to

show that B1∪Bmini is a 2-tree-admissible bracketing, it suffices to show that B1 is

a 2-tree-admissible bracketing.

Now consider just the wraparound brackets in B1. Let α and β denote end-

points of the first and second wraparound brackets respectively and let κ denote
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the possibility of having other wraparound bracket endpoints in between, such as

an endpoint of the third wraparound bracket.

Lemma 6.2.1 The first two wraparound brackets can only be in configuration

αβκαβ or ααβκβ .

Proof In order for a configuration to be possible, the following constraints apply:

• By definition the configuration must begin with α , since α is associated with

the first wraparound bracket.

• The second endpoint of each wraparound bracket must be after the first end-

point by definition.

• The second β must be after the second α by Observation 6.1.1.

• There is no possibility of any wraparound bracket endpoints between the

first α and the first β , since we are only considering wraparound brackets

and β is associated with the second wraparound bracket by definition. In

other words, there cannot be a κ between the first α and the first β .

• If the first β is before the second α , there is no possibility of any endpoints

between the second α and the second β , since the splitting procedure in

Section 6.1 would have assigned it to B2 instead and thus it would not be in

B1. In other words, if the first β is before the second α , there cannot be a κ

between the second α and the second β .

This leaves only αβκαβ and ααβκβ .

Next, let Bwrap be some subset of the wraparound brackets in B1, and let B′wrap

be Bwrap without the first wraparound bracket in Bwrap.

Lemma 6.2.2 If B′wrap is a 2-tree-admissible bracketing, then Bwrap is a 2-tree-

admissible bracketing as well.

Proof By Lemma 6.2.1, there are only two valid configurations for the first two

wraparound brackets.
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• In the case of αβκαβ , the two wraparound brackets are doubly-adjacent

such that Lemma 4.3.4 can be applied to prove Bwrap is a 2-tree-admissible

bracketing as well.

• In the case of ααβκβ , the first wraparound bracket does not interleave with

the second wraparound bracket, or with any of the other wraparound brackets

by definition. This means it is actually an empty bracket. Thus Lemma 4.3.3

can be applied to prove Bwrap is a 2-tree-admissible bracketing as well.

Lemma 6.2.3 Bwrap is a 2-tree-admissible bracketing.

Proof By Lemma 6.2.2, Bwrap is a 2-tree-admissible bracketing if B′wrap is a 2-tree-

admissible bracketing. Thus we can reduce the problem to determining if B′wrap is

a 2-tree-admissible bracketing. However, B′wrap itself is a subset of the wraparound

brackets in B1, with less brackets than Bwrap. Thus we can apply the reduction

recursively until it is no longer possible to apply.

By definition, the reduction can be applied as long as the bracketing contains a

wraparound bracket, so the resulting bracketing must have no wraparound brack-

ets. Since there are no wraparound brackets, the bracketing is empty and by

Lemma 4.3.2 the bracketing must be a 2-tree-admissible bracketing. Then must

be the case that the original bracketing Bwrap is also a 2-tree-admissible bracketing.

Now consider all of the brackets in B1, including the non-wraparound brackets.

Note that by the splitting procedure in Section 6.1, B1 is not assigned any negative

brackets, so all non-wraparound brackets in B1 are positive brackets. Furthermore,

observe that any positive bracket cannot interleave with the wraparound brackets

except on their negative endpoints, since a positive bracket containing a positive

endpoint of a wraparound bracket inevitably violates planarity.

Then with respect to B1, divide the timeline into maximal non-overlapping

intervals, henceforth referred to as Direct Interference Blocks, under the following

constraints:

• Each wraparound bracket has both of its endpoints in the same Direct Inter-

ference Block.
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• Each pair of wraparound brackets in the same Direct Interference Block must

directly interfere with each other.

• Each pair of wraparound brackets in different Direct Interference Blocks

must not interfere with each other.

• Each positive bracket has both of its endpoints in the same Direct Inter-

ference Block. This is possible because by Observation 6.1.5, any pair of

wraparound brackets with negative endpoints in the same positive bracket

must directly interfere with each other, so they must be in the same Direct

Interference Block and there is never a need to have a positive bracket over-

lap more than one Direct Interference Block.

Note that if a positive bracket contains no negative endpoints, it can still be put

in a Direct Interference Block associated with some set of wraparound brackets

without violating any of the constraints.

The problem at hand is to prove that B1 is a 2-tree-admissible bracketing. With

this division, we can reduce the problem into the subproblems of proving that the

set of brackets in each Direct Interference Block is a 2-tree-admissible bracketing.

To see why this is the case, consider what it means for the set of brackets in a Di-

rect Interference Block to be a 2-tree-admissible bracketing. It means that the tree

construction procedure described in Section 4.3 would succeed for the set of brack-

ets. In particular, observe that after the third step of the procedure, if we remove

the nodes whose X-Path profiles contain either s′ or t ′, the construction procedure

would still succeed, except the root node of the tree would have an X-Path instance

which corresponds to the subpath associated with the Direct Interference Block in-

stead of the entire path. Nevertheless, it would still have a discount bracketing that

has at least as many brackets as the set of brackets in the Direct Interference Block.

Then observe that if the set of brackets in each Direct Interference Block is

a 2-tree-admissible bracketing, we can construct a tree for the subpath associated

with each Direct Interference Block as described above. Since Direct Interference

Blocks are non-overlapping intervals, these subpaths can be sequentially combined

to form the entire path. In other words, we can create a larger tree VDT for the

whole path that uses the valid derivation trees of the Direct Interference Blocks as
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subtrees. Then observe that the discount bracketing of VDT must be contain the

discount bracketings of all Direct Interference Blocks, thus it must have at least as

many brackets as the set of brackets in B1. In particular, observe that because it con-

tains the valid derivation trees of the Direct Interference Blocks as subtrees, it must

be possible to construct VDT by following the construction procedure described in

Section 4.3 applied to B1. Thus B1 must be a 2-tree-admissible bracketing.

Now, let BDIB denote the set of brackets in a Direct Interference Block.

Lemma 6.2.4 BDIB is a 2-tree-admissible bracketing.

Proof Note that by applying Lemma 4.3.3 and Lemma 4.3.4, we can reduce the

problem of determining whether BDIB is a 2-tree-admissible bracketing to whether

BDIB with some empty or doubly-adjacent bracket removed is a 2-tree-admissible

bracketing. In particular, observe that Lemma 4.3.3 and Lemma 4.3.4 can be re-

cursively applied to keep removing brackets.

Let B∗ be the resulting bracketing after Lemma 4.3.3 and Lemma 4.3.4 can no

longer be applied. In other words, BDIB must be a 2-tree-admissible bracketing if

B∗ is a 2-tree-admissible bracketing, and neither Lemma 4.3.3 nor Lemma 4.3.4

can be applied to further remove brackets from B∗.

Assuming B∗ still contains positive brackets, consider the smallest positive

bracket b′ in B∗, where bracket size is defined by the number of endpoints inside

the bracket.

b′ cannot be an empty bracket, otherwise it would have been removed by

Lemma 4.3.3.

b′ cannot contain any positive endpoints, since it is the smallest positive bracket

by definition and there cannot be a wraparound bracket with a positive endpoint

inside a positive bracket without violating planarity.

b′ cannot contain any negative endpoints associated with negative brackets,

since the splitting procedure in Section 6.1 does not assign any negative brackets

to B1.

b′ cannot contain exactly one negative wraparound endpoint, since b′ would

then be doubly-adjacent to the wraparound bracket, allowing Lemma 4.3.4 to be

applied.
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Thus b′ must contain multiple consecutive negative wraparound endpoints.

Since the wraparound brackets are part of the same Direct Interference Block,

they must directly interfere with one another by Observation 6.1.5 and be either

all clockwise or all counter-clockwise by Observation 6.1.4.

Assume they are all clockwise. Consider the wraparound brackets bi and b j

associated any two consecutive negative wraparound endpoints. There can be no

positive brackets in between the first endpoints of bi and b j, since by the splitting

procedure in Section 6.1 there are no negative endpoints in that region and thus

any positive brackets there would have been removed by recursive application of

Lemma 4.3.3. By Observation 6.1.1, there can also be no other wraparound positive

endpoints between the first endpoints of bi and b j since their negative endpoints are

consecutive.

In the absence of planarity violations required by the fact that the brackets were

derived from the planar full bracketing Bfull, it must then be the case that bi and

b j are doubly-adjacent, since they are directly interfering consecutive wraparound

brackets and no other C1-coloured brackets have any endpoints between the first

endpoints of bi and b j or between the last endpoints of bi and b j. Then one of these

wraparound brackets should have been removed by application of Lemma 4.3.4.

A similar argument also leads a contradiction if we assume instead that all the

wraparound brackets are counter-clockwise. Since we reach a contradiction in both

scenarios, it must then be the case that B∗ does not contain any positive brackets.

In other words, B∗ only contains wraparound brackets and no other brackets.

Then by Lemma 6.2.3, B∗ is a 2-tree-admissible bracketing. Thus BDIB is a

2-tree-admissible bracketing.

Lemma 6.2.5 B1 is a 2-tree-admissible bracketing.

Proof As we have shown that the set of brackets in each Direct Interference Block

is a 2-tree-admissible bracketing, this lemma immediately follows by using the

reduction previously described.

Lemma 6.2.6 B1∪Bmini is a 2-tree-admissible bracketing.

Proof By definition, the brackets of Bmini are all mini-brackets, which in some

sense are empty brackets with respect to any bracketing since the endpoints of any
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mini-bracket is a pair of consecutive vertices. By Lemma 6.2.5, B1 is a 2-tree-

admissible bracketing. Thus by repeated application of Lemma 4.3.3, B1∪Bmini is

a 2-tree-admissible bracketing.

As previously mentioned, a symmetric argument can be used to show that B2∪
Bmini is a 2-tree-admissible bracketing as well.

Next, recall that P, the path associated with these bracketings, was defined as a

resilience-optimal (m,i)-traversal. Now let VDT be a 2-Path valid derivation tree

for P, and let Bdiscount be the discount bracketing of VDT. By Lemma 4.2.4, the

weight of the root node of VDT is equivalent to Total(P,SÂ)−|Bdiscount|.
Observe that if |Bdiscount| = |Bfull|, the weight would be equivalent to the re-

silience since P is a resilience-optimal S− T path and Bfull is a full bracketing.

On the other hand, if |Bdiscount| = |Bmini|, by our choice of Bfull, the weight would

be equivalent to the number of sensor intersections made by P. Then since P is a

(m,i)-traversal, the weight would be a m-approximation of the resilience.

Theorem 6.2.7 For any intersection-limited problem scenario where the existence

of a resilience-optimal (m,i)-traversal is guaranteed, the 2-Path Algorithm guar-

antees a m+1
2 -approximation of the resilience.

Proof As before, let ρ(A,S,T ) denote the resilience. As previously mentioned,

Total(P,SÂ)− |Bfull| = ρ(A,S,T ), while Total(P,SÂ)− |Bmini| ≤ m× ρ(A,S,T ).

Thus Brem, which was defined as Bfull−Bmini, must have cardinality at most (m−
1)×ρ(A,S,T ).

Since B1 and B2 were derived by splitting the brackets of Brem, observe that

the sets of brackets defined by B1, B2, and Bmini are all disjoint in the sense that no

bracket is in more than one of these sets, and either B1 or B2 must contain at least

half of the brackets in Brem.

Without loss of generality, let B1 be the bracketing with at least half of the

brackets in Brem. Since B1∪Bmini is a 2-tree-admissible bracketing, Lemma 4.3.1

asserts that there must exist a 2-Path valid derivation tree VDT1 for P, such that

the weight of the root node of VDT1 is at most Total(P,SÂ)−|B1 ∪Bmini|, which

is Total(P,SÂ)− |Bmini| − |B1| since B1 and Bmini are disjoint. In particular, ob-

serve that this must be equivalent to Total(P,SÂ)− |Bfull|+ |B2|, which in turn is

equivalent to ρ(A,S,T )+ |B2|.
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Next, because B1 contains at least half of the brackets in Brem, B2 must contain

at most half of the brackets in Brem. As a result, |B2| ≤ m−1
2 × ρ(A,S,T ). Thus

ρ(A,S,T )+ |B2| ≤ m+1
2 × ρ(A,S,T ). This means the weight of the root node of

VDT1 is a m+1
2 -approximation of the resilience. Then by Lemma 3.4.2, it imme-

diately follows that the 2-Path Algorithm guarantees a m+1
2 -approximation of the

resilience.

Corollary 6.2.8 In the special case where sensors in A are unit disks and the dis-

tance between S and T is greater than 2
√

3, a 1.5-approximation of the resilience

is guaranteed by the 2-Path Algorithm.

Proof By Theorem 6.0.4, there exists a resilience-optimal (2,0)-traversal. Thus

by Theorem 6.2.7, the 2-Path Algorithm guarantees a 2+1
2 = 1.5-approximation of

the resilience.

Corollary 6.2.9 In the case where sensors in A are unit disks, a 2-approximation

of the resilience is guaranteed by the 2-Path Algorithm.

Proof By Theorem 6.0.5, there exists a resilience-optimal (3,0)-traversal. Thus

by Theorem 6.2.7, the 2-Path Algorithm guarantees a 3+1
2 = 2-approximation of

the resilience.
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Chapter 7

Resilience Approximations for
Intersection-Unlimited Problem
Scenarios

In the previous chapter, we defined an intersection-limited problem scenario as a

set of Barrier Resilience Problem instances for which there exists some finite inte-

ger m such that the existence of a resilience-optimal (m,i)-traversal for an arbitrary

integer i is guaranteed. We then showed that the 2-Path Algorithm guarantees a

constant approximation of the resilience for any intersection-limited problem sce-

nario.

For the remaining problem scenarios, henceforth referred to as intersection-

unlimited problem scenarios, there is no finite integer m such that the existence

of a resilience-optimal (m,i)-traversal for an arbitrary integer i is guaranteed. In

order to describe what resilience-optimal S−T paths exist, we shall without loss of

generality rescale the inputs of the Barrier Resilience Problem such that the radius

of the largest disk sensor is 1, and for some 0 ≤ ξ < 1, the radius of the smallest

disk sensor is 1− ξ . In other words, A becomes an arrangement of disk sensors

with radii in the range [1− ξ ,1]. Note that this means the case where all sensors

are unit disks corresponds to the case where ξ = 0.

We observe that if the disk sensors are approximately equal-sized, we can still

guarantee the existence of a resilience-optimal peripheral traversal. In other words,
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Figure 7.1: An example showing an arrangement of non-identical disk sen-
sors where all resilience-optimal paths must intersect the blue sensor at
least 4 times. Smaller sensors tangent to the blue sensor are used to
force the red path to alternatingly enter and exit the blue sensor.

for small values of ξ , the existence of a resilience-optimal (∞,0)-traversal is guar-

anteed. In fact, we note that by packing arguments, there must exist a function I(ξ )

such that:

• The domain is [0,1).

• The codomain is the set of finite, positive integers.

• The existence of a resilience-optimal (∞, I(ξ ))-traversal is guaranteed if the

radii of the disk sensors are in the range [1−ξ ,1].

These claims are discussed in more detail in Appendix D. However, we note that if

ξ > 0, the thickness is no longer guaranteed to be a constant factor approximation

of the resilience. In particular, we prove the following:

Theorem 7.0.10 For all ξ > 0 and all pairs of finite integers m and i, there exists

an arrangement A of disk sensors of radii in the range [1−ξ ,1] and regions S and

T such that there is no resilience-optimal (m,i)-traversal.

Proof This stems from the fact that resilience-optimal S−T paths can be forced to

intersect a sensor an indefinite number of times when the radii of disk sensors are
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different, even when they are almost equal. Thus in general we cannot guarantee

the existence of a resilience-optimal (m,i)-traversal for any finite integer m.

The main reason why the slightest difference in disk sizes can force more than

m intersections of a sensor for any integer m is that a smaller disk can force a path

out of a sensor at a single point while not preventing it from returning immediately.

In essence, for any sensor si, we can place indefinitely many smaller disks

inside si that only touch si’s perimeter at a single point, which forces paths out of

si. This fact combined with our ability to place indefinitely many outside disks

tangent to si to force paths back into si means we can effectively force paths to

intersect si an indefinite number of times to avoid all the smaller disks inside si and

all the outside disks tangent to si.

Figure 7.1 illustrates an example of this. For clarity, the arrangement will only

force 4 intersections of si, but extending this example to force indefinitely more

intersections should be straightforward. In this figure, each circle represents a

sensor and the largest blue circle represents sensor si. Black regions are used to

indicate heavy sensor coverage. Observe that the smaller sensors in this figure

which touch the boundary of si at a single point effectively force any resilience-

optimal S−T path to intersect si 4 times, since the path must avoid all the smaller

sensors in order to be resilience-optimal.

This method of sensor placement can force any number of intersections as long

as the disks are not exactly equal sized, since the smaller sensors will still only

touch the boundary of si at a single point. This corresponds to the case where

ξ > 0. In contrast, when ξ = 0, observe that because the disks are exactly equal

sized, it is clearly impossible to place a disk the same size as si inside si such that

it only touches the boundary of si at a single point.

As a result, there is no finite integer m for which we can assume the existence of

a resilience-optimal S−T path P such that Total(P,SÂ)−|Bmini| ≤ m×ρ(A,S,T ),

where Bmini denotes the largest partial bracketing composed of only mini-brackets.

