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Abstract

This document presents an interactive pipeline for collecting, labelling and re-

recognizing movable objects in home-like environments. Inspired by the fact that

a human child learns about a movable object by observing it moving from time

to time, and memorizes its name once a name is associated with it, we have de-

signed an object persistence system which performs similar tasks based on change

detection. We utilize 3D registration and change detection systems in order to

distinguish foreground from the background. Focusing on the dynamic objects

(from different vantage points) and interactively asking the user for labels, endows

our system with a database of labeled object segments, which further is used for

multi-view instance recognition. We have expanded the temporal interval logic

to 3D bounding boxes in order to aggregate regions that contain foreground dy-

namic objects, and simultaneously update our model of the background. The ob-

ject segments are extracted by removing the background. Finally the objects are

matched to the existing database of objects and if no match is present the user will

be prompted to provide a label. To demonstrate the capabilities of our system, an

inexpensive RGB-D sensor (Kinect) is used to collect 3D point clouds. Results

show that for tabletop scenes, our approach is able to effectively separate object

regions from background, and that objects can be successfully modelled and rec-

ognized during system operation.
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Chapter 1

Introduction

1.1 Motivation
The research conducted in this thesis is motivated by two applications which at

first glance have different concerns but can share many components: assistive and

domestic robotics.

The urge to advance assistive technology comes from the fact that there is an

increasing population of older adults whilst nursing resources are limited. This

application possesses its own set of useful tasks depending on the target users. For

instance, given the fact that dementia is a common disease in elderly, automated

guidance instructions for everyday tasks was one of the early topics that has been

studied. Driven by this motivation Hoey et al. [23] present a vision-based hand

washing system which prompts the users with a frequency proportional to its ex-

pectation of their awareness. Navigation assistance and obstacle avoidance are also

two areas where an automated system was shown to be helpful [59].

Inspired by these works, we recognized semantically aware systems to be ben-

eficial for cognitively impaired users. Having an understanding of the type of sur-

rounding environment, the objects and the agents operating in it are potentially

helpful to make an informed decision about the user’s needs and also to initiate

a natural dialogue with him/her. One can imagine a number of tasks in which a

semantically aware system (which for instance has a scene understanding or object

recognition module) can replace the need for a caregiver. For example to answer,
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“where am I?” and “where is the book that I was reading yesterday?”. Although

there exist systems that can track the user’s location, an isolated localization mod-

ule will not be able to answer the first question in a human understandable terms

– it only can output a metric measurement with respect to its local map. How-

ever a scene understanding system which discerns room types will be helpful. To

answer the latter question, a system is needed that can identify and locate objects

and has chronologically observed the user’s interaction with it. In this thesis we

have focused on answering the object recognition related questions and left scene

understanding as a future direction.

From the domestic robotics perspective, objects are the focus of a home robot’s

interactions with the world. They are the items to be grasped, they ground the

meaning of terms in interaction with humans, and they are necessary for nearly

every meaningful task performed by a home robot. However, most modern robots

lack the ability to detect, track, and reason about the large number of objects that

are likely to occur in modern homes. This is due in part to the challenges in de-

scribing and detecting objects once they have been demonstrated to a system.

Two facts to consider for an object recognition module that performs in such

applications are that first the set of objects are limited and environment specific and

second the agent operates in such environment for a while. To take advantage of

these constraints our proposed system collects and maintains a database of objects.

In this thesis we have focused on the set of objects which are moved by an agent

(either human or other robots) over a sequence of observations.

The core reason for taking this approach for applications that perform life-long

tasks in a single environment is that the localization and mapping modules that

most of these robots are equipped with provide a good resource to track changes

and extract information with minimal human intervention.

1.2 Contributions
In this thesis, we use an existing recognition approach, and we focus on one aspect

of existing recognition paradigms. Nearly all proposed methods have been based

on a separate teaching phase where a user once instructs the robot about the labels

and appearances of items by hand-annotation, pointing or verbal commands. This

2



labour intensive process results in a static database of objects that does not adapt

as new objects are introduced to the environment. Our main intuition is that, since

home robots autonomously operate in a particular environment for a long time,

they can take advantage of the information they gather over time and incrementally

construct object models in collaboration with their user.

To this end, we describe an object persistence system based upon analyzing

changes in the environment. These changes become seeds to query the users for

object labels (e.g. “What is the name of this object that has moved?”) Once labels

have been given, the system updates its persistent object model and focuses its

recognition effort on explaining the subsequent changes. This use of history and

focusing of attention reduces the computation required to continuously track the

position of a large number of objects, which is a primary practical limiting factor

that currently restricts the number of objects simultaneously available to a system.

Beyond change detection, a key portion of our method is the verification and

update of the semantic object labels used by humans to describe objects. We

achieve this by grouping nearby changed regions into those likely to be explained

by a single coherent object and subsequently, matching 3D sensory signature within

each region to those of the objects previously known to the system.

1.3 Definitions
The key terms that have been used in this thesis are as follows:

Static background: That part of the environment that scarcely moves. For a

typical home environment this includes: walls, counters, book shelves, etc.

Dynamic object: Also referred to as interesting objects, are the subset of ob-

jects that are movable by agents (humans or robots). We use this term to distinguish

the segments of the scene that have the potential to move from the static scene. Ex-

amples include: books, dolls, boxes, phone, etc.

Bounding box: The smallest cube (for 3D point clouds) or rectangle (for 2D

images) that contains all points or pixels which belong to an object.

Regions of interest: The subspace that has the potential to contain dynamic

objects. This is usually abbreviated as ROI. Kitchen counter and coffee table are

two examples of such regions.
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1.4 Overview of the architecture
Our object recognition and data collection pipeline can be summarized in 4 steps:

New 
observations 

Register the 
point clouds

Difference the point clouds 
from the static scene

cluster the residual 
point cloud into segments

Bounding volume 
aggregation

Add to the static 
scene model

Static
Scene

Match object segments
to existing database

Object 
Database

Found a match? Ask the user 
to label

No

Yes

Figure 1.1: Workflow of the proposed pipeline

1. Geometrically register the sensed data between visits, sequentially

2. Detect changes in the occupancy that may have occurred when objects moved

3. Group these changes to locate potential objects and update a background

model of the scene

4. For object segments, attempt to associate a semantic label and add to the

objects database

System components 1) and 2) act as an attention operator for our system, fo-

cusing later computation and allowing the system to quickly ignore large parts of

the world that correspond to a static scene, which greatly improves efficiency. The

result of subtraction is either a piece of static scene or a dynamic object.
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Component 3) refers to the grouping of changes into various types: foreground

or background. The farthest point that has ever been observed in each direction is

considered as part of the static scene (i.e. background) and the system constantly

updates its model. In some cases this simple reasoning may result in objects, in par-

ticular those that have previously been occluded, being categorized as background.

However, this situation only persists as long as that object remains stationary, and

once it is moved, our system can begin to assign it a label.

Component 4) involves update of the object database, recognition of known

objects and user queries occasionally needed to obtain new labels. When a new

object is located, the user is queried for its name. When a change is recognized as

being an object that was previously known, the model for that object is updated. All

of the previously seen objects that are unchanged can simply persist in the model,

allowing for their use in tasks without additional perception effort.

The complete object persistence workflow is depicted in Figure 1.1.

Our system depends only on the reliable 3D data that is now available to many

home robots, such as from an RGB-depth sensor like the Microsoft Kinect. This

3D data allows for highly accurate change detection, which correctly guides our

approach only to update the state of objects that have moved. Also, appearance

signatures derived from high resolution 3D sensory data are highly repeatable and

this allows for successful tracking of the semantic labels of regions as objects are

shifted, rotated, added and removed from a scene.

1.5 Organization
After this brief introduction, Chapter 2 discusses related work in semantic under-

standing and data collection areas. Next, Chapter 3 states the problem description,

and is followed by Chapters 4 and 5 which describe our proposed attention and

detection systems in more detail. Chapter 6 presents the set of experiments we

conducted to investigate the strengths and shortcomings of our pipeline. This the-

sis is concluded by Chapter 7 which includes general discussions and suggestions

for future work. Figure 1.2 illustrates the dependency ordering of the chapters.
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Introduction

Related work Problem statement

Detection Attention

Experiments

Conclusion

Figure 1.2: This thesis is best read in the order depicted in this figure.
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Chapter 2

Related work

With an ultimate goal to have a robust object finding and recognition (semanti-

cally aware) system, this thesis is related to a number of research areas. A scene

understanding module provides general information about the robots working en-

vironment. Next, to detect objects of interest (also referred to as movable objects

in this thesis) in a cluttered environment an attention operator is needed. At last,

the collected information about the objects need to be stored in a database for fu-

ture use. The platform introduced in this thesis develops a procedure that combines

registration and object detection modules for indoor object discovery.

2.1 Semantic understanding

2.1.1 Attention for object recognition

Object recognition in isolation has been investigated extensively in the literature re-

quiring segmented and labeled data. A more advanced approach to object recogni-

tion can detect objects in context. To extend an object detector that detects isolated

objects, the brute force algorithm is to search all the possible subspaces (image

patches in 2D and 3D point cloud segments in 3D) for the object – so called tem-

plate matching. The more effective approach would be to attend to only parts of

the image for which, based on the feature keypoints or prior knowledge, we believe

an object might be present.
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The benefit of an attention operator for object recognition has previously been

assessed for 2D images by Walther et al. [60] and Rutishauser et al. [50]. This also

has been referred to as object search in the literature [6]. A reasoning system has

been designed by Aydemir et al. [6] that starting from any arbitrary location and

given both metric and semantic maps (built with a place categorization module), it

will generate a sequence of actions to find a place that most probably contains the

object. Once the object comes into its field of view it locates the object. In order to

locate the object it uses its prior knowledge about where the objects can be placed,

for example a cereal box is in the kitchen and most probably is placed on a table or

a counter.

While Aydemir et al. [6] manually define the object and scene relations, Kol-

lar and Roy [30] extract the object-object and object-scene relationships from the

photo captions on Flicker website. The key idea behind this is that objects are lo-

cated in predictable scenes given their type and the structure of various scenes. For

instance, desks are located in offices with chairs, laptops, lamps, etc. Kollar and

Roy [30] also introduce an algorithm to search for a novel query object (given a

prediction about its possible location) on an optimal trajectory.

Marton et al. [37] categorize the perception task into active and passive. Ac-

tive perception happens when the robot is actively searching the space for a set of

specific objects. Passive perception refers to collecting position and identification

information about the objects while performing various even unrelated tasks. If the

output of perception module is the input for manipulation module, a 3D model of

the interested object is needed. To manipulate objects a description of the shape

is sufficient – identifying the object is not needed, e.g. the brand of the soda can.

