
Adaptive Pipelined Work Processing for
GPS Trajectories

by

Andrew Hung Yao Tjia

B.Sc. Computer Science, The University of British Columbia, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

September 2012

c© Andrew Hung Yao Tjia 2012

Abstract

Adaptive pipelined work processing is a system paradigm that optimally pro-
cesses trajectories created by gps-enabled devices. Systems that execute gps

trajectory processing are often constrained at the client side by limitations
of mobile devices such as processing power, energy usage, and network. The
server must deal with non-uniform processing workloads and flash crowds
generated by surges in popularity. We demonstrate that adaptive processing
is a solution to these problems by building a trajectory processing system
that uses adaptivity to respond to changing workloads and network condi-
tions, and is fault tolerant. This benefits application designers, who design
operations on data instead of manual system optimization and resource man-
agement. We evaluate our method by processing a dataset of snow sports
trajectories and show that our method is extensible to other operators and
other kinds of data.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . vi

List of Figures . vii

List of Abbreviations . ix

Acknowledgements . x

1 Introduction . 1
1.1 Contributions of this Thesis 3
1.2 Organization of this Thesis 4

2 Related Work . 5
2.1 Smoothing . 5

2.1.1 Mean smoothing . 6
2.1.2 Median smoothing . 7
2.1.3 Drawbacks of Mean and Median smoothing 7
2.1.4 Kalman smoothing 7

2.2 Activity Recognition . 9
2.2.1 Hidden Markov Models 10

2.3 Adaptive Processing . 12
2.3.1 Mobile devices . 13
2.3.2 Cloud computing . 15
2.3.3 Implications for processing 15

iii

Table of Contents

2.3.4 Strategies for adaptiveness 16

3 Adaptive Pipelined Work Processing 19
3.1 Building an Adaptive Pipeline 19

3.1.1 Pipeline components 19
3.2 Adaptive Processing Decisions 22

3.2.1 Processing heuristics 22
3.2.2 Operator selectivity 24
3.2.3 Network transport . 25
3.2.4 Delegating work . 26
3.2.5 Recovering from faults 26

4 Processing Operators for GPS Trajectories 28
4.1 Data format . 28
4.2 Smoothing . 30
4.3 Activity Recognition . 33

4.3.1 What can be gleaned from GPS tracks? 33
4.3.2 Constructing a Hidden Markov Model for Activity Recog-

nition . 34
4.4 Matching trajectories with geographic features 36

4.4.1 Using Hidden Markov Models to match features . . . 38
4.5 Trajectory Compression . 39

5 Design and Implementation 41
5.1 Hardware Platform . 41
5.2 Software Platform . 43

5.2.1 Server . 43
5.2.2 Client . 44
5.2.3 Adaptive pipelined architecture 45

6 Evaluation . 50
6.1 Experimental Design . 50

6.1.1 Dataset . 51
6.1.2 Test scenarios . 51

iv

Table of Contents

6.1.3 Test metrics . 52
6.1.4 Simulating network conditions 53

6.2 Results . 53
6.2.1 Constrained processing only 54
6.2.2 Simulated mobile network 55
6.2.3 Scaling server load and increasing number of clients . 57
6.2.4 Changing network conditions 60
6.2.5 Analysis of fairness 62

7 Conclusion . 63

Bibliography . 65

v

List of Tables

4.1 Trajectory processing operations 29

5.1 Implemented pipeline operators 47

6.1 Basic statistics for different pipeline schemes 54
6.2 Basic statistics using different priority parameters in mobile

network conditions . 56
6.3 Basic statistics for different pipeline schemes under mobile

network conditions . 56
6.4 Jain fairness for different pipeline schemes 60
6.5 Jain fairness for different pipeline schemes under mobile net-

work conditions . 62

vi

List of Figures

1.1 Analyzing trajectories in Geolife 2

2.1 Mean smoothing with a fixed window 6

3.1 A pipeline stage . 20
3.2 Processing sequence diagram 23
3.3 Choosing m to optimize performance for work delegation . . . 27

4.1 Trajectory processing overview 29
4.2 Smoothing used to repair trajectories 32
4.3 Modified Fergusson hmm topology for activity recognition [12] 35
4.4 Activity recognition used to determine actions 36
4.5 Matching trajectories to gis features 37
4.6 Using the Cartesian distance to match observations to states . 38
4.7 Dual Kalman Filter architecture 40

5.1 Recon mod Live specifications 42
5.2 Server architecture . 44
5.3 Client architecture . 44
5.4 Trajectory processing client on Android 45
5.5 Pipeline configuration . 48

6.1 Cloud server system specifications 50
6.2 Client test system specifications 51
6.3 Netem setup . 54
6.4 Processing comparison with 6 clients and 100 processed tra-

jectories . 55

vii

List of Figures

6.5 Processing results under mobile network conditions 57
6.6 Processing results under increasing client numbers 59
6.7 Processing results under different network conditions 61

viii

List of Abbreviations

3G 3rd Generation mobile telecommunications technology

EDGE Enhanced Data rates for GSM Evolution

ESHMM Expanded State Hidden Markov Model

GigE Gigabit Ethernet

GIS Geographic Information System

GPS Global Positioning System

GPX GPS eXchange Format

HCR Heading Change Rate

HMM Hidden Markov Model

HSMM Hidden semi-Markov Model

HSPA High-Speed Packet Access

Mbps Megabits per second

PDOP Position Dilution of Precision

SDK Software Development Kit

XML eXtensible Markup Language

ix

Acknowledgements

I would like to express my gratitude to both of my supervisors, Son Vuong
and Eric Wohlstadter, for the opportunity to work with them, and their
support and encouragement during my graduate studies. Through them, I
was able to work on many interesting projects, and they allowed me the
freedom to explore many different directions before finally arriving at this
one. I would also like to thank Alan Wagner, who agreed to be my second
reader, and for his invaluable feedback on this work.

My special thanks to all the members of the NIC lab, both past and
present: Shahed Alam, Ricky Cheng, Stanley Chiu, Yong Chung, and Jonatan
Schroeder. It was always a pleasure to discuss new ideas and get advice on
my work. Their enthusiasm motivated, in a large way, my studies and re-
search here at UBC.

Other people helped contribute to this work, and in particular, I would
like to thank Byron Knoll for his guidance on implementing many of the
statistical methods used in this work. My thanks also go to Daniel Lu, and
especially Jackie Cheung, who read previous drafts of this dissertation, and
provided many valuable comments that helped shape it to its current form
today.

Most of all, I would like to thank my family. Without their tireless love
and support over the years, none of this would have been possible.

x

Chapter 1

Introduction

The relevancy of trajectory processing has been driven by the ubiquitous
nature of gps devices today. Portable handheld gps units can capture tra-
jectories in cases such an adventurer on a day hike, or a driver on a road trip.
We have increasingly come to rely on geospatial information to help direct
our lives; for example, geospatial information is embedded in many common
forms of data such as images, microblog entries, and business databases.
However, when evaluating trajectories, these applications fall short of deep
analysis and are often limited to projecting a trajectory onto a map or as a
log of one’s location over a period of time.

A number of research projects, however, have extended much deeper pro-
cessing and analytical techniques to trajectories. Geolife, a project from Mi-
crosoft Research Asia, collected trajectories created by people doing actions
of everyday life, primarily around Beijing, and inferred their transportation
mode, such as walking, bussing, or driving (Figure 1.1) [28–30]. Trajecto-
ries have also been studied especially in the context of querying and storage
[4] and compression [24]. There is a wealth of postprocessing that can be
applied to trajectories which we shall detail later on.

However, systems that have been designed to acquire and work with tra-
jectories are often mobile devices such as smartphones, handheld gps units
and other embedded systems. This makes processing trajectories difficult due
to the computational nature of trajectory processing. This systems challenge
is also present at the other end where a shared server often resides. This
is common in situations where trajectories are processed and stored “in the
cloud” as part of larger systems involving geospatial queries or intelligence.
Adaptive processing is a solution to this because by not hardcoding assump-
tions about the processing environment, systems can perform better if they

1

Chapter 1. Introduction

Figure 1.1: In this screenshot taken from MSR’s Geolife project, a trajec-
tory is analyzed with mode of transportation and annotated with geotagged
media. [29]

change their processing or algorithms in response to changes in environment.
Adaptive processing has been applied successfully in other domains to

build systems tolerant of network delays and errors, low-power processing,
and to mitigate other disadvantages that plague mobile devices [17]. Adap-
tive processing will be an important part in designing any comprehensive
system that seeks to cover end-to-end processing of gps trajectories and is
the foundation of our system design.

We use adaptive processing to build a client-server architecture that
uses adaptive pipelined work processing to perform several operations critical
to gps trajectory processing such as smoothing, activity recognition, and
matching trajectories to geographic features representing real-world places
from a Geographic Information System (gis) database. The pipelined ar-
chitecture makes the system resilient to faults and helps the system recover
from errors. The system scales from light workloads to heavy workloads by
changing the allocation of work between the client and server in the face
of changing load and changing network conditions. With this framework in
place, application designers can focus on designing the operations, instead
of managing system details and resources.

2

1.1. Contributions of this Thesis

1.1 Contributions of this Thesis

In this thesis, we investigate gps trajectory processing by designing and im-
plementing a system following the client-server architecture design paradigm,
that adaptively and dynamically processes the trajectory. Although trajec-
tory processing has been covered in earlier works such as [31] and variously
in components such as in [28] or [15], to the best of our knowledge, there
is no work addressing adaptive processing as relates to that faced by online
processing of streaming gps trajectories.

As part of our contributions, we discuss in detail the work that a tra-
jectory processing system must handle. gps trajectories have known errors
due to environmental effects [19] which are corrected by smoothing. Activity
recognition is a large field in its own right and we propose a simple, effective
method for recognizing actions of the user as well. Another major processing
step is to match geographic features to parts of the trajectory.

A second contribution is the exploration of constraints and requirements
applicable in a trajectory processing system, and the proposal of adaptive
processing algorithms to solve them. With adaptive processing we are able to
overcome assumptions that do not hold in a mobile environment such strong
connectivity and unlimited processing resources. By utilizing principles of
adaptivity, we can delegate work to other processors to optimize some goal
such as minimizing energy use or reducing processing time.

As a third contribution, we design a pipelined system using adaptive
processing which can be extended to processing of arbitrary data. We eval-
uate it here using trajectory data acquired from snow sports participants
and trajectory processing specific operations; however, the design is appli-
cable to other scenarios involving pipelined operations over a network. We
also demonstrate the feasibility and advantage of our adaptive system in a
variety of scenarios. Based on this evaluation, we believe that this system
addresses the needs of trajectory processing especially over mobile devices
and networks. Finally, we propose future directions in which this work can
be further extended.

