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Abstract

This thesis concerns the problem of object detection, which is defined as finding all in-

stances of an object class of interest and fitting each of them with a tight bounding window.

This seemingly easy task for humans is still extremely difficult for machines. However,

recent advances in object detection have enabled machines to categorize many classes of

objects. Statistical models are often used for representing an object class of interest. These

models learn from extensive training sets and generalize with low error rates to unseen data

in a highly generic manner. But, these statistical methods have a major drawback in that

they require a large amount of training data. We approach this problem by making the

process of acquiring labels less tedious and less costly by reducing human labelling effort.

Throughout this thesis, we explore means of efficient label acquisition for realizing cheaper

training, faster development time, and higher-performance of object detectors.

We use active learning with our novel interface to combine machine intelligence with

human interventions, and effectively improve a state-of-the-art classifier by using addi-

tional unlabelled images from the Web. As the approach relies on a small amount of label

input from a human oracle, there is still room to further reduce the amount of human ef-

fort. An ideal solution is, if possible, to have no humans involved in labelling novel data.

Given a sparsely labelled video that contains very few labels, our novel self-learning ap-

proach achieves automatic acquisition of additional labels from the unlabelled portion of

the video. Our approach combines colour segmentation, object detection and tracking in or-

der to discover potential labels from novel data. We empirically show that our self-learning

approach improves the performance of models that detect players in broadcast footage of

sports games.

ii



Preface

All the work in this thesis has been conducted under the supervision of David G. Lowe and

James J. Little. In addition, I have been fortunate enough to work with several outstanding

co-authors on several publications which have become a large part of the thesis.

• Both Chapters 3 and 4 describe our active learning approach that uses a novel in-

terface to combine machine intelligence with human interventions, effectively im-

proving a state-of-the-art classifier by using additional unlabelled data from the Web.

This work was presented orally at the International Conference on Computer Vision

Theory and Applications (VISAPP) [Okuma et al., 2011]. Here, we worked with a

co-author, Eric Brochu, who gave us invaluable guidance on developing the approach

and how to design active learning experiments.

• Chapter 5 presents our previous work on the boosted particle filter (BPF) [Okuma

et al., 2004] and compares its performance with our more recent collaborative work

on another multi-target tracker [Lu et al., 2011] based on a Kalman filter. The work

on BPF was presented orally at the 8th European Conference on Computer Vision

(ECCV) [Okuma et al., 2004] and received the best paper prize in Cognitive Vision.

Wei-Lwun Lu and I worked together on developing the tracking algorithm of [Lu

et al., 2011] and evaluated its performance on broadcast footage of sports games.

• Finally, Chapter 6 describes a novel self-learning framework that automates the pro-

cess of collecting additional training labels and improving models for detecting sports

players in sparsely labelled broadcast footage of sports. This is an unpublished work.

We are planning to submit the work to an international computer vision conference,

aiming for publication sometime early in the year of 2012.
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encouragement and support. I am deeply grateful that she was standing beside me when I

struggled.

x



Chapter 1

Introduction

A significant body of scientific literature has been devoted to making machines see things

as well as humans do. It is usually very easy for humans to localize an object of interest

that they see in front of them. For example, whenever you see a flower, you can easily find

its location, size and shape. However, it is still extremely difficult for machines to do the

same with similar accuracy. This thesis studies the problem of detecting objects — finding

any instances of an object class of interest and fitting each of them with a tight bounding

window. The problem of object detection is typically formulated as a search problem:

R∗ = argmax
R⊆I

f(R|I,Θ)

where Θ is a trained object model, and R ranges over all bounding windows (often rectan-

gular or ellipsoidal shapes) in an image I . The goal is to find the best bounding window R∗

based on a score function f , which is usually designed with classification algorithms that

depend on training data.

Recent advances in object detection have enabled machines to categorize many classes

of objects. Statistical models are often used for representing an object class of interest.

These models learn from extensive training sets.

But, these statistical methods have a major drawback in that they require a large amount

of training data. In order to achieve performance levels that are sufficient for practical

applications, it is common that more than a million labelled instances are used for the
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training of a single object class [Viola and Jones, 2004]1. One way to resolve this issue

is to make the process of acquiring labels less tedious and less costly by reducing human

labelling effort.

Figure 1.1: Screen shots of object detection results. This shows how our active
learning approach improves object localization (Chapter 3). The top left shows
the highest scoring detection using only the PASCAL VOC 2007 data, whereas
the top right shows the result after retraining with additional data obtained using
our active learning interface. The bottom row shows associated confidence maps
in the same scale where each point gives the probability of a detection centred
at that point. Note how the detection confidence increased and the peak position
was shifted. Yellow boxes are the ground truth and red boxes are detections with
the associated detection confidence.

Our motivating example of Figure 1.1 illustrates how training data influence results of

detecting a bus in an image. The figure shows detection results with red bounding boxes

in the top row and corresponding confidence maps in the bottom row. The images in the

right column are results of training with a larger amount of data. The detection result
1Viola and Jones [2004] trained a face detector with 4,916 bounding windows for the face class and 350

million bounding windows for the non-face background class.
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in the left column is clearly worse than the one in the right column where the detection

confidence is increased and the object of interest is covered by a tighter bounding window.

This performance improvement is due to the amount and quality of training data.

It is possible to improve the performance of an object detector by simply adding more

labelled data. However, the cost of providing labelled data — asking a human to exam-

ine images and provide labels — becomes impractical as training sets grow. Throughout

this thesis, we will explore means of efficient label acquisition for realizing cheaper exper-

iments, faster development time, and higher-performance object detectors.

1.1 Motivation
The problem of generic object detection is largely unsolved for machines, but it is an impor-

tant cognitive task humans do in everyday life. Humans are our best example of a working

recognition system, which suggests a clue for solving the problem.

Regardless of fundamental differences between machine vision and biological visual

systems, there is one thing that is common — both systems learn from data. From early

in life, humans observe huge amounts of visual data from which they learn to recognize

objects. Suppose humans capture snapshots of visual information at the rate of 30 frames

per second, then humans observe 30 (images)×3600 (seconds)×16 (hours)×365 (days) ≈
6 × 108 images per year on average. This visual data is largely unlabelled with only a

small amount of labels provided by parental teaching or some form of supervision. This

informal argument implies that object recognition research will require hundreds of millions

of images to build a similar working recognition system. We believe that one way to build

a successful computer vision system for recognizing generic objects is to find a way to

prepare data on a similar level of scale.

All approaches in object detection must be confronted with two issues: the model and

the data. The vast majority of research has been devoted to enriching the model by seek-

ing more sophisticated and complex parametric representations of objects. A much smaller

body of work has explored aspects of the training data to improve the performance of exist-

ing models.

We believe that the data is as important as the model and that existing models may be

sufficient for solving the problem if we have enough training data. In linguistics, speech

recognition and machine translation systems based on n-gram language models outper-

3



formed other systems that were based on more complex grammars and phrase structure. In

computer vision, simple nearest-neighbour algorithms with 79 million tiny (32×32) image

patches can give reasonable performance on object recognition tasks based on Euclidian

distance of intensity as shown in the work of Torralba et al. [2007]. These are successful

examples of scalable simple models with large data.

Today, we have access to abundant images and videos on the Web at the scale which

resembles the amount of visual information that humans experience for learning how to

recognize objects. Large datasets are required for solving the problem of object detection,

but that does not mean that any large dataset is helpful. The quality of the data is also

important: “good” datasets should at least contain images that include several major chal-

lenges of object detection as shown in Figure 1.2. Preparing data means not only obtaining

large volumes of such “good” data but also acquiring bounding windows and their labels

which, in the case of Figure 1.2, are “bear”. This is a new avenue for further exploration

in computer vision [Berg et al., 2010]. Recently, crowdsourcing, which uses an extensive

human workforce on a massively parallel platform, has shed light on this problem [Deng

et al., 2009]. But there still is no fully automatic way of getting labels from huge amounts

of unlabelled data.

The relationships between object detection and tracking are also important issues in this

thesis. Our previous work on the boosted particle filter [Okuma et al., 2004] combines the

strengths of two successful algorithms: Adaboost for object detection and mixture particle

filters for multi-target tracking. Our work has been influential in tracking-by-detection

approaches that are the current mainstream of tracking research in the computer vision

community.

We believe that solving object detection contributes to solving object tracking. While

object detection is a task of identifying a bounding window for all instances from an ob-

ject class of interest in an image, object tracking in images or a video means associating

target objects in consecutive images, and generating a trajectory of each target. The trajec-

tory is defined as a unique sequence of bounding windows. Therefore, detecting bounding

windows in consecutive images can form trajectories of target objects.

In the ideal case, the perfect detector specifies a bounding window that fits the target

object in every single frame of the video, drawing a smooth trajectory of the target object.

However, object detection is rarely perfect. Just as how a set of dots that form a curve may

be sparse, the bounding windows provided by object detection form a trajectory. In return,

4



(a) clutter (b) illumination (c) within-class variations

(d) pose (e) occlusion (f) view point

Figure 1.2: Challenges in object detection.

the trajectory can provide information about where it may possibly extend in the near future,

suggesting where the bounding windows may be present. In this way, object detection and

tracking can cooperate with each other.

Figure 1.3 shows tracking results in sports videos based on our tracking-by-detection

approach in Chapter 6. These tracking results are based on different detectors. The left

column (a) uses a detector that is trained with only 5 labelled images. The right column (b)

uses an improved detector that is trained with the same labelled images as well as additional

labels that our self-learning approach collected automatically from unlabelled data. The

figure shows how an improved performance of object detection positively influences the

performance of object tracking.

Last but not least, object detection has many practical applications that immediately

address demanding problems in the real world. The next section covers a wide range of

both consumer and industry applications.
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(a) Prior to self-learning (b) After self-learning
Figure 1.3: Screenshots of object tracking result in sports videos (Chapter 6). Column

(a) uses detection inputs of a detector that is trained with 5 labelled images. Column (b)
uses an improved detector that is trained with both labelled and unlabelled data. Note
that more players are discovered and tracked successfully with the better detector. Frame
numbers are shown in the upper left corner of each image.
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1.2 Application areas for object detection
There are many applications of generic object detection. In particular, person and face

detection have a broad range of applications and have attracted researchers from both

academia and industry in recent years. The following list shows some consumer appli-

cations that people may be familiar with:

• Auto-focus: Modern digital cameras have a built-in face detector to automatically

locate faces of people and to automatically adjust its zooming/focus parameters.

• Digital content management: Picasa, a free photo editing program from Google,

has an intelligent digital content management tool to automatically cluster faces and

tag them to facilitate search. Statistics show that the average digital camera owner

take around 170 photos in a week, over 8,000 photos in a year, at which point it

becomes tedious for humans to manually search, locate, and label these photos.

• Automotive safety: Pedestrian detection has been applied to smart cars in order to

warn drivers when there are people on the road while driving, and when there are

pedestrians on the sidewalks while parking.

• Driverless driving: Computer vision recognition system has been applied for detect-

ing near-by obstacles around a vehicle when other sensors are not as effective. Google

has tested their autonomous cars while driving over 1,000 miles without human in-

tervention [Markoff, 2010]. In the next several years, there may be autonomous cars

that run on public roads.

• Copyright protection: For commercial films and video content, object detection

plays a crucial role for detecting illegal content by searching for the copyright logo

on the Web.

• Surveillance: In video surveillance and security, real-time detection systems are em-

ployed to analyse and process video sequences for signs of intrusion.

• Visual search: Google Goggles is a mobile application on smartphones. It allows

users to perform a visual search based on a picture that a user takes, comparing it to

images found on the Web. The search works for an object of various kinds such as a

book, a wine bottle or places such as a bridge or a statue.
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There are also industrial applications:

• Optical character recognition (OCR): Automatic recognition systems for optical

characters have been used for recognizing handwritten postal codes on letters and

number plates.

• Machine inspection: Real-time vision systems are also used for high precision in-

spection in industrial factory automation settings. These systems are designed for

detecting rigid objects such as parts of automobiles, and are used to detect failure or

defects in the products.

Thera are many other applications for object recognition systems in computer vision. We

recommend a recent book on vision algorithms and applications by [Szeliski, 2010] or

a comprehensive list of both consumer and industry applications from David G. Lowe’s

website http://www.cs.ubc.ca/∼lowe/vision.html.

1.3 Definitions of relevant terminology
Object recognition is a combination of three different tasks that include classifying, lo-

calizing, and categorizing instances from classes of objects. For example, we consider a

scenario where you are looking for Albert Einstein in a series of pictures. For every picture

you see, you may ask the following questions: Is there a person in this picture? If so, where

does each person precisely appear in the picture? Finally, is the person you found Albert

Einstein? To address these issues from a machine’s perspective, there is a vast amount of

literature on object recognition in computer vision community. However, the relevant ter-

minology is rather loosely defined. To avoid confusion, important terms are defined here.

• Image classification
Image classification is to classify an image as a whole and verify the presence of any

instances (often only one instance) of an object class in the image, formulated as a

one-class problem.

• Categorization
Categorization is discrimination between n different classes where n > 1. Object

categorization is to find any instances of an object class within an image and assign

them with the correct object category (class) labels. Both class and category mean
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the same and they are used interchangeably throughout the thesis. However, image

categorization is different from image classification because the former is a n-class

problem and the latter is a one-class problem.

• Localization
Object localization is to find any instances of an object class in an image and specify

tight bounding windows around them. In contrast to image classification where only

one bounding window of a whole image needs to be classified, localization requires

determining n bounding windows and selecting from them only those ones that fit

best around objects.

• Detection
Object detection has a task of solving both localization and categorization. In the

open literature, object detection is particularly loosely defined and is often used in-

terchangeably with object localization or object categorization. To avoid confusions,

this thesis treats object detection as a two-class classification problem, where candi-

date image regions are evaluated on whether they contain (1) an instance of an object

class of interest or (2) an instance of an all-encompassing background class. In this

respect, object detection means the same as object categorization.

• Recognition
Recognition refers to the most generic problem that includes any combination of

localization, classification, and categorization.

1.4 Contributions and overview
For recognizing object categories, we need to address three main issues: object representa-

tion, detection, and learning. This thesis studies these issues from a machine’s perspective

and explores aspects of training data for improving object detection.

Generic object detection requires a model to have a score function that can identify

bounding windows for each object in the image — there can be zero, one or many such

boxes in a single image. Such a model is often developed by machine learning techniques.

However, there are many challenges to identifying bounding windows in a large search

space, such as background clutter, occlusions, illumination changes, and intra-class varia-

tions of the appearance of objects as shown in Figure 1.2.
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Broadly speaking, there are two ways to overcome these challenges: One is to enrich

the models by making more complex parametrization of objects, and the other is to prepare

more training data for improving their performance. While a significant body of work has

been devoted to enriching models of generic object detection, there is a much smaller body

of work that addresses aspects of training data for improving the performance of existing

detection models. The goal of this thesis is to explore and discover additional training data

that can enhance performance of existing detection models without much human labelling

effort.

In Chapter 2, we provide the necessary background for the problem of object detection

and introduce existing work in the area. The chapter covers main issues with regard to

designing a vision system for recognizing object categories. Section 2.1 presents represen-

tations of objects based on advanced local image descriptors. In Section 2.2, we explain

object detection and briefly discuss image context as an additional cue to improve localiza-

tion of objects. Section 2.3 focuses on the learning aspects of the problem and introduces

related machine learning formalisms in the context of object detection.

The following chapters present means of reducing labelling effort on unlabelled data in

static images and videos, which comprise the major contributions of this thesis:

• In Chapters 3 and 4, we show that our active learning approach, which uses a novel

interface to combine machine intelligence with human interventions, effectively im-

proves a state-of-the-art classifier by using additional unlabelled data from the Web

and limited human assistance in labelling. Our approach improved the average pre-

cision of a state-of-the-art classifier of [Felzenszwalb et al., 2009] from 26.1% to

30.6%. The improvement is averaged over 20 object classes of the PASCAL Visual

Object Classes Challenge 2007 and is based on an average of just 40 minutes of

human labelling effort per class.

• Chapter 5 presents our previous work on the boosted particle filter (BPF) [Okuma

et al., 2004] and compares its performance with our more recent collaborative work

on another multi-target tracker [Lu et al., 2011] based on a Kalman filter. We explain

implementation differences of these trackers and analyse why the Lu et al. [2011]

tracker outperforms the BPF tracker.

10



• Chapter 6 introduces a novel self-learning framework that automates the process of

collecting additional training labels and improving models for detecting sports play-

ers in broadcast footage of sports. Unlike most of the previous self-learning ap-

proaches for improving appearance-based object detectors, we allow an unknown,

unconstrained number of target objects in a video. Our experimental results show that

our approach is particularly effective when there is a very small amount of labelled

data, improving the mean performance on localizing sports players by exploiting un-

labelled data in sparsely labelled sports videos — the average precision is improved

from 38.5% to 66.3% in hockey and from 29.0% to 61.6% in basketball with only 5

labelled images in both cases.

Chapter 7 concludes this thesis with a couple of discussion topics and remarks for future

directions of our research.
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Chapter 2

Background

As object recognition is one of the fundamental challenges in computer vision, a significant

body of previous work has been devoted to the problem of generic object detection. In

this chapter, we will look at the existing work in this area and introduce the main issues

related to designing a computer vision system for detecting generic objects in images and

videos. In Sections 2.1 and 2.2, we cover object representation and detection. Section 2.3

summarizes related machine learning formalisms that have been used in object detection

scenarios.

2.1 Object representation
In designing a computer vision system for detecting generic objects, we first need to define

an object class of interest using image features. Image features are used to represent im-

age regions or parts of videos, encoded as feature vectors which are often defined in high

dimensions of hundreds or even thousands of real values. Robust object detection systems

require a representation that recognizes both inter-class and intra-class variability. For in-

stance, the appearance of pedestrians are quite different from that of cars (i.e., inter-class

differences), but pedestrians also have quite different appearances in different poses (i.e.,

intra-class differences). To encode such visual structure of an object class, feature vectors

need to be invariant to changes in illumination and differences in viewpoint, yet be sen-

sitive to the appearance of different object classes. Many forms of advanced local image

descriptors have been introduced for this purpose.
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2.1.1 Image descriptors

There is a large body of previous work on many different image descriptors for encoding

local image regions: of particular relevance to this thesis is the work on those that have been

successful in object detection. They can be based on wavelets, image intensities or gradi-

ents. For those who are interested, we recommend [Mikolajczyk and Schmid, 2005] for a

more comprehensive survey and performance comparisons of many local image descriptors.

Wavelets

Image descriptors based on Haar wavelets [Mallat, 1989] have been successful in detecting

pedestrians and faces [Papageorgiou and Poggio, 2000; Viola and Jones, 2004]. Papageor-

giou and Poggio [2000] described object classes in terms of a large set of local oriented in-

tensity differences between adjacent regions. This representation is efficiently encoded by a

Haar wavelet transform, creating an over-complete dictionary of Haar wavelets at different

orientations and scales. The over-completeness gives a rich multi-resolution representation

of an image with wavelet features densely sampled at different scales capturing different

levels of detail.

Following the work of Papageorgiou and Poggio [2000], Viola and Jones [2004] built a

cascade chain of classification systems that uses generalized Haar wavelets. More complex

Haar basis functions give an even richer representation of an object class, resulting in a bet-

ter generalized performance for detecting faces of the people. The detector runs in real-time:

the integral image representation for images enables fast computation of Haar wavelets, and

the cascade structure of multiple classifiers reduces redundant computations by guiding at-

tention (i.e., computational resources) on promising regions of the image where the target

object instances are most likely present. Viola et al. [2005] extended the real-time face

detector to pedestrian detection in videos. Unlike a collection of random static images, the

temporal coherence between adjacent frames in a video is used as motion descriptors to

improve performance.

Image intensity

The simplest descriptor is a vector of image intensity, which has been effectively used for

computing correlations among image regions. Local self-similarities in [Shechtman and

Irani, 2007] represent self-similarities within relatively small (e.g., 40 pixels radius) re-
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gions. Self-similarities encode the correlation (e.g., sum of square differences) of a local

image patch and its surrounding local region based on image intensities. Deselaer and Fer-

rari [2010] proposed computationally efficient algorithms of global self-similarity. While

local self-similarities are limited in describing local geometric layout of image intensity

patterns, global self-similarities extend local self-similarities to the entire image and cap-

ture a much wider range of spatial intensity patterns. Figure 2.1 shows both local and global

self-similarity descriptors of motorcycles.

Fig. 2: Local self-similarity descriptors. The correlation surfaces
of four patches tp are computed and quantized using a log-polar
grid.

per is summarized in tab. 1. Source code for the global
self-similarity descriptors is available at http://www.
vision.ee.ethz.ch/˜{}calvin.

2. Local Self-Similarity (LSS)
LSS as proposed by Shechtman et al. [23] captures self-
similarities within relatively small (40×40 pixel) regions
(sec. 2.1). LSS has been used for object recognition and
detection as yet another local descriptor in bag-of-visual-
words frameworks [6, 14, 18, 27] (sec. 2.3) or in nearest-
neighbor classifiers [5].

Junejo et al. [15] perform human action recognition in
video using temporal self-similarities. They exploit that
periodic motion (such as walking) results in periodic pat-
terns easy to detect from temporal self-similarity. The self-
similarity is computed from the distance of tracked local
features and other cues such as HOG.

Another idea related to self-similarity is symmetry. Stark
et al. [26] proposed a shape-based model for object recog-
nition. To train it from very few samples they propose to
transfer knowledge from known classes. They report that
local symmetries are good features to transfer.

2.1. Original Local Self-similarity Descriptor [23]
The LSS descriptor Lp for pixel p measures the similarity of
a small patch tp around it with the larger surrounding region
Rp [23] (fig. 2). It is computed as follows:
(1) Determine the N×N correlation surface Cp of the w×w
patch tp with the surrounding N × N region Rp. Both Rp

and tp are centered on p. Cp(x) is the correlation of tp with
a patch tx centered on x:

Cp(x) = exp

�
−SSD(tp, tx)

σ

�
(1)

(2) Discretize the correlation surface Cp on a log-polar grid
and store the maximal value of Cp within each grid bin:

Lp(ρ, d) = max
x∈BIN(ρ,d)

{Cp(x)} (2)

Tab. 1: Notation used throughout this paper.
symbol description symbol description
p pixel Cp correlation surface for p
tp w × w patch around p M prototype assignment map
Rp N × N region around p B BOCS descriptor
I image H D1×D2×D1×D2 SSH
Lp LSS descriptor of pixel p Θ codebook of k patch pro-

totypes θ
S exact GSS tensor Λ codebook of correlation
S̃ approximate GSS tensor surface prototypes λ

Typically a few hundred Lp are extracted either at interest
points or at position on a regular grid.

Shechtman and Irani [23] use these descriptors with an
ensemble matching method [4] for recognition and retrieval.

