
IQ: A Whole-System Instrumentation Framework for Post
Analysis

by

Wenhao Xu

B.Eng, Sichuan University, 2006

M.Eng, Tsinghua University, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

October 2012

c� Wenhao Xu, 2012

Abstract

Analyzing operating systems is a hard problem. Instrumentation can be used to
insert analysis code into executions of an operating system. IQ is a dynamic instru-
mentation framework for instrumenting the whole system. It records executions
of an operating system running in a virtual machine and decouples analysis from
executions of the operating system. IQ tools can do heavyweight analysis during
replays of executions and refine the analysis through continuous replay of the same
execution. IQ is a fine granularity framework that provides an API appropriate to
instrument operating systems. To our best knowledge, IQ is the first post-analysis
framework for instrumenting the whole system.

ii

Preface

Deterministic replay described in Chapter 3 is a collaboration work with Mihir
Nanavati.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Figures . v

Acknowledgments . vi

1 Introduction . 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Paper Organization . 2

2 Instrumentation Design . 4
2.1 Overview . 4
2.2 QEMU . 5

2.2.1 Binary Translation . 6
2.2.2 Memory Translation . 7
2.2.3 Device Emulation . 8

2.3 Instrumentation Points . 9
2.3.1 Translation . 9
2.3.2 Memory Watchpoint . 10
2.3.3 Memory Tracing . 11

iv

2.3.4 Function Return . 12
2.3.5 Context Switch . 13

2.4 Machine State Inspection . 13

3 Deterministic Replay . 15
3.1 Overview . 15
3.2 Timestamp . 16
3.3 Record . 16
3.4 Replay . 18

4 Evaluation . 19
4.1 Function Return Value . 19
4.2 Memory Analysis . 21
4.3 Retroactive Aspects . 24
4.4 Instrumentation Overhead . 24

4.4.1 Experiment Setup . 25
4.4.2 Overhead . 25

5 Related Work . 26
5.1 VAssert . 26
5.2 Aftersight . 26
5.3 PinOS . 27
5.4 Deterministic Replay . 27
5.5 Tralfamadore . 28

6 Conclusion . 29

Bibliography . 30

v

List of Figures

Figure 2.1 QEMU Binary Translation 6
Figure 2.2 QEMU Memory Translation 7
Figure 2.3 QEMU Device Emulation 8

Figure 3.1 Deterministic Replay . 17

Figure 4.1 Utilization Distribution . 22
Figure 4.2 Spatial Pattern - Include Reused Pages 23
Figure 4.3 Spatial Pattern - Exclude Reused Pages 23
Figure 4.4 Temporal Pattern . 24

vi

Acknowledgments

I am grateful to my supervisors, Andrew Warfield and Norm Hutchinson. Thanks
to their help, I had a great research experience and life in UBC.

I would like to thank Geoffrey Lefebvre from whom I learned lots of system
knowledge. Thanks to Mihir Nanavati for the collaboration work on deterministic
replay.

Thank you to my classmates in NSSL, who makes NSSL a fun place to work.
Thank you to my parents, sister, and girl friend. You always encourage me and

make me happy. I cannot do this without you.
Thank you to Brian Oki for reading my thesis draft and giving me good advice.
Thank you to all my friends. The time with you guys are always fun.

vii

Chapter 1

Introduction

1.1 Motivation
System programmers spend much time understanding legacy systems and the in-
teractions between their code and such legacy systems. The usual practice is to
run the system, observe what happens, debug the code and repeat the above steps.
When it comes to understanding the whole operating system, it is difficult to follow
the standard practice for the following reasons:

1. Non-Deterministic Behaviors. The execution of an operating system is non-
deterministic. Therefore, it is challenging to refine the analysis by reproduc-
ing the interesting facts or problems of operating systems.

2. Asynchrony. There are many asynchronous events going on in the system.
Manually stopping and debugging the system is problematic.

3. Context Interleaving. Different Contexts interleave and interact with each
other. For example, an interrupt context interleaves with a process execution
context. It is hard to analyze the causal relationship between these contexts.

System programmers could use state-of-the-art instrumentation tools to write
analysis tools to gather information from either operating systems or applications.
These tools, however, are not post-analysis tools. They are either unable to repro-
duce the execution of an operating system or lack the capability to refine analysis

1

Wenhao Xu

after the operating system execution.
IQ (Instrument-able QEMU) is an instrumentation framework for post-analysis

that helps system programmers to understand the interesting facts from executions
of an operating system. IQ makes use of deterministic replay to reproduce the
execution of an operating system. The analysis is written and executed afterward
during replay. Programmers can refine their analysis through continuous replay
over the same execution.

IQ is designed to be easy to use so that most programmers could benefit from it.
IQ achieves this by building itself on top of a fast machine emulator, QEMU [8]. It
is easy to set up to reduce the barrier for programmers to start using it. In addition,
instrumentation tools run in the user space. All the libraries available in the user
space can be used by IQ tools.

IQ provides fine-granularity instrumentation APIs to enable tools to instrument
the whole operating system. For example, tools can instrument every basic block
executed in the operating system by using the translation instrumentation point.
Also, IQ provides the context instrumentation point to make it easy to write context
aware analysis.

1.2 Contribution
To our best knowledge, IQ is the first post-analysis framework for instrumenting
the whole system. It does not only decouple the analysis from the execution of the
operating system, but also provides fine granularity APIs to instrument the recorded
execution. Therefore, IQ fits well for programmers to understand the execution of
operating systems.

Many IQ tools can be written independently from the operating system running
inside IQ. This reduces the programmers’ effort to port an analysis tool to another
operating system.

