
Globally Consistent Space-Time
Reconstruction

by

Ian James South-Dickinson

B.Sc., Oregon State University, 2007

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

September 2012

c© Ian James South-Dickinson 2012

Abstract

We present a novel algorithm for space-time reconstruction of deforming

meshes. Based on partial meshes at every frame, and sparse optical flow

information between frames, we reconstruct a globally consistent, cross-

parameterized, and hole filled sequence of meshes. Our method is based

on pair-wise merging of frame sequences while correcting for changes in

topology, filling in missing geometry, and repairing inconsistencies. We also

introduce a robust method for filling in missing geometry in each frame of

the sequence using geometry from another frame. Using this method we can

propagate geometry over the full frame sequence, correcting errors and fill-

ing in holes even in regions of the object that are not observed in the input

meshes for extended periods of time. Unlike other approaches, our method

does not require template geometry, nor is it limited to narrow classes of

objects or purely isometric deformations.

ii

Preface

The system in this paper was a joint development between Prof. Alla Sheffer,

Prof. Wolfgang Heidrich, Tiberiu Popa, Derek Bradley and myself.

Prof. Sheffer and Prof. Heidrich supervised the project, and Derek Bradley

helped with the capture setup and processing, and contributed to the optical

flow tracking.

Tiberiu Popa and I together developed the core system. We co-developed

the optical flow (Section 4.1) and local patch-based parametrization (Sec-

tion 4.2). Tiberiu developed the Parameterization Assembly (Section 4.3)

and Analysis and Correction (Section 4.4), while I developed the Geometry

Completion (Chapter 5).

Part of this thesis was published in the following paper [28]:

• T. Popa, I. South-Dickinson, D. Bradley, A. Sheffer, and W. Heidrich.

Globally consistent space-time reconstruction. Computer Graphics Fo-

rum, 29(5):1633-1642, 2010.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Figures . vii

Acknowledgements . ix

Dedication . x

1 Introduction . 1

1.1 Motivation . 1

1.2 Overview . 3

1.3 Organization . 5

2 Related Work . 6

2.1 Motion Priors . 6

2.2 Shape Priors . 7

2.3 Geometry Completion . 8

iv

Table of Contents

3 Algorithm Overview . 10

3.1 Initialization . 10

3.2 Hierarchical Assembly . 10

3.3 Pair-wise Sequence Combination 11

3.3.1 Cross-Parameterization 11

3.3.2 Geometry Completion 13

3.4 Temporal Stretch Optimization 14

4 Cross-Parameterization . 15

4.1 Optical Flow Tracking . 15

4.2 Local Patch-Based Parameterization 17

4.2.1 Patch Growth . 18

4.2.2 Patch Cross-Parameterization 19

4.3 Parameterization Assembly 20

4.3.1 Map Selection . 20

4.3.2 Optimization . 21

4.4 Analysis and Correction . 22

5 Geometry Completion . 24

5.1 Source Completion . 26

5.1.1 Segmentation . 27

5.1.2 Remeshing . 33

5.2 Sequence Propagation . 38

5.2.1 Deformation . 38

v

Table of Contents

5.3 Completion Results . 42

6 Results . 46

7 Future Work . 50

8 Conclusion . 51

Bibliography . 52

vi

List of Figures

1.1 Dog hand-puppet . 2

1.2 Topological correction . 4

3.1 Hierarchical assembly . 12

3.2 Combining source and target frames 13

4.1 Correcting source and target frames 16

4.2 Local patch parameterization 18

4.3 Mapping optimization . 21

5.1 Completion overview . 25

5.2 Completion . 27

5.3 Mapping of the source boundary onto the target 29

5.4 Identifying completion geometry 31

5.5 Extracting completion geometry 32

5.6 Remeshing completion connectivity 35

5.7 Completing the source . 39

5.8 T-shirt completion results . 43

5.9 T-shirt completion results . 44

vii

List of Figures

5.10 Dog hand-puppet completion results 45

6.1 Dog hand-puppet reconstruction 48

6.2 T-shirt reconstruction . 49

viii

Acknowledgements

First of all, I would like to thank my supervisor Prof. Alla Sheffer for her

guidance and support during my graduate studies. I would also like to

thank my collaborator on this project, Tiberiu Popa, it has been a pleasure

working with you. In addition, I would like to thank my second reader, Prof.

Wolfgang Heidrich, for his helpful feedback.

I would like to thank all the great collaborators and friends I worked with

during my time in the the DGP and Imager research groups, Derek, Vlady,

Hongbo, James, Xi, and Cody.

Finally, I would like to thank the Graphite developers for providing the

essential underlying tools that were used to create this work, and Andrei

Sharf for the use of his virtual scanning software that was used to create

synthetic data.

ix

Dedication

I would like to dedicate this thesis to my wonderful family, who supported

me in going to another country for graduate school, and to all the wonderful

friends I made here at UBC. In addition, I’d like to dedicate this to Kat and

Edwin, who put up with me while I got this finished up.

x

Chapter 1

Introduction

1.1 Motivation

Geometry scanning and capture techniques in combination with surface re-

construction methods provide a powerful and convenient way to create vir-

tual replicas of real-world objects. Advanced scanning methods are now

capable of providing raw capture data, typically point clouds, for dynami-

cally deforming shapes. The reconstruction of geometry and motion from

this data is the natural next step. While a variety of methods allow for

the independent reconstruction of geometry in each frame, significantly bet-

ter results can be obtained by accumulating information over time, thus

leveraging knowledge of the temporal behaviour of the captured objects

(e.g. [7, 13, 27, 32]). This prior knowledge is particularly critical to the re-

construction of the object’s motion or frame-to-frame geometry correspon-

dence.

Most deforming objects change their shape gradually both in terms of Eu-

clidean coordinates and in terms of intrinsic surface shape. This holds true

for any articulated shape, humans, animals, garments, and many other ob-

jects in our everyday surrounding. This gradual change observation effec-

tively implies that no discrete changes that drastically affect the intrinsic

shape, such as a change in the object genus, are possible. Note that the fact

that the change is gradual does not prevent large changes in the shape over

time, such as the dog’s paws and chest motion in Figure 1.1. The space-time

reconstruction of such shapes should ideally satisfy this prior.

1

1.1. Motivation

Figure 1.1: Dog hand-puppet: (left) inconsistent per-frame surface recon-
struction, (right) globally consistent reconstruction, ellipses visualize the re-
constructed motion. Note the correct reconstruction of the arms and chest
in the zoomed in region even when the arms are folded.

One of the most difficult challenges when reconstructing gradually changing

shapes is the handling of self-contact situations, where the moving surface

comes in contact with itself, such as when the fingers of a human hand touch

(Figure 1.2). Such self-contacts occur quite frequently in typical motions.

Without additional priors, reconstruction of the contact sub-sequence would

2

1.2. Overview

glue the contact areas together. However, switching between glued and

unglued geometries (Figure 1.2, top) introduces drastic intrinsic change in

the reconstructed geometry, violating the gradual-change expectation. Many

methods, e.g. [7], introduce erroneous motion or geometry when such drastic

changes happen. Others use a geometric template as an additional shape

prior and discard or ignore geometries inconsistent with the template. The

template is either provided externally [13, 38] or one frame in the sequence is

selected to act as a template [14, 15, 27, 35]. Clearly, the use of a template is

limiting, as an external template may not be readily available and often no

single frame contains complete or even correct, i.e. contact-free, geometric

information for the reconstructed shape.

1.2 Overview

In our work we present a novel reconstruction method capable of processing

sequences with multiple contact changes without any additional priors. We

start by reconstructing individual-frame geometry and then proceed to as-

semble those individual frames into a consistent space-time frame sequence,

simultaneously completing missing information across time and correcting

inconsistencies. To the best of our knowledge, ours is the first method to

develop such an explicit temporal correction mechanism.

In our method we compute a correspondence between consecutive frames

in the sequence. We observe that since the change is gradual, the corre-

spondence, or mapping between correctly reconstructed consecutive frames

should exhibit very little stretch, as the intrinsic surface distances change

very little with a small change in time. However, for the initial independently

reconstructed frames such a mapping may not exist a priori, since due to

occlusions and inconsistencies the frames might have different genus and

other large intrinsic differences. To overcome these differences we developed

a specialized mapping mechanism that uses a local to global approach, as-

sembling a global mapping from a set of local ones, resulting in a map which

3

1.2. Overview

Figure 1.2: Topological correction. Two frames of the hand sequence: (top)
per-frame reconstruction; (bottom) our globally consistent reconstruction -
the ellipses highlight the global correspondence.

allows for easy detection of inconsistencies and hole completion and which

provides a low-stretch feasible correspondence in the consistent regions.

