
Efficient Extraction of Ontologies from Domain Specific
Text Corpora

by

Tianyu Li

B.Eng., Zhejiang University, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

December 2011

c© Tianyu Li, 2011

Abstract

There is a huge body of domain-specific knowledge embedded in free-text reposi-

tories such as engineering documents, instruction manuals, medical references and

legal files.

Extracting ontological relationships (e.g., ISA and HASA) from this kind of

corpus can improve users’ queries and improve navigation through the corpus, as

well as benefiting applications built for these domains.

Current methods to extract ontological relationships from text data usually

fail to capture many meaningful relationships because they concentrate on single-

word-terms or very short phrases. This is particularly problematic in a smaller

corpus, where it is harder to find statistically meaningful relationships.

We propose a novel pattern-based algorithm that finds ontological relationships

between complex concepts by exploiting parsing information to extract concepts

consisting of multi-word and nested phrases.

Our procedure is iterative: we tailor the constrained sequential pattern mining

framework to discover new patterns. We compare our algorithm with previous

representative ontology extraction algorithms on four real data sets and achieve

consistently and significantly better results.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

Glossary . vii

Acknowledgments . viii

1 Introduction . 1

2 Related Work . 5

3 System Architecture and Background 10
3.1 LArge ScalE Relation extraction system (LASER) System Archi-

tecture . 10

3.2 Background . 11

4 Ontology Extraction . 15
4.1 ISA/HASA Pattern Instantiation 15

4.1.1 Extracting Noun Phrases 15

4.1.2 Nested Noun Phrase Challenge 17

4.2 Subsumption Candidate Instance Pair (SCIP) Extension 21

iii

4.3 Frequent Pattern Discovery . 22

4.4 Scoring of Patterns and SCIPs 27

5 Experiments and Evaluation . 30
5.1 Dataset Description and Preprocessing 30

5.2 Competing Algorithms and Parameters 31

5.3 Comparison of ISA Results . 33

5.4 Comparison of HASA Results . 40

5.5 Comparison of Running Time 41

6 Conclusions and Future Work . 45

Bibliography . 47

iv

List of Tables

Table 5.1 Precision and Total Number of ISA Results 34

Table 5.2 Relative Recall and F-score of ISA 35

Table 5.3 Precision and Total Number of HASA Results 40

Table 5.4 Relative Recall and F-score of HASA 41

Table 5.5 ISA Extraction Running Time (in Seconds) 43

Table 5.6 HASA Extraction Running Time (in Seconds) 44

v

List of Figures

Figure 3.1 Ontology Extraction System Architecture 12

Figure 5.1 Precision Result for ISA . 37

Figure 5.2 Relative Recall Result for ISA 37

Figure 5.3 Relative F-score Result for ISA 38

Figure 5.4 Comparing the Top X% ISA SCIPS 39

Figure 5.5 Precision Result for HASA 41

Figure 5.6 Relative Recall Result for HASA 42

Figure 5.7 Relative F-score Result for HASA 42

Figure 5.8 Comparing the Top X% HASA SCIPS 43

vi

Glossary

POS Part of Speech

LASER LArge ScalE Relation extraction system

ESPRESSO The ESPRESSO algorithm

GHC The Guided Hierarchical Clustering algorithm

SCIP Subsumption Candidate Instance Pair

LCA the Lowest Common Ancestor

SPM Sequential Pattern Mining

PMI the Point-wise Mutual Information

vii

Acknowledgments

I want to thank my supervisors Rachel Pottinger and Laks V.S. Lakshmanan for all

their help during my master study period, especially those discussions we had for

my thesis project. I am always inspired by their guide and ideas.

I also want to thank the NSERC BIN funding for supporting me on this ontol-

ogy extraction research project, it gives a great opportunity to learn more about my

research area and sharpen my technical skills.

Finally, I would like thank my mom, who always supports me from China,

which is 9,000 km away from here, and gets me through all good times and bad

times.

viii

Chapter 1

Introduction

An ontology is a specification of conceptualizations in a specific domain [3]. An

ontology typically includes, at a minimum, concepts and hierarchical relationships

among the concepts. The two fundamental hierarchical relationships are ISA, as-

serting a class-subclass relationship or class-instance relationship, which forms an

ontology’s taxonomic backbone, and HASA, asserting a whole-part relationship.