Thus the previous approach of using Bmini to get to within a constant factor of

the resilience becomes futile. As such, we know of no polynomial-time constant-

approximation of the resilience for such problem scenarios in the absence of addi-

tional constraints.

73



s

t
Figure 7.2: Arrangement A1.

Nevertheless, in the next section we will define a restricted version of the

Barrier Resilience Problem, and the rest of this chapter will focus on proving

that constant factor approximations are possible for this restricted version even

in intersection-unlimited problem scenarios.

7.1 The Barrier Density-Constrained Resilience Problem
Before we define the restricted version of the Barrier Resilience Problem, we shall

first describe the motivation behind the restrictions. The Barrier Resilience Prob-

lem as defined in Chapter 2 is usually of interest in applications when sensors are

not completely reliable. The resilience indicates the minimum number of sensors

that have to fail in order for it to be possible for entities to pass through the bar-

rier without entering the region of any active sensor. In some sense this means the

resilience is a measurement of the fault tolerance of a barrier, as higher resilience

means that more sensors must fail for a path to be uncovered, which would mean

the likelihood that the barrier would naturally fail decreases, since more sensors

must fail at the same time. However, in some sense this way of defining barrier

strength does not capture some of the key elements in natural settings.

This can be seen by considering two arrangements A1 and A2, both with bar-

rier resilience 5 and some arbitrarily large number of sensors n. In A1, the optimal
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Figure 7.3: Arrangement A2.

path for traversing entities passes through 5 disjoint sensors, which means entities

would be undetected if these 5 sensors failed. In A2, the optimal path for traversing

entities passes through a point covered by 5 sensors but does not encounter sen-

sors anywhere else, which also means the entities would be undetected if these 5

sensors fail. These are illustrated in Figure 7.2 and Figure 7.3, where black areas

indicate regions which are densely covered by sensors, blue circles denote individ-

ual sensors, and the red path represents the optimal path.

Even though both arrangements have the same resilience and the same number

of sensors, A2 is in some sense a stronger barrier because it forces entities to enter

a region covered by 5 sensors at once, which could be advantageous in a number

of different settings. This is because all 5 sensors must fail simultaneously in A2 in

order for any traversing entity to make progress through the arrangement, whereas

a sequence of failures of one sensor at a time in A1 would suffice to allow traversers

to slowly progress through the arrangement undetected. Thus in some sense, the

resilience as defined only measures the cumulative sensor coverage, it completely

ignores the instantaneous sensor coverage.

Let a point or face be called c-detected if it is in the common intersection of

at least c distinct sensors. Then a path is called c-evasive if it avoids all c-detected

points. To capture a combination or tradeoff of cumulative and instantaneous bar-
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rier coverage, an arrangement of sensors is considered a (c,k)-barrier with respect

to S and T if every S−T path either (i) has a (c+1)-detected face, or (ii) intersects

at least k distinct sensors. This allows us to distinguish between A1 and A2 as A1

is a (1,5)-barrier, while A2 is a (1,∞)-barrier since there are no 2-evasive S− T

paths.

To this end, we define a generalization of resilience referred to as Density-c

or Dc-resilience, which considers only (c+ 1)-evasive S−T paths and has value

∞ if no such path exists. With this definition, the standard resilience is then logi-

cally equivalent to the Dc-resilience for all c ≥ n, since all S−T paths would be

(c+ 1)-evasive. Also note that the D0-resilience must logically be either 0 or ∞

and amounts to the somewhat trivial problem of determining if S and T share an

uncovered face in the arrangement. Thus it suffices to consider values of c between

1 and n inclusive. Similarly, we shall consider a (c+1)-evasive S−T path P to be

Dc-resilience-optimal if the number of distinct sensors intersected by P is exactly

the Dc-resilience.

We shall now formally define the Barrier Density-Constrained Resilience Prob-

lem. The input for this problem is a tuple (A,S,T,c). As before, A is an arrange-

ment of n disk sensors with radii in the range [1−ξ ,1], and S and T are two regions

on the same plane. The additional parameter c is a positive integer between 1 and

n inclusive. The problem is to determine the Dc-resilience, denoted Dcρ(A,S,T ),

which is the minimum over (c+ 1)-evasive S−T paths of the number of distinct

sensors intersected, including any sensors which cover the endpoints of the path.

Observe that to use polynomial-time approximation-preserving reduction from

the Barrier Resilience Problem to the Minimum-Vertex-Colour Path Problem for

the Barrier Density-Constrained Resilience Problem, it suffices to remove all ver-

tices corresponding to (c+1)-detected faces. In other words, the reduction can be

described as follows:

1. Assign each of the n sensors in A a unique colour, forming the set SÂ of n

distinct colours.

2. Construct a graph Â = (V,E) such that each face in A becomes a vertex in

V and there exists an edge (i, j) in E if and only if the faces of i and j

were adjacent in the arrangement. This construction process is illustrated in
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Figure 2.1.

3. Assign each vertex i in V the set of colours Si which correspond to the set of

sensors covering i’s associated face in A.

4. Remove each vertex i if |Si|> c. Also remove all edges of vertex i.

5. For each pair of vertices s′ and t ′ which correspond to faces intersecting S

and T respectively:

(a) Remove from Â all of the colours in Ss′ ∪St ′ .

(b) Solve the Minimum-Vertex-Colour Path Problem on (Â,s′, t ′) to com-

pute W ′(s′, t ′), the number of distinct colours used by the Minimum-

Colour s′− t ′ path.

(c) Readd all the colours removed.

6. Output the minimum over s′ and t ′ of W ′(s′, t ′)+ |Ss′ ∪St ′ |.

In the following sections, we will show that if c and ξ are constant, there exists

an integer X ′ such that X ′ is O(c) and the X ′-Path Algorithm guarantees a constant

factor approximation of the Dc-resilience if the radii of disk sensors is in the range

[1− ξ ,1]. As before, we will begin by considering the simpler case where a Dc-

resilience-optimal peripheral traversal P is guaranteed, and we will show that in

this case a 2-approximation of the Dc-resilience can be guaranteed.

7.2 The 2-Approximation of the D1−Resilience
As in our previous approaches, the first step in our proof is construct a planar

bracketing for the D1-resilience-optimal peripheral traversal P. However, in this

case, the sensor intersections are non-overlapping since the path is 2-evasive by

definition. This means given the reduction to the Minimum-Vertex-Colour Path

Problem, every vertex on P has at most one colour. We can exploit this structural

feature to derive an even more well-structured planar full bracketing by changing

our timeline bracket construction procedure to the following:

1. Construct an empty horizontal timeline with left endpoint S and right end-

point T , representing the path from S to T .
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2. Unfold the timeline as described before in Section 5.3.

3. For each vertex i, if i has a colour c and there exist some other vertices to the

right of i that are also c-coloured, let j denote the closest of these vertices,

and construct a c-coloured bracket with endpoints at i and j.

4. Refold the timeline such that it once again has endpoints S and T .

The advantage we have gained here by modifying the way we select brackets is

that we are now guaranteed to form one multi-bracket per colour on the unfolded

timeline, where a multi-bracket is a series of brackets associated with the same

colour that are adjacent and consecutive, effectively forming a comb-like structure

where each vertex assigned the colour has a tooth of the comb connected to it. We

must however prove that these multi-brackets form a planar full multi-bracketing,

in the sense that no two multi-brackets intersect one another.

Lemma 7.2.1 Given a D1-resilience-optimal peripheral traversal P, the bracket

construction method results in a planar full multi-bracketing for P.

Proof We can show a proof by contradiction: Assume the bracket construction

method presented above does result in some non-planar bracketing. Then there

must exist a pair of brackets that intersects each other. However, as no vertex has

more than one colour, this is only possible if the unfolded timeline contains the Un-

folded Forbidden Configuration A−BB−AA−BB−A, such as illustrated in Figure 5.3.

This is a contradiction because by Theorem 5.2.3, P does not contain Forbidden

Configurations, which in turn means P cannot contain this Unfolded Forbidden

Configuration. Thus it must be the case that this set of multi-brackets is planar.

It is worth emphasizing that this only produces a planar bracketing because of

the fact that such vertex has only one colour. Figure 7.4 shows an example where

the comb multi-bracketing as described above can become non-planar when the

vertices have more than one colour, even though the Unfolded Forbidden Config-

uration is still absent. Here the multi-brackets for red and blue make the green

multi-bracket violate planarity, even though we observe that a planar full brack-

eting is possible simply by replacing one green bracket. Furthermore this path is
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Figure 7.4: A counterexample timeline that cannot have a planar comb multi-
bracketing.

  

Figure 7.5: The path that realizes the counterexample timeline.

fully realizable, as shown in Figure 7.5. Note that the sensors are well-separated in

the figure to emphasize the movement of the path, if the three sensors were drawn

so that they overlap almost completely, the path despite appearances could be the

optimal path.

Next, let bi and b j be two brackets on the unfolded timeline such that bi and b j

have different colours. Note that since each vertex has at most one colour, bi and

b j cannot have any coincident bracket endpoints. We consider bi to nest b j if the

endpoints of b j lie between the endpoints of bi. Furthermore, bi is considered the

parent bracket of b j if bi nests b j but does not nest any other bracket which nests

79



21 3 322 1 1 13 3 44

Figure 7.6: An example of a timeline with comb-like multi-brackets.

b j.

Proposition 7.2.2 All brackets in a multi-bracket share the same parent bracket.

Proof Since the multi-brackets are planar and constructed to be comb-like struc-

tures, no two brackets in a multi-bracket may nest each other. Furthermore, because

each vertex has at most one colour and the Unfolded Forbidden Configuration is ab-

sent, there cannot be other brackets with endpoints in between the brackets of this

comb-like structure. Thus the parent bracket of any bracket in the multi-bracket

cannot have either of its two endpoints within the multi-bracket. In that case, it

must be the parent bracket of every other bracket in the multi-bracket as well.

Thus we can clearly define the parent of a multi-bracket mi as the multi-bracket

m j that contains the parent bracket of the brackets in mi. For instance, in Figure 7.6,

the multi-bracket for s1 is the parent of the multi-bracket for s2 and the multi-

bracket for s4 but not the multi-bracket for s3, because the multi-bracket for s3 has

the multi-bracket for s4 as its parent.

With these properties of multi-bracket nesting clearly defined, we proceed to

greatly simplify the bracketing by removing or breaking all nesting and remov-

ing all wraparound brackets. Perhaps unexpectedly, this can actually be done at

an amortized cost of only 1 bracket removed for each colour associated with the

bracketing, via the following steps:
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Figure 7.7: An example of a timeline with comb-like multi-brackets after
unnesting.

1. Unfold the timeline such that it once again goes from−T to T with center S.

2. To remove nesting, break all parent multi-brackets into sets of multi-brackets

via the removal of brackets, and charge the cost of each break to the colour of

a child multi-bracket that was nested before the breaking. Each child multi-

bracket only needs 1 bracket removed to be unnested since all brackets in

the child multi-bracket share the same parent bracket by Proposition 7.2.2.

Furthermore, each colour can only have one multi-bracket, each child can

only have one parent, and grandparents would charge to the parents instead

of the child, so no colour is ever charged the cost of more than 1 bracket.

3. Refold the timeline such that it goes from S to −T again.

4. Since the bracketing is planar, if there is more than one wraparound bracket,

one of the wraparound brackets must nest the others since all wraparound

brackets must have endpoints on both sides of S on the unfolded timeline.

Thus after the previous steps there can only be at most one wraparound

bracket left. Furthermore, in the original bracketing there must have been

one multi-bracket that is not a child of any other multi-bracket, thus the

colour of this multi-bracket has not been charged yet. Therefore we can

remove this 1 last wraparound bracket and charge its cost to this colour.
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Figure 7.7 shows the bracketing in Figure 7.6 after unnesting. Note that the

number of brackets removed is never more than the total number of multi-brackets,

and in this case the 3 brackets that were nesting the multi-brackets associated with

s2, s3, and s4 were removed. Also note that this can split each multi-bracket into

several multi-brackets or even remove some multi-brackets entirely, such as how

the multi-bracket for s4 was removed.

Given a D1-resilience-optimal peripheral traversal P, let Bfull be the planar full

multi-bracketing of P and let B∗ be the bracketing that results from unnesting Bfull.

Lemma 7.2.3 Total(P,SÂ)−|B∗| is a 2-approximation of the D1-resilience.

Proof By the D1-resilience-optimality of P, Total(P,SÂ)−|Bfull|=D1ρ(A,s, t). In

particular, the number of distinct colours used by brackets in Bfull must be at most

the D1 resilience, so B∗ must have at most D1ρ(A,s, t) fewer brackets than Bfull.

Thus Total(P,SÂ)−|B∗| ≤ 2×D1ρ(A,s, t).

Observation 7.2.4 Every vertex on the folded timeline of P is in the bracket-spans

of at most 2 distinct colours with respect to B∗.

Proof This can be shown via a proof by contradiction. Assume there is some point

on the folded timeline that is within the bracket-spans of more than two distinct

colours. If we unfold the timeline, this point becomes two points on the unfolded

timeline. Since it is bracket-spanned by more than two distinct colours, at least

one of the two resulting points must be bracket-spanned by at least two distinct

colours on the unfolded timeline. However, since the multi-brackets are planar by

Lemma 7.2.1, in order to be bracket-spanned by at least two distinct colours, there

must be some nesting between the multi-brackets which contain this point. This is

a contradiction because all nesting was removed.

Theorem 7.2.5 The 2-Path Algorithm guarantees a 2-approximation of the D1-

resilience if the existence of a D1-resilience-optimal peripheral traversal is guar-

anteed.

Proof By Observation 7.2.4, every vertex on the folded timeline of P is in the

bracket-spans of at most 2 distinct colours with respect to B∗. Thus we can con-
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struct a 2-Path valid derivation tree using the Sweep Span-Exploiting Approach de-

scribed in Section 4.4, and by Lemma 4.4.5 the weight of the root node of this tree

would be at most Total(P,SÂ)−|B∗|, which by Lemma 7.2.3 is a 2-approximation

of the D1-resilience. Then by Lemma 3.4.2, the theorem immediately follows.

7.3 The D1−Resilience Reduction method
As the value of c increases, the timeline derived from the Dc-resilience-optimal pe-

ripheral traversal P can become very complex due to the potential for heavily over-

lapped sensor intersections. While a planar full bracketing can still be constructed

as shown in Section 5.4, this planar full bracketing tends to be very complicated as

well, with structure that is difficult to exploit. In this section, we present an alterna-

tive method to derive a 2-approximation for the Dc-Resilience where we abandon

the idea of constructing a planar full bracketing as the first step. Instead, given the

Dc-resilience-optimal peripheral traversal P and some integer k:

1. Construct multi-brackets with simple sequential arrangement of each bracket

on the unfolded timeline of P. That is, for every colour c, each c-coloured

vertex is connected directly to the c-coloured vertex immediately before and

the c-coloured vertex immediately after, in a manner similar to how we con-

structed multi-brackets in the D1-resilience scenario. Note that because the

vertices may have multiple colours in the Dc-resilience scenario, this is no

longer guaranteed to be a planar bracketing, as shown in Figure 7.4.

2. Divide the multi-brackets into k partial bracketings such that each colour

only appears in one of the bracketings, and for each bracketing, each ver-

tex on the unfolded timeline is only connected to brackets of one colour.

This can be viewed as splitting the unfolded timeline into k unfolded time-

lines, each having the same properties as the unfolded timelines of the D1-

resilience scenario. Note that this step can fail if k is too small.

3. Break nesting in each bracketing as described in Section 7.2. Note that this

still only has an amortized cost of 1 per colour, thus maintaining the approx-

imation factor of 2 by Lemma 7.2.3.
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Figure 7.8: An example of the D1-Resilience Reduction method.

4. Combine the resulting bracketings into one final bracketing which we denote

by Bfinal(k). Note that if the second step failed because k was too small, we’ll

say the bracketing Bfinal(k) does not exist.

These steps are illustrated in Figure 7.8. Even though the final bracketing

Bfinal(k) can be non-planar, it is now easier to work with as shown in the following

theorem:

Theorem 7.3.1 If we can construct Bfinal(k), the 2k-Path Algorithm will guarantee

a 2-approximation of the Dc-resilience.

Proof When nesting is broken, the timeline for each of the k bracketings is such

that every point on the folded timeline is within the bracket-spans of at most two
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colours associated with the bracketing, according to Observation 7.2.4. This means

that when these bracketings are combined into Bfinal(k), every point on the folded

timeline will within the bracket-spans of at most 2k colours with respect to Bfinal(k).

Then by Lemma 4.4.5, we can construct a 2k-Path valid derivation tree whose root

node has weight at most Total(P,SÂ)− |Bfinal(k)|, which by a generalization of

Lemma 7.2.3 is a 2-approximation of the Dc-resilience. Then by Lemma 3.4.2, the

theorem immediately follows.

However, observe that the X-Path Algorithm has time complexity polynomial

in terms of n only if X is treated as a constant independent of n. In particular, if

k = n, we can clearly use the above procedure to construct a bracketing Bfinal(n),

but then we would require the 2n-Path Algorithm to get a 2-approximation, and

this would not have a time complexity which is polynomial in terms of n. Thus we

must show that there is some constant k independent of n for which we can use the

above procedure to construct a bracketing Bfinal(k).