1.3 Paper Organization
We assume readers of this paper to be familiar with virtualization technology and
operating system concepts. Chapter 2 describes the design of the instrumentation
framework of IQ. Chapter 3 discusses the implementation of deterministic replay

2

of IQ. Chapter 4 evaluates IQ by describing several applications built on top of it.
Chapter 5 describes related work. Chapter 6 summaries our contributions.

3

Chapter 2

Instrumentation Design

2.1 Overview
There are usually two ways to analyze a running system, introspection and reflec-
tion. Introspection, also called self-observation, is a way that the system reads its
own state to do analysis. For example, Dprobe [16] is an introspection tool that
runs inside the kernel and analyzes the kernel. Reflection is a way to analyze the
running system from the underlying layer, also called the interpreter layer. Because
the underlying layer presents an abstraction to the upper layer, it can read the state
of the upper layer. For example, the virtual machine could know the page table
organization of a running operating system.

IQ instruments the guest operating system in a reflective way. This has the
following advantages:

1. Programmers don’t need to insert analysis code into the system before hand.
Thus, it enables refining the analysis afterward and analyzing the system
without available source code.

2. Instrumentation tools can be portable to different operating systems because
they can be built without depending on the specific guest operating system.

3. Instrumentation tools don’t interfere with the normal execution of the guest
operating system.

4

Building IQ in a reflective way presents many challenges to us. First, we have
to decide which instrumentation points IQ will present to tools. The goal is to
make instrumentation points easier to use and to enable fine granularity tools. We
discuss instrumentation points in Section 2.3.

Secondly, programmers usually need to figure out the current context of the
guest operating system to do analysis. For example, in order to figure out the
return value for a function whose return value is stored in the register EAX, tools
could read EAX at the moment the function returns. In order to do so, programmers
could match the esp value of the calling point and the returning point. However,
this must be done in the same process stack. In order to facilitate this, IQ provides
a context instrumentation point to ease the task of doing context-aware analysis.
We discuss the context instrumentation point in Section 2.3.5.

Thirdly, IQ has to provide a way for tools to inspect the machine state. If tools
need to read the value of a variable when an interrupt happens, tools need to figure
out the guest virtual memory address of this variable before reading it. Mapping a
variable to the virtual memory address could be done by looking up the debugging
information available in the binary. IQ provides a library for reading debugging
information from DWARF [1] debugging information available in ELF [2] exe-
cutable. In Section 2.4, we discuss the API for reading machine state.

IQ’s instrumentation engine is built on top of QEMU [8]. Although it is not
as efficient as a virtual machine hypervisor like Xen [7] or KVM [12], QEMU
perfectly fits our post-analysis purpose [8, 10, 18, 21]. As an improvement, we are
working on recording in Xen and replaying in QEMU [10] to improve the recording
performance.

2.2 QEMU
Because IQ is built on top of QEMU v0.12.4, we briefly introduce the internals of
QEMU’s i386 emulation in this section to provide some background to the reader.

QEMU [8] is a fast machine emulator that can run many operating systems
inside it. It runs in user space and emulates various CPUs and peripheral devices.
Hypervisors, such as Xen [7] and KVM [12], also make use of QEMU’s device
emulations.

5

Figure 2.1: QEMU Binary Translation

QEMU’s emulation includes three major parts, CPU emulation, memory em-
ulation and device emulation. In Section 2.2.1, we introduce the binary transla-
tion [20] which is the core of the CPU emulation of QEMU. In Section 2.2.2, we
introduce how QEMU does the memory translation from the guest virtual address
into the host virtual address. In Section 2.2.3, we introduce how I/O devices are
emulated in QEMU.

2.2.1 Binary Translation

QEMU makes use of binary translation [20] to translate guest code blocks into the
instructions of the host architecture. QEMU has a Tiny Code Generator (TCG) to
do the translation. Figure 2.1 shows the process of QEMU’s binary translation.
Given a guest program counter (PC) value, the output of binary translation is the
translated target code block ready to execute.

1. QEMU looks up the translation block cache. If a translation block is found
for the program counter (PC) value, go to step 6. Otherwise, continue with
step 2.

2. QEMU reads the guest code block corresponding to PC.

3. The TCG frontend translates the guest code block into the TCG intermedi-
ate code. In QEMU, a translation block ends at a branch instruction, I/O
instruction or when the translation buffer is full.

6

SoftTLB

Guest Virtual

Address

1. Lookup

Guest Physical

Address

Host Virtual

Address

Device Emulation

Function Address

2. Miss &

Translate

3.1 RAM &

translate

3.2 MMIO &

emulate

4. Fill the TLB

6. return

Figure 2.2: QEMU Memory Translation

4. The intermediate code is passed to the TCG backend and translated into the
target code block.

5. QEMU puts the target code block into the translation block cache and tries
to link the current code block with the calling block. By chaining the target
code blocks together, the cost of returning to the emulator is largely reduced.

6. Return the translated block.

2.2.2 Memory Translation

Figure 2.2 is an overview of QEMU’s memory translation process. Given a guest
virtual address, the goal of memory translation is translating it into either a host
virtual address or a device emulation function address based on the guest’s physical
memory mapping.

1. QEMU looks up the address in the SoftTLB. If there is a mapping for the
guest virtual address, the host virtual address or the device emulation func-
tion address is directly calculated from it. Otherwise, QEMU will go through
the following translation process.

7

Figure 2.3: QEMU Device Emulation

2. QEMU translates the guest virtual address into the guest physical address by
following the guest page table. If a page entry is missing during the process,
QEMU stops the translation and injects the page fault into the guest.