Building an ontology from unstructured text on the web can bridge the gap

between human-readable data and machine-readable knowledge in a specific area

by improving navigation and information discovery. However, it is not enough to

simply reuse general-purpose ontologies (e.g., WordNet). Such ontologies have

limited coverage, particularly in specialized fields, where jargon and terminology

can have very different meanings from their senses in a more general domain. For

example, “foreign materials” in Architecture usually refers to substances on the

surface of piping equipments, quite different from the meaning of foreign in “for-

eign nationals” which may be found in a legal document; and “agent” means dif-

ferent things in the medical and law domains.

Previous works on ontology discovery from unstructured text either explore

hierarchical relationships among concepts from their distribution in a corpus [5,

27], or use lexico-syntactic patterns [21] (e.g., Hearst patterns [14]). Unfortunately,

the former approaches usually suffer from data sparsity, which is common in small

corpora. While the latter approaches may not suffer from this, both approaches

suffer from a second drawback: they generally extract single-word terms or very

1

short phrases as concepts. This becomes a problem when dealing with sentences

involving complex nested noun phrases. Thus these previous approaches fail to

capture many meaningful and complex concepts in a domain, with the result that

the discovered ontology is usually trivial or redundant given a general thesaurus.

We illustrate these ideas with an example drawn from a real architecture web

dataset, which is one of the web datasets we use in our experiments:

avoid contact with finishes which may radiate noise, such as the con-

crete structure, future framing and drywall

is a text fragment from this data set. In this fragment, “finishes which may ra-

diate noise” is a meaningful concept, and intuitively there is an ISA relationship

from each of “concrete structure”, “future framing” and “drywall” to it respec-

tively. However, both approaches above fail to capture this because:

1. This phrase is not frequent enough to be considered a concept by statistics-

based algorithms.

2. Pattern-based algorithms identify noun phrases by matching Part of Speech

(POS) tags applied by a tagger; hence a phrase with clause modifier cannot

be extracted and identified as a concept.

3. Finally, “finishes which may radiate noise” is a nested noun phrase, so a

naive pattern-based algorithm only looking for patterns like “such as” may

end up retrieving “noise” as the parent concept in this ISA relationship, which

is obviously wrong!

Extracting rich and complex concepts along with ontological relationships among

them as accurately as possible is the main goal of this work. To this end, we de-

velop an iterative pattern-based algorithm called LArge ScalE Relation extraction

system (LASER). The central paradigm used by LASER is an iterative framework

of starting with seed patterns that signal an occurrence of (ISA or HASA) relations,

which are used to extract instances of relations in the corpus. They are in turn used

to induce more patterns from the corpus and so forth. At every stage, the extracted

patterns and instances are scored, reflecting their degree of reliability. When the

score of extracted patterns drops below a threshold, the process terminates. This

2

iterative framework was first pioneered by Brin [4] for extracting general relations

from the web and was adapted by researchers to various other contexts. Indeed,

The ESPRESSO algorithm (ESPRESSO) proposed in Pantel and Pennacchiotti [21]

adapted this framework for ontology extraction. While a more detailed comparison

with the ESPRESSO approach appears in Chapter 2, some fundamental differences

between LASER and ESPRESSO include the following.

1. ESPRESSO assumes a set of seed instances for its iteration while LASER starts

instead with a set of seed patterns well known to be reliable in the ontology

extraction literature [2, 12, 14].

2. We extract noun phrases by analyzing the parse tree as opposed to relying on

POS tag matching, a method most previous algorithms including ESPRESSO

rely on.

3. Nested noun phrases pose a serious challenge for the correct extraction of

relations. Unlike previous algorithms, we solve this problem effectively.

4. We solve pattern discovery using a novel approach based on constrained

closed sequential pattern mining.

We make the following contributions.

• We start with a list of reliable seed patterns and find ISA/HASA relationships

and new patterns that signal occurrences of such relationships.

• We extract the noun phrases having ISA/HASA relationships in between from

the constituent parse tree of the text matching the patterns, and use a novel

algorithm to resolve the challenge of determining the correct noun phrases

linked by these relations when nested noun phrases are present.

• We tailor the closed sequential pattern mining framework to find frequent

patterns that signal ISA/HASA relationships, and generalize the pattern to

allow the introduction of more new distinct patterns.