7.4 The 2-Approximation of the D2−Resilience
In this section, we consider the D2-resilience for cases where a D2-resilience-

optimal peripheral traversal P is guaranteed. As previously mentioned, we shall

show that there exists some constant k such that we can use the method described

in Section 7.3 to construct a bracketing Bfinal(k) on P.

This is very similar to a well-known problem: the Graph Vertex Colouring

Problem. In the Graph Vertex Colouring Problem, the input is a graph of vertices

and undirected edges. The algorithm is then asked to determine what is the mini-

mum number of distinct colours required in order to assign each vertex exactly one

colour under the constraint that no edge in the graph connects two vertices of the

same colour. If an input graph can be coloured using k colours, it can be said that

there exists a vertex k-colouring for it.

We can actually reduce this problem for D2-Resilience into a Graph Vertex

Colouring Problem by constructing a graph G2(A) = (V2(A),E2(A)) from the ar-

rangement A. The set of vertices V2(A) corresponds to the set of sensors and for

every pair of vertices v1 and v2, an undirected edge is constructed connecting them

if there exists a 3-evasive face in the arrangement that is covered by the sensors
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associated with those two vertices. Note that for the rest of this chapter, whenever

we describe the colour of a sensor, we will be referring to the colour assigned by

the solution to the Graph Vertex Colouring Problem, not the colour associated with

the reduction to the Minimum-Vertex-Colour Path Problem.

Lemma 7.4.1 If a vertex k-colouring on G2(A) exists, then Bfinal(k) can be con-

structed using the method described in Section 7.3.

Proof If there exists a vertex k-colouring on G2(A), then each sensor has been

assigned exactly one colour, and we know that for every face in A that is covered

by exactly 2 sensors, the colours of the 2 sensors are different since there must have

been an edge between the associated vertices in G2(A).

Consider the method described in Section 7.3. It can only fail if it is not pos-

sible to divide the multi-brackets into k partial bracketings such that each sensor is

associated with at most one of the bracketings, and for each bracketing, each ver-

tex on the unfolded timeline is only connected to brackets of one sensor. However,

consider splitting the multi-brackets into these k partial bracketings based on the

colour assigned to each sensor, such that each of the k partial bracketings only con-

tains brackets associated with sensors of one colour. Clearly, each sensor will be

associated with at most one of the bracketings. Furthermore, since every 3-evasive

face in A is covered by at most one sensor of each colour, each vertex on the un-

folded timeline must be only connected to brackets of one sensor in each of the k

partial bracketings. Thus Bfinal(k) can be constructed using the method described

in Section 7.3.

Lemma 7.4.2 For any arrangement A of disk sensors, if the vertices in V2(A)

are positioned at the centers of their associated sensors and edges in E2(A) are

drawn as straight line segments, the result must be a planar embedding of G2(A) =

(V2(A),E2(A)), in the sense that none of the edges cross.

Proof This can be shown via a proof by contradiction. Assume there is some

arrangement A of disk sensors that results in a non-planar embedding of G2(A).

Then there must exist some pair of crossing edges. Note that this pair of crossing

edges does not rely on the existence of the other sensors in the graph, since the
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addition of other sensors can never add edges between existing sensors given the

way edges are constructed. Thus removing all sensors other than the 4 involved in

the pair of crossing edges must create a small counterexample with only 4 sensors

that results in a non-planar embedding of a graph.

Let the edges be e1 and e2. An edge is only constructed if there exists a point

in the arrangement that is covered by exactly the two sensors of the edge and no

other sensors. Let p1 and p2 be these points for edges e1 and e2 respectively.

Construct the Voronoi diagram of the two points p1 and p2. Clearly this cleanly

divides the 2-dimensional plane into 2 cells separated by a single straight line.

Consider the vertices for e1: they must be closer to p1 than p2, otherwise p2 would

be covered by their sensors and would fail the requirement that it is a point covered

by only the sensors of e2. Similarly, the vertices for e2 must clearly be closer to p2

than p1. Thus we have that the vertices of each edge are strictly confined to the cell

of the point for that edge. Then since these cells are separated by a single straight

line, it is clearly impossible that these edges cross. Consequently, it is impossible to

construct any counterexample arrangement that results in a non-planar embedding

of a graph.

Corollary 7.4.3 For any arrangement A of disk sensors, G2(A) is a planar graph.

Theorem 7.4.4 The 8-Path Algorithm guarantees a 2-approximation of the D2-

resilience if the existence of a D2-resilience-optimal peripheral traversal is guar-

anteed.

Proof By Corollary 7.4.3 and the Four Colour Theorem, G2(A) must always be

vertex 4-colourable. Then by Lemma 7.4.1 we can construct Bfinal(4). Finally by

Theorem 7.3.1, a 2-approximation can be obtained by using the 8-Path Algorithm.

7.5 The 2-Approximation of the Dc−Resilience
For c > 2, the reduction to the Graph Vertex Colouring Problem requires that we

construct a generalization of the G2(A) graph, since the Dc-resilience-optimal pe-

ripheral traversal P may now enter regions covered by more than two sensors. This
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graph, henceforth referred to as a Gc(A) graph, is constructed similarly, with the

set of vertices Vc(A) being the set of sensors as before. The only difference is that

when constructing edges, we now have to take into account the fact that a path

can enter these regions covered by more than two sensors. Thus for every pair of

vertices v1 and v2, an undirected edge is constructed connecting them if and only

if there exists a point in the arrangement that is covered by the sensors associated

with those two vertices and at most c−2 other sensors. Note that this means every

region covered by c distinct sensors requires a clique of size c in Gc(A).

By similar proofs, we can also generalize Lemma 7.4.1 for Dc-resilience.

Corollary 7.5.1 If a vertex k-colouring on Gc(A) exists, then Bfinal(k) can be con-

structed using the method described in Section 7.3.

Lemma 7.5.2 If a sensor si is fully inside c−1 other sensors, it will only be con-

nected to those c−1 other sensors in Gc(A).

Proof This can be shown via a proof by contradiction. Assume si is connected to

a sensor s j that is not one of the c− 1 sensors that fully cover si. By definition,

this means there is a region in A that is covered by si and s j and at most c−2 other

sensors. However, the c−1 sensors that fully cover si must fully cover this region

as well, which is a contradiction.

While we have managed to show that there still exists a reduction to Graph

Vertex Colouring, Gc(A) is no longer guaranteed to be planar, and thus no longer

guaranteed to be vertex 4-colourable. For instance, Figure 7.9 shows an arrange-

ment of 5 disk sensors. Consider G5(A). Since there is a region covered by all 5

sensors, there must be a clique of size 5 in G5(A). However, it is a well-known

result that no graph containing a clique of size 5 is planar.

As before, we will aim to show that there exists a constant k for any constant c

such that there always exists a k-colouring for the Dc-graph regardless of the size of

n. In order to do so, we shall use a more complicated proof involving order-(c−1)

Voronoi diagrams with additive weights. These are generalizations of the standard

Voronoi diagram such that each cell represents the set of points which share the

same c− 1 closest sites and the distance to each site is the standard Euclidean

distance plus the weight of the site.
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Figure 7.9: An example arrangement illustrating why Gc(A) may be non-
planar

We begin by stating a few properties about these Voronoi diagrams in gen-

eral. Let weightD(p̌,si) and EuclidD(p̌,si) denote the weighted and Euclidean

distances respectively from some point p̌ to some site si. Note that by definition

the weighted distance from a site to itself is simply its weight, so weightD(si,si)

also denotes the weight of a site si. We will also let EuclidD(p̌1, p̌2) denote the

Euclidean distance from some point p̌1 to some other point p̌2. Lastly, for any site

si, we’ll say that it appears in some Voronoi diagram if and only if there exists some

cell in that Voronoi diagram that lists si as one of its closest sites.

Let νc̃ be some order-c̃ Voronoi diagram with additive weights where c̃ is some

positive integer, and let sĩ and s j̃ be some sites that are used in constructing νc̃.

Lemma 7.5.3 If there exists a cell in νc̃ that has sĩ listed as one of its closest sites,

site sĩ must be inside some cell that lists it as one of the closest sites.

Lemma 7.5.4 If there exists a cell in νc̃ that does not contain the point associated

with sĩ but has sĩ listed as one of its closest sites, all cells intersected by a line

segment from this cell to sĩ must list sĩ as one of their closest sites.
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Lemma 7.5.5 All cells in νc̃ that have sĩ listed as one of their closest sites must be

connected with respect to sĩ, in the sense that there exists a path between any pair

of cells that never enters a cell that does not have sĩ listed as one of the closest

sites.

Lemma 7.5.6 If sĩ and s j̃ both appear in νc̃, there can only exist a point p̃ in νc̃

which uses sĩ and s j̃ as part of its c̃+1 closest sites if there exists at least one edge

in νc̃ which uses sĩ and s j̃ as part of its set of c̃+1 closest sites.

The proofs for these properties are included in Section E.1.

Lemma 7.5.7 (Rosenberger [18]) Any order-c̃ Voronoi diagram of ñ sites with

additive weights in the two-dimensional plane has at most (4c̃−2)(ñ− c̃) vertices,

(6c̃−3)(ñ− c̃) edges, and (2c̃−1)(ñ− c̃)+1 cells.

We shall now describe the procedure for transforming our arrangement into an

order-(c−1) Voronoi diagrams with additive weights. First, we create a boundary

around the arrangement of sensors A by adding c−1 extra sensors with arbitrarily

huge radii at each of three corners of a bounding triangle such that all 3c−3 sensors

overlap. The union of these extra sensors effectively surrounds A, as illustrated in

Figure 7.10. In other words, this boundary is being created such that by definition

for some constant dboundary, the following proposition is true:

Proposition 7.5.8 Any points at any distance from A greater than dboundary in any

direction would inevitably be closer to at least c−1 of these extra boundary sensors

than to any of the original sensors.

Then, without loss of generality, let the largest disc in A have radius equal to

1 via rescaling the arrangement. Let ri denote the scaled radius of sensor i. Then

construct an order-(c−1) Voronoi diagram νc−1(A) of sites with additive weights,

where the center of every sensor si is treated as a site with weight 1− ri. In other

words, the weighted distance from any point in the arrangement to some site is the

actual Euclidean distance plus the weight of the site. Similarly, let νc(A) denote

the order-c Voronoi diagram with the same sites and weights. Note that because

every sensor si is uniquely associated with exactly one site and exactly one vertex
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c+1
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Sensors
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Figure 7.10: Illustration of how extra sensors are added to form a boundary
around an arrangement A before the order-(c− 1) Voronoi diagram is
constructed.
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in each arrangement, diagram or graph, we will use si to denote the sensor, site, or

vertex depending on the context.

Lemma 7.5.9 Any cell in νc−1(A) that has a sensor in A listed as one of its c−1

closest sites must be bounded.

Lemma 7.5.10 In νc−1(A), if a sensor si is not listed as one of the closest sites for

any cell, it must be fully inside c−1 other sensors.

Lemma 7.5.11 Two vertices si and s j that appear in νc−1(A) can be connected by

an edge in Gc(A) only if there exists at least one edge in νc−1(A) which uses their

two associated sensors as part of the set of closest sites.

The proofs of these statements are included in Section E.2.

Construct an undirected graph G(νc−1(A)) with the same set of vertices as

Gc(A) and add undirected edges as follows, making sure to not add any edge more

than once:

1. Start with some vertex vi in G(νc−1(A)) that appears in νc−1(A), and find an

edge in νc−1(A) that has vi listed as a closest site on exactly one side of the

edge, henceforth referred to as the inside. Create c−1 edges in G(νc−1(A))

that connect vi to the vertices of c−1 sites on the outside. Note that if some

of the sites correspond to the extra bounding sensors we added earlier, we

don’t have to add those edges in.

2. Find another edge in νc−1(A) that is connected to the previous edge and also

has vi listed as a closest site on exactly one side of the edge. Create edges in

G(νc−1(A)) that connect vi to the closest sites of the outside cell for this new

edge.

3. Repeat the previous step until all such edges are found. This works because

all cells that list vi as their closest site must be connected by Lemma 7.5.5,

and by Lemma 7.5.9 these cells are bounded in all directions, so all edges

that have vi listed as a closest site on exactly one side must always be in the

form of a ring of edges.
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4. Repeat from step 1 for a previously unused vertex in G(νc−1(A)) that appears

in νc−1(A), until all vertices in G(νc−1(A)) that appear in νc−1(A) have been

used.

5. For each vertex vi that does not appear in νc−1(A), if it is fully covered by

exactly c−1 sensors connect it to those c−1 sensors.

Lemma 7.5.12 The set of edges in G(νc−1(A)) is a superset of the set of edges in

Gc(A).

Proof By Lemma 7.5.11, two vertices that appear in νc−1(A) can be connected by

an edge in Gc(A) only if there exists at least one edge in νc−1(A) which uses their

two associated sensors as part of the set of closest sites.

If this edge has either one of the two vertices only on one side, then G(νc−1(A))

must have an edge between the two vertices.

Otherwise, this means that the cells on both sides on this edge both list both

vertices as part of their c−1 closest sites.

Consider a path from one of these cells to a cell on the boundary. By

Lemma 7.5.9, this means it connects to a cell that does not list the sites associated

with either vertex as part of the c− 1 closest sites. In the absence of degeneracy,

each edge on νc−1(A) can only replace 1 site at a time, and we know that this

path to the boundary must be replacing the sites associated with the two vertices

since the final cell does not have them. Thus at some point on the path, a cell that

contains exactly one of the two vertices must be encountered. Then the edge on

νc−1(A) between this cell and the previous one must be an edge that has one vertex

listed as a closest site on only one side of the edge. Then G(νc−1(A)) must have an

edge between the two vertices if they both appear in νc−1(A).

If one vertex does not appear in νc−1(A), then by Lemma 7.5.10 it must be fully

covered by at least c−1 sensors. If it is fully covered by exactly c−1 sensors, in

the last step we would have connected that site to those sensors. Note that if it

is fully covered by more sensors, then by definition all points in that sensor are

(c+ 1)-detected, so the (c+ 1)-evasive Dc-resilience optimal path cannot use it

and we don’t need to add any edges to Gc(A) for it. By Lemma 7.5.2, the other

vertex must belong to one of the c−1 sensors fully covering the vertex, so it must

be that G(νc−1(A)) has an edge between the two vertices.
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Figure 7.11: Illustration of how the second step could share the same outside
cell.
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Figure 7.12: Illustration of how the second step could have a different but
adjacent outside cell.

Thus all edges in Gc(A) can exist only if they also exist in G(νc−1(A)), meaning

the edges of G(νc−1(A)) form a superset of the edges in Gc(A).

As previously defined, n denotes the number of sensors in the arrangement A.

Since vertices in G(νc−1(A)) are derived from the sensors in A, n is also the number

of vertices in G(νc−1(A)).

Lemma 7.5.13 G(νc−1(A)) has at most n(c−1)+2(6c−9)(n+2c−2) edges.
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Proof All repetitions of the first step and the last step add (c−1) edges times the

number of vertices, so a total of n(c−1) edges.

In the second step, we only use an edge that is connected to the previous one.

This edge, being connected to the previous one, must either share the same outside

cell, or use an outside cell that is adjacent to the previous outside cell. This is

illustrated by Figure 7.11 and Figure 7.12, where e1 is the previous edge and the

current edge is the remaining black edge. Effectively this means the closest sites

used by the outside cell are either identical to the previous outside cell or differ

only by one. Thus we only need to add at most 1 extra edge to G(νc−1(A)) for this

edge.

Furthermore, we chose edges defined to have a certain site be listed on exactly

one side of the edge. Since the cells on both sides of the edge can only differ by

one site, each edge can only be used for two distinct sites. Thus each edge can only

be used twice in the second step. By Lemma 7.5.7, the maximum number of edges

in νc−1(A) is at most (6(c−1)−3)(n+3(c−1)− (c−1)) = (6c−9)(n+2c−2).

Thus the second step and all its repetitions can add at most 2(6c− 9)(n+ 2c− 2)

edges.

Combined, this is a total of at most n(c− 1)+ 2(6c− 9)(n+ 2c− 2) edges in

G(νc−1(A)).

Lemma 7.5.14 There must exist a vertex in Gc(A) which has degree at most 74c−
110, assuming n≥ c.

Proof By Lemma 7.5.13, G(νc−1(A)) has at most n(c−1)+2(6c−9)(n+2c−2)

edges. By Lemma 7.5.12, the set of edges in G(νc−1(A)) is a superset of the set of

edges in Gc(A), so Gc(A) has at most n(c−1)+2(6c−9)(n+2c−2) edges.

Then the sum of vertex degrees in Gc(A) is at most 2n(c−1)+4(6c−9)(n+

2c− 2). In turn this means there must exist a vertex in Gc(A) which has degree

at most 2n(c−1)+4(6c−9)(n+2c−2)
n , which is less than 74c−110 under the assumption

that n≥ c and c > 1. Note the latter assumption must be true or there would be no

edges at all by definition.

Lemma 7.5.15 There exists a vertex (74c−109)-colouring for Gc(A).
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Proof By Lemma 7.5.14, there exists a vertex which has degree less than 74c−
110. Since we have (74c− 109) distinct colours, this vertex can be coloured the

remaining colour at the end with no problems. Thus we reduce the problem to one

where this vertex doesn’t exist.