We introduce a robust method for merging the geometric information of con-

secutive frames together to create a consistent space-time frame pair. We

merge together every pair of consecutive frames in a hierarchical fashion,

creating a single consistent space-time sequence. Pairs are merged together

by using the global mapping to perform geometry completion on one of the

frames, filling its holes with information from the other frame, thus creat-

ing a union of all the geometric information in both frames. We robustly

complete complex holes by introducing a splitting mechanism that divides

complex geometry into smaller non-complex parts that we process individu-

ally, allowing more of the geometry in the consecutive frames to be merged

together.

4

1.3. Organization

As demonstrated by our results in (Section 5.3), our completion method is

able to robustly complete a wide variety of holes with complex geometry. In

(Chapter 6), we demonstrate that our method can handle a variety of contact

situations correctly, as it reconstructs the scanned shapes and accumulates

both geometric details and motion information across the frame sequences.

1.3 Organization

In (Chapter 2) we review related work in reconstruction and geometry com-

pletion methods, and in (Chapter 3) we give an overview of our reconstruc-

tion algorithm. In (Chapter 4) we describe our method for constructing

the cross-parameterization between individually reconstructed frames. In

(Chapter 5) we describe in detail our geometry completion method. In ad-

dition, we show results for the completion of individual frame pairs. In

(Chapter 6) we show results for the full reconstruction of several datasets.

In (Chapter 7) and (Chapter 8) we discuss future work and conclude this

thesis.

This project was a collaboration with others, and I will focus primarily on my

main contribution to the project. Specifically, I will focus on the geometry

completion algorithm in Chapter 5, with other aspects of the system included

for completeness.

5

Chapter 2

Related Work

2.1 Motion Priors

The main challenge of spatio-temporal reconstruction is to effectively use

the temporal component, accumulating geometry and motion information

over time. This process requires prior knowledge on the scanned object’s

behaviour over time. Frequently used priors include quasi-isometry [7, 18,

36], and piece-wise rigid motion [10, 27]. Some methods utilize priors that

allow for drastic shape and topology changes in the reconstructed models [16,

32]; however, such changes are likely to be undesirable when reconstructing

many typical motions, such as the movements of a human or other animal.

In our work we expect the scanned shape to change gradually, a prior that

is satisfied by the motion of most typically scanned objects. Both quasi-

isometry and piece-wise motion priors implicitly assume gradual change.

One of the challenges in spatio-temporal reconstruction is to not only com-

plete locally missing data, but also reconcile inconsistent per-frame inputs.

Inconsistent in this context means that straightforward, naive combination

of the per-frame scans violates the shape or motion priors. This frequently

happens in scans of surfaces coming into contact with themselves. A tem-

porally local reconstruction would glue the parts in contact, resulting in a

drastically different intrinsic shape in the contact and non-contact parts of

the frame sequence violating the gradual change prior. Inconsistencies can

also happen because of errors in local reconstruction.

Methods that focus on reconstructing only the motion of the scanned object,

6

2.2. Shape Priors

or frame-to-frame registration [1, 23, 37], can often ignore such inconsis-

tencies. However without corresponding geometry reconstruction and data

completion, their results are not as useful. Methods that reconstruct both

geometry and motion but ignore the possibility of drastic intrinsic changes

[7] can either provide unnatural results or fail completely when inconsisten-

cies are present.

2.2 Shape Priors

The most common way to resolve inconsistencies is to introduce a strong

shape prior, by using either an external template, e.g. [13, 20, 38], or one of

the frames in the sequence as a template, e.g. [14, 15, 35]. The drawback

of the first approach is that an external template may often be unavailable.

When using the second solution it becomes quite difficult to complete geo-

metric data missing in the selected frame. Moreover, there may be sequences

in which each frame exhibits some local self-contact not present in another

part of the motion. In this case, none of the frames can serve as a template

without user correction. Several techniques [3, 24] replace the use of a tem-

plate with a combination of a skeleton and markers. In comparison to the

aforementioned approaches, our method manages to correct inconsistencies,

reconstructing globally consistent geometry and motion, without relying on

any type of template or other structural information. At the same time, our

results are comparable to those of state-of-the art methods in cases where

no inconsistencies exist.

Wand et al [39] were the first, to our knowledge, to specifically address con-

tact situations, introducing a global space-time reconstruction framework.

They use the data to construct a template-like surface representation and

then deform it to approximate the inputs. The approximation often smooths

out details or introduces non-existent details coming from the template. In

contrast, our method preserves the input per-frame geometry nearly every-

where, discarding local geometry only if it is inconsistent with other parts

7

2.3. Geometry Completion

of the sequence.

2.3 Geometry Completion

Geometry completion is the process of filling in the missing data in a static

surface that is caused by an erroneous and incomplete reconstruction of the

surface. The most common approach used is to identify the holes and fill

them with a smooth surface. Some methods [21, 41] accomplish this by

creating an initial triangulation of the hole boundary and improve it until

some condition is met. In [21], the hole is triangulated without adding extra

vertices in the hole, and then proceed to subdivide it until the sampling

density is approximately that of the surrounding surface. Alternatively,

Zhao et al. [41] finds an initial poor quality triangulation of the hole with

extra vertices, and then the smooth vertex positions are found such that

their normal smoothly varies across the hole. Other methods [8, 12] define

the hole filling surface with an isosurface and then trianglulate it. Davis

et al. [12] construct the isosurface by initializing the inside/outside volume

on a voxel grid around the known surface and then diffuses the voxel values

through the hole using approximate heat diffusion. In [8] the isosurface

for a hole’s neighborhood is approximated with Radial Basis Functions and

the hole is filled by extrapolating the isosurface into the region of the hole.

While some of these methods are able to handle holes of arbitrary size,

for most surfaces a smooth surface is not an accurate representation of the

missing geometry unless the hole being filled is sufficiently small and does

not encompass significant features.

Several methods address the problem of complex missing details by filling the

holes with detailed geometry that is synthesized from the mesh itself. Many

of these methods [4, 9, 25, 31, 40] have been inspired by texture synthesis

and image completion algorithms that fill in missing pixels in an image.

These methods fill the holes by identifying geometry patches that could be

pasted along a hole boundary and iteratively fill the hole with transformed

8

2.3. Geometry Completion

patches. Such methods are not able to complete missing features that are

not already present in the mesh in a similar form. Other methods complete

the geometry by transferring details from a template mesh that contains the

missing features. Pauly et al. [26] reconstructs and fills in missing data in a

point cloud by using a matching database to automatically select multiple

candidate templates, and then proceeds to compose a new mesh by blend-

ing together segments of the templates that best match the point cloud.

Kraevoy and Sheffer [19] completes the geometry in a mesh by creating a

cross parameterization between the mesh and a template using a coarse base

mesh, using it to complete the holes in the mesh with the matched geometry

from the template. Our geometry completion method is similar in that we

use a cross-parameterization to transfer matched geometry, but we do not

construct a base mesh to aid in the completion.

9

Chapter 3

Algorithm Overview

The goal of our system is to reconstruct a consistent frame sequence from

a given space-time point cloud using precomputed optical flow correspon-

dences as an aid, robustly handling self-contacts and other local inconsis-

tencies. We define a consistent frame sequence as a sequence of meshes with

the same connectivity and with per-frame vertex positions that satisfy the

gradual change assumptions of small spatial and intrinsic changes in the

mesh. The shared connectivity explicitly defines the shape’s motion over

time.

3.1 Initialization

When performing the reconstruction we aim to maximize the use of per-

frame geometric information. To this end our method starts by indepen-

dently reconstructing per-frame meshes from the input point clouds [6]. We

can also use per-frame meshes obtained through other means.

3.2 Hierarchical Assembly

We aim to propagate reliable geometric information available in even a sin-

gle frame across the entire sequence. To achieve this goal we use a hier-

archical sequence assembly procedure that, at each step, combines pairs of

consecutive consistent frame sub-sequences into a single consistent sequence

(Figure 3.1), while merging the geometric information available in both. At

10

3.3. Pair-wise Sequence Combination

level zero, we pair individual frames. At level one, we pair sub-sequences of

length two, and so forth.

The hierarchical assembly mechanism can propagate geometric information

across any number of frames, as the geometry merging propagates this in-

formation up through the hierarchy. This is demonstrated in Figure 3.1,

where the complete geometry for the left sphere is available only in frame

VIII and is successfully propagated across the entire sequence.

3.3 Pair-wise Sequence Combination

When combining the two subsequences we aim to obtain the union of the

geometric information available in each, as illustrated in Figures 3.2 and 4.1,

and to resolve any inconsistencies between them. As part of the process we

also compute a common connectivity for the combined sequence, establishing

an explicit one-to-one mapping throughout.