• We carry out a detailed experimental comparison between LASER and major

representative algorithms from previous work on four real web datasets. Our

3

experiments show that our algorithm has a significantly better recall than

previous algorithms while enjoying a comparable or better precision. In par-

ticular, our Fβ -measure is significantly better than previous algorithms, for

β = 0.5,1,2, demonstrating our approach’s superiority. We show that our

algorithm works very well and is stable on both small and large corpora. We

also show that our algorithm is much more scalable than previous ones.

The rest of paper is structured as follows: Chapter 2 classifies and describes

related work. Chapter 3 introduces our system architecture and components in

detail. We discuss the LASER approach and the algorithms in Chapter 4 and discuss

our experiments and lessons learned in Chapter 5. Finally, Chapter 6 concludes and

discusses future work.

4

Chapter 2

Related Work

Ontologies fall into one of three types [3]:

1. A formal ontology is a set of logical expressions relating concepts by axioms

and definitions; as such it can support inference and computation.

2. A prototype-based ontology typically lacks labels for concepts, but relies on

term clusters, which are regarded as prototypical instances of the underlying

concept or category.

3. A terminological ontology describes concepts by concept labels or synonyms,

instead of using prototypical instances, and expresses hierarchical (e.g., subtype-

supertype and whole-part) relationships between concepts.

This paper focuses on automatically building terminological ontologies from

domain-specific text corpora. For example, given a set of engineering documents

containing “furnace”, “air conditioning unit”, and “HVAC”, we would try to find

that the air conditioning unit ISA HVAC and the furnace ISA HVAC. In contrast,

a prototype-based ontology might cluster “furnace” and “air conditioning unit”

together, but it would not say that either ISA “HVAC”, and a formal ontology would

include additional semantic relationships. We survey previous related work below.

There are three main approaches to learning ontologies from unstructured text [3]:

Data mining: Clustering approaches cluster similar words based on the hypothe-

sis that similar words tend to occur together in similar context [13]. Some

5

approaches assign labels to the clusters, treating the labels as concepts and

the terms in the cluster as its instances. More recently, association rule min-

ing has been used for ontology learning [20, 27].

Lexico-syntactic patterns: Lexico-syntactic patterns such as Hearst Patterns [14]

are used to extract relationships between terms. For example, the pattern “X

such as Y” frequently implies Y ISA X.

Web as a data source: To overcome data sparsity, some algorithms use the web as

an additional data source, possibly in conjunction with other data sources

like WordNet1.

Most approaches build ontologies consisting of single words [5, 22] or short

common compounds [6, 27]. Indeed, very few works allow for longer and com-

plex terms to be concepts, generally because they have a very low frequency of

occurrence compared to short ones. Drymonas et al. [10] makes an attempt in this

direction and allows more complicated noun phrases. They use a statistical mea-

sure to select meaningful concepts. Then an agglomerative clustering algorithm is

applied on these concepts to build a prototype-based ontology. This system selects

concepts before building ontology, however, its way of deter- mining important

noun phrases as concepts can be applied to our method to improve the extracted

instance quality, which is a promising future work for us.

Data mining: Most clustering-based algorithms first produce prototype-based

ontologies. Some then additionally assign labels to the clusters. Caraballo [5]

builds an unlabeled hierarchy of nouns using bottom-up clustering on the cosine

similarity between nouns’ occurrences in documents. For leaf clusters, he assigns

a label using syntactic patterns, while for internal clusters he assigns the most dom-

inant hypernym of the largest number of the node’s descendants.

Pantel and Ravichandran [22] first cluster words from a text corpus; each clus-

ter forms a concept. They extract concept names by searching for syntactic patterns

such as “concept apposition-of instance” and “concept such as instance”. The word

that co-occurs with the most dominant instances in a cluster most frequently is

picked as the concept name. They create ISA relationships between the concept

1http://wordnet.princeton.edu/

6

http://wordnet.princeton.edu/
http://wordnet.princeton.edu/

and all instances in the cluster. This helps with data sparsity since not all instances

need to co-occur with the concept name for us to derive the ISA relationship be-

tween them. However, this kind of ISA relationship is necessarily confined to one

level hierarchy, while our work produces a complex multi-level concept hierarchy.