Their object recognition system learns each view of each object as a separate class;

and at test time returns the object’s class regardless of its view. They use the TF-

IDF concept to make documents (object models) from words (visual features).

For applications where expert knowledge or web-based data is not applicable,

an attention operator is needed to suggest areas that have potential to contain ob-

jects (also called regions of interest or ROI). Given this definition, attention for ob-

ject recognition is a sub-system of a semantically aware intelligent system which

obtains an environmental or world model [18, 45]. Rusu et al. [45] extract the

planar surfaces to produce semantic information about ROI in a kitchen.
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In a more generalized way Hager and Wegbreit [18] formulate object persis-

tence with two key ideas: 1. Derive a world model from a sequence of visits.

2. Take advantage of physical constraints such as physical supporting relation-

ships. They construct a scene graph which represents the relationship between

the objects (scene dynamics) and the background as well as an ordering based on

occlusion order between the objects. They precisely explain the procedure to main-

tain the scene graph after the changes in the scene occur. Their results confirm that

the scene parsing for real scenes is more challenging than simulation – mainly due

sensor limitations. In this thesis we only focused on real scenes.

2.1.2 Change tracking

The idea of tracking the changes in the scene in order to extract information in

an unsupervised manner was previously explored by Herbst et al. [21, 22]. They

devise a probabilistic measurement model for RGBD sensors in [22], plus a move-

ment model for surface patches to determine which segments have been moved.

Their experiments are focused on moved surfaces’ segmentation quality and tim-

ing, in contrast to ours which are more focused on multi-view object recognition

and data collection. Built upon this work in [21] they use Markov Random Field

(MRF) to derive the probability of each surface patch being moved between frames.

With a similar motivation Southey and Little [53] perform object discovery by

means of tracking the set of features that move rigidly between sequence of frames.

They segment moving objects by combining appearance, shape and rigid motion

properties. Beuter et al. [9] formulated the same problem by categorizing the space

into static scene, moving entities and movable objects. As the observations are

inputed to the system, it iteratively updates its model of the scene and tracks the

moving entities. The motion model for moving entities is predicted with particle

filtering. Later the static scene model is updated by excluding the moving entities

from the current observation’s point cloud and given the fact that the static scene

is the farthest point observed at each direction. Also at each time step the current

model of the static scene is used to extract parts of the moved objects.

9



2.1.3 Life long learning

Meger et al. [39] describe a method which uses image-based visual saliency to

propose promising regions, previously learned object models to label those re-

gions, and a SLAM framework to track detections over time. However, they do

not describe how to update object models once they are acquired, which is a key

component to avoid the computation needed to continuously re-recognize all ob-

jects. This concept is similar to so-called “lifelong mapping”, which was first fully

defined in [32].

Finally, an approach for representing and updating semantic information about

an environment is given by Hawes et al. [20]. This work considers larger scale

spatial information and focuses on selection of behaviours rather than focusing on

updating a perceptual model, but we are inspired by several of their concepts.

A complete version of our proposed system is capable of navigating through

the environment and obtaining a map which makes the comparison between ob-

servations possible. Further, it maintains a database of movable objects and their

corresponding labels. In this respect the proposed system in [62] follows the same

goal as ours. They put together mapping and object recognition modules in or-

der to extract semantic information about the scene types which further is used for

facilitating human-robot interaction through dialogue.

2.2 Data collection

2.2.1 Dataset properties

Generally, there are many parameters to measure the quality of a database, and

there has been a lot of effort to build unbiased databases that are challenging

enough to be useful in detecting realistic objects. According to Ponce et al. [42] a

set of normalized images with a single object in the centre is not a realistic database

since it can not distinguish between detectors that are robust to size, scale and ro-

tation changes. Rather, images in a database should contain multiple object cate-

gories in a single image, partial occlusion and truncation (by image edges); more-

over the size and orientation of the objects should vary between the images. While

these criteria are designed to evaluate 2D image databases, all of them except size
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invariance could be used for building 3D point cloud databases.

Human photographed images tend to capture the characteristic view of the

objects. For example a shoe is usually photographed from the side and hardly

from the top or front. Since such views are not guaranteed due to occlusion, or are

infeasible due the camera positioning, particularly in robotics applications, robot

collected data is needed in addition to World Wide Web databases. Automatic data

collection has been explored by a few groups.

2.2.2 Autonomous data collection

Perhaps the work by Meger et al. [38] is one of the earliest work that described an

infrastructure to explore the environment and collect images of the objects from

various views. Given an occupancy grid paths to interesting locations in the map

are planned by A∗ algorithm. In order to cover the environment, they employed a

frontier based exploration. And by turning around an object of interest and cover-

ing different views of the object they increase the chance of capturing a character-

istic view.

Jia et al. [25] have designed a utility function that encourages fitting more than

one object in each image, as well as covering different views of an object instead

of taking similar views. Moreover, rather than taking a foveal image as is done in

[38], they compute the optimal distance to capture most parts of the object with

highest possible resolution. At the end they plan the shortest possible path to the

next position and orientation that maximizes utility. To find objects of interest, they

train an original detector on an online dataset, and further will track that object from

various views.

Sapp et al. [51] develop an infrastructure to capture sample images of the ob-

jects on a green background and later synthesize training images with various fore-

grounds and backgrounds. This approach eliminates the need for a human to per-

form the time consuming task of labelling. Their results proves that synthetic data

augmented over real data improves precision and recall.
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2.2.3 Sample 3D datasets

3D point cloud collection has been one of the focuses of robotics applications to

provide input data for object and scene recognition systems. Databases usually

contain either 3D video of scenes or 3D object models. The former is used in place

recognition and loop closure for localization and mapping algorithms, and the latter

is used as training data for 3D object recognition.

There are a number of 3D databases which are collected mainly to test SLAM

algorithms. For example, AASS-loop and Hanover2 (available at [4]) have been

used by Steder et al. [57] for place recognition and loop closure. Also recently

there have been some efforts to build 3D point cloud databases from both indoors

and outdoors environments. However most of the available systems does not rely

on the type of the sensor that has acquired the data, the amount of noisiness and

resolution of the point cloud depends on the sensor. Chapter 5 contains a detailed

discussion on the quality of range sensors.

Perhaps the largest Web based 3D database is Google 3D Warehouse [2], which

contains both indoor and outdoor objects. 3D synthetic object and scene models

from Google 3D warehouse [2] has been used in [17, 33, 61] for 3D object recog-

nition.

A turntable is used in many cases to acquire multi-view pictures/point clouds

of objects [34]. This technique provides accurate pose labelling, and segmentation

is robust given the fact that the object is above a planar surface. Moreover since the

data is collected in a controlled environment, the relative position of the camera and

the platform is given. To make the annotation less time consuming and efficient,

in [34] a 3D model of the world is constructed further a set of segments, called

“surfels”, are suggested to human for annotation. When the labelling is finished,

surfels are transformed back to their corresponding frames and a bounding box will

be computed for each frame. We have adopted a similar approach to annotation.

Recently Janoch et al. [24] presented a database of images collected with Kinect

sensor from a variety of real domestic and office like environments which has hap-

pened by crowd-sourcing.
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2.3 Summary
In the field of home robotics there has been a huge body of work on each of the

navigation, mapping, object search and recognition tasks. Still to the best of our

knowledge – primarily due technical implementation difficulties – there has not

been much progress on integrating these into an infrastructures to extract seman-

tic information about the objects on-the-fly in a long run. Ideally a home robot

equipped with vision sensors should have a visual SLAM system (such as the one

proposed in [32]) to localize and map the surrounding environment, attend to re-

gions which may contain everyday objects (given its prior knowledge about the

environment or by extracting semantic meaning about the supporting surfaces),

recognize the objects (after training a learner on a web based dataset or a previ-

ously gathered and labeled set of objects) and maintain an environment specific

database. This thesis is an attempt to introduce such a system.
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Chapter 3

Problem statement

Persistent object detection is a primary job in many home robotics tasks. This

chapter presents a general overview of our goals, and the pipeline that we have

designed to achieve them. The two following chapters, Chapter 4 and Chapter 5,

provide details on each component of the pipeline as well as their role as part of

the whole.

Second day

register views

subtract
clouds

First day

Match to object 
models

Detected object

Removed object

New object 
ask user for the label 

Objects' database

Figure 3.1: A diagram of the interactions between components in our persis-
tent object detection method

In the big picture, our prototype visits a scene at several time slots and derives

information about the objects in the scene based on the changes that it observes.

Intuitively, after the human or other agents move the objects it can be inferred

that the spaces occupied by those objects afford to contain interesting/dynamic ob-

jects. Over time, by combining these spaces, the robot can limit its search space to
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the combination of these spaces. Moreover from the collected object segments, it

learns the object appearances and stores them in a database for future use. When

none of the instances present in the database match with the newly observed seg-

ment, the system will query the user to provide a label. Figure 3.1 pictures the

above scenario.

At a high level, the robot navigates through the scene, and at each time step,

records the point cloud that it senses (which is a subset of the global model of

the scene). Over the course of days or hours, the robot observes the same scene,

over and over again, and in the meanwhile other agents relocate objects. For our

experiments, we assume that the world is static during each visit, meaning that if

there is a cat in the room, it does not move while the system records a full scan –

in our experiments we have used a toy cat to make sure this constraint is satisfied.

In other words, objects are allowed to move between observations, but not during

an observation. In this chapter and the following two chapters, “time step” is used

to address each shot that is taken during a single visit to a scene, and each visit is

referred to as a single “observation”.

Registration

Change
 detection

Segmentation

Bounding 
box detection

Segmentation

Feature
 detection

Object 
recognition

Data 
collection

Output 1

Output 2

Output 3

Figure 3.2: System overview

Figure 3.2 depicts the pipeline from another angle. It highlights the 3 outputs

that the structure provides and can be used by various other modules: regions of

interest, object labels and a database of object instances. Regions of interest are
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the places that afford to contain objects, therefore not only they can be used by

object search module, but also can be used as working area for a manipulation

module for example (pick and place manipulation operations). Object labels can

be related to the user’s vocal commands, (for example, “Fetch me my mug!”), and

even further could be associated with other sources of data, for instance if the robot

knows how to grasp a ball, a shoe, a glass, and a bottle, the object label guides it

to choose the right set of instructions to execute; or if according to a user provided

instruction set, it understands that a glass affords to contain liquids, when it is

asked to fetch a glass of water, it can go, pour some water in the glass and bring it

to the user. Database of instances not only can be used for further jobs by the same

robot but also can be easily shared between robots operating in the same working

environment, especially in nursing homes, where there are more than one user of

this system and they share very similar appliances and utensils.