3

1.2. Organization of this Thesis

1.2 Organization of this Thesis

First, we discuss related work in Chapter 2 like background algorithms and
models that we use in gps trajectory processing, and introduce other research
in adaptive processing. However, trajectory processing occurs on devices
that are much more limited in power compared to traditional computing
architectures. To solve this, we introduce adaptive pipelined work processing
in Chapter 3. Then in Chapter 4, we describe a typical processing algorithm
for trajectory processing suitable for feedback generation.

We detail our implementation in Chapter 5. Chapter 6 describes our
evaluation strategy where we pit our system against a variety of scenarios and
discuss performance and fairness. Finally, Chapter 7 contains our conclusions
and possible future work.

4

Chapter 2

Related Work

Adaptive processing in this thesis is motivated by the processing steps that
are typically done to gps trajectories. From the time of acquisition, a typ-
ical processing workflow may invoke some or all of the following steps such
as smoothing, activity recognition, and matching to gis features. These
steps are done in order to discover patterns, and extract meaning from the
trajectory. Other steps compensate for hardware or environmental errors.
Taken as a whole, they form part of a larger system such as one that can
answer queries on the data or predict future data. We shall implement these
algorithms later in Chapter 5 as part of our processing system.

2.1 Smoothing

In a system that depends on sensor readings, we want to correct as much
sensor error as possible. In our trajectory processing system, the error results
from the noisy nature of the Global Positioning System. Though modern
gps units have facilities to correct error, these errors still persist due to the
effects of the environment. gps errors exist due to changes in signal from
atmospheric effects, multipath signal propagation, and clock errors [19].

The process of removing error, or more formally, guessing the unknown
variables from the observed measurements, is called smoothing. In the con-
text of trajectory processing, this means determining the precise latitude
and longitude, altitude and speed. A small amount of error is acceptable,
but large amounts of error can mar the ability of subsequent steps to be
performed accurately.

Our discussion of smoothing begins with mean and median smoothing.
Then, we improve on this by describing the Discrete Kalman Filter [13].

5

2.1. Smoothing

Figure 2.1: In this diagram depicting mean smoothing with a fixed window,
measurements are taken representing the x displacement of an object over
time. The red boxes represent windows that the algorithm computes the
average over, which are represented by the midlines subdividing the boxes.

2.1.1 Mean smoothing

Mean/average smoothing is also known as calculating a moving average. By
extending a window through a time sequence of data, and calculating the
average of all points in that window, it is possible to obtain a smoothed esti-
mate of some point that reduces the effect of noise on data. The operator will
choose some window size, for example, n = 2. Then, for some measurement
xi, we can obtain the moving average estimate for xi by calculating:

xi =

i+n∑
j=i−n

xj

2n+ 1

The choice of window size is often determined empirically — that is,
one increases the window size until some measure of eliminating noise is
satisfied. Increasing the window size too large, however, will begin to reduce
the resolution of the data so there is an inherent trade off between noise
reduction and data reduction.

6

2.1. Smoothing

Calculating a moving average, however, is highly sensitive to outliers in
the dataset. This can be solved by median smoothing, which is discussed in
the next section.

2.1.2 Median smoothing

Median smoothing is a variation on moving average smoothing where instead
of calculating the average of all measurements in a window, it computes the
median of measurements. The median statistic in a dataset is not affected by
outliers compared to the mean. Consequently, median smoothing is resilient
to outliers in the measurements.

2.1.3 Drawbacks of Mean and Median smoothing

The only configurable parameter in mean and median smoothing is the win-
dow size. A larger window size is beneficial if the impulse is small in degree
— that is, if the body being tracked experiences little acceleration. However,
if a body experiences larger amounts of acceleration, then a larger window
size may add error and reduce precision. Therefore, this single parameter
is not flexible enough to represent the complexity and variation of different
inputs experienced by the system.

2.1.4 Kalman smoothing

The Kalman Filter is one of a class of algorithms that solves the Observer
Design Problem — a class of problems where we desire to predict internal
states from the output of some enclosed system [2]. This is similar, but
different to the standard Hidden Markov Model, which we describe later in
Section 2.2.1, as we try to predict continuous states rather than discrete
ones.

The Kalman Filter [13] allows one to incorporate a physical model into its
estimation along with a measure of error. At each step, the filter updates its
internal state with a prediction based on measurements and a result driven by
the physical model. The measurements and model can vary depending on the
application — Kalman filters have been used in economics, communications,

7

2.1. Smoothing

and computer vision, among other areas. The physical model can describe
the movement of an object in space (kinematics), the fluctuation of the price
of a financial instrument (computational finance), or decoding of lossy data
(signal processing). Here, we use it in navigation, as it has traditionally been
used such as for guidance control systems.

This is based on a process model [2]:

xk = Axk−1 +Buk + wk−1

where:

xk = state vector of process at time k

uk = control input at time k

wk−1 = existing process noise at previous time step (k − 1)

A = transition from state k − 1 to k

B = maps control input to state x

The filter is a series of equations that are applied recursively at each time
step to reach an estimate for an entire track. The equations are composed
of several major components, which we describe from the original paper.

Prior to using the filter, we must specify several additional matrices. The
H matrix specifies how a measurement we obtain from a sensor, z, maps to
the state x. The Q matrix is the noise generated by the model itself.

We now have all the pieces needed to assemble the Kalman Filter. First,
we estimate the initial state, x̂0, and initial state error covariance, P0. Then,
at each iteration k > 0, we measure zk and estimate Rk, the measurement
error, and obtain estimate of state x̂k by executing [2]:

8

2.2. Activity Recognition

Time Update:

x̂−k = Akx̂k−1 +Buk

P−k = AkPk−1A
T
k +Qk

Measurement Update:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1

x̂k = x̂−k +Kk(zk −Hkx̂
−
k)

Pk = (I −KkHk)P
−
k

For smoothing, the sequence x̂ of estimated states along with the se-
quence P of estimate state errors can be assembled into a smoothed esti-
mate.

The Kalman Filter’s speed depends on the processor’s ability to multiply
large matrices. The two main determinants of the filter’s complexity are the
size of the state vector, x, and measurement vector, z, which have implica-
tions for the size of the remaining matrices. This means that an efficient
matrix operations library or specialized hardware like gpus can speed up
this processing, and can make a difference if the trajectory to be smoothed
is long. This has important implications for our adaptive processor later as
we aim to optimize this on the client and server.

2.2 Activity Recognition

Activity recognition is a long established field with applications in many
different areas. It is the process of determining activities or actions of some
entity based on indirect observations collected by some sensor platform.

Activity recognition may take a range of inputs depending on the usecase.
For example, a video camera’s feed can be analyzed using computer vision
techniques in order to determine the actions of a subject being recorded.
Or, body worn sensors can sense 3D motion to determine whether the user
is running or jumping. We can also recognize activities further removed from

9

2.2. Activity Recognition

the user, such as mode of transportation. Analysis on gps tracks can also
label the mode of transportation [28], such as whether the user is taking a
bus, or walking, or driving. Indeed, we can extrapolate this data even more
as Zheng et al. do and determine whether the user is at home, at work, or
on his commute [28].

While we can sometimes use reason and logic to determine actions, in
many cases, it is difficult to create a set of rules that fully describe even the
simplest of human activities. In other cases, it may be impossible to observe
the outputs necessary to determine the action, and we may only be able
to make indirect observations. This naturally leads us to consider the use
probabilistic models for activity recognition, of which, the Hidden Markov
Model is a prime specimen.

2.2.1 Hidden Markov Models

Hidden Markov Models (hmm) are an extension to discrete Markov Models
that are popular for activity recognition [21]. In discrete Markov Models, a
system is modelled as a set of states with edges between them. During some
time sequence, the system may undergo several state transitions where the
system will change its state along the edges defined. A typical problem in
this domain is to determine the weight of these edges, from some observed
sequence of state transitions, which are deemed transition probabilities.

However, in many circumstances, the actual states are not directly ob-
servable. For example, in the case of sequence alignment in bioinformatics,
we do not know beforehand what genes are being expressed in a dna se-
quence. We only observe the patterns of AT/GC basepairs that are inherent
in a dna sequence. The extension of this model, the Hidden Markov Model,
has the ability to predict these hidden states. In this case, the model is gov-
erned additionally by emission probabilities, which describe the probability
that a state outputs a given observation.

More formally, in an hmm, we have a sequence of observations:

10

2.2. Activity Recognition

O = O0O1O2...OT

and a model λ:

λ = (A,B, π)

where:

A = {aij} [the state transition probability matrix]

B = {bjk} [the observation symbol probability distribution in state j]

π = {πi} [the initial state distribution]

We then try to discover the state sequence Q = Q0Q1Q2...QT that max-
imally describes the observations (that is, best explains the observations).
This can be done using the Viterbi algorithm which finds Q [23].

Let V0,k be the probability of the most probable sequence of states ending
with k that explains the first observation, O0.

V0,k = P (O0|k) · πk

Then, for the rest of the sequence, Vt,k is the probability of the most
probable sequence of states ending with k that explains the sequence of
states up to Ot.

Vt,k = P (Ot|k) ·maxx ∈ S(ax,k · Vt−1,x)

It is not unusual for the number of hmm states to balloon quickly into the
hundreds when modelling complex phenomena. In addition, we may observe
long sequences of observations depending on the measurements taken. This
implies higher cpu and memory demands in order to run Viterbi and other

11

2.3. Adaptive Processing

similar algorithms as the size of S grows and the length of O increases.

2.3 Adaptive Processing

Adaptive processing is a paradigm, inspired by biology, which describes sys-
tems which are capable of responding to changes in environment or condi-
tions. An adaptive system has an objective that it aims to minimize by
controlling the strength of some action. The action is the system’s response
that modulates the objective [14]. Consequently, there is a correlation that
is established between three components: the system structure, system be-
haviour, and its environment [14].

There are two components to such systems. Firstly, the system must have
the means to identify stimuli, or changes in environment, that are important
to its internal model of adaptivity. Some changes in environment will impact
the system and its behaviour, whereas others may be more benign. Secondly,
the system invokes anticipatory behaviour, which is any behaviour that is
derived from its expectations about the future. These expectations are driven
by the stimuli identified in the first part.

In order for us to consider adaptivity, we first need to decide which
objectives we want to optimize in our processing pipeline. Our primary
objective might be to optimize performance. In this scenario, we would like
to have trajectories processed speedily from time of acquisition to when it is
stored on a server. In this way, the data can then be available immediately
for other applications server-side to consume and make use of.

However, there are several other objectives that could follow from our use
of mobile devices. We might require processing to be robust and reliable;
that is, it can withstand network outages and will not be corrupted on the
wire. Another objective that is mobile device specific is to minimize use of
mobile device system resources since the amount of resources on the mobile
side may be much more constrained than is available on the server. This
also has implications on energy usage.