3. QEMU judges if the guest physical address is a RAM address or MMIO ad-
dress. QEMU maintains a radix tree for physical memory page description.
By looking up this tree, the usage of the physical page could be known. If
it is the RAM address, a host virtual address will be obtained. Otherwise, a
device emulation function address will be obtained.

4. QEMU inserts the address mapping into the SoftTLB and return it.

2.2.3 Device Emulation

In x86 architecture, there are two ways to do I/O: I/O port and memory mapped
I/O. In either way, QEMU translates an address into a device emulation function
call, as shown in Figure 2.3.

1. Map the I/O port or MMIO address to the device emulation function. Emu-
lated devices register emulation functions for I/O ports and MMIO ranges to
QEMU during machine bootstrap. For I/O ports, QEMU maintains a lookup
table for all 64K I/O ports. Therefore, mapping the I/O port to the device
emulation function is a direct array access. How MMIO address is mapped
to the emulation function is described in Section 2.2.2.

2. If the device needs to raise an interrupt, QEMU will break the current trans-
lation block chain so that the interrupt can be injected into the guest as soon
as possible. This means that QEMU only injects the interrupt into the guest
between two translation blocks. Although there is potentially a delay for

8

interrupt delivery, this design works well in practice and simplifies the im-
plementation.

2.3 Instrumentation Points
IQ provides tools with several instrumentation points: translation, memory access,
function return and context switch.

Translation instrumentation is used to instrument the intermediate code trans-
lated by the TCG frontend. With this instrumentation point, tools can instrument
every basic block executed in the system. The instrumentation point enables fine
granularity instrumentation.

In addition, to ease the instrumentation of the whole system, IQ provides mem-
ory access, function return and context switch instrumentation for tools. Memory
access instrumentation allows tools to instrumentation the access to any memory
address. Function return point is used to track the return point of a function. Con-
text switch instrumentation point is used to track the current context of operating
system.

We describe each instrumentation point in the following sections.

2.3.1 Translation

/⇤ Regis te r a basic b lock ca l l back to i n t e r c e p t the basic b lock t r a n s l a t i o n ⇤ /

i n t d b i r e g i s t e r b b h o o k (void (⇤ e v i t b b) (d b i t c g c o n t e x t t ⇤)) ;

Listing 2.1: Translation Block Instrumentation

By registering a callback at this instrumentation point, tools can intercept the
binary translation process and instrument the intermediate code translated by the
TCG frontend. The API to register the callback is shown in Listing 2.1. The
parameter dbi tcg context t contains the intermediate code buffer and the pointer
to the guest code block.

Implementation. IQ creates a buffer for storing the intermediate code. After
QEMU translates the guest code into the intermediate code, IQ passes the buffer to
the tools if tools registered the instrumentation point. The tools could instrument
the code in the TCG intermediate language and return the instrumented code buffer

9

to IQ. After that, IQ passes the code to QEMU’s TCG backend, which translates
the intermediate code into the target code.

IQ supports on-demand emulation, which means the tools could add or remove
instrumentation for a translation block anytime. IQ provides an API for tools to
remove a translated block from the translation block cache to force the block to
be translated again. Thus, the tools can add or remove instrumentation for the
translation block on demand.

2.3.2 Memory Watchpoint

As shown in Listing 2.2, tools can register a memory watch callback by call-
ing dbi register watch mem hook. The callback will be called when the memory
address, watched by calling dbi watch mem, is accessed by the guest operating
system. dbi watch mem is used to watch either read or write access to a memory
address. When the callback is called, the guest virtual address, length of the access,
data read from/written to the address, and the direction of the access are passed to
the tools.

Implementation. IQ registers a “watchpoint device” to QEMU during boot-
strap. As shown in step two in Figure 2.2, when translating the guest virtual
address, IQ checks if the virtual address is watched. If it is watched by tools, IQ
marks the address as a MMIO address which points to the “watchpoint device”
emulation functions. The MMIO address is inserted into the SoftTLB. So when a
watchpoint address is accessed, the watchpoint device emulation function will be
called. In the device emulation functions, the callback registered by tools will be
called.

10

/⇤ Watch a guest v i r t u a l memory address . reason : read , w r i t e ⇤ /

i n t dbi watch mem (t a r g e t u l o n g addr , i n t reason) ;

/⇤ Regis te r a memory watch ca l l back . ⇤ /

/⇤ When the watched memory i s accessed , ev watched mem w i l l be c a l l e d . ⇤ /

/⇤ The f i r s t parameter i s the guest v i r t u a l address .

/⇤ The second parameter i s the leng th o f t h i s access . ⇤ /

/⇤ The t h i r d parameter i s the value read from or w r i t t e n to t h i s l o c a t i o n . ⇤ /

/⇤ The f o u r t h parameter i n d i c a t e s i f t h i s access i s a read or w r i t e . ⇤ /

i n t dbi reg is ter watch mem hook (

void (⇤ev watched mem) (ta rge t u long , int , u i n t 3 2 t , i n t)) ;

Listing 2.2: Memory Watchpoint Instrumentation

2.3.3 Memory Tracing

By registering a callback at this instrumentation point, tools can intercept all mem-
ory accesses of the guest. This is mainly used to analyze the memory access pat-
terns. The API is shown in Listing 2.3. dbi register trace mem hook is used to
register functions which will be called when the guest CPU is reading from or writ-
ing to the memory. The guest virtual address, guest physical address and the length
of the access are passed to the tools when the function is called. dbi register mem async hook

is used to register functions which will be called when the guest devices are do-
ing memory copy in DMA operations. The guest physical address and the length
of the access are passed to the tools when the function is called. ev mem read and
ev mem read async are called when the data is read from the memory. ev mem write

and ev mem write async are called when the data is written to the memory.
Implementation. If the tools register this instrumentation point, IQ intercepts

the SoftTLB lookup process. Because every memory access goes through Soft-
TLB, IQ can intercept all the memory accesses.