To produce these outputs from raw shots taken at each time step during several

observations, at a high level, our system is composed of:

1. A geometric registration system that determines how the current sensor po-

sition differs from the position at which the scene was originally perceived

2. Geometric change detection that leverages the registration information to

find objects that have likely moved during the period between observations

(Output 1: regions of interest, at which changes occur)

3. A multi-view 3D object modelling approach that can be incrementally up-

dated as new views of an object are located and which can assign semantic

labels to each observed item in the world (Output 2: object labels)

4. A high-level object persistence reasoning module that combines the outputs

of the previous three components to maintain a complete scene representa-

tion and add user information using queries when this is needed. (Output 3:
database of object instances)

As depicted in Figure 3.1 system components 1) and 2) act as an attention

operator for our system, focusing later computation and allowing the system to

16



quickly ignore large parts of the world which are unchanged, which greatly im-

proves efficiency. The system analyzes the changed regions with module 3) based

on 3D feature descriptors and an efficient nearest-neighbours classifier. When a

new object is located, the user is queried for its name. When a change is recog-

nized as being an object that was previously known, the model for that object is

updated. All of the previously seen objects that are unchanged can simply persist

in the model, allowing for their use in tasks without additional perception effort.

Finally, in some cases an object has simply been removed from the scene, so the

corresponding object model is removed from the representation.

Registration

Change 
Detection

Bounding box 
aggregation

A collection of point clouds

A collection of dynamic objects' segments

Regions of interest

Segmentation

Object
Detection

Building 
Database

A collection of object segments

A collection of labeled objects

Figure 3.3: System overview: the block representation, shows the flow of the
pipeline as well as the output of each block that is inputed to the next
block.

From the system design vantage, the process may split into two blocks: at-

tention operator and object detector. Chapter 4 describes attention process that

outputs regions of interest, and Chapter 5 illuminates the process of using regions

of interest for object recognition.

Figure 3.3 sketches the relation between these blocks. The left and right blocks

represent the attention operator and object recognition modules, accordingly. The

attention operator is the cascade of registration, change detection and bounding
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box aggregation modules, which outputs a collection of sub-spaces of 3D space

that, based on the collection of observations, afford to contain dynamic objects –

regions of interest. The object recognition module extracts the set of points that

are present in the regions of interest, segments them out, and passes them to object

detector. If the recognition is successful, we have reached our goal – we know the

object’s location and identity. Otherwise, we will query the user. The correspond-

ing chapters will illustrate the methods used for each component and challenges

that have been encountered.
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Chapter 4

System overview: attention

This chapter illustrates our attention operator in detail. First, we describe the regis-

tration approach that we took to build the 3D model of the world at each observa-

tion. Next, change detection and segmentation subsections explain the procedure

that we take to extract object segments. At last, the bounding box analysis which

unifies object bounding boxes to construct regions of interest, is described.

4.1 Registration
Our target applications are home robots and smart wheelchairs, which both are

usually equipped with a localization module. Localization modules essentially

take sensor data, and localize the vehicle in a precomputed map, or localize them-

selves while building the map – so called Simultaneous Localization and Mapping

(SLAM) [54]. An accurate localization, with respect to the global frame/coordi-

nates, empowers the robot to build a full 3D model of the world, which we use to

represent the state of the world at each observation.

For the sake of our experiments, we have built a prototype that starting from

a known position incrementally calculates the transformation between the robot’s

locations and orientations. This method is usually called “dead-reckoning” in the

literature, primarily because it does not optimize the computed transformations

as more information comes in, (i.e. it does not close the loops), and as a result

accumulates error. We have limited our experiments to small parts of the room to
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avoid this issue.

There are three major reasons to collect more than one viewpoint of an object:

1. There is no guarantee that objects will be posed at the exact same orientation

in future visits, nor one can assume that the robot would be able to navigate

to the location where such vantage point will be possible. For example if the

object will be placed on a shelf, without touching the object there is no way

to sense the other side of it, or a shoe on the floor can not be observed from

the side from a fixed camera location at the height of human eye.

2. An object will usually have more than one characteristic view. In particular,

the objects that are not symmetric have more than one canonical pose, e.g.

cats – their side view is very different from front or rear view (see Figure 4.1).

3. The object could be partially or completely occluded from one or more of

the viewpoints, in previous observations.

Figure 4.1: Cat is an example of objects with more than one canonical view

Registration is the problem of finding the transformation between the sensor

data, at each time stamp, to the global/world coordinate system. The general prob-

lem of registration, independent of the dimensionality of the data (either 2D laser

scans or 3D point clouds from stereo cameras), can be approached with 2 differ-

ent methods: point to point matching or feature matching (i.e. correspondences).

Both of these approaches calculate the transformation that aligns the overlapping

areas in the frames. Generally, point to point matching approaches solve for the

candidate transformation that aligns the biggest portion of the data. On the other

side, methods based on correspondences suggest the transformation that aligns the

data in a way that matched keypoints would be placed onto each other (since some

sensor noise always exists, the point clouds would not be perfectly aligned).
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Based on this definition, given the 3D location and orientation of the features

and the correspondences between 2 point clouds (with the assumption that all the

elements in the scene are rigid bodies) each correspondence plus the surface nor-

mals at the keypoints provides the 6 essential parameters, to transform the coor-

dinate system of one cloud to the other. Since the correspondences can be noisy,

an outlier removal technique, e.g. RANdom SAmple Consensus (RANSAC) [14],

is run on the set of candidate transformation to find the one that most number of

correspondences will vote for. Point to point matching techniques are usually de-

pendent on the initialization, and on the other hand a noisy set of correspondences

will result in an off transformation. Iterative Closest Point (ICP) [8] is perhaps the

most well known point to point matching algorithm, but it fails in cases where the

overlapping area is very small or the initial guess is not close enough to the goal

transformation.

In our implementation, ICP is used for aligning partially overlapping point

clouds. The algorithm iteratively recomputes the transformation (rotation and

translation) between two point clouds by mapping the closest points. Depending

on the size of point clouds, it can be slow, and like other gradient descent methods,

convergence is not guaranteed. The termination criterion can be a threshold on

the distance between the mapped point cloud and target cloud, or the number of

iterations.

In our experiments we noticed that the more cluttered the scene gets, ICP out-

puts a closer transformation, mainly due the fact that the background/static scene

is usually a combination of planar surfaces, e.g. desks and walls, for which most

transformations (even a random transform) can result in a high matching score as

long as a big portion of the point clouds overlap. Based on our initial experiments,

since we move our prototype very slowly, ICP works the best in most cases. How-

ever for a clean scene, where there is no clutter, the scene is mostly contained of

planar surfaces, for which ICP sticks in local optimum very quickly. For these

cases a correspondence based approach seems to be more successful.

We also experimented with 2 state of the art feature detectors, for point cloud

registration: Normal Aligned Radial Features (NARF), and Point Feature His-

togram (PFH). To estimate a candidate transformation, we ran RANSAC on the

correspondences that NARF or PFH offered. These feature detectors are usually
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coupled with a keypoint detector. NARF is computed on points in the scene that are

placed on corners, and we computed PFH on the points that an extension of SIFT

[36] keypoint detector, to 3D, offers.1 We found transformation that are computed

based on correspondences more powerful for plain scenes, compared to ICP. Plain

scenes represent only the static part of the world (clear from dynamic objects),

which usually are constituted from big planar surfaces (e.g. table tops, walls,...). In

these cases a greedy method, with number of aligned point as utility function, fails

right away. The rest of this section is an overview on NARF and its reported per-

formance in previous work. Section 5.1 provides a description of PFH. Our initial

investigations determined that PFH was a better candidate for this task, therefore

we only used PFH in the experiments. Since our scenes are relatively cluttered,

NARF fails to find stable correspondences between different views of the scene.

4.1.1 NARF

For many objects, boundaries are enough for successful recognition. For example

a chair can be easily distinguished by its borders. Normal Aligned Radial Fea-

tures (NARF), introduced by Steder et al. [58], is a local feature detector that picks

border points as keypoints, and takes advantage of fast methods of extracting fore-

ground from background in range images. Prior to this work, Steder et al. [55, 56]

proposed a variant of Harris corner detector [19] to pick keypoints in range im-

ages. The descriptor for each keypoint was a 2D range image, that was captured

by transforming the viewpoint to align with normal vector, in the opposite direc-

tion, which made the descriptor independent of observer’s location. At the end to

make the descriptor scale invariant, they would normalize the range values. These

feature detection procedures were computationally expensive, moreover the key-

points could fall on the background instead of object border. To overcome these

problems, instead of computing gradients on range image, they have proposed an

algorithm to pick the points that are to the right, left, top or bottom of the borders,

plus the points at which there is an abrupt change in principal curvature (to capture

1To expand 2D SIFT [36] keypoint detection to 3D, calculate difference of Gaussians at each
scale, then find the local maxima, but instead of 2D Gaussians use 3D Gaussians. This is still
performed on intensity but down sampling is performed with voxel grids, in 3D. More detailed
description is available in PointClouds Library (PCL) [47].
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shape properties). Moreover to compress the descriptor, they project a star shaped

pattern on the normal aligned patches, around the keypoint, and only record the

change in range value across the lines on the star.

Picking borders as salient points breaks down in clutter, where the boundary of

occluded area is not part of the object’s boundary. In fact, a change in viewpoint

will make these keypoints unstable. Unfortunately, the provided pictures of the

scenes do not convince the reader that they have considered occlusion. In all the

reported scenes, the objects are presented in isolation and often in foreground. The

set of objects that have been used are limited to 7 objects with different sizes, but

they are all highly symmetric.

On another note, in the applications where the robot maneuvers on a flat sur-

face, it is not free to rotate about the roll axis (perpendicular to the image plane),

therefore rotation invariance about roll axis is not a necessary property and in fact

undesirably increases the search space. NARF is designed so that it can be used

in either rotation variant or invariant modes. Steder et al. [58] report an extensive

set of experiments on the keypoint’s stability and the descriptor’s recognition per-

formance given 3D models of objects in the scene. But, unfortunately they only

compare NARF with their previous detector [56] and not other 3D feature detec-

tors.

The final remark is that this feature detector has been designed for place recog-

nition and loop closure in SLAM from range data. In [57], NARF features are used

to match the scans with a bag of words approach, and also to provide a 3D trans-

formation between the frames. They have experimented on 4 different datasets

including a flying Quadrotor robot (for which rotation about roll and pitch axes

are allowed.). Although there are many hardcoded thresholds in their method, the

results are very promising.