Clearly there are some trade-offs to be made here. Adaptive process-
ing might overcome limitations of mobile computing such that processing

12

2.3. Adaptive Processing

can still occur with deteriorated or even lack of a network connection, but
at a performance cost. In another instance, shifting the processing bur-
den from the client to the server may reduce the computational cost of the
processing and consuming less device resources (e.g., cpu and energy), but
might increase processing demands on the server. Furthermore, compared to
performing operations client-side, the results of server-side performed oper-
ations may not be as readily accessible by the client. Alternatively, adaptive
processing may also reduce system load when the server is in a shared en-
vironment with spiking loads, but at the expense of consuming more client
system resources.

2.3.1 Mobile devices

gps trajectories are often recorded on mobile devices. Mobile devices are
a relatively new phenomenon that have become ubiquitous in recent years.
Our car navigation systems, music players, and e-book readers are all rep-
resentative of this segment. They are pervasive in sensors to monitor traffic
flow, weather, or crowds in public areas. However, the statistic that most
defines this segment are the 500 million smartphones that are sold worldwide
every year.

A smartphone sold by Apple or Google such as those running the iOS
or Android mobile operating system, typically have mobile data connectiv-
ity over technologies such as 3G/4G or hspa (High-Speed Packet Access),
in addition to normal cellular voice service. It is also common for smart-
phones to have a variety of sensors such as a gps sensor, an accelerometer,
or even a barometric sensor. Lastly, these devices are highly programmable
compared to other embedded systems, making them an ideal target for ex-
ploration. However, there are pitfalls to using mobile devices, many of which
are identified by Pentikousis [20]:

Unreliable network Mobile devices run on networks that are typically
slower than commonplace household or business broadband installa-
tions. For example, wireless carriers often have hspa widely deployed,
which supports up to a 14.4 Mbps (megabits per second) download and

13

2.3. Adaptive Processing

5.76 Mbps upload transfer rates in ideal environments [25]. However,
when coverage is insufficient, speeds can degrade to edge speeds (En-
hanced Data rates for GSM Evolution) around 50 kbps (kilobits per
second) in both directions.

In addition, mobile networks are unevenly deployed throughout the
environment, and wireless coverage may vary greatly depending on the
user’s location and time of day. Network connectivity can also degrade
in crowded spaces with many users. Consequently, network access may
inconsistent for device applications, as the user changes their location.

Constrained processing resources Mobile devices have weaker cpus usu-
ally one or two generations behind their desktop counterparts. Further-
more, mobile devices often have very aggressive frequency scaling to
achieve power management goals so the amount of processing resources
available can vary widely for a single device. Mobile processors and
hardware are often designed in lockstep with power consumption as
they are closely related.

Limited power consumption While processing has followed Moore’s Law
to a certain extent, battery technology has not. Pentikousis estimates
that battery technology has only increased 50 percent since 2002 [20].
Die shrinks and smaller process sizes of circuits have alleviated this
somewhat in recent years, but this area is often compromised by in-
creasingly complex hardware and processing requirements.

Furthermore, users according to Pentikousis are increasingly relying
on their mobile devices to accomplish many different tasks, so a single
battery must power a range of different computing tasks [20]. These
tasks are also growing in complexity, scaling with hardware, consuming
many processing cycles.

While these issues do not affect all mobile devices equally to the same
degree, any system that incorporates mobile devices must anticipate and
accommodate any or all of these problems.

14

2.3. Adaptive Processing

2.3.2 Cloud computing

Cloud computing is an abstraction for access to a variety of computing re-
sources over a network such as the Internet and is made up of many servers
that power these resources. It is common to discount these servers as having
unlimited resources. However, at the other end, these servers are physical
computers which are subject to much of the same limitations as the comput-
ers found in our mobile devices, but at a different order of magnitude.

Furthermore, cloud servers often use shared machines dedicated to more
than one task. These tasks may be related to the task at hand (such as
syslog logging, or replication), or may be unrelated tasks (such as multi-
ple applications on a single server). Therefore, an application designer may
not be able to anticipate the amount of computing resources available at
runtime. Secondly, cloud servers may also need to deal with varying pro-
cessing demands which are not uniformly distributed. Therefore, even on
dedicated machines, processing resources may not be sufficient to cope with
all incoming requests.

One such way that cloud computing has solved these issues is by dynamic
scaling. New application instances are provisioned instantly to meet demand
as needed. While this has been used in some real world deployments, for the
remainder of this thesis, we shall consider a more static model of cloud
computing in which processing capabilities are fixed. Thus, the emphasis
will be on processing efficiently given some upper bound on resources.

2.3.3 Implications for processing

At this point, we have established that both the client and server on both
ends are subject to different constraints. However, they both lead to the
same conclusion — at neither end can we establish a constant model of
processing. The mobile client will be governed by weaker cpus that are
subject to aggressive frequency scaling and must bow to power management
constraints. The server may or may not be shared, and experiences a non-
uniform request rate when demand or popularity spikes.

As Mummert et al. conclude [17], mobile computing is best solved with

15

2.3. Adaptive Processing

adaptivity. We summarize the five problems of mobile computing that con-
cern adaptive processing and data that is processed by clients and servers
[17]. These issues are results of the mobile computing pitfalls identified in
Section 2.3.1.

• Because of changing network conditions, data acquired on the client
might not always be propagated to the server in a timely manner.

• Mobile computing may incur latency to fetch data needed for process-
ing — a cache miss.

• In a mission critical environment, client data cached on mobile devices
may be at risk, due to the security implications of losing the device or
incurring damage.

• Where many updates exist on a shared resource, update conflicts may
arise.

• Caches may fill up on a mobile device, causing updates to be lost.

2.3.4 Strategies for adaptiveness

Adaptiveness as a means for network independence

As devices such as mobile devices which use adaptive processing are user-
facing, the integration of adaptive processing should aim to be relatively
transparent. Systems such as Puppeteer [5] are designed to be transparent
to network failures. This was accomplished to such a degree that integra-
tion with Microsoft PowerPoint was possible as an add-in to allow partial
retrieval of slideshows on demand. An adaptive system promoting network
independence should expose interfaces which hide adaptive details and al-
lows operations to be implemented without knowledge of its network details.
There should be a clean separation between application code, such as Pow-
erPoint code, and adaptive processing code.

16

2.3. Adaptive Processing

Adaptiveness as a means for increasing backend scalability

Adaptiveness should allow reallocation of work to allow the backend to dy-
namically adjust with processing load. There is much prior research in this
area in the distributed systems field which addresses this issue using work
queueing and other strategies such as work pushing or work stealing. How-
ever, our system is much simpler as we are designing around a single server
and many clients.

One such paradigm to work processing is designing the system around
a central pipeline or chain of modules. Chandrasekaran et al. puts forth a
compelling case for decomposing complex services as a set of simple services
working together in Ninja [3]. While performance may not exceed that of
purpose built systems, modular systems can allow us for more robust failure
recovery and adaptability [3]. This is true in a wide range of applications
such as building robust web sites. Websites now must deal with more com-
plex data-driven pages requiring extensive processing or heavy media assets
and also must scale to accommodate a massive influx of visitors brought by
content aggregators such as Reddit or Slashdot without interruption. No
single system can scale infinitely; at some level, the constraints of hardware
come in. Another issue that is important in high load situations might be
fairness — or how evenly the performance deteriorates for all users. seda [27]
redesigns applications to use event-driven stages fed by queues that scales
fairly as usage increases — that is, the overall performance decreases equally
for all users as the load increases, rather than a few choice requests being
answered and the rest rejected.

This design is evident in other applications such as building efficient
network stacks or in live video encoding [16]. In either of these cases, it may
be desirable to minimize latency. In the case of a network stack, the round
trip time of a packet is important, and in live video encoding, processing
delays may make the live stream diverge from the processed stream. In
Scout, each module is given information about its processing context which
allows each module to make runtime decisions on its processing [16]. For
example, in the case of high load, a video streaming system may decide to

17

2.3. Adaptive Processing

reduce the quality of the resultant video. Another case might be a networked
system that selectively drop incoming packets so as not to reduce the quality
of service according to some rule.

Pipelines may also have other advantages such as having more robust
failure recovery and fault isolation [16]. Due to the fact that the system has
less “moving parts” and less complex dependencies, it is easier to identify
where faults occur, and by extension, easier to recover from these faults.

18

Chapter 3

Adaptive Pipelined Work
Processing

The operations we will introduce in Chapter 4 are essential to the processing
of many types of gps trajectories. Though we have pointed out limitations of
gps trajectory acquisition hardware and some examples of adaptive systems
in Section 2.3, we have not yet reconciled the problem of how to execute
these operations optimally given the constraints.

The solution is a client-server system using adaptive pipelined work pro-
cessing. It can adapt to a variety of different processing steps, workloads,
and hardware configurations.

3.1 Building an Adaptive Pipeline

An adaptive pipeline is formed of operators which are executed by one or
more processors and specified by a processing plan. The adaptivity we intro-
duce in this thesis comes from how to execute a processing plan over several
processors. In addition, operators tailor specific work from the operating
context provided by the processor.

3.1.1 Pipeline components

Operands

Operands are the units of data in the pipeline. They represent all input
data and all results. The input to our adaptive processing pipeline shall be
a trajectory wrapped within an operand.

19

3.1. Building an Adaptive Pipeline

Figure 3.1: In this figure of a sample pipeline stage, an operator receives
input data in the form of operands and returns a result. The operator is
provided an operating context by the processor.

Operands must be distinctly serializable to memory at any point in the
pipeline workflow. This allows it to be stored temporarily, queued in a
work queue, or transferred across the network if called for by the processor.
As a consequence, operands must also ideally provide an estimate of their
serialized size to avoid expensive serialization routines, in order to allow the
algorithm to anticipate network transfer times and storage requirements.

Operators

We now introduce operators. An operator takes operands which are argu-
ments similar to function arguments in a programming language, and per-
forms some operation necessary for our system. It also returns a result which
can then be passed into further operators. Operators are provided with the
operating context which allows the operation to be aware of the current state
of the system and its execution environment.

20

3.1. Building an Adaptive Pipeline

Operating Context

The operating context is information about the environment that an opera-
tion is running in, and is inspired by Scout [16]. The environment may vary
because of specific hardware and architectures which have different comput-
ing requirements. These static parameters may usually be specified ahead of
time, since hardware or architecture is unlikely to change in the short run. In
addition, dynamic parameters can be calculated such as the load average or
the available amount of free memory, which may affect processing decisions.
On a mobile device, other dynamic parameters could be the current charge
level of the battery or even the user’s location.

Processing Plan

For each trajectory, a processing plan is individually created depending on
the trajectory. For example, if the trajectory delineates a road trip, a pro-
cessing plan may run operators that identify which streets were driven on,
estimated traffic congestion, or even calculating the carbon offset required
to compensate for the journey. However, if the trajectory represents a skier
on a mountain run, then a plan’s operators may recognize ski activities, or
match the trajectory to ski runs. Each action should be represented by an
operator and is assembled into a processing plan.

Let the processing plan P consist of n operators such that

P = [O1, O2, O3...On]

We use a simplified model of a linear pipeline such that each operator
is executed sequentially. However, we note that this need not necessarily
be the case — operators may not necessarily be dependent on the operator
immediately preceding it and a future optimization might be to execute
operators in parallel when possible.