However, the set of edges in this reduced problem must be a subset of the

edges in the Gc graph derived from the arrangement with the associated sensor

removed. Then once again by Lemma 7.5.14, there exists a vertex which has less

than 74c−110 edges, which means we can reduce the problem again. Recursively

reduce the problem in this manner until the graph has less than 74c−110 vertices,

noting that the assumption that n ≥ c still holds. Then simply colour each vertex

in the final graph a different colour. Since we can (74c− 109)-colour the final

problem, the reductions state that the original graph Gc(A) must have a vertex

(74c−109)-colouring as well.

Theorem 7.5.16 If the existence of a Dc-resilience-optimal peripheral traversal is

guaranteed, a 2-approximation of the Dc-resilience is guaranteed by the (148c−
218)-Path Algorithm.

Proof By Lemma 7.5.15, Gc(A) must always be vertex (74c− 109)-colourable.

Then by Corollary 7.5.1, we can construct Bfinal(74c− 109). Finally by Theo-

rem 7.3.1, a 2-approximation of the Dc-resilience is guaranteed by the (148c−
218)-Path Algorithm.

Note that the (148c−218)-Path Algorithm has time complexity is polynomial

in terms of n if c is a constant independent of n. Additionally, we observe that

this method allows us to derive a 2-approximation of the resilience under some

constraints:

Let the point density of the the sensor arrangement, denoted PD(A), be defined

as the maximum over all points p of the number of sensors in A whose associated

regions contain p.

Corollary 7.5.17 If the existence of a resilience-optimal peripheral traversal is

guaranteed and if there is a constraint on A that states PD(A)≤ k for some constant

k > 1, a 2-approximation of the resilience is guaranteed by the (148k−218)-Path

Algorithm.
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Proof By the definition of PD(A), no region in A can be covered by more than

PD(A) sensors, which means the resilience is equivalent to the DPD(A)-resilience.

Then by Theorem 7.5.16 and the constraint that PD(A)≤ k, a 2-approximation of

the resilience is guaranteed by the (148k−218)-Path Algorithm.

Let the sensor density of the sensor arrangement, denoted SD(A), be defined

as the maximum over all sensors si in A of the number of sensors in A whose

associated regions overlap the region of si, including si itself. By definition this

means SD(A) ≥ PD(A).

Lemma 7.5.18 If there is a constraint on A that states SD(A)≤ k for some constant

k > 1, Gc(A) must be vertex k-colourable for any value of c.

Proof By definition, SD(A) is the maximum number of sensors in A that overlap

any sensor in A on the two-dimensional plane, including itself. Thus SD(A)− 1

is an upper bound on the degree of every vertex in Gc(A) for all values of c, since

two vertices cannot be connected if their sensors do not overlap in the arrangement.

Thus Gc(A) must be vertex k-colourable for any value of c.

Corollary 7.5.19 For any integer c, if the existence of a Dc-resilience-optimal

peripheral traversal is guaranteed and if there is a constraint on A that states

SD(A)≤ k for some constant k > 1, a 2-approximation of the Dc-resilience is guar-

anteed by a 2k-Path Algorithm.

Proof By Lemma 7.5.18, Gc(A) must always be vertex k-colourable. Then by

Corollary 7.5.1 we can construct Bfinal(k). Finally by Theorem 7.3.1, we can obtain

a 2-approximation by using a 2k-Path Algorithm. Note that this includes even the

standard or Dn-resilience.

7.6 The Constant Approximation of the Dc−Resilience
As defined in Section 7.1, the input of the Barrier Density-Constrained Resilience

Problem is a tuple (A,S,T,c), where A is an arrangement of n disk sensors with

radii in the range [1− ξ ,1], S and T are two regions, and c is a positive integer

between 1 and n inclusive.
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In this section, we will use a combination of the techniques presented in previ-

ous sections to prove the main result of this thesis. We will show that for any prob-

lem instance of the Barrier Density-Constrained Resilience Problem, the Multi-

Path Algorithms can always be used to guarantee a constant factor approximation

of the Dc-resilience in time polynomial in terms of n, if c and ξ are treated as

constants.

As previously mentioned, there must exist a function I(ξ ) such that if the

Dc-resilience has a finite value, there must exist an acyclic Dc-resilience-optimal

(∞, I(ξ ))-traversal P. First, we shall split every sensor along every intersection of

P, using the same way we described in Section 5.5. Then given the timeline of

P associated with the subsensors, our goal is to apply the D1-resilience reduction

method outlined in Section 7.3.

As before, we must show that there is some constant k independent of n for

which we can construct Bfinal(k). First construct the Gc(A) graph for the original

sensors in the arrangement as outlined in Section 7.5. By Lemma 7.5.15, there

exists a vertex (74c−109)-colouring for Gc(A). However, since we split the sen-

sors into subsensors which could have overlapping regions, these subsensors have

to be coloured too. This can be accomplished by observing that since every sen-

sor was split along every intersection, subsensors derived from the same sensor

must overlap only exactly on the intersections. In other words, if we consider just

the subsensors of a single sensor, it is effectively a separation of the sensor into

contiguous regions forming a map-like structure. Consequently, the subsensors for

each sensor must have a 4-colouring by the Four Colour Theorem. Thus the set of

all subsensors must have a (296c− 436)-colouring. This means we can construct

Bfinal(296c−436).

Then note that since the bracket breaking procedure in Section 7.3 would re-

move one bracket per sensor involved in the bracketing, the fact that we split the

sensors into subsensors means we are no longer guaranteed a 2-approximation. By

definition, P makes at most I(ξ ) interior intersections per sensor, where I(ξ ) is a

positive integer independent of n. Observe that if there are at most I(ξ ) interior

intersections per sensor, while the number of subsensors per sensor is unbounded,

the number of multiply-intersected subsensors per sensor must be at most I(ξ )+1.

Thus the bracket breaking procedure would remove at most I(ξ )+ 1 brackets per
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sensor involved in the bracketing. Consequently, we have the following result:

Theorem 7.6.1 A (I(ξ )+2)-approximation of the Dc-resilience is guaranteed by

the (592c−872)-Path Algorithm.

Proof By a generalization of the arguments in the proof of Theorem 7.3.1, we

can prove that the output of the (592c− 872)-Path Algorithm must be at most

Total(P,SÂ)− |Bfinal(296c− 436)|. Then since we broke at most I(ξ )+ 1 brack-

ets per sensor to construct Bfinal(296c−436), Total(P,SÂ)−|Bfinal(296c−436)| ≤
(I(ξ )+2)×Dcρ(A,S,T ). Thus a (I(ξ )+2)-approximation of the Dc-resilience is

guaranteed by the (592c−872)-Path Algorithm.

Thus to get a (I(ξ )+ 2)-approximation of the Dc-resilience, it suffices to use

the (592c− 872)-Path Algorithm. Note that this has time complexity polynomial

in terms of n if c is a constant independent of n. Thus we have proven that the

Multi-Path Algorithms can be used to achieve constant approximations of the Dc-

resilience in time polynomial in n if c and ξ are treated as constants independent

of n. We can also state generalizations of Corollary 7.5.17 and Corollary 7.5.19:

Corollary 7.6.2 If there is a constraint on A that states PD(A) ≤ k for some con-

stant k > 1, a (I(ξ ) + 2)-approximation of the resilience is guaranteed by the

(592k−872)-Path Algorithm.

Corollary 7.6.3 For any integer c, if there is a constraint on A that states SD(A)≤
k for some constant k > 1, a (I(ξ )+2)-approximation of the Dc-resilience is guar-

anteed by a 8k-Path Algorithm.
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Chapter 8

Conclusion

In this thesis, we reduced the Barrier Resilience Problem for disk-shaped sen-

sors to the Minimum-Vertex-Colour Path Problem, a variant of the Minimum-

Colour Path Problem investigated by Yuan et al. [24]. We formulated and ana-

lyzed the Multi-Path Algorithms as approximation algorithms for the Minimum-

Vertex-Colour Path Problem, and showed that they have time complexity poly-

nomial in terms of the number of vertices if a constant number of paths is used

[Theorem 3.3.2].

We showed that many restricted versions of the Barrier Resilience Problem,

such as the case where sensors are unit disks, are intersection-limited problem

scenarios, in the sense that we can guarantee the existence of an acyclic resilience-

optimal S− T path which intersects each sensor at most m times for some finite

integer constant m. For these problem scenarios, we showed that the 2-Path Al-

gorithm guarantees a m+1
2 -approximation of the resilience [Theorem 6.2.7]. In

particular, this means that the 2-Path Algorithm, in time polynomial in terms of

n, guarantees a 2-approximation of the resilience for any arrangement of unit disk

sensors [Corollary 6.2.9]. This further tightens to a 1.5-approximation in the case

where the distance between S and T is greater than 2
√

3 [Corollary 6.2.8]. These

results improve on the previous best-known approximation ratios of 3 and 5
3 [2].

Next, we defined a generalization of the resilience referred to as Density-c or

Dc-resilience, which is a measure of the resilience under the constraint that paths

cannot enter regions which are covered by more than c distinct sensors. We then
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proved that for any constant c, there exists a constant X ′ such that the X ′-Path Al-

gorithm guarantees a 2-approximation of the Dc-resilience in time polynomial in n

for any problem instance where there must exist an acyclic Dc-resilience-optimal

peripheral traversal [Theorem 7.5.16]. Furthermore, we extended this to show that

for any constant c, there exists a constant X ′ such that the X ′-Path Algorithm guar-

antees a constant approximation of the Dc-resilience in time polynomial in n for

any problem instance where there must exist an acyclic Dc-resilience-optimal S−T

path that intersects each sensor at most i times for some finite integer constant i

[Theorem 7.6.1].

We observe that for any problem instance where the disk sensors have radii in

range [1−ξ ,1] for some constant 0≤ ξ < 1, if there is a (c+1)-evasive S−T path,

there must exist an acyclic Dc-resilience-optimal S− T path that intersects each

sensor at most i times for some finite integer constant i. In fact, for many problem

instances, there must exist an acyclic Dc-resilience-optimal peripheral traversal,

especially when ξ is small. Consequently, these results mean that the Multi-Path

Algorithms can be used to guarantee constant approximations of the Dc-resilience

for any arrangement of disk sensors with radii in range [1−ξ ,1] for some constant

0 ≤ ξ < 1 and any constant c, which tightens to a 2-approximation under certain

conditions. This is a significant result in that there has previously been no known

polynomial-time algorithm that gives any constant-approximation of the resilience

when disk sensors were of different sizes, and the Dc-resilience may be close to the

resilience in many situations even for small c.

Furthermore, we defined two measures of barrier density, the point density

which is the maximum number of sensors that covers any point, and the sensor

density which is the maximum number of sensors that intersect any sensor, includ-

ing itself. In practice, barrier coverage problems usually spread out sensors over

a long strip of area, so their densities can actually be treated as constants. We

showed that if the density of the arrangement for either one of these definitions can

be treated as a constant, a constant approximation of the resilience can be derived

in time polynomial in terms of n [Corollary 7.6.2 and Corollary 7.6.3].

Thus we have shown that for arrangements of disk sensors in a two-dimensional

plane, the above constant-approximations are guaranteed by the Multi-Path Algo-

rithms in time polynomial in n. However, as described, the exponents are too high

101



to use in practice. One obvious direction for future research would be to make large

optimizations to the algorithms to be able to actually deploy some of them. In fact,

the approaches described in Section 4.3 and Section 4.4 suggest the existence of

methods for significantly cutting down on the time complexity of the algorithm

while maintaining the same approximation factors.

We also note that with respect to the Multi-Path Algorithms described in Chap-

ter 3, the M-functions, which in some sense exploit rules on X-Path instance merg-

ing, are not the only way to produce new upper bounds for the number of hidden

colours associated with an X-Path profile. In Appendix F, we define D-functions,

which in some sense exploit rules on X-Path instance decomposition. We note

that in some situations, these D-functions may cause the algorithm to perform sig-

nificantly better. However, by their nature, these D-functions do not provide any

benefit in the worst-case scenarios that we study in this thesis. Thus they are not

used in any of the proofs above.

Another direction worth investigating is the notion of higher-order thicknesses

and resiliences. Treating the standard thickness and resilience as the first-order, the

second-order thickness counts the minimum number of times a path from S to T

intersects a sensor while it is already inside at least 1 other sensor, and the second-

order resilience is the number of sensors which must be removed in order for the

second-order thickness to become 0, with higher orders defined similarly. This is a

definition of barrier strength that is useful for real world applications where sensors

have a high tendency to give false positives, thus requiring multiple sensors to give

a positive signal before the we can believe there may really be an intruder in the

vicinity.

While higher-order thickness can clearly be determined just as easily as first-

order thickness by adjusting the edge weights in the dual graph of the arrangement,

the higher-order resilience seems much harder to compute due to the choice of

which sensor to remove from the arrangement. Of particular note is that there exist

counterexamples which show that other than the bound on first-order resilience by

first-order thickness, no other order of thickness or resilience forms any constant

approximation on one another even in the case where sensors are unit disks.

Finally, it is worth exploring the scenario when sensors are on some other sur-

face instead of a two dimensional plane. For instance, when sensors are on a
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torus, even if the sensor regions are unit disks, the forbidden configurations dis-

cussed in Section 5.2 are no longer unrealizable and the optimal path can in fact

be forced by the arrangement to make sequences of sensor intersections that are

supersequences of these configurations even without making any interior sensor

intersections. However, it seems likely that there exists another set of forbidden

configurations on a torus, as it seems impossible to be able to make an indefinite

number of alternating positive peripheral intersections to any two sensors.
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Appendix A

Proofs Regarding Forbidden
Configurations

A.1 Folded Forbidden Configurations
In this appendix, we prove Theorem 5.2.3, restated here:

Theorem A.1.1 Forbidden Configurations are unrealizable.

As previously defined, Forbidden Configurations are every timeline configu-

ration that is a result of some sequence of transformations from the ten shown in

Figure A.1. Each black line represents a subchain of vertices of a timeline. The

colours red and blue represent two distinct sensors, and coloured shorter lines are

drawn above a vertex to show that it is within a positive intersection of a sensor

associated with the colour, and drawn below for negative intersections. In each of

these ten timeline subchains, a timeline configuration is formed by the states of the

vertices. Without loss of generality, let the sensor associated with the red intervals

be α and the sensor associated with the blue intervals be β .

A timeline configuration is considered realizable if there exists a timeline that

both contains the timeline configuration and represents a peripheral traversal that

goes through an arrangement of sensors subject to Axiom 5.2.1 and Axiom 5.2.2.

As previously stated, any supersequence of an unrealizable timeline configuration
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Figure A.1: 10 Forbidden Configurations

is also unrealizable. Thus we can focus on proving only the smallest sequences are

unrealizable.

Let P be a peripheral traversal through some arrangement A subject to Ax-

iom 5.2.1 and Axiom 5.2.2. The goal is to prove that P cannot contain any of the

Forbidden Configurations. Note that in order to avoid confusion between intersec-

tions of pairs of sensors and sensor intersections made by P, all sensor intersections

made by P are henceforth referred to as sensor visits.

Let arrangement A′ be a duplicate of A but with the detection region of each

sensor trimmed to include only its sensor visits and the subregion that a path could

visit without creating any interior sensor visits, given that it already has all the

sensor visits of P. As previously defined, in the absence of interior sensor vis-

its, every sensor visit of a multiply-visited sensor has exactly one path-intersected
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sensor-boundary-walk and one non-path-intersected sensor-boundary-walk. Thus

to derive each sensor in A′, it suffices to take the boundary of the original sensor in

A and replace each non-path-intersected sensor-boundary-walk with its associated

sensor visit. Observe that this retains all the sensor visits of P in the same orien-

tations and order, but with all sensor visits will now go along the boundaries of

sensors in A′.

Lemma A.1.2 Axiom 5.2.1 holds for A′.

Proof Axiom 5.2.1 requires that each sensor in A′ be associated with a single de-

tection region on the two dimensional plane that contains no holes. In other words,

for any two points p1 and p2 and any sensor si, if the points are both inside or both

outside si, there exists a path from p1 to p2 that does not intersect the boundary of

si.

By definition, P cannot intersect itself, so by construction it is impossible to

create any holes in the detection region since that would require a self-intersecting

sensor visit. Furthermore, no two sensor visits of the same sensor can intersect, so

replacing each non-path-intersected sensor-boundary-walk with its associated sen-

sor visit cannot result in a self-intersecting boundary. Lastly, observe that to split

the detection region into multiple disconnected subregions, a non-path-intersected

sensor-boundary-walk that fully covers a path-intersected sensor-boundary-walk is

required. This is a contradiction since the non-path-intersected sensor-boundary-

walk must clearly be path-intersected if it fully covers a path-intersected sensor-

boundary-walk. Consequently, it is also impossible for the detection region to be

split into multiple disconnected subregions. Thus it must be the case that each

sensor in A′ is associated with a single detection region that contains no holes.

Lemma A.1.3 Axiom 5.2.2 holds for A′.

Proof Axiom 5.2.2 requires that A′ is pairwise boundary-segregated. In other

words, every pair of sensors s′i and s′j in A′ have a boundary-segregated intersec-

tion. This means s′i and s′j are boundary-isolated with respect to every intersection

region for the pair, or no intersection region for the pair exists in the sense that s′i
and s′j are associated with completely disjoint regions in A′.
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Now consider an intersection region I′i, j for s′i and s′j. By definition, this is a

region that is fully covered by s′i and fully covered by s′j. Then since the detection

region of s′i and s′j are subregions of the sensors si and s j in A, it must be the case

that I′i, j is a subregion of some intersection region Ii, j for si and s j. In addition,

any point on the boundary of I′i, j must either be on the boundary of Ii, j or on

the path P, since the non-path-intersected sensor-boundary-walks are replaced by

sensor visits in the construction process. Furthermore, as by definition si and s j

fully cover Ii, j, each point in Ii, j that is also on P must be on the boundary of both

s′i and s′j.