To combine the sub-sequences we first pair the last frame of the first sub-

sequence, referred to as source mesh, and the first frame of the second sub-

sequence, referred to as target mesh. We then propagate the combined

result throughout both sequences, generating a single consistent sequence.

The source and target pairing is done as follows:

3.3.1 Cross-Parameterization

We first compute a mapping between the source and target meshes that

will capture the motion between them. To this end our mapping minimizes

the intrinsic change between the source and its map on the target and is

consistent with the optical flow between them (Figure 4.1, row two, and

Section 4).

11

3.3. Pair-wise Sequence Combination

Figure 3.1: Hierarchical assembly of a consistent frame sequence. From
left to right are sequences of length 1, 2, 4, and 8 respectively. Note the
correction step applied to frames III and IV, V and VI, and again to the
first two sequences in the second column.

12

3.3. Pair-wise Sequence Combination

Figure 3.2: Combining the source and target frames (optical flow corre-
spondences highlighted) to generate a consistent frame sequence. Holes
highlighted in red.

Analysis and Correction The computed mapping represents the mo-

tion between the frames and thus should satisfy the gradual change prior.

Regions on the source where the mapping exhibits either stretch or inconsis-

tent (large) spatial motion are indicative of inconsistent source and target

reconstructions; this is typically due to self-contact or inaccurate per-frame

reconstruction (Figure 4.1, row two). We identify these regions, and cor-

rect the meshes accordingly, by deleting erroneous geometry (Section 4.4,

Figure 4.1, row three).

3.3.2 Geometry Completion

We use the mapping to combine the geometric information from the source

and target frames as illustrated in Figure 3.2, and generate a common con-

nectivity for both frames. We use the mapping to perform geometry com-

13

3.4. Temporal Stretch Optimization

pletion on the source, filling in missing geometry with geometry that is in

the target. We use this completed frame for the new connectivity of the

sequence, and propogate this change throuhgout both sequences, while pre-

serving the local details of the new geometry (Chapter 5).

3.4 Temporal Stretch Optimization

The pairwise maps that we obtain in the previous steps have very low stretch.

But when combining large sub-sequences, even a small stretch error, when

propagated throughout the sequence, can yield undesirable artifacts. We al-

leviate this problem by performing a stretch optimization step similar to the

one used in [29] on every pair of consecutive frames. Since adjacent frames in

the compatible mesh are expected to be nearly isometric, the transformation

gradient of any given triangle from one frame to the next should be a near

rigid transformation. We therefore compute the per-triangle deformation

gradients between consecutive frames and, using polar decomposition, ex-

tract the rotational component of the transformation. We then use it as the

new transformation gradient from the first frame to the second. The second

mesh is then reconstructed as described in [29] yielding a very small stretch

between consecutive frames. This optimization procedure is very effective

as well as efficient. Since all meshes have the same connectivity we only

need to invert a single matrix and backsubstitute different right-hand sides.

This process can be repeated, although in all our examples one iteration was

sufficient.

14

Chapter 4

Cross-Parameterization

The goal of this step is to compute a map between the source and target

meshes that captures the motion between them. Since we assume the motion

or change to be gradual, we aim for a mapping that minimizes such change.

We explicitly minimize the mapping stretch (intrinsic change) while using

optical flow based initialization (Section 4.1) to bound the spatial change.

The challenge we face is that the source and target meshes may not a pri-

ori support a bijective low stretch map. First, because the meshes can be

incomplete, each mesh can contain regions with no corresponding counter-

part on the other (Figure 3.2). Second, and much more challenging, the

meshes may be inconsistent, with drastic intrinsic differences preventing a

low stretch mapping. To overcome both problems, we compute the global

parameterization as an assembly of local low-stretch maps (Section 4.2). The

assembly process (Section 4.3) provides a partial mapping in which points

with no corresponding map indicate regions on one mesh that correspond

to missing geometry on the other, and regions of high stretch indicate local

inconsistencies between the source and target.

4.1 Optical Flow Tracking

We aim to obtain a mapping consistent with the expected motion from

source to target. However, more than one map can satisfy the gradual

change prior. By using video-based capture, we incorporate optical flow

[5] as an additional prior on the likely motion. Unlike other methods that

rely on a dense, accurate optical flow to track the geometry through time

15

4.1. Optical Flow Tracking

Figure 4.1: Correcting source and target frames. In row two the coloring
represents stretch varying from 0.9 (blue) to 1.1 (red) (ideal stretch is one).

(e.g. [15]), we use the optical flow results only as a secondary prior, provid-

ing sparse soft anchors to guide the parameterization. Therefore, we can

be very conservative in selecting optical flow matches, pruning unreliable

correspondences.

We track the optical flow between frames in all camera views, and obtain

16

4.2. Local Patch-Based Parameterization

a 2D vector field describing the image-space motion of the object from one

frame to the next. We then query the 3D motion of a vertex by projecting

it into two cameras, advancing it through time using the 2D optical flow in

camera space and projecting it back onto the model at the next frame. Next,

we perform two levels of pruning to eliminate unreliable correspondences.

First, we check the forward and backward flow in 2D for consistency, and

only keep the optical flow samples that fall in the same pixel after moving

forward and backward in time. We then check that the actual 3D point

correspondences are consistent when projected back into the camera space.

We further thin the remaining anchors to obtain a fairly uniform distribution

across the model. The uniformity makes the subsequent mapping step more

robust by using the same parameters across the entire model. The number

of retained anchors is on the order of one to three percent of the number

of mesh vertices. Even after pruning, the optical flow matches may have

slight inaccuracies at the sub-pixel scale, but since we only use them as an

initial guide for parameterization, such errors have a very minor impact on

our results.

4.2 Local Patch-Based Parameterization

We use a local patch-based parameterization technique as a stepping stone

toward computing a global parameterization. As noted by Bradley et al. [7],

if two near-isometric patches are mapped to the same domain using stretch-

minimizing parameterization, then their maps are likely to be identical; in

other words, using the map from one patch to the common domain and then

the inverse map from the common domain to the second patch should lead to

a near-isometric parameterization between the patches (Figure 4.2). Based

on this observation, we grow patches on both models centered around match-

ing anchors and find patch-to-patch maps by parameterizing the patches into

the plane and aligning them using the anchors. This process provides us with

overlapping low-distortion local parameterizations in most of the consistent

areas of the two models. We then use the overlapping local patch maps to

17

4.2. Local Patch-Based Parameterization

(a) Patch on source (3D) (b) Patch on target (3D)

(c) Patches flattened and aligned in
2D using anchors

(d) Source mapped to target in 3D
(grey area excluded from mapping)

Figure 4.2: Local patch parameterization. In the final map (d) the color
visualizes stretch varying from 0.95 (blue) to 1.05 (red).

piece together a global mapping (Section 4.3).

4.2.1 Patch Growth

We start by growing patches simultaneously from all the source anchors and

their corresponding points on the target, while preserving patch compact-

ness and disk topology. The compactness criterion is important because it

significantly improves the amount of overlap of the parameterized patches

18

4.2. Local Patch-Based Parameterization

in 2D. The growth process terminates once the patches contain three to

seven matching anchors (Figure 4.2(a)). Three anchors are sufficient for

subsequent processing, but the parameterization is more robust to noise in

the optical flow when the number of anchors per patch is higher. At the

same time, the overall mapping stretch is likely to increase with patch size

(recall that we do not expect the meshes to be truly isometric). Hence, if

the patches grow beyond a certain radius but not enough anchors are found,

the growth is aborted and the patch is discarded.

Patches grown only from source anchors may not cover the entire source

model. To improve the coverage, we perform a second iteration of patch

growth, growing patches from the uncovered vertices. Note that initially

regular source mesh vertices do not have a known match on the target mesh.

Therefore, when growing a patch from a regular vertex, we first grow the

patch on the source mesh until an anchor is encountered, and then grow

a patch on the target mesh around the matching anchor until its radius is

equal to the radius of the first patch. From here we proceed with regular

patch growth. Vertices that remain uncovered at the end of this process

typically indicate source regions that lack matching target geometry.

4.2.2 Patch Cross-Parameterization

The two matching patches are first parameterized independently in the

plane. We use ABF++ [33] for computing the planar parameterizations,

because it provides a reasonable trade-off between minimizing stretch and

efficiency. The two parameterizations are then aligned in the 2D plane us-

ing an affine transformation that aligns matching anchors in a least-squares

sense (Figure 4.2(c)), implicitly providing a parameterization from one patch

to the other.