2.2. Efficient Convolution using the FFT.
The cost to compute the LSS descriptor for pixel p is dom-
inated by the computation of the correlation surface Cp.
This takes N2w2 operations, as tp must be correlated to
N2 patches tx. Although not mentioned in [23], an easy
speedup is to compute convolutions using the Fast Fourier
Transform (FFT), resulting in 3N2 log N2 +N2 operations
(N2 log N2 is the cost of one FFT; we have to perform
three: FFT of Rp and tp, and inverse FFT of the result. N2

is the cost for pixelwise multiplication in the spectral do-
main). However here the speedup is marginal, as N > w.

2.3. Bag of local self-similarities (BOLSS)
Ensemble matching [4] allows to use the LSS descriptors
for object detection and retrieval [23] but it cannot easily
be integrated into existing frameworks and is computation-
ally expensive. Most other object recognition frameworks
require descriptors for an image, rather than a pixel. To use
LSS descriptors in their own frameworks, various authors
have used the bag-of-visual-words (BOW) approach leading
to bag-of-local-self-similarities (BOLSS) [6, 14, 18, 27].

In the BOW approach [25, 28] an image is described as
a collection of regions. Each region is described by its lo-
cal appearance and the spatial relations between regions are
ignored.

The region appearance space is vector quantized into a
codebook of visual words, and the set of region descriptors
for an image is represented as a histogram over visual words
(one bin per word). For object categorization, typically 500-
2000 words are used.

To create the BOLSS of an image, we follow [27]: (1)
extract Lp on a regular 5×5 pixel grid (with N = 40, w =
5, 3 radial bins for d and 10 angular bins for ρ) 1; (2) assign
each Lp to one of the 300 visual words in the codebook.

This representation can easily be used in various classi-
fiers such as support vector machines (SVMs) and it can be
used for detection using sliding-windows [27] or efficient
subwindow search (ESS) [17].

Given the visual word codebook, the effort to create the
BOLSS for an H × W image is to extract H/5 × W/5
descriptors and assigning them to visual words. This results
in H/5·W/5·3N2 log N2+N2 operations for the extraction
and H/5 · W/5 · 3 · 10 · k operations for the assignment.

3. Global Self-Similarity Tensor SI (GSS)
In the following we describe the GSS tensor SI for an im-
age I , which can be computed by directly extending LSS
(sec. 3.1). We also propose an efficient approximation to
GSS which is much faster to compute and uses far less

1we use the code from http://www.robots.ox.ac.uk/
˜{}vgg/software/Self-Similarity/

(a) local self-similarity
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Abstract
Self-similarity is an attractive image property which has re-
cently found its way into object recognition in the form of
local self-similarity descriptors [5, 6, 14, 18, 23, 27] In this
paper we explore global self-similarity (GSS) and its advan-
tages over local self-similarity (LSS). We make three con-
tributions: (a) we propose computationally efficient algo-
rithms to extract GSS descriptors for classification. These
capture the spatial arrangements of self-similarities within
the entire image; (b) we show how to use these descrip-
tors efficiently for detection in a sliding-window framework
and in a branch-and-bound framework; (c) we experimen-
tally demonstrate on Pascal VOC 2007 and on ETHZ Shape
Classes that GSS outperforms LSS for both classification
and detection, and that GSS descriptors are complementary
to conventional descriptors such as gradients or color.

1. Introduction
Good image descriptors are the basis for many successful
methods in computer vision. Shechtman et al. [23] first pro-
posed a descriptor based on local self-similarities (LSS).
Compared to conventional image descriptors, LSS is in-
direct: instead of measuring features such as gradients or
color of a pixel, it measures how similar they are to the
pixel’s neighbors. The LSS descriptor captures the inter-
nal geometric layout of local regions and can be compared
across images which appear substantially different at the
pixel level.

This descriptor has been quickly adopted in the object
detection and classification community [5, 6, 14, 18, 27].
While the original work [23] matches ensembles [4] of these
descriptors, most later works use it as yet another feature
in the bag-of-visual-words framework. This makes it easy
to use LSS descriptors in the machine-learning frameworks
which proved to work well for conventional local descrip-
tors [6, 14, 18, 27].

In this paper we demonstrate that self-similarity can and
should be used globally rather than locally to capture long-
range similarities and their spatial arrangements. Fig. 1
shows two selected patches and their global self-similarity
(GSS), as the patch correlation with the entire image. Con-
tiguous (patch 1) and repeating (patch 2) structures can be
well recognized. Patch 2 shows that GSS can capture long-

Fig. 1: Global self-similarity: self-similarity of two image
patches with their respective images.

range similarities within an image. The indirection char-
acteristic of self-similarity results in similar patterns in the
GSS images, although the original images appear very dif-
ferent. The spirit of self-similarity is that images are similar
if the way patterns repeat within them is similar and not be-
cause they have similar colors or textures.

To fully exploit self-similarity we propose to consider it
globally rather than locally. One drawback of GSS is that
it is very expensive to compute if done directly (sec. 3.1).
We first review existing works using (local) self-similarity
(sec. 2), and how it is applied for object classification and
detection. Then, we analyze GSS (sec. 3) and propose
a computationally efficient method to obtain it (sec. 3.2),
and to store it using very little memory. Next, we propose
two descriptors based on GSS: bag-of-correlation-surfaces
(sec. 4.1) and self-similarity hypercubes (sec. 4.2). To the
best of our knowledge, we are the first to propose a GSS de-
scriptor. Finally, we show how to use self-similarity hyper-
cubes efficiently for object detection in the sliding-window
framework (sec. 5.1) and in the branch-and-bound frame-
work [17] (sec. 5.2). We analyze the computationally com-
plexity of all descriptors and algorithms we present.

In sections 6 and 7 we experimentally evaluate several
variants of our GSS descriptors and compare them to LSS
for classification and for detection. Moreover, for classi-
fication we combine GSS and LSS descriptors with con-
ventional cues such as histograms of oriented gradients
(HOG) [8], GIST [22], and bag-of-visual-words [25]. The
experiments reveal that: (i) GSS outperforms LSS; (ii) our
efficient variants of GSS outperform the direct one, in ad-
dition to being computationally much more efficient; (iii)
self-similarity descriptors are truly complementary to con-
ventional descriptors, as their combination perform better
than either alone. The notation used throughout this pa-

(b) global self-similarity

Figure 2.1: Local and global self-similarity. (a) shows the local self-similarity of
four patches tn within local regions Rn specified by the red square. They are
quantized with a log-polar grid. (b) shows global self-similarities of two patches
over their respective images. Both figures are reproduced from [Deselaer and
Ferrari, 2010] c©2010 IEEE
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Image gradients

In recent years, image descriptors based on image gradients have attracted much attention

in object detection. The most notable ones include shape contexts [Belongie et al., 2001],

the Scale Invariant Transform (SIFT) [Lowe, 1999, 2004], and the Histogram of Oriented

Gradients (HOG) [Dalal, 2006; Dalal and Triggs, 2005]. SIFT uses weighted orientation

histograms based on the local scale and dominant orientation of interest points given by

the keypoint detector. The scale information is used to control the smoothing parameter

for computing image gradients. SIFT descriptors are therefore scale and rotation invariant

feature vectors. While SIFT computes histograms over rectangular grids, shape contexts

use log-polar grids and sample edges into a 2-D log-polar histogram. This model was

extended by Mori and Malik [2003] to generalized shape contexts that sample edges into a

3-D spatial and orientation histogram.

More recently, Dalal and Triggs [2005] proposed grids of Histograms of Oriented Gra-

dient (HOG). HOG descriptors are also based on image gradients as in SIFT or shape con-

texts, except that they are computed on a dense grid of uniformly spaced grids and use over-

lapping local contrast normalizations. HOG descriptors have been widely used in pedes-

trian detection. Several state-of-the-art approaches [Bourdev et al., 2010; Dalal and Triggs,

2005; Felzenszwalb et al., 2009] used HOG descriptors and showed excellent performance

on pedestrian datasets from the PASCAL Visual Object Classes Challenge [Everingham

et al., 2010]. The detectors by [Dalal and Triggs, 2005] and Felzenszwalb et al. [2009] won

the PASCAL object detection challenge respectively in 2006 and 2009. Following these

advances in object detection, Bourdev et al. [2010] proposed a new representation of an ob-

ject class called poselets. Poselets are a set of HOG descriptors that are clustered based on

both geometric configurations (e.g., joints of a person) of object parts and their appearance

variations. Bourdev et al. [2010] outperformed the previous methods in pedestrian detec-

tion and achieved the best performance of 47.8% average precision on the PASCAL data in

2009, though the detector runs much slower than [Felzenszwalb et al., 2009].

Sparse representation

A set of local descriptors represent an object class by capturing relevant local image re-

gions. These local regions are often detected by point detectors based on saliency and

scale invariance. They can be detected based on points [Harris and Stephens, 1988; Miko-
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lajczyk and Schmid, 2002], blobs such as Laplacian of Gaussians [Lindeberg, 1998] and

Difference of Gaussians (DoG) [Lowe, 2004], intensities [Kadir and Brady, 2001], edges

[Jurie and Schmid, 2004], and combinations of colour and texture [Martin et al., 2004].

Sparse representations based on relevant local descriptors have attracted major attention

because they are computationally efficient and robust to difficult image variations arising

from occlusions and changes in viewpoints, illuminations and scale. Fergus et al. [2003]

used the entropy based region detector [Kadir and Brady, 2001] for detecting features and

local intensity patches for the appearance representation. Dorkó and Schmid [2003]; Opelt

et al. [2006a] used several interest point detectors such as Harris [Harris and Stephens,

1988], Harris-Laplace [Mikolajczyk and Schmid, 2002] and Laplacian of Gaussian [Miko-

lajczyk and Schmid, 2002]. For detecting and recognizing a specific instance of an object

class, SIFT with a scale-invariant DoG detector [Lowe, 2004] has shown the state-of-the-art

recognition performance with a fast nearest neighbour matching algorithm called the Best-

Bin-First algorithm. Figure 2.2 shows impressive recognition results of SIFT in a complex

scene.

These point-based representations are often used in bag-of-features methods where ob-

jects are represented by an orderless collection of distinctive local features [Grauman and

Darrell, 2007; Zhang et al., 2006b]. However, bag-of-features methods are severely lim-

ited in object detection because they disregard most information about the spatial layout

of precise feature locations and therefore do not work well for localizing objects. Bag-of-

features methods [Grauman and Darrell, 2007; Lazebnik et al., 2006; Zhang et al., 2006b]

have therefore been more successful in problems of classifying images rather than detecting

objects.

Local image descriptors are more effective in the form of a codebook for object detec-

tion. The codebook is a vocabulary of local image regions that are characteristic for the

appearance of an object class under different viewpoints. Local image descriptors are the

best candidates for the codebook entries because they represent a specific structure of an

object class that repeatedly occur in different viewpoints. Figure 2.3 shows how to train

an appearance codebook of a person. Combining the codebook with a star topology, Leibe

et al. [2007] achieved excellent levels of performance for detecting both rigid and articu-

lated objects with a small amount of training data.

For a more enriched object representation, objects are often encoded by a collection

of parts arranged in a deformable configuration. Such representation is called the pictorial
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Distinctive Image Features from Scale-Invariant Keypoints 107

Figure 12. The training images for two objects are shown on the left. These can be recognized in a cluttered image with extensive occlusion,
shown in the middle. The results of recognition are shown on the right. A parallelogram is drawn around each recognized object showing the
boundaries of the original training image under the affine transformation solved for during recognition. Smaller squares indicate the keypoints
that were used for recognition.

Figure 13. This example shows location recognition within a complex scene. The training images for locations are shown at the upper left and
the 640 × 315 pixel test image taken from a different viewpoint is on the upper right. The recognized regions are shown on the lower image,
with keypoints shown as squares and an outer parallelogram showing the boundaries of the training images under the affine transform used for
recognition.

Figure 2.2: Recognition results of SIFT [Lowe, 2004] c©2004 Springer. This
shows excellent recognition results by SIFT descriptors. Given training images
on the left, the results of recognition are shown with parallelograms on separate
test images that are taken from a different viewpoint. A set of detected key
points are shown with small squares, rotated by the dominant orientation of each
descriptor.

structure [Fischler and Elschlager, 1973]. Figure 2.4 shows a structural representation of

objects by capturing local appearance configuration of parts and their spatial configuration

based on spring-like connections between certain combinations of deformable parts. Many

approaches based on the pictorial structure result in outstanding performance [Bourdev

et al., 2010; Felzenszwalb et al., 2009; Felzenszwalb and Huttenlocher, 2005; Fergus et al.,

2003].
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Fig. 2. The training procedure. Local features are extracted around interest points and clustered to form an appearance codebook. For each codebook entry, a
spatial occurrence distribution is learned and stored in non-parametric form (as a list of occurrences).

as similarity measure. As the method relies heavily on the
search for nearest neighbors, its expected-time complexity can
in some cases further be improved by using efcient NN-
search techniques.

As a side note, we want to point out that for the cases
considered in our experiments, where the number k of clusters
is almost of the same order as N , average-link clustering and
standard k-means have the same asymptotic time complexity.
Since in our experiments between 10 and 25 iterations were
necessary for k-means to converge, this number combines with
the value of k to form an effective time complexity of O(N 2d).

Which clustering method is better suited for our application
can only be evaluated in the context of an entire system. In
Section VII-C, we therefore compare codebooks generated by
k-means and agglomerative clustering for an object detection
task. The results suggest that, although very similar detection
performance can be achieved with both clustering methods, the
lesser compactness of k-means clusters makes it more costly
for later stages of the system to represent the matching uncer-
tainty sufciently well. In the following sections, we therefore
use agglomerative clustering for codebook generation.

IV. OBJECT CATEGORIZATION WITH AN IMPLICIT SHAPE

MODEL

A. Shape Representation

As basic representation for our approach we introduce the
Implicit Shape Model ISM(C) = (C, PC), which consists of
a class-specic alphabet C (the codebook) of local appearances
that are prototypical for the object category, and of a spatial
probability distribution PC which species where each code-
book entry may be found on the object.

We make two explicit design choices for the probability
distribution PC . The rst is that the distribution is dened
independently for each codebook entry. This results in a star-
shaped structural model, where the position of each local part
is only dependent on the object center. The approach is exi-
ble, since it allows to combine object parts during recognition
that were initially observed on different training examples. In
addition, it is able to learn recognition models from relatively
small training sets, as our experiments will demonstrate. The
second constraint is that the spatial probability distribution for
each codebook entry is estimated in a non-parametric manner.
This enables the method to model the true distribution in as

Algorithm 2 The training procedure.
// Create an appearance codebook C.
F ← ∅ // Initialize the set of feature vectors F
for all training images do

Apply the interest point detector.
for all interest regions !k = (!x, !y, !s) with descriptors fk do

F ← F ∪ fk

end for
end for
Cluster F with cut-off threshold t and keep cluster centers C.

// Compute occurrences Occ.
for all codebook entries Ci do

Occ[i] ← ∅ // Initialize occurrences for codebook entry Ci

end for
for all training images do

Let (cx, cy) be the object center at a reference scale.
Apply the interest point detector.
for all interest regions !k = (!x, !y, !s) with descriptors fk do

for all codebook entries Ci do
if sim(Ci, fk) ≥ t then

// Record an occurrence of codebook entry Ci

Occ[i] ← Occ[i] ∪ (cx − !x, cy − !y, !s)
end if

end for
end for

end for

much detail as the training data permits instead of making a
possibly oversimplifying Gaussian assumption.

B. Learning the Shape Model

Let C be the learned appearance codebook, as described
in the previous section. The next step is to learn the spatial
probability distribution PC (see Figure 2 and Algorithm 2). For
this, we perform a second iteration over all training images and
match the codebook entries to the images. Here, we activate
not only the best-matching codebook entry, but all entries
whose similarity is above t, the cut-off threshold already used
during agglomerative clustering. For every codebook entry, we
store all positions it was activated in, relative to the object
center.

By this step, we model the uncertainty in the codebook
generation process. If a codebook is �“perfect�” in the sense
that each feature can be uniquely assigned to exactly one
cluster, then the result is equivalent to a nearest-neighbor
matching strategy. However, it is unrealistic to expect such

Figure 2.3: The training procedure of an appearance codebook from [Leibe et al.,
2007] c©2007 Springer. This shows the training procedure of an appearance
codebook. First, local image features are extracted from an object. Then they
are clustered to form the codebook. For each codebook entry, spatial occurrence
distribution is learned with respect to the object centre.FISCHLER AND ELSCHLAGER: PICTORIAL STRUCTURES
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Fig. 3. Reference description of a face. (a) Schematic representation

of face reference, indicating components and their linkages.
(b) Reference description for left edge of face. (c) Reference
description for eye.

(noisy) face pictures using two references which in-
cluded, but differed in, the nose/mouth definitions. In
the first series, consisting of 90 experiments, there were

83 completely correct embeddings, and 7 partially incor-
rect embeddings. The errors involved six experiments
in which the nose/mouth complex was offset by three to
four resolution cells from its ideal location, and one ex-

periment in which both the eyes and the nose/mouth
complex were improperly placed. In the second series,
consisting of 45 experiments, the placement of the nose/
mouth complex was judged incorrect in 3 experiments,
while all the other components were always correctly
embedded.

Analysis of the face experiments led to the following
conclusions. In spite of almost perfect performance in
embedding the hair, eyes, and sides of the face, precise
placement of the nose/mouth complex based on strictly
local evaluation was almost impossible in some of the
noisy pictures due to loss of detail [e.g., see Fig. 4(b) ].
With the attribute feature of the LEA not yet opera-

tional, and with the arbitrary decision to use binary
(rather than multivalued) weights in the spring arrays

for these experiments, the LEA restricted the feasible
region over which an optimum value could be selected
for embedding the nose/mouth complex, but did not
bias the selection as would genetally be the case. In the
presence of heavy noise, the simple nose/mouth descrip-

tions used in these experiments were not always ade-
quate to produce a local optimum in the L(EV)A at or
near the ideal embedding location. (A three-resolution
cell deviation was considered an error.)

Image-Matching Experiments Using Terrain Scenes
Approximately 40 experiments have been performed

using terrain scenes (including both aerial and ground
scenes). The object in each case was to create a relatively
simple description of some portion of the scene and then
attempt to find the proper embedding of the description
in the image (or some distorted or alternate view of
the image).
The descriptions employed two basic types of com-

ponents: 1) texture components, in which- the "texture
value" of a point was defined as a crude statistical func-
tion of the intensity values and gradients in some local
region surrounding the point; and 2) shape components,
which were defined by collections of "edge" points hav-
ing specified gradients.

Fig. 5(a) shows an example of a terrain (reference)
description. Fig. 5(b) shows its successful embedding
relative to the computer-stored version of the photo-
graph of the actual terrain segment as shown in Fig.
5 (c). Each coherent piece in reference 5 (a) is represented
by several points enclosed by a dotted line. In this ex-
ample, the points of each enclosure of the reference com-

Figure 2.4: The parts of the pictorial structure model of [Fischler and Elschlager,
1973] c©1973 IEEE.

Dense representation

Deformable part models give an elegant representation of an object class, but it has been

difficult to establish their value in practice due to their heavy computational cost for local-

izing objects and difficulties in training with such rich models. On difficult datasets where

detectors require a large amount of training data to gain a reasonable performance, de-

formable part models are often outperformed by rigid templates [Dalal and Triggs, 2005].

Dalal and Triggs [2005] optimized rigid templates of HOG descriptors and considerably

advanced levels of performance in human detection. Given enough training images, simple

linear classifiers such as SVMs are quite effective in learning rigid templates for detecting
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articulated objects such as pedestrians.

For detecting generic objects, however, a single holistic representation of rigid tem-

plates is still not expressive enough to represent rich object classes especially when the size

of training data is limited. Recent state-of-the-art approaches therefore combine dense rep-

resentations of objects with a rich expression of deformable part models to further improve

performance for detecting generic objects [Bourdev et al., 2010; Felzenszwalb et al., 2009].

State-of-the-art

Recently, Bourdev et al. [2010]; Felzenszwalb et al. [2009] further advanced the state-of-

the-art in human detection by combining both dense and sparse representations. Felzen-

szwalb et al. [2009] used HOG descriptors for representing each part of objects and used

pictorial structures for making parts to be deformable. Combining a set of multiple de-

formable models with a latent variable formulation of support vector machines, Felzen-

szwalb et al. [2009] have become a winner of the PASCAL object detection challenge over

multiple object categories. Figure 2.5 shows detection results of the bicycle category from

the PASCAL data.

Bourdev et al. [2010] proposed more flexible, yet more complex part models called

poselets. Poselets are clustered based on geometric configurations (e.g., joints of a person)

of object parts and their appearance variations in terms of HOG descriptors. While the

Felzenszwalb et al. detector requires a predefined number of parts and mixture models, the

poselet framework derives the number of parts and their spatial configurations automati-

cally from training data. Since the Dalal and Triggs detector, dense representations of an

object class have shown their value in problems for generic object detection. Deformable

part models and poselets are natural consequences of increasing complexity from rigid tem-

plates.

The progression of state-of-the-art detectors in recent years has shown that there is a

trade-off between increasing complexity in models and difficulties in learning and infer-

ence. Careful decisions must be made in order to enrich models without sacrificing per-

formance and losing efficiency. The most complex model among state-of-the-art object

detectors is one by Vedaldi et al. [2009]. It learns an optimal combination of non-linear

kernels each of which captures a different feature representation of an object class. These

features include the distribution of edges, visual words and feature descriptors such as HOG
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Fig. 2. Detections obtained with a 2 component bicycle model. These examples illustrate the importance of
deformations mixture models. In this model the first component captures sideways views of bicycles while the second
component captures frontal and near frontal views. The sideways component can deform to match a “wheelie”.

the background data to find a relatively small number
of potential false positives, or hard negative examples.

A methodology of data-mining for hard negative ex-
amples was adopted by Dalal and Triggs [10] but goes
back at least to the bootstrapping methods used by [38]
and [35]. Here we analyze data-mining algorithms for
SVM and LSVM training. We prove that data-mining
methods can be made to converge to the optimal model
defined in terms of the entire training set.

Our object models are defined by filters that score
subwindows of a feature pyramid. We have investigated
feature sets similar to the HOG features from [10] and
found lower dimensional features which perform as well
as the original ones. By doing principal component anal-
ysis on HOG features the dimensionality of the feature
vector can be significantly reduced with no noticeable
loss of information. Moreover, by examining the prin-
cipal eigenvectors we discover structure that leads to
“analytic” versions of low-dimensional features which
are easily interpretable and can be computed efficiently.

We have also considered some specific problems that
arise in the PASCAL object detection challenge and sim-
ilar datasets. We show how the locations of parts in an
object hypothesis can be used to predict a bounding box
for the object. This is done by training a model specific
predictor using least-squares regression. We also demon-
strate a simple method for aggregating the output of
several object detectors. The basic idea is that objects of

some categories provide evidence for, or against, objects
of other categories in the same image. We exploit this
idea by training a category specific classifier that rescores
every detection of that category using its original score
and the highest scoring detection from each of the other
categories.