Consequently, when the non-path-intersected sensor-boundary-walks are re-

placed by their associated sensor visits, any point on the boundary of I′i, j but not

on the boundary of Ii, j must actually be on the boundary of both s′i and s′j. This

allows us to prove that both s′i and s′j are boundary-isolated with respect to I′i, j in a

proof by contradiction as follows:

Let P′i be the set of points on the boundary of I′i, j that are also on the boundary

of s′i. Let P′j be the corresponding set for s′j, and let Pi and P j be the corresponding

sets for Ii, j and si and s j.

By definition, if s′i is not boundary-isolated with respect to I′i, j, there must be

two points p′1 and p′2 inside the set (P′i−P′j) such that it is not possible to walk

from p′1 to p′2 using only points in P′i. However, we just showed that any points on

the boundary of I′i, j that are not on the boundary of Ii, j must be on the boundary

of both s′i and s′j, so by definition these points cannot be inside the set (P′i−P′j).
Thus p′1 and p′2 must be points on the boundary of Ii, j and in (Pi−P j).

Then since Axiom 5.2.2 holds for A, it must have been possible to walk from

p′1 to p′2 using only points in Pi. However, noting again that any points on the

boundary of I′i, j that are not on the boundary of Ii, j must be on the boundary of

both s′i and s′j, it is impossible for any part of this walk to be replaced by a new

boundary part that cannot be traversed using only points in P′i. Thus s′i must be

boundary-isolated with respect to I′i, j.

A similar argument shows the same result for s′j, which means s′i and s′j must

have a boundary-segregated intersection. Thus this proves that A′ is pairwise

boundary-segregated.
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Consequently, the problem is reduced to the following:

Let P be a peripheral traversal through some arrangement A subject to Ax-

iom 5.2.1 and Axiom 5.2.2 where all sensor visits must go along the boundaries of

sensors. The goal is to prove that P cannot contain any of the Forbidden Configu-

rations.

To achieve this goal, first observe that for every pair of visits to the same sensor

si, the two-dimensional plane can be split into 3 non-overlapping regions:

The Sensor Region The detection region associated with si.

The Interior Region The region bounded by the boundary of si and the subpath

from the end of the first visit to the start of the second visit.

The Exterior Region The rest of the two-dimensional plane.

Note that by Axiom 5.2.1 and the fact that the path is a non-self-intersecting

acyclic traversal, each of these defines a single region that contains no holes. We

then make the following observations:

Let v1 and v2 be two arbitrary visits to some arbitrary sensor si where v1 is

earlier on the path P than v2. Let Regionsensor, Regioninterior, and Regionexterior

denote the sensor region, interior region, and exterior region respectively for the

pair of visits v1 and v2. Finally, let Pbefore, Pbetween, and Pafter denote the subpaths of

P before v1, between v1 and v2, and after v2 respectively.

Observation A.1.4 For each subpath Pbefore and Pafter, if any point on the subpath

is in Regioninterior, no point on the subpath is in Regionexterior.

Proof Since P is a peripheral traversal, it cannot intersect itself, and thus cannot

connect points in Regioninterior and Regionexterior by intersecting the subpath be-

tween v1 and v2. Consequently, the only way for P to connect points in Regioninterior

to Regionexterior is to intersect Regionsensor. However, for either Pbefore and Pafter to

do so would inevitably result in an interior visit to si, which is a contradiction

because peripheral traversals by definition do not contain any interior visits.

Let s j be some sensor that neither has any visit v3 that is the same orientation

as v1 and fully covers v1, nor has any visit v4 that is the same orientation as v2 and

fully covers v2.
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Observation A.1.5 If part of the boundary of s j is in Regioninterior, no part of the

boundary of s j is in Regionexterior.

Proof Assume s j has part of its boundary in Regioninterior and part of its boundary

in Regionexterior. By Axiom 5.2.1, these two parts must be connected together by

the rest of the boundary of s j. Furthermore, we know by construction that the

boundary of s j may go through the path at any point, only going along the path at

the visits instead. This includes the subpath from the end of v1 to the start of v2.

Consequently, the boundary of s j must go through Regionsensor.

Now observe that if the subpath associated with v1 is fully covered by the

boundary of s j going in between Regioninterior and Regionexterior, there must exist

a visit v3 to s j that is of the same orientation as v1 and fully covers v1, contra-

dicting the initial selection requirements for s j. Thus the boundary of s j going in

between Regioninterior and Regionexterior may not fully cover the subpath associated

with v1. By a similar argument, the same holds true for v2. Then observe that this

inevitably results in an intersection region Ii, j for si and s j such that neither si nor

s j are boundary-isolated with respect to Ii, j. Consequently, si and s j do not have a

boundary-segregated intersection.

However, this is a contradiction of Axiom 5.2.2. Thus it must be the case that

s j cannot have boundaries in both Regioninterior and Regionexterior.

Now consider each of the ten configurations shown in Figure A.1. Let

Regionsensor, Regioninterior, and Regionexterior denote the sensor region, interior re-

gion, and exterior region respectively for the first two visits of α .

First, observe that in each configuration, β does not have any visit which has

the same orientation and fully covers either of these two visits to α . We will

show that the configuration is unrealizable by proving the visits to β require β

to have boundaries in both Regioninterior and Regionexterior, contradicting Observa-

tion A.1.5.

Then note that by Observation A.1.4, the path after the second visit of α cannot

have points in both Regioninterior and Regionexterior. In fact, given a pair of visits

to α with fixed orientations, it is possible to have paths which avoid Regioninterior

after the pair and paths which avoid Regionexterior after the pair. Let case I denote

the case where P avoids Regioninterior after the pair, and let case II denote the case
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α α

I II

Figure A.2: The two cases for a pair of visits to α with the same orientation.

α α

I II

Figure A.3: The two cases for a pair of visits to α with opposite orientations.

where Regionexterior is avoided instead. These cases are illustrated in Figure A.2

and Figure A.3 for a disk sensor α before the detection region is trimmed. However

note that this disk shape is not required for our arguments to hold.

Note that due to the inherent symmetry between case I and case II, it suffices to

just consider case I for each configuration, since similar arguments would achieve

the same results for case II. Thus for each configuration, we shall assume that P

avoids Regioninterior after the second visit of α in the configuration.

Now consider configuration 1. There is a positive visit of β in between the

two visits of α , and by definition it is associated with a counter-clockwise path-

intersected sensor-boundary-walk. Then given that the second visit of α is positive

and Pafter avoids Regioninterior, β must have part of its boundary in Regioninterior.

However, there is also a visit of β after the second visit of α , and by again noting

that Pafter avoids Regioninterior, this visit cannot be in Regioninterior. Furthermore,

this visit of β is not covered by any visit of α , thus this visit of β must be in

Regionexterior. Consequently, β must have part of its boundary in Regioninterior

and part of its boundary in Regionexterior. Thus we have shown that P containing
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configuration 1 would contradict Observation A.1.5, proving that configuration 1

is unrealizable.

Furthermore, observe that the above argument does not depend on the orienta-

tion of the second visit of β or the orientation of the first visit of β . In other words,

the configuration remains unrealizable even if the orientations of either of those

visits are reversed. Thus via the transformation methods presented in Section 5.2,

this also proves that configurations 2 and 10 are unrealizable.

Next consider configuration 3. The first positive visit of β is overlapping the

first negative visit of α , so by considering the counter-clockwise path-intersected

sensor-boundary-walk and the second visit of α as before, it must be the case that

β has part of its boundary in Regioninterior. However, the second visit of β is in the

subpath Pafter which avoids Regioninterior, and not covered by α . Thus it must be in

Regionexterior, meaning β must have part of its boundary in Regioninterior and part

of its boundary in Regionexterior, which proves configuration 3 is unrealizable.

Observe that this argument does not depend on the orientation of the second

visit of β . Thus via transformation arguments configuration 9 is also unrealizable.

Furthermore, even if the second visit of β was a positive visit which overlapped a

negative visit of α such as in configuration 5, observe that it would still require β to

have part of its boundary in Regionexterior since the boundary of β cannot intersect

the path associated with the negative visit of α and by Axiom 5.2.1 the boundaries

of β must be connected. Thus configuration 5 is also unrealizable.

Now consider configuration 4. Given that Pafter avoids Regioninterior and the pair

of visits to α have opposite orientations, Pbefore must avoid Regionexterior. Then

since the two visits of β are not covered by α visits and one is in Pbefore while

the other is in Pafter, β must have boundaries in Regioninterior and Regionexterior.

Thus configuration 4 is also unrealizable. Observe that this argument does not

depend on the orientation of the two visits of β , so via transformation arguments,

configurations 7 and 8 are also unrealizable.

This leaves only configuration 6. Here the two visits of α have opposite ori-

entations, and each is overlapped by a visit of β of opposite orientation. Given

that Pafter avoids Regioninterior, it must then be the case that the first visit of β re-

quires β to have part of its boundary in Regionexterior, while the second visit of β

requires β to have part of its boundary in Regioninterior. Thus configuration 6 is
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Figure A.4: All 25 folded forbidden configurations in the 2-visit scenario.

also unrealizable.

In conclusion, we have shown that these 10 configurations and all their trans-

formations are unrealizable, proving Theorem 5.2.3.

A.2 Unfolded Forbidden Configurations
In this appendix, we will prove that for any timeline that does not contain For-

bidden Configurations, the corresponding unfolded timeline does not contain the

Unfolded Forbidden Configuration α−β β−αα−β β−α of the 2-visit scenario. This

is achieved via illustrating that all possible timeline configurations on the folded

timeline that could unfold to form the Unfolded Forbidden Configuration are For-

bidden Configurations, or supersequences of Forbidden Configurations. As before,

it suffices to only consider the smallest sequences.

Starting with the base cases, in the 2-visit scenario there are 25 distinct folded

timeline configurations that are the smallest sequences of visits that can form

α−β β−αα−β β−α in the unfolded timeline. These are shown in Figure A.4. Visits

do not actually have to be consecutive, but they must be in the order presented.

To distinguish these configurations from the ones in Section 5.2, we shall denote

these configurations with a subscript u. Many of these configurations are extremely

similar or symmetrical, and we can in fact show that by taking the mirror image

and swapping the labels, clearly configurations 13u to 24u are transformations of

configurations 1u to 12u, and thus we can ignore them and focus on showing proofs

for the remaining 13 configurations. Furthermore, reversing the path and taking the

mirror image reveals that 5u to 7u are transformations of 2u to 4u, and reversing the

path shows that 12u is a transformation of 10u. Consequently, it suffices to consider
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Figure A.5: All 15 extensions of configuration 1u.

only configurations 1u to 4u, 8u to 11u, and 25u, as shown in yellow in Figure A.4.

To show that they are Forbidden Configurations, observe that they are identical to

configurations 1 to 4, 7 to 10, and 6 respectively.

Then, to show that α−β β−αα−β β−α would never appear in the unfolded time-

line of timeline without Forbidden Configurations even when there are multiple

visits per sensor, we have to further extend these base cases to include all possible

situations with multiple visits. However, we don’t have to show this for any su-

persequence of the base cases, since by definition a supersequence would contain

a subsequence. In other words, the extra visits we add must not be in locations

different from the set of locations presented by the base cases. Instead, they must

be added to the base cases such that they are simultaneous with the old visits to

not be a supersequence of it, while maintaining that unfolding the timeline can still

result in α−β β−αα−β β−α . Consequently, this means for each visit in each base

case, there is a possible extension by adding a visit of the opposite orientation to

the opposite sensor at the same location.

Figure A.5 shows the 15 possible extensions of configuration 1u. Out of these

extensions, only configurations 31u and 34u are not supersequences of any of the

25 base cases. Furthermore configuration 31u is a transformation of configura-

tion 34u by reversing the path, swapping the labels and flipping the arrangement.

Thus it suffices to show that configuration 34u is a Forbidden Configuration, or

supersequence of Forbidden Configuration. This is achieved by observing that

configuration 34u is a supersequence of configuration 5.

Figure A.6 shows the 15 possible extensions of configuration 2u. Out of these

extensions, only 49u and 52u are not supersequences of any of the 25 base cases or

their transformations. However, 49u and 52u are also supersequences of a transfor-

mation of configuration 5.
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Figure A.6: All 15 extensions of configuration 2u.
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Figure A.7: All remaining extensions of the other base cases.

Figure A.7 shows all the remaining possible extensions. Note that configu-

ration 25u cannot be extended. Every one of them is supersequence of either a

transformation or duplicate of a previously handled case. Thus it is proven that it is

impossible to get the Unfolded Forbidden Configuration of α−β β−αα−β β−α in the

unfolded timeline of any timeline that does not contain Forbidden Configurations.
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Appendix B

Proofs Regarding Boolean
Matrices

In this appendix, we examine two-dimensional boolean matrices, whose cells either

contain ones or zeros. Cells containing ones are referred to as marked cells, while

cells containing zeros are considered unmarked. In particular, let M f 1 and M f 2 be

the two 2 by 4 matrices of alternatingly marked cells illustrated in Table B.1 and

Table B.2. These matrices will henceforth be referred to as Forbidden Submatrices.

As before, let a Splittable Column be defined as a column in the matrix other

than the first or last column such that each row of the matrix is in at least one of

the following states:

• The row has no marked cells to the right of the column.

• The row has no marked cells to the left of the column.

• The row has a marked cell in the column.

• The row has marked cells in the first and last columns.

1 0 1 0
0 1 0 1

Table B.1: First of the two possible 2 by 4 matrices of alternatingly marked
cells representing the Forbidden Configuration.
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0 1 0 1
1 0 1 0

Table B.2: Second of the two possible 2 by 4 matrices of alternatingly marked
cells representing the Forbidden Configuration.

The aim of this appendix is to prove the following:

Theorem B.0.1 Any matrix that does not have Table 5.2 or Table 5.3 as submatri-

ces must either have at most two columns or a Splittable Column.

Let M∞ be an arbitrary non-empty boolean matrix with more than two columns

and the following constraints:

• M∞ must not contain a Forbidden Submatrix.

• Every column other than the first or last one must have at least one row that

is not in the first three states. In other words, it has at least one row that has

marked cells on both sides but an unmarked cell in the column.

We will then argue the following:

Theorem B.0.2 There must be some row which has both the first and last columns

marked.

Let L and R be the number of columns and rows respectively, so the columns

are numbered from 1 to L from left to right and the rows are numbered from 1 to

R from top to bottom. Let a gap be defined as the unmarked cells between a pair

of marked cells in the same row without any marked cells in between them. As

rows can contain several marked cells, each row can contain several gaps, which

generates confusion when we try to denote the start and ends of different gaps in a

row.

Thus let us construct a new matrix M∗∞, which duplicates every row in M∞

arbitrarily many times such that each gap has one duplicate row representing it.

In other words, for each gap in the original matrix M∞, we add a copy of the row

containing the gap to M∗∞. Note that by this construction, each row in M∗∞ will be
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identical to some row in M∞, and vice versa. As before, let L∗ and R∗ denote the

number of columns and rows for M∗∞, and note that L∗ = L since we are duplicating

the rows in M∞ without modifying them in any way.

Lemma B.0.3 M∗∞ must have the same two constraints as M∞, and if M∗∞ has a row

which has both the first and last columns marked, M∞ must also have a row which

has both the first and last columns marked.

Proof Assume M∗∞ contains a Forbidden Submatrix. As illustrated in Table 5.2

and Table 5.3, the two rows in this submatrix cannot be duplicates. Thus it must be

the case that M∞ contains at least one copy of each row. Furthermore, reordering

the two rows still results in a Forbidden Submatrix. Thus it must be the case that

M∞ also contains a Forbidden Submatrix. Since M∞ must not contain a Forbidden

Submatrix, it must then be the case that M∗∞ does not contain a Forbidden Submatrix

as well.

The second constraint requires that every column has at least one row with an

unmarked cell in it and marked cells to the left and right. As each row in M∞ is

identical to some row in M∗∞, every column that had at least one such row in M∞

must still have at least one such row in M∗∞.

By definition, each row in M∗∞ is identical to some row in M∞. If M∗∞ has a

row which has both the first and last columns marked, this row must be identical

to some row in M∞. Thus it must be that M∞ has a row which has both the first and

last columns marked.

As every gap is now represented by one duplicate row, we can define the fol-

lowing notation without confusion:

• r∗i denotes the i-th row in M∗∞.

• First(r∗i ) denotes the number of the leftmost column that contains a marked

cell in r∗i .

• The start of the gap represented by r∗i , denoted Gs(r∗i ), is the number of the

rightmost column that contains a marked cell in r∗i before the gap.

• The end of the gap represented by r∗i , denoted Ge(r∗i ), is the number of the

leftmost column that contains a marked cell in r∗i after the gap.
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• Last(r∗i ) denotes the number of the rightmost column that contains a marked

cell in r∗i .