21

3.2. Adaptive Processing Decisions

Processor

A processor is a component of both the client and server which is responsi-
ble for applying operators to the data as described by the processing plan
and providing the operating context as necessary. The processor integrates
the components described in this section and fulfils the processing plan or
delegates work to another processor (such as the client pushing work to the
server).

3.2 Adaptive Processing Decisions

From the components we have defined in the previous section, an adaptive
processing algorithm must decide the assignment of operators to processors.
Figure 3.2 illustrates how the client and server coordinate their processing
decisions.

3.2.1 Processing heuristics

In order to make decisions on how to allocate processing, processors record
the duration of past operations. This also gives a distribution of the com-
plexity of the operation with respect to the input data. The length of time
is stored in a continuously updating histogram H; a unique one which is
built for each operator. The algorithm maintains a collection of separate
histograms for the client and server, Hc and Hs, such that:

Hx
i = Histogram for Oi running on x

In addition to supporting “insert value,” each histogram can report an
approximate value at a given percentile. Therefore, we can estimate the
value at the 50th percentile on histogram H by invoking:

valueAtPercentile(H, 50)

We can also similarly get the percentile for a value instead. To retrieve
the approximate percentile that the value, 10, falls in for histogram H, we

22

3.2. Adaptive Processing Decisions

Figure 3.2: This sequence diagram shows the interaction of the client and
server processors. When a trajectory is received on the client, a work unit
consisting of the trajectory operand and processing plan is submitted to the
processor (Section 3.1.1). The processor will process a work unit until the
client decides to delegate (Section 3.2.4). When the work unit is delegated,
it is sent to the server and processing is resumed there. The server will send
back a processing history object containing the details of the past executions
that is used by the processing heuristics calculations (Section 3.2.1).

23

3.2. Adaptive Processing Decisions

invoke:
percentileForV alue(H, 10)

Furthermore, the client and server maintain moving average measure-
ments of their estimated load percentile (Section 2.1.1). This is done by
querying the running time after an operation has been completed against
historical data in the histogram, and retrieving the percentile. Hence, the
following definitions cover the estimates of load percentile:

estimatedClientPercentile = Client’s estimate of load percentile

estimatedServerPercentile = Server’s estimate of load percentile

Each client can also configure a priority parameter which is a scalar that
modifies its own estimate of running time, Pc. We can estimate the time
taken to execute operation Oi on the client, Tc(Oi) choosing the value at the
client histogram, Hi at the estimate of client load percentile.

Tc(Oi) = Pc · valueAtPercentile(Hc
i , estimatedClientPercentile)

Pc defaults to 1.0, but by changing this, we can influence the adaptive pro-
cessing decisions taken by our model such that operations on the client look
cheaper than running on the server, or vice versa. We obtain a similar mea-
surement for the server, Ts(Oi), which is not scaled at all.

Ts(Oi) = valueAtPercentile(Hs
i , estimatedServerPercentile)

3.2.2 Operator selectivity

Many operators manipulate data in some form during processing. In the
case of smoothing, data might be simply changed. For activity recognition,
additional data is generated by the tagging of activities to the trajectory.
When trajectories are compressed, the output of the operator is presumably
less than the input operands.

While it is not possible to know ahead of time the precise amount of

24

3.2. Adaptive Processing Decisions

data generated or lost, it is reasonable to approximate it by calculating the
selectivity ratio. For some data, x, the selectivity ratio, R, is the ratio of
output data to input data, where sizeof(x) is the size of x in bytes.

R(Oi, x) =
sizeof(Oi(x))

sizeof(x)

Suppose we store all past observed ratios in a unique histogram for each
operator and the data size for all observed data.

Hs
i = Histogram of selectivity ratios for operator i

Hd = Histogram of data sizes

Then, for an unprocessed data x we can estimate the selectivity ratio:

R̂(Oi, x) = valueAtPercentile(Hs
i , percentileForV alue(H

d, sizeof(x)))

3.2.3 Network transport

Network transmission is comprised of several parts. First the data must be
serialized into the protocol format. Once the data is ready to be sent over
the network, the network protocol may necessitate some kind of handshaking
between the communication ends. Next, there is the actual network trans-
fer over the link, and some additional overhead which may be inherent in
the protocol. Finally, there is an acknowledgement and sometimes, a proto-
col teardown. Each stage has delays inherent within it such as processing,
queueing, and propagation delays and is dependent on medium, hardware,
system load and other conditions.

To make it easier for our model to estimate the network transport cost,
we consider the entire network flow as a single unit and measure the total
time it takes for data to be transferred between nodes. In doing so, we
ignore all the component delays in a network stack (such as transmission,
queueing, propagation, etc.). The amount of data transferred is measured,
and the rate of bytes/second is measured from a simple linear cost model. A
decaying moving average is updated with past transfers to estimate current

25

3.2. Adaptive Processing Decisions

transfers.
Therefore, the time in seconds to transfer some work is calculated by

U(bytes) where bytes is the size of the work in bytes.

U(bytes) =
bytes

networkRate

3.2.4 Delegating work

Determining when to delegate means we must choose the set of operations
executed by the client, C, and the set of operations executed by the server,
S by determining m such that

Cm = [Oi|1 ≤ i < m]

Sm = [Oi|m ≤ i ≤ n]

To choose the optimal path for data x, we minimize m with O(n) time
complexity, where n is the number of operators:

argmin
m

[(∑
Oi∈Cm

Tc(Oi)
)
+
(∑

Oi∈Sm

Ts(Oi)
)
+

U
(
sizeof(x)×

∏
Oi∈Cm

R̂(Oi, x)
)]

Every time an operator is completed, the processor re-evaluates the op-
timal path by finding m for the remaining operations (Figure 3.3).

3.2.5 Recovering from faults

Recovering from failures is facilitated by this pipelined design. We consider
that faults may happen in individual operators from some processing error
(i.e., low memory, electrical fault, etc.). In this case, the operands are cap-
tured before the operator is executed, and the operator can be re-executed
as necessary with a random backoff delay until the fault is corrected.

As well, faults may occur due to network such as loss of connectivity or
high packet loss. In this case, network transfers can be retried as necessary.

26

3.2. Adaptive Processing Decisions

Figure 3.3: This figure illustrates the client/server split of the processing
pipeline. Operations O1 to On are split linearly at index m. At this point,
the result from Om−1 on the client is transferred to the server, which resumes
processing at Om. The adaptive processor chooses m to optimize work dele-
gation such that the total time taken processing on both the client and server
plus network transfer time is minimized.

If network outage is prolonged, operands can be serialized and resumed when
network connectivity is restored.

While we claim our system is fault tolerant, we do not explicitly test this
capability in our evaluation, and choose instead to focus on the performance.
Our confidence for the fault tolerant capabilities of our system stems from
the large amount of existing systems that use this paradigm. For example,
Internet email messages are queued and sent via smtp, and often a single
mail message may require relaying by multiple smtp servers. If the receiving
server is unavailable during any leg of an email message’s journey, messages
are queued and delivered at a later time. The pipelined design limits errors
to individual pipeline stages and prevents errors from propagating if errors
do occur.

27

Chapter 4

Processing Operators for GPS
Trajectories

Postprocessing gps trajectories is expensive computationally, but necessary
in order to extract meaning and inference from the data. We begin with
a discussion of our assumptions about the input data, then enumerate and
briefly explain each technique that we use. Figure 4.1 summarizes at a high
level the major operations that we cover in this section. Finally, we close
with our scheme for adaptive processing.

4.1 Data format

The data is a time series of data points which are measured at mostly uni-
form time intervals (although we do allow for non-uniformity, such as when
there is a sensor platform outage, or similar). Each data point should at
minimum have a gps measurement associated with it. A proper gps posi-
tion fix reports back several data components such as the 2D position, in
latitude and longitude coordinates. With data from a sufficient number of
gps satellites, a 3D position fix can reveal the altitude and it can also report
speed.

• Latitude and Longitude

• Altitude

• Speed

To store trajectory data in an interchangeable manner, we use the gps

eXchange Format (gpx) which is widely supported by different applications.

28

4.1. Data format

Figure 4.1: Trajectory processing overview

High Level Operation Functional Description Location

Trajectory Acquisition Acquisition of trajectory from
gps hardware. Data acquired
is specified in format detailed
in Section 4.1.

Client only

Smoothing Elimination of errors in trajec-
tory. Section 4.2.

Client/Server

Activity Recognition Match actions and intent to
trajectory. Section 4.3.

Client/Server

gis Feature Match-
ing/Regionization

Align geographic features to
trajectory. Section 4.4.

Client/Server

Trajectory Compres-
sion

Compress trajectories to save
space. Section 4.5.

Client/Server

Persistence Storage of trajectory and ana-
lyzed data to storage

Server only

Table 4.1: Trajectory processing operations

29

4.2. Smoothing

gpx stores this tuple using xml (eXtensible Markup Language) and is ex-
tensible to hold additional metadata.

4.2 Smoothing

As rationalized in Section 2.1, smoothing is necessary to compensate for
error in any kind of sensor platform, such as a gps sensor. We correct
errors in trajectories by use of the Discrete Kalman Filter. The usage of the
Kalman filter requires us to make several choices based on our application of
estimating gps tracks. First of all, we choose the state of the Kalman filter
model with a suitable 4-dimensional state space:

xk =

x

y

dx

dy

The x and y values correspond to the longitude and latitude values re-

spectively in decimal degrees. The dx and dy values are the velocity vector
components in the x and y axes of the object’s motion. Once we have decided
on the state space, we then decide on the model dynamics that describes the
transfer of state space over time. Based on the state space, we set up the
filter using a 2D kinematics model describing a particle through space.

di+1 = vi(ti+1 − ti) + di

That is, the displacement in one dimension, di+1, at the next time step
is the previous displacement, di, adjusted by the difference in time elapsed,
ti+1 − ti, between two measurements multiplied by the velocity, vi. This is
represented by the transition matrix, A, with dt = ti+1 − ti:

30

4.2. Smoothing

A =

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

We cannot observe control inputs in this scenario as we have no means of

ascertaining, for example, whether in a car’s trajectory, a steering wheel was
turned to the left or right. Therefore, the matrix, B, and control vector, u,
are set to 0. Each measurement, z, is composed of the longitude and latitude
in decimal degrees, as well as the velocity components, dx and dy, which is
measured from the speed and the gps heading.

z =

x

y

dx

dy

As the order of the measurement components and the state components

is the same, the H matrix is the identity matrix:

H =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Lastly, we need a way to measure the error of measurement z, represented

by the noise covariance matrix, Rk. One of the chief difficulties of using
Kalman filter techniques is specifying an estimate for this input, since it is not
always the case that we have sensor measurements with accurate measures
of error. However, most consumer gps units report an internal measure of
error: the position dilution of precision (pdop), which is the magnitude of
the user position error (1.0 is a perfect measurement, whereas around 3.0 is
typical for an “accurate” position). From this, it is possible to calculate the
standard deviation of the receiver position, σrc [19]. In general:

31

4.2. Smoothing

Figure 4.2: In this screenshot taken from Google Earth, a section of a tra-
jectory is projected onto a map with a discontinuity caused by gps error.
The green pushpins represent original points taken from the hardware, but
the red pushpins denote points where the original points were either not
available or discarded due to high error, and are predicted instead by the
Kalman smoother.