The tools can also implement memory tracing by using the translation instru-
mentation point. However, the memory tracing instrumentation point makes it eas-
ier to write memory analysis tools. We describe a memory analysis tool in Section
4.2.

11

/⇤ Regis te r R/W ca l l back f o r t r a c k i n g every memory access ⇤ /

/⇤ The f i r s t parameter o f ca l l backs i s guest v i r t u a l address ⇤ /

/⇤ The second parameter o f ca l l backs i s guest phys i ca l address ⇤ /

/⇤ The t h i r d parameter o f ca l l backs i s the leng th o f access ⇤ /

i n t db i reg is te r t race mem hook (

void (⇤ev mem read) (ta rge t u long , ta rge t u long , i n t) ,

void (⇤ ev mem write) (ta rge t u long , ta rge t u long , i n t)) ;

/⇤ Regis te r the ca l l back f o r t r a c k i n g every asynchronous memory access , e . g . DMA ⇤ /

/⇤ The f i r s t parameter o f the ca l l back i s the guest phys i ca l address ⇤ /

/⇤ The second parameter o f the ca l l back i s the leng th o f access ⇤ /

i n t dbi reg is ter mem async hook (

void (⇤ev mem read async) (ta rge t u long , i n t) ,

void (⇤ ev mem write async) (ta rge t u long , i n t)) ;

Listing 2.3: Memory Tracing

2.3.4 Function Return

/⇤ Regis te r the ca l l back f o r ’ r e t ’ i n s t r u c t i o n . ⇤ /

/⇤ The parameter o f the ca l l back i s the cu r ren t s tack p o i n t e r ⇤ /

void d b i r e g i s t e r r e t h o o k (void (⇤ e v r e t) (t a r g e t u l o n g)) ;

Listing 2.4: Function Return Instrumentation

As shown in Listing 2.4, dbi register ret hook is used to register a callback ev ret

which will be called when an ret instruction is executed. The parameter of ev ret is
the current stack pointer, ESP. The purpose of this instrumentation point is to ease
tracking the returning point of a function.

Implementation. IQ intercepts the translation of each ret instruction and inserts
a function call after translating the ret instruction. In this function call, the callback
registered by the tools will be called.

Tools can also use translation block instrumentation point to instrument the ret

instruction. This instrumentation point, however, is easier to use and more efficient.
Without this instrumentation point, the tools have to scan every intermediate code
block for the ret instruction.

12

2.3.5 Context Switch

As shown in Listing 2.5, dbi register context hook is used to register a callback
ev context which will be called when a context switch event happens. The param-
eters of ev context are the context switch event type and the value of ESP0 which
is the pointer to the kernel stack.

IQ defines five context switch events:

1. interrupt: an interrupt is going to happen.

2. iret: the interrupt handling is finished.

3. stack switch: the kernel stack switch happens.

4. sysenter: the operating system enters to kernel mode.

5. sysexit: the operating system leaves kernel mode.

Implementation When QEMU injects interrupts into the guest, IQ intercepts it
and invokes ev context to indicate interrupt happens. When translating any one of
the iret, sysenter or sysexit instructions, IQ inserts a function call after translating
the instruction. The function will be called after the instruction is executed.

In order to detect the stack switch event, IQ watches the memory location of
ESP0. In x86, ESP0 points to the kernel stack of a task. In Linux, writing to ESP0

means a process switch happens. The memory location of ESP0 is obtained by
reading the Task Register. When the ESP0 is written, IQ generates a stack switch

event and invokes ev context registered by the tools.

/⇤ Regis te r the contex t ca l l back . ⇤ /

/⇤ When a contex t swi tch happens , the ca l l back w i l l be c a l l e d ⇤ /

/⇤ wi th the swi tch reason and cu r ren t esp0 as parameters ⇤ /

void d b i r e g i s t e r c o n t e x t h o o k (

void (⇤ ev con tex t) (con tex t reason t , t a r g e t u l o n g)) ;

Listing 2.5: Context Switch Instrumentation

2.4 Machine State Inspection
IQ provides an API for tools to inspect the machine state in instrumentation. As
shown in Listing 2.6, get cur cpu state is used to get the current CPU state. Tools

13

can read the state of the CPU from CPUState. read guest mem is used to read the
content from the virtual guest memory address. If the physical page for the virtual
address is not present in the memory, IQ returns -1 to tools. If tools are doing source
level analysis, the tools can obtain the virtual memory address of a variable from
the debugging information, such as DWARF [1] and then call read guest mem to
read the value from the memory address.

virt to phys is used to translate a guest virtual address into a guest physical
address. phys ram to host is used to translate a guest physical memory address
into the host virtual address.

CPUState ⇤g e t c u r c p u s t a t e (void) ;

i n t read guest mem (t a r g e t u l o n g vaddr , u i n t 8 t ⇤buf , i n t len)

/⇤ �1: phys i ca l page not present ⇤ /

t a r g e t u l o n g v i r t t o p h y s (t a r g e t u l o n g v i r t a d d r) ;

/⇤ �1: i f paddr i s not a RAM or does not e x i s t ⇤ /

t a r g e t u l o n g phys ram to host (t a r g e t u l o n g paddr) ;

Listing 2.6: Machine State

14

Chapter 3

Deterministic Replay

3.1 Overview
IQ replays a uniprocessor virtual machine. IQ records non-deterministic events
into logs and injects them into the guest during replay.