However, there is still insufficient structure to easily prove it contains a row

which has both the first and last columns marked. Instead, we shall use the second

constraint to derive another more structured matrix M′∞ with L′ and R′ denoting the

number of columns and rows, and with L′ = L. As before, let r′i denote the i-th row

in M′∞. The second constraint states that every column other than the first or last

one must have at least one unmarked cell that has marked cells on the same row on

the left and right. In terms of gaps, this means every column other than the first or

last one must have some row which has a gap including that column. Thus there

must exist a set of rows in M∗∞ whose gaps combine to cover the entire matrix.

In particular, we want M′∞ to be minimal and well-structured in some sense,

so for each choice of gaps, we want to choose the gaps which span as much extra

distance as possible. In other words, the procedure we shall use to construct M′∞ is:

1. Consider column 2: The second constraint states that every column other

than the first or last one must have at least one unmarked cell that has marked

cells on the same row on the left and right. This means there must exist a

non-empty set of rows in M∗∞ that have First = Gs = 1 < 2 < Ge ≤ Last.
From this set, choose the row with the largest Ge to be r′1 in M′∞.

2. Consider the row in M∗∞ that was just chosen as r′1: unless there is some row

which has both the first and last columns marked, it must be that Ge(r′1) ≤
Last(r′1)< L.

3. Consider column Ge(r′1): As before, the second constraint states that every

column other than the first or last one must have at least one unmarked cell

that has marked cells on the same row on the left and right, so there must exist

a non-empty set of rows in M∗∞ that have First≤ Gs < Ge(r′1)< Ge ≤ Last.
From this set, choose the row with the largest Ge to be r′2 in M′∞.

4. While the last row chosen does not have Last = Ge = L, repeat the previous

step using the last row instead of r′1 to add more rows to M′∞.

The resulting structure of M′∞ can be stated more formally as follows:
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• First(r′1) = Gs(r′1) = 1 since r′1 is chosen from a set of rows with First =
Gs = 1.

• Last(r′R′) = Ge(r′R′) = L since the procedure only stops when this is true.

• ∀1<i≤R′ : Gs(r′i) < Ge(r′i−1) < Ge(r′i) since r′i is chosen from a set of rows

with First≤ Gs < Ge(r′i)< Ge ≤ Last.

• ∀1<i≤R′ ,∀1≤ j≤R∗ : if Gs(r∗j )< Ge(r′i−1)< Ge(r∗j ) then Ge(r∗j )≤Ge(r′i), since

we choose each r′i as the row with the largest Ge when there are multiple

candidates.

In addition, there is one more claim we can make as a result of the fact that we

always choose the row with the largest Ge from the set of candidates:

Lemma B.0.4 ∀1<i≤R′ : Gs(r′i−1)< Gs(r′i)

Proof This can be shown via a proof by contradiction. If this lemma is false, there

must be some row r′j such that Gs(r′j−1) ≥ Gs(r′j). Since we choose each row r′i
from the set which have First ≤ Gs < Ge(r′i−1) < Ge ≤ Last, it must be the case

that Gs(r′j−1)< Ge(r′j−2)< Ge(r′j−1) and Ge(r′j−1)< Ge(r′j).

Combined, we get Gs(r′j) ≤ Gs(r′j−1) < Ge(r′j−2) < Ge(r′j−1) < Ge(r′j). This

means Gs(r′j) < Ge(r′j−2) < Ge(r′j). Then by definition, r′j must have been part

of the set of candidate rows when choosing r′j−1. Furthermore, we have that

Ge(r′j−1) < Ge(r′j) and we know that we select the row with the largest Ge, so

r′j must have been chosen instead. Thus we reach a contradiction.

Thus, M′∞ is some submatrix of M∗∞ that has the following properties:

• First(r′1) = Gs(r′1) = 1

• Last(r′R′) = Ge(r′R′) = L

• ∀1<i≤R′ : Gs(r′i−1)< Gs(r′i)< Ge(r′i−1)< Ge(r′i)

Lemma B.0.5 M′∞ must not contain a Forbidden Submatrix, and if M′∞ has a row

which has both the first and last columns marked, M∗∞ must also have a row which

has both the first and last columns marked.
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1 0 1
0 1 0

Table B.3: First Three-Quarters of a 2 by 4 matrix of alternatingly marked
cells.

Proof Assume M′∞ contains a Forbidden Submatrix. The two rows involved in the

submatrix must be present in M∗∞ as well, and reordering them still results in a For-

bidden Submatrix. Thus M∗∞ must contain a Forbidden Submatrix as well. However

we know from Lemma B.0.3 that M∗∞ does not contain a Forbidden Submatrix, thus

it must be that M′∞ does not contain a Forbidden Submatrix as well.

The set of rows in M′∞ is a subset of the rows in M∗∞, so by definition each row

in M′∞ is identical to some row in M∗∞. If M′∞ has a row which has both the first and

last columns marked, this row must be identical to some row in M∗∞. Thus M∗∞ must

have a row which has both the first and last columns marked as well.

Given M′∞, we now have a well-structured set of rows, but it is still difficult to

prove that it has a row which has both the first and last columns marked. Instead,

we shall construct another submatrix M̂∞ using a subset of the rows in M′∞. As

before, let L̂ and R̂ denote the number of columns and rows, and let r̂i denote the

i-th row in M̂∞.

This time, instead of exploiting the second constraint, we shall exploit the first

constraint and the structure of the Forbidden Submatrices. Let M f 3 denote the

matrix that is the first three-quarters of M f 1, as illustrated in Table B.3. We shall

construct M̂∞ as follows:

1. Choose r̂1 as the row in M′∞ which has First = 1 and the largest Ge.

2. ∀1<i : Choose r̂i as the row with the largest Ge in M′∞ while under the follow-

ing constraints:

• Ge(r̂i)> Ge(r̂i−1)

• The submatrix formed by columns 1 to Ge(r̂i)−1 inclusive and by rows

r̂i−1 and r̂i contains M f 3 as a submatrix.
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3. Keep adding rows via the previous step until there are no more rows which

satisfy the constraints.

Note that because First(r′1) = 1, M̂∞ must be non-empty. Also, it must be the

case that L̂ = L, since none of the rows in M∞ have been modified, only duplicated

and possibly re-ordered. Finally, because of the use of M f 3, we shall associate each

row r̂i with a column ĉi, where ĉi is the column that forms the second column in

the M f 3 submatrix in rows r̂i and r̂i−1. In the case of the first row, let ĉ1 denote the

first column instead. By this definition, each column ĉi must be unmarked by row

r̂i−1 and marked by row r̂i.

Lemma B.0.6 M̂∞ must not contain a Forbidden Submatrix, and if M̂∞ has a row

which has both the first and last columns marked, M′∞ must also have a row which

has both the first and last columns marked.

Proof Assume M̂∞ contains a Forbidden Submatrix. The two rows involved in the

submatrix must be present in M′∞ as well, and reordering them still results in a For-

bidden Submatrix. Thus M′∞ must contain a Forbidden Submatrix as well. However

we know from Lemma B.0.5 that M′∞ does not contain a Forbidden Submatrix, thus

it must be that M̂∞ does not contain a Forbidden Submatrix as well.

The set of rows in M̂∞ is a subset of the rows in M′∞, so by definition each row

in M̂∞ is identical to some row in M′∞. If M̂∞ has a row which has both the first and

last columns marked, this row must be identical to some row in M′∞. Thus M′∞ must

have a row which has both the first and last columns marked as well.

Lemma B.0.7 ∀1<i : Every column from Ge(r̂i) to L inclusive marked in r̂i must be

marked in r̂i−1

Proof By definition, the submatrix formed by columns 1 to Ge(r̂i)− 1 inclusive

and by rows r̂i−1 and r̂i contains M f 3 as a submatrix. Since M̂∞ does not contain a

Forbidden Submatrix by Lemma B.0.6, then there must not exist a column in M̂∞

which can combine with the M f 3 submatrix to form M f 1.

In a proof by contradiction, assume there exists some column between Ge(r̂i)

and L inclusive which is marked in r̂i but unmarked in r̂i−1. Combining this column

with the M f 3 submatrix would form M f 1. Thus it must be that any columns from

Ge(r̂i) to L inclusive marked in r̂i is marked in r̂i−1.
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Lemma B.0.8 ∀1≤h≤i,∀1 < j < k : If r̂i is r′j, and r′k is unmarked in column Ge(r̂i),

then ĉh must be unmarked in r′k.

Proof This can be shown via a proof by contradiction. If this lemma is false, there

must be some ĉh that is marked in r′k. Let h̃ be the smallest integer such that ĉh̃ is

marked in r′k.

By definition, Ge(r′k) is greater than the Ge of all previous rows. Thus h̃ must

be greater than 1, otherwise r′k would mark the first column and should have been

chosen as the first row of M̂∞. So there must be a row r̂h̃−1 that is unmarked in ĉh̃

by definition. Furthermore, since h̃ was chosen as the smallest integer, it must be

that ĉh̃−1 is marked in r̂h̃−1 and unmarked in r′k.

Consider column Ge(r̂i). Since it is marked in r̂i, it must also be marked in all

previous rows of M̂∞ by inductive use of Lemma B.0.7.

However, the submatrix formed by the columns ĉh̃−1, ĉh̃, and Ge(r̂i) and rows

r̂h̃−1 and r′k is the M f 3 matrix. Then by the construction procedure of M̂∞, r′k with

its greater Ge value should have been added to M̂∞ right after row r̂h̃−1 and the rows

in between should not have been added. Thus we reach a contradiction, and it must

be the case that no ĉh that is marked in r′k.

Lemma B.0.9 The last row of M̂∞ must be the last row of M′∞.

Proof This can be shown via a proof by contradiction. Assume the last row of M̂∞

is not the last row of M′∞. In other words, r̂R̂ is not r′R′ , but some other row r′j in

M′∞. Then the next row in M′∞ must have Gs(r′j)< Gs(r′j+1)< Ge(r′j)< Ge(r′j+1).

By definition, this means column Gs(r′j+1) is marked in r′j+1 but unmarked in r′j,

and column Ge(r′j) is unmarked in r′j+1 but marked in r′j.

By Lemma B.0.8, since r′j+1 is unmarked in column Ge(r̂R̂), it must also be

unmarked in ĉR̂.

However, the submatrix formed by the columns ĉR̂, Gs(r′j+1), and Ge(r̂R̂) and

the rows r̂R̂ and r′j+1 must then be the matrix M f 3. Furthermore by definition

Ge(r′j)< Ge(r′j+1). In other words, r′j satisfies both constraints, meaning it should

have been added to M̂∞. Thus we reach a contradiction, and it must be the case that

the last row of M̂∞ is the last row of M′∞.
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By definition, the last row of M′∞ has Last(r′R′) = Ge(r′R′) = L. In other words,

it has the last column marked. By Lemma B.0.9, this means the last row of M̂∞

also has the last column marked. Furthermore, by inductive use of Lemma B.0.7,

the last column must be marked in all previous rows of M̂∞.

By definition, the first row of M̂∞ has First = 1. In other words, it has the

first column marked. Moreover, we just proved that it must also have the last

column marked, so it is a row that has both the first and last columns marked. By

Lemma B.0.6, Lemma B.0.5 and Lemma B.0.3, M∞ must have a row which has

both the first and last columns marked, thus proving Theorem B.0.2.

We can now present a proof of Theorem B.0.1:

Proof In a proof by contradiction, assume there exists some matrix M̃ that does

not have Table B.1 or Table B.2 as submatrices, has more than two columns and

no column other than the first or last column where each row of the matrix is in at

least one of the following states:

• The row has no marked cells to the right of the column.

• The row has no marked cells to the left of the column.

• The row has a marked cell in the column.

• The row has marked cells in the first and last columns.

In other words, M̃ is some non-empty boolean matrix with more than two

columns and the following constraints:

• M̃ must not contain a Forbidden Submatrix.

• Every column other than the first or last one must have at least one row that

is not in the first four states. In other words, it has at least one row that has

marked cells on both sides but an unmarked cell in the column and this row

must also not be one where the first and last columns are both marked.

Let M̃′ be the submatrix of M̃ where all rows with both the first and last columns

marked are removed. Being a submatrix, it must be the case that M̃′ also does not

contain a Forbidden Submatrix. Now consider each column other than the first or
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last one. In M̃ it has at least one row that has marked cells on both sides but an

unmarked cell in the column and this row must also not be one where the first and

last columns are both marked. Since this row does not have both the first and last

columns marked, it must also exist in M̃′.

In other words, M̃′ is some non-empty boolean matrix with more than two

columns and the following constraints:

• M̃′ must not contain a Forbidden Submatrix.

• Every column other than the first or last one must have at least one row that

is not in the first four states. In other words, it has at least one row that has

marked cells on both sides but an unmarked cell in the column and this row

must also not be one where the first and last columns are both marked.

• No row has both the first and last columns marked since any such rows were

removed.

Note that since no row has both the first and last columns marked, it is impos-

sible for a row to be in the fourth state. Thus the constraints can be restated as

follows:

• M̃′ must not contain a Forbidden Submatrix.

• Every column other than the first or last one must have at least one row that

is not in the first three states. In other words, it has at least one row that has

marked cells on both sides but an unmarked cell in the column.

• No row has both the first and last columns marked since any such rows were

removed.

We previously defined M∞ to be an arbitrary non-empty boolean matrix with

more than two columns and the following constraints:

• M∞ must not contain a Forbidden Submatrix.

• Every column other than the first or last one must have at least one row that

is not in the first three states. In other words, it has at least one row that has

marked cells on both sides but an unmarked cell in the column.
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Note that these are identical to the first two constraints of M̃′. By Theo-

rem B.0.2, M∞ must have some row that has both the first and last columns marked.

In other words, any non-empty boolean matrix with more than two columns that is

under the first two constraints must have some row that has both the first and last

columns marked.

So under the first two constraints, the third constraint must be violated. This

means M̃′ cannot exist, and in turn neither can M̃. As we reach a contradiction,

it must be the case that any matrix that does not have Table B.1 or Table B.2 as

submatrices must either have at most two columns or a Splittable Column.
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Appendix C

Proofs Regarding Bracketings in
the Intersection-Limited Problem
Scenarios

This appendix covers the proofs of the observations made in Chapter 6 about time-

lines with planar bracketing in the Intersection-Limited Problem Scenarios.

C.1 General Observations
As before, for any wraparound bracket bi, let us say it interferes with some other

wraparound bracket b j if there is an endpoint of bi in between the endpoints of b j or

any other wraparound bracket that interferes with b j. Note that by this definition,

interference is a transitive and symmetric relation. We will also say b′i directly

interferes with b′j only if it has an endpoint in between the endpoints of b′j. This

is a symmetric but not transitive relation. This means any pair of wraparound

brackets bi and b j interfere if and only if there exists a sequence of wraparound

brackets from bi to b j such that each wraparound bracket in the sequence directly

interferes with its neighbours. The following observations can be made about the

structure of these wraparound brackets in Brem:

Observation C.1.1 For any two wraparound brackets bi and b j, if the first end-

point of b j is after the first endpoint of bi, the last endpoint of b j must be after the
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last endpoint of bi.

Proof This can be shown via a proof by contradiction. Let the first endpoint of

b j be after the first endpoint of bi, but the last endpoint of b j be before the last

endpoint of bi. Then the two brackets must clearly intersect. This result may be

easier to see when the timeline is unfolded. Regardless of whether the brackets

are clockwise or counterclockwise, their endpoints inevitably form a Forbidden

Configuration such as the one shown in Figure 5.3, which means the two brackets

must be crossing. This is a contradiction because Brem, being a subset of the planar

full bracketing Bfull, must itself be a planar bracketing.

Observation C.1.2 For any two wraparound brackets bi and b j, if bi is clockwise

while b j is counter-clockwise, bi cannot interfere with b j.

Proof This can be shown via a proof by contradiction. If bi is clockwise while

b j is counter-clockwise and bi interferes with b j, by definition there must exist at

least one pair of directly interfering wraparound brackets b′i and b′j which are clock-

wise and counter-clockwise respectively. As before, let an endpoint be considered

negative if it approaches its vertex from below, and positive otherwise.

Since b′i is clockwise, its first endpoint must be negative while its second end-

point must be positive. In contrast, the first endpoint of b′j must be positive while

the second endpoint must be negative. Consider the transformation from the folded

timeline to the unfolded timeline. If the negative second endpoint of b′j is after the

negative first endpoint of b′i and the positive first endpoint of b′j is before the pos-

itive second endpoint of b′i, the endpoints would form a Forbidden Configuration

such as the one shown in Figure 5.3, which means the two brackets must be cross-

ing. By definition of direct interference, b′j must have an endpoint between the

endpoints of b′i.

Assume this is the positive first endpoint of b′j. This means the positive first

endpoint of b′j is before the positive second endpoint of b′i. This also means the

positive first endpoint of b′j is after the negative first endpoint of b′i, which means

the negative second endpoint of b′j must also be after the negative first endpoint

of b′i. As we have just shown, these conditions mean the two brackets must be

crossing.
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Assume instead that it is the negative second endpoint of b′j that is between the

endpoints of b′i. This means the negative second endpoint of b′j is after the negative

first endpoint of b′i. This also means that the negative second endpoint of b′j is

before the positive second endpoint of b′i, which means the positive first endpoint

of b′j must also be before the positive second endpoint of b′i. Then once again, the

two brackets must be crossing.

As we are given a timeline with planar bracketing, such a crossing is a con-

tradiction. Thus no clockwise wraparound bracket may interfere with a counter-

clockwise wraparound bracket.