Sanderson and Croft [27] use association rules to find ISA relationships (called

subsumption in the paper) between terms. They use the intuition that for two terms,

x and y, x ISA y holds if P(x|y) is sufficiently large (e.g., 0.8) and P(y|x) < 1,

where P(x|y) is the probability that a document contains x given that it contains

y. This approach is purely based on statistical heuristics, which cannot produce a

high-quality ontology alone. We use statistical heuristics as well as syntactic and

semantic (parsing) information.

Lexico-syntactic patterns: Pure pattern-based methods (e.g., Pantel and Pen-

nacchiotti [21]) usually iteratively interleave pattern discovery and instantiation

until the reliability drops below a threshold. These methods tend to suffer from

low recall, especially in a smaller scale corpus.

ESPRESSO [21] is the system most related to ours. Given a small set of seed

instances for a particular relation, the system learns lexical patterns, applies them

to extract new instances, and then uses the web to filter and expand the instances.

This procedure continues iteratively until it meets some stopping criteria such as

reliability dropping below a threshold. We adapt their scoring mechanism in the

iterative process, but instead of starting with seed instances, we bootstrap from

seed patterns, which are more reliable.

We extract instances from patterns substantially differently from ESPRESSO as

well: we rely on deep parsing information to get richer concepts that cannot be

identified by regular expression matching over data obtained from shallow parsing.

Our pattern finding is also generalized to be less restrictive and more expressive

than ESPRESSO. Additionally, we provide a novel formulation of pattern discovery

as a constrained sequential pattern mining problem.

Hybrid approaches: As the name suggests, these approaches borrow ideas

from one or more of the previous approaches. The Guided Hierarchical Clustering

algorithm (GHC) [6] is a representative one in this class. It first calculates the simi-

larity between a set of given input terms based on syntactic dependency features in

the corpus including adjective modifiers, prepositional phrase modifiers and noun

7

phrases in subject or object position. Then, using an agglomerative clustering al-

gorithm, it picks the most similar pair of terms in the remaining list of pairs to be

clustered, and uses WordNet, Hearst patterns in the corpus, and the WWW to posi-

tion them in the growing ontology. If no relationship is found, the pair is clustered.

Finally, they make sure the resulting ontology is a connected hierarchy. Unlike

these, our approach finds relationships before concepts. We start from patterns that

indicate relations, and then get concepts from there, thus not requiring terms as

input.

Zavitsanos et al. [35] use topic modeling to extract concepts which are rep-

resented as distributions of words. TextToOnto [18] and Text2Onto [7] focus on

conceptual relationships rather than hierarchical relationships. The concept hierar-

chy is used as a knowledge base to find more complex relations. For practical ap-

plications, algorithms that produce concrete ISA and HASA relations with labeled

concepts are more useful than ones that produce latent topics and word clusters

without labels.

Formal Ontologies: YAGO [30] automatically creates a formal ontology by

extending WordNet by leveraging Wikipedia’s info boxes. It reports very high reli-

ability. More recently, SOFIE [31] extends YAGO by extracting relationships from

free text. Thus, they can process Wikipedia articles (not just info boxes) and in-

deed arbitrary web pages. Kylin/KOG [33, 34], DBPedia [1], and DBLife [9] are

other examples of systems that have extracted very large ontologies containing mil-

lions of entities and relations. A series of recent papers have followed a declarative

approach to information extraction [25, 28].

One of the distinguishing features of our work is that our algorithm can pro-

duce high quality ISA and HASA relations from domain specific text corpora. Our

experiments show that our algorithm significantly outperforms previous ones both

in quality and in running time. Indeed, as mentioned in Suchanek et al. [31], even

for systems generating formal ontologies, algorithms that produce hierarchical re-

lations on a large scale and with a high quality are essential in order to give the

resulting ontology a clean structure.

Poon and Domingos [24] induce and populate a probabilistic ontology, using

dependency-parsed text as input. The output ontology of this system mainly con-

sists of verb classes in hierarchy with nouns as their argument class, and ISA re-

8

lationships between verb classes and HASA relationships between the verb classes

and their arguments.

9

Chapter 3

System Architecture and
Background

This chapter outlines the architecture of our system and develops the key notions

and ideas used in our algorithms.

3.1 LASER System Architecture
LASER (Figure 3.1) uses an iterative process. The dotted circle in Figure 3.1

highlights the main components.