There are two categories of non-deterministic events that IQ must handle. The
first category is the asynchronous events, such as hardware interrupts. For these
events, the events and the time when they happen are recorded into the interrupt
log. During replay, these events are injected into the guest by IQ based on the time
recorded in the interrupt log.

The second category is the data read from external devices. For example, the
data received from network card is non-deterministic. Some instructions, such as
rdtsc, are also non-deterministic. For these events, the data and the time when they
happen are recorded into the data log. Recording the time is for debugging and
quickly discovering the deviation during replay.

In order to reduce the data log size, IQ doesn’t record the data read from disks.
This is because disk operations can be replayed if the disk starts from the same ini-
tial state and the same data are written to the disk I/O ports and MMIO space. IQ
makes a snapshot of the whole disks before recording and loads the snapshot before
replay so that the disk is in the same initial state in record and replay. And because
the command and data sent to disks are deterministic, disk operations can be re-
played. IQ currently has two mechanisms of making snapshots of virtual disks.

15

One is making use of the QCOW2 [5] image format and its snapshot mechanism.
The other one is making use of Btrfs [4] to snapshot virtual disks in RAW image
format. The latter one is much faster than the first both in the I/O performance and
snapshot loading speed.

3.2 Timestamp
In order to replay asynchronous events, the time of events needs to be recorded.
ReVirt [11] and VMware Workstation [15] use a triple containing branches retired
since the last interrupt and the value of the ECX register and the EIP register to
identify the time. Branches retired since last interrupt is used to identify the basic
block when the event happens. EIP is used to identify the instruction. ECX is
used to identify the progress of a string operation [3]. The triple uniquely identifies
a time in the execution. This information can be read from the CPU. For exam-
ple, branches retired since last interrupt could be read from hardware performance
counters.

QEMU [8] doesn’t emulate hardware performance counters. IQ could emulate
the hardware performance counters, but the cost is too high. Instead, IQ uses a
different kind of timestamp to identify the time. As described in Section 2.2.3,
QEMU only generates interrupts at translation block boundaries. So the number
of translation blocks executed can be used to replace branches retired since last
interrupt. Together with EIP, the pair could be used as the timestamp. ECX is not
necessary because QEMU does not generate interrupts when a string operation is
in progress.

3.3 Record
As shown in Figure 3.1, IQ inserts a Record and Replay (RR) layer between the em-
ulation world and the guest world. The emulation world does the binary translation
and the device emulation. And the guest world is where the guest code executes.

IQ counts the number of blocks executed since the last interrupt by inserting
a piece of code into the intermediate code buffer while translating a guest code
block.

When the emulation world injects an interrupt to the guest world, the RR layer

16

Guest Operating System

Host OS

Guest World

Emulation World

Keyboard Mouse IDE
Virtual

Devices

Character Devices Block Devices

...

RR Layer RR Layer

NIC

QEMU

Figure 3.1: Deterministic Replay

intercepts it and records it into the interrupt log. For non-deterministic instructions,
such as rdtsc, IQ records the value returned by the instruction in the data log. When
the guest world reads data from an I/O port or a Memory Mapped I/O (MMIO)
address, IQ records the value returned by the emulation world into the data log
unless it is an I/O port or MMIO address of disks or virtual devices. Because disks
and virtual devices are still emulated in the replay, it is not necessary to record
events from them.

Virtual devices, used to improve the performance of the guest, usually write
to the emulated CPU state or guest memory directly. The side effect must also be
replayed. As far as we’ve seen, virtual devices are deterministic when they write
to the guest memory or the CPU state. Like handling disk non-determinism, IQ
doesn’t record the side effect made by virtual devices because the side effect can
be replayed given the same initial device state.

Recording Direct Memory Access (DMA) events in QEMU is a challenge
because it is asynchronous. The DMA emulation in QEMU involves a memory
copy, which is usually performed by another thread or the kernel when using asyn-
chronous I/O. IQ does a simplification here by not recording the exact time of the

17

memory copy with the assumption the memory buffer used for DMA will not be
touched by the operating system before the DMA controller raises an interrupt.
This assumption is always true for modern operating systems, such as Linux.

3.4 Replay
During replay, when the guest reads data from an I/O port or a MMIO address, if
it is not for disks or virtual devices, the RR layer intercepts it and returns the data
from the log. Also, when the guest writes data to an I/O port or MMIO address
which is not an address of a disk or a virtual device, the RR layer intercepts the
write operation and discards it. So in replay, only disks and virtual devices are still
emulated.

IQ counts the number of translation blocks executed since the last interrupt.
Based on the interruption log, when it is time to inject an interrupt, RR layer will
break the current translation block chain and inject the interrupt into the guest.

Disk DMA events need special handling in order to ensure the right order be-
tween the memory copy and the DMA interrupt injection. Because the disk is still
emulated in replay, the DMA controller may not finish copying data into the mem-
ory yet when it is the time to inject the DMA interrupt. In this case, IQ pauses the
execution of the guest operating system and waits for the completion of the DMA
operation. After the memory copy is done, IQ injects the interrupt and resumes
the execution of the guest operating system. Replay is usually faster than record
because of the time compaction [10].

18

Chapter 4

Evaluation

In this chapter, we describe several tools built on top of IQ. In Section 4.1, we
describe how to track the return value of a function in the operating system. In
Section 4.2, a tool for analyzing the memory access pattern of the whole system is
described.

4.1 Function Return Value
Tracking the function return value is common in many IQ tools. It can be done
using the following two steps:

1. The tool figures out the return point of a function. If there is only one stack in
the system, the return point could be obtained by matching the stack pointer
(ESP) of the calling point and return point. However, when there are many
stacks in an operating system, the match must be done in the same stack.
Thus, the tool must register three types of instrumentation points: translation,
function return, and context switch. With the translation instrumentation,
the tool can figure out the calling point of a function and record the ESP
value. With the context switch instrumentation point, the tool can track stack
changes to make sure the function return is on the same stack as the calling
point. The function return instrumentation point is used to instrument the ret

instruction.