σrc =
2
√

PDOP2 × 6.72 + 12

From this, we can construct the diagonal matrix, R, which is the noise
covariance matrix of the measurement.

Rk =

σrc 0 0 0

0 σrc 0 0

0 0 σrc 0

0 0 0 σrc

We have described one possible set of components that can utilize the

Discrete Kalman Filter to solve the trajectory smoothing problem. In the
context of an adaptive pipeline, these matrix operations can be performed
on either the client or server side. A larger state space may be able to model
more complex behaviour, but would incur greater processing demands.

32

4.3. Activity Recognition

4.3 Activity Recognition

Many human activities such as travelling to different locations or participat-
ing in a sport produce gps trajectories. We employ activity recognition to
discover the original activity from the trajectory. In this section, we demon-
strate the derivation of indirect measurements from the original sensor data
and construct a Hidden Markov Model to recognize a specific set of activities.

4.3.1 What can be gleaned from GPS tracks?

As the Geolife dataset showed, it is possible to determine the mode of trans-
portation from gps tracks. This is because each mode of transportation
is distinct in terms of how movement occurs, in which direction, etc. The
gps track provides several information sources which is a tuple consisting of
latitude and longitude, altitude, and speed (see Section 4.1.

From this track, we can calculate:

• Velocity

• Acceleration

• Heading

• Vertical speed

• Vertical acceleration

• Heading change rate

The velocity is simply the slope or the first derivative of the displace-
ment in latitude and longitude, and the acceleration is the second derivative.
Heading is obtained by taking the angle of the velocity vector with respect to
North. The vertical speed and acceleration are derived from the altitude and
its derivatives. The heading change rate is calculated as the rate of change
in heading over time [28].

33

4.3. Activity Recognition

4.3.2 Constructing a Hidden Markov Model for Activity
Recognition

There are many of ways of constructing the hmm state space as well as the
transition and emission probabilities. We shall describe one such scheme
here which produces good results for our usecase.

hmm structures can vary from ergodic (fully connected) to Bakis/left-
right (in-order states) constructions. We use elements of both designs —
while we allow the hmm to be ergodic in structure, we bias it to follow Bakis
semantics through weighing transition probabilities in an ordered sequence.
In doing so, we can express beliefs such as "Activity 2 often follows Activity
1 and takes about 10 minutes to completion."

The hmm is constructed to model duration, as activities have a real
sense of a period of time over which it happens. There are many such
strategies in which to model duration in an hmm such as Hidden semi-Markov
Models (hsmm) [18]. We use a simpler scheme of Expanded State Hidden
Markov Models (eshmm) [12]. These are demonstrated by Johnson to have
comparable performance to an hsmm and other schemes with much lower
computation and complexity necessary [12].

In an eshmm construction, there are a variety of ways to model duration,
all of which rely on adding additional states to the hmm. We use a variant
of a Fergusson hmm topology where each state is connected to the next and
linked with a jump arrow to the next state (Figure 4.3) [12]. In Figure
4.3, the lower curved arrows transitioning from “Activity 1” to “Activity 2”
are weighed with low probabilities, compared to the horizontal inter-state
arrows within “Activity 1”. The Viterbi algorithm finds the most likely state
sequence that explains the observations. In this case, Viterbi determines
the most likely sequence of activities with regard to the duration modelling
inherent in this construction.

First, the trajectory is transformed into our observation sequence such
that each observation is ordered by time, and contains positional data, ve-
locity, and other data extracted in Section 4.3.1.

Secondly, we must identify which activities are desirable to identify from

34

4.3. Activity Recognition

Figure 4.3: Modified Fergusson hmm topology for activity recognition [12]

the trajectory. For example, in a set of trajectories recording snow sports, we
would like to classify different activities relevant to snow sports, such as when
the user is skiing on a trail, on a lift, or merely walking around. Each activity
has certain attributes. On average, we might reasonably conclude that on a
ski trail, the vertical speed should be negative (due to the downwards slope),
and the opposite should be true for a lift state. People might walk and loiter
with an average speed of 0 to 5 km/h, but ski with speeds in excess of 20
km/h. We also use the heading change rate (hcr). The hcr should be
highest when walking. However, when skiing on a trail, HCR is lower due
to the lower manoeuvrability afforded by ski gear. It is lowest when on a lift
since lifts are often constructed in straight lines between two points. In this
way, we manually choose features based on our own knowledge of the world,
but another alternative might be to learn the features automatically.

To construct our hmm, for each activity, we construct a sequence of
states constructed in the Fergusson manner above, with each state’s emission
probability as a function of the manually identified features. Each sequence
of states representing an activity has a “jump” arrow to the start of all
other states, weighed by the activities being modelled. For example, it was
observed in Geolife that walking connects all transportation modes together
such as when an individual changes from driving a car to catching a bus
[28]. In a snow sports dataset, it is reasonable to assume that there is some
walking or loitering around that connects different activities together.

35

4.4. Matching trajectories with geographic features

Figure 4.4: In this screenshot taken from Google Earth, a trajectory is pro-
jected onto a map with different coloured pushpins denoting different activi-
ties. The green pushpins represent the algorithm’s best determination when
the user was skiing on a slope, whereas the red and blue pushpins denote
other actions such as sitting on a lift or waiting around.

The activities are matched by finding the most likely state sequence that
explains the observations with the Viterbi algorithm. We may further post-
process this sequence such as merging short sequences, etc.

4.4 Matching trajectories with geographic features

Most trajectories occur in settings where we may have foreknowledge of the
environment. Such is the case in geographic information systems (gis) where
we have databases of existing spatial or geographic features. These features
are natural or man-made, and come in a variety of different shapes and sizes.
For example, we may know of a description of a major Interstate freeway or
a popular bicycle path. This is usually specified as a series of points forming
a line string geometry. Alternatively, we might know of a nearby ski resort;

36

4.4. Matching trajectories with geographic features

Figure 4.5: In this screenshot taken from Google Earth, a trajectory is pro-
jected onto a map with different coloured pushpins denoting different fea-
tures. The gis features are extracted from a known source, such as geospatial
database, and can denote real world concepts such as roads, pathways, land-
marks, regions, etc.

the entire bounds of which can be described as a rectangle or a polygon.
Another common type of feature encountered are single points such as a
landmark or an attraction.

Trajectories often interact with these features, and the goal of this section
will be to establish a correspondence between elements of the trajectory and
these features. For example, a driver in a car might want to know which
road he is travelling on, to satisfy the goal of reaching a destination. Or, a
plane might want to know which controller to contact based on their current
flight path.

There are many approaches one can take to solve this problem. A simple
algorithm might be to take the midpoint of the trajectory and compare it to
the feature with the closest spatial distance — an operation that can easily
be computed using a spatial database and R-tree indexes. One pitfall of
this strategy is that it would only match a single feature for each trajectory.
Additionally, the feature may not align well with the trajectory even though

37

4.4. Matching trajectories with geographic features

Figure 4.6: In this example, we have two features, A and B which intersect.
The user’s captured trajectory is denoted by the dashed black line, and
the individual blue points indicate the observations that the hmm consumes.
Each feature corresponds with an hmm state that has an emission probability
that is a function of the minimum Cartesian distance between the observation
and the feature (represented by the green “spokes”). The Viterbi algorithm
decides the most likely feature assignment to each state and to the overall
trajectory as represented by the dotted light blue line.

it is spatially close to the midpoint. However, we now discuss a flexible
strategy that matches features probabilistically, which can be extended to
many different trajectories and sets of features.

4.4.1 Using Hidden Markov Models to match features

We have already given an introduction to the Hidden Markov Model in Sec-
tion 2.2.1 so we will now discuss how to construct the model to solve the
problem of matching geographic features to trajectories.

Firstly, all relevant features that are considered for matches should be re-
trieved from the set of all features. Normally, such a set should be contained
in a geospatial database. Then, all features can be obtained by a query such
as retrieving all features that intersect some fixed size buffer around the
trajectory. This dataset can further be pruned by only retrieving relevant
feature types (i.e., only line strings, or those with a low Hausdorff or Fréchet
distance).

Then, for each considered feature, we create a state in our model that

38

4.5. Trajectory Compression

corresponds to that feature. For a given observation, the state’s output
probability is a function of the Cartesian distance from the observation to
the nearest point on the feature. Transition probabilities between states are
functions of the Cartesian distance between the nearest points of the two
features.

The Viterbi algorithm will decide the most likely state sequence, or most
likely sequence of features, which matches the observed trajectory.

4.5 Trajectory Compression

Trajectory compression can be considered as the inverse of the smoothing
problem described in Section 4.2. For example, smoothing methods such
as Kalman filtering have the ability to “fill in the blanks” for missing data
and compensate for a noisy sensor platform to great effect. The quality of
this data is acceptable enough that evaluation of the dataset may show no
discernible difference in accuracy versus one that was complete.

Jain et al. [10] use Kalman Filters to stream data across a network while
minimizing data transferred. A Dual Kalman Filter architecture is used, by
running Kalman filters both at the server and client (Figure 4.7). Where
the Kalman prediction greatly varies from the observed measurement, the
measurement is transferred. However if the error is small, the measurement
update is omitted. In effect, we used cached Kalman filter parameters to
estimate future measurements.

This scheme can be extended toward the goal of compression by storing
only propagated updates from the client to the server. There is a configurable
level of error which is a trade-off between storage efficiency and precision.
The higher the acceptable error, the less updates would be propagated from
the client to the server thereby saving bandwidth in the network scenario,
or storage in the compression scenario.

39

4.5. Trajectory Compression

(a)

(b)

Figure 4.7: Dual Kalman Filter architecture. In (a), there is no use of a dual
Kalman Filter, and so all updates are pushed from the server to the client.
However, (b) illustrates what can be achieved by running Kalman Filters
on both the client and server. A decision can be made whether to push
the update or not, based on whether the KF prediction exceeds a certain
configured error threshold. If updates are discarded, data is conserved.

40

Chapter 5

Design and Implementation

The design of our system using adaptive pipelined work processing spans a
client and server architecture running on Android devices and cloud servers.
It ameliorates performance and mitigates the pitfalls that are inherent in
each component through the use of adaptive processing.

5.1 Hardware Platform

Recon Instruments produces the mod Live — a heads-up display designed
for snow sports [9]. It is a basic sensor platform incorporating gps, ac-
celerometer, and temperature sensors that reports this information in real
time to the user (Figure 5.1).