LASER takes as input the preprocessed corpus consisting of a set of text docu-

ments, with each word tokenized. Additionally, it takes in a set of seed patterns,

i.e., lexico-syntactic templates such as Hearst patterns [14] that imply ISA/HASA

relationships. We define a Subsumption Candidate Instance Pair (SCIP), as a pair

of noun phrases x,y such that they are involved in a class-subclass or class-instance

(ISA) or a whole-part (HASA) relationship, and denote it SCIP (x,y). It states that

either HASA(x,y) or ISA(x,y) holds.

The LASER system has the following modules:

0. Corpus Text Parsing and Indexing: We generate the parse tree of the corpus

text with a parser such as the Stanford Parser1, and build an inverted index on the

corpus text as well as on the parse tree for efficient lookup. This module is run

1http://nlp.stanford.edu/software/lex-parser.shtml

10

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml

once for a given corpus.

1. ISA/HASA Pattern Instantiation: This module finds the sentences containing

seed pattern instances and extracts noun phrases involved in the ISA/HASA rela-

tionships.

2. SCIP Extension & SCIP Scoring: This module extends and ranks the instance

pairs so that the highest ranking pairs are considered as seed instance pairs to aid

new pattern discovery.

3. Frequent Pattern Discovery: This module takes the seed instance pairs from

module 2 and uses them to find new patterns that imply ISA or HASA relationships.

4. Pattern Scoring: The candidate patterns from the previous module are scored

to select seed patterns for the extraction of new instances in the next round.

This iterative process of finding instances and patterns continues until LASER

cannot find new instances or the new patterns’ score discovered drops below a

threshold, which is tuned empirically. In our experiments we used the threshold of

having the average score of patterns discovered in the current iteration being above

50% of the average score of patterns found in the previous iteration.

3.2 Background
We make use of the following notions in the LASER system.

Definition 1 A head word is the word that determines the syntactic type of the

noun phrase of which it is a member, while other words modify the head.2 2

Definition 2 [19] A noun phrase is a syntactic unit of the sentence where informa-

tion about the embedded noun is gathered. Therefore the noun is the head word of

the noun phrase, the central constituent which determines the syntactic character-

istics of the phrase. A noun phrase usually consists of an optional determiner, zero

or more adjective phrases, a noun head and some other clause modifiers. 2

In the example in the introduction, “finishes which may radiate noise” is a noun

phrase with head word “finishes”. A noun phrase is clearly a concept in the corpus

and is a candidate concept in the domain-specifc ontology that we seek to build.

2See http://en.wikipedia.org/wiki/Head (linguistics)

11

http://en.wikipedia.org/wiki/Head_(linguistics)

Pre-

processed

Corpus Text

Seed Pattern

ISA/HASA

Pattern

Instantiation

(1)

Frequent

Pattern

Discovery

(3)

SCIP Extension

& SCIP Scoring

(2)

ISA/HASA

SCIPs

Seed SCIPs

Extracted

Ontology

Pattern

Scoring

(4)

Candidate

Patterns
Repository of

Parse Tree

Parsing and

Indexing

(0)

Figure 3.1: Ontology Extraction System Architecture

Definition 3 A pattern is a sentence fragment of the form: NPList1 Connector NPList2
where each NPListi is a list of one or more noun phrases and Connector is a se-

quence of words in a short phrase and/or the corresponding POS tags, which sig-

nals a relationship between the concepts represented by NPList1 and NPList2. 2

For ISA and HASA relations, either NPList1 or NPList2 is the parent (i.e., the

more general concept in an ISA relationship and the “whole” concept in a HASA

relationship) while the other NPList is a child or a list of children (the more specific

concept in an ISA relationship and the “part” concept in a HASA relationship), as

determined by the specific connector. After identifying NPList1 and NPList2 of

a pattern in the text corpus, we generate candidate instance pairs for this pattern

consisting of one noun phrase from NPList1 and another from NPList2.

As an example, in the clause “plumbing equipment such as steel storage tanks,

pressure reducing stations and ductile iron pipe”, the string “such as” acts as a con-

nector; “plumbing equipment”, “steel storage tanks”, “pressure reducing stations”

12

and “ductile iron pipe” are noun phrases. In this example, NPList1 is a single noun

phrase and NPList2 is a list of three noun phrases. The connector “such as” indi-

cates each noun phrase in NPList2 is an instance or subclass of the noun phrase

NPList1, that is, one can infer the relations ISA(plumbing equipment, steel storage

tanks), ISA(plumbing equipment, pressure reducing stations) and ISA(plumbing

equipment, ductile iron pipe).3 Recall, as defined in Section 3.1, we use the term

SCIP pair, denoted SCIPs(x,y), to indicate a pair of noun phrases x,y that are re-

lated by an ISA or a HASA relationship.