2. The tool reads the return value from either a register or a memory location.

19

Where the return value is stored can be found in the debugging information
for the binary.

Listing 4.1 shows a tool that prints out the return value of the alloc pages

function in the Linux kernel. The tool initializes itself by registering two instru-
mentation points: translation and context switch. The translation instrumentation
callback is it bb. It checks if the first instruction of a translation block matches
the address of function alloc pages. If so, it means it is the entry point of

alloc pages. It then instruments the intermediate code block by inserting a func-
tion call to helper it call. So when alloc pages is executed, helper it call will be
called. helper it call records the current stack top into alloc esp and the current
stack pointer into alloc esp0. It also registers a function return instrumentation
point callback it ret. When a ret instruction is executed, the it ret callback will be
called. it ret checks if it is the same context by comparing the stack pointer with
alloc esp0. If so, it further checks if it is the return point of alloc pages by com-
paring the current stack top with alloc esp. If it is the return point, the return value
can be read from the register EAX and printed out.

t a r g e t u l o n g esp0 ;

t a r g e t u l o n g a l l oc esp ;

t a r g e t u l o n g a l l oc esp0 ;

s t a t i c void i t c o n t e x t (con tex t reason t reason , t a r g e t u l o n g esp0)

{
/⇤ Record the cu r ren t esp0 ⇤ /

esp0 = esp ;

}
s t a t i c void i t r e t (t a r g e t u l o n g esp) {

i f (a l l oc esp0 == esp0 && a l l oc esp == esp){
/⇤ I f the esp0 value matches , i t means i t i s i n the same stack . ⇤ /

/⇤ I f the esp value matches , i t means i t i s the matching r e t i n s t r u c t i o n . ⇤ /

/⇤ When the f u n c t i o n re tu rns , the r e t u r n value i s i n EAX. ⇤ /

p r i n t f (” a l l o c pages r e t u r n %l d\n ” , cpu s ing le env�>regs [R EAX]) ;

}
}
/⇤ This f u n c t i o n w i l l be c a l l e d when a l l l o c p a g e s i s c a l l e d ⇤ /

s t a t i c void h e l p e r i t c a l l (t a r g e t u l o n g pc)

{
/⇤ Record the cu r ren t con tex t (esp0) i n t o a l l oc esp0 . ⇤ /

a l loc esp0 = esp0 ;

/⇤ Record cu r ren t s tack p o i n t e r a t c a l l i n g po in t i n t o a l l oc esp . ⇤ /

a l l oc esp = cpu s ing le env�>regs [R ESP] ;

20

/⇤ Regis te r the r e t u r n hook . ⇤ /

d b i r e g i s t e r r e t h o o k (i t r e t) ;

}
s t a t i c void i t b b (d b i t c g c o n t e x t t ⇤contex t)

{
/⇤ Get the pc of f i r s t i n s t r u c t i o n ⇤ /

t a r g e t u l o n g f i p c = g e t f i r s t i p c (con tex t) ;

i f (f i p c == ALLOC PAGES){
/⇤ I f i t i s the f i r s t i n s t r u c t i o n o f a l l oc pages , ⇤ /

/⇤ generate a c a l l to h e l p e r i t c a l l ⇤ /

g e n h e l p e r i t c a l l (t c g c o n s t i 3 2 (f i p c)) ;

}
/⇤ Copy l e f t i n s t r u c t i o n s to output b u f f e r . ⇤ /

c o p y i n l e f t t o o u t (con tex t) ;

}
i n t d b a i n i t (i n t argc , char ⇤⇤argv){

d b i r e g i s t e r b b h o o k (i t b b) ;

d b i r e g i s t e r c o n t e x t h o o k (i t c o n t e x t) ;

}

Listing 4.1: Print alloc pages Return Value

gen helper it call is the macro to generate the intermediate code to do the func-
tion call to helper it call. get first ipc returns the virtual guest address of the first
instruction in the current translation block. copy in left to out copies the left inter-
mediate code to the output buffer.

4.2 Memory Analysis
We’ve built a tool to study how each memory page is used in the system and what is
the access pattern of less utilized pages. IQ records the execution of a guest running
Ubuntu 8.04 with 512MB memory. During recording, we perform a user’s daily
operations by executing commands in a terminal and opening some web pages in
the Firefox browser.

In order to get the access pattern of memory pages, the tool tracks every access
of the memory by registering a callback at the memory trace instrumentation point.
The tool creates a bitmap for the physical memory space. Each bit in the bitmap
denotes if the byte is accessed. When the byte is accessed, the tool marks it in the
bitmap. The utilization and spatial access pattern of each page can be calculated
from this bitmap.

21

Figure 4.1: Utilization Distribution

The tool treats each allocation of the same physical page as different pages. In
order to do so, the tool instruments the “ alloc pages” and “ free pages” func-
tions to know when a page is created and freed. When “ alloc pages” returns,
it means pages get created. The bitmap of allocated pages is cleared. When
“ free pages” is called, it means the pages are freed. The bitmap of freed pages is
stored into the trace log.

Readers could refer to Section 4.1 for how to instrument the “ alloc pages”
function. The “ free pages” function can be instrumented in the same way.

Figure 4.1 shows the utilization distribution of pages. The tool traces 143052
pages, of which there are 93093 pages that are never touched. Pages never touched
are filtered out.