For isometric patches this provides a mapping with minimal stretch. Our

patches are not isometric as the triangulations of the input meshes dif-

fer and the intrinsic geometry is not identical. However, in most cases

the cross-parameterization stretch (Figure 4.2(d)) is concentrated along the

19

4.3. Parameterization Assembly

patch boundaries, which are much more sensitive to differences in triangu-

lation. For parameterization purposes we therefore ignore the mapping in

the boundary region (greyed out in Figure 4.2(d)).

4.3 Parameterization Assembly1

After the local parameterizations are computed, most vertices on the source

mesh have multiple possible mappings on the target based on the number of

patches they belong to. To obtain a one-to-one map, we first select for each

vertex a single local mapping from this set and then apply an optimization

procedure to improve the resulting parameterization.

4.3.1 Map Selection

Our goal is to select the patch with the best local mapping for each ver-

tex, such that the resulting global map exhibits minimal stretch. This goal

translates into a combinatorial optimization problem, which unfortunately

is very difficult to solve. Instead we opt for the following efficient heuristic,

which combined with the subsequent optimization yields the desired result.

We observe that in the local mappings stretch is concentrated mostly near

patch boundaries (Figure 4.2(d)). Hence, for each vertex we select the map

corresponding to the patch in which the vertex is closest to the center. This

heuristic results in global parameterizations that exhibit very low stretch

for triangles in the interior of most local patches, and higher stretch in the

patch boundary regions. Triangles whose vertices are mapped using differ-

ent patches typically exhibit the worst stretch, and in extreme cases can

even be flipped (Figure 4.3, left).

1The parameterization assembly step is not a contribution of this thesis and is included
for completeness.

20

4.3. Parameterization Assembly

Figure 4.3: Mapping optimization: (left) Initial global parameterization
with stretch and flipped triangles most prominent when mapping has
switched patches; (right) stretch after optimization is applied (six global
iterations).

4.3.2 Optimization

To improve the parameterization we need an optimization procedure that,

given the initial map, simultaneously reduces the stretch and fixes flipped

triangles. In the presence of flips, direct stretch optimization (e.g. [30])

often gets stuck in local minima, because sliding a vertex along the mesh in

the correct target direction increases the local stretch before decreasing it

again. In addition, direct minimization of stretch as described by Schreiner

et al. is very time consuming, requiring runtimes of an hour or more for

meshes of interesting size.

We observe that because the change in the intrinsic shape from one frame

to the next is small, a local shape-preserving functional is consistent with

stretch minimization in our setting. Thus, rather than directly minimiz-

ing stretch, we choose to optimize a functional preserving the Laplacian

coordinates of the source vertices [22] when mapped to the target. Evalu-

ating the Laplacian is significantly faster than evaluating stretch, but more

importantly, the Laplacian functional clearly detects flipped triangles, and

optimizing it eliminates them. Since the distortion is concentrated in small

21

4.4. Analysis and Correction

regions, we can effectively utilize a local relaxation technique, iteratively

moving one source mesh vertex at a time over the target mesh to reduce

min
ṽ
‖ Lṽ − Lv ‖22 . (4.1)

Here L is the Laplacian operator, v are the original positions in the source

mesh, and ṽ the mapped positions on the target mesh. We constrain the

solution space to the target mesh, thus preserving the initial target geometry.

To search for a local minimum, we use a random walk approach. To speed

optimization, we process the vertices in a decreasing order of their error

(Equation 4.1). Usually only a few (five or six) global iterations of Laplacian

relaxation are sufficient to reduce stretch to acceptable levels across much

of the mesh(Figure 4.3, right). Once the flipped triangles are corrected, it

is possible to switch to direct stretch optimization, but in our experiments

this did not improve results significantly.

Areas that have local high stretch even in the optimized map are indicative

of geometric inconsistencies between the processed frames (Figure 4.1, row

two). Vertices on either model that remain unmapped at the end of this

step indicate geometry missing in the other model and are incorporated into

that model by the completion step (Section 4.4).

4.4 Analysis and Correction2

The cross-parameterization step computes a map between the source and

target meshes which aims to approximate the motion between the frames.

Thus under our gradual change assumption, mapped triangles should ex-

hibit low stretch and the vertex motion prescribed by the map should be

sufficiently small. A violation of either of these conditions indicates a prob-

lem in the local reconstruction of either the source or target meshes and

2The analysis and correction step is not a contribution of this thesis and is included
for completeness.

22

4.4. Analysis and Correction

their corresponding sub-sequences (Figure 4.1, row two). Based on this ob-

servation it becomes trivial to detect such erroneous reconstructions in our

setting by simply analyzing triangle stretch and vertex motion prescribed

by the cross-parameterization.

Manually setting a threshold on acceptable magnitude of vertex motion is

quite problematic as it strongly relates to the local motion speed. Instead,

we found that this test can be robustly replaced by checking for motion simi-

larity between neighbouring vertices and between vertices and neighbouring

anchors. Vertices belonging to triangles that exhibit high-stretch, and ver-

tices whose motion is much larger compared to neighbouring vertices or

anchors are flagged as potentially incorrect and clustered into regions. We

do not know a priori whether the inconsistencies are caused by problems

with the geometry in the source or target meshes, but we do know that

at least one of the corresponding source and target regions has incorrect

geometry. Therefore, we need to identify which, if any, of the source or

target regions is consistent with our gradual change assumptions and which

is not. For each of source and target, we first delete the region in one mesh

and complete the hole with the corresponding region from the other, using

the completion mechanism described in the next section. We then test to

see whether a mapping using this new geometry obeys our gradual change

assumptions.

There are three possible outcomes. The first, and most frequent one is that

only the geometry of one of the meshes satisfies the gradual change criteria,

in which case this geometry is selected for both frames. The second possible

outcome is that both completions violate the gradual change assumption,

indicating that neither is acceptable. In this case the inconsistent regions

are deleted from both frame sequences. In the third case both completions

lead to consistent results. In this case, for simplicity, we pick the region

from the source.

23

Chapter 5

Geometry Completion

The final step of pair-wise sequence combination is to merge the two sub-

sequences into a single consistent frame sequence, consisting of a common

mesh connectivity with positions for each vertex in each frame. The resulting

output sequence contains all of the surface geometry present in both input

sequences. Consequently, when the last frame pair is processed at the top

level of the hierarchy, the final output sequence will have accumulated all of

the geometry in the entire capture sequence.

In this section we present a robust algorithm for merging the sequences

using the global parametrization computed to perform geometry completion.

Geometry completion is the process of filling in (or completing) the missing

geometry of a mesh using the geometry information from another mesh.

Our algorithm performs geometry completion on the source mesh using the

target mesh to fill in the missing geometry, creating a new mesh that has

all of the geometry of both the source and target. We use the connectivity

of this mesh for the connectivity of the complete consistent frame sequence

that represents the entire range of the source and target, and we propagate

the connectivity to all the frames using a deformation technique to find the

vertex positions in each frame.

Our algorithm receives as input the source and target frame sequences along

with the mapping from the source mesh to the target mesh (5.1(top)). We

use the mapping to guide our geometry completion algorithm, which com-

pletes the source using the target information and filling in some of the holes

(5.1(middle)). This outputs a completed source that represents the union of

24

Chapter 5. Geometry Completion

Figure 5.1: Completion overview: (top) Input source and target sequences
with a mapping from the source to target, (center) completed source rep-
resenting the full geometry, (bottom) propagating the source geometry into
all frames, creating the output consistent frame sequence.

25

5.1. Source Completion

the source and target geometry. Finally, we propagate the completed source

into each frame of the output sequence (5.1(bottom)). Given the mapping,

only the pink source vertex positions are known in all frames, while the

green and the blue vertex positions are only available in the first half or

the second half of the sequence, respectively. We determine the positions

of the unknown regions by deforming them from a known frame into the

unknown frames while preserving the local details. The resulting consistent

frame sequence is used as input for the next level of hierarchical assembly,

given it is not the last level of the hierarchy.

This chapter is organized into two sections. In Section 5.1 we describe

in detail the geometry completion algorithm that we use to generate the

completed source. In Section 5.2 we describe our deformation scheme for

propagating the completed source to the entire sequence.

5.1 Source Completion

We use the source mesh connectivity as a basis for the connectivity of the

merged consistent frame sequence. We generate this merged connectivity,

that represents the full geometry in the sequence, by performing geome-

try completion on the source mesh using the target, utilizing an algorithm

similar to Kraevoy et al [19]. This process fills in the missing geometry in

the source, resulting in a new source connectivity that represents the full

geometry available in both the source and target.