2 RELATED WORK

There is a significant body of work on deformable mod-
els of various types for object detection, including several
kinds of deformable template models (e.g. [7], [8], [21],
[43]), and a variety of part-based models (e.g. [2], [6], [9],
[15], [18], [20], [28], [42]).

In the constellation models from [18], [42] parts are
constrained to be in a sparse set of locations determined
by an interest point operator, and their geometric ar-
rangement is captured by a Gaussian distribution. In
contrast, pictorial structure models [15], [20] define a
matching problem where parts have an individual match
cost in a dense set of locations, and their geometric
arrangement is captured by a set of “springs” connecting
pairs of parts. The patchwork of parts model from [2] is
similar, but it explicitly considers how the appearance
model of overlapping parts interact.

Our models are largely based on the pictorial struc-
tures framework from [15], [20]. We use a dense set of
possible positions and scales in an image, and define
a score for placing a filter at each of these locations.

Figure 2.5: Deformable part model From [Felzenszwalb et al., 2009] c©2009
IEEE. The top row shows detection results of the Felzenszwalb et al. [2009]
detector. A mixture of its deformable part models are shown below. The first one
in the second row represents sideways view of bicycles, while the second one in
the third row captures the frontal view. Deformation parameters are shown on
the right where lighter regions mean more deformation penalties.

and local self-similarity. The Vedaldi et al. detector is a joint winner of the PASCAL object

detection challenge in 2009 with the Felzenszwalb et al. detector. However, the Vedaldi

et al. detector sacrificed computational costs for improved performance. As a result, their

detector runs an order of magnitude slower than the Felzenszwalb et al. detector and even

slower than that of [Bourdev et al., 2010].
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2.2 Object detection
Object detection is a task of localizing and categorizing any instances of an object class in

an image. To achieve this, object detectors need to accurately represent an object model

and efficiently perform exhaustive search for determining tight bounding windows around

objects. Section 2.1 explains the representation of an object class. This section focuses on

object localization and introduces related works in the area.

2.2.1 Localizing objects

Given a newly observed image I and a trained object model Θ, the task of object localization

is formulated as a search problem:

R∗ = argmax
R⊆I

f(R|I,Θ) (2.1)

where R ranges over all bounding windows (often rectangular or ellipsoidal shapes) in the

image I . Then the goal is to find the best bounding window R∗ based on a score func-

tion f . Many approaches have been proposed for solving localization of objects. Broadly

speaking, they are divided in two categories: sliding window approaches and the Hough

transform approaches. The former has been widely adopted in various approaches [Chum

and Zisserman, 2007; Dalal and Triggs, 2005; Deselaer and Ferrari, 2010; Felzenszwalb

et al., 2009; Mutch and Lowe, 2006; Viola and Jones, 2004].

Sliding window approaches consider all possible sub-windows of an image and use a

classifier to evaluate them on whether they contain an instance of an object class of interest.

Depending on the resolution of an image, a large set of candidate sub-windows require

millions, if not billions, of evaluations. Therefore, efficiency becomes an important issue

for building an object detector that is even feasible to run in practice. Most sliding window

approaches to date have used either linear classifiers [Dalal and Triggs, 2005; Felzenszwalb

et al., 2009; Mutch and Lowe, 2006], a highly efficient non-linear approach [Maji et al.,

2008] or an efficient branch-and-bound search [Lampert et al., 2008]. Figure 2.6 shows

the process of searching the location of parts (“head” and “right shoulder” in this case) of a

person in an image at one scale and aggregating all responses to show two good hypotheses.

To detect two people in the image, the localization process is performed at all possible scales

from which millions of sub-windows are evaluated.
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Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

Figure 2.6: Localization process of the deformable part model from [Felzen-
szwalb et al., 2009] c©2009 IEEE. This shows the localization process at
one scale by a person model.
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Other methods are based on the Hough transform [Ballard, 1981; Leibe et al., 2007;

Maji et al., 2008; Opelt et al., 2006b]. Ballard [1981] extended the Hough transform for

detecting lines to the generalized Hough algorithm for detecting generic shapes. Leibe et al.

[2007] extended the idea of the generalized Hough transform in object categorization and

proposed the implicit shape model that specifies distinctive characteristics of the object in

terms of the codebook entries. They used a bottom-up localization approach that extracts

relevant local features each of which casts probabilistic votes for possible object locations.

Such feature-based localization idea has been adopted in several approaches [Maji et al.,

2008; Opelt et al., 2006b].

Most of the existing work on object localization falls into either a sliding window or

the Hough transform approach except for Lehmann et al. [2009] that recently combined

the ideas of the efficient sub-window search [Lampert et al., 2008] and the implicit shape

model in their localization framework.

2.2.2 Using context

The task of object localization is formulated as a search problem in Equation 2.1 where the

success largely depends on evaluations of candidate hypotheses based on a score function

f . Many successful approaches used classification algorithms for scoring each hypothesis.

Therefore, learning a good score function is critical for designing an optimal object detector.

In localizing objects from a single object class in videos, motion information of objects such

as optical flow or directional motion filters are used as additional cues to be combined with

appearance information of objects for a better performance [Dalal, 2006; Viola et al., 2005]

In more general cases of object localization from multiple different classes, several

approaches explored the use of additional contextual information of the image, which is

modelled by the relationships of different objects or different object classes [Desai et al.,

2009; Murphy et al., 2003; Sadeghi and Farhadi, 2011; Sudderth et al., 2005]. For exam-

ple, Sadeghi and Farhadi [2011] recently proposed visual phrases that encapsulate visual

relations of objects and showed that appearance information of objects in some interaction

drastically improve detections of individual objects. Figure 2.7 shows how a visual phrase,

“person riding horse,” helps improving performance of detecting objects from two different

classes.
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Figure 2. We use visual phrase and object models to make independent predictions. We then combine the predictions by a decoding
algorithm that takes all detection responses and decides on the final outcome. Note that a) Visual phrase recognition works better than
recognizing the participating objects. For example, the horse detector does not produce reliable predictions about horses in this picture
while the “person riding horse” detector finds one instance; b) Our decoding then successfully adds two examples of horses and removes
two wrong predictions of people by looking at other detections in the vicinity.

riding horse” detector works much better than “person” and
“horse” detectors while using less training data (see Fig-
ure 4 for experimental data). Figure 1 shows examples of
the cases where best object detectors miss objects while the
visual phrase detectors correctly localize visual phrases.

One reasonable concern is that the number of phrases
grows exponentially in the number of objects, and there
may not be enough training data for each visual phrase. Our
experience of visual phrases mirrors the experience of ma-
chine translation community with linguistic phrases. The
number of useful visual phrases (phrases) is significantly
smaller than the number of all possible combinations of ob-
jects (words). There are many visual phrases that could oc-
cur during tasks but we tend to encounter very few of those.
Further, many visual phrases show substantially reduced vi-
sual complexity compared to independent objects and so
one doesn’t need to have a large number of training exam-
ples to accurately learn visual phrases. For example, our
“person riding horse” detector, learned with default settings
on only 50 positive examples, significantly outperforms the
heavily fine tuned state of the art models for “horse” and
“person” learned on thousands of examples (see Figure 4
and Table 1 for more details).

We believe that the current choice of categories as ba-
sic atoms of recognition is arbitrary. We argue that these
basic atoms should be chosen by performance criteria. Op-
portunism is the key to this principle. Instead of learning
some basic level detectors and using them no matter how
good they are, we learn detectors at different levels and use
reliable ones and then decode to obtain a final interpretation
(Figure 2). Decoding uses all detection responses to de-
cide which detections are worth reporting as the final result.
Decoding is an inevitable part of multiple object detection.
The decoder may need to boost some detections and sup-
press others based on local context.

There is an analogy to machine translation problems
where the alignment has to be established between phrases

and areas of images. One might think of our system as hav-
ing a phrase table with entities like “person”, “horse”, and
“person riding horse”. The ultimate goal is to look at all
phrases and find the longest phrase that matches. This pro-
cedure is often called decoding in machine translation. Our
decoder has to take into account that some of the detectors
should overlap and when they overlap it has to decide which
of the overlapping detectors are worth reporting.

In this paper we show the benefits of opportunistically
selecting basic atoms of recognition and the significant gain
in directly detecting visual phrases. Our contributions are:
1) Introducing visual phrases as categories for recognition;
2) Introducing a novel dataset for phrasal recognition; 3)
Showing that considering visual phrases provides a signifi-
cant gain over state of the art object detectors coupled with
the state of the art methods of modeling interactions; 4) In-
troducing a decoding algorithm that takes into account spe-
cific properties of interacting objects in multiple levels of
abstraction; 5) Producing state of the art performance re-
sults in multi-class object recognition.

2. Related Works
Object Recognition: Due to limited space we only men-

tion the most relevant works in object recognition. De-
formable templates [3, 4] and part based models [1, 10, 5]
are of the most successful methods in object recognition.
In this paper we use the state of the art detectors in [9] us-
ing deformable part models. This work considers multiple
roots to model the appearance changes due to viewpoint or
inherent intra-class variations.

Object Interactions: All methods that model interac-
tions between objects neglect the change in the appearance
of objects due to interactions with other objects. We differ
from all by taking this effect into account. Gupta et. al.
[11] model these interactions by modeling the prepositions
and adjectives that relate nouns. Yao and Li [16] model the
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Figure 2.7: Visual phrase from [Sadeghi and Farhadi, 2011] c©2011 IEEE.
Combining a visual phrase (“person riding horse”) with object models, the re-
sulting predictions remove false positives and even add true positive detections
that have never been discovered before.

2.3 Learning
In designing a visual system for recognizing object categories, we need to address three

main issues: object representation, detection, and learning. Previous sections cover the

first two issues. This section explains the issue of learning, which is perhaps the least well

understood among them. Object localization requires a model to have a score function that

can identify bounding windows for the object in each image — there can be zero, one or

many such boxes in a single image. Such a model is often learned by machine learning

techniques. However, there are many challenges that need to be dealt with when a large

search space of bounding windows includes background clutter, occlusions, illumination

changes, and intra-class variations of the appearance of objects.

The ultimate goal of this learning task is to identify an invariant structure of object

representation that can handle these difficulties. To achieve this, a model often requires a

large amount of training data and needs to be not too complex for reasons of efficiency. A

significant body of work on learning a model for generic object detection usually focuses on

adding more complexity to models. Aspects of training data with relatively simple models

have not been explored as much. We summarize the existing work in the area and focus on

issues of labelled data and its requirement for human labelling effort rather than learning

techniques.

Figure 2.8 shows related machine learning formalisms in the context of detecting koalas

and pandas. Images on the black background are labelled with localization windows. Ones
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on the grey background are weakly labelled without localization windows. Others are un-

labelled. The data on the left column is the initial set of data that is used for training an

initial model. The data on the right column is additional data that is easier to obtain and can

be used for additional training. Supervised learning uses labelled instances (i.e., bounding

boxes in yellow) of koalas and pandas. There is no additional data for this scenario since

only labelled data are given. Active learning uses a small set of labelled instances to train

an initial model. Labels for an additional unlabelled instances are given by an oracle which

is often a human observer or rarely an intelligent machine. Semi-supervised learning uses

additional unlabelled bounding windows of koalas and pandas. Weakly supervised learning

does not have additional bounding windows, but images that contain instances of koalas and

pandas. Ones can view this as semi-supervised learning with additional constraints such as

the category label for an image. Weakly supervised self-learning requires additional frames

from videos. In this case, the category label of a video is given where any number of target

objects are allowed to be present throughout the video.

2.3.1 Supervised learning

Supervised learning deals with a labelled dataset L = {(x1, y1), . . . , (xl, yl)} where xi ∈
X = RM is an M -dimensional feature descriptor and y ∈ Y is a label. The goal is to

learn a classifier H : X 7→ Y . Many supervised learning models have been tried including

SVMs, neural network, randomized trees or boosting [Chum and Zisserman, 2007; Dalal

and Triggs, 2005; Deselaer and Ferrari, 2010; Felzenszwalb et al., 2009; Lepetit and Fua,

2006; Mutch and Lowe, 2006; Papageorgiou and Poggio, 2000; Rowley et al., 1998; Vedaldi

et al., 2009; Viola and Jones, 2004]. A predominant number of approaches formulate object

detection as the binary classification problem with Y = {+1,−1}. A label yi is +1 when

a feature vector xi represents an instance of the target object class or −1 for an instance of

all encompassing background class.

The classification performance of machine learning methods for object recognition can

be improved by simply providing more training instances. An image may have one or more

instances of an object class. Viola and Jones [2004] showed that object detectors require

millions of training instances from hundreds of thousands of images to get reasonable per-

formance for detecting a single object class such as faces and pedestrians in practice. The

annotations of the training data for building an object detector are usually provided in a set
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Supervised learning

Friday, August 5, 2011
Active learning

Monday, August 1, 2011

+

Monday, August 1, 2011

Friday, August 5, 2011

koala panda

koala panda

fully labelled user gives labels for selected images
Semi-supervised learning

Monday, August 1, 2011

+

Monday, August 1, 2011

fully labelled bounding box with no labels
Weakly supervised learning

Monday, August 1, 2011

Friday, August 5, 2011

koala panda

koala panda

+

Monday, August 1, 2011

Friday, August 5, 2011

koala panda

koala panda
no bounding box, but images are labelled

Weakly supervised self-learning

Monday, August 1, 2011

+

Wednesday, November 2, 2011

fully labelled videos with no bounding boxes

Figure 2.8: Related machine learning formalisms for detecting koalas and pandas.
Images on the black background are labelled. Ones on the grey background are weakly
labelled. Others are unlabelled. Refer to the text for more explanation.
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of bounding windows {R1, . . . , Rl} that determine the size and location of all instances of

the target object class in a set of n images {I1, . . . , In}. For each bounding window Ri, a

feature vector xi is computed in the form of an image descriptor.

The two largest public datasets1 are the MIT LabelMe data [Russell et al., 2008] and the

ImageNet [Deng et al., 2009]. The MIT LabelMe data is an open database of images where

public users can submit their annotations through a web-based annotation interface. The

LabelMe provides a large set of bounding polygons over 3,000 object categories, which is

definitely one of the largest publicly available datasets today for general object categoriza-

tion. The ImageNet is a more recent publicly available dataset that is even larger than the

MIT LabelMe data. It is an image dataset that is organized based on the WordNet hierarchy.

In the hierarchy, there are more than 100,000 synonym sets or “synsets”, each of which is

described by multiple words or word phrases. The ImageNet provides 1000 images on av-

erage for over 17,000 synsets, which sums to over 12 million images in total. The ImageNet

has become the largest dataset today for image classification problems and has been used for

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) annually since the year

of 2010. The 12 million images, an unprecedented scale of annotation data, which includes

more than 657,000 images with bounding box annotations, were collected by crowdsourc-

ing through Amazon Mechanical Turk. This subset comprises over 3,000 synsets, each of

which has on average 150 images with bounding boxes. However, the object localization

challenge, based on these bounding box annotations, is still preliminary because it is held

as a “taster” competition according to the organizers of the ILSVRC competitions.

These two large datasets are still not ideal for solving object detection problems. Web

annotations in the MIT LabelMe are still incomplete because many images are not fully

labelled. That is, these incomplete images have both labelled and unlabelled objects: for

example, an image contains two cars and a person, where a car is labelled with a bounding

box, but no annotated bounding box is given to a person or another car in the same image.

The ImageNet classification challenge with localization is still preliminary in a “taster”

stage. With these datasets, it is difficult to evaluate performance of object detectors in

the level of precision of the PASCAL data which is a smaller, yet more complete dataset

for object detection. The PASCAL data has provided, annually since the year of 2005, a
1For pedestrian detection, [Dollár et al., 2009] introduced the Caltech Pedestrian Dataset. It contains very

large data of approximately 10 hours of 30Hz video ( 106 frames, a total of 350,000 bounding boxes). They
provide benchmark results on performance of the state-of-the-art detectors.
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complete dataset of about 10,000 images with approximately 25,000 bounding boxes of

objects. The PASCAL data has 20 different object categories where each category contains

a varying number of instances of objects, ranging from a few hundred to several thousands.

Realistically, the PASCAL dataset is not large enough to attain a proficient level of

performance with supervised learning models. With the abundance of images and videos

readily available on the Web and through digital devices such as digital cameras and smart-

phones, adding extra training data is a straightforward means of overcoming this lack of

data. But acquiring extra labels is not so easy because labelled data often involves time-

consuming human labour. Therefore, we will consider several other related learning sce-

narios that help to reduce the overall labelling effort.

2.3.2 Active learning

Active learning refers to any situation in which the learning algorithm has control over the

inputs on which it trains, querying an oracle to provide labels for selected instances. Active

learning is quite different from other learning scenarios because it often employs a human

oracle for label acquisition. To implement active learning, the algorithm is usually provided

with a small set of labelled data L = {(x1, y1), . . . , (xl, yl)} to learn an initial model

H . The model H : X 7→ Y is then iteratively updated with additional label information

{yl+1, . . . , yl+m} from a human oracle who answers queries that are selected from a much

larger set of unlabelled data U = {xl+1, . . . ,xl+m} where a feature vector xi ∈ X , a label

yi ∈ Y and l � m. In this learning process, the total labelling effort is determined by

the amount of queries a human oracle has to answer and the size of the initial set of fully

labelled data.

In recent years, active learning in computer vision has gained much attention. It has

been used in tracking [Hewitt and Belongie, 2006], handwritten digit identification [Zhu

et al., 2003], and visually-guided robots [Mahdaviani et al., 2005]. Outside of the vision

community, active learning has found success in domains such as customer support classifi-

cation [Tur et al., 2005], text classification [Schohn and Cohn, 2000; Tong and Koller, 2001;

Zhu et al., 2003], robot kinematics [Cohn et al., 1996], and sensor placement [Guestrin

et al., 2005]. While various active learning extensions have also been proposed in image

classification [Collins et al., 2008; Kapoor et al., 2007; Qi et al., 2008; Vijayanarasimhan

et al., 2010; Zhang et al., 2008], relatively little attention has been paid to the more chal-
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lenging problem of object localization [Abramson and Freundndom, 2005; Siddiquie and

Gupta, 2010; Vijayanarasimhan and Grauman, 2011; Vijayanarasimhan and Kapoor, 2010].

Object localization requires a model that can identify bounding windows for the object in

each image — there can be zero, one or many such boxes in a single image — whereas

image classification needs only a single global classification per image. Applying active

learning to localization requires a substantial change in approach, as a single label cannot

be applied to an image — it must be applied to potentially numerous overlapping windows

of an image.

Therefore most active learning approaches have not been tested for object localiza-

tion problems even in a relatively small scale dataset such as the PASCAL 2007, which

has around 10,000 images. However, active learning can be very powerful when there are

abundant unlabelled data. [Okuma et al., 2011] became the first work to test an active learn-

ing approach on the PASCAL 2007 and improve object detection models of [Felzenszwalb

et al., 2009] by actively selecting a small portion (10%) of image data that consist of over

60,000 images downloaded from Flickr image search. This work is introduced in Chapter 4.

Later in the same year, Vijayanarasimhan and Grauman [2011] combined active learning

and crowdsourcing to efficiently scale up training sets for building an object detector. The

framework they proposed enables an interactive training of an object detector online by

actively requesting annotations from Amazon Mechanical Turk. The process is repeated

multiple times to refine their part-based object models. Their approach is the first large

scale study that attempts to train an object detector with crowdsourced annotations from the

Web.

2.3.3 Semi-supervised learning

Semi-supervised learning is a means for reducing the labelling effort, which exploits both

labelled and unlabelled data for efficiently training a classifier. The algorithm is provided

with a small set of fully labelled data L = {(x1, y1), . . . , (xl, yl)} and an additional set

of unlabelled data U = {xl+1, . . . ,xl+m} where a feature vector xi ∈ X , a label yi ∈ Y
and l � m. Once an initial classifier H is trained with the labelled dataset L, the classifier

is then used to prepare additional labels {yl+1, . . . , yl+m} from a much larger dataset U
and iteratively updated with these additional data in order to learn a mapping H from X
to Y . There is a vast amount of literature on methods of semi-supervised learning, which
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originally dates back to the work of [Scudder, 1965]. In recent years, semi-supervised

learning approaches have succeeded in various domains of problems such as text classifi-

cation [Nigam et al., 2000], handwritten digits recognition [Lawrence and Jordan, 2005]

and object detection [Leistner et al., 2007; Rosenberg et al., 2005]. The literature review

of semi-supervised learning approaches in various problem domains is out of scope of this

thesis. We recommend a book by [Chapelle et al., 2006] and a comprehensive literature

survey by [Zhu, 2008].

In the context of object detection, semi-supervised learning is provided with both la-

belled and unlabelled localization windows that contain an instance of either an object

class or all encompassing background class. Rosenberg et al. [2005] implemented a semi-

supervised learning approach with a boosting algorithm in order to reduce the manual

labelling effort for training a model for human eye detection. Their approach uses self-

learning which is perhaps the most traditional approach for semi-supervised learning

[Chapelle et al., 2006]. It is a wrapper algorithm that starts by a small set of labels to train

the initial model. The model is then used to evaluate unlabelled data, being retrained with a

selected portion of its own predictions as additional labels. Their selection metric uses the

Mahalanobis distance between the wavelet transform of a candidate bounding window and

that of all labelled instances. Such a similarity measure for selecting additional training data

from a pool of unlabelled data is less biased than the detection confidence and is shown ef-

fective in self-learning. To the best of our knowledge, their work is the first comprehensive

scale study of semi-supervised learning in object detection.

As designing a similarity function for measuring the distance between labelled and un-

labelled samples is a fundamental requirement for semi-supervised learning approaches,

Leistner et al. [2007] used boosting to learn a similarity function between labelled and

unlabelled samples. Their approach is based on SemiBoost [Mallapragada et al., 2007]

which uses boosting in semi-supervised learning setting and guides the learning process

by the pairwise similarities of training data. Their SemiBoost framework has been used to

effectively improve a state-of-the-art face detector with unlabelled data. Figure 2.9 demon-

strates how an additional unlabelled localization windows can improve a trained detector

by increasing the detection rate, reducing the false positive rate or a better alignment of

localization windows.
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Abstract

The required amount of labeled training data for object
detection and classification is a major drawback of current
methods. Combining labeled and unlabeled data via semi-
supervised learning holds the promise to ease the tedious
and time consuming labeling effort. This paper presents a
novel semi-supervised learning method which combines the
power of learned similarity functions and classifiers. The
approach capable of exploiting both labeled and unlabeled
data is formulated in a boosting framework. One classifier
(the learned similarity) serves as a prior which is steadily
improved via training a second classifier on labeled and
unlabeled samples. We demonstrate the approach on chal-
lenging computer vision applications. First, we show how
we can train a classifier using only a few labeled samples
and many unlabeled data. Second, we improve (specialize)
a state-of-the-art detector by using labeled and unlabeled
data.