4.2 Change detection
A dynamic object is a rigid body that in contrast with background/static scene can

be moved, removed or left untouched. For instance, in indoors scenes, they can be

objects that a human carries (book, cup, bag, plate, etc.) or the objects that he/she

can move (chair, computer mouse, computer monitor, etc.). The scope that each of
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these objects can be placed on can be relatively restricted (for example computer

mouse would not be moved far away from the computer station) or unlimited (for

example a bag can be placed anywhere).

(a) stool (b) ball placed on the
stool

(c) ball is new!

Figure 4.2: The three steps to detect the added points to the scene. 4.2a and
4.2b represent the scene before and after adding a ball. 4.2c highlights
the voxels that contain the ball. Voxel grid fills all the space but for
presentation clearance purposes, only the occupied voxels are drawn.

Our methodology considers a point cloud segment to be a dynamic object only

when it is moved. Therefore, an object ought to be displaced before it can be

noticed as a movable object. To make the distinction between static and dynamic

parts of the scene we either need to obtain an observation from the clean scene or

constantly build a model of the static background. In cases where the static scene

(a clean observation) could not be captured in a single observation, the residual

segments (from scene differencing) belong to either the static scene or dynamic

objects. We consider the clusters that come out of occlusion (the regions with

farthest observed distance to the viewer) to belong to the static scene, and add

them to the current model of the static background.

From an implementation perspective, in order to detect changes in point clouds

(all stated in the world coordinate system), we store the current model of the static

background in a voxel grid, and then add the new point cloud to the voxel grid and

count the voxels that only contain points from the new cloud, and those are parts
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of added objects. Figure 4.2 illustrates a very simple scenario.

4.3 Segmentation
In our work we have used a heuristic method to clear the residual point cloud (after

subtracting the two clouds), from noise and cluster the object segments: If a point

has a closest distance less than a threshold to a cluster, it belongs to that cluster.

With the propositional logic terminology, a point (p) belongs to a cluster (C) if and

only if there is at least one other point (q) in that cluster which is closer than a

threshold (δ ) to that point (p):

p ∈C ⇐⇒ ∃q ∈C : ‖q− p‖2 < δ (4.1)

Since in this thesis we focus on the point clouds that represent the real world,

distance is defined as Euclidean distance. In our experiments we have used 3cm 2

as distance threshold. For details on the implementation please refer to Rusu [46]

PhD thesis.

For three major reasons the change detection procedure explained in Section 4.2

does not output a single segment for an object. First, due to occlusion by other ob-

jects in the scene or self-occlusion, a single rigid body could be split into several

pieces. (See Figure 4.3) In such cases, a part of the object could not be observed

and/or it is divided into pieces. Detecting these situations given a single point cloud

is not possible, but as more observations are made this issue can be resolved. Also,

observing the object from another angle, if possible, will resolve this problem. Sec-

ond, when the Regions Of Interest (ROI) only contains a portion of the object, for

example, replacing a small object with a bigger object is a situation where ROI

is smaller than the object and only contains a portion of the object. Section 4.4.3

provides more detail on various scenarios. Region growing is a reasonable solution

for this problem. The part of the object that is within ROI can be used as seed and

it can be grown to contain all the object. However since the boundary of the object

cannot be calculated without any prior about its shape or size, there is no trivial

approach to achieve this. Rusu et al. [45] derived a procedure to grow the regions

in directions which their points have the smallest change in normal direction. As
2This value depends on the depth resolution of the sensor that is used for point cloud collection.
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(a) side view of a toy dragon

(b) front view of a toy dragon (c) 4.3b rotated to the side

Figure 4.3: An example of self occlusion, which splits the object into several
pieces.

one can expect, this results in growing the planar surfaces. Since the object shapes

that we have investigated mostly are not flat, we can not employ such method for

region growing. Also extending this method for arbitrary shapes does not look

straightforward. In our frame work, as more observations are made, the ROI may

get bigger and it may contain other parts of this dynamic object. Therefore, itera-

tion over the observations is a solution to catch these cases. Once other segments

of object are discovered, the database should be updated to contain the new data

accordingly. Third, another issue arises when objects are touching each other or

are closer than the δ threshold. In these cases objects will be clustered as a single

body. Examples are provided in Chapter 6.

4.4 Bounding box analysis and reasoning
To characterize the location of the objects in the data it is common to estimate their

shapes with convex hulls or axis aligned cubes. In this work we studied the space

that dynamic objects occupy, the so called ROI. To derive the ROI from a number
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of object bounding boxes, the relative position of these boxes has to be analyzed. In

this section we will demonstrate the logic behind aggregating 3D bounding boxes.

To simplify the problem, we break the 3D reasoning into three 1D sub-problems

and further unify the information. Other alternative was to unify bounding boxes

into polygons. We extended the Interval logic since it was easy to generalize to

3D, and computing union was easier with this logic.

Section 4.4.1 is a brief introduction to Interval Logic (in 1D). Its goal is to es-

tablish all the possible relations between a set of intervals based on the transitivity

rule. Next interval logic is extended to higher dimensions. Finally, various scenar-

ios that might occur to the dynamic objects’ bounding boxes are analyzed. In the

rest of this section, the term “interval” is used for subsets of 1D space and “box”

for 2 or 3 dimensional subspaces.

4.4.1 Interval logic

Interval Logic was first introduced by Allen [5]. It focusses on 1D intervals which

could be the representation for actions occurring in a period of time. According to

Interval Logic, any 2 intervals have 13 possible temporal relations – that are mu-

tually exclusive: before, after, during, contains, overlaps, over-lapped-by, meets,

met-by, starts, started by, finishes, finished-by, and equals. Figure 4.4 illustrates

these relations.

Figure 4.4: The thirteen possible relationships between intervals, by Allen
[5]. c©ACM 1983
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Some algorithms have been designed to obtain the relationship between any

two intervals in a set of intervals. One is to construct a network that has intervals

as nodes and mutual relations as edges, and utilizing transitivity axiom, find the

relation between two intervals by traversing the path between them [5].

4.4.2 3D bounding box aggregation

In this work we aim to expand an ROI by unifying overlapping object bounding

boxes. To achieve this, the following algorithms have been proposed:

Algorithm 1 Growing region of interest
1: Grow-Bounding-Boxes (B1, B2)
2: N⇐ /0 {set of combined bounding boxes}
3: B⇐ /0 {set of B2 boxes that overlap with one or more boxes in B1}
4: for all b1 ∈ B1 do
5: A⇐ /0 {set of B2 boxes that overlap with b1}
6: for all b2 ∈ B2 do
7: if overlap(b1, b2) then
8: Add b2 to A
9: end if

10: end for
11: if A is Empty then
12: Add b1 to N
13: else
14: Add the smallest box containing A to N
15: Add A to B
16: end if
17: end for
18: for all b ∈ B2∧b /∈ B do
19: Add b to N
20: end for

Each box is presented uniquely by a pair of corners that are positioned diago-

nally (note that the bounding boxes are axis-aligned.). Among the 4 possible pairs

of diagonal corners, the corners that have minimum and maximum values at every

dimension were picked. Let’s name them min and max corners. The two repre-

senting corners (minnew and maxnew) for smallest box containing a set of boxes can

be calculated from the min and max corners of each box. In this representation,
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relative position of the boxes can be determined, conveniently. The minimum val-

ues at each direction among the min corners will form the tuple representing the

minnew corner and maximum values at each direction among the max corners will

form the tuple representing the maxnew corner.

To find the smallest box containing a set of boxes, the minimum and maximum

of the 2 ends of the intervals will be found at each dimension.

Algorithm 2 Overlap(A, B) : To check if two 3D boxes overlap
1: p⇐ True
2: for all dimensions do
3: a⇐ Adimension
4: b⇐ Bdimension
5: p ⇐ p ∧ ((a during b) ∨ (b during a) ∨ (a contains b) ∨ (b contains a) ∨

(a overlaps b)∨ (a overLappedBy b)∨ (b overLappedBy a)∨ (a equals b))
6: end for
7: return p

We assume that in each set, none of the boxes overlap. But for dimensions

higher than 1, after aggregating two sets, the new set may contain regions that did

not exist in any of the original boxes, as illustrated in figure 4.5.

Figure 4.5: The new bounding box can contain regions that do not belong to
either boxes. Left image: two overlapping boxes (in blue). Right image:
the new box (in yellow) overlaid on old overlapping boxes.

Therefore another pass through the set is required to check if the newly gener-

ated boxes overlap; and combine them in case of overlap.
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4.4.3 Various replacement and object positioning scenarios

Dynamic objects can be moved in many different ways: They can be added or

removed from the scene, they can be shifted or rotated and they can occlude each

other. Our goal is to detect changes in a scene based on subtracting the point clouds

at consecutive time frames. In this section we will analyze various situations and

the policy developed to derive information from these events.

To simplify the explanation, here we explain the scenarios in 2D and for pri-

mary shapes, e.g. circles, triangles and rectangles. We believe this analysis is

extendable to arbitrary shaped objects, and to support that assumption, the experi-

ments have been conducted with different shaped objects used in everyday life.

In all the figures in this section the leftmost, middle and rightmost pictures

illustrate the first frame, the second frame and the difference between the 2 frames,

respectively. Also the red, blue and purple colours determine the removed, added,

and overlapping areas, accordingly.

Replacement: Based on the size and shape of the objects various scenarios

can occur. Basic scenarios are depicted in Figure 4.6 and 4.8. The next case is if

the object is replaced with an object with similar size. As illustrated in Figure 4.7

by subtracting the second image from the first one the result will be the 3 blue

regions for which a segmentation algorithm, based on Euclidean clustering (defined

in Section 4.3), will fail to recognize a single shape.

Figure 4.6: Replacing an object with a bigger object

The typical range sensors that have been introduced to the moment only sense

the exterior of the objects; the resulting point clouds does not contain points to

represent the interior of the objects. As a result, for instance a straw and a cable

will both be observed as cylinders. Figure 4.9 illustrates a case in which a circular
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Figure 4.7: Replacing an object with a similar size object

Figure 4.8: Replacing an object with a smaller object

Figure 4.9: The point clouds only represent the exterior of the objects. This
figure illustrates the case where an object is replaced with another one,
and as it is evident their point clouds only overlap on 2 points in 2D
(and by extension a 1D trajectory for 3D).

object is replaced with another one.

Occlusion reasoning

In real world applications, objects occlude each other. In other words, more than

one point’s projection from 3D to camera plane is a particular pixel in the image.