In the first step of source completion we first identify the target geometry

that we can use to complete the source. To do this we segment the target into

two categories, missing or not missing in the source, and use each missing set

to construct the completion geometry that fills the source holes. We segment

the target by using the mapping to project the source boundaries onto the

target surface (Figure 5.2(left bottom)), which intersect and surrounds the

missing geometry (Figure 5.2(middle bottom)). This segmentation generally

produces one large set of geometry that is not missing in the source, and

26

5.1. Source Completion

Figure 5.2: Completion: (left) Mapping the boundary, (center) extracting
missing geometry, and (right) completing the geometry. Missing geometry
highlighted in red.

multiple sets of missing geometry (Figure 5.2(middle top)). We extract each

set of missing geometry and remesh it to create a new connectivity that

conforms to the source boundaries (Figure 5.2(right bottom)), so that it

seamlessly completes the source. We then generate the new vertex positions

for the missing geometry in the source (Figure 5.2(right top)), as described

in Section 5.2.

In Section 5.1.1 we describe our method for segmenting the target into miss-

ing and not missing sets, and in Section 5.1.2 we describe how we create the

new connectivity for the missing geometry in the source.

5.1.1 Segmentation

To complete the source with target geometry, we first identify the completion

geometry, the subset of target geometry that is missing from the source that

27

5.1. Source Completion

we will use to complete the source. We do this by segmenting the target

triangles into two sets, one of which contains the completion geometry.

Our algorithm for segmenting the target proceeds as follows: First we map

the source boundaries onto the target and determine if there exists adjacent

target geometry that we can attach to the boundary. If such geometry does

exist, we mark that source boundary as completable. The mapping of the

completable source boundaries separates the target geometry, with comple-

tion geometry on one side of the boundary and non-completion geometry on

the other (Figure 5.3). We approximate the mapping of each completable

source boundary using the sequence of triangles intersected by the mapping.

Finally, we complete the segmentation by considering each intersected tri-

angle to be in the completion geometry set and flood fill inward, adding

adjacent triangles to the completion geometry set.

Source Boundary Projection We observe that the missing geometry

may only attach to the source mesh at the boundaries, and that the mapping

of those boundaries will be adjacent to the completion geometry. We identify

the completable boundary sequences, the sequences of boundary vertices that

have associated target geometry, by analyzing the mapped location in the

target. After identifying each completable boundary sequence, we use the

mapped location to segment the target.

We differentiate between three types of vertices based on the mapping: un-

mapped, which do not have a mapped location in the source, mapped, which

do have a mapped location, and boundary mapped, which map close to a

target boundary. Further details on these different types of mappings and

how we use them to determine the completable boundary sequences are as

follows:

• Unmapped Vertices: The unmapped vertices correspond to geom-

etry that is in the source but not the target. Therefore there does

not exist nearby target geometry that can be attached to unmapped

boundary vertices.

28

5.1. Source Completion

(a) Source (b) Target

(c) Mapped Boundary

Figure 5.3: The mapping of the source boundary onto the target surrounds
the completion geometry.

• Mapped Vertices: The mapped vertices are the source vertices with

a mapped location. The location of the mapped vertex position is de-

termined by the target triangle T that it maps into and the Barycentric

coordinates (λ0, λ1, λ2) of the position within T . The mapped posi-

tion is calculated as
∑2

j=0 λjPTj , where PTj is the position of the j-th

vertex in the triangle T .

• Boundary Mapped Vertices: Some boundary vertices will map

29

5.1. Source Completion

close to a target boundary. If we treated these the same as other

mapped vertices they would only be completed with a small amount of

target geometry, for example the red vertices in (Figure 5.4(a)), so for

the purposes of our algorithm we consider them to be unmapped. We

consider a vertex to be close to the boundary if it maps to a triangle

with at least one boundary vertex, and the on-boundary neighbors

dominate the weighting of the position such that the sum of their

weights is greater than 0.9.

• Completable Boundary Sequences: We group adjacent mapped

boundary vertices together to form the completable boundary sequences.

Some completable boundaries will encompass an entire boundary, while

others will only be partial boundaries. In Figure 5.4, the boundary in

(a) that is associated with the green geometry in (b) is a full bound-

ary, while the boundaries associated with red geometry are partial

boundaries. Full boundaries will tend to be entirely filled with tar-

get geometry, while partial boundaries are filled with geometry that is

connected to the target boundaries.

We discard short completable boundary sequences with less than four ver-

tices, and use the remaining sequences to segment the target and identify the

missing geometry. We segment the target by using the path of triangles in-

tersected the mapped sequence. These paths of triangles segment the target

by acting as the boundary between the missing and non missing geometry.

Intersecting Triangle Paths We segment the target using the sequence

of points found by mapping the completable boundary sequences, and con-

nect them together to form a seamless path on the target surface that sep-

arates the missing geometry from the non missing. Rather than use the

geodesic path between points to represent the mapping of the boundary, we

approximate it using a triangle path, an edge-adjacent sequence of triangles

(Figure 5.5(a)).

We construct a triangle path for each completable boundary sequence by

30

5.1. Source Completion

(a) Source (b) Target

Figure 5.4: Identifying completion geometry: (a) Boundary vertices:
Mapped boundary vertices are green, unmapped boundary vertices are blue,
and vertices mapping close to the boundary are are red, (b) Segmented tar-
get: Colored regions are completion geometry, with green regions completely
bounded by a mapped path, and red regions are bounded by mapped path
and the target boundary.

connecting together the mapped triangles for each vertex in the boundary.

The triangles are not guaranteed to connect together seamlessly along the

edges, so we connect them together using the shortest path between sequen-

tial triangles. In addition, if a completable boundary sequences does not

encompass an entire boundary, we complete the path by connecting the ter-

minal triangles to a boundary by finding the shortest path to a boundary.

We perform these queries on the dual graph of the target. Details on the

dual graph and how we perform the shortest path queries are as follows:

• Dual Graph: The dual graph of a mesh represents the adjacency of

the triangles. Each triangles has a vertex in the dual graph, and there

is an edge between two vertices in the dual graph if and only if the

triangles share an edge. For our purpose the edge weight between two

31

5.1. Source Completion

(a) Mapped Boundary and Triangle Path (b) Flood Fill Seeds

(c) Flood Filled (d) Completion Geometry

Figure 5.5: Extracting completion geometry on the target. (a) Triangle
path and mapped boundary (b) flood fill seed triangles to the left of the
path (c) completion geometry from flood filling from the seeds (d) extracted
completion geometry copied and cut from the target.

triangles is the distance between the Barycenters of those triangles.

• Shortest Path Between Triangles: We connect together the

mapped triangles by finding the shortest path between them in the

dual graph. We use Djikstra’s shortest path algorithm to find it.

32

5.1. Source Completion

• Shortest Path to Boundary: We find this by modifying Djikstra’s

shortest path algorithm to terminate when the first boundary triangle

is popped off the priority queue.

The set of all triangles paths seamlessly separates the completion geometry

and non-completion geometry, so we flood fill to identify the completion

geometry.

Flood filling We find the completion geometry by flood filling the geome-

try surrounded by the triangle paths. The geometry surrounded by a path is

determined by the orientation of the triangle path. A completion boundary

on the target traverses in counterclockwise (CCW) order around the hole in

the target, therefore the triangle path will traverse in CCW order around

the completion geometry. We discover the completion geometry by flood

filling starting from a set of of flood fill seeds, which are the triangles that

are topologically to the left of the path (Figure 5.5(b)) in the dual graph.

A triangle is topologically to the left of the path if and only if it is oriented

to the left of the dual of the path in the target’s dual graph. Flood filling

from these seeds gives us the completion geometry (Figure 5.5(c)).

We then extract the flood filled geometry and create a copy of it (Figure

5.5(d)) to complete the holes in the source.

5.1.2 Remeshing

In this section we will describe how we remesh, or create a new connectivity,

of the completion geometry we found in the segmentation, such that the new

connectivity conforms to the source connectivity. The completion geometry

we previously found contains a superset of the vertices we will, in effect, be

copying into the source mesh. The connectivity of these target vertices are

not compatible with the source connectivity, so we remesh the vertices to

conform to the source connectivity. We define each set of remeshed target

vertices as a completion patch. We create each completion patch by creating

33

5.1. Source Completion

the connectivity robustly in 2D, allowing us to create a general connectivity

for the new vertices in the source, such that the connectivity can be used

for the entire consistent frame sequence.

We create the completion patch by selecting a subset of the vertices from the

extracted completion geometry, and generating a new connectivity for these

vertices while conforming to the source boundary connectivity. We param-

eterize the completion geometry (Figure 5.6(a)) giving us a representation

of it in 2D (Figure 5.6(b)), and then the completable boundary sequences

are mapped into the parameterized completion geometry (Figure 5.6(b)).