1. Introduction
In recent years, there was significant progress on meth-

ods for visual object recognition and categorization. For
example, the performance on the Caltech 101 dataset was
in 2004 approximately 16%, now the best performing ap-
proaches obtain close to 70% [11]. Besides novel meth-
ods for local image representations, there was a signifi-
cant progress in using advanced machine learning methods
(e.g., Boosting [9], support vector machines [25]). Fur-
ther, if enough labeled training data exists these approaches
can obtain very high recognition performances (e.g., [26]).
However, for most practical problems (with many classes
and high variability within the classes) there is simply not
enough labeled data available, whereas hand-labeling is te-

∗This work has been supported by the Austrian Joint Research Project
Cognitive Vision under projects S9103-N04 and S9104-N04, the FFG
project EVis under the FIT-IT program and the Austrian Science Fund
(FWF) under the doctoral program Confluence of Vision and Graphics
W1209.

Figure 1. A trained classifier/detector can be substantially im-
proved (increase detection rate, reduce false positive rate and bet-
ter alignment of detections) given additionally unlabeled data.

dious and expensive, in some cases not even feasible.
The lack of sufficient labeled training data is the rea-

son for the recent attention towards unsupervised and semi-
supervised training algorithms. The key-idea of semi-
supervised learning is to exploit labeled samples as well as
a large number of unlabeled samples for obtaining an ac-
curate decision border (see Zhu [28] for a recent overview
of approaches). This differs from the conventional “miss-
ing data” problem in that the size of the unlabeled data
exceeds that of the labeled by far. The central issue
of semi-supervised learning is how to exploit this huge
amount of information. Hence, a number of different al-
gorithms have been proposed, e.g., transductive support
vector machines [4], graph-based semi-supervised learn-
ing [3, 23, 29], semi-supervised linear discriminant anal-
ysis [6], discriminative-generative methods [1], and even
self-taught semi-supervised learning [21]. Very recently
Mallapragada et al. [19] proposed a semi-supervised boost-
ing method which outperforms other approaches on stan-
dard machine learning benchmark problems.

In computer vision, Cohen et al. [7] use both labeled and
unlabeled data to improve on face detectors. In [27] a semi-
supervised approach for detecting objects in aerial images
has been developed. Various methods [13, 15, 24] have been

Figure 2.9: Semi-supervised learning for detecting faces from [Leistner et al.,
2007] c©2007 IEEE. This shows how a semi-supervised learning system of
[Leistner et al., 2007] improves a face detector with an additional set of unla-
belled localization windows.

Weakly-supervised learning

Weakly-supervised learning in object categorization refers to a scenario where training im-

ages are provided without the location of object instances. Broadly speaking, one can

view this learning scenario as semi-supervised learning with additional constraints such

as the presence of object instances in an image. Let’s denote a weakly labelled dataset

D = {(I1, y1), . . . , (In, yn)} where a label yi ∈ Y = {+1,−1} is +1 when an image

Ii contains one or more instances of the target object class or otherwise −1. In contrast to

semi-supervised learning that exploits localized bounding windows with no category labels,

weakly-supervised learning requires accurate localization of bounding windows for assign-

ing the category label to each bounding window. For each image Ii, there can be zero, one

or more feature descriptors xj with a label yi where xj ∈ X and yi ∈ Y . Once localization

windows are computed, the goal of weakly-supervised learning is the same as in supervised

learning: to learn a classifier H : X 7→ Y .

The amount of labelling effort without localization of bounding windows could still

be (much) cheaper than preparing unlabelled bounding windows. For further reducing the
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overall human labelling effort of large data, weakly-supervised learning has become a major

topic of research in recent years [Arora et al., 2007; Deselaer et al., 2010; Fergus et al., 2007;

Galleguillos et al., 2008; Nguyen et al., 2009]. In general, weakly labelled data is referred as

a set of images where each image has one or more instances of an object class. But most of

work has the very stringent assumption of only one instance in an image mainly for avoiding

difficult localization issues. For achieving localization with only one instance of an object

of interest in an image, some approaches use the sparse representation of parts of an object

[Crandall and Huttenlocher, 2006; Fergus et al., 2007], segmentations [Arora et al., 2007;

Galleguillos et al., 2008; Winn et al., 2005] or bag-of-words with spatial pyramid matching

[Chum and Zisserman, 2007].

For more than one instance of an object of interest in an image, [Deselaer et al., 2010]

used a conditional random field (CRF) to simultaneously localize object instances and learn

an appearance model for an unknown object class. The CRF exploits localization results

from other object classes and circumvents localization of the target object class by guiding

the selection of localization windows. The model has been shown effective in a challenging

dataset, the PASCAL 2007 Visual Object Classes [Everingham et al., 2010].

Weakly-supervised self-learning

The previous learning scenarios assume that the unlabelled instances are independent. How-

ever, the data in video sequences are strongly related due to spatio-temporal dependencies

in videos. In object detection, the task is to find one or more bounding windows, each of

which precisely determines the location and size of an instance of an object class in an

image. The location of the bounding windows in a video defines a trajectory of an object

instance. The trajectory represents a spatio-temporal structure of subsequent labels in a

video sequence.

Here, we consider the following scenario: Given sparsely labelled video data that con-

sists of n different video sequences {Vi}ni=1, the task is to train an initial modelH : X 7→ Y
from a small set of labels L = {(x1, y1), . . . , (xl, yl)} and exploit the rest of unlabelled

data U = {x1, . . . ,xm} for improving the model, assuming that x ∈ X , y ∈ Y , and

l � m. Assuming that there are an unconstrained number of instances of the target object

class throughout these videos, ones can view this problem as a semi-supervised learning

scenario with weakly labelled videos and their category labels. Therefore, we can consider
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this as a scenario of weakly-supervised self-learning.

For exploiting the structure of the video data, several tracking-by-detection approaches

[Babenko et al., 2009; Kalal et al., 2010; Leistner et al., 2011] have been proposed to learn

an appearance model of an object instance from videos. Tracking-by-detection approaches

take detections as input and produce tracking results as output. However, these approaches

have the stringent assumption of having only one instance of the target object class in each

frame of a video sequence. Such an assumption strictly limits real-world applications to

detection of only a single instance of the target object class where the the detection with the

maximal confidence is identified as a positive label and all remaining instances are negative.

In order to detect multiple instances of an object class such as pedestrians or faces, videos

that contain multiple people and thus a dense collection of potential labels are crucial to the

training dataset. But localization of multiple target objects remains too difficult for most

of self-learning tracking-by-detection approaches. There are a few approaches that have

addressed the problem of exploiting the unlabelled video data with multiple target objects.

Ramanan et al. [2007] proposed a semi-supervised method for building a large col-

lection of labelled faces from archival video of the television show “Friends.” Their fi-

nal collection contains 611,770 faces, which is the largest existing collection of faces to

date in academia. Their approach used the Viola and Jones face detector to detect faces,

grouping them with colour histograms of body appearance (i.e, hair, face, and torso) and

tracking them using part-based colour tracking for multiple people in videos. Although

their approach is effective in a large scale data, the approach performed only one iteration

of exploring the unlabelled data for building a large collection of faces and never used the

acquired collection for improving classifiers they used.

Very recently, [Ali et al., 2011] implemented self-learning on sparsely labelled videos,

which allows any number of instances of the target object class. Their approach exploits

spatio-temporal information of objects for improving an appearance-based object detector.

Given a sparse labelling of the video sequence, an initial model is trained by a boosting

algorithm with a small set of labelled instances. The rest of unlabelled portion of the video

is used for collecting additional labels that are consistent with the current classification

model and a constraint of continuous motion of target objects. After a few iterations of

this process, they showed noticeable performance improvement on pedestrian detection in

videos and cell detection in microscopy image sequences. To the best of our knowledge,

the work of [Ali et al., 2011] has been the first work that addresses localization of multiple
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target objects in videos for improved object detection.

Their work is the most related to our work which is explained in Chapter 6. However

their approach differs significantly from ours. They used a boosting algorithm to exploit the

temporal coherence of videos, whereas we adopt the latent SVM formulation for learning

the appearance of objects in our self-learning framework and use figure-ground segmen-

tation as an additional information to validate the unlabelled data. Furthermore, we use

broadcast footage of sports which is much more challenging than their surveillance data of

a stationary camera view where pedestrians are walking along with very simple, predictable

motions.
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Chapter 3

Active Learning for Image Labelling

It is possible to improve the classification performance of machine learning methods for

object recognition by simply providing more training instances. However, the cost of pro-

viding labelled data — asking a human to examine images and provide labels — becomes

impractical as training sets grow.

In addition, object localization with bounding windows is important for many applica-

tions and plays a significant role in improved performance [Lazebnik et al., 2006; Mutch

and Lowe, 2006; Viola and Jones, 2004], but this also places an increased burden on human

labelling by requiring accurately aligned bounding windows around each training instance.

We present a method for using active learning [Settles, 2010; Tong and Koller, 2001]

to reduce the required number of labelled training instances to achieve a given level of per-

formance. Our method also proposes optimal bounding windows aligned with the current

classification function. Active learning refers to any situation in which the learning algo-

rithm has control over the inputs on which it trains, querying an oracle to provide labels for

selected images.

In particular, we are concerned with the problem where a person is required to provide

labels for bounding windows. Unlike image classification where the image is classified

as a whole, we apply this approach to object localization by iteratively selecting the most

uncertain unlabelled training windows from a large pool of windows, and present them

to the user for labelling. If the object of interest is correctly bounded by the localization

window, the human provides a positive label, otherwise they provide a negative label or

indicate their uncertainty. In a case of multiple overlapping candidate windows, we apply
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non-maximum suppression to select the best candidate by suppressing ones with a lower

confidence. We have designed a user interface that is efficient for the user and provides

feedback on performance while also enabling the user to retain some initiative in selecting

image windows.

Our experimental results apply the approach to the PASCAL Visual Object Classes

2007 (VOC2007) [Everingham et al., 2007] on twenty different categories learned with

a mixture of multi-scale deformable part models from Felzenszwalb et al. [2009], one of

two joint winners in the VOC2009 challenge for object detection problems. In the first

experiment, we show that we can match their results on VOC2007 data while using many

fewer labelled windows for training. Then we demonstrate our full user interface on more

diverse images, such as those obtained from web search engines and show how it enables a

user to efficiently improve performance on VOC2007. While these experiments show that

our actively trained deformable part model works well with active learning, the system does

not depend on a specific classifier or feature set. If other classifiers or features are found to

be more suitable to a domain, we can also incorporate them into our framework.

3.1 Active learning for image labelling
Image labelling requires human effort to supply the labels for each positive window in the

training set. This typically involves thousands of instances, and is thus extremely labour-

intensive. To make object recognition practical over multiple domains, we need to recog-

nize that human labelling is a costly resource, and must be used as efficiently as possible.

Active learning is the machine learning method typically used in this case. A full discus-

sion of active learning is beyond the scope of this thesis, so we will focus only on the most

relevant areas for our work. We direct the interested reader to, e.g., the recent review by

Settles [Settles, 2010] for a more extensive survey.

In pool-based active learning, which we use here, candidate data are selectively sam-

pled for labelling from a pool of unlabelled data U . The model is then updated to take

the new labels into account, and new candidates selected. Candidate selection is typi-

cally performed by greedily selecting data x∗ from U according to some utility function,

x∗ = argmaxx∈U U(x). The process repeats as long as the human labeller is willing, or

until some other termination condition is reached.

The candidate selection objective function is designed to maximize the utility of the
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labels gathered, typically by some measure of the expected informativeness of the labels.

This is what makes active learning efficient in situations where data is plentiful but labelling

it is expensive. By identifying the training instances that actually impact the model, fewer

labels are required, and the bottleneck can be reduced. In Section 3.3, we use an uncertainty

sampling utility function [Lewis and Gale, 1994], which is popular as it performs well on a

variety of problems and has been extensively studied. Other methods include maximizing

entropy, combining a committee of models, or maximizing the expected model change.

In recent years, active learning in computer vision has gained much attention. While

various active learning extensions have been proposed in image classification [Collins et al.,

2008; Kapoor et al., 2007; Qi et al., 2008; Vijayanarasimhan et al., 2010; Zhang et al., 2008],

relatively little attention has been paid to the more challenging problem of object localiza-

tion [Abramson and Freundndom, 2005; Siddiquie and Gupta, 2010; Vijayanarasimhan and

Kapoor, 2010]. Object localization requires a model that can identify bounding windows

for the object in each image—there can be zero, one or many such boxes in a single image.

Image classification needs to consider only a single global classification per image. Apply-

ing active learning to localization requires a substantial change in approach, as a single label

cannot be applied to an image—it must be applied to potentially numerous and overlapping

windows of an image. Most active learning approaches are therefore infeasible for object

localization problems in even a relatively large scale dataset such as the VOC2007 dataset

of around 10,000 images. To the best of our knowledge, we are the first to apply and test

active learning performance on the PASCAL or similar datasets.

3.2 Algorithm
Our system for active learning uses the Support Vector Machine (SVM) [Schölkopf and

Smola, 2002] classifier, which has proven its success in many state-of-the-art recognition

systems [Dalal and Triggs, 2005; Moosmann et al., 2006; Mutch and Lowe, 2006; Zhang

et al., 2006a]. We also incorporate the recent latent SVM (LSVM) approach of Felzen-

szwalb et al. [Felzenszwalb et al., 2009]. We will briefly review these models and describe

how we incorporate active learning. The goal of a supervised learning algorithm is to take n

training samples and design a classifier that is capable of distinguishingM different classes.

For a given training set (x1, y1), . . . , (xn, yn) with xi ∈ <N and yi ∈ −1,+1 in their sim-

plest form with two classes, LSVM is a classifier that scores a sample x with the following
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function [Felzenszwalb et al., 2009],

fβ(x) = max
z∈Z(x)

β · Φ(x, z) (3.1)

Here β is a vector of model parameters and z are latent values. The set Z(x) defines

possible latent values for a sample x. Training β then becomes the following optimization

problem.

min
β,ξi≥0

1

2
‖β‖2 + c

n∑

i=1

ξi (3.2)

s.t. ∀i ∈ {1, . . . , n} : yifβ(xi) + b ≥ 1− ξi (3.3)

and ξi ≥ 0 (3.4)

where c controls the tradeoff between regularization and constraint violation. For obtaining

a binary label for x, we have the decision function, sign(h(x)), where

h(x) = fβ(x) + b (3.5)

In general, a latent SVM is a non-convex optimization problem. However, by consider-

ing a single possible latent value for each positive sample that can be specified in training,

it becomes a convex optimization problem for classical SVMs. For multi-scale deformable

part models, the set of latent values represents the location of parts for the object.

3.3 Active learning on a latent SVM
We incorporate active learning into an LSVM by at each iteration selecting the candidate

that has the minimum distance to the decision boundary. That is, for a set of data C ⊆ U ,

where U is the set of unlabelled image windows, we select:

x∗ = argmin
x∈C

∣∣∣∣
h(xi)

‖β‖

∣∣∣∣ (3.6)

where x∗ is the candidate datum we ask the human expert to label. Ideally, we then move

the new labelled datum from the candidate to the training set, update the LSVM model, and

repeat, selecting a new candidate based on the updated model. However, due to the heavy
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computational load of LSVM, we choose to update the model in a batch after collecting a

set of new labelled data. In our experiments, we obtain a set of unlabelled image windows

by applying a sliding window at multiple scales on the image and computing a Histogram

of Oriented Gradients (HOG) descriptor [Dalal and Triggs, 2005; Felzenszwalb et al., 2009]

from each window as our datum.

This uncertainty sampling utility seeks to label the most uncertain unlabelled datum

to maximize the margin. There are known to be other successful criteria for SVM active

learning, particularly version space methods [Tong and Koller, 2001]. We use uncertainty

sampling as we wish to remain agnostic as to the underlying model. It has also been shown

to perform well and has the advantage of being fast to compute and easy to implement. The

learning task then becomes an iterative training process as is shown in Algorithm 3.1.

Algorithm 3.1 : Pool-based active learning algorithm for image window labelling
x is a window descriptor, I is a set of m images, L is a set of labelled image windows and
U is a set of unlabelled windows.

1: {Collect a set of unlabelled image windows, U}
2: U = ∅
3: for i ∈ I do
4: U = U ∪ x where x is the highest scoring detection window in image i
5: end for
6: while the user continues the active learning session do
7: {Obtain a set of new labelled data, C,Y}
8: C = ∅
9: Y = ∅

10: for t = 1 to n do
11: x∗ = argminx∈U

∣∣∣h(xi)
‖w‖

∣∣∣
12: Get the label y∗ of the datum x∗ from the human expert
13: The expert can add a set of k samples X = {x0,x1, · · · ,xk} in case of miss

detections or false positives with a set of associated labels L = {y0, y1, · · · , yk}
of X

14: C = C ∪ x∗ ∪ X
15: Y = Y ∪ y∗ ∪ L
16: U = U − x∗
17: end for
18: Add C and Y to the training set and update the LSVM model, β̂, {x̂l, ẑl}ml=1 and b̂

where m is the number of support vectors
19: end while
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3.4 The PASCAL visual object classes challenge 2007
In this section, We will test our active learning approach against a state-of-the-art object

detector on VOC2007 [Everingham et al., 2007] to show the ability to reduce labelling

requirements without sacrificing performance. The PASCAL Visual Challenge has been

known as one of the most challenging testbeds in object recognition. The VOC2007 dataset

contains 9,963 images: 50% are used for training/validation and the other 50% are used

for testing. Figure 3.1 shows a set of randomly selected training images with ground truth

annotations. We used VOC2007 to test our active learning approach to see if it would

reduce labelling requirements for positive data. We use our own Python implementation of

Felzenszwalb et al.’s detector [Felzenszwalb et al., 2009] with multi-scale deformable part

models. The original source code is available online and written in Matlab and C1.

In this experiment, we used the data provided by the VOC2007 dataset to show that

active learning can achieve the same classification performance by using only an actively

selected subset of the data. To show the reduced data requirements for active learning, we

trained our model in each category on four different positive datasets, including 25%, 50%,

75% and 100% of all positive training images, comparing the effect of adding training data

randomly and actively. We used the same negative dataset in these experiments, as negative

data is cheap to collect. For both the random and active data sets, we start by randomly

selecting the first 25% of positive images and training. In the random training set, we then

repeatedly add a further 25% of the positive images and train again, until all the available

data have been added. We performed active sampling by first training our base model with

a randomly selected 25% of the positive data. We used the base model to choose the most

uncertain positive images from the remaining pool of positive data, repeatedly adding 25%

of the data. Due to randomness in the training procedure, we repeated these experiments

five times and present average results with error bars. Figure 3.2 shows the results of all

twenty categories.

This simulation shows that active sampling is effective at selecting the most useful data

for training. In most cases, a total of only half of all positive data is required to get the

performance of the full training set.
1The source code is publicly available at http://people.cs.uchicago.edu/∼pff/latent/
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Figure 3.1: PASCAL VOC training images with ground truth annotations.
This shows some example images from the PASCAL VOC 2007 dataset. Yel-
low boxes are annotations with the category label on the top-left corner. These
images represent complex scenes with severe occlusions and a wide range of the
scale of objects.

41



(a) aeroplane (.268) (b) bicycle (.537) (c) bird (.009)

(d) boat (.142) (e) bottle (.245) (f) bus (.376)

(g) car (.463) (h) cat (.143) (i) chair (.163)

(j) cow (.173) (k) table (.233) (l) dog (.061)

Figure 3.2: These are the first 12 figures of a two-page figure that is continued on the
next page.
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(a) horse (.443) (b) motorbike (.393) (c) person (.344)

(d) plant (.117) (e) sheep (.179) (f) sofa (.196)

(g) train (.355) (h) tvmonitor (.380)

Figure 3.2: VOC2007: Random vs. active sampling of positive data. There are
20 different visual categories. The horizontal axis of each figure represents the
portion of positive training samples in percent (%) and the vertical axis gives the
average precision. The solid red line shows the result of active sampling and the
dotted blue line is for random sampling. We performed both random and active
sampling of positive data five times with a different random seed. The errorbars
are based on one standard deviation. For both random and active data sets, we
start by training on a randomly selected 25% of positive samples. In the random
training set, we then repeatedly add a further 25% of the positive samples and
train again. In the active set, we added an additional 25% of actively selected
samples iteratively until we use the full positive data. The number of positive
samples in each subset is shown above each errorbar. The final average precision
with the full positive data is shown next to the name of a category. Note that the
result of active sampling often performs better with 50% or 75% of the images.
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3.5 INRIA person dataset
To test active learning on another source of a realistic object class recognition problem,

we also use data from the INRIA pedestrian dataset2. We use the INRIA Object Detection

and Localization Toolkit3 to implement the SVM with the person dataset and compare it

with our actively trained SVM. The INRIA dataset and software were originally developed

and used by Dalal and Triggs Dalal and Triggs [2005]. Figure 3.3 shows some training

instances from the INRIA pedestrian dataset. We use their HOG descriptor, and compare

generalization performance between a randomly trained SVM and an actively trained SVM.

Figure 3.3: Some example data of pedestrians and non-pedestrians from the IN-
RIA pedestrian dataset.

In this experiment, we use the same HOG descriptor as Dalal and Triggs [2005], which

is a vector of 3780 dimensions. For clarity, we call their method a semi-actively trained

SVM, because their training consists of two phases. In the first phase, they train a naive per-

son detector by using 2416 pedestrian patches and 12180 randomly sampled non-pedestrian

patches. Then the person detector is re-trained by adding hard instances (i.e., false positives

that are produced by the initial detector by scanning 1218 negative images). To provide

comparisons, we train both a randomly trained SVM and an actively trained SVM. We

use the same training dataset, which consists of 2416 pedestrian patches and many non-

pedestrian patches from a set of 1218 images that do not contain any pedestrians, and the

same test dataset, which consists of a separate set of 1132 pedestrian patches and over two

million non-pedestrian patches that are sampled from a separate set of 453 non-pedestrian
2The data is publicly available at http://pascal.inrialpes.fr/data/human/
3The software is publicly available at http://pascal.inrialpes.fr/soft/olt/
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images.

For our actively trained SVM, the learning task is an iterative training process: Based

Algorithm 3.2 : Simulation of pool-based active learning algorithm for image window
labelling
L is a set of labelled image windows and U is a set of unlabelled windows. θ is an SVM
classifier

1: Train the initial SVM model θ by randomly choosing m pedestrian patches and n non-
pedestrian patches from L

2: while if there are false positives from the negative data pool do
3: Scan all of the remaining unlabelled data U
4: Select the candidate data C by adding misclassified instances:

- m false negatives from the positive data pool
- n false positives from the negative data pool
{This simulates the process in which the user corrects errors using our user inter-
face.}

5: Stop selecting false negatives if we already have 1200 positive samples.
6: Add the candidate data C to the training set.
7: Update the model θ with the new training set.
8: end while

on our experiments, we set m = 50 and n = 100 and compare results with the best result

reported by [Dalal and Triggs, 2005]. Following their approach, Figure 3.4 shows the result

in a Detection Error Tradeoff curve on a log-log scale. Note that our actively trained SVM

performs equally well with the best result by Dalal and Triggs. However, we use only 1200

actively selected pedestrian patches and only 5006 non-pedestrian patches, which is only

50% of the positive samples and 11% of the negative samples that Dalal and Triggs used.