The camera will only capture the closest point and all the other points will be
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hidden. When the object that is occluding parts of the scene, is removed, three

scenarios are possible as illustrated in figure 4.10. This event reveals a static part

of the scene and possibly all or parts of a dynamic object. Since no evidence is

available about which parts are dynamic we treat the whole region as a static scene

and wait for future observations to make the decision whether it is an interesting

region or not.

Figure 4.10: Occlusion reasoning: assume the camera is located bellow and
is looking upwards. The grey region is the occluded area. The Blue
circle is a dynamic object.
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Chapter 5

System overview: detection

In this work we have developed an infrastructure to accumulatively maintain a

database of object instances, that appear in the working environment of the robot,

and constantly recall and record the position of the objects that previously have

been observed. Our ultimate goal is to have a mechanism in which a human user

names each object once and then the system must recognize that object as it moves

into new locations and is seen from different vantage points. We describe objects

based on their shape and visual appearances.

The sub-system that is introduced in this chapter takes the object segments

(output of attention operator) as input, and maintains a database, and in a parallel

process, outputs the label for the segments that successfully match to one of the in-

stances in the database. In the following sections, first, Section 5.1 is an overview

on the 3D feature detectors that we have used in our object recognition or regis-

tration modules. It is followed by an overview of the object recognition system.

Section 5.2 describes the mechanism for maintaining the database, and tracking

the objects, over time. At last Section 5.3 discusses depth sensors that can be used

to acquire 3D point clouds, that the system takes as input.

5.1 3D features and multi view object detection
In this section we discuss the properties of various feature detectors that we have

investigated. The list of feature detectors that we have studied deals with two main
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challenges in object recognition: viewpoint variation and occlusion. We have ex-

plored various scenarios that involve visiting an object from new viewpoints to

examine each feature detector’s robustness to this factor. For instance, the View-

point Feature Histogram (VFH), by Rusu et al. [49], calculates a descriptor that

encodes viewpoint specific characteristics, while other feature detectors that have

been used are viewpoint independent. Since occlusion and clutter also affect ob-

ject appearances we have explored the feature detectors’ ability to describe objects

from partial views. Shape descriptors operate either on parts or the whole object.

In this respect, spin images, by Johnson and Hebert [27], PFH/FPFH, by Rusu et al.

[44, 48], explain the object’s shape locally at the keypoints, whereas VOSCH, by

Kanezaki et al. [28], and VFH explain it in its entirety. Local features are ex-

pected to be more robust to occlusion, compared to global features which require

the whole object to be present in order to be successful.

Many other 3D shape detectors have been introduced, which are not discussed

in this section. For example, Darbandi et al. [12] describe a shape descriptor which

encodes flatness, orientation and convexity (FOC) of the local surface in a his-

togram. Endres et al. [13] introduced a variant of spin images, which stores the

angular distance between the surface normals and the oriented point at the origin

of the image instead of storing their positions. They also focus on generic object

detection as opposed to surface matching.

We have carefully selected these set of features in order to cover both local and

global features, viewpoint variance and invariance, rotation variance and invari-

ance, appearance, and shape descriptions. In all object matching cases, we have

used a leave-one-out approach, in other words, we train on all of the objects except

the query object. The implementation, for all the used features, is available in Point

Clouds Library (PCL) [47].1

5.1.1 PFH family

The PFH family of 3D feature detectors are developed by Rusu et al. [44, 48, 49].

FPFH [48] was proposed after PFH [44] and is its faster variant – since it only

looks at a close neighbourhood of each keypoints for shape properties. Further

1http://pointclouds.org/
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they introduced VFH which builds a histogram for the whole object out of FPFH

descriptors and also incorporates viewpoint information into it. Therefore it detects

the viewpoint from which it observes the object – if it has seen it before. This is

particularly useful for applications that need to estimate object’s orientation as well

as its identity, e.g. manipulation.

For a patch around the query point, PFH estimates the relative direction of nor-

mals for every combination of 2 points on the surface, which is O(n2) if there are n

points on the surface. FPFH shrinks the computation space by only considering K

nearest neighbours of each point on the surface, which makes it O(K ∗n). VFH, on

the other hand, only computes the relative angle between viewing direction, drawn

at the centre, and all the surface normals, only once, which therefore is O(n) [49].

PFH

PFH [44] is a local feature descriptor which encodes the 3D structure around a

query point. The descriptor for each point is a histogram made by concatenating

4 different characteristics of combinations of two points selected within a radius

distance of the query point. The characteristics that form the descriptor are the

relative angle between the point normals, the distance between the points, and the

relative angle between the line connecting the points and the Darboux coordinates

fixed at one of the points [44]. At the next step each feature histogram is classi-

fied as a shape primitive: plane, sphere, cylinder, cone, torus, edge or corner. To

learn these shapes, Rusu et al. [44] train a classifier on a synthetically generated

set of primitive shapes. Further, the set of histograms for each shape is divided

into k clusters. The k clusters computed in this regime will be treated as most dis-

criminative features and by learning only these features, the computation time will

decrease.

In [43] the correspondence between PFH descriptors is used to register two

point clouds. The computed transform is used to initialize the Iterative Closest

Point (ICP) algorithm.
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FPFH

FPFH [48] was proposed as an evolved version of PFH mainly to improve com-

putation time and its descriptiveness. According to [48] experiments revealed that

the distance between neighbours which was originally part of the descriptor [44]

does not improve the robustness, because in 2.5 D data the distance between the

neighbouring points depends on the distance to the camera. In [49], it is pointed

out that GFPFH (Global FPFH) – which essentially constructs a global descriptor

from the classification results of some FPFH descriptors – is not a powerful object

detector, caused by its sensitivity to false local detections. FPFH is invariant to

scale and viewpoint change.

VFH

VFH [49] computes FPFH for the entire object segment, with the difference that

view direction is also incorporated with normals. Therefore, it has two compo-

nents: the relative angle between viewpoint direction and the normal at each point,

plus the relative angle between the viewpoint direction at the centroid of the object

and each of the surface normals.

It is also designed to tolerate depth noise. In order to compute VFH on an

object the point cloud must only contain the object segment – objects can not be

detected in a scene. They report the recognition results for a large number of views

of objects placed on a turntable. However the results are very promising for object

recognition and pose estimation, compared to spin images, it only has been tested

in light clutter. We designed experiments to indicate which one is more powerful

to detect objects, in clutter.

For object recognition in particular, we form VFH descriptors [49] for each

view of each object. Each view vi of each object is then represented as a 308

dimensional feature vector fi = f (vi) which describes the 3D appearance. Object

recognition occurs by matching the features extracted from changed regions in

new views ( fn = f (vn)) to the entire set of vectors previously extracted within the

set of known persistent objects. The nearest neighbour search, argminid( fi, f j) is

performed efficiently using the Fast Library for Approximate Nearest Neighbours

(FLANN) package provided by Muja and Lowe [41]. With this approach we can
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practically compare changed regions to many views of many known object models

in real time.

5.1.2 VOSCH

Kanezaki et al. [28] develop a detector that combines the descriptors, which each

operate on either shape or appearance of the objects. They essentially merge Global

Radius-based Surface Descriptor (GRSD) [7] and Circular Color Cubic Higher-

order Local Auto-Correlation descriptor (C3-HLAC) [29], and call the resulting

histogram “Voxelized Shape and Color Histograms” (VOSCH).

C3-HLAC encodes the correlation of RGB (red green blue) values, between

the voxels of a 3×3×3 grid, high-dimensional vector. To compute GRSD, voxels

are categorized into, free space, plane, cylinder, sphere, rim and noise, based on

the principle curvatures of the voxel surfaces. Then, the change in surface type

between neighbouring voxels contribute to the histogram that describes the object’s

shape. Finally these two histograms will be concatenated and normalized.

To resolve global features’ problem in detecting partially visible objects, they

divide the space into overlapping boxes, and further compute the feature histogram

for each of the subspaces. For a few cylindric shaped objects with different colours,

that we have in our database, we expect to see VOSCH outperform other detectors.

Results in [28] are presented for data collected with the Kinect sensor.

Kanezaki et al. [28] report object recognition performance for a database com-

posed of synthetic and real data with different colours, and under various lighting

conditions. The recognition results look very promising, close to perfect detection.

However it is not clear how much each of GRSD and C3-HLAC have contributed

to recognition, in fact since their test data only varied in texture (different brands

of milk boxes) the contribution of shape descriptor could have been very low.

VOSCH histograms are viewpoint independent, so we only compute them for

the complete model of each object, instead of the partial segments, from each view.

Therefore, pose estimation is not possible. In our experiments VOSCH histograms

have 137 bins. To detect objects, we have used the same nearest neighbour ap-

proach as explained in previous section.
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5.1.3 Spin images

Spin images [27] describe the shape at each point on the surface, locally. There-

fore, to perform surface matching or object detection, spin-images on two surfaces

should match at a number of points. Matching points locally, is a solution to clutter

and occlusion.

The spin image at each point is defined as the 2D projection of the local sur-

face into the cylindrical coordinate system. To consider a point to be in the local

neighbourhood of the query point, it must be closer than a supporting distance.

Plus its normal must make an angle less than supporting angle to the normal at

query point. The first property preserves the locality of the shape descriptor and

the second constraint filters abrupt changes in normal which usually correspond to

edges – where surface normal estimation is not stable.

For surface matching Johnson and Hebert [27] propose to compute spin-images

at every vertex on the surface mesh or on a uniformly sampled subset. Each query

point defines a cylindrical coordinate system about its surface normal. In this cylin-

drical coordinate system radial coordinate (α)is the perpendicular distance of each

point to the normal line, and elevation coordinate (β ) is the signed distance of the

point to the tangent plane to the surface at the vertex. For all the points within the

aforementioned support criterion, α and β are computed, and then contribute to

the corresponding bins in a 2D accumulator. The closer the bin size is to the sur-

face resolution, the matching performance gets better. Based on this statement, we

concluded that, the distance of the object to the observer affects the performance,

since for most of the depth sensors, the resolution diminishes for farther surfaces.

To test recognition performance of spin images we have followed the same

approach as explained in [27]. First, spin images at every point are computed.

Next, the average of the spin images is subtracted from each of them. Then, since

spin images are highly sparse, Principal Component Analysis (PCA) is applied to

reduce the dimensionality of the images. At the test time, the query segment goes

through the same process. For each spin image belonging to the query segment,

the closest (in Euclidean space) match in the pool of training data’s spin images is

chosen, if it is closer than 0.8 times the distance to the second match. At the end,

geometry checking is performed to prone inconsistent matches. The object that has
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the most number of matches is reported as candidate match. In our implementation,

image widths are 8 and therefore the histograms have 153 bins.