We use the completable boundary sequences to create a 2D polygon, and

we discard any vertices outside of the polygon (Figure 5.6(c)). We then

triangulate the polygon and the remaining target vertices to create the new

connectivity that conforms to the source connectivity (Figure 5.6(d)).

Parametrization We generate the connectivity for the completion patch

by first parametrizing the completion geometry, giving us a 2D representa-

tion of the geometry. The quality of the connectivity in 3D when it completes

the source depends on the quality of the parametrization. If the parametriza-

tion from 3D to 2D induces a large distortion, then a quality triangulation

in 2D may not be a quality 3D surface triangulation. For this reason we

use a low-distortion parametrization method, ABF++ [33], using the imple-

mentation provided in Graphite [17]. We then use this parametrization to

find the 2D boundary and vertices of the completion patch.

2D Boundary and Internal Points Using the 2D parametrization of the

completion geometry, we find the 2D representation of the source boundary

that we will conform to by constructing the boundary polygon, the polygon

representing the boundary of the completion patch in 2D. We construct the

boundary polygon from the mapping of the completable boundary sequences

that are adjacent to the completion geometry. We choose the internal points,

the 2D position of vertices that will be in the completion patch, by choosing

only the target vertices that lie inside this polygon, and discard the rest.

34

5.1. Source Completion

(a) Completion Geometry (b) Parameterization

(c) Boundary Polygon and Internal Points (d) Remeshed Geometry

Figure 5.6: Remeshing completion connectivity: (a) completion geometry
from Figure 5.5 (b) Parametrized version with mapping of boundary in 2D
(blue) (c) Boundary polygon and selected internal vertices (d) Connectivity
of completion by triangulating (c).

• Boundary Polygon: We construct the polygon from the 2D mapped

positions of the completable boundaries that are adjacent to the com-

pletion geometry. In the trivial case, when the completable bound-

ary encompasses an entire source boundary, the polygon can be con-

structed entirely from the completable boundary. Otherwise, the map-

35

5.1. Source Completion

ping of the completable boundary is a set of connected line segments

that we must connect together to form a polygon. We connect them to-

gether by adding the line segments of the completion geometry bound-

ary that are boundaries in the target. We do this by first associating

the closest target boundary vertex to each endpoint of completable

boundaries. We traverse the boundary from one endpoint until we en-

counter another endpoint, connecting together the endpoints with the

2D line segments of the boundary encountered. This gives us a closed

polygon representing the conforming boundary of the final completion

patch.

• Internal Points: Using the boundary polygon, we discard the ver-

tices from the completion geometry that are not going to be included

in the final completion patch. We discard any vertices that are outside

the polygon by using an in-polygon test on all of the 2D positions of

the completion geometry vertices. In addition, we discard any vertices

that are close to the polygon, if its distance from a polygon edge is less

than 0.1 times the average polygon edge length. By removing these

vertices, we prevent small and sliver triangles from appearing in the

final connectivity.

We use the boundary polygon and the internal points to construct the con-

nectivity of the patch.

Connectivity Assuming that we are given a low-distortion parametriza-

tion, a high quality triangulation of the boundary polygon and the interior

points will result in a high quality mesh in 3D. For this reason, we use a

constrained Delaunay triangulation of the points, using the Triangle [34]

software. A constrained Delaunay triangulation (CDT) is a Delaunay trian-

gulation of a set of points, with some vertices constrained to be connected by

an edge. We constrain the boundary polygon to be preserved by constrain-

ing each individual polygon edge. The boundary of a Delaunay triangulation

is the convex hull of the points therefore we remove those triangles that are

36

5.1. Source Completion

exterior to the polygon. The connectivity of this triangulation conforms to

the source hole and will give us a high quality triangulation in 3D.

Handling Degenerate Cases In some cases of complicated completion

geometry, the ABF++ algorithm will fail to create a valid parametrization.

If the completion geometry is not a topological disc and it has holes, then

it cannot be parametrized with ABF++. Sometimes ABF++ will produce

a parametrization that overlaps itself and the method described above will

fail. We handle degenerate completion geometry by first cutting edges until

there are no holes and cutting it into multiple disconnected pieces until

there are no overlaps. We then remesh each piece separately as described

above, and merge the remeshed pieces together to create the full completion

geometry patch.

• Hole Cutting: We eliminate each hole by cutting the completion

geometry using the Djisktra shortest path algorithm to find the short-

est path between the hole and the boundary. We find the shortest

path by adding a fake vertex to the graph that has an edge with each

vertex on the boundary of the hole, and using an edge weight of 0 for

these edges. We start the search from the fake vertex, and terminate

the search on the first boundary vertex that is pulled off of the pri-

ority queue. We then cut the completion geometry along the edges

in this path, eliminating the internal hole and connecting it to the

exterior boundary. This will frequently introduce an overlap in the

parametrization, requiring further cutting.

• Overlap Cutting: After cutting all holes, we eliminate overlaps in

the resulting parametrization. To do this, we cut the geometry using

Variational Shape Approximation (VSA) [11], utilizing the implemen-

tation provided in Graphite [17], until each individual piece does not

overlap itself in the parametrization.

37

5.2. Sequence Propagation

We then generate the connectivity as described earlier, while constraining

the cut edges in the CDT. We then recombine the connectivity of all the

remeshed pieces together at the cut edges, thus creating a connectivity that

conforms to the original boundary.

After we have generated all of the completion patches, we connect their

boundaries to their associated source boundaries (5.7(c)), thus creating the

completed source that contains connectivity for all of the geometry available

in both the source and target (5.7(d)). We then generate vertex positions

for the completed source in all the frames.

5.2 Sequence Propagation

After completing the source, we create the single consistent frame sequence

by taking the completed source connectivity and generating the vertex posi-

tions for each frame. The completed source contains both source and target

vertices, and therefore we already have available the vertex positions for

source vertices in the source frames, and positions for the target vertices in

the target frames. In addition, the mapping gives us the mapped source

vertex positions in each of the target frames. This leaves two different types

of unknown vertex positions: the unmapped source vertices in the target

frames, and the target vertices that completed the source in the source

frames. We find these unknown per-frame vertex positions by deforming

the corresponding geometry from a known frame, called the origin frame,

into the unknown frame, called the destination frame.

5.2.1 Deformation

We use a Laplacian deformation technique similar to Lipman et al [22] to

deform the origin frame into the destination frame. We call each set of con-

nected unknown vertices in the completed source connectivity a deformation

set, and we deform each deformation set individually from its origin frame

38

5.2. Sequence Propagation

(a) 2D Connectivity (b) 3D Connectivity

(c) Glued into Source (d) Completed Source

Figure 5.7: Completing the source with the new connectivity.

into each destination frame. For target destination frames we use the source

as the origin frame, and for source destination frames we use the target as

the origin frame. We also include in the deformation set the border ver-

tices, which is the set of vertices that are edge-adjacent to the deformation

set. The positions of the border vertices are known in both the origin and

destination frames.

We deform the vertices by finding vertex positions in the destination frame

39

5.2. Sequence Propagation

such that the Laplace vectors in the origin are preserved. In addition, the

deformation set may undergo rotation between the origin and destination

frame, so we determine this rotation and find vertex positions that preserve

the rotated Laplace vectors.

We perform our deformation in three steps: In the first step we determine

the rotation the border undergoes from the origin frame to the destination

frame. We then propagate the rotations from the border to the vertices in

the deformation set such that the rotation varies smoothly between vertices.

Finally, we find the vertex positions for the destination frame such that the

Laplace vectors closely match the rotated Laplace vectors from the origin

frame.

Border Rotations We find the rotation a border vertex undergoes from

the origin to the destination by first constructing local coordinate frames for

the border vertex in the origin and destination frames. We use the rotation

the local coordinate frame undergoes from the origin to the local coordinate

frame in the destination. The local coordinate frame for a border vertex is

created by constructing a orthonormal basis from the vertex normal ni and

the vector of an outgoing edge eij :

ẑi = ni

ŷi =
ẑi × eij
‖ẑi × eij‖

ŷi = ŷi × ẑi

We construct the 3× 3 matrix Fi that represents the local frame basis:

Fi =

x̂T
i

ŷT
i

ẑTi

 .

40

5.2. Sequence Propagation

Finally, we construct the rotation matrix for the transformation that Fi

undergoes from the origin to the destination by the change of basis from

Fi to F′
i, where F′

i is the local frame constructed in the destination. This

rotation is given by Ri = F′T
i Fi. We then smoothly propagate these rotation

matrices to the vertices in the deformation set.