We restrict the amount of positive samples for training to be only 50% of the available

positive data, mainly to show a large reduction of selecting positive samples. The randomly

trained SVM uses 1200 pedestrian patches and 5006 non-pedestrian patches all selected

randomly. It performs much worse than the other two. Our actively trained SVM selects

6206 samples and uses 4167 support vectors whereas the semi-actively trained SVM by

Dalal and Triggs uses 4271 support vectors and our randomly trained SVM uses only 888

support vectors. This indicates that the significant reduction in labelling requirements can

be achieved by active learning.
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Figure 3.4: DET curve on INRIA dataset. These Detection Error Tradeoff curves
show classification accuracy on the Dalal and Triggs pedestrian data. Our ac-
tively trained SVM uses only 6206 actively selected patches, as compared to the
whole training set of 47350 patches for the original SVM. The actively trained
SVM achieves a competitive performance with Dalal and Triggs while using
much less data, while random selection of the same amount of data gives worse
results.
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Chapter 4

Experiments with Active Learning
using an Internet Image Search
Engine

In this section, we demonstrate that our prototype active learning GUI enables fast, efficient

labelling to improve performance on data from the PASCAL VOC 2007. For comparison,

we first prepare our baseline detectors by training a latent SVM with HOG [Felzenszwalb

et al., 2009] on all twenty categories. The third column of Table 4.1 shows the average

precision of each category. Due to randomness in the training procedure, those numbers do

not exactly match with ones in [Felzenszwalb et al., 2009] even with the same parameter

settings, but they differ by less than 1 percent.

4.1 An adaptive interface for active localization
In this section, we introduce the active localization interface for our interactive labelling

system, ALOR (Active Learning for Object Recognition). Our interface iteratively presents

the most informative query windows to the user and allows the user to correct mistakes

made by the model. It is designed to work on any arbitrary user specified object category,

using web images it automatically collects from major web search engines such as Google,

Yahoo, and Flickr. Here, we demonstrate the interface on the “cow” category by using a set

of images from the Google Image search engine.
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We first collect a set of images from the Google Image search engine with query key-

words such as “cow.” We then use our cow detector that is trained with VOC 2007 data

as shown in Figure 3.2 and let the algorithm actively select each query. Figure 4.1 shows

some screen shots of our system interface, which describes four major cases for labelling

data. These cases are: (a) the window is indeed a cow, (b) the window is not a cow, (c)

the window is ambiguous, perhaps due to partial overlap, so the window should be ignored

for training, and finally (d) a user wishes to add a positive instance that was missed by the

classifier or correct false positives. The rectangular boxes (in red) are queries selected by

active learning with the minimum distance to the decision boundary. The green boxes are

positive classifications in the current image that were not selected as queries. These green

boxes are useful for giving the user feedback on the current classifier performance and to

allow the addition of rare training instances that may lie far enough away from the decision

boundary that they may otherwise never be detected or queried.

When a user wishes to add a training example that was not queried, they can simply

click on the image. This will select the window with the highest classification confidence

that contains the location of the mouse click. Therefore, the current classifier is still used to

select the best-aligned training window, and user effort is minimized.

The interface is written in Python and C and utilizes multi-core CPUs to speed up

the process and realize real-time interactions between a human user and a machine. Our

interface currently takes less than a second (on an 8-core machine) to update and determine

the next query windows upon receiving new labels, though the precise time depends on the

number of dimensions of visual features and the resolution of the image. The interactive

process has been sped up by precomputing image features, which we did in our experiments

shown in Table 4.1.

4.2 Experiments
Next we perform a pool-based active learning session using Algorithm 3.1 with our ac-

tive learning GUI to train these baseline detectors and improve their performance. With

our interface, we collect training images from Flickr, which was a source for VOC 2007

images. We used the Flickr Image API to obtain only images from after the competition

date of VOC 2007 to prevent the possibility of obtaining test data from the competition.

Our interface allows a human user to search images based on a query word such as “cow,”
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(a) Case 1: YES (b) Case 2: NO

(c) Case 3: MAYBE (d) Case 4: No target object

Figure 4.1: Screen shots of our interactive labelling system with our actively trained
LSVM. This figure shows a set of screen shots of our interactive labelling system.
In each case, the query window to be labelled is shown on the left, and the image from
which it was selected is shown on the right (with the query window highlighted in red).
(a) shows an instance when the query window is indeed a cow, so the appropriate answer
is YES. (b) shows an example bounding window that is not a cow, so the answer is NO.
Note that the bounding window partially covers a real cow, so it would not be obtained
from the usual approach of labelling negative images. (c) shows a query window where
it is hard to decide whether it is a cow, due to being largely occluded, misplaced, or
incorporating multiple cows, so the answer is MAYBE, in which case we can just skip
the query. (d) shows an instance in which an image does not contain any cow. In such
case, a human user can specify that all windows in the image are negative instances and
a machine selects only false positive windows.
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“motorbike,” etc. We collected the first 3,000 images from the Flickr database in each cat-

egory. Figure 4.2 shows some example Flickr images by the keyword such as “bicycle”

and “chair”. In order to further speed up the training process, we also cache visual fea-

tures, using our baseline detectors to scan images, and sort them based on the uncertainty

score in Equation 3.6 for the highest detection scoring window. It takes approximately 3-4

hours to search, download and scan 3,000 images (around 164 million bounding windows)

to generate the set of most-uncertain query windows. However, this preprocessing can be

done off-line with no human interaction. The effectiveness of active learning can be seen

in Figure 4.3 which shows the top 5 hardest and easiest actively selected query windows in

each category where ones that have a high uncertainty score are hard and ones that have a

low uncertainty score are easy . The top 5 easiest query windows in the bicycle category

contain target objects that are easily classified, whereas the top 5 easiest query windows in

the chair category do not contain any target objects. In the sofa category, the top 5 easiest

query windows include ones that contain easy target objects as well as ones without.

Table 4.1 summarizes the results and training data statistics. We downloaded in total

60,000 images from Flickr and annotated bounding windows in 300 actively selected im-

ages for each category based on uncertainty of the highest scoring detection window of

each image. We used the highest scoring detection window for sorting images in order to

get as many positive labels as possible from a large unlabelled data pool. We then con-

ducted two simulations. One is a common active learning approach where we answer just

300 query windows based on our uncertainty sampling criteria (ALORquery). The other is

a case of fully utilizing our interface where we are allowed to not only answer these 300

query windows but also add user selected query windows (ALORfull). It required only

about 20 minutes per class for a person using our interface to improve the results from the

first column and takes about 40 minutes to get the best performance improvement shown

in the third column. Note that a user selects roughly 100 ∼ 200 additional query windows

in each category, which are mostly erroneous or missed detections that are never selected

by the uncertainty criteria, but effectively presented by our interface. The best scores in

bold already exceed the best competition results (of any method) over 17 of 20 categories

from VOC2007 [Everingham et al., 2007]. The bottom row shows the mean AP score of all

categories for each method.

Figure 4.4 shows the performance comparison of both ALORquery and ALORfull in

a different number of training images. It shows that ALORfull consistently outperforms
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“Bicycle”

“Chair”

Figure 4.2: Some images from Flickr. This shows some example images returned
from Flickr’s image search by using the keyword “bicycle” and “chair”. Notice
a portion of unrelated images that are not suitable for training.
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BICYCLE (.537)
Hardest:

Easiest:

SOFA (.257)
Hardest:

Easiest:

CHAIR (.163)
Hardest:

Easiest:

Figure 4.3: Training images from Flickr, sorted for active learning. This shows
query windows for three categories. For each category, the top 5 hardest and
easiest actively selected query windows are shown.
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ALORquery, which indicates that user selected queries improve the overall detection per-

formance. More results in Table 4.2 demonstrate an impact of user selected queries on the

final classification performance. In the table, we show the result of ALORquery with 300

images and ALORfull with 100 and 300 images. For the cases of ALORfull, around 40 %

of queries are selected by a user. Those queries are often quite challenging for a machine to

choose, because they are often either erroneous or missed detections and distant from the

decision boundary of a latent SVM. A human oracle is quite helpful in such cases.

Figure 4.4: Performance comparison of ALORfull and ALORquery. Each point
represents the average number of additional positive labels and the average train-
ing time per category. By allowing a user to add additional queries, the perfor-
mance is consistently better. Note that just 53 labels from ALORfull outperform
140 labels from ALORquery.

Figure 4.5 presents the gain of our best result for each category in the average pre-

cision. From our experiments, we can make several observations. First, in most of the

categories, our active learning interface allows a user to quickly improve the performance
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of the baseline detectors. Second, our user interface also allows a user to achieve a bet-

ter performance than would be obtained by a simpler learning approach in which a user

answers Yes/No/Maybe queries for selected windows. A lot of difficult machine-selected

queries that a user is not sure about (4.1(c), for example) can be easily corrected with our

interface. Third, with less than 40 minutes of user input, we can achieve significant per-

formance improvement even over the best competition results. The PASCAL competition

has a section in which users can provide their own data, but the difficulty of collecting such

data means there have seldom been entries in that section. Our active learning approach and

GUI would enable users to efficiently collect useful data for improved performance in such

competitions or for real world applications.

In the boat, horse and person categories, our active learning approach did not provide

much improvement for the relatively small additional amount of training data. We observe

that both the boat and horse categories have a particularly heterogeneous dataset in both

the size and shape of the object. Some of those instances are presented in Figure 4.6. The

person category differs in that it already has so many object labels (4690, as opposed to the

median 346) that it likely requires many more labels than the few hundred we provide to

improve performance.

4.3 Conclusion
In chapters 3 and 4, we have presented an active learning system for object recognition and

localization. This work differs from active learning work for image classification in that

instead of learning a single classification for the image, our model can identify and localize

objects, including multiple instances of the object of interest in a single image. Our experi-

ments demonstrate that the active learning approach reduces the number of labels required

to train an object classifier without reducing performance over state-of-the-art classification

schemes. It also greatly reduces the human effort required to select image regions contain-

ing the object of interest by automatically finding the most useful windows in an image.

Our system is fast enough to be used interactively, and we demonstrate a prototype GUI for

active learning of object locations, which uses image windows to guide human labelling.

While our experiments show that our actively trained latent-SVM with HOG descriptors

works well with active learning, the system does not depend on a specific classifier or

feature set. If other classifiers, such as AdaBoost, or features are found to be more suitable
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LSVM+HOG ALORquery ALORfull
additional labels additional labels

object labels APs pos neg APs pos neg APs
aerop. 306 .268 209 27 .283 293 12 .282
bicyc. 353 .537 227 12 .548 359 26 .555
bird 486 .009 72 151 .048 172 134 .095
boat 290 .142 87 89 .144 162 69 .143

bottle 505 .245 133 100 .259 300 93 .294
bus 229 .376 108 26 .435 281 29 .504
car 1250 .463 97 104 .468 186 138 .489
cat 376 .143 108 3 .209 282 0 .224

chair 798 .163 139 66 .161 373 93 .180
cow 259 .173 133 63 .184 430 92 .254
table 215 .233 164 46 .295 233 67 .314
dog 510 .061 130 38 .125 235 33 .131

horse 362 .443 167 31 .398 321 69 .370
mbike 339 .393 229 8 .414 348 50 .431
person 4690 .344 47 183 .342 122 218 .344
plant 514 .117 136 26 .153 370 15 .169
sheep 257 .179 178 25 .257 512 68 .282
sofa 248 .196 161 49 .230 212 56 .257
train 297 .355 85 73 .354 184 111 .400

tvmon 324 .380 195 45 .371 321 69 .392
Mean AP .261 .283 .306

Table 4.1: Average precision on VOC2007 and training data statistics. This figure
shows the result of our experiments and training data statistics. The first section shows
the number of object labels in VOC2007 data and the result obtained by our implementa-
tion of the baseline latent-SVM with HOG [Felzenszwalb et al., 2009] on VOC2007 test
data (LSVM+HOG). The middle section shows the total number of additional positive
and negative labels and the AP score with these additional labels. We obtained the ad-
ditional data by using models from LSVM+HOG and our active learning GUI on only
300 actively selected images (one query per image, 300 queries in total) out of 3000 web
images for each category. This represents a common active learning approach with un-
certainty sampling criteria where a user is not allowed to add any additional queries and
is only queried by a machine (ALORquery). The last section shows additional labels
and AP scores on the same 300 actively selected images. But a user is allowed to fully
utilize our interface by not only answering queries from a machine but also adding his/her
own queries with our interface (ALORfull). The best AP scores are in bold face.
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Method

Avg.
Training
Time
(mins)

user selected machine selected Avg.
Mean
AP
(%)

queries queries additional labels
proportion

(%)
Avg.
distance

proportion
(%)

Avg.
distance

pos neg

ALORquery
300 images

20 0 NA 100 0.283 140.1 58.25 28.3

ALORfull
100 images

13 42 0.643 58 0.200 106.85 20.15 29.4

ALORfull
300 images

40 43 0.690 57 0.296 284.8 72.1 30.6

Table 4.2: Query statistics for ALORquery and ALORfull. The average distance rep-
resents the average distance per query to the decision boundary of a latent SVM. The
average training time, additional labels, and mean APs are measured per category. The
proportion of queries is the portion of the total number of queries in all 20 categories.
Note how user-selected queries influence on the final performance in average precision.

to a domain, we can incorporate them into our framework. We also believe that other

aspects of object classification can benefit from active learning, as the expense of labelling

is a ubiquitous problem in machine learning. Fast, efficient labelling can mean cheaper

experiments, faster development time, and higher-performance flexible object detectors.

Last but not least, our adaptive interface with active learning can easily scale up by

crowdsourcing and simulating live active learning with a human in a loop, which is similar

to the work by [Vijayanarasimhan and Grauman, 2011]. In our experiments, one active

learning session takes on average a few hours of computer time to train a mixture of de-

formable part models with a few hundred labelled bounding windows and around 2,000

negative images1 and an extra few hours to select candidate queries from a relatively small

pool of 3,000 unlabelled images. Therefore, there is an interval of at least around 5 hours

before the next iteration per object category. Furthermore, the waiting time also increases

roughly linearly with respect to the number of additional labels. Such an expensive com-

putational time for both training an LSVM and scanning a pool of novel data limits our

approach only to simulating a live active training based on a batch process rather than per-

forming the real live training where the model is updated on-line as labels are added.

1The training time for a particular version of an LSVM [Felzenszwalb et al., 2009] totally depends on the
size of the training data. Its complexity is O(NM) where N is the number of samples and M is the number of
feature dimensions.
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Figure 4.5: Category-wise breakdown of gain in average precisions: VOC base-
line vs VOC baseline + ALOR. This figure is best viewed in colour. This
shows the improvement for our active learning framework for each category,
where a red bar represents an improvement in the average precision and a num-
ber in the blue font is the baseline average precision.
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BOAT

HORSE

Figure 4.6: Heterogeneous shapes and sizes. This shows screen shots of VOC
test images. The shots in the top row are for the boat category and those in the
bottom row are for the horse category. Yellow boxes are ground truth.
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Chapter 5

Multi-target Tracking in Sports
Video

In chapters 3 and 4, we show that our active learning approach, which uses a novel interface

to combine machine intelligence with human interventions, effectively improves a state-of-

the-art classifier [Felzenszwalb et al., 2009]. The following Chapter 6 will extend the idea to

a novel self-learning system that is capable of improving localization of objects of interest

in sparsely labelled videos. Unlike static images, videos are much more structured because

each image frame in a video sequence has a strong spatio-temporal relation to subsequent

image frames. For exploiting such structured data, one of the major extensions we have is a

multi-target tracking system which connects a spatio-temporal link of labels over multiple

image frames.

In Section 5.1, we first introduce our previous work on a multi-target tracking system

called the Boosted Particle Filter (BPF) [Lu et al., 2009; Okuma et al., 2004]. Section 5.2

compares the performance of BPF with a more recent collaborative work on another multi-

target tracker [Lu et al., 2011], which also takes a tracking-by-detection approach by taking

detection results of the Deformable Part Model [Felzenszwalb et al., 2009] and using a

Kalman filter to produce tracklets (i.e., sequences of bounding windows). Instead of com-

paring theoretical differences between these two filtering approaches, we focus primarily on

a practical aspect of tracking algorithms by addressing implementation differences, design

issues and their impact on the performance.
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5.1 Boosted particle filter

5.1.1 Statistical model

In non-Gaussian state-space models, the state sequence {xt; t ∈ N},xt ∈ Rnx , is assumed

to be an unobserved (hidden) Markov process with initial distribution p(x0) and transition

distribution p(xt|xt−1), where nx is the dimension of the state vector. In our case, x =

{lx, ly, ls} where {lx, ly} represents the location of the player, and ls represents the size

of the player in the image coordinate system. The observations {yt; t ∈ N},yt ∈ Rny ,

are conditionally independent given the process {xt; t ∈ N} with marginal distribution

p(yt|xt), where ny is the dimension of the observation vector.

Letting y1:t , {y1 . . .yt} be the observation vectors up to time t, our goal is to estimate

p(xt|y1:t), the probability of the current state xt given y1:t, which can be solved by the

following Bayesian recursion [Doucet et al., 2001]:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

=
p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1∫
p(yt|xt)p(xt|y1:t−1) dxt

(5.1)

In our tracking system, this transition distribution p(xt|xt−1) is a combination of a first-

order dynamic model and a second-order autoregressive dynamic model (i.e., a constant

acceleration) with additive Gaussian noise. The observation likelihood p(yt|xt) is defined

in the following section.

5.1.2 Observation likelihood

Our observation model consists of colour and shape information which is encoded by the

HSV colour histogram and the HOG descriptor, respectively. We compute the observation

likelihood by

p(yt|xt) ∝ phsv(yt|xt) phog(yt|xt) (5.2)

For the HSV colour model, we use a combination of a 2D colour histogram based on

Hue and Saturation and a 1D colour histogram based on Value as it is shown in Figure 5.1.
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Colour histogram of a player (TOP: white uniform BOTTOM: red uniform)

Figure 5.1: HSV Colour histograms. This figure shows two different colour his-
tograms of selected rectangular regions. The first 2D histograms are Hue and
Saturation histograms. The other 1D histograms are Value histograms. Both 2D
and 1D histograms have Z axis and Y axis respectively for the normalized bin
value (both histograms are normalized such that all bins sum to one). The player
on top has a uniform whose colour is the combination of dark blue and white and
the player on bottom has a red uniform. Although one can clearly see concen-
trations of colour bins due to the limited number of colours, this figure shows a
clear colour distinction between two players.

The distribution of the colour likelihood is given as follows:

phsv(yt|xt) ∝ e−λcξ[K
∗,K(xt)] (5.3)

whereK(xt) is the HSV colour histogram computed at xt,K∗ is the template for the HSV

colour histogram, and ξ(·, ·) is the diffusion distance [Ling and Okada, 2006]. We fix the

scaling constant λc = 10 throughout our experiments.

We use a 3D histogram based on the magnitude of gradients in both the x and y direction
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and their orientations for the HOG descriptor. Then the following likelihood distribution is

given:

phog(yt|xt) ∝ e−λsξ[H
∗,H(xt)] (5.4)

where H(xt) is the HOG descriptor computed at xt, H∗ is the template for the HOG

descriptor, and ξ(·, ·) is the diffusion distance [Ling and Okada, 2006]. We fix the scaling

constant λc = 10 throughout our experiments.

5.1.3 Particle filtering

Since the observation likelihood (Equation 5.3) is nonlinear and non-Gaussian, there is no

analytical solution for the Bayesian recursion Equation 5.1. Instead, we seek an approxi-

mation solution, using particle filtering [Doucet et al., 2001].

In standard particle filtering, we approximate the posterior p(xt|y1:t) with a Dirac mea-

sure using a finite set of N particles {x(i)
t , w

(i)
t }Ni=1. To accomplish this, we sample candi-

date particles from an appropriate proposal distribution

x
(i)
t ∼ q(x

(i)
t |x

(i)
1:t−1,y1:t) for i = 1 . . . N (5.5)

In the simplest scenario, it is set as q(x(i)
t |x

(i)
1:t−1,y1:t) = p(x

(i)
t |x

(i)
t−1), yielding the boot-

strap filter [Doucet et al., 2001]. However, a smarter proposal distribution can be employed.

The following section will discuss this issue.

The weights associated with these particles according to the following importance ratio:

w
(i)
t = w

(i)
t−1

p(yt|x(i)
t ) p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
1:t−1,y1:t)

(5.6)

We resample the particles using their importance weights to generate an unweighted ap-

proximation of p(xt|y1:t). The particles are used to obtain the following approximation of

the posterior distribution:

p(xt|y1:t) ≈
N∑

i=1

w
(i)
t δ

x
(i)
t

(xt) (5.7)
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5.1.4 Boosted particle filter

It is widely accepted that proposal distributions that incorporate the recent observations

(in our case, through the Adaboost detections) outperform naı̈ve transition prior proposals

considerably [Merwe et al., 2000; Rui and Chen, 2001]. Here, we introduce the Boosted

Particle Filter [Lu et al., 2009; Okuma et al., 2004] that incorporates the current detections

of hockey players to produce a better proposal distribution q(x(i)
t |x

(i)
1:t−1,y1:t).

Adaboost Detection

In order to detect hockey players in the current frame, we adopt the cascaded Adaboost

algorithm of Viola and Jones [Viola and Jones, 2004], which was originally developed

for detecting faces. In our experiments, a 23 layer cascaded classifier is trained to detect

hockey players. In order to train the detector, a total of 5609 figures of hockey players is

used. These figures are scaled to have a resolution of 24 × 24 pixels. We hand annotate

figures of hockey players to use for the training as shown in Figure 5.2. Unlike the detector

used in [Okuma et al., 2004], our trained Adaboost classifier produces few false positives

(i.e., a few false positives in several thousand frames) even alongside the edge of the rink

where most false positives appeared in [Okuma et al., 2004]. More human intervention

with a larger and better training set leads to better Adaboost detection results, although

localization failures would still be expected in regions of clutter and overlap. The non-

hockey-player sub-windows used to train the detector are generated from over 300 images

manually chosen to contain nothing but the hockey rink and audience. Since our tracker is

implemented for tracking hockey scenes, there is no need to include training images from

outside the hockey domain. Suffice it to say, exploiting such domain knowledge greatly

reduces the false positive rate of our detector.

The results of using the cascaded Adaboost detector in our hockey dataset are shown in

Figure Figure 5.3. The cascaded Adaboost detector performs well at detecting the players

but often gets confused in a cluttered region with multiple players and ignores some of

players.