Since spin image computation was fast enough and our database was small,

we computed them at every point, for applications that database is big or the point

clouds are dense, one might use sampling to reduce computation burden. But it is

not clear if keypoints can be used instead of random sampling. It is worth men-

tioning that spin-images as descriptors have been used in a variety of applications.

For example, in [16] it has been used in combination with other shape and con-

textual features (e.g. estimated height, volume, ...) for object recognition in urban

environments.

5.2 Object persistence modelling and data collection
The previous sections describe a method for locating interesting regions and for

matching these regions to known named objects that are being tracked within the

persistence system. However, there are a number of outcomes from each of these

modules, and we combine their outputs with a final top-level reasoning procedure

in order to maintain the system’s state of the objects over time. When our system

enters a new environment, it is unaware of the presence of any objects. It initially

scans the world and simply memorizes the current 3D geometry. Object discovery

for our system begins when objects begin to move. This triggers the change detec-

tion system, and initially each changed object is marked as new since the database

of known objects is empty. The detection of new objects results in the human user

being queried for a label: “What is this object?”. The user may choose to ignore

the object, in which case no model is learned, or a name may be entered: “This is

a dragon”. Once an initial set of objects is known by the system, further visits to

the same scene will continue to result in newly moved objects, and there are now

several outcomes possible:

1. The location where an object previously existed is now unoccupied.

2. A previously unoccupied region now contains a known object.

3. A location which previously contained one object now has slightly different

geometry sensed, and this matches well to a different object.
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4. Any type of change is detected where the new local signature cannot be

found in the existing database.

Our top-level reasoning system assigns the following outcomes to the cases

above: 1) Indicates that a known object was removed from the space. Notice that,

in this case, a part of the scene background that was unobserved before, now will

be uncovered. Cases 2) and 3) indicate that one or more known objects have been

moved, in which case the object persistence database is updated, and the new lo-

cation for each object is now utilized for tasks. The feature vector extracted from

the new view is merged with the previous appearance model as has been described

above. Case 4) indicates that a previously un-modelled object has appeared in the

scene. The reasoning system prompts the user for a label and adds this information

to the persistence database.

In conclusion, recognition essentially requires a database to match the observed

objects to previously labeled objects. Plus, data annotation requires human inter-

vention (assuming the robot does not have access to other resources, such as web.).

Moreover, unlike human captured photographs which usually cover all the object

in one shot, robot collected data is not guaranteed to have this characteristic. As a

result, it is the best that the robots use the data that they have collected, themselves.

Given a database of annotated objects, there are several outcomes from the

nearest neighbour matching approaches that we have taken. First, the changed

region might unambiguously match to one of the persistent object features that

have already been learned by the system. In this case, the recognition system re-

turns a confident detection result for later processing by the top-level persistence

component. Another common case is that the changed region matches with a large

distance to a number of learned features. We apply a threshold to the nearest neigh-

bour distance, therefore, the recognition module returns the result that the changed

region is likely from a semantic category that has previously not been seen by the

system. This region can be passed to the user in a query to obtain a new label.

Our object model also allows each object’s appearance to be expanded over

time. This is an important feature because the system often observes different

viewpoints of an object at each time stamp, and the features extracted from each

of these viewpoints may not be identical (i.e. in the case of non-symmetric ob-
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jects). By merging the feature vectors observed over time, the system continues

to increase its confidence in the representation of each object, which can provide

improvements in accuracy as time progresses. Future work, should focus on build-

ing classifiers that learn different classes for the set of uncorrelated viewpoints of

the object. Moreover, at the test time, each view of the object votes for one object

type, and the collection of votes determine object’s class. Further work can focus

on, selecting the new views that can clarify ambiguous cases.

Since our system is designed for life long use, and it emulates online learning,

we have conducted an experiment in which we input the data collected at obser-

vations, each at once. We expect an increase in recognition performance as more

observations are added to the database. Although at the same time noisy observa-

tions might disturb detection.

As a note for future work please consider that, in case of occlusion, the ob-

ject’s cluster for that particular view is smaller than the object’s full model. The

object’s cluster from an occluded view should not be added to the database. After

filtering the occluded views, there are 2 cases for which the objects viewpoint fea-

ture histogram should be added to the tree. First, if the viewing angle is more than

a threshold distance to the previous key-view (the first view is a key-view, other

key-views will be added to the set of views iteratively by following these 2 rules.),

in other words, only the segments that are lightly correlated with the segments that

are already in the database, should be added. Second, if the histogram distance

between the current view and the previous key-view is bigger than a threshold.

These rules apply to the views collected from a specific observation. To add views

between observations, if the histogram distance, between the new view and the

nearest histogram already recorded for the object, is bigger than a threshold, the

view should be added to the set of primary views.

5.3 Sensors overview
To acquire 3D position of points in the world various technologies have been de-

veloped: Time of Flight (ToF) camera, laser range finder, Stereo camera, Infra Red

(IR), and Kinect. Although their working principles differ, they all sense the dis-

tance between the sensor and points in the surrounding environment. There are
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many factors to be considered in order to choose a proper sensor for a specific

application. For example, Kinect, which was released to the market recently, is

perhaps the cheapest, while the laser scanner has the widest working range. But to

acquire a 2D scan, systems equipped with Laser scanner often have to pause and

scan the world, in other words sensing on the fly is not possible.

Principally ToF camera senses the range based on the round trip time of light. It

provides a depth map with the same frame rate as cameras and no extra-computation

is required. Their measurements are usually of lower quality compared to stereo

cameras. And they are affected by random and systematic noise.

In this work, we primarily have used Kinect sensor. Note that the algorithms

developed in this thesis are not sensor dependent and the point clouds fed into the

the algorithm could be generated from any of these sensors. Next sections are brief

descriptions of Stereo camera and Kinect.

5.3.1 Stereo camera

Stereo vision is an imitation, of the approach taken by human vision. In a binoc-

ular/stereo camera setting depth can be perceived from the displacements of the

points between the images. Therefore the stereo matching quality is highly corre-

lated with the pixels matching module’s success.

There are some situations in which window matching between images fail. The

two main reasons are occlusion and lack of texture. Computing depth for regions

which are occluded in one image and revealed in the other is not possible without

reasoning about the objects that they correspond to. For lack of texture, projecting

artificial patterns on the scene, proved to be a practical solution. Sometimes, a

calibrated (w.r.t. camera) projector is deployed on the robot for this purpose. The

characteristics of the patterns have been studied by many groups in past decade.

The patterns are evaluated based on their self-similarity. In theory, the more

self-similar a pattern is, the number of false matches increases, and vice versa. The

proposed patterns are, as simple as, a random [40] 2D arrays or as sophisticated

as De Bruijn [35] pattern. Konolige [31] combines Simulated Annealing with a

set of Hamming codes that have a minimum distance with each other. Algorithm

starts with a random pattern and searches through the space of possible patterns.
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At each step it picks the two blocks (in the pattern) that have minimum Hamming

distance and randomly swaps two of their dissimilar pixels. The change is accepted

with a probability, and decreases by a exponential factor as the algorithm advances.

However the performance mainly depends on the self-similarity of these patterns,

other factors are camera and projector’s imperfection, as well as, phase difference

between them [31].

Even though projected patterns proved to be beneficial for untextured surfaces,

their effect is limited to the projection power, and ambient light can diminish their

visibility. Stereo camera has been used in both indoor and outdoor applications. Its

passive intrinsic (used without projector) is favourable in cases that active sensors,

like Laser scanner, cannot be used due to safety issues, e.g. medical applications.

Stereo vision is not affected by ambient light as much as Kinect is. Their speed

is constrained by rectification and matching algorithms that they use. But currently

most of this is done in the camera’s hardware internally, which makes it fast. For

example the Bumblebee2 R© camera works at about 30 Hz.

5.3.2 Microsoft Kinect

Kinect was originally designed by PrimeSense R© for the game industry, but shortly

after its release it was widely used by the robotics community to obtain 3D coloured

point clouds. Kinect provides 640× 480 coloured and depth images with the rate

of approximately 30 frames per second [52]. The depth map reconstruction is

performed via proprietary technology from PrimeSense. As described in the Kinect

patent by Freedman et al. [15], an astigmatic optical element, that has different

focal lengths at various meridional planes, is used to produce a 2D IR pattern. This

pattern is projected onto the scene. The spots on the pattern become elongated

depending on the distance of the objects to the device. The direction of major axis

and the respective length of minor and major axes of the resulting ovals determine

the distance to the object.

The practical range of operation is between 0.6 to 6 meters, and its angular

field of view is 57◦ horizontally and 43◦ vertically [3].

As illustrated in Figure 5.1, the RGB camera and the depth sensors are sepa-

rated apart by a few centimetres. Therefore, in order to correspond a depth value to
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Figure 5.1: 1. 3D depth sensors, 2. RGB camera, 3. multiple microphones,
4. motorized tilt. [1]

each pixel in the RGB image a precise calibration is required. According to Janoch

et al. [24] calibration parameters are different for each unit, however some open

source calibration packages are available online, e.g. [10].

Chiu et al. [11] experimented with a Kinect sensor and has reported its failure

cases in measuring depth: transparency, specularity, dark objects under flat viewing

angle, and reflection of projected dot pattern. Moreover, they noted that the depth

sensed at the border of small objects is very noisy, because the depth resolution

sensed is in order of centimetres. Low depth resolution also leads to missing small

and narrow objects.

To clear the point clouds from noise, mainly we have used two types of fil-

ters: passthrough filter, and statistical outlier removal (implemented in [47]). A

passthrough filter essentially takes the range to be filtered and removes all the

points beyond that range. Since the data beyond approximately 3 meters are very

noisy and also we focused on close range data, we usually filtered all the range

images beyond 3 meters in the direction perpendicular to the device. Statistical

outlier removal was also used to remove the noise and small residual segments that

are resulted after subtracting the clouds.
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Chapter 6

Experiments

A series of experiments are designed to demonstrate the capabilities and limita-

tions of attention and object recognition modules described in previous Chapters

(Chapter 4 and Chapter 5).

For our application the testing environment can be as realistic as a kitchen, or

it can be synthesized. In either case, the novelty of our approach is to not rely on

planar supporting surfaces. There are 3 common points in all the experiments: 1)

The objects are placed on top of various supporting surfaces. 2) The number of

movable objects in each scene varies. 3) In all the experiments the Kinect was set

at 120 cm above the ground.1

The three following experiments are designed to test the attention operator, ob-

ject recognition and the performance of the system over time. In Experiment 1 we

demonstrate the results of aggregating dynamic objects’ bounding boxes to form

the regions of interest. We also report the results of static background growing, in

order to show that the system is able to extract that only given the observations.