C.2 Total Interference Block Observations
In this section, we consider the bracketings B1 and B2 independently, and make

some observations about the brackets in each bracketing. For simplicity, the proofs

are presented for the B1 bracketing, but by the symmetry of the splitting procedure

described in Section 6.1 the proofs can be generalized to apply for B2 as well.

Observation C.2.1 For any pair of wraparound brackets bi and b j, if bi interferes

with b j, bi must directly interfere with b j.

Proof This can be shown via a proof by contradiction. Assume bi interferes with

b j without directly interfering with b j. By definition, this means there is some se-

quence of wraparound brackets from bi to b j such that each wraparound bracket in

the sequence directly interferes with its neighbours and all wraparound brackets in

the sequence including bi and b j are in B1. This means there exists some sequence

of three wraparound brackets b′k, b′l and b′m in B1 such that b′l directly interferes

with b′k and b′m, but b′k and b′m do not directly interfere.

Now consider Brem. In particular, consider the wraparound brackets after b′k
that directly interfere with b′k in Brem. If they are all in B1, by our splitting proce-

dure’s usage of Total Interference Blocks, there must be no wraparound brackets

in Brem after b′k that interfere with b′k unless they directly interfere with b′k. This

contradicts our requirement that b′m interferes with b′k without directly interfering

with b′k. Thus there must exist at least one wraparound bracket after b′k that directly

interferes with b′k in Brem and is assigned to B2.
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S T

Figure C.1: An example showing the structure required by a wraparound
bracket with a negative first endpoint in B1.

By our splitting procedure, the first such wraparound bracket would have been

denoted by b∗ at some point, and all wraparound brackets directly interfering with

b∗ would be assigned to the same bracketing as b∗, which is B2 in this case. Note

that since b∗ directly interferes with b′k, any bracket whose first endpoint is between

the first endpoints of b′k and b∗ must directly interfere with b′k by definition.

Since b′l directly interferes with b′k and both b′l and b′k are in B1, b′l must be one

of the wraparound brackets whose first endpoint is before the first endpoint of b∗.

Then since b′l’s first endpoint is before the first endpoint of b∗, by Observation C.1.1

its second endpoint must be before the second endpoint of b∗. This means every

bracket after b∗ that directly interferes with b′l must be in B2.

Now consider b′m. b′m does not directly interfere with b′k. It is also after b′k.

Thus it cannot have its first endpoint before the first endpoint of b∗. b′m directly

interferes with b′l . In other words, it is a bracket after b∗ that directly interferes

with b′l . Thus b′m must be in B2. This is a contradiction as b′m is supposed to be

a bracket in B1. Thus any pair of wraparound brackets in B1 which interfere with

each other with respect to B1 must directly interfere with each other.

Observation C.2.2 No non-wraparound bracket contains an endpoint from both a

clockwise wraparound bracket and a counter-clockwise wraparound bracket.
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Proof Once again, we will prove this via contradiction. Assume there exists

some non-wraparound bracket b+ that contains an endpoint from both a clock-

wise wraparound bracket bi and a counter-clockwise wraparound bracket b j. Note

that by our splitting procedure, no negative brackets are assigned to B1, so b+ must

be a positive bracket.

Since brackets cannot intersect, b+ cannot contain a positive endpoint of a

wraparound bracket since it would intersect that bracket. This means the endpoints

contained by b+ must be negative endpoints. Furthermore, both endpoints of b j

must be before the first endpoint of bi, otherwise two of the three brackets will

inevitably intersect since bi is clockwise while b j is counter-clockwise.

Consider the Total Interference Block that contains bi. Let the first wraparound

bracket in this Total Interference Block be bk. By our splitting procedure, bk must

be in B2. Since bi is in B1, its first endpoint must be after the positive second

endpoint of bk. As before, b+ cannot contain a positive endpoint of a wraparound

bracket since it would intersect that bracket. Thus b+ must begin after the posi-

tive second endpoint of bk in order to contain the negative endpoint of bi without

containing the positive endpoint of bk.

This is illustrated by Figure C.1. Here B1 is represented by the colour blue

while B2 is represented by the colour black. In order to contain a negative endpoint

from a blue clockwise wraparound bracket, a positive bracket must begin after the

positive endpoint of the black clockwise wraparound bracket in the same Total

Interference Block.

However, as previously stated, the negative second endpoint of b j is before the

first endpoint of bi. In order for b+ to contain this negative endpoint of b j as well,

this negative endpoint must then be between the first endpoint of bi and the second

endpoint of bk. By definition, this places b j inside the same Total Interference

Block as bi and bk.

This contradicts Observation C.1.2, since the Total Interference Block now

contains a clockwise wraparound bracket and a counter-clockwise wraparound

bracket. Thus no non-wraparound bracket contains an endpoint from both a clock-

wise wraparound bracket and a counter-clockwise wraparound bracket.

Observation C.2.3 If a non-wraparound bracket contains a pair of bracket end-
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points corresponding to a pair of wraparound brackets, the pair of wraparound

brackets must directly interfere with each other.

Proof By Observation C.2.2, we know that the pair of wraparound brackets must

be either both clockwise, or both counter-clockwise.

Assume they are both clockwise. Let bi denote the first wraparound bracket and

b j denote the second wraparound bracket. Since bi does not directly interfere with

b j, by definition bi must have its second endpoint before b j has its first endpoint.

This means the second endpoint of bi is between the first endpoints of bi and b j.

Since they are both clockwise, their first endpoints must be negative, and the

positive bracket must contain both their first endpoints. This also means the second

endpoint of bi is positive, and we know that this positive endpoint is between the

first endpoints of bi and b j. This means the positive bracket contains the positive

endpoint of bi, which is a contradiction because that inevitably means bi intersects

the positive bracket.

By a similar argument, we will also derive a contradiction if they are both

counter-clockwise. Thus the pair of wraparound brackets must directly interfere

with each other.
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Appendix D

Issues Regarding Interior Sensor
Intersections

This appendix discusses the issues regarding interior sensor intersections. In par-

ticular, we discuss the constraints required for a problem scenario to guarantee the

existence of a (∞,i)-traversal for finite values of i. In Section D.1, we discuss

the limits on the range of disk sensor radii required to avoid interior sensor inter-

sections. In other words, the requirements for i = 0. Note that this means the

(∞,i)-traversal is a resilience-optimal peripheral traversal. Then in Section D.2,

we discuss methods of bounding the minimum number of interior intersections

made per sensor by a Dc-resilience-optimal S−T path.

D.1 Limits on the Range of Sensor Disk Sizes for
Peripheral Traversals

Figure D.1 illustrates some of the components required in order for all resilience-

optimal paths to have an interior sensor intersection. The path is indicated by

the red lines, and the middle red line is a sensor intersection of the center yellow

sensor that has dual orientation. Gray sensors are used to separate the three red

sensor intersections in the yellow sensor, and green sensors (not fully shown) are

used to force the path to intersect the yellow sensor.

As can be seen from the figure, if the interior sensor intersection cannot be
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Figure D.1: A schematic illustrating the components necessary in an arrange-
ment to force all resilience-optimal paths to have an interior sensor in-
tersection.
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avoided, there must exist some sensors forming an obstruction which prevents the

red path from directly going through the yellow sensor in between two distinct red

sensor intersections and forming an alternative optimal path that does not have this

interior sensor intersection. These obstruction sensors are represented by the gray

sensors.

Furthermore, there must be other sensors that force the path into the yellow

sensor, otherwise there exists an alternative optimal path that does not make the

sensor intersection, such as in this case where its clear that the red path could just

skip the top and bottom sensor intersections. In other words, the green sensors

have to overlap the yellow sensor in order to force the red path to intersect it, but at

the same time the green sensors must not overlap too many of the gray sensors or

the path would not even be able to reach the yellow sensor without crossing either

the gray or green sensors.

In Figure D.1, since the disks are approximately equal-sized, there is no way to

move the green sensors inwards to force the red sensor intersections. As such there

exists alternative resilience-optimal paths without interior sensor intersections.

However, it should be clear that if the range of sensor disk sizes is sufficiently

large, there exists arrangements that force every optimal path to have an interior

sensor intersection, such as the arrangements presented in Figure D.2 and Fig-

ure D.3.

The arrangement in Figure D.2 is composed of disk sensors with radii in the

range [0.72,1]. The circle in the center of the figure represents a sensor of radius

1, and the smaller circles represent disk sensors of radii 0.72. The sensors in this

arrangement have been positioned such that all resilience-optimal paths must make

an interior sensor intersection of the center sensor, with one such path illustrated

in red. Note that the regions S and T are infinitesimally small regions that are

bounded by the center sensor and two smaller sensors, which is what forces the

peripheral sensor intersections to the top and bottom of the center sensor.

The arrangement in Figure D.3 is similar, but composed of disk sensors with

radii in the range [0.6,1]. In this case, S and T are well-separated in the sense

that the distance between S and T is at least 2
√

3, but the sensors have once again

been positioned to force every resilience-optimal path to make an interior sensor

intersection of the center sensor.
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Figure D.2: An extremal example arrangement where the range of disk radii
is just large enough to force all resilience-optimal paths to have an in-
terior sensor intersection.
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S

T

Figure D.3: An extremal example arrangement where the range of disk radii
is just large enough to force all resilience-optimal paths to have an in-
terior sensor intersection under the constraint that the distance between
S and T is at least 2

√
3.

140



We believe that the arrangements presented in Figure D.2 and Figure D.3 are

actually extremal examples, in the sense that decreasing the range of the sensor

radii by any amount would render it impossible to force all resilience-optimal paths

to make an interior sensor intersection of the center sensor. In other words, we

make the following conjecture:

Conjecture D.1.1 For all arrangements of disk sensors with radii in the range

[1− ξ ,1], if ξ < 0.28, there exists a resilience-optimal peripheral traversal. Fur-

thermore, if the distance between S and T is at least 2
√

3, the upper bound on

ξ can be increased to 0.4 while maintaining the existence of a resilience-optimal

peripheral traversal.

D.2 Bounds on the Minimum Number of Interior Sensor
Intersections for Optimal Paths

Consider the sensor splitting arguments presented in Section 5.5, where a Dc-

resilience-optimal acyclic S−T path is used to split every sensor along every sen-

sor intersection into subsensors which overlap exactly at the sensor intersections.

As previously mentioned, every pair of sensor intersections to the same sensor re-

quires an obstruction formed by other sensors in order to prevent the existence

of alternative Dc-resilience-optimal acyclic S−T paths which make fewer sensor

intersections. This property holds true for the multiply-intersected subsensors as

well, which means each multiply-intersected subsensor must take up some amount

of area for its associated obstruction sensors.

Consequently, since each sensor has a limited amount of area, there must be

some positive function of ξ that is independent of n which produces an upper

bound on the number of multiply-intersected subsensors that can be derived from

each sensor. Then observe that by construction, the number of multiply-intersected

subsensors derived from a sensor must be exactly one more than the number of

interior sensor intersections for that sensor. In other words, there exists a positive

function I(ξ ) that is independent of n and upper bounds the minimum number of

interior sensor intersections made per sensor by a Dc-resilience-optimal S−T path.

In particular, we present the following conjecture:
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Conjecture D.2.1 The minimum number of interior sensor intersections made per

sensor by a resilience-optimal S−T path is at most π

(π−2)(1−ξ )2 −1. In other words,

I(ξ )< π

(π−2)(1−ξ )2 −1.

This conjecture stems from considering the area of smallest possible multiply-

intersected subsensor. Intuitively, this subsensor should be derived from a sensor

with the minimum allowable radius, and have obstruction sensors which also have

the minimum allowable radius. Furthermore, the number of sensor intersections

should be exactly 2 to minimize the amount of area needed for obstructions.

Then we believe that the subsensor shown in Figure D.4 has the minimum area

due to the analysis of unit disks presented in [2]. Here the 3 sensors represented by

circles each have radius 1−ξ , and the area with the thick black outline represents

the subsensor derived from the yellow sensor which we believe has the minimum

area. The two sensor intersections to this subsensor are shown as the red and

blue lines, and the two gray sensors are tangent at a point just between the pair

of sensor intersections, allowing them to serve as an obstruction for the pair of

sensor intersections. By simple geometry, the area of this subsensor is at least

4(π(1−ξ )2

4 − (1−ξ )2

2 ) = (π−2)(1−ξ )2.

Next, note that by definition, the largest sensor has radius 1, so it has area π .

Then since we just showed that the area of each multiply-intersected subsensor is

at least (π−2)(1−ξ )2, the number of subsensors derived from each sensor must

be at most π

(π−2)(1−ξ )2 . Thus the number of interior sensor intersections is at most
π

(π−2)(1−ξ )2 −1.
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Figure D.4: A multiply-intersected subsensor of minimum area.
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Appendix E

Proofs Regarding High Order
Voronoi Diagrams

This appendix covers the proofs of the properties about High Order Voronoi di-

agrams with additive weights used in Section 7.5. As before, let weightD(p̌,si)

and EuclidD(p̌,si) denote the weighted and Euclidean distances respectively from

some point p̌ to some site si. Note that by definition the weighted distance from

a site to itself is simply its weight, so weightD(si,si) also denotes the weight of a

site si. We will also let EuclidD(p̌1, p̌2) denote the Euclidean distance from some

point p̌1 to some other point p̌2. Lastly, for any site si, we’ll say that it appears in

some Voronoi diagram if and only if there exists some cell in that Voronoi diagram

that lists si as one of its c−1 closest sites.

E.1 Proofs Regarding General High Order Voronoi
Diagrams with Additive Weights

Let νc̃ be some order-c̃ Voronoi diagram with additive weights where c̃ is some

positive integer, and let sĩ and s j̃ be some sites that are used in constructing νc̃.

Lemma E.1.1 If there exists a cell in νc̃ that has sĩ listed as one of its closest sites,

site sĩ must be inside some cell that lists it as one of the closest sites.
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Figure E.1: An example Voronoi diagram illustrating why sĩ must be inside
some cell that lists it as one of the closest sites if it has a cell.

Proof This can be shown via a proof by contradiction. If this is false, there must

exist a cell that has sĩ listed as one of its closest sites, but the cell that sĩ is inside

must not list sĩ as one of the closest sites.

Consider the cell that contains sĩ. Since νc̃ is a Voronoi diagram with additive

weights, even if the cell contains sĩ it is possible to not have sĩ as the closest site.

Let B be the set of closest sites for this cell. In other words, the weighted distance

from sĩ to itself is weightD(sĩ,sĩ), and there is a set B of sites such that ∀sb∈B :

weightD(sb,sĩ)< weightD(sĩ,sĩ).

Consider any point p̌ in the cell that lists sĩ as one of its closest sites. Let

EuclidD(p̌,sĩ) = d. This is illustrated in Figure E.1, where the blue dots represent

the sites in B. Then by definition, weightD(p̌,sĩ) = d +weightD(sĩ,sĩ).

However, ∀sb∈B : weightD(p̌,sb)< d+weightD(sb,sĩ), since the weighted dis-

tance from sb to p̌ must be less than the weighted distance of the path from sb to sĩ

to p̌. Thus ∀sb∈B : weightD(p̌,sb) < weightD(p̌,sĩ). Note that this applies for all

points in the cell that lists sĩ since we let p̌ be any point in it. Thus the cell that lists

sĩ must be closer to the sites in B than to sĩ.

Since each cell can only list |B| sites as its closest sites, the cell that lists sĩ

actually cannot possibly list sĩ as one of its closest sites when all sites in B are

closer than sĩ. Thus it cannot exist and we have a contradiction.

Lemma E.1.2 If there exists a cell in νc̃ that does not contain the point associated
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Figure E.2: An example Voronoi diagram illustrating why walking towards
sĩ must never enter a cell without sĩ listed as one of its closest sites.

with sĩ but has sĩ listed as one of its closest sites, all cells intersected by a line

segment from this cell to sĩ must list sĩ as one of their closest sites.

Proof This can be shown via a proof by contradiction. If this is false, there exists

a cell C1 that does not contain sĩ but has sĩ listed as one of its closest sites and a

straight line segment L between some point p̌1 ∈C1 and sĩ intersects some point p̌2

in some cell C2 that does not list sĩ as one of its closest sites.

Let B be the set of closest sites for cell C2. Then because p̌2 is inside C2, it

must be that ∀sb∈B : weightD(p̌2,sb) < weightD(p̌2,sĩ). Let EuclidD(p̌1, p̌2) =

d. This is illustrated by Figure E.2. Then by definition, weightD(p̌1,sĩ) = d +

weightD(p̌2,sĩ).

Also, ∀sb∈B : weightD(p̌1,sb) ≤ d +weightD(p̌2,sb), since the weighted dis-

tance from sb to p̌1 must be less than the weighted distance of the path from

sb to p̌2 to p̌1. However since ∀sb∈B : weightD(p̌2,sb) < weightD(p̌2,sĩ) and

weightD(p̌1,sĩ) = d + weightD(p̌2,sĩ), we have that ∀sb∈B : weightD(p̌1,sb) <

weightD(p̌1,sĩ).

In other words, each site sb ∈ B must be closer to C1 than sĩ in terms of the

weighted distance. Since C1 can only list |B| sites as its closest sites, it cannot

possibly list sĩ as one of its closest sites when all sites in B are closer than sĩ. Thus

it cannot exist and we have a contradiction.
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Lemma E.1.3 All cells in νc̃ that have sĩ listed as one of their closest sites must

be connected with respect to sĩ, in the sense that there exists a path between any

pair of cells that never enters a cell that does not have sĩ listed as one of the closest

sites.