Proposal Distribution with the Adaboost Detections

It is clear from the Adaboost detection results that they could be improved if we considered

the motion models of the players. In particular, by considering plausible motions, the num-
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Figure 5.2: Training data for the Adaboost detector. Training data for the Ad-
aboost detector are hockey player patches in various poses

(a) (b) (c)

Figure 5.3: Hockey player detection results. This figure shows results of the Ad-
aboost hockey detector. (a), (b), and (c) show mostly accurate detections. Please
note that there are players who are not detected and some of the boxes do not
cover the entire figure of the player (i.e., a box is too small to cover a lower part
of the body)

ber of false positives could be reduced. For this reason, the Boosted Particle Filter (BPF)

incorporates the Adaboost detection in the proposal mechanism of the particle filters. The

expression for the proposal distribution is given by the following mixture.

q∗BPF (x
(i)
t |x

(i)
1:t−1,y1:t) = αadaqada(x

(i)
t |yt) + (1− αada)p(x(i)

t |x
(i)
t−1) (5.8)

where qada is a Gaussian distribution centered in the Adaboost detection with a fixed vari-

ance (See Figure Figure 5.4). The parameter αada can be set dynamically without affecting

the convergence of the particle filter (it is only a parameter of the proposal distribution

and therefore its influence is corrected in the calculation of the importance weights). When

αada = 0, our algorithm reduces to the bootstrap particle filter. By increasing αada we place

more importance on the Adaboost detections. We can adapt the value of αada depending on
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Figure 5.4: Mixture of Gaussians for the Proposal Distribution.

tracking situations, including cross overs, collisions and occlusions. We set αada = 1 for

implementing a boosted particle filter throughout our experiments.

Since there is no guarantee that the Adaboost detector detects all targets in the scene,

the detection results can be sparse over time. The performance of BPF is, however, much

better when there are many detections densely over time. One way to further improve the

performance of BPF is to use an additional proposal mechanism other than the Adaboost

detector. Thus, we use a mode-seeking algorithm similar to mean shift [Comaniciu and

Meer, 2002] to find a local maximum of the HSV and HOG observation likelihoods and

employ a Gaussian distribution centered in the local maximum as a new proposal distribu-

tion. This proposal is not as reliable as the Adaboost detections; however, it is often better

than the transition distribution which cannot accurately model the dynamics of the targets

due to the moving camera. Therefore, we use a mode-seeking proposal as an alternative

whenever mixture proposals with the detection results are not available (i.e., no detections

nearby a target).

5.1.5 Multi-target tracking

Boosted Particle Filters perform multi-target tracking by running multiple independent

BPFs for every target in the scene. Briefly, the targets are detected and initialized by using

the cascaded Adaboost detector described in Section 5.1.4. Then, BPF is applied to estimate

the posterior distribution over xt+1. To update the posterior distribution over {st+1, zt+1},
we compute the mean x̄t+1 of the posterior distribution p(xt+1|yt+1), and extract the image
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patch ȳt+1 located in x̄t+1.

There are also mechanisms to remove and merge the targets. The targets will be re-

moved either when their Adaboost confidence is lower than a threshold, or when the bound-

ing boxes are out of the image. The merge operation is performed when there is significant

overlap between two bounding boxes. The mean of the two bounding boxes will be com-

puted and the target with the lower Adaboost confidence will be removed.

5.2 Comparisons between BPF-Adaboost and KF-DPM
This section presents differences between the Boosted Particle Filter and a more recent

Kalman filter tracker from [Lu et al., 2011] in terms of their implementations and track-

ing performance in our hockey video. Section 5.2.1 explains implementation differences

between these two trackers. Section 5.2.2 presents tracking results of both trackers and

compares their performance. Throughout this section, we abbreviate the Boosted Particle

Filter as BPF-Adaboost and the Lu et al. [2011] tracker as KF-DPM since it uses the De-

formable Part Model by [Felzenszwalb et al., 2009] for detecting hockey players instead of

the Adaboost detector in the case of BPF.

5.2.1 Implementation differences

There are several implementation differences between BPF-Adaboost and KF-DPM. Here,

we highlight the differences that particularly influence their tracking performance on our

hockey video.

Player detection

BPF and KF-DPM are both tracking-by-detection approaches. However, these approaches

use different models for detecting hockey players. BPF uses the Adaboost detector by Viola

and Jones [2004] and KF-DPM uses the deformable part model (DPM) by Felzenszwalb

et al. [2009]. Table 5.1 shows detection results by both detectors. The table clearly shows

that the DPM detector has a better performance than the Adaboost detector in terms of

precision and recall. This is mainly because the DPM detector has a rich representation of

a deformable part model rather than a single template of Histogram of Oriented Gradients.

The Adaboost detection result is used in the mixture proposal distribution for BPF as in

Section 5.1.4. The DPM detection bounding windows are used as observations in filtering
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process of the Kalman fitler [Kalman, 1960].

method Prec(%) Rec(%)
Adaboost
[Viola and Jones, 2004]

82.6 64.1

Deformable Part Model (DPM)
[Felzenszwalb et al., 2009]

84.7 77.7

Table 5.1: Detection comparison of Adaboost and DPM. This table compares
detection results of the Adaboost detector and the DPM detector in static images
from our hockey video. In both precision and recall, the DPM detector has a better
performance. There is a noticeable difference in recall between these detectors.

Filtering

Both BPF-Adaboost and KF-DPM use a probabilistic filtering method for tracking hockey

players. As in Section 5.1.3, BPF-Adaboost uses an approximate solution, using particle

filtering [Doucet et al., 2001] for the Bayesian Recursion in Equation 5.1, whereas KF-

DPM uses the Kalman fitler [Kalman, 1960]. The major differences, aside from theoretical

differences between the particle filter and Kalman filter, are the observations {yt; t ∈ N}
and the transition distribution p(xt|xt−1).

BPF-Adaboost uses colour and shape information for the observations which are en-

coded by the HSV colour histogram and the HOG descriptor (Section 5.1.2) and incorpo-

rates Adaboost detections in the mixture proposal distribution (Section 5.1.4). KF-DPM

uses only detection results from the DPM detector as the observations. Although KF-DPM

uses less appearance information of the target objects in filtering, it benefits from being less

influenced by misleading appearance information, especially when hockey players with a

similar appearance are occluded by each other.

The dynamical system of the state sequences is different in BPF-Adaboost and KF-

DPM. BPF-Adaboost uses a combination of a first-order dynamic model and a second-order

autoregressive dynamic model (Section 5.1.1). KF-DPM uses a linear-Gaussian distribution

p(xt|xt−1, t) = N (xt|tat+bt,Σx), where linear regression parameters (at, bt) are learned

on-line from the history of posterior mean estimates. Therefore, BPF-Adaboost considers

up to the second-order dynamics while KF-DPM considers the history (up to t− 10 in our

experiments) of posterior mean estimates.
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5.2.2 Performance comparison

We tested BPF-Adaboost and KF-DPM in our hockey video that contains 1,000 frames.

Table 5.2 defines metrics for evaluating tracking results. Table 5.3 shows results of perfor-

mance comparison between these two trackers. In this table, KF-DPM clearly outperforms

BPF. We suspect that implementation differences in Section 5.2.1 created this performance

gap between these two trackers.

Firstly, KF-DPM uses better detection results by the Felzenszwalb et al. [2009] detec-

tor, which has a slightly higher precision and a much higher recall. Therefore, KF-DPM

has an advantage of using much denser detection results and thus ends up with much higher

precision and recall (by almost 30%) than BPF. Secondly, KF-DPM focuses more on the

motion of targets rather than their appearance information. Its transition distribution con-

siders a longer history of target trajectories and, as a result, reduces the number of identity

switches (IDS). BPF, on the other hand, incorporates both the appearance information and

the motion of targets. In our hockey data, the appearance information of hockey players

seems to be misleading, especially in occlusions, because hockey players do have a similar

shape and even a similar colour if they are in the same team.

Based on these comparisons, we chose KF-DPM as the tracker of our self-learning

framework in the next chapter. In addition, KF-DPM is a simpler, light-weight probabilistic

filtering approach which does not require a stochastic sampling process.

Name Definition
Precision(%) No. of correctly matched objects / total No. of output objects.

Recall(%)
No. of correctly matched objects / total No. of ground-truth ob-
jects.

FA No. of false alarms per frame. The smaller, the better.

MT(%)
Percentage of ground-truth trajectories which are correctly cov-
ered by tracker output for more than 80%

ML(%)
Percentage of ground-truth trajectories which are correctly cov-
ered by tracker output for less than 20% The smaller, the better.

IDS
Total No. of times that a tracked trajectory changes its matched
ground-truth identity. The smaller, the better.

Table 5.2: Various metrics for tracking evaluation.
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method Prec(%) Rec(%) FA MT(%) ML(%) IDS

BPF-Adaboost
65.5
(±21.4)

50.8
(±16.6)

2.30
(±1.42)

16.0
(±12.0)

25.7
(±9.6)

37.0
(±5.1)

KF-DPM
[Lu et al., 2011]

91.8 79.7 0.61 56.3 20.8 27

Table 5.3: Performance comparison of BPF-Adaboost and KF-DPM in our
hockey video. This shows the tracking result of BPF-Adaboost and KF-DPM
[Lu et al., 2011] over a hockey sequence of 1,000 frames. Although KF-DPM
uses a Kalman filter with linear-Gaussian dynamics, its tracking results are better
than BPF-Adaboost in all aspects. Note that we had 10 runs of BPF-Adaboost
since it is a probabilistic method that uses stochastic sampling process. Means
with one standard deviation are presented.

5.3 Conclusion
In this chapter, we especially focus on a practical aspect of tracking algorithms by analysing

implementation differences and design issues between two different probabilistic tracking-

by-detection algorithms — BPF-Adaboost with adaboost detections and KF-DPM with de-

tections of deformable part models. It is important to know that these design choices matter

significantly on the final performance of tracking algorithms. It is rather surprising that KF-

DPM, which is a light-weight, simpler deterministic algorithm, outperforms a more compli-

cated, feature rich implementation of BPF-Adaboost. Regardless of theoretical differences

between these two filtering algorithms, we demonstrated how careful design choices and

implementations impact largely on the performance of tracking algorithms.

It is possible to design and implement BPF differently with detections of the deformable

part model, a different observation model and dynamical model. However, when a specific

implementation of a simpler, deterministic algorithm such as KF-DPM works well, we

choose not to engineer implementations of a rather more complex, approximation algorithm

such as BPF-Adaboost.
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Chapter 6

Self-Learning for Player Localization
in Sports Video

Recent advances in object detection have enabled machines to detect many classes of ob-

jects. Statistical models based on the appearance of these classes such as faces, pedestrians,

and cars — trained from extensive training sets and generalized with low error rates to un-

seen data in a highly generic manner — have been widely applied in the real world. Modern

digital cameras often have a built-in face detection system to automatically focus on faces.

Pedestrian detection has been employed for monitoring surveillance videos and supporting

safer driving of cars. Behind the successful history of object detection systems, these statis-

tical methods pose a major drawback — which is the issue addressed here, that they require

a large amount of training data. In order to achieve performance levels that are high enough

for practical applications, it is common that more than a million labelled instances are used

for the training.

One way to resolve this issue is to employ abundant unlabelled data. In Chapters 3

and 4, we show that our active learning approach, which uses a novel interface to com-

bine machine intelligence with human interventions, effectively improves a state-of-the-art

classifier of [Felzenszwalb et al., 2009] by using additional unlabelled data from the Web.

As the approach relies on input from a human oracle to improve its performance, there is

still room to further reduce the amount of human labelling effort. An ideal solution is, if

possible, to have no human involved in acquiring extra labels from novel data.

With abundant unlabelled data, crowdsourcing is a powerful tool to utilize extensive
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human labour efficiently without much cost for obtaining abundant labels. LabelMe [Rus-

sell et al., 2008] and other interactive user interfaces on Amazon Mechanical Turk such as

one by [Sorokin and Forsyth, 2008] and the Visipedia project [Welinder and Perona, 2010]

are the front line of the work that addresses inexpensive acquisition of labels from a large

pool of thousands of unlabelled images. Recently, crowdsourcing has also been utilized

for annotating a collection of video data. Interactive annotation tools on the Web such as

VATIC, a video annotation tool1 by [Vondrick and Ramanan, 2011; Vondrick et al., 2010]

and LabelMe video2 [Yuen et al., 2009] have become publicly available in the computer

vision community to foster large scale labelling of unlabelled video data. However, those

crowdsourcing tools are designed primarily for reducing the overall labelling cost of time

and money for obtaining labels from unlabelled data. They consider neither the impact

of each label for improved performance of a classification model nor reducing the size of

unlabelled data.

Another way to resolve the shortage of labelled data is to exploit both labelled and

unlabelled data. There has been, especially in recent years, a significant interest in semi-

supervised learning, which exploits both labelled and unlabelled data to efficiently train

a classifier. The growing demand for more labelled data in recent statistical models has

increased interest in semi-supervised learning mainly for its small labelling effort. Semi-

supervised learning approaches have shown success in various domains of problems such

as text classification [Nigam et al., 2000], handwritten digits recognition [Lawrence and

Jordan, 2005] and object detection [Ali et al., 2011; Leistner et al., 2007; Rosenberg et al.,

2005]. There is a vast amount of literature in methods of semi-supervised learning, which

originally dates back to the work of [Scudder, 1965]. For additional background, we rec-

ommend a book of [Chapelle et al., 2006] and a comprehensive literature survey of [Zhu,

2008].

In this chapter, we address how to maximize the impact of labels by mainly selecting

examples that are most likely misclassified by the current classification function, and to re-

duce the overall labelling cost by making the labelling process of novel data fully automatic.

The objective is therefore to introduce a computer vision system that not only is capable of

exploring unlabelled data and discovering an effective portion of the data for improving

object detection, but also is capable of automatically labelling them. For achieving this, we
1The source code and software demo are available from http://mit.edu/vondrick/vatic/
2The source code and software demo are available from http://labelme.csail.mit.edu/VideoLabelMe/
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consider related semi-supervised approaches in the context of object detection.

6.1 Weakly-supervised self-learning for player localization
Given sparsely labelled video data that consists of n different video sequences {Vi}ni=1, the

task is to train an initial model H : X 7→ Y from a small set of labels L = {(x1, y1), . . . ,

(xl, yl)} and exploit additional unlabelled data U = {xl+1, . . . ,xl+m} for improving the

model, assuming that x ∈ X , y ∈ Y , and l � m. In this chapter, we will use hockey

video data for learning an appearance-based model of hockey players. This can be viewed

as a weakly-supervised learning problem because we deal with videos without localization

of the target objects. Unlike most previous semi-supervised learning methods, we allow an

unconstrained, unknown number of players that appear in each frame of a video sequence.

We propose a semi-supervised learning approach of self-learning, which is the most tra-

ditional semi-supervised learning method [Chapelle et al., 2006], to lower the requirement

for extensive labelling. Self-learning is a wrapper algorithm that repeatedly uses a super-

vised learning method. It starts with a small set of labels to train the initial model. In each

iteration, the model is used to evaluate unlabelled data and to obtain predictions. The model

is then retrained with a selected portion of predictions as additional labels. This process is

repeated until some stopping criterion is met.

We adopt part-based learning approach for learning the shape of sports players and

the colour of their team. In order to use the temporal coherence of moving objects in

videos, we use a tracking-by-detection approach based on a Kalman filter and combine

motion information of objects with detection hypotheses based on the shape and colour

of objects. For pruning detection hypotheses that are difficult to validate based on the

motion and appearance of objects, the playing field is segmented from sports players based

on a segmentation model of the colour of the field. Our novel criterion for selecting the

unlabelled data therefore combines cues from figure-ground segmentation, object detection

and tracking. Figure 6.1 shows multiple stages of our self-learning framework. We show

that our approach is simple, yet effective in exploiting the unlabelled data for learning the

appearance of sports players in broadcast sports videos.

There are several reasons why we particularly focus on sports player detection in sports

videos. First, sports videos are highly structured because the domain knowledge is rather

specific (e.g, team colours, the player uniform, the colour of the playing field). But they are
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Figure 6.1: System overview. The figure is best viewed in colour. This shows the
overview of our self-learning system. Black boxes mean that models are not
updated during the training process and treated as a black box. The system takes
a sparsely labelled video with a small set of fully labelled image frames (ground-
truth labels are shown in yellow boxes) as input and trains initial classification
models. Our self-learning approach uses these models to explore the unlabelled
portion of data, collecting additional training labels and update these models for
improved performance. This process is repeated multiple times and produces a
more complete set of labels in colour-specific tracklets (i.e., blue for the New
York Rangers and red for the Montreal Canadiens) in the video.
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still challenging enough to be an interesting problem. For example, Figure 6.2 shows sev-

eral major challenges for detecting hockey players. Secondly, videos in sports — especially

team sports such as hockey (6 on-field players per team), basketball (5 on-field players per

team), and soccer (11 on-field players per team) — are a rich source of labels for learning

the appearance of sports players since each frame of a video almost always contains mul-

tiple labels. Exploiting such data leads to an efficient label acquiring process for training

a high performance object detector. Thirdly, accurate localization of sports players is a

fundamental requirement for tackling other interesting problems such as action recognition

and player recognition. Last but not least, to the best of our knowledge, our work is the first

large scale study of a self-learning framework for learning the appearance of sports players

in videos. We first explore hockey videos and then explore basketball videos later in this

chapter.

motion blur object pose occlusion illumination

Figure 6.2: Challenges in player detection.

6.1.1 System overview

Given a small set of labelled data, our goal is to improve classifiers automatically by dis-

covering additional labels from unlabelled data. Throughout the self-learning process, we

maintain two disjoint sets: a set of labelled bounding windows L and a set of unlabelled

bounding windows from unlabelled images U .

Our self-learning system has several stages as shown in Figure 6.1. The training pro-

cedure starts from initializing a small set of labelled images and a large set of unlabelled

images from sparsely labelled video data. Then the system iterates over the following steps.

First, a small set of labelled data is used to train initial models for detecting players and clas-

sifying their team colour (Section 6.3 and Section 6.4.1) Second, these appearance-based

models are applied to the unlabelled data and generate a set of detection bounding win-

dows. Third, these bounding windows are linked by a tracking algorithm and generate
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a set of tracklets (Section 6.5). Finally figure-ground segmentation is applied to validate

these tracklets. The resulting set of tracklets is used as additional labels to re-train current

classification models. Algorithm 6.1 summarizes this iteration process.

Algorithm 6.1 : Self-learning for player localization in videos
Given training video sequences {Vi}ni=1, randomly select m labelled images that contain
an initial set of labelled data L = {(x1, y1, c1), . . . , (xl, yl, cl)} where x is a window
descriptor, y is a class label, and c is a team colour label. The number of self-learning
sessions is set as ns = 5.

1: Initialize U with all image frames that are unlabelled in {Vi}ni=1.
2: for ns self-learning sessions do
3: Training classifiers:

Given labelled data L, train a part-based player detector (Section 6.3) and team
colour classifiers. (Section 6.4.1)

4: Player detection and team classification:
Run the player detector for unlabelled data U to get detection bounding windows.
Run team colour classifiers on those detection bounding windows and eliminate ones
that do not have any of team colour labels Figure 6.4.

5: Player tracking:
Run a Kalman filter to link detection bounding windows (Section 6.5) and obtain a
set of k tracklets {T }kj=1.

6: Data selection:
Select a new dataset Lnew. (Section 6.6)
L = L ∩ Lnew

7: end for

6.2 Semi-supervised learning in videos
Many algorithms in semi-supervised learning assume that the unlabelled data are inde-

pendent samples. However, frames of video are strongly related due to spatio-temporal

dependencies. In object detection, the task is to find one or more bounding windows, each

of which precisely determines the location and size of an instance of an object class in an

image. In a video sequence, the trajectory of object instances, defined by the location of the

bounding windows, suggests the spatio-temporal structure of subsequent labels.

In order to exploit the dependent structure of the video data, several tracking-by-detection

approaches [Babenko et al., 2009; Kalal et al., 2010; Leistner et al., 2011] have been pro-
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posed to learn an appearance model of an object from videos. These approaches have the

stringent assumption of having only one instance of the target object class in each frame of

a video sequence. Such an assumption strictly limits applications to detection of a single

instance of the target object class, where an instance with the highest confidence is iden-

tified as a positive label and all remaining instances are labelled as negative. For learning

the appearance of an object class such as pedestrians or faces, videos that contain multiple

pedestrians in each frame are much more effective than videos with one person in each

frame, because they have a dense collection of potential labels. But localization of multiple

target objects remains difficult, and it prevents most of tracking-by-detection approaches

from exploiting unlabelled data that are available from such videos. Nonetheless, there are

a few approaches that have considered exploiting unlabelled video data with multiple target

objects.

Ramanan et al. [2007] proposed a semi-supervised method for building a large col-

lection of labelled faces from archival video of the television show Friends. Their final

collection contains 611,770 faces, which is the largest existing collection of faces to date in

academia. Their approach used the Viola and Jones face detector to detect faces, grouping

them with colour histograms of body appearance (i.e, hair, face, and torso) and tracking

them using a part-based colour tracker for multiple people in videos. Although their ap-

proach is effective with large scale data, they performed only one iteration of exploring the

unlabelled data for building a large collection of faces and never used the acquired collec-

tion for improving the classifiers they used.

Very recently, [Ali et al., 2011] implemented self-learning on sparsely labelled videos,

which allows any number of instances of the target object class. Their approach exploits

spatio-temporal information of objects for improving an appearance-based object detector.

Given a sparse labelling of the video sequence, an initial model is trained by a boosting

algorithm with a small set of labelled instances. The rest of the unlabelled portion of the

video is used for collecting additional labels that are consistent with the current classifica-

tion model and with the constraint of continuous motion of target objects. Based on the

motion constraint, their approach extracted admissible trajectories of the target objects and

used them to distinguish positive instances from negative ones. After a few iterations of

this process, they showed noticeable improvement of performance on pedestrian detection

in videos as well as on cell detection in microscopy image sequences.

To the best of our knowledge, the work of [Ali et al., 2011] has been the first work that
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addresses localization of multiple target objects in videos for improving object detection.

However, their approach differs significantly from ours. They used a boosting algorithm

to exploit the temporal coherence of videos, whereas we adopt a latent SVM formulation

for learning the appearance of objects in our self-learning framework and use figure-ground

segmentation as additional information to validate the unlabelled data. Furthermore, we use

broadcast footage of sports which is much more challenging than their surveillance data of

a stationary camera view, where pedestrians are walking by with very simple, predictable

motions without any interactions.

6.3 Player detection
In order to detect hockey players, we adopt the recent latent SVM (LSVM) approach of

[Felzenszwalb et al., 2009]. The goal of a supervised learning algorithm is to take n training

samples and design a classifier that is capable of distinguishing M different classes. For a

given training set (x1, y1), . . . , (xn, yn) with xi ∈ <N and yi ∈ {−1,+1} in their simplest

form with two classes, LSVM is a classifier that scores a sample x with the following

function,

fβ(x) = max
z∈Z(x)

β · Φ(x, z) (6.1)

Here β is a vector of model parameters and z are latent values. The set Z(x) defines

possible latent values for a sample x. Training β then becomes the optimization problem

already presented in Equation 3.2. For obtaining a binary label for x, we have the decision

function, sign(h(x)), where

h(x) = fβ(x) + b (6.2)

The function h gives a raw LSVM score in real values. We approximate the posterior

probability P (y = 1|x) of the decision function in a parametric form of a sigmoid [Lin

et al., 2003; Platt, 2000]3.