Rotation Propagation We desire a smooth propagation of border rota-

tions to the deformation set. We do this by minimizing the squared Frobe-

nius norm of the difference between the logarithm of neighboring rotation

matrices:

min
∀iRi

∑
(i,j)∈E

‖log Ri − log Rj‖2F subj to Rk = Rk, ∀k ∈ C,

where C is the set of border vertices, and Rk is the rotation found for

border vertex k. By performing the minimization with the logarithm of the

rotation matrices we keep the solution within the space of rotation matrices,

while allowing the minimization to be found by solving a linear system for

each component of the matrix. We find the logarithm of the minimizing

rotations, and let Ri = elogRi . To calculate the exponential and logarithm

of the matrices we use the methods described by Alexa [2]. We then use

these matrices to rotate the Laplace vectors of the deformation set vertices

in the origin frame when deforming them.

Finally, we use the rotated Laplace vectors to find the vertex positions.

Positions We find the positions by minimizing the difference between the

destination Laplacian coordinates and the rotated origin Laplace coordi-

nates. Specifically, we minimize

min
∀i vi

∑
i

∥∥∥∥∥∥vi − 1

di

∑
e=(i,j)

vj −Rili

∥∥∥∥∥∥
2

subj to vk = vk, ∀k ∈ C,

41

5.3. Completion Results

where

li = v′i −
1

di

∑
e=(i,j)

v′j

is the standard Laplace vector for the origin, vi are the destination positions,

di is the degree of vertex i, v′i is the position in the origin for vertex i, and

vk is the known position of the border vertex k in the destination frame.

By finding the minimizing vertex positions, we find the new positions in the

destination that preserve the local details in the origin.

We perform the above steps on all deformation sets for all unknown ver-

tices, giving us a single consistent frame sequence for both source and tar-

get frames, with a common mesh connectivity and positions for all geometry

present in both the source and target.

5.3 Completion Results

We present the results of our geometry completion algorithm on selected

frames from the T-shirt (Figures 5.8 and 5.9) dataset, and the dog hand-

puppet (Figure 5.10) dataset. For more info on these datasets, see Chapter 6.

For the completed images, the light blue geometry originated in the source

frame, and the pink geometry originated in the target frame. In addition,

we color the unmapped source geometry as green.

The T-shirt results (Figures 5.8 and 5.9) demonstrate cases of large amounts

of missing source geometry that is completed with target geometry. Our

algorithm is able to seamlessly complete the long strips of missing data on

the front of the shirt, and complete the missing geometry under the arms.

In this frame of the the dog hand-puppet dataset (Figure 5.10) the wrist of

the puppeteer is missing in the source frame (Figure 5.10(a)), but is present

in the target frame. Our algorithm is able to robustly complete the non-

planar wrist geometry.

42

5.3. Completion Results

(a) Source (b) Target

(c) Completed Source (d) Completed Target

Figure 5.8: T-shirt completion results.

43

5.3. Completion Results

(a) Source (b) Target

(c) Completed Source (d) Completed Target

Figure 5.9: T-shirt completion results.

44

5.3. Completion Results

(a) Source (b) Target

(c) Completed Source (d) Completed Target

Figure 5.10: Dog hand-puppet completion results.

45

Chapter 6

Results

We demonstrate our reconstruction method’s results on three datasets (two

spheres, a dog hand-puppet, and a t-shirt). The two spheres dataset in

Figure 3.1 is synthetic, generated using virtual cameras which simulate oc-

clusion and other artifacts [32]. To simulate optical flow we use known

correspondences on around 1% randomly sampled mesh vertices. Synthetic

data is easier to control, generating specific contact situations we wanted to

test for. All other datasets are captures of real objects. The initial per-frame

meshes for all the models were reconstructed using [6].

Results Visualization We display the input per-frame meshes with back

facing triangles highlighted in red, effectively showing the holes and missing

geometry. The output consistent geometry is drawn with random colored

circles that are consistent on meshes with the same connectivity. This vi-

sualization effectively shows the cross-parameterization between different

frames.

The spheres dataset (Figure 3.1) is a short 8 frame sequence that illustrates

the main features of the method, highlighting both inconsistency correction

and geometry propagation.

The dog hand-puppet dataset (Figure 6.1) is obtained from multi-view video

capture and demos our method’s ability to reconstruct complex contact

situations, such as when the dog’s paws are brought in front of the chest.

Our method successfully recovers the paw shape as well as the occluded

chest geometry in this situation.

46

Chapter 6. Results

The T-Shirt sequence (Figure 6.2) from [7] highlights the robustness of our

completion mechanism. Even though no template or strong priors are used,

our results are nearly identical to those of Bradley et al. The difference is

only in areas where no data is available in the inputs and where Bradley et

al. use the template for completion, such as under the arms.

As demonstrated by these examples our method is capable of correctly re-

constructing globally consistent geometry and motion even in the presence of

complex contacts and missing data. In contrast to many previous techniques

it does so without relying on strong priors such as a template or skeleton,

which are often non-available. It also avoids over-smoothing and loss of

details common to many other methods [13, 38, 39] preserving per-frame

geometry except for regions where it violates the gradual change prior.

Runtimes Most of the tested per-frame meshes had on the order of 50K

triangles. Since our algorithm is highly parallelizable, we ran it on a cluster

of 27 Intel Xeon 3Ghz CPUs. The run-time is split roughly equally among

three operations: initial patch-based parameterization, optimization and

completion. The first two take about five minutes per frame. While per-

frame completion is very fast, a few seconds, the completion time grows to

five to ten minutes at higher levels of the hierarchy where it is propagated

across longer and longer sequences.

47

Chapter 6. Results

Figure 6.1: Dog hand-puppet reconstruction: (left) input per-frame meshes,
(right) consistent geometry and motion reconstruction.

48

Chapter 6. Results

Figure 6.2: T-shirt reconstruction: (left) input per-frame meshes, (right)
consistent geometry and motion reconstruction.

49

Chapter 7

Future Work

Our method has a number of limitations. Our current implementation of

geometry reconstruction for close-by or contact surfaces can lead to surface

self-intersections. These can be detected fairly easily, but would require some

variation of temporally consistent deformation [29] to resolve. Another lim-

itation of our method is temporal locality when checking for inconsistencies.

Currently we only consider the source and target frames, and give prefer-

ence to the source in situations where both geometries provide acceptable

interpretation. By considering a larger temporal window we might be able

to better detect situations where the target geometry is the correct one.

Because our method only uses the geometry available in the initial per frame

reconstruction, we cannot reconstruct details that are never present in the

input. This can be improved by creating a tool for an artist to design the

missing details in a single frame, and propogating those details throughout

the entire sequence in the same way we propogate missing geometry in Sec-

tion 5.2. Such an approach could also be used to smooth out the jagged

boundaries of the output models.

When propagating geometry we only use the boundary as a constraint while

preserving the local detail, but the local details can undergo other changes.

A possible improvement would be to use the optical flow as a soft constraint

in the propagation. This approach is similar to the approach that Popa et

al. [29] take, where they used the images from the capture to restore wrinkle

details lost in the reconstruction of garments.

50

Chapter 8

Conclusion

We have presented a method for reconstructing a consistent frame sequence

from a sequence of point clouds captured using multiple video streams, us-

ing the gradual change assumption as prior. As demonstrated by the exam-

ples we are able to robustly complete missing features with the matching

geometry from another frame. Our method uses optical flow to create a

cross-parameterization between sequential frames which we use to identify

geometry that will complete the holes in a single frame. This approach

allows us to accumulate all of the geometric information available in the

sequence by completing geometry between each frame pair in a hierarchi-

cal manner, and we have demonstrated results of this applied to an entire

captured sequence.

51

Bibliography

[1] N. Ahmed, C. Theobalt, C. Roessl, S. Thrun, and H.-P. Seidel. Dense

correspondence finding for parameterization-free animation reconstruc-

tion from video. In Proc. CVPR, pages 1–8, 2008.

[2] Marc Alexa. Linear combination of transformations. ACM Trans.

Graph., 21(3):380–387, 2002.

[3] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian

Thrun, Jim Rodgers, and James Davis. Scape: shape completion and

animation of people. ACM Trans. Graph., 24(3):408–416, 2005. ISSN

0730-0301. doi: http://doi.acm.org/10.1145/1073204.1073207.

[4] Gerhard H. Bendels, Ruwen Schnabel, and Reinhard Klein. Detail-

preserving surface inpainting. In The 6th International Symposium

on Virtual Reality, Archaeology and Cultural Heritage (VAST), pages

41–48. Eurographics Association, Eurographics Association, November

2005.

[5] J.-Y. Bouguet. Pyramidal implementation of the lucas kanade feature

tracker: Description of the algorithm. Technical report, Intel Corpora-

tion, Microprocessor Research Labs, 1999.