It is programmable via a supplied software development (sdk) kit from
Recon. It is also built on top of Google’s mobile operating system, Android
2.3 Gingerbread, through which it can be programmed as well.

The mod Live implements basic features that allow an athlete to receive
feedback on his performance in snow sports. This feedback is often directly
correlated to a sensor — for example, the mod Live allows the athlete to
view his current speed as reported by the gps receiver. In addition, the mod

Live records this data into a RIB file (Recon Instruments Binary file format),
which can be further analyzed by an accompanying application as well as a
web community called the “HQ”.

We have written software to interoperate with the mod Live as well as
work on the standard Android platform. Thus, our system can run on both a
mod Live and a generic Android device with the necessary sensing hardware.

41

5.1. Hardware Platform

Feature Component

Processing ARM Cortex A8 Core 600 MHz
Memory 512 mb
RAM 256 mb
OS Android 2.3

Sensing

• Global Positioning System (gps) Receiver

• Tri-axial Gyroscope

• Tri-axial Accelerometer

• 3 Axis compass sensor

• Temperature sensor

• Barometric pressure sensor

Figure 5.1: Recon mod Live specifications

42

5.2. Software Platform

5.2 Software Platform

We envision our system to not only be adaptive, but to work on real world
hardware and situations. Therefore, the algorithms we have developed in
prior sections must work well on mobile devices and backend servers. This
is especially true in the adaptive processing scenario, as we would like to
evaluate the effect of dividing up the processing pipeline between a client
and a server backend. The Java Programming Language is well suited for
this application, being available on a wide variety of devices, architectures,
and operating systems. Its stated goal of “write once, run anywhere”, while
not true for many cases, does mean that if we adhere to certain programming
principles and restrict the use of our api, we can easily port our code from
one platform to another.

The end result is 9973 non commenting source statements (ncss) of which
the main adaptive pipeline and operators use 6874 ncss and the web and
mobile application code use 964 and 2134 ncss respectively. Statistics and
matrix computations are handled with libraries such as Apache commons-
math [6] and the efficient-java-matrix-library [1].

5.2.1 Server

On the server side, we use a standard Java web stack built around the Spring
Framework [26]. Spring lets us build the pipeline as a service-oriented archi-
tecture, which facilitates the swapping in and out of functionality through
principles of dependency injection and inversion of control.

The server implements the pipeline processor endpoint as a WebSocket
endpoint via the Bayeux protocol [22]. This allows for platform independence
as the protocol is not system specific. Consequently, components can be im-
plemented in different languages and communications libraries are widely
available on mobile and desktop platforms. Furthermore, it is more effi-
cient compared to standard http methods and allows for bi-directional and
full-duplex communications which cannot be achieved with http methods
without use of strategies such as long polling.

The server uses CometD as the Bayeux implementation. Eclipse Jetty

43

5.2. Software Platform

Figure 5.2: Server architecture

Figure 5.3: Client architecture

provides the servlet container and WebSocket server library. Relational data
storage uses the PostgreSQL database management system and PostGIS
spatial database extensions for operations such as trajectory storage and
geographic feature retrieval.

5.2.2 Client

The adaptive processing pipeline is implemented on the client side via the
Android sdk. Operators, being implemented in Java, are normally compiled
into Java bytecode. Preparing operators to be run on Android requires cross-
compilation from Java bytecode into Dalvik bytecode which can be executed

44

5.2. Software Platform

Figure 5.4: This screenshot, taken from the Android emulator depicts the
prototype mobile client running on a simulated trajectory. The red track
shows the trajectory recorded so far, which is the result of activity recognition
detecting a new ski run, while other UI elements tell the user the current
gps parameters. On the bottom, a popup informs the user of the current
feature that has been matched using the gis feature matching operation.

on a variety of Android consumer devices.
Location data is obtained either from device sensors with use of Android

location services or is read from serialized gpx files. The client also uses
CometD client code to connect to the server endpoints (Figure 5.3).

5.2.3 Adaptive pipelined architecture

Pipeline operators

As part of an internship, we had previously designed our gps processing
system as part of a three-tiered architecture for web applications. That
is, most of the processing happens on a logic and data tier on the server,
and the client only needs to do minimal work to render the output of the

45

5.2. Software Platform

presentation tier. Therefore, the pipeline was designed without adaptivity.
Our new pipeline being necessarily adaptive must discretize the processing
steps into operators forming a processing pipeline.

The operators identified are summarized in Table 5.1 in an example pro-
cessing plan order. This processing plan is used for our evaluation in Chapter
6.

Operation Implemen-
tation

Description Parameters

TrajectorySmootherOp Detect errors and
smooth out noise
or jitter inherent in
sensor measurements

trajectory - the tra-
jectory to process
return filtered trajec-
tory

TrajectoryRepairerOp Correct trajectories
based on output of
smoothing steps above

trajectory - the tra-
jectory to process
filtered trajectory -
a filtered trajectory
return repaired
trajectory

ActivityRecognizerOp Tag trajectories with
components

trajectory - the tra-
jectory to process
return time sequence
of activities matched

[Continued on next page]

46

5.2. Software Platform

Operation Implemen-
tation

Description Parameters

SegmentReducerOp From the output of ac-
tivity recognition, re-
duce the amount of
segments tagged erro-
neously (i.e., too short
segments)

activity sequence
- time sequence of
activities matched
return fixed activity
sequence

NearbyFeaturesOp Obtains nearby fea-
tures from some spa-
tial database based on
trajectory

trajectory - the tra-
jectory to process
return list of features
to consider

RegionizerOp Align trajectories to
features

trajectory - the tra-
jectory to process
features - nearby fea-
tures to consider
return time sequence
of features matched

PersistenceOp Save trajectory to per-
sistent database for fu-
ture queries

trajectory - the tra-
jectory to process
activities - matched
activity sequence
features - matched
feature sequence

Table 5.1: Pipeline operators are listed in processing plan order. The op-
eration implementation describes the implemented Java class name. The
parameters describe the input operands and output result.

47

5.2. Software Platform

#Thu Aug 30 18:32:27 PDT 2012
system.network_bandwidth=30000
pipeline.order=0
pipeline.name=client
pipeline.priority=1.0
pipeline.algorithm=adaptive

Figure 5.5: Setting up netem with a flow rate of 200 kilobits per second and
around 200 milliseconds of latency

Operating context

We use Hyperic’s System Information Gatherer (sigar) [8] to gather in-
formation in a cross-platform manner. The Java virtual machine isolates
running programs from architectural details, so sigar provides a Java Na-
tive Interface (jni) bridge to system calls revealing information about the
host machine. Through sigar, we can obtain the machine’s load average
(on Unix-like operating systems), the host cpu model and frequency, and
available memory.

The network capability is also measured at the application level by eval-
uating the time for data to transfer between the client and server. Transfers
are clocked against a synchronized clock on both the client and server (en-
forced by Network Time Protocol daemons with millisecond resolution). The
transfer speed derived from the transfer time is an estimate of network load
and congestion and is constantly updated against a moving average filter.

The combination of static and dynamic information is provided to the
operator to make runtime decisions on processing, and in so doing, adopt
principles of adaptivity.

Pipeline configuration

Finally, we provide a means to configure the pipeline through Spring xml

beans files and properties files. The dependency wiring as well as database
and network routing details are configured in Spring, however, the pipeline
details are configured via Java properties files.

48

5.2. Software Platform

Figure 5.5 shows a sample configuration file for our adaptive pipeline. We
include a priority parameter that weighs its own processing time described
in Section 3.2.1 as Pc. Thus, a client would scale its Tc(Oi) that it calculates
with this parameter. This would allow for a client to prioritize energy usage
over performance, or vice versa.

49

Chapter 6

Evaluation

6.1 Experimental Design

The experimental setup aims to demonstrate the viability of our adaptive
pipeline in a variety of scenarios that may occur. The most common scenario
will be that of multiple clients accessing a shared server. The server can
be load-balanced by using various schemes such as a load balancer or even
round-robin dns. However, we evaluate the system with a single shared
server and scale clients and network appropriately.

The server we choose is designed to be typical of a “cloud” server avail-
able from providers such as Amazon Elastic Compute Cloud or Google App
Engine. It is provisioned as a Xen DomU — a virtual machine running on
the Xen Hypervisor. The DomU share of resources is noted in Figure 6.1

For evaluation, it is difficult to control and simulate multiple mobile
devices reliably, so we simulate multiple clients on standard personal com-
puters instead (Figure 6.2). Multiple clients are run on multicore machines
with the number of clients on each machine not exceeding the number of
available cores. This ensures that there is little context switching and that

Processing 2 virtual cpus — Intel i7-920 2.66 GHz
Disk 20 gb
RAM 1024 mb
OS Debian 6.1
Network Gigabit Ethernet

Figure 6.1: These cloud server system specifications we use for testing are
representative of the products offered by common cloud computing vendors.

50

6.1. Experimental Design

Processing 6 Core AMD Phenom II X6 1055T 2.8 GHz
Disk 1 tb
RAM 4096 mb
OS Ubuntu 12.04
Network Gigabit Ethernet

Figure 6.2: In our testing environment, up to 6 simultaneous clients run on
machines using 6-core AMD processors. Each client’s code is single threaded
and uses a fraction of the available memory.

clients do not dramatically affect each other in processing.

6.1.1 Dataset

Our dataset is a randomly selected subset of 100 trajectories from a larger
dataset recording snow sports. The trajectories represent activities such as
skiing, snowboarding or cross country skiing and were recorded at many
different snow resorts around the world. To the best of our knowledge,
there has been no similar research done using a similar environment — most
trajectories are captured in urban settings such as in cities and suburbs.

These trajectories are stored in gpx files which are parsed by each client
process and loaded into memory. A gpx file holds the data described in
4.1. Trajectories are evenly distributed among all configured clients. The
pipeline is setup with the operators as described in Section 5.2.3 and ordered
into a processing plan created by the client.

6.1.2 Test scenarios

Adaptive pipelined work processing seeks to adaptively shift the burden of
work as described in Chapter 3. The alternative is not to process it adap-
tively at all — that is, to process it entirely on the server or client. We test
four different scenarios to evaluate the effectiveness of adaptive processing.

• Run as much as possible on the client. Thus, we only push work when
the client is unable to perform the operation — it is an operation that

51

6.1. Experimental Design

can only be performed on the server. Thus, most of the load will be
client-side, but it may incur heavy data transfer penalties.

• Push work as soon as possible to the server. In this scheme, no work,
except for initial parsing of the trajectory is done by the client. The
server will be doing all of the processing.

• Randomly choose a pipeline stage to push work to the server. In this
scheme, operations are processed at random by client and server, and
both do a share of the work.

• Employ the adaptive pipeline algorithm. Work will be allocated de-
pending on the operating context and processing heuristics which al-
lows the client and server to allocate work amongst themselves based
on processing load and ability.