Proof This can be shown via a proof by contradiction. If this is false, there must

exist two cells C1 and C2 which have sĩ listed as one of their closest sites that are

not connected, in the sense that there exists no path between them that never enters

a cell that does not have sĩ listed as one of the closest sites.

By Lemma E.1.2, there is a path from C1 to sĩ that never enters a cell that does

not have sĩ listed as one of the closest sites. Similarly, by Lemma E.1.2, there is a

path from C2 to sĩ that never enters a cell that does not have sĩ listed as one of the

closest sites. Then the combination of these two paths must be a path that connects

C1 and C2, and this path never enters a cell that does not have sĩ listed as one of the

closest sites. Thus we reach a contradiction.

Lemma E.1.4 If sĩ and s j̃ both appear in νc̃, there can only exist a point p̃ in νc̃

which uses sĩ and s j̃ as part of its c̃+1 closest sites if there exists at least one edge

in νc̃ which uses sĩ and s j̃ as part of its set of c̃+1 closest sites.

Proof Note that this proof may require that the points are non-degenerate, but this

can be handled by the Simulation of Simplicity Technique by Edelsbrunner and

Mucke [6].

This can be shown via a proof by contradiction. If this lemma is false, there

must exist some point p̃ in νc̃ which uses some pair of sites sĩ and s j̃ as part of its

c̃+1 closest sites, but no edge in νc̃ which uses sĩ and s j̃ as part of its set of c̃+1

closest sites. Note that this means no edge in νc̃ can have the same set of closest

sites as p̃, so p̃ cannot be on an edge in νc̃.

We know that νc̃ is an order-c̃ Voronoi diagram. This means the cells in νc̃ have

c̃ closest sites. In the absence of degeneracy, cells which share an edge must differ

by exactly one site in their set of closest sites. In other words, the two cells must

share c̃− 1 closest sites but each have one more closest site that is not in the set

of closest sites for the other. This means that the edges, which by definition have

exactly one cell on each side, must have c̃−1+2 = c̃+1 closest sites.
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Let νc̃+1 denote an order-c̃+1 Voronoi diagram constructed on the same set of

sites and weights. The cells in νc̃+1 have c̃+1 closest sites by definition. Since p̃

exists, there must exist some cell in νc̃+1 which contains p̃ and thus has the same

c̃+ 1 closest sites as p̃. Let Cell(νc̃+1) denote this cell. By definition, all points

inside Cell(νc̃+1) must have the same c̃+1 closest sites. Then because no edge in

νc̃ must use sĩ and s j̃ as part of its set of closest sites, there cannot be any edge in

νc̃ that overlaps Cell(νc̃+1).

In other words, if there is a edge in νc̃ that overlaps Cell(νc̃+1), there exists a

point in Cell(νc̃+1) that is also on this edge and thus the edge must have the same

set of closest sites as p∗. Thus Cell(νc̃+1) must be completely and strictly inside

some cell in νc̃. Let Cell(νc̃) denote this cell. Cell(νc̃) cannot have both sĩ and s j̃

as part of its closest c̃ sites, otherwise the edges of Cell(νc̃) would have them as

part of its closest sites which is a contradiction.

Assume Cell(νc̃) does not have sĩ as one of its c̃ closest sites.

Now consider the edges of Cell(νc̃+1). Since Cell(νc̃+1) is inside Cell(νc̃), all

these edges must be inside Cell(νc̃) as well. Furthermore, the cells on the other

side of these edges must have portions inside Cell(νc̃) as well. These cells must

then also have the c̃ sites of Cell(νc̃) as part of their set of c̃+1 closest sites, which

means that all the cells adjacent to Cell(νc̃+1) share the same c̃ sites of Cell(νc̃)

but all of them do not have sĩ as one of their closest sites. In other words, leaving

Cell(νc̃+1) in any direction causes some other site to replace sĩ.

By Lemma 7.5.4, going from Cell(νc̃+1) towards sĩ should never enter a cell

that does not have sĩ listed as one of their closest sites. Since all neighbouring cells

do not list sĩ, the only possibility is that the position of sĩ is inside Cell(νc̃+1).

Then we have that sĩ is inside Cell(νc̃+1), and Cell(νc̃+1) is inside Cell(νc̃), so

sĩ is inside Cell(νc̃) even though Cell(νc̃) does not have sĩ as one of its c̃ closest

sites. Then by Lemma 7.5.3, it must be that no cell in νc̃ has sĩ as its closest site,

which is a contradiction because one of the preconditions was that sĩ appears in νc̃.

A similar argument for s j̃ also derives a contradiction.
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E.2 Proofs Regarding Relationships between the
Arrangement and the Voronoi Diagram

In this section, we provide the proofs of the relationships between the arrangement

of sensors and the Voronoi diagram constructed in Section 7.5.

Lemma E.2.1 Any cell in νc−1(A) that contains points at distances greater than

dboundary from A must not have any sensor in A listed as one of its c−1 closest sites.

Proof By Proposition 7.5.8, any points at distances greater than dboundary from A

must have the boundary sensors as their closest sites. Thus cells containing these

points cannot have any sensor in A listed as one of their closest sites.

Lemma E.2.2 Any cell in νc−1(A) that has a sensor in A listed as one of its c−1

closest sites must be bounded.

Proof If a cell in νc−1(A) is not bounded, it must contain points at distances greater

than dboundary from A. Then by Lemma E.2.1, this cell cannot have any sensor in A

listed as one of its c−1 closest sites.

Lemma E.2.3 A point p̌ lies inside a disc sensor si if and only if in νc−1(A),

weightD(p̌,si)≤ 1.

Proof For any sensor si, ri denotes the radius of si. Then by definition, a point p̌

lies inside sensor si if and only if its Euclidean distance to the center of sensor si is

less than or equal to ri. In other words, EuclidD(p̌,si)≤ ri.

As previously stated, when νc−1(A) is constructed, a site is derived from sensor

si using the center of sensor si as its position and it is assigned a weight of 1− ri.

By definition, the weighted distance is the Euclidean distance plus the weight of

the site 1− ri, or in other words weightD(p̌,si) = EuclidD(p̌,si)+1− ri.

Substituting this into our previous equation we get weightD(p̌,si) ≤ ri + 1−
ri = 1.

Lemma E.2.4 In A, if any sensor si is fully inside some other sensor s j, then for

any point p̌, weightD(p̌,s j)< weightD(p̌,si).
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Proof Let L be the straight line segment that connects the centers of si and s j.

There must be a point p̌i on the boundary of si that is on L such that the center of

si is between the center of s j and p̌i.

Since s j fully covers si, p̌i must be inside s j as well. Then by Lemma E.2.3,

weightD(p̌i,s j) < weightD(p̌i,si). However, because of their layout on L, it then

be the case that every point on L is closer to s j than si, including the center of si

itself. In other words, weightD(si,s j)< weightD(si,si).

Then for any point p̌ in the arrangement, weightD(p̌,s j) < weightD(si,s j)+

EuclidD(p̌,si), since its weighted distance from the center of j cannot be greater

than the weighted distance from the center of j to the center of i and then

to the point. Then since weightD(si,s j) + EuclidD(p̌,si) < weightD(si,si) +

EuclidD(p̌,si) = weightD(p̌,si), weightD(p̌,s j)< weightD(p̌,si). Thus there ex-

ists no points that are closer to si than s j.

Lemma E.2.5 For any two sensors si and s j in A, if the region associated with si

is not fully inside the region associated with s j, weightD(si,si)< weightD(si,s j).

Proof If si is not fully inside s j, by Lemma E.2.3 there must exist a point p̌ in si

but not in s j that has weightD(p̌,si)≤ 1 < weightD(p̌,s j).

By definition, weightD(si,si) = weightD(p̌,si)−EuclidD(p̌,si).

Furthermore, even in the worst-case scenario when s j is in the same direction as

si from p̌, weightD(si,s j) ≥ weightD(p̌,s j)−EuclidD(p̌,si) > weightD(p̌,si)−
EuclidD(p̌,si) = weightD(si,si).

Lemma E.2.6 In νc−1(A), if a sensor si is not listed as one of the closest sites for

any cell, it must be fully inside c−1 other sensors.

Proof This can be shown via a proof by contradiction. Assume si is not fully

inside c−1 other sensors even though it is not listed as one of the closest sites for

any cell in νc−1(A).

Consider the center of si. By Lemma E.2.5, if it is not fully inside some sensor

s j, weightD(si,si) < weightD(si,s j). Thus unless it is fully inside c− 1 other

sensors, the center of si will have si as one of its c−1 closest sites. In that case, the

cell in νc−1(A) that contains the center of si must list si as one of the closest sites.

Thus we reach a contradiction.
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Lemma E.2.7 Two vertices si and s j are connected by an edge in Gc(A) if and

only if there exists a point p̌ and some set ψ of at most c sensors including si and

s j such that for all sl in ψ , weightD(p̌,sl)≤ 1 and the weighted distance is greater

than 1 for all other sensors.

Proof By definition, two vertices si and s j are connected by an edge in Gc(A) if

and only if there exists a point p̌′ that is covered by some set ψ ′ of at most c distinct

sensors that includes si and s j.

By Lemma E.2.3, for all s′l in ψ ′, weightD(p̌′,s′l)≤ 1 and the weighted distance

is greater than 1 for all other sensors, fitting the criteria above.

In a similar argument, assume there exists a point p̌ and some set ψ of at most

c sensors including si and s j such that for all sl in ψ , weightD(p̌,sl) ≤ 1 and the

weighted distance is greater than 1 for all other sensors.

In the construction of νc−1(A), the weight of any sensor was defined as one

minus its radius. By definition, the weighted distance is the weight of the sensor

plus the Euclidean distance. Restating the above formula in Euclidean distances,

we derive that p̌ must have Euclidean distance to the center of a sensor less than or

equal to the radius of the sensor if and only if it is one of the sensors in ψ .

Then, p̌ must be a point covered by a set ψ of at most c sensors, which includes

si and s j. This means that si and s j must be connected by an edge in Gc(A).

Lemma E.2.8 Two vertices si and s j can be connected by an edge in Gc(A) only

if there exists a point p̌′ which has si and s j as two of its c closest sites in terms of

weighted distance.

Proof By Lemma E.2.7, we have that si and s j are connected by an edge in Gc(A)

only if there exists a point p̌ and some set ψ of at most c sensors including si and

s j such that for all sl in ψ , weightD(p̌,sl)≤ 1 and the weighted distance is greater

than 1 for all other sensors. Then by definition, this point p̌ must have these at most

c sensors as its closest sites in terms of weighted distance.

Let ψ ′ be a set of c sensors containing ψ . If ψ < c, use the other sensors closest

to p̌ as members in ψ ′. Then by this definition p̌ must have ψ ′ as the set of c closest

sites. This means, p̌ can only exist if there exists some point p̌′ which uses si and

s j as part of its c closest sites, since p̌ is a candidate point for p̌′.
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Thus we have that two vertices are connected by an edge in Gc(A) only if

there exists a point p̌′ which uses si and s j as part of its c closest sites in terms of

weighted distance.

Lemma E.2.9 Two vertices si and s j that appear in νc−1(A) can be connected by

an edge in Gc(A) only if there exists at least one edge in νc−1(A) which uses their

two associated sensors as part of the set of closest sites.

Proof By Lemma E.2.8, we have that two vertices si and s j that appear in νc−1(A)

can be connected by an edge in Gc(A) only if there exists a point p̌ in νc−1(A)

which uses si and s j as part of its c closest sites. By Lemma 7.5.6, p̌ exists only if

there exists at least one edge in νc−1(A) which uses si and s j as part of the set of

closest sites.
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Appendix F

A Further Extension to
Multi-Path Algorithms: The
Decomposition Function

This section discusses a further extension to Multi-Path Algorithms that is not used

in the other sections of this thesis. This extension stems from the observation that

X-Path constructs can be broken up into subconstructs, and the W ∗ measure of the

X-Path construct can then be used to bound the W ∗ measure for the subconstructs.

Thus rather than the merging rules we have been exploiting using the M-functions,

this extension presents D-functions which exploit decomposition rules.

Let Ṽ1 and Ṽ2 denote two 2X-tuples of vertices in V , such that every Ṽ1 con-

struct contains a Ṽ2 construct as a subconstruct, in the sense that the paths of a Ṽ2

construct are subpaths of the Ṽ1 construct and respect the sequential ordering of

the tuples. Note that this is only possible when vertices are shared by the tuples in

certain patterns, and we denote this relation by saying Ṽ1	∗= Ṽ2. In other words,

every Ṽ1 construct can be decomposed into a Ṽ2 construct plus some uninteresting

set of edges. Then the D-function is defined as follows:

D(d1, Ṽ1, Ṽ2) =

d1 +∑c∈SÂ(H(c, Ṽ1, Ṽ1, Ṽ2)) if Ṽ1	∗= Ṽ2

∞ otherwise
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Observation F.0.10 Given a Ṽ1 construct P̂1 with at most d1 hidden colours, if P̂1

can be decomposed into a Ṽ2 construct P̂2 plus some uninteresting set of edges, P̂2

has at most d1 +∑c∈SÂ(H(c, Ṽ1, Ṽ1, Ṽ2)) hidden colours.

Proof Since P̂1 can be decomposed into P̂2 plus some uninteresting set of edges,

the colours used by P̂2 must be a subset of the colours used by P̂1. Thus P̂2 can only

use a colour c if it is one of the d1 hidden colours of P̂1, or E(c, Ṽ1)= 1. However, if

E(c, Ṽ2)= 1, cwould be an exposed colour of P̂2 and then by definition it cannot be

a hidden colour of P̂2. As a result, by the definition of the H function in Section 3.3,

P̂2 must have at most d1 +∑c∈SÂ(H(c, Ṽ1, Ṽ1, Ṽ2)) hidden colours.

This D-function is treated the same way as the merge function in every phase

y > 0: the algorithm calls it multiple times to generate values guaranteed to be at

least W ∗(Ṽ) for some Ṽ, and assigns each array entry dy[Ṽ] only the minimum value

guaranteed to be at least W ∗(Ṽ).

This extension can actually be extremely useful in some situations because of

the following theorem:

Theorem F.0.11 Let B denote the set of colours used by a Minimum-Colour s′− t ′

path P. If there exists a vertex v∗ in V that is assigned every colour in B and no

other colours, even a Two-Path Algorithm will output the exact value of W ′(s′, t ′),

regardless of how many edges in P are assigned colours in B.

Proof Construct an 2-Path valid derivation tree as follows:

1. Create two leaf nodes corresponding to a 0-length path at v∗ and a 0-length

path at s′ respectively.

2. Create a parent node for these two leaf nodes. This parent node is assigned

a vertex tuple such that it corresponds to a Two-Path construct that has a 0-

length path at v∗ as its first path and a 0-length path at the start of P as its

second path.

3. From this node, create a sequence of parent nodes that iteratively merges this

Two-Path construct with the edges on P from s′ to t ′.
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The root node of this valid derivation tree is thus associated with a Two-Path

construct that has a 0-length path at v∗ as its first path and P as its second path. As

all colours used by P are assigned to v∗, all used colours must be exposed colours,

so there are no hidden colours with respect to this construct. In other words, the

W ∗ measure for the corresponding vertex tuple is equal to 0. Furthermore, because

of the construction procedure above, the weight of the root node will actually be 0

as well since each merge step will never find a colour c for which H equals 1.

Then by applying the D-function, the algorithm will immediately get |B| as an

upper bound on W ′(s′, t ′), and the theorem immediately follows.

In other words, Theorem F.0.11 means we can exactly determine the Minimum-

Colour s′− t ′ path in cases where there exists some vertex which is assigned the

exact set of colours used by a Minimum-Colour s′− t ′ path.

Furthermore, we note that even if this desirable vertex doesn’t exist in A, users

can add extra vertices to ”‘seed”’ the algorithm with close guesses to improve the

approximation if they have some intuitive idea about the set of colours used by a

Minimum-Colour s′− t ′ path.

For instance, if a user believes that a Minimum-Colour s′− t ′ path uses a set of

colours B, an extra vertex v∗ can be added to the graph v∗ is assigned every colour

in B and there are no edges connected to v∗. In effect, v∗ having no edges means

the algorithm is forced to use decomposition rules on vertex tuples associated with

v∗, and the algorithm is prevented from using a path from s′ to t ′ that somehow

includes v∗, which is ideal since v∗ does not represent a real vertex in the original

graph. By Theorem F.0.11, v∗ would then allow the algorithm to exactly determine

the Minimum-Colour s′− t ′ path if the user’s beliefs were correct.

Alternatively, even if no Minimum-Colour s′− t ′ path really uses only colours

in B, if almost all colours used are in B it stands to reason that the algorithm should

derive a close approximation of the Minimum-Colour s′− t ′ path. However, note

that this does not mean one can just seed the algorithm with every guess, since

there are clearly an exponential number of subsets of the colours in the graph.

Unfortunately, while this shows that the above modification can make the algo-

rithm perform extremely well in some situations, in the worst-case scenarios there

would never exist such a useful vertex v∗ and the users would not have any close
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guesses as to what set of colours will be used by a Minimum-Colour s′− t ′ path.

Thus this decomposition rule does not seem useful for proving any upper bounds

on the approximation ratios of Multi-Path Algorithms.
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