P (y = 1|x) ≈ P (y = 1|f) =
1

1 + exp(fA+B)
(6.3)

3Lin et al. [2003] extended the original work of Platt [2000] and proposed an improved algorithm that
theoretically converges and avoids numerical difficulties.
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where f = fβ(x).

6.4 Colour classification
In sports, colour information such as the colour of the teams and the colour of the playing

field is one of the most useful sources of domain knowledge. We use a part-based colour

classification to identify the team colour of each player and figure-ground segmentation to

distinguish pixels of players from those of the playing field.

6.4.1 Team classification

Our shape-based deformable part model (DPM) gives a tight bounding window of the ob-

ject (i.e., a hockey player) as well as a set of smaller bounding windows of its corresponding

parts. Given these bounding windows as prior knowledge, the model learns a colour classi-

fication function based on deformable parts with the following function:

fγ(x) = γ · Φ(x, zβ) (6.4)

where γ is a vector of model parameters and zβ are latent values specified by the shape-

based DPM detector. Following [Lu et al., 2009; Okuma et al., 2004; Pérez et al., 2002], we

use Hue-Saturation-Value (HSV) colour histograms. Thus, a feature vector x is composed

of a set of HSV colour histograms, each of which hasN = NhNs+Nv bins and corresponds

to a unique part of deformable part models. A distribution K(R) , {k(n;R)}n=1,...,N of

the colour histogram in a bounding windowR is given as follows:

k(n;R) = η
∑

d∈R
δ[b(d)− n] (6.5)

where d is any pixel position within R, and b(d) ∈ {1, . . . , N} as the bin index. δ is the

delta function. We set the size of bins Nh, Ns, and Nv as 10. The normalizing constant

η ensures that all the bin values are [0, 1.0]. It is important to note that K(R) is not a

probability distribution and is only locally contrast normalized4, maxK(R) = 1.0. For

obtaining a binary label for x, we have the decision function, sign(h(x)), where

4In our experiments which are not shown here, we tested our classification model with the distribution of
the colour histograms which are normalized to be probability distributions. However, results were much worse
than ones with local contrast normalization.
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h(x) = fγ(x) + b (6.6)

We train a colour model for each team label: “MTL” for Montreal Canadiens, “NYR”

for New York Rangers, and “referee” for referees. Figure 6.3 shows two component de-

formable part models for the Montreal Canadiens team. The posterior probability of the

decision function for each colour classification model is approximated by fitting a sigmoid

function [Lin et al., 2003; Platt, 2000]. Finally, our team colour classification function is

formulated as the maximum likelihood of three binary colour classification models.

y∗ = argmax
y∈Y

P (y|x, zβ) (6.7)

where y is a team label and Y = {“MTL”, “NYR”, “ref”, “others”}. These part-based

colour models are highly discriminative since it uses the learned latent values zβ (i.e., lo-

cation and size of multiple parts of an object) based on the shape-based DPM detector.

Furthermore, these colour models are efficiently trained because they do not have to opti-

mize over a large space of latent values, which is the bottleneck of training the latent SVM.

For team colour classification, part-based colour models are particularly effective when

two teams, the Montreal Canadiens and the New York Rangers, have a similar distribution

of colours (e.g., red and blue) in their uniform (Figure 6.2). Figure 6.3 shows how multi-part

weighted histograms preserve the spatial information of colour distributions, where a single

holistic representation cannot. In the figure, there are two different part-based colour models

for the Montreal Canadiens, where each model has weighted multi-part colour histograms.

Parts with more discriminative colour are learned to have higher weights. Figure 6.4 shows

results of team colour classification, which improves detection results of the shape-based

model by suppressing those detection windows that do not have the learned team colour

labels. In this case, we had 79% precision and 57% recall without team classification (a)

and 89% precision and 54% recall with team classification by suppressing false positive

detection windows (b).

6.4.2 Figure-ground segmentation

For most sports, the background is relatively uniform and distinctive because the playing

field is specifically designed to be distinguishable from objects on the field. We developed
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root filter part filters

root filter part filters

Figure 6.3: Colour-based deformable part models. This shows a mixture of two part-
based colour models for the Montreal Canadiens team. For each model, the top row
shows the root filter, part filters, and deformation model. The second row shows cor-
responding image regions of the object. The distribution of their learned weights and
HSV colour histograms are shown respectively in the third and forth row. Note notice-
ably higher weights on those parts that are particularly discriminative for classification
(e.g., the second column in the top, the second and fourth in the bottom)
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(a) detection (b) detection + team colour classification

Figure 6.4: Player detection and team colour classification results. This figure
is best viewed in colour. This shows results of player detection and team colour
classification. Detection bounding windows are shown in green boxes in (a) with
their detection confidence in the upper left corner of these bounding windows,
and with team colour classification in red (Montreal Canadiens) and blue boxes
(New York Rangers) in (b). Note that team colour classification suppresses false
positive detections in the background.
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an interactive labelling tool to learn a figure-ground segmentation model based on a boost-

ing algorithm. Given a small set of manually labelled foreground pixels and background

pixels on the first image, we used the OpenCV5 implementation of Gentle Adaboost to

learn a set of 150 weighted decision trees6 where the maximum depth of these trees is 10.

We then use the initial model on an additional few images, interactively labelling wrongly

classified pixels and update the model with these additional labels. The process is repeated

a few times with no more than 5 images.

After training, we have the final decision function of the boosting model, H(di) =

sign(
150∑
l=1

αlhl(di)) where hl is a weak feature, αl is the corresponding weight and di de-

notes a pixel location (xi, yi) in an image Ij . The value of H(d) is positive when d is

classified as a foreground pixel which belongs to a player, and otherwise negative when d

is classified a background pixel which belongs to the playing field. Figure 6.5 shows the

result of figure-ground segmentation. Although it is not perfect, the result is strong enough

to eliminate most obvious false positive instances and refining a set of additional instances

of objects from unlabelled data.

In our informal experiments which are not shown here, we tested our self-learning

sessions with and without figure-ground segmentations in order to see the impact of our

proposed figure-ground segmentation model. The results showed that the impact of figure-

ground segmentations was small but not negligible, and produced an improved detection

performance with a few percent increase in average precision. This small increase was due

to the elimination of a small number of false positive detections on the play field that are

difficult to distinguish solely by the team classification.

We also tested a saliency measure called “objectness” in the recent work of [Alexe

et al., 2010] because it has been used in state-of-the-art weakly supervised approaches for

localizing generic objects [Deselaer et al., 2010; Lee and Grauman, 2011; Vezhnevets et al.,

2011]. “Objectness” is a trainable saliency measure that represents unique characteristics

of objects in terms of several image cues such as multi-scale saliency of the spectral domain

of an image, colour contrast, edge density and closed boundaries of an object. It combines
5We used the latest release of a library of programming functions for real time computer vision, OpenCV

2.3.1, which is accessible on the Web: http://opencv.willowgarage.com/wiki/.
6Learning and inference of the model can be further sped up by using decision stumps (i.e., one level

decision tree) instead of multi-level decision trees, or reducing the number of weak features. But the speed is
not an issue in our experiments since the figure-ground segmentation is done off-line.
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these image cues in a naı̈ve Bayes model and facilitates separation between the appearance

of the foreground class (i.e., hockey player in this case) and the background class (i.e.,

all encompassing background) where a higher “objectness” score to rectangular bounding

windows indicates the presence of the object of interest. However, “objectness” did not

work well in a hockey video mainly due to a small size of hockey players and weak contrast

of the colour of hockey players and the rink. Figure 6.6 shows failure results of “objectness”

on our hockey data. We trained the model from a set of 20 randomly selected hockey

images, using their off-the-shelf program7 with default parameters.

6.5 Player tracking
Once detected players have their team label, the next step is to associate detected bound-

ing windows into a set of “tracklets” where a tracklet represents a sequence of bounding

windows that share the same identity over time. To achieve this, we employ a tracking-by-

detection approach and adopt the tracking system of [Lu et al., 2011] based on a Kalman

filter [Kalman, 1960]. For multi-target tracking in sports, we have also developed a particle

filtering approach, called the boosted particle filter (BPF) [Okuma et al., 2004]. However,

we used Lu et al. [2011]’s Kalman filter tracking system because it is simpler than BPF and

also works better in sports data. In Chapter 5, we explain comparison results of BPF and

Lu et al. [2011]’s Kalman filter tracker in a hockey video.

In our self-learning process, we do not update parameters of a tracking model and treat

player tracking as a black box. Therefore, our system also works with other tracking-by-

detection approaches such as a data-driven MCMC [Khan and Shah, 2006], or the unscented

Kalman filter [van der Merwe et al., 2000].

Given a set of predicted detection bounding windows with their predicted team label

{(R1, c1), . . . , (Rn, cn)}, we divide the set into three subsets based on their team labels.

R = {x, y, w, h} denotes a rectangular box with the centre (x, y), width w and height

h. The team colour label is denoted by c ∈ {“MTL”, “NYR”, “ref”}. In each set of

colour-specific detection bounding windows, tracklets are initialized with the first predicted

bounding window for each target. To associate any detected bounding window to tracklets,

bi-partite matching is performed based on the following cost function:
7The source code is available from http://www.vision.ee.ethz.ch/∼calvin/objectness/
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Training: interactively labelled pixels

Test: frame 830

Test: frame 970

Figure 6.5: Figure-ground segmentation results. This is best viewed in colour.
It shows results of figure-background segmentation on the hockey rink. The
first row shows the mask image of interactively labelled pixels where the red
colour represents the foreground and the green colour represents the background.
Note that the image on the right shows sparse labels where a user can choose
misclassification pixels by the initial model that is trained on the first set of
labels on the left. The segmentation model is trained with 5 training images.
The middle and bottom rows show the results of segmentation by the trained
model.
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Figure 6.6: Results of “objectness” on hockey data. This shows results of “ob-
jectness” on two hockey images. The model is trained on a separate set of ran-
domly selected 20 images with ground truth annotations of bounding windows
for hockey players. Each image shows 10 highest scoring “objectness” bounding
windows in red where the brighter means the stronger “objectness”. Note that
“objectness” fails to find localization bounding windows for most of the hockey
players. There are a few successful cases only with players in the Montreal
Canadiens (i.e., red jersey) who have a higher colour contrast than ones in the
New York Rangers (i.e., white jersey).

Ci,j =
√

(Ri −Dj)T (Ri −Dj) (6.8)

where Ci,j is the cost of associating the i-th prediction bounding window Ri with the j-th

detection bounding windowDj = {x′, y′, w′, h′}.
In a Kalman filter, the state sequence {x̃t; t ∈ N}, x̃t ∈ Rnx̃ , is assumed to be a

linear dynamical process with a Gaussian initial distribution p(x̃0) and a Gaussian tran-

sition distribution p(x̃t|x̃t−1), where nx̃ is the dimension of the state vector. Here, x̃ =

{lx, ly, lw, lh} where {lx, ly} denotes the centre of the bounding box and {lw, lh} are its

width and height in the image coordinate system. The observations {ỹt; t ∈ N}, ỹt ∈ Rnỹ ,

are conditionally independent given the process {x̃t; t ∈ N} with a Gaussian marginal dis-

tribution p(ỹt|x̃t), where nỹ is the dimension of the observation vector. In our case, ỹ is a

detection bounding window that is associated by the bi-partite matching.

Following Lu et al. [2011]’s tracking system, the observation model is assumed to be

a Gaussian distribution centred at a detection window, p(ỹt|x̃t) = N (ỹt|x̃t,Σỹ). The

transition distribution is assumed to be a linear-Gaussian: Given the current time index t,

p(x̃t|x̃t−1, t) = N (x̃t|x̂,Σx̃) where the predictive bounding box x̂ is defined as follows:
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x̂ = tat + bt (6.9)

where linear regression parameters (at, bt) are both 4×1 vectors. These regression param-

eters are learned on-line based on the previous M posterior mean estimates by minimizing

the following least-square function:

min
M∑

i=1

(1− α)i‖(t− i)at + bt − x̃t−i‖2 (6.10)

where 0 ≤ α < 1 is a positive constant. When there aren’t enough training data (e.g.,

M < 10), the first-order auto-regressive dynamic model (i.e., x̂ = x̃t−1) is used. The

parameters of Σỹ and Σx̃ are set manually. After one-pass filtering through all detection

bounding windows, we obtain a set of k tracklets {T }kj=1.

6.6 Data selection
Thus far, a set of tracklets {T }kj=1 is obtained by combining detection and tracking results

of hockey players. These tracklets are used as a pool of candidate data C from which

we collect a set of training labels for improving generalized performance of classification

models. Since this selection process is fully automatic, we need a selection criterion which

effectively discovers additional training labels without accumulating incorrect labels.

Our selection criterion combines several image cues including detection, colour clas-

sification, tracking of players, and pixel-wise figure-ground segmentations. The selection

process is performed with the following steps. First, we prune away short tracklets with

less than 10 bounding windows because these tracklets are often produced by very sparse

detection results, and most likely include incorrect labels. After pruning, we have a re-

fined set of tracklets {T }mj=1 where m < k. We initialize a pool of candidate data C with

bounding windows of these tracklets. Second, we compute the shape confidence of these

predicted bounding windows by running our shape-based DPM detector on each bound-

ing box. Third, we compute a foreground score af ∈ [0, 1.0] to measure a proportion of

foreground pixels (i.e., player pixels) within each predicted bounding window Rp in the

candidate data C:

af =
1

area(Rp)

∑

di∈Rp

f(di) (6.11)
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where area(Rp) denotes the area of the bounding windowRp in terms of the total number

of pixels within the window, and f is a binary function which uses the decision value of our

figure-ground segmentation model H as follows:

f(di) =





1 if H(di) ≥ 0

0 otherwise
(6.12)

We use a foreground score af to determine whether or not the corresponding predicted

bounding window Rp is added to a set of additional data Lnew. For making this decision,

we use labelled data and derive a set of two thresholds τlower = µaf − σaf and τupper =

µaf + σaf where µaf is a mean foreground score and σaf is a standard deviation. These

thresholds represent how likelyRp contains the foreground object in terms of the proportion

of foreground pixels within the window and are computed based on all positive instances

in ground-truth data. Consequently, we add a predicted bounding window Rp to Lnew if

τlower ≤ af ≤ τupper.
The selected candidate data Lnew is added to labelled data L by simply taking the in-

tersection of these two datasets, L = L∩Lnew. This intersection produces many bounding

windows that significantly overlap with each other. We reduce these duplicates by priori-

tizing those instances in Lnew and discarding existing instances in L. Assuming that classi-

fication models improve every iteration, we utilize this process for eliminating some of the

incorrect localization labels. However, such an assumption may not hold if the selection

process accumulates too many noisy labels. In the following experiments, we empirically

show that our assumption still holds in our self-learning framework.
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Algorithm 6.2 : Data selection
Given a set of tracklets {T }kj=1 and a figure-ground segmentation model H , the goal is to
select a portion of data as candidate labels for the next iteration of self-learning as described
in Algorithm 6.1. Every iteration, we set the maximum number of additional labels to be
added as nmax = 2000.

1: Tracklet selection:
Discard any tracklet whose length is less than 10.
Initialize a pool of candidate data C with a set of all bounding windows from {T }mj=1.

2: Estimate the shape confidence of selected tracklets:
Run our shape-based DPM detector for each bounding window in C.
Sort them in the ascending order of the predicted shape confidence.

3: Apply figure-ground segmentation:
For each bounding window Rp in the sorted order, compute figure-ground segmenta-
tion score af Equation 6.11.

4: Final selection:
Select a new dataset Lnew.
Merge Lnew with the existing dataset L: L = L ∩ Lnew
but only selects no more than nmax additional labels that do not overlap with the current
set of labels.

6.7 Experiments
This section summarizes our self-learning experiments on hockey data.

6.7.1 Data

Our system was tested on our hockey dataset that consists of 7 different video sequences

which sum to 4,627 image frames of a broadcast footage. The data are split into two separate

sets: 3 sequences (2,249 frames in total) for training and 4 sequences (2,378 frames in

total) for testing. In the training data, the annotations are given in rectangular boxes with

the category label, identification (i.e., the number of their jersey) and team colour label.

Figure 6.7 shows screen shots of annotation examples in different image frames. There

are complex interactions among hockey players (i.e., occlusions and collisions), constant

movements of a broadcast camera and rapid motions of hockey players. They are potential

challenges for achieving localization of hockey players.

In our experiments, we prepared 8 different sets of fully labelled images: 7 sets of m

randomly selected fully labelled images where m = {5, 10, 20, 40, 100, 500, 1000} and the

88



Figure 6.7: Ground-truth annotation data for hockey players. This shows ex-
ample ground-truth annotation data of hockey players. The resolution of these
images is 960 × 540. Red bounding boxes are for the Montreal Canadiens and
blue bounding boxes are for the New York Rangers. Black bounding boxes are
for referees. Each player and referee has a unique combination of a team name
and a jersey number as they are shown in white characters at the centre of the
bounding box.

fully supervised set of all 2,249 images. For each initial labelled dataset, we first trained

the initial shape-based DPM detector and part-based colour classifiers. Then we applied

our self-learning framework to collect additional training labels from the unlabelled data

and improve initial classifiers iteratively up to four iterations. In the following sections, we

show results of player detection and tracking and improved performance with our system.

6.7.2 Player detection

We use the PASCAL VOC criterion [Everingham et al., 2010] for evaluating our detection

results because it has been well defined and widely used in the vision community. The

predicted detectionRp must satisfy the overlap ratio o betweenRp and the matched ground-
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truth bounding boxRgt to be over 50%:

o =
area(Rp ∩Rgt)

area(Rp ∪Rgt)
(6.13)

where area(Rp ∩ Rgt) represents the intersection of the predicted bounding box Rp and

the matched ground-truth bounding box Rgt and area(Rp ∪ Rgt) for the union of these

bounding boxes. The threshold of the overlap ratio is set at 50% to take some inaccuracies

in the ground-truth bounding boxes into account for evaluation. For instance, manually

labelled ground-truth bounding boxes may be somewhat subjective in a way that legs or

arms in some poses of hockey players may not be bounded by a rectangular window.

Detection results of a method are assigned to the ground-truth objects where a higher

confidence output has priority over the assignment in the case of multiple detections to the

same object. That is, multiple detections except for the highest scoring one become false

positive detections.

For the overall performance evaluation, the shape of the precision-recall curve is com-

puted by average precision (AP). Precision means the proportion of the output bounding

windows that have the positive class. Recall is defined as the proportion of the correctly

matched objects among all positive object instances in the ground-truth data. The AP rep-

resents the shape of the precision-recall curve, and is defined as the mean precision over a

set of 11 equally spaced recall intervals {0, .1, .2, . . . , 1.0} [Everingham et al., 2010]:

AP =
1

11

∑

r∈{0,.1,...,1.0}
pinterp(r) (6.14)

The precision pinterp at each recall level r is interpolated. The interpolation takes the

maximum precision measured for a method for which the corresponding recall exceeds r:

pinterp(r) = max
r̃:r̃≥r

p(r̃) (6.15)

where p(r̃) is the measured precision at recall r̃. The AP requires precisions at all levels

of recall and penalizes a method that has high precision only at a specific level of recall.

Therefore, average precision is a fair evaluation criterion of classification methods in object

detection.

Figure 6.8 shows the result of our system on our hockey data. We ran the entire process
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three times and show the mean and variance for each labelled dataset. The blue line shows

the baseline performance based on only fully supervised data. The red line shows the per-

formance after our system collected additional data from unlabelled frames of the video.

The results show a large performance gain — about 20% in the mean average precision —

in cases with a small amount of labelled images (e.g., 5 and 10 labelled images). However,

there is almost no performance improvement in larger labelled datasets (e.g., 100, 500, and

1,000 labelled images).

Table 6.1 shows the average number of labels used for each labelled dataset. In the

table, our self-learning system collected around 7,000 labels on average in the case of only

5 labelled images. A dataset of 1,000 labelled images also contains around 7,000 labels

on average. Using our self-learning system on 5 labelled images gives as much training

data as using a dataset of 1,000 labelled images. However, our self-learning system with

5 labelled images will not achieve the level of performance that is competitive with one of

1,000 labelled images as discussed below.

We suggest that there are two reasons for this performance gap. Firstly, our self-learning

system does not collect additional negative data because the presence of multiple object in-

stances of the same class in an image makes it difficult to distinguish player regions from

non-player regions in the image. Negative data are sampled from image regions that do not

significantly overlap with ground truth bounding windows. Therefore, our system never

used the unlabelled data as the source of negative data. However, it is possible to collect

negative data by filtering out some of detected bounding windows that neither belong to

trajectories of target objects nor agree with the shape and colour of the target object class.

The idea is similar to [Ali et al., 2011]. But our approach uses different models, and works

on videos that do not have a stationary background. Secondly, our additional positive data

contain noisy labels as shown in Figure 6.10. Noisy labels are mostly due to imperfect

localization that is especially evident in the least confident bounding windows. These noisy

labels may have had a negative impact on the detection performance. Therefore, collecting

more negative data may improve the detector and reduce noisy labels, improving the per-

formance even more. We consider collecting more negative data as a future direction of this

work.
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Figure 6.8: Detection result of our weakly self-learning system in hockey videos.
The blue line shows the baseline performance based on only labelled datasets.
The red line shows the performance after four self-learning iterations of collect-
ing additional labels from unlabelled data. The x-axis is in a logarithmic scale.
Note a large performance gain in the cases of 5 and 10 fully labelled images.

number of labelled images
5 10 20 40 100 500 1000 2249

SSL 38 71 142 284 723 3612 7028 16004
WSL 6909 7616 7925 8131 8578 11510 14109

Table 6.1: Average number of labels used for each labelled dataset. This table
corresponds to Figure 6.8. SSL is for the strongly supervised case and WSL is for
the weakly supervised case.
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6.7.3 Player tracking

Once some hockey players are detected and given their team label, we ran a Kalman filter

based tracker to take the detected bounding windows as input and to produce tracklets as

output (Section 6.5). For evaluating the tracking results, we used several metrics from [Li

et al., 2009]. Table 6.2 shows the name and definition of each evaluation metric.

Table 6.3 shows tracking results for four labelled datasets ({5, 20, 100, 500} images).

For each labelled dataset, we present tracking results in two scenarios. One is based on the

detected bounding windows of a model that is trained on labelled dataset (SSL). The other is

based on a model that is trained on both labelled and unlabelled data with our self-learning

system (WSL).

Name Definition
Precision(%) No. of correctly matched objects / total No. of output objects.

Recall(%)
No. of correctly matched objects / total No. of ground-truth ob-
jects.

FA No. of false alarms per frame. The smaller, the better.