This kind of pattern was first proposed by Hearst [14] and extended by many

subsequent papers. We use the seven patterns below, called seed patterns, as the

initial ISA patterns in the first round of our iterative taxonomic relation extraction

procedure:

1. NP0 such as NP1,NP2, ...,NPn−1 (and|or) NPn

2. such NP0 as NP1,NP2, ...,NPN (and|or) NPn

3. NP1,NP2, ...,NPn (and|or) other NP0

4. NP0, (including|especially) NP1,NP2, ...,NPn−1 (and|or) NPn

The above four are from Hearst [14] while the following three are from Cimi-

ano and Staab [6], which extends Hearst [14]:

5. NP1 is NP0

6. NP1, another NP0

7. NP0 like NP1

As a follow up to Hearst’s work [14], Berland and Charniak [2], Girju et al.

[12] proposed similar lexico-syntactic patterns implying part-whole relationships

(i.e., HASA relationships). We used five patterns from their work as our initial list

of HASA patterns:

1. NP0 (consists | consist | made) of NP1

3 ISA(x,y) indicates y is an instance (or subclass of) x.

13

2. NP1 (members | a member | a part) of NP0

3. NP0 have | has NP1

4. NP1 inside NP0

5. parts of NP0 include NP1

14

Chapter 4

Ontology Extraction

In this section, we provide a detailed description of modules 1–4 in the architecture

schematic of Figure 3.1 and provide the key algorithms used in our LASER system.

Specifically, we describe the algorithms for correct handling of nested noun phrases

and for pattern discovery using constrained closed sequential itemset mining.

4.1 ISA/HASA Pattern Instantiation
This module takes a list of known patterns suggesting ISA or HASA relationships

and applies the patterns to the input corpus to find sentences matching the patterns.

4.1.1 Extracting Noun Phrases

Previous works [6, 21] usually find pattern instances by matching each POS tagged

sentence with regular expressions.

For example, the regular expression (DT \ t(\w+))?(JJ \ t(\w+))?((NN(S?)\
t([a− z]+) \ s?)+) determines a non-recursive noun phrase, in which zero or one

determiners (DT) followed by zero or one adjectives (JJ) plus one or more singular

or plural nouns (NN(S?)) is a noun phrase. Thus, “a stringent requirement”, which

is tagged as “DT a JJ stringent NN requirement”, can be recognized as a noun

phrase because it matches the regular expression.

Such a strategy has the following limitations:

1. The simple POS tag rules may identify the wrong noun phrase because the

15

context is not considered. For example, in the sentence “Adding flooring

finishes such as carpet can significantly change the Apparent-IIC”, “floor-

ing finishes” is the correct parent noun phrase of “carpet”. However, ac-

cording to the POS tags “Adding/VBG flooring/NN finishes/NNS” and the

POS based rules that recognize the “VBG” as an adjective modifier, “adding

flooring finishes” (a verb phrase) is incorrectly identified as a noun phrase,

leading to the incorrect inference ISA(carpet, adding flooring finishes).

2. Strict application of pattern matching may fail to capture some patterns that

contain the proposed patterns. For example, suppose we try to extract SCIPS

with the seed pattern “... including ...”. Then even though the connector “...

including but not limited to ...” contains the seed pattern and is meaningful,

we cannot extract SCIPS from it because the pattern matching requires that a

noun phrase immediately follow the connector “including”.

3. Simple POS tag rules cannot identify some noun phrases that have complex

structures using modifiers. For example, “coatings that may be detrimental”

is a noun phrase occurring in one of our real data sets. It has an attributive

clause as a modifier, which cannot be correctly identified by simple regular

expression rules.

To overcome these limitations, we perform pattern matching by first match-

ing sentences containing lexical connectors, and then extracting the corresponding

noun phrases from the text segments either surrounding those connectors or in be-

tween them, by analyzing the constituent parse tree structure for the sentences.