Then in Experiments 2 and 3 we assume that taking an observation from the clean

scene is possible. Experiment 2 focuses on multi-view object detection and Exper-

iment 3 shows the performance of the system over time.

1The camera is usually deployed at two distinct heights on home robots: chair’s handle level and
human eye level. The former is more appropriate for navigation – localization and obstacle avoidance
– and the latter is more suitable for object recognition, exploration and manipulation purposes.
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6.1 Experiment 1: attention operator
In this experiment, first we set up an environment to test Region Of Interest (ROI)

estimation, and second we set up another environment to examine the process of

static background growing. Various scenarios that happen in real world have been

considered. The static part of the scene is a typical office desk, and the set of

mobile objects are: a banana, an apple, two books, two plant pots, a gift box and

a cup. The viewpoint is fixed and movable objects are posed in different angles

during observations.

6.1.1 Experiment on region of interest growing

This experiment is divided into two sub-experiments: First, the differences be-

tween the consecutive scenes have been estimated by the attention operator, and

next the sequence of changes have been accumulated to shape the ROI. To achieve

the former many scenarios have been considered:

1. Shifting objects a little so they still occupy some part of their former space.

This is challenging in particular for objects that have planar surfaces since

subtracting point clouds will remove overlapping areas and remainder point

cloud can be challenging to recognize. (A region growing segmentation al-

gorithm could use this remainder point cloud as starting seed.) (see Figure

6.2)

2. Switching objects’ position. In this case, the system notices the change and

passes the changed clusters to the recognition module, thereby, the fact that

these are movable objects and they still exist in the scene will be concluded.

The object detector must recognize that the object still exists in the scene.

(see Figure 6.3)

3. Adding a new object to the scene. Subtracting the point clouds before and

after the change will reveal a portion (if it is occluded) or all of the added

object. The object detector must distinguish this as a new object and add it

to its database. (see Figure 6.4)

4. Uncovering an occluded area. By uncovering an occluded part of the scene
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Figure 6.1: The two point clouds, before and after the change, are overlaid in
this picture. The purely pink and black parts belong to the scene before
and after the change, respectively. The point to notice is that they over-
lap not only on the static scene but also on the moved objects, specially
on the book. In order to illustrate the change, the desk’s surface and the
wall have been removed from the point cloud.

both static part and possibly dynamic objects might be revealed. To decide

whether this space should be added to ROI or not, the system has to rely on

future observations. (see Figure 6.5)

5. Replacing an object with a bigger object. This case is very similar to the

first scenario depending on the objects’ shape. The residual point cloud can

cover whole or parts of the new object. (see Figure 6.6)

6. Replacing an object with a smaller object. Depending on the shape of the

object the system might fail to detect the new object’s shape or extract part

of it. This will also uncover a previously occluded area. (see Figure 6.7)

7. Piling objects. This is to show the advantage of our system over object clus-

tering based on plane extraction. (see Figure 6.8)

8. Popping an object from a stack. This has the same objective as the previous
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item. (see Figure 6.9)

9. Rotating objects in their place. The cluster extraction task for this scenario

is very similar to first item. However recognizing rotated non-symmetric

objects can be challenging for object recognition system. (see Figure 6.10)

In the second sub-experiment, the bounding boxes have been aggregated over

time to form the region of interest. (see Figure 6.11)

The following pictures are the result of subtracting point clouds, frame by

frame. Note that bounding boxes are the projection of 3D bounding boxes to 2D.

Red rectangles bound the regions that contain new points and blue rectangles rep-

resent the regions containing removed point clusters.

(a) first frame (b) second frame (c) changes

Figure 6.2: Shifting objects: the book, mug and box have been shifted be-
tween frames. The surface of the book, overlaps with itself. Therefore,
parts of it have been removed from the scene and parts have been added.
On the other hand, since the cup is round, its current surface does not
overlap with its former point cloud. The same concept as explained in
Figure 4.9

6.1.2 Experiment on accumulating the background

To test the system’s performance on background accumulation, we have set up 9

different arrangements of a desk with a number of differently shaped objects. The

same process as explained in Chapter 4 has been followed to construct the static

background over time. The background is initialized with the first observation and

as more observations are inputed to the system, the point that has the farthest dis-

tance to the camera at each direction is considered as background. Figure 6.12
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(a) second frame (b) third frame (c) changes

Figure 6.3: Replacing or switching places: the banana is replaced with the
apple, and the box replaced with the banana. Since parts of the banana
overlap with the box, it is split into 2 pieces (red boxes).

(a) third frame (b) forfth frame (c) changes

Figure 6.4: Adding a new object: the book is added to the scene and it oc-
cludes the calendar behind it, therefore, a part of calendar seems to be
removed.

(a) forfth frame (b) fifth frame (c) changes

Figure 6.5: Uncovering an occluded area: the book and cup have been re-
moved. They both have been detected and the occluding areas have not
been recognized as part of ROI, due to our policy to not assume that the
occluded parts are dynamic objects.
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(a) fifth frame (b) sixth frame (c) changes

Figure 6.6: Replacing an object with a bigger object: the apple is replaced
with the plant pot. Their point clouds do not totally overlap, and as a
result a part of the apple is considered as removed.

(a) sixth frame (b) seventh frame (c) changes

Figure 6.7: Replacing an object with a smaller object: this case is very similar
to the one illustrated in Figure 6.6. Only the parts that do not overlap
are considered as changed regions. Also, the plant pot is segmented out
into two pieces, which has resulted in two blue bounding boxes.

depicts the background’s evolution over time. Note that the noise present near ob-

ject edges results from the input Kinect depth data, which is inherently problematic

in these situations. In the majority of regions, objects are correctly removed from

the background as soon as they are moved.

6.2 Experiment 2: object detection
In this experiment, we examined the object detection module in a cluttered office

environment. We setup 10 scenes, each contained of a subset of 12 objects, which

are depicted in Figure 6.14 (Figure 6.13 represents the projection of the object

point clouds to 2D). For each scene, the model is obtained from 5 views. As

50



(a) seventh frame (b) eighth frame (c) changes

Figure 6.8: Placing objects on top of each other: a book and an apple are piled
over the book. Since the sensor only catches the exterior of the objects
which is not occluded, the top of bottom book (blue bounding boxes) is
recognized as being removed, although it is still in the scene. It is split
into two pieces (blue rectangles) since the operator only compares these
two visits, and so it believes that the apple was occluding a part of the
book.

(a) eighth frame (b) ninth frame (c) changes

Figure 6.9: Removing an object from a stack of objects: the apple is removed
from the scene and the occluded region behind it is not considered as
new.

described in Chapter 4, the detection module constructs a kd-tree [41] from object

models2, and unlike the common practice, in the literature which detects objects in

the scene [27, 55], our attention operator provides a point cluster (which believes

that it is the whole or part of an object) as query data for detection. Objects have

been posed in a variety of orientations to examine the detector’s performance in

recognizing from different views. To keep the analysis simple and just focus on

2Other classifiers (SVM with various kernels, KMeans, and Nearest Neighbours with various
distance metrics) have been explored in Rusu [46], for synthetic data with and without added noise.
Their results show that after SVM, KNN has the best performance.
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(a) ninth frame (b) tenth frame (c) changes

Figure 6.10: Shifting and rotating objects: the book and the banana have been
rotated, and since they overlap with their previous point clouds, the
added and removed regions have been split into a number of small
surfaces.

Table 6.1: Number of overall and cluttered instances

D CA S P1 P2 G PH BO MU BW CU BI
overall 8 9 7 8 6 5 4 2 5 10 8 7

cluttered 0 2 0 3 0 0 2 2 1 7 0 2

object detection performance, each visit has been compared to the clean scene

(only the static background). We could not report true-negatives for detection with

global descriptors (VFH and VOSCH), because there is always a closest neighbour

to each model, and rejecting matches based on histogram distances is not applicable

for our small dataset. Perhaps a bigger dataset with a collection of objects that

cover a variety of sizes, could be useful to pick a distance threshold.

Table 6.1 contains the number of times each object has appeared in the scenes

paired with the number of times that it was occluded. The decision whether an

object is occluded or not was determined by visual inspection. A segment marked

as occluded if it was covering only a part of the object, and it was hard for a human

to identify the segment. Overall, 79 object instances were segmented out of the

scenes and fed into a kd-tree for nearest neighbour matching.

Table 6.2 and Table 6.3 represent the closest and second closest matches, re-

spectively. As Table 6.2 illustrates, in most cases the closest match belongs to the

correct class. Relatively few mismatches are due to occlusion or in cases where the
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Figure 6.11: ROI growing by attention operator: the sequence of visits starts
from the scene on the top-left and ends with the one on the bottom-
right. The spaces that contain new point clusters are added to the cur-
rent ROI at each visit. The final ROI contains most of the working area
on the desk. The incorrectly marked region on the paper box has been
added to ROI and never removed, this indicates the effect of sensor’s
failure on the ROI reasoning.

objects had similar shapes.

For example, one of the instances of cat (CA, Figure 6.15a) in the database was

only the cat’s head, which has a very similar shape to the tea pot (P2, Figure 6.15b)

(considering Kinect’s low depth resolution). Also, in some cases round objects

such as cup, bowl, mug and plant pot are mistakenly matched to each other. More-

over, there was a cat’s tail in the database, which matched with the bird or spray in

two cases.

The second closest match is not always the correct match. As a result, Table 6.3
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Figure 6.12: The process of updating the 3D model of the background.

looks more scattered. In some cases incorrect second matches are relatively farther

compared to the first match. For example, the match between the bowl and bird or

cat are relatively farther than the first matches. This said, thresholding the second

match does not sound reasonable. The results confirm that, in a very few (only 5)

cases (and usually3 for bowl and bird classes) the second match is correct while the

first match is incorrect, therefore it is safe to ignore the second closest neighbours,

while using VFH. The last note is that, since the box appeared only in 2 scenes, the

second match was always an incorrect match.

The same analysis applies to VOSCH signatures. Tables 6.4 and 6.5 contain

closest and second closest matches, accordingly. The number of false matches is

very low, as is illustrated in Table 6.4. In the case of VOSCH, only in 2 cases (out

of 9 wrong closest matches) the second match is correct. False matches mostly

3One other examples is the match between the cat’s rear and its front (See Figure 6.17).
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(a) Dragon {D} (b) Cat {CA} (c) Spray
{S}

(d) Pot
{P1}

(e) Tea Pot {P2} (f) Green doll
{G}

(g) Phone {PH} (h) Box
{BO}

(i) Mug
{MU}

(j) Bowl {BW} (k) Cup
{CU}

(l) Bird {BI}

Figure 6.13: Sample point clouds of the objects used in Experiment 2 and
Experiment 3. An imperfect registration results in a noisy point cloud.

happen for occluded objects. A comparison between Table 6.2 and Table 6.4

shows that VOSCH’s false matches does not happen between objects with dif-

ferent colours, unless their shapes are very similar. In other words, VOSCH takes

advantage of the colour histogram encoded in its signature.