[6] D. Bradley, T. Boubekeur, and W. Heidrich. Accurate multi-view re-

construction using robust binocular stereo and surface meshing. In

Proc. CVPR, 2008.

[7] Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and

52

Bibliography

Tamy Boubekeur. Markerless garment capture. ACM Trans. Graph.,

27(3):99, 2008.

[8] John Branch, Flavio Prieto, and Pierre Boulanger. Automatic hole-

filling of triangular meshes using local radial basis function. In Pro-

ceedings of the Third International Symposium on 3D Data Processing,

Visualization, and Transmission (3DPVT’06), 3DPVT ’06, pages 727–

734. IEEE Computer Society, 2006.

[9] Toby P. Breckon and Robert B. Fisher. Non-parametric 3d surface

completion. In Proceedings of the Fifth International Conference on 3-D

Digital Imaging and Modeling, 3DIM ’05, pages 573–580, Washington,

DC, USA, 2005. IEEE Computer Society.

[10] Will Chang and Matthias Zwicker. Automatic registration of articu-

lated shapes. Computer Graphics Forum (Proc. SGP), (5):1459–1468,

2008.

[11] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational

shape approximation. In SIGGRAPH ’04: ACM SIGGRAPH 2004

Papers, pages 905–914. ACM, 2004.

[12] J. Davis, S.R. Marschner, M. Garr, and M. Levoy. Filling holes in

complex surfaces using volumetric diffusion. In 3D Data Processing

Visualization and Transmission, 2002. Proceedings. First International

Symposium on, pages 428 –441, june 2002.

[13] Edilson de Aguiar, Carsten Stoll, Christian Theobalt, Naveed Ahmed,

Hans-Peter Seidel, and Sebastian Thrun. Performance capture from

sparse multi-view video. ACM Trans. Graph., 27(3):98, 2008.

[14] Yasutaka Furukawa and Jean Ponce. Dense 3d motion capture from

synchronized video streams. In Proc. CVPR, pages 1–8, 2008.

[15] Yasutaka Furukawa and Jean Ponce. Dense 3d motion capture for

human faces. In Proc. CVPR, pages 1–8, 2009.

53

Bibliography

[16] B. Goldlucke, I. Ihrke, C. Linz, and M. Magnor. Weighted minimal hy-

persurface reconstruction. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 29(7):1194–1208, 2007. ISSN 0162-8828.

[17] Graphite, 2003. http://www.loria.fr/∼levy/Graphite/index.html.

[18] Q.-X. Huang, B. Adams, M. Wiche, and L.-J. Guibas. Non-rigid regis-

tration under isometric deformations. Computer Graphics Forum (Proc.

SGP), 27(5):1449–1457, 2008.

[19] Vladislav Kraevoy and Alla Sheffer. Template-based mesh completion.

In Proc. Symposium on Geometry Processing (SGP), page 13, 2005.

[20] Hao Li, Bart Adams, Leonidas J. Guibas, and Mark Pauly. Robust

single-view geometry and motion reconstruction. ACM Trans. Graph.,

28(5), 2009.

[21] Peter Liepa. Filling holes in meshes. In Proceedings of the 2003 Euro-

graphics/ACM SIGGRAPH symposium on Geometry processing, SGP

’03, pages 200–205. Eurographics Association, 2003.

[22] Yaron Lipman, Olga Sorkine, Marc Alexa, Daniel Cohen-Or, David

Levin, Christian Rössl, and Hans-Peter Seidel. Laplacian framework

for interactive mesh editing. International Journal of Shape Modeling

(IJSM), 11(1):43–61, 2005.

[23] N. J. Mitra, S. Flory, M. Ovsjanikov, N. Gelfand, L. Guibas, and

H. Pottmann. Dynamic geometry registration. In Proc. Symposium

on Geometry Processing (SGP), pages 173–182, 2007.

[24] Sang Il Park and Jessica Hodgins. Data-driven modeling of skin and

muscle deformation. ACM Trans. Graph., 27(3):96, 2008.

[25] Seyoun Park, Xiaohu Guo, Hayong Shin, and Hong Qin. Surface com-

pletion for shape and appearance. Vis. Comput., 22(3):168–180, March

2006.

54

Bibliography

[26] Mark Pauly, Niloy J. Mitra, Joachim Giesen, Markus Gross, and

Leonidas J. Guibas. Example-based 3d scan completion. In Proceedings

of the third Eurographics symposium on Geometry processing, SGP ’05.

Eurographics Association, 2005.

[27] Yuri Pekelny and Craig Gotsman. Articulated object reconstruction

and markerless motion capture from depth video. Computer Graphics

Forum (Proc. Eurographics), 27(2):399 – 408, 2008.

[28] T. Popa, I. South-Dickinson, D. Bradley, A. Sheffer, and W. Heidrich.

Globally consistent space-time reconstruction. Computer Graphics Fo-

rum, 29(5):1633–1642, 2010.

[29] Tiberiu Popa, Qingnan Zhou, Derek Bradley, Vladislav Kraevoy,

Hongbo Fu, Alla Sheffer, and Wolfgang Heidrich. Wrinkling captured

garments using space-time data-driven deformation. Computer Graph-

ics Forum (Proc. Eurographics), 28(2):427–435, 2009.

[30] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe. Inter-surface

mapping. ACM Trans. Graph., 23(3):870–877, 2004.

[31] Andrei Sharf, Marc Alexa, and Daniel Cohen-Or. Context-based surface

completion. ACM Trans. Graph., 23(3):878–887, August 2004.

[32] Andrei Sharf, Dan A. Alcantara, Thomas Lewiner, Chen Greif, Alla

Sheffer, Nina Amenta, and Daniel Cohen-Or. Space-time surface re-

construction using incompressible flow. ACM Trans. Graph., 27(5):

110, 2008.

[33] Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander Bo-

gomyakov. ABF++: fast and robust angle based flattening. ACM

Trans. Graph., 24(2):311–330, 2005.

[34] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh

Generator and Delaunay Triangulator. In Ming C. Lin and Dinesh

55

Bibliography

Manocha, editors, Applied Computational Geometry: Towards Geo-

metric Engineering, volume 1148 of Lecture Notes in Computer Sci-

ence, pages 203–222. Springer-Verlag, May 1996. From the First ACM

Workshop on Applied Computational Geometry.

[35] Jochen Sussmuth, Marco Winter, and Gunther Greiner. Reconstructing

animated meshes from time-varying point clouds. Computer Graphics

Forum, 27(5):1469–1476, 2008.

[36] Art Tevs, Martin Bokeloh, Michael Wand, Andres Schilling, and Hans-

Peter Seidel. Isometric registration of ambiguous and partial data. In

Proc. CVPR, pages 1185–1192, 2009.

[37] Kiran Varanasi, Andrei Zaharescu, Edmond Boyer, and Radu P. Ho-

raud. Temporal surface tracking using mesh evolution. In Proc. ECCV,

volume Part II, pages 30–43, 2008.

[38] Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popović. Ar-

ticulated mesh animation from multi-view silhouettes. ACM Trans.

Graph., 27(3):97, 2008.

[39] Michael Wand, Bart Adams, Maksim Ovsjanikov, Alexander Berner,

Martin Bokeloh, Philipp Jenke, Leonidas Guibas, Hans-Peter Seidel,

and Andreas Schilling. Efficient reconstruction of nonrigid shape and

motion from real-time 3d scanner data. ACM Trans. Graph., 28(2):15,

2009.

[40] Chunxia Xiao, Wenting Zheng, Yongwei Miao, Yong Zhao, and Qun-

sheng Peng. A unified method for appearance and geometry completion

of point set surfaces. Vis. Comput., 23(6):433–443, May 2007.

[41] Wei Zhao, Shuming Gao, and Hongwei Lin. A robust hole-filling al-

gorithm for triangular mesh. Vis. Comput., 23(12):987–997, November

2007.

56

	Abstract
	Preface
	Table of Contents
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Overview
	Organization

	Related Work
	Motion Priors
	Shape Priors
	Geometry Completion

	Algorithm Overview
	Initialization
	Hierarchical Assembly
	Pair-wise Sequence Combination
	Cross-Parameterization
	Geometry Completion

	Temporal Stretch Optimization

	Cross-Parameterization
	Optical Flow Tracking
	Local Patch-Based Parameterization
	Patch Growth
	Patch Cross-Parameterization

	Parameterization Assembly
	Map Selection
	Optimization

	Analysis and Correction

	Geometry Completion
	Source Completion
	Segmentation
	Remeshing

	Sequence Propagation
	Deformation

	Completion Results

	Results
	Future Work
	Conclusion
	Bibliography