The idea is that a well-trained parser like the Stanford Parser can be more effective

at determining noun phrases than simply matching regular expressions over POS

tags. For example, for the pattern NPList1 such as NPList2, we extract noun phrases

from the left of and the right of “such as” respectively. We achieve this by identi-

fying appropriate noun phrases in the parse tree of the matched sentence, knowing

the position of the connectors in that tree. This novel approach is in contrast to

previous approaches which use hand-crafted rules to match a whole sentence.

However, LASER adopts a slightly different strategy for the first iteration of pat-

tern instantiation and the later iterations: it extracts noun phrases with the matched

16

words in the pattern as clear boundary in first run but allows a sliding window

around the words for patterns in later run. For example, this pattern

NP0 such as NP1,NP2, ...,NPn−1 (and|or) NPn

is used in the first iteration. LASER will look for the noun phrase exactly preceding

“such as” in the parse tree as the parent noun phrase. Similarly, the child noun

phrases are extracted with the matched position of “such as” and “and|or” as clear

boundaries.

In later rounds, LASER allows the noun phrases to occur around the pattern

with a small gap, which is w−wordsizeo f pattern. LASER uses a sliding window

to simulate the procedure of looking from closer matches to further away ones.

For example, “,/, including/V BG” is a pattern LASER found in later iterations, so

LASER uses a sliding window of word size w that its left end starts with “,/,” and

moves towards left (one word at a time), until the right end of the window reaches

“including/V BG”. In this way LASER tries to find a noun phrase with the last

word that is on the left of the pattern and resides in the window. Similarly LASER

moves the window towards right until the left end of the window reaches “,/,”,

starting with the right end of the window placed at “including/V BG”, and finds

the corresponding child noun phrases.

The reason we adopt different strategy in later rounds is: the seed patterns used

in first iteration are defined by linguistic experts. So the words in these kinds of

patterns are more meaningful in terms of semantic, so that we use exact match

to get more accurate result. However the generic patterns in later iterations are

found by frequent substrings, which can be a part of a meaning connector that is

not frequent enough. Take the example of “, including” and “, including but not

limited to”, the relaxed match gives some longer patterns a second chance.

4.1.2 Nested Noun Phrase Challenge

One challenge in ontology extraction is that noun phrases may be nested in another

noun phrase. In this case it is difficult to identify the appropriate noun phrases in the

extracted relationship. Below, we give two examples that illustrate this challenge:

in Example 1 the shorter, nested noun phrase is the correct one. In Example 2, the

17

longer, outer noun phrase is the correct one. The examples are taken from one of

the real data sets described in Section 5.1.

Example 1 Consider the sentence “Provisions of shading devices, such as over-

hangs or vertical fins, to let in quality natural light but exclude undesired direct

sun light should be considered .” Here, “Shading devices” inside “provision of

shading devices” is a nested noun phrase.

“Shading devices” is the correct parent concept (the more general concept) of

the ISA relationship not “provision of shading devices.” That is, in making infer-

ences about ISA relationship we should be using “shading devices”, not “provision

of shading devices.” In this case, the shorter noun phrase is the correct choice. 2

Example 2 In “The work shall be carried out in accordance with the authorities

having jurisdiction, including Ministry of Environment and the Workers Compen-

sation Board of British Columbia and by contractors experienced in this specialty

,” the noun phrase “the authorities having jurisdiction” contains the nested noun

phrase ”jurisdiction”.

In this case the longer phrase is the right choice for use in the relationship

inference. Using more complex noun phrase adds an extra dimension to the prob-

lem: not only do we aim to avoid outright incorrect choices, but we strive to pick

the best among the correct ones. 2

These two examples are in sharp contrast and clearly illustrate the challenge in

determining the appropriate noun phrase for relationship inference; it is not always

better to use the longer noun phrase nor always the shorter one. To solve this

challenge, we employ a linguistically based heuristic approach that uses hints from

an external source, e.g., a general thesaurus like WordNet. A useful cue about the

type of a noun phrase can be obtained from its head word.

For example, the head word for “shading devices” is “devices” and “provision

of shading devices” has the head word “provision”. When the sentence contains

an ISA or HASA pattern but the potential parent noun phrase is nested, such as in

Example 1 and in Example 2, we can identify the head words of child noun phrases

and the potential parent noun phrases (generated by extracting all noun phrases

18

from the nested noun phrase recursively), and try to find relationships among these

head words in WordNet.

In order to measure the relatedness between words, we use the semantic simi-

larity defined [23], which makes use of corpus statistics and the hierarchical struc-

ture in WordNet.