In 5 cases VFH matches were false, but VOSCH matched correctly, whilst with

VOSCH 3 matches were wrong and VFH correctly matched. In 6 cases they both

made mistakes; these were all occluded instances. Therefore for this data we found

that global signatures fail to detect partial views of objects.

We have experimented with spin image as a local feature. The process that

is explained in Section 5.1.3 has been followed to find the candidate matches for

query objects. According to [26] the point cloud’s density influences the spin im-

age’s detection performance. Which given the limited angular resolution of the

55



(a) Dragon {D} (b) Cat {CA} (c) Spray
{S}

(d) Pot
{P1}

(e) Tea Pot {P2} (f) Green doll
{G}

(g) Phone {PH} (h) Box
{BO}

(i) Mug
{MU}

(j) Bowl
{BW}

(k) Cup
{CU}

(l) Bird {BI}

Figure 6.14: Automatically extracted image patches of the objects used in
Experiment 2 and Experiment 3

Table 6.2: Closest match with VFH

D CA S P1 P2 G PH BO MU BW CU BI
Dragon 8

Cat 7 1 1
Spray 1 6
Pot 1 1 6

Tea pot 1 5
Green doll 5

Phone 1 3
Box 2
Mug 1 4
Bowl 8 2
Cup 8
Bird 1 1 5

Kinect (compared to a typical laser scanner) the results are poor for spin images.

In all the cases that VOSCH errors, spin images either does not report a candi-

date match or recognizes the object correctly. On the other hand when VFH fails,

spin images might succeed, fail or do not return any matches. Among all classes

box and mug never matched to the correct instances.

According to Table 6.6 often small objects are matched to bigger objects. For

example, the plant pot is matched to the dragon 4 times, mainly because the dragon
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Table 6.3: Second closest match with VFH

D CA S P1 P2 G PH BO MU BW CU BI
Dragon 7 1

Cat 1 7 1
Spray 1 6
Pot 1 6 1

Tea pot 6
Green doll 5

Phone 2 1 1
Box 2
Mug 2 2 1
Bowl 1 6 1 2
Cup 1 1 6
Bird 2 5

(a) Cat’s head (b) Tea pot

Figure 6.15: Cat’s head matched with tea pot, rather than an un-occluded cat.
This is an example of VFH’s failure to detect occluded objects.

(a) Cat’s tail (b) Bird (c) Spray

Figure 6.16: Cat’s tail matched with bird and spray, rather than an un-
occluded cat. This is an example of VFH’s failure to detect occluded
objects.
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(a) Cat’s rear
view

(b) Cat’s front view

Figure 6.17: Cat’s rear view matched with its front. It is probably due to its
symmetry.

Table 6.4: Closest match with VOSCH

D CA S P1 P2 G PH BO MU BW CU BI
Dragon 8

Cat 7 1 1
Spray 7
Pot 6 1 1

Tea pot 6
Green doll 5

Phone 1 2 1
Box 2
Mug 5
Bowl 7 2 1
Cup 8
Bird 7

has a rounded shape in many places. This phenomenon is due the fact that bigger

shapes are composed of smaller shapes that might be similar to a small object. On

the other hand, the big shapes might be partly occluded in some observations which

results in a point cloud that is smaller than the model in the database. To resolve the

first issue, we can bound the size ratio between the query object segment and the

models in the database, but this can eliminate correct matches to occluded object

segments. To investigate this tradeoff, we thresholded the size ratio between the

candidate matches. Figure 6.18 presents the false-negative and true-positive ratios

with respect to allowed minimum scale ratio. There is a trade off between the

low false-negative and high true-positive. 0.7 is the ratio that has the highest true-

positives and a relatively low false-negative. Thresholding the candidate matches
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Table 6.5: Second closest match with VOSCH

D CA S P1 P2 G PH BO MU BW CU BI
Dragon 7 1

Cat 7 1 1
Spray 7
Pot 1 5 1

Tea pot 6
Green doll 5

Phone 1 1 1 1
Box 2
Mug 5
Bowl 2 3 4 1
Cup 8
Bird 1 6

Table 6.6: Closest match with spin images

D CA S P1 P2 G PH BO MU BW CU BI WM
Dragon 8

Cat 1 6 1 1
Spray 1 1 4 1
Pot 4 1 2 1

Tea pot 1 1 4
Green doll 2 1 2

Phone 1 3 1
Box 2
Mug 1 1 1 2
Bowl 1 1 4 5
Cup 1 4 1 3
Bird 1 1 1 4

based on this parameter means that if more than 30 percent of an object is occluded,

the system will not recognize it.

Table 6.7 presents the matches after thresholding candidate matches with the

scale ratio bellow 0.7. As we expected false matches have decreased, but the false-

negative ratio has decreased.

6.3 Experiment 3: detection performance over time
In this experiment, the performance of object detection module for a growing

database has been examined. The sequence of visits are the same as Experiment
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Figure 6.18: False negative and true positive graphs with respect to the al-
lowed minimum ratio between the sizes of matched objects. These
graphs show that if we assume up to 30 percent of the objects are al-
lowed to be occluded, the false negative will be 33 percent and true
positive is 49 percent.

Table 6.7: Detection results for spin images, minimum size ratio allowed 0.7
(true positives: 51% false negatives: 34%)

D CA S P1 P2 G PH BO MU BW CU BI WM
Dragon 7 1

Cat 4 2 1 2
Spray 6 1
Pot 1 6 1

Tea pot 1 4 1
Green doll 5

Phone 1 2 1
Box 2
Mug 1 1 3
Bowl 4 6
Cup 3 5
Bird 1 6

2. The database was preoccupied with the object point clouds from the first visit,

and starting from the second visit, sequentially, first the object point clouds have

been matched to the objects that were already in the database, and then were added

(with their correct labels – assuming that a human will correct the false matches)

to the database.

Tables 6.8, 6.9 and 6.10 represent the detection results for all (total number

of 10) visits. A comparison between the number of false matches in Table 6.2 and
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Table 6.8: Over time recognition performance with VFH

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9

Dragon CA
Cat D P2,S

Spray PH
Pot S CA

Tea pot P
Green doll CA

Phone
Box CA
Mug P1 P1
Bowl CU BW,BI
Cup MU
Bird CA P1

Table 6.9: Over time recognition performance with VOSCH

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9

Dragon
Cat P2,P

Spray
Pot CU PH

Tea pot
Green doll CA

Phone
Box BI
Mug
Bowl BI CU CU,BI
Cup PH
Bird

Table 6.8 indicates that VFH improves as more instances are added to the database.

On the other hand Table 6.9 shows no difference in the number of false matches.

The true-positive ratio for spin images increased from 50.6% in Table 6.7 to 60%

in Table 6.10. Other than two instances of bowl class, spin images do not show any

advantage over VFH or VOSCH.

6.4 Conclusions
With this set of experiments we have tested the attention operator, static scene

modelling, object recognition and performance of the object detection process over
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Table 6.10: Over time recognition performance with spin images

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9

Dragon
Cat

Spray
Pot

Tea pot
Green doll

Phone
Box
Mug
Bowl
Cup
Bird

time. For the three feature detectors that we have examined, overall VFH, VOSCH

and spin images correctly identified 85, 89 and 47 percent of the objects, respec-

tively. We speculate that the relatively low performance of spin images is due the

low resolution of the Kinect. The VOSCH’s success in outperforming the other two

feature detectors is partially due its use of colour. In addition it is designed to be

robust to occlusion. Given the fact that in some settings previously observed ob-

jects were posed from a totally new angle, the results are very promising. Also,

the performance of the object recognition does not seem to be affected as the

database grows, however assessing the usefulness of adding every new segment

to the database requires more trials with a bigger collection of objects, which we

leave for future investigation.
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Chapter 7

Conclusion and future directions

This thesis presented an interactive system for lifelong object understanding with-

out the requirement of prior data collection and training. We achieved this by

focusing the attention of a system on the dynamic foreground of a scene while ig-

noring static background regions using 3D data such as the type available from an

RGB-D sensor. Interesting regions are described by an interactive object modelling

component, which assembles a multi-view appearance model for each of the items

that a user is interested in, on-the-fly, which replaces the pre-training required by

other methods.

Our complete system addresses the technical challenges of registration, change

detection, region analysis, and multi-view specific object matching. Results show

that for tabletop scenes, our approach is able to effectively separate object regions

from background, and that objects can be successfully modelled and recognized

during system operation. Limitations and strengths of each component have been

assessed with experiments.

There were a number of directions that given the time constraint we did not

investigate and are left as future work:

• Building background model from multiple views is more challenging than

observing the scene from a fixed view point. Our assumption about the static

background breaks down if the scene is observed from multiple views – the

static parts are not necessarily the farthest points observed at each ray direc-

tion anymore. We suggest modelling the components of the 3D background,
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such as desks, shelves, tables, walls and doors, separately, and integrating

those into a single static background model.

• With our implementation, the transformations were noisy. We took a dead-

reckoning approach to registration and did not optimize the camera trajectory

given the constraints that the overlapping areas in the sequence provided.

The most well known approach used for this purpose in the literature is bun-

dle adjustment. We expect to get better registration results if such adjustment

is performed on the transformations. For state-of-the-art vision based map-

ping refer to [32].

• The object recognition procedure proposed in this thesis reports a candidate

match with the nearest neighbour approach. If a bigger database is collected

(for example by running the system in a bigger environment) performing ob-

ject classification with other techniques could be beneficial. Also an “unable

to recognize” flag could be raised in places where feature detectors do not

agree on a single label for the query object.

• The size of objects that moved between our observations was relatively small

compared to the objects that move in a household or home care facility envi-

ronment (e.g. wheelchairs). It is beneficial to have a model of these objects

in order to understand the environment. The primary limiting factor for our

prototype was the Kinect’s limited working range.

• The logic of growing a region of interest that was proposed in this thesis can

be beneficial for systems that need to attend to regions that dynamic objects

are or can be placed on. For example a manipulator needs to know the places

that an object can be placed on, or an object search system needs to attend to

regions that may contain the object that it is looking for.

• Integrating our system with a robust Simultaneous Localization and Map-

ping (SLAM) system and running the the pipeline in a bigger environment

would provide the ultimate functionality that we expect for our system.
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