MT(%)
Percentage of ground-truth trajectories which are correctly cov-
ered by tracker output for more than 80%

ML(%)
Percentage of ground-truth trajectories which are correctly cov-
ered by tracker output for less than 20%

IDS
Total No. of times that a tracked trajectory changes its matched
ground-truth identity. The smaller, the better.

Wrong IDs(%) total No. of objects that have a wrong ID
total No. of all ground-truth objects . The smaller, the better

Table 6.2: Tracking evaluation metrics

Several important points are observed from this table. Firstly, there is not much perfor-

mance difference in most cases. But in the case of 5 labelled images, there are performance

differences that indicate a substantial increase in the number of successfully tracked bound-

ing windows. A large gain in recall and a small decrease in precision indicate a denser

collection of tracking bounding windows. A large gain in MT and a large decrease in ML

indicate that there are more targets that are correctly tracked for a longer period of time.

A denser collection of tracked bounding windows resulted in an increase in FA, IDS and

Wrong IDs. Figure 6.9 shows the result of these performance differences. In the figure,

more hockey players are discovered and tracked successfully after four self-learning itera-
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method Prec(%) Rec(%) FA MT(%) ML(%) IDS
Wrong
IDs(%)

SSL
89.5
(±8.2)

44.1
(±23.6)

0.21
(±0.02)

18.7
(±14.4)

43.9
(±23.9)

13
(±7)

18.9
(±11.4)

WSL
89.1
(±6.3)

66.4
(±5.0)

0.66
(±0.50)

38.0
(±10.5)

27.0
(±0.9)

36
(±24)

32.0
(±4.1)

5 labelled images

SSL
91.5
(±1.7)

82.0
(±0.5)

0.56
(±0.13)

61.2
(±1.5)

15.4
(±0.8)

33
(±3)

39.6
(±1.5)

WSL
90.6
(±3.2)

82.2
(±2.6)

0.67
(±0.28)

64.3
(±4.9)

15.8
(±2.9)

35
(±12)

39.9
(±2.3)

20 labelled images

SSL
93.7
(±1.1)

83.8
(±0.5)

0.41
(±0.08)

63.6
(±1.5)

13.8
(±0.0)

27
(±4)

35.9
(±1.0)

WSL
93.0
(±0.8)

85.2
(±0.5)

0.47
(±0.07)

66.8
(±1.9)

13.1
(±0.5)

31
(±5)

37.5
(±1.7)

100 labelled images

SSL
94.5
(±0.9)

84.9
(±0.3)

0.35
(±0.07)

64.1
(±1.9)

13.5
(±0.5)

25
(±1)

38.8
(±1.1)

WSL
95.1
(±0.3)

85.1
(±0.2)

0.31
(±0.02)

68.7
(±1.6)

14.2
(±0.5)

22
(±1)

40.9
(±2.9)

500 labelled images

SSL 92.8 87.1 0.504 73.9 9.8 25 41.8
fully labelled images

Table 6.3: Hockey tracking results. This table shows tracking results in two sce-
narios: One is based on detection bounding windows of a model that is trained
with labelled data (SSL), and the other is based on detection bounding windows
of a model that is trained with our self-learning framework on both labelled and
unlabelled data (WSL). Table 6.2 explains each evaluation metric.
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tions of our system in the case of 5 labelled images. Secondly, the performance of tracking

hockey players quickly converges to the best performance in the case of fully labelled im-

ages (e.g., compare one in 500 labelled images and one in fully labelled images). This fast

convergence is also evident in the detection result of Figure 6.8.

6.7.4 Data selection

Thus far, we show that our self-learning approach improves the performance of detecting

and tracking hockey players in smaller labelled datasets such as 5 and 10 labelled images.

Figure 6.10 shows representative candidate bounding windows in each iteration of the self-

learning process. The figure shows the most confident bounding windows with a high detec-

tion score and the least confident bounding windows with a low detection score among can-

didate bounding windows that are selected by our data selection algorithm Algorithm 6.2.

The localization of hockey players is improved slowly in each iteration. The difference is

especially obvious between the iteration 1 and 4, where there is an improvement of 12% in

the average precision.

6.7.5 Computational time

Our experiments were performed on a 8-core (Intel Xeon 2.66GHz) machine with 32GB of

RAM. Figure 6.11 shows the average total number of CPU hours to complete our experi-

ments for both the strongly supervised and weakly supervised cases. The weakly supervised

case had four additional learning iterations on top of the strongly supervised case which re-

quired only one iteration for training and testing. It took about a week of CPU time to run

our system on all labelled datasets, where over 80% of time was spent for training a detector

and running it on both training and test images to obtain detection bounding windows. It

takes about 7 to 10 seconds to run our DPM detector on an image of 960× 540. For speed-

ing up the detection process, the size prior of hockey players was estimated from training

data and used to focus computational resources within a limited range of scales — in our

case, [µs − σs, µs + σs] where µs is the mean size and σs is a standard deviation. When

there is a large amount of labelled images (e.g., 500 and 1,000 labelled images), it took over

24 CPU hours on a 8-core machine without much performance improvement in detecting

and tracking hockey players.
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(a) Prior to self-learning (b) After self-learning
Figure 6.9: Screenshots of our tracking result in hockey videos. This shows our tracking

results on the test data. Column (a) uses detection inputs of a detector that is trained with
5 labelled images (SSL). Column (b) uses a detector that is trained with both labelled and
unlabelled data (WSL). Note that more players are discovered and tracked successfully
after four self-learning iterations. Frame numbers are shown in the upper left corner of
each image.
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most confident least confident

Iter 1
(.55)

Iter 2
(.62)

Iter 3
(.64)

Iter 4
(.67)

Figure 6.10: Most confident and least confident candidate bounding windows in
hockey videos. This shows the most confident (i.e., highest scoring detec-
tion) and the least confident (i.e., lowest scoring detection) candidate bounding
windows that are selected from unlabelled images in the training data by Al-
gorithm 6.2. The average precision of our detection model on the test data for
each iteration is shown in the parentheses. Note how the localization of hockey
players is improved from the iteration 1 to 4.
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Figure 6.11: Total train and test time in hockey data. This shows the total com-
putational time for training and testing our system on hockey videos. For the
weakly supervised case, there are four additional learning iterations, which
costs an additional number of hours on top of the strongly supervised case
which requires only one iteration for training and testing. The x-axis is in a
logarithmic scale.

6.8 Application to other sports video

6.8.1 Basketball

We also tested our system on basketball data, which consists of 7 different video sequences

which sum to 4,818 image frames of a broadcast footage. The data are split into two sep-

arate sets: 3 sequences (2,486 frames in total) for training and 4 sequences (2,332 frames in

total) for testing. The annotations are given in the same way as our hockey data. The only

difference is that there are only two team labels, {“Celtics”, “Lakers”} (i.e., no “referee”

label). Following our experimental settings in hockey data, we also prepared 8 different

sets of fully labelled images: 7 sets of m randomly selected fully labelled images where
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m = {5, 10, 20, 40, 100, 500, 1000} and the fully supervised set of all 2,486 images. For

each initial labelled dataset, we first trained the initial shape-based DPM detector and part-

based colour classifiers. Then we applied our self-learning framework to collect additional

training labels from the unlabelled data and improve initial classifiers iteratively up to four

iterations. We ran the system three times on the basketball data.

Overall, our experimental results were similar between hockey and basketball data.

Here, we highlight some important points:

• Detection: Figure 6.12 shows an improvement in the performance of detection when

there is a smaller amount of labelled dataset such as 5 and 10 labelled images. The

improvement is slightly better in basketball data because there is a clear separation

of the performance gap between the strongly supervised case and weakly supervised

case.

• Tracking: Table 6.5 shows the similar trend as Table 6.3. There is an increase in the

number of tracking bounding windows in the case of 5 labelled images as shown in

Figure 6.13. The tracking performance quickly converges with 500 labelled images.

• Data selection: Figure 6.14 shows an interesting result. The figure does not clearly

show an improvement in localization of basketball players, but the performance of

our detector in the average precision was improved in every iteration. There seems to

be a small improvement in localization of the least confident bounding windows.

• Computational time: Experiments in basketball data took longer than hockey data.

Figure 6.15 shows the average total time of CPU hours each run took. Since the

average size of basketball players is bigger than that of hockey players, detection

took longer in basketball data because there are more sliding bounding windows for

a model to evaluate.

6.9 Conclusion
In this chapter, we empirically show that our approach is particularly effective when there

is a very small amount of labelled data. In our experiments, our approach exploits both

labelled and unlabelled data in sparsely labelled videos of sports games and provided a mean
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Figure 6.12: Detection result of our weakly self-learning system in basketball
videos. The blue line shows the baseline performance based on only labelled
datasets. The red line shows the performance after four self-learning iterations
of collecting additional labels from unlabelled data. The x-axis is in a logarith-
mic scale. Note a large performance gain in the cases of 5 and 10 fully labelled
images.

number of labelled images
5 10 20 40 100 500 1000 2486

SSL 46 92 190 377 952 4687 9345 22958
WSL 7438 7793 8021 8232 8791 12606 17083

Table 6.4: Average number of labels used for each labelled dataset. This table
corresponds to Figure 6.12. SSL is for the strongly supervised case and WSL is
for the weakly supervised case.
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method Prec(%) Rec(%) FA MT(%) ML(%) IDS
Wrong
IDs(%)

SSL
95.3
(±1.5)

32.3
(±6.4)

0.15
(±0.06)

7.5
(±2.0)

35.8
(±15.0)

11
(±4)

12.0
(±4.4)

WSL
92.2
(±2.9)

68.8
(±3.7)

0.56
(±0.27)

25.8
(±1.2)

2.5
(±2.0)

50
(±15)

39.3
(±6.0)

5 labelled images

SSL
94.6
(±0.6)

71.4
(±1.3)

0.38
(±0.04)

28.3
(±1.2)

0.8
(±1.2)

39
(±3)

37.2
(±2.0)

WSL
93.6
(±0.7)

77.6
(±0.8)

0.50
(±0.07)

41.7
(±4.7)

0.0
(±0.0)

47
(±6)

38.8
(±2.5)

20 labelled images

SSL
95.6
(±0.8)

75.2
(±0.8)

0.33
(±0.06)

34.2
(±5.1)

0.8
(±1.2)

36
(±6)

39.2
(±1.5)

WSL
96.1
(±0.1)

75.8
(±1.0)

0.29
(±0.01)

38.3
(±3.1)

0.0
(±0.0)

39
(±2)

39.4
(±3.0)

100 labelled images

SSL
96.1
(±1.1)

77.1
(±0.4)

0.30
(±0.09)

41.7
(±3.1)

0.0
(±0.0)

39
(±6)

40.4
(±2.5)

WSL
96.6
(±0.5)

78.4
(±0.5)

0.26
(±0.04)

44.2
(±4.2)

0.0
(±0.0)

35
(±3)

42.0
(±1.0)

500 labelled images

SSL 96.1 80.2 0.306 47.5 0.0 34 37.4
fully labelled images

Table 6.5: Basketball tracking results This table shows tracking results for two cases:
One is based on detection bounding windows of a model that is trained with labelled data
(SSL), and the other is based on detection bounding windows of a model that is trained
with our self-learning framework on both labelled and unlabelled data (WSL). Table 6.2
explains each evaluation metric.
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(a) Prior to self-learning (b) After self-learning
Figure 6.13: Screenshots of our tracking result in basketball videos. This shows our

tracking results on the test data. Column (a) uses detection inputs of a detector that is
trained with 5 labelled images (SSL). Column (b) uses a detector that is trained with
both labelled and unlabelled data (WSL). Note that more players are discovered and
tracked successfully after four self-learning iterations. Frame numbers are shown in
the upper left corner of each image.
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most confident least confident

Iter 1
(.58)

Iter 2
(.60)

Iter 3
(.66)

Iter 4
(.67)

Figure 6.14: Most confident and least confident candidate bounding windows in
basketball videos. This shows the most confident (i.e., highest scoring de-
tection) and the least confident (i.e., lowest scoring detection) candidate bound-
ing windows that are selected from unlabelled images in the training data by
Algorithm 6.2. The average precision of our detection model on the test data
for each iteration is shown in the parentheses. Unlike hockey data, there is no
obvious improvement in localization. However, the performance of our detec-
tor in the average precision improved in each iteration.

performance improvement of over 20% in the average precision for detecting sports players

when videos contained very few labelled images. We adopt self-learning with a novel

selection criterion that combines several image cues such as the appearance information

(i.e., shape and colour) of players, the constraints on their motions, and the colour of the

playing field for discovering additional labels automatically from unlabelled data.
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Figure 6.15: Total train and test time in basketball data. This shows the total
computational time for training and testing our system on basketball videos.
For the weakly supervised case, there are four additional learning iterations,
which costs an additional number of hours on top of the strongly supervised
case which requires only one iteration for training and testing. The x-axis is in
a logarithmic scale.
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Chapter 7

Conclusions

This thesis has explored how to reduce the human effort in labelling images for the training

of object detectors. Statistical models based on the appearance of object classes such as

faces, pedestrians, and cars have been widely applied in the real world. However, these

statistical models have a major drawback in that they require a large amount of training

data. One way to resolve this issue is to make the process of label acquisition more efficient

by reducing costly human labelling efforts. To achieve this, we provide two solutions in the

thesis.

In Chapters 3 and 4, we show that our active learning approach, which uses a novel

interface to combine machine intelligence with human interventions, effectively improves

a state-of-the-art classifier by using additional unlabelled data from the Web. This novel

approach combines active learning with an adaptive interface to efficiently collect labels

for improving the generalized performance of classifiers. We are also the first to test an

active learning approach on the PASCAL 2007 dataset. Our experimental results show that

our approach improves a state-of-the-art classifier of [Felzenszwalb et al., 2009] by actively

selecting its own training data from a small portion (10%) of the image data pool, which

consists of over 60,000 images downloaded from Flickr image search.

As the approach relies on a small amount of input from a human oracle to improve its

performance, there is still room to further reduce the amount of human labelling effort. An

ideal solution is to have no humans involved in labelling novel data. Chapter 6 introduces

a novel self-learning framework that automates the label acquisition process for improving

models for detecting players in broadcast footage of sports games. Unlike most previ-
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ous self-learning approaches of improving appearance-based object detectors, we allow an

unknown, unconstrained number of target objects any time in a video sequence. Our self-

learning approach combines several image cues such as the appearance information (i.e.,

shape and colour) of players, the constraints on their motions, and the colour of the playing

field for discovering additional labels automatically from unlabelled data. Our experimen-

tal results show that our approach is particularly effective when there is very little labelled

data.

7.1 Toward the future of crowdsourcing
With abundant unlabelled data, crowdsourcing is a powerful tool to utilize extensive human

labour efficiently without much cost, but it is by no means without any drawback. Quality

control of crowdsourced annotations has been very difficult because a variety of anony-

mous workers set different levels of annotation quality. An additional infrastructure is often

required to organize these annotations, which also costs human labour.

To surmount this difficulty, most of the current crowdsourcing approaches focus on how

to reduce the overall cost of time and money for obtaining labels from unlabelled data with-

out losing the quality. LabelMe [Russell et al., 2008] and other interactive user interfaces on

Amazon Mechanical Turk such as the one by [Sorokin and Forsyth, 2008] and the Visipedia

project [Welinder and Perona, 2010] are the front line of the work that addresses inexpensive

acquisition of labels from a large pool of thousands of unlabelled images. In recent years,

however, ImageNet [Deng et al., 2009] has demonstrated extremely large scale high-quality

labelling1 and introduced a large-scale dataset that utilizes crowdsouring labour of Amazon

Mechanical Turk for collecting over 12 million images with ground-truth annotations.

Crowdsourcing has also been utilized for annotating a collection of video data. Inter-

active annotation tools on the Web such as VATIC, a video annotation tool2 by [Vondrick

and Ramanan, 2011; Vondrick et al., 2010], and LabelMe video3 [Yuen et al., 2009] have

become publicly available in the computer vision community to foster large scale labelling

of unlabelled video data.
1The ImageNet has been created through the crowdsourcing platform of CrowdFlower http://crowdflower.

com/, CrowdFlower is the world’s largest enterprise for crowdsourcing platform business and provides access
to 1.5 million contributors worldwide.

2The source code and software demo are available from http://mit.edu/vondrick/vatic/
3The source code and software demo are available from http://labelme.csail.mit.edu/VideoLabelMe/
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However, those crowdsourcing tools consider neither the impact of each label for im-

proved performance of a classification model nor reducing the amount of unlabelled data.

Our proposed approaches, including our adaptive interface with active learning in Chap-

ters 3 and 4 and self-learning framework in sports video in Chapter 6, address how to

reduce the cost of human labour for labelling data by reducing the overall amount of unla-

belled data as well as maximizing the impact of each label for improving the performance

of the object detection model.

Our adaptive interface with active learning demonstrated that the current annotation

standard of having only “YES” or “NO” answer is not as effective as allowing a user to in-

teract with the current classification model and direct queries by indicating where the query

should be in the form of bounding windows. We also showed that the quality of the label

data is important in order to maximize the performance improvement of a model. Active

learning with uncertainty sampling criterion is quite effective in eliminating unlabelled data

that are not effective for improved performance of a model, as we selected only the most

useful 10% (6,000 images) of 60,000 unlabelled images from the Web. Current crowd-

sourcing approaches may waste their resource on a large amount of labelled data that do

not give a further improvement of a model.

Our self-learning system realizes fully automatic acquisition of labels if a small amount

of label data is available. Ideally, the label acquisition process should be fully automatic,

which will be a difficult or impossible goal to achieve in general. Although we showed such

possibility in sports video, there are still many challenges that need to be resolved in order

to realize fully automatic acquisition of labels for solving the problem of generic object

detection.

In the near future, crowdsourcing will become a new paradigm of large scale study in

object detection. Vijayanarasimhan and Grauman [2011] have already attempted to train

an object detector with crowdsourced annotations from the Web and showed promising

results. It is very likely that more work will follow them and use crowdsourcing to obtain

labelled data for training statistical models. With the lessons we learned from this thesis, we

now believe that the future of crowdsourcing would be to combine human labour, machine

intelligence, and crowdsourcing all together. Then we would be able to not only reduce

the size of redundant unlabelled data, but also to maximize the impact of each label quite

effectively in massively parallel platforms of inexpensive human labour.
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7.2 Tradeoff between complexity and scalability
A tradeoff between complexity and scalability of models has become a major issue in

designing a machine vision system for recognizing generic objects, since researchers in

academia now have access to a large-scale database such as the ImageNet and the LabelMe.

This poses an interesting question — an overwhelming amount of data with simple algo-

rithms may be enough to solve problems without even using more sophisticated, complex

algorithms. Recently in linguistics, speech recognition and machine translation systems

based on n-gram language models outperformed systems based on grammars and phrase

structure. In computer vision, Torralba et al. [2007] have shown that, by using a large-scale

dataset of 79 million tiny (32× 32) image patches, simple non-parametric methods such as

nearest-neighbour algorithms can give reasonable performance on object recognition tasks

based on Euclidian distance of intensity. The work became a milestone in introducing the

power of large data with scalable simple models. When we enrich models for improving

their generalized performance, we need to make careful design decisions so that models

are still scalable with a large amount of data. In practical real-world applications, complex

models are often not preferred because they are expensive in learning and inference, and

are not scalable with a large amount of data.

7.3 Future directions
We conclude by introducing some avenues for further exploration:

• An adaptive interface with crowdsourcing: An immediate extension to our adap-

tive interface (Chapter 4) is to use the interface on the crowdsourcing platform of

Amazon Mechanical Turk. Unlike the conventional interface that only provides a

question to a worker, our interface allows real-time interactions between a worker

and a machine — letting a worker correct or add queries based on the current classi-

fication function. As shown in our experiments from Chapter 4, queries that correct

misclassifications of the current classifier have a much larger impact on the final clas-

sification performance. It is interesting to see how crowdsourcing workers would in-

teract with the current classification model and how much impact our interface would

have for improving the performance of the model.
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• More self-learning experiments with larger data: In Chapter 6, we used a set of

7 video sequences which sum to 4,627 image frames of hockey data and another

set of 7 video sequences which sum to 4,818 image frames of basketball data. An

obvious next step is to scale up these experiments. We manually annotated a much

larger dataset. For hockey, we have annotation data for the entire first period which

contains 36 sequences of short video clips that sum to 35,317 image frames (258,435

bounding boxes) in total. For basketball, we have the entire first quarter that contains

30 sequences of short video clips that sum to 20,579 image frames (184,821 bounding

boxes) in total. It will be interesting to see how a much larger pool of unlabelled data

influences the degree of performance improvement in our self-learning iterations.

• Exploiting more negative data: Our self-learning framework in Chapter 6 currently

does not collect any additional negative instances. The presence of multiple target

objects and audience surrounding the playing field makes it difficult to extract regions

of negative instances (i.e., non-player objects). However, it is possible to collect

negative data by filtering out some of detection bounding windows that do not belong

to trajectories of target objects.

• Exploring more data in sports: Given a small set of labelled data, our self-learning

framework is capable of training and improving a statistical model for detecting

sports players in broadcast footage. However, our model works well only for those

data that have a similar distribution as the training data. Even in the same sport, there

are data that are different in view points, the resolution of the image, and teams that

play in a game. Figure 7.1 shows screen shots of various video data. It is time-

consuming and not desirable to obtain labels every time we have new data in a dif-

ferent game. There are two straightforward ways to apply our self-learning approach

for reducing labelling effort. One is to manually obtain a very small amount of labels

from new data and to apply our approach to it. The other is to use models that are

already trained with other data for a similar class of objects. For our experiments

in Chapter 6, we used data from Figures 7.1(a) and 7.1(d). We can use these mod-

els as the initial model of our self-learning framework to explore more data such as

Figures 7.1(b), 7.1(c) and 7.1(e) where our initial models may initially have poor per-

formance. We could use a small amount of labelled data if the data contain different

teams with a different colour jersey, we cannot use previously trained colour models.
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(a) High Definition (HD) broadcast (960× 540) (b) NTSC broadcast
(320× 240)

(c) HD hand-held digital camera (852× 480)

(d) HD broadcast (960× 540) (e) HD broadcast (960× 540)

Figure 7.1: Variability of data in broadcast footage of sports games. This figure
presents various examples from hockey and basketball games. Each screen shot
contains different teams in a different game, and has a different resolution of an
image. The caption specifies the resolution of an image in parentheses.
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• Application to other domains of data: Last but not least, our self-learning ap-

proach is not limited to sports data. For instance, our self-learning framework can

improve models for detecting vehicles or pedestrians without much labelling effort.

Computer-based visual recognition systems have been applied for detecting near-by

obstacles such as other vehicles and pedestrians around a vehicle when other sensors

are not as effective. Smart cars have a built-in pedestrian detection system in order

to warn drivers when there are people on the road while driving, and when there are

pedestrians on the sidewalks while parking. Our approach can be applied to training

these models effectively with sparsely labelled videos.
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