Interestingly, most pages are either highly utilized or little utilized. There are
41.42% pages that are less than 10% utilized and 36.61% pages that are more than
90% utilized.

Figure 4.2 shows the spatial pattern of pages with utilization rates between 1%
and 10%. The x-axis is the byte offset inside a page. The y-axis is the identifier of
physical pages sorted based on utilization rate. From bottom to top, the utilization
is increasing. 43.1% of pages are unique physical pages, which means many phys-
ical pages are short lived: allocated and then freed quickly. Figure 4.3 plots the

22

Figure 4.2: Spatial Pattern - Include Reused Pages

Figure 4.3: Spatial Pattern - Exclude Reused Pages

spatial pattern by excluding short-lived pages.
By comparing Figure 4.2 and Figure 4.3, we can see that long-lived pages

are sparsely accessed, while the short-lived pages are densely accessed and then
quickly freed.

The bitmap method used for utilization and spatial pattern analysis doesn’t help
to analyze the temporal pattern. Such an analysis requires recording the order of
every memory access. We further refine the analysis by writing a tool to record ev-
ery memory access of 12 pages randomly chosen from the less utilized pages. The
tool does not record the order of every memory access, but the order of every 128

23

Figure 4.4: Temporal Pattern

memory accesses in order to reduce the log size. The granularity of 128 accesses is
fine enough to observe the temporal pattern of memory access. Figure 4.4 shows
the temporal pattern of the 12 pages. The x-axis is the time and the y-axis is the
byte offset in the page.

4.3 Retroactive Aspects
Retroactive Aspects [19] is a tool built on top of IQ. It presents a novel way to
analyze the execution of an operating system. Retroactive aspects make it much
easier to instrument the system when the source code is available. Programmers
can refer to the function name or variable name directly in the tool. Interesting
readers could refer to the paper Retroactive Aspects [19] for more details.

4.4 Instrumentation Overhead
IQ’s instrumentation framework brings little overhead to the replay of the virtual
machine. The overhead is mainly caused by additional functions calls brought by
the instrumentation framework. However, comparing to the QEMU’s emulation

24

overhead, the overhead of IQ is neglectable.

4.4.1 Experiment Setup

The experiment setup is shown in Table 4.1.

Table 4.1: Experiment Setup

Host OS CentOS 6.2
Host File System EXT3
Guest OS Ubuntu 10.04 Server
Virtual Machine Image QCOW2

4.4.2 Overhead

We record the process of compiling Linux kernel in the virtual machine. We then
instrument the execution at different instrumentation points. These instrumentation
points will be hit frequently during the execution of the operating system.

Table 4.2 shows the time of the replay process with different instrumentation
points enabled. As we can see, the overhead of IQ’s instrumentation framework is
very small.

Table 4.2: Instrumentation Overhead

Instrumentation Time(s) Slowdown
None 630.9 0%
Translation Block Instrumenta-
tion

633.0 0.33%

Context Switch Instrumentation 633.8 0.4%
Memory Tracing 631.0 0.02%

25

Chapter 5

Related Work

5.1 VAssert
VAssert [6] is a debugging tool that executes analysis during replay. Programmers
insert VAssert calls into their source code. These VAssert calls have no effect dur-
ing recording in order to reduce the overhead. When programmers try to analyze
the program during replay, the analysis will be run. On the one hand, VAssert is
similar to IQ in that it decouples the analysis from normal execution of the sys-
tem and performs the analysis during replay. On the other hand, the difference is
that VAssert inspects the guest operating system introspectively by embedding the
analysis code into the source code. IQ inspects the guest operating system from the
outside, which requires no modification of the source code. In addition, VAssert is
a pre-analysis tool that requires programmers to insert analysis code before record-
ing, while IQ is a post-analysis tool. IQ is more suitable for analyzing legacy code
or when programmers don’t know in advance what analysis will be necessary.

5.2 Aftersight
Aftersight [10] is a tool that decouples the analysis from the normal VM execution.
Aftersight records execution in VMware workstation and replays the execution in
QEMU. Recording is more efficient than in IQ. However, Aftersight does not de-
fine an API to do instrumentation and access the machine state. Further, it is more

26

focused on a production system. On the other hand, IQ focuses on understanding
the system offline. The instrumentation design of IQ makes it a powerful frame-
work to write post-analysis tools.

5.3 PinOS
PinOS [9] is a whole operating system instrumentation framework built on top
of Xen. PinsOS’s API is very similar to Pin [14], while IQ’s translation block
instrumentation is more like Valgrind [17]. Writing PinOS tools is more difficult
than writing IQ tools because PinOS tools are running in the PinOS space, while
IQ tools are running in the user space. All the user space libraries in Linux could be
used by tools. Besides, PinsOS doesn’t support deterministic replay to reproduce
problems.

5.4 Deterministic Replay
IQ’s methodology of deterministic replay is similar to work, such as Revirt [11]
and VMware Workstation [15]. Both deterministically replay the guest running
inside it. Recording in VMware Workstation is much more efficient than in IQ
because VMWware workstation is much faster than QEMU. ReVirt and VMware
Workstation use hardware performance counters to read the branches retired since
last interrupt. However, IQ is built on top of QEMU and uses a different timestamp.

ArgosReplay [18], built on QEMU version 0.9.1, deterministically replays a
guest operating system. It does not record all the non-deterministic events, but
eliminates all the non-deterministic sources. ArgosReplay disables timer inter-
rupts and uses instruction count to emulate the timer interrupt. After executing a
fixed number of instructions, a timer interrupt is injected. Besides, ArgosReplay
replaces the asynchronous I/O operations with the synchronous ones that are also
deterministic. ArgosReplay is slower than IQ and may distort the system’s behav-
ior by eliminating non-deterministic events.