Each trajectory is individually processed through the pipeline. Each
client processes trajectories iteratively and sequentially. However, the server
processes requests simultaneously without limit (in practice, bounded by the
worker thread limit, which is configured greater than the possible number
of trajectories available). Each trajectory is individually timed from start
to finish. Therefore, each trajectory time is an aggregate of processing and
transfer times of each operator.

6.1.3 Test metrics

Pipeline performance

We will evaluate our processing pipeline in several ways. For a given test
run, assume there are n jobs submitted and xi is the time taken for the ith
trajectory. Then, the total time for a given pipeline is the sum of the times
of processing all trajectories through the pipeline.

totalT ime =
n∑

i=1

xi

52

6.2. Results

We also look at the distribution of trajectory processing times by computing
basic statistics such as the mean, median, standard deviation, minimum and
maximum. For example, the average time is:

averageT ime =
totalT ime

n

Fairness

However, to quantify the fairness — that is, whether the algorithm is assign-
ing work such that each trajectory has the same share of system resources,
we use a modified version of the Jain’s fairness index [11] for bandwidth that
returns a value from 0 to 1 where a completely fair system would be J = 1:

J(x1, x2, ..., xn) =
(
∑n

i=1 xi)
2

n ·
∑n

i=1 x
2
i

6.1.4 Simulating network conditions

Using computer Ethernet as the network medium is not an accurate sub-
stitute for communications over mobile networks. In addition to evaluating
performance over GigE, we also simulate mobile networks through the use of
netem — a network emulation layer built into the Linux kernel [7]. Netem
throttles the connection to edge with around 200 kilobits per second of
bandwidth and around 200 ms of latency or around 400 ms of round trip
latency (Figure 6.3).

6.2 Results

Our results show that our processing model is adaptive to changing client,
server, and network loads. We will scale the size of our system by introducing
more workers as well as look at the relative distributions of different pipeline
schemes.

In Section 6.2.1, we simulate the scenarios identified in Section 6.1.2 on
a client and server configuration with 6 clients. We follow this with Section

53

6.2. Results

tc qdisc add dev eth0 root handle 1: htb default 1
tc class add dev eth0 parent 1: classid 1:1 htb rate 1000Mbps
tc class add dev eth0 parent 1:1 classid 1:3 htb rate 200kbps ceil \

200kbps
tc qdisc add dev eth0 parent 1:3 handle 10: \

netem delay 200ms 10ms distribution normal
tc filter add dev eth0 protocol ip parent 1:0 prio3 u32 match \

... flowid 1:3

Figure 6.3: Setting up netem with a flow rate of 200 kilobits per second and
around 200 milliseconds of latency

mean median std deviation min max

client 3973.6842 4098.0000 681.6079 1348.0000 6119.0000
server 4800.3825 4477.0000 2486.6226 1053.0000 10179.0000
random 3160.5439 3299.0000 988.9487 1043.0000 5125.0000
adaptive 2940.3158 3123.0000 1246.5026 1028.0000 6148.0000

Table 6.1: Basic statistics for different pipeline schemes using GigE with 6
clients, measured in milliseconds.

6.2.2 by evaluating this same scenario, but under edge-like mobile network
conditions.

Next, we show our system’s adaptiveness. Section 6.2.3 puts our adaptive
processor against changing server loads by increasing the number of simul-
taneous clients. We also similarly scale the network capabilities in Section
6.2.4 to show that we obtain good results in changing network conditions.

6.2.1 Constrained processing only

In every situation, we expect that adaptive should perform better than all
other schemes because it should optimize the allocation of work to minimize
total processing time. The results confirm this. In the case of client-biased
processing, the client is slower than the adaptive scheme because the client,
while dedicated, is slower at certain operations. This is because the client’s

54

6.2. Results

Client processed Server processed Randomly processed Adaptive pipeline processed

Time for processing

Processing strategy

T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

0
e
+

0
0

1
e
+

0
5

2
e
+

0
5

3
e
+

0
5

4
e
+

0
5

Figure 6.4: Processing comparison with 6 clients and 100 processed trajec-
tories

processor is weaker than the server, or because the client requires remote
fetching for data required for operation such as gis feature matching. If
the operation was performed on the server instead, the data fetch operation
would be local instead. However, in the case of server side processing, the
bottleneck becomes the server processing capabilities as it struggles to handle
6 simultaneous clients at the same time.

When reviewing the results, it is important to note that we did not
tweak pipeline performance manually in any way. The adaptive algorithm
automatically tuned performance to suit the processing capabilities and net-
work capabilities of the client and server systems, as well as the nature of
each operation such as the running time and selectivity.

6.2.2 Simulated mobile network

Under simulated edge network conditions, with 200 kilobits per second of
bandwidth and 200 milliseconds of latency each way, the gap becomes smaller
due to the constant effect of network affecting all schemes. We still expect
the adaptive scheme to do better than all other schemes, but the network
delays should mitigate factors in the gigabit network scenario such as server

55

6.2. Results

priority mean median std deviation min max

1.0 5229.724 5102.000 2156.927 1373.000 17954.000
0.9 5083.305 4642.000 2873.168 1426.000 32895.000
0.5 4729.768 4736.000 1573.417 1396.000 10952.000
0.3 4871.577 5024.000 1056.363 1610.000 9066.000

Table 6.2: Basic statistics of different priority parameters using simulated
mobile network speeds with 6 clients, measured in milliseconds.

mean median std deviation min max

client 5082.3642 5280.0000 880.4516 1917.0000 6980.0000
server 5676.0084 5695.0000 1919.3961 1419.0000 11959.0000
random 4760.0905 4747.0000 1417.5763 1402.0000 9739.0000
adaptive 4729.7684 4736.0000 1573.4173 1396.0000 10952.0000

Table 6.3: Basic statistics for different pipeline schemes under mobile net-
work conditions with 6 clients, measured in milliseconds.

overloading because the rate of incoming requests is reduced due to network
delays. Initially, when we tested this scheme, we discovered that the little
network bandwidth made the algorithm delegate work at the earliest op-
portunity to try to minimize the amount of network data transferred. This
consequently degraded into a pipeline that is almost entirely server processed
which meant that the bottleneck once again became the server pipeline pro-
cessor occasionally, which is represented by a high standard deviation and
maximum. To solve this, we tweaked the processor priority parameter to
discount client operators so that the algorithm should pick more operations
to be executed on the client, even in spite of the increased network cost.

Table 6.2 shows that discounting client operations to 0.5, or half of their
projected execution time, provides the optimal execution time for pipeline
operations. Discounting further shows a decrease in performance, which can
be attributed to the increased data costs involved. This configuration is
compared to with the rest of our schemes in Figure 6.5.

56

6.2. Results

Client processed Server processed Randomly processed Adaptive pipeline processed

Time for processing

Processing strategy

T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

0
e
+

0
0

2
e
+

0
5

4
e
+

0
5

Figure 6.5: Processing results under mobile network conditions

Though we achieve better performance with our adaptive pipeline as
demonstrated in Tables 6.1 and 6.3, statistical analysis of other measure-
ments reveals some pitfalls. Compared to client only processing, since we
have to use a shared server, the variance of performance increases such that
in the worst case, we may take almost double the time with our adaptive
pipeline compared to client only processing.

It is interesting that as we introduce more network delays and less band-
width, the differences between the schemes lessen. Each node is less con-
strained by processing, so the algorithm must optimize network transfer
instead. Of note is that random produces good average times compared to
adaptive when network delays become extreme. This is a good scheme in
many work processing algorithms (i.e., when pieces of work are roughly sim-
ilar, allocate work randomly to worker queues) and does distribute the load
well. However, our adaptive scheme may do better due to its more robust
model of processing and network transfer.

6.2.3 Scaling server load and increasing number of clients

So far, we have only tried our adaptive scheme with a moderate work load
(6 clients) where our adaptive model makes the most variable decisions on

57

6.2. Results

where to allocate work. However, in a light work load, we expect that an
adaptive model should entirely process the work on the server. As server load
increases, more work should be done on the client side. At the extreme end
with many clients, the pipeline should be entirely client driven to mitigate
server load as much as possible.

Figure 6.6 shows the scaling of work from 1 client to 32 simultaneous
clients measured in average processing time for a trajectory. Processing
work on the client has mostly level processing time as the majority of work
is done on the client for which resources are not shared. However, it still rises
by about 18 clients because the persistence operation which saves trajecto-
ries to the database is always performed server side regardless of processing
scheme. At this point, the database server can no longer keep up with the
incoming requests. The line representing server processing time increases im-
mediately rises from 3 simultaneous clients up to 14 seconds per processed
trajectory at 32 simultaneous clients. At low numbers of clients, the adap-
tive scheme tracks this line fairly well as server processing is still optimal to
client side processing, but adaptively shifts part of the work to clients around
4-6 workers. It is also at this point that random does well as the adaptive
processing algorithm is similar to randomly allocating pipeline operations
and distributing the workload.

At high numbers of clients greater than 18 simultaneous clients, the adap-
tive pipeline more closely tracks the client scheme. The client scheme does
better overall though, because of overhead in adaptive processing. Also,
even when the adaptive model does all the work on the client, it will oppor-
tunistically try to shift work to the server from time to time. Therefore, the
difference between the client-only processing line and the adaptive-only line
can be thought of as the adaptive pipeline overhead.

We have shown that our adaptive pipelined work processing model is
near-optimal for many different workloads. This is important in any dis-
tributed system, because workloads can change dramatically due to popu-
larity surges and flash crowds. It is clear that no naive strategy can prevail
for all kinds of workloads or system configurations — only an adaptive ap-
proach can optimally choose the best strategy.

58

6.2. Results

1 2 3 4 5 6 8 12 18 24 32

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

Scaling adaptive processing with increasing clients

Number of clients

A
ve

ra
g
e
 j
o
b
 t
im

e
 i
n
 M

ill
is

e
c
o
n
d
s

adaptive
random
server
client

Figure 6.6: This graph shows the average processing time of a trajectory
given an increasing number of simultaneous clients. Four different schemes
are represented here: client-biased processing, server-biased processing, ran-
dom allocation of processing, and our adaptive pipelined work processing
model.

59

6.2. Results

fairness

client 0.9715157
server 0.7890245
random 0.9111071
adaptive 0.8481115

Table 6.4: Jain fairness for different pipeline schemes

6.2.4 Changing network conditions

Here, we simulate different network rate and delays with netem. We would
expect that our model of network capabilities established in Section 3.2.3
should ensure our adaptive pipeline handles adverse network conditions well.
At low network speeds, the system’s network model is important to the
adaptive processor since it should optimize the amount of data transferred
for processing to be optimal. However, past a certain network rate, we
would expect delays from processing to surpass delays from networking in
the overall trajectory processing time. At this point, average times should
remain unchanged for increasingly greater network rates.