27

5.5 Tralfamadore
Tralfamadore [13] is a post-analysis tool. It records every translation block and its
side effect to memory and register state into a trace log. Post execution tools can
reconst the system state from the trace log. The Tralfamadore log is huge because
it records every instruction. IQ only records non-deterministic events. Thus, log is
much smaller. Both Tralfamadore and IQ tools run in the user space. Tralfamadore
tools could easily walk back and forth through the trace file or even do parallel
analysis over the log. It can be inefficient for Tralfamadore tools to read from
a memory address because the system state must be reconstructed from the trace
log. IQ tools can easily read from the guest state.

28

Chapter 6

Conclusion

We have presented IQ, a post-analysis instrumentation framework for analyzing
operating systems. By recording executions of operating systems, IQ tools can
instrument the executions afterward and refine analysis through continuous replay
over the same execution.

IQ is easy to setup and use. IQ provides tools with fine granularity instrumen-
tation points and an API to inspect the virtual machine state. IQ adds neglectable
overhead to the replay.

IQ tools run in the user space and can be portable to analyze different oper-
ating systems. By decoupling execution from instrumentation, IQ tools can do
heavyweight analysis without disturbing the execution of an operating system.

IQ is not designed to be used in production systems. It is designed to help
programmers to understand executions of operating systems.

29

Bibliography

[1] Dwarf debugging information format. 1993. ! pages

[2] Tool interface standard (tis) executable and linkable format (elf)
specification, version 1.2. 1995. ! pages

[3] Volume2: Instruction set reference. intel architecture software developer’s
manual. 1999. ! pages

[4] The btrfs filesystem. 2007. ! pages

[5] The qcow2 image format. 2008. ! pages

[6] Vassert programming guide. 2008. ! pages

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtualization.
In Proceedings of the nineteenth ACM symposium on Operating systems
principles. ACM, ACM, 2003. ! pages

[8] F. Bellard. Qemu, a fast and portable dynamic translator. USENIX, 2005.
! pages

[9] P. Bungale and C. Luk. Pinos: a programmable framework for whole-system
dynamic instrumentation. In Proceedings of the 3rd international conference
on Virtual execution environments, pages 137–147. ACM, 2007. ! pages

[10] J. Chow, T. Garfinkel, and P. Chen. Decoupling dynamic program analysis
from execution in virtual environments. In USENIX 2008 Annual Technical
Conference on Annual Technical Conference, pages 1–14. USENIX
Association, 2008. ! pages

[11] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. Revirt: Enabling
intrusion analysis through virtual-machine logging and replay. ACM
SIGOPS Operating Systems Review, 36(SI):211–224, 2002. ! pages

30

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the linux
virtual machine monitor. In Proceedings of the Linux Symposium, volume 1,
pages 225–230, 2007. ! pages

[13] G. Lefebvre, B. Cully, M. Feeley, N. Hutchinson, and A. Warfield.
Tralfamadore: unifying source code and execution experience. In
Proceedings of the 4th ACM European conference on Computer systems.
ACM, 2009. ! pages

[14] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Reddi, and K. Hazelwood. Pin: building customized program analysis
tools with dynamic instrumentation. In ACM SIGPLAN conference on
Programming language design and implementation. ACM, 2005. ! pages

[15] X. Min, M. Vyacheslav, S. Jeffrey, V. Ganesh, and W. Boris. Retrace:
Collecting execution trace with virtual machine deterministic replay. In
Proceedings of the Third Annual Workshop on Modeling, Benchmarking and
Simulation (MoBS 2007), 2007. ! pages

[16] R. Moore. A universal dynamic trace for linux and other operating systems.
Proceedings of the FREENIX Track, 2001. ! pages

[17] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan Notices, 42(6):89–100, 2007.
! pages

[18] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for
fingerprinting zero-day attacks for advertised honeypots with automatic
signature generation. ACM SIGOPS Operating Systems Review, 40(4):
15–27, 2006. ! pages

[19] R. Salkeld, W. Xu, B. Cully, G. Lefebvre, A. Warfield, and G. Kiczales.
Retroactive aspects: programming in the past. In Proceedings of the Ninth
International Workshop on Dynamic Analysis, pages 29–34. ACM, 2011. !
pages

[20] R. Sites, A. Chernoff, M. Kirk, M. Marks, and S. Robinson. Binary
translation. Communications of the ACM, 36(2):69–81, 1993. ! pages

[21] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena. Bitblaze: A new approach to
computer security via binary analysis. Information Systems Security, pages
1–25, 2008. ! pages

31

	Abstract
	Preface
	Table of Contents
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Paper Organization

	2 Instrumentation Design
	2.1 Overview
	2.2 QEMU
	2.2.1 Binary Translation
	2.2.2 Memory Translation
	2.2.3 Device Emulation

	2.3 Instrumentation Points
	2.3.1 Translation
	2.3.2 Memory Watchpoint
	2.3.3 Memory Tracing
	2.3.4 Function Return
	2.3.5 Context Switch

	2.4 Machine State Inspection

	3 Deterministic Replay
	3.1 Overview
	3.2 Timestamp
	3.3 Record
	3.4 Replay

	4 Evaluation
	4.1 Function Return Value
	4.2 Memory Analysis
	4.3 Retroactive Aspects
	4.4 Instrumentation Overhead
	4.4.1 Experiment Setup
	4.4.2 Overhead

	5 Related Work
	5.1 VAssert
	5.2 Aftersight
	5.3 PinOS
	5.4 Deterministic Replay
	5.5 Tralfamadore

	6 Conclusion
	Bibliography