Figure 6.7 depicts the performance of the different schemes for varying
network loads. All tests were run with a network delay of 200 milliseconds.
Of interest is the performance when the network has degraded to low speeds
of 10—20 kbps. In such conditions however, the combined effect of a high
latency link and low bandwidth causes high variability in transport speeds.
This is due to effects of tcp congestion. Therefore, we see smaller differences
between the schemes as network delays come primarily from congestion and
resultant queueing delays, not transmission delays. We get a clearer picture
at speeds of 50 kbps and above. The adaptive algorithm is consistently
optimal or near optimal while the other schemes perform as expected from
earlier experiments.

60

6.2. Results

10 20 30 40 50 100 200 500 1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

Adaptive processing with changing network rates

Network rate in kbps

A
v
e
ra

g
e
 j
o
b
 t
im

e
 i
n
 M

ill
is

e
c
o
n
d
s

adaptive
random
server
client

Figure 6.7: This graph shows the average processing time of a trajectory
given an increasing network rate and 200 milliseconds of latency with a
single worker. Four different schemes are represented here: client-biased
processing, server-biased processing, random allocation of processing, and
our adaptive pipelined work processing model.

61

6.2. Results

fairness

client 0.9709230
server 0.8975766
random 0.9186948
adaptive 0.9005509

Table 6.5: Jain fairness for different pipeline schemes under mobile network
conditions

6.2.5 Analysis of fairness

In our analysis of fairness, we anticipate that a pipeline where the operations
are entirely performed on the client would be fairest because the client has
unique control over its own processor and is not shared. This explains the
high > 0.97 index that is achieved by the client in both situations.

Table 6.4 lists the Jain Fairness Index for different scenarios (Section
6.1.3). While the adaptive pipeline clearly beats out the server pipeline in the
robust network scenario, the gap between different schemes other than client
is minimized to a single percentage point in the mobile network scenario. We
have clearly opted throughout this thesis to optimize performance, and have
only discussed fairness in passing. A future direction might be to extend
this thesis along the lines of seda [27] and adjust the model for a trade-off
between performance and fairness through the use of queues for each pipeline
stage.

62

Chapter 7

Conclusion

The relevance of trajectory processing today is the direct result of the success
of the gps system introduced in 1973. Competing systems such as Galileo
by the European Space Agency are being developed today, demonstrating
the technological importance that satellite navigation has to modern society.

In this thesis, we have underscored the importance of trajectory process-
ing and analyzed the systems and devices that are commonly used. In order
to mitigate the pitfalls that are prevalent, we employed adaptive processing
to design a system that performs optimally in a variety of real-world sce-
narios where traditional computing models break down. We demonstrated
a number of different operations that a trajectory processing system would
be expected to process. Our adaptive pipelined work processing is also re-
silient to failures and delays, and is simple for the application developer to
use to implement a variety of different systems, and not limited to trajectory
processing.

It is clear though, that there are other ways to optimize this model be-
yond performance. One such way is by measuring fairness. Though our
model did not perform optimally in this regard, implementing queues be-
tween pipeline stages is a promising technique such as demonstrated by
seda and would be a good direction for future work [27]. Another such
optimization would be to use more powerful models to represent client and
server performance. We used histograms and moving averages in order to
approximate such behaviour, but there is no reason why more advanced
techniques such as Kalman filtering and hmms would not serve just as well.
Furthermore, we have used a linear pipeline as our model of work processing
here, but operations need not necessarily be sequentially executed. With
the increasing availability of multi-core processors even on mobile devices, a

63

Chapter 7. Conclusion

more complex adaptive processing system could use concurrent workflows to
accomplish quicker processing.

We hope that this thesis will motivate further research into trajectory
processing and the closely related problem of processing with mobility. We
support the development of systems which can extract intelligence from our
data on the fly, toward future goals such as augmented reality. The numbers
of gps devices grow in the millions every year, and the decisions we make
are ever increasingly data-driven.

64

Bibliography

[1] Peter Abeles. EJML: efficient-java-matrix-library. http://code.

google.com/p/efficient-java-matrix-library/, 2012. [Online; ac-
cessed 31-August-2012].

[2] G. Bishop and G. Welch. An Introduction to the Kalman Filter. Proc
of SIGGRAPH, Course, 8:27599–3175, 2001.

[3] S. Chandrasekaran, S. Ch, S. Madden, and M. Ionescu. Ninja paths:
An architecture for composing services over wide area networks, 2000.

[4] P. Cudre-Mauroux, E. Wu, and S. Madden. Trajstore: An adaptive
storage system for very large trajectory data sets. In Data Engineering
(ICDE), 2010 IEEE 26th International Conference on, pages 109–120.
IEEE, 2010.

[5] E. De Lara, D.S. Wallach, and W. Zwaenepoel. Puppeteer: Component-
based adaptation for mobile computing. In Proceedings of the 3rd con-
ference on USENIX Symposium on Internet Technologies and Systems-
Volume 3, pages 14–14. USENIX Association, 2001.

[6] Apache Software Foundation. Commons Math: The Apache Commons
Mathematics Library. http://commons.apache.org/math/, 2012. [On-
line; accessed 31-August-2012].

[7] The Linux Foundation. netem. http://www.linuxfoundation.org/

collaborate/workgroups/networking/netem, November 2009. [On-
line; accessed 31-August-2012].

[8] Hyperic. SIGAR API (System Information Gatherer). http://www.

65

http://code.google.com/p/efficient-java-matrix-library/
http://code.google.com/p/efficient-java-matrix-library/
http://commons.apache.org/math/
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.hyperic.com/products/sigar/

Bibliography

hyperic.com/products/sigar/, 2012. [Online; accessed 31-August-
2012].

[9] Recon Instruments. Heads-up Display Technology. http:

//www.reconinstruments.com/products/snow-heads-up-display,
2012. [Online; accessed 31-August-2012].

[10] A. Jain, E.Y. Chang, and Y.F. Wang. Adaptive stream resource man-
agement using kalman filters. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pages 11–22. ACM,
2004.

[11] R. Jain, D.M. Chiu, and W. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems.
DEC research report TR-301, 1984.

[12] M.T. Johnson. Capacity and complexity of HMM duration modeling
techniques. Signal Processing Letters, IEEE, 12(5):407–410, 2005.

[13] R.E. Kalman. A new approach to linear filtering and prediction prob-
lems. Journal of Basic Engineering, 82(1):35–45, 1960.

[14] J.A. Martín H, J. de Lope, and D. Maravall. Adaptation, anticipa-
tion and rationality in natural and artificial systems: computational
paradigms mimicking nature. Natural Computing, 8(4):757–775, 2009.

[15] H.M.O. Mokhtar and J. Su. Universal trajectory queries for moving
object databases. In Mobile Data Management, 2004. Proceedings. 2004
IEEE International Conference on, pages 133–144. IEEE, 2004.

[16] D. Mosberger. Scout: A Path-Based Operating System. PhD thesis,
University of Arizona, 1997.

[17] L.B. Mummert, M.R. Ebling, and M. Satyanarayanan. Exploiting weak
connectivity for mobile file access. ACM SIGOPS Operating Systems
Review, 29(5):143–155, 1995.

66

http://www.hyperic.com/products/sigar/
http://www.hyperic.com/products/sigar/
http://www.reconinstruments.com/products/snow-heads-up-display
http://www.reconinstruments.com/products/snow-heads-up-display

Bibliography

[18] K.P. Murphy. Hidden semi-markov models (HSMMs). Informal Notes,
2002.

[19] B.W. Parkinson and J.J. Spilker Jr. Global Positioning System: the-
ory and applications, volume 1. American Institute of Aeronautics and
Astronautics, Inc., 1996.

[20] K. Pentikousis. In search of energy-efficient mobile networking. Com-
munications Magazine, IEEE, 48(1):95–103, 2010.

[21] L.R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[22] Alex Russell, Greg Wilkins, David Davis, and Mark Nesbitt. The
Bayeux Protocol. http://svn.cometd.com/trunk/bayeux/bayeux.

html, 2007. [Online; accessed 31-August-2012].

[23] M.S. Ryan and G.R. Nudd. The Viterbi Algorithm. Warwick Research
Report RR238, 1993.

[24] F. Schmid, K.F. Richter, and P. Laube. Semantic trajectory compres-
sion. Advances in Spatial and Temporal Databases, pages 411–416, 2009.

[25] E. Seidel. Technology of high speed packet access (HSPA). NOMOR
Research White Paper, 2006.

[26] SpringSource. Spring Framework. http://www.springsource.org/

spring-framework, 2012. [Online; accessed 31-August-2012].

[27] M. Welsh, D. Culler, and E. Brewer. Seda: An architecture for well-
conditioned, scalable internet services. ACM SIGOPS Operating Sys-
tems Review, 35(5):230–243, October 2001.

[28] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.Y. Ma. Understanding mo-
bility based on GPS data. In Proceedings of the 10th International
Conference on Ubiquitous Computing, pages 312–321. ACM, 2008.

67

http://svn.cometd.com/trunk/bayeux/bayeux.html
http://svn.cometd.com/trunk/bayeux/bayeux.html
http://www.springsource.org/spring-framework
http://www.springsource.org/spring-framework

Bibliography

[29] Y. Zheng, X. Xie, andW.Y. Ma. Geolife: A collaborative social network-
ing service among user, location and trajectory. IEEE Data Engineering
Bulletin, 33(2):32–40, 2010.

[30] Y. Zheng, L. Zhang, X. Xie, and W.Y. Ma. Mining interesting locations
and travel sequences from GPS trajectories. In Proceedings of the 18th
International Conference on World Wide Web, pages 791–800. ACM,
2009.

[31] Y. Zheng and X. Zhou. Computing with spatial trajectories. Springer-
Verlag New York Inc, 2011.

68

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgements
	Introduction
	Contributions of this Thesis
	Organization of this Thesis

	Related Work
	Smoothing
	Mean smoothing
	Median smoothing
	Drawbacks of Mean and Median smoothing
	Kalman smoothing

	Activity Recognition
	Hidden Markov Models

	Adaptive Processing
	Mobile devices
	Cloud computing
	Implications for processing
	Strategies for adaptiveness

	Adaptive Pipelined Work Processing
	Building an Adaptive Pipeline
	Pipeline components

	Adaptive Processing Decisions
	Processing heuristics
	Operator selectivity
	Network transport
	Delegating work
	Recovering from faults

	Processing Operators for GPS Trajectories
	Data format
	Smoothing
	Activity Recognition
	What can be gleaned from GPS tracks?
	Constructing a Hidden Markov Model for Activity Recognition

	Matching trajectories with geographic features
	Using Hidden Markov Models to match features

	Trajectory Compression

	Design and Implementation
	Hardware Platform
	Software Platform
	Server
	Client
	Adaptive pipelined architecture

	Evaluation
	Experimental Design
	Dataset
	Test scenarios
	Test metrics
	Simulating network conditions

	Results
	Constrained processing only
	Simulated mobile network
	Scaling server load and increasing number of clients
	Changing network conditions
	Analysis of fairness

	Conclusion
	Bibliography