The WordNet::Similarity module1 implements different variations of semantic

similarity.

In our work, we use three of them and take the average:

1. “Path” is the inverse of the shortest path length between two concepts in

WordNet.

The other two measures are based on information content, a corpus-based measure

in information theory that is proposed by Resnik [26] to represent the specificity

of a concept (more specific the concept is, larger this value will be). One way to

estimate this value is by corpus statistics and the WordNet::Similarity module has

pre-computed it for concepts in WordNet using standard corpus.

3. “JCN” is the semantic similarity described by Jiang and Conrath [16], which

subtracts the information content of the Lowest Common Ancestor (LCA) of

the two concepts, from the sum of the information content of these two, then

takes the inverse of the substraction result (convert the distance to similarity).

4. The final measure is “LIN”, which is proposed by Lin [17], divides the in-

formation content of the LCA by this sum mentioned earlier.

Algorithm 1 extracts the best possible choice for a parent concept given a

nested noun phrase (for parent) and a list of noun phrases (for child).

Lines 4 to 12 in Algorithm 1 calculate the sum of the similarity between each

candidate parent’s head word and head words of all children. We remember the

candidate parent that has the maximum similarity sum, MaxSimSum.

For example, “Provisions of shading devices, such as overhangs or vertical

fins”, has two candidate head words: “provision” and “devices” for the candi-

date parents (“provision of shading devices” and “shading devices”, respectively).
1A module that implements a variety of semantic similarity and relatedness measures based on

information found in the lexical database WordNet.

19

Algorithm 1 Parent NP Resolution in Nested NP
Require: A nested noun phrase (NestedNP) containing the potential parent noun

phrase; A set of child noun phrases (ChildList).
Ensure: The appropriate parent noun phrase (ParentNP), which is a hypernym of

the noun phrases in ChildList.
1: ParentList ← Recursively extract a list of noun phrases containing the last

word in NestedNP from the parse tree
2: MaxSimSum =−1
3: CurrentCandidate = null
4: for all Candidate ∈ ParentList do
5: SimSum = ∑ChildNP∈ChildList

Similarity(heado f (Candidate),heado f (ChildNP))
6: if SimSum > MaxSimSum then
7: CurrentCandidate =Candidate
8: MaxSimSum = SimSum
9: else if SimSum == MaxSimSum and length(Candidate) <

length(CurrentCandidate) then
10: CurrentCandidate =Candidate
11: end if
12: end for
13: if MaxSimSum == 0 then
14: Return ParentNP← shortest Candidate in ParentList, breaking ties in favor

of a candidate with a plural head word if any, and then arbitrarily.
15: end if
16: Return ParentNP←CurrentCandidate

Hence, we sum the semantic similarity between “provision” and “overhangs” and

between “provision” and “fins”. Similarly we sum the semantic similarity between

“devices” and “overhangs”, “devices” and “fins”. In this case, the similarity sum

is larger for “devices” than for “provision”, which suggests that “shading devices”

is a better choice of parent concept.

If two candidates have the same sum, we will choose the shortest one (Line 9–

11), because the head word of a parent phrase tends to be closer to the child phrases

that specify this parent. When the maximum similarity sum is zero, meaning head

words are not found in WordNet (which is possible when we are dealing with a

domain-specific corpus), we will try to find the shortest noun phrase, with head

word in plural form if it exists, as a default behavior (Line 13–15).

20

We evaluate this heuristic on a small sample of data, which is the first iteration

of ISA SCIP extraction on one of our datasets. In all 51 cases where the nested

parent noun phrase challenge exists, this semantic heuristic achieve an accuracy of

choosing 90.2% correct parent, while the simple heuristic that always choosing the

closest candidate has accuracy of 66.7%, which proves the effectiveness of using

semantic similarity to choose correct parent noun phrase.

4.2 SCIP Extension
We can extend the set of SCIP pairs derived by generating several more SCIPS

that exploit the inherent ISA relationship between a complex phrase and its head

word and the transitivity of ISA relationship. E.g., consider the SCIP ISA(plumbing

equipment, ductile iron pipe). We can extend this by generating the SCIP ISA(equipment,

ductile iron pipe). Many existing algorithms make the assumption, that if ISA(NP1,

NP2), then necessarily ISA(head(NP1), head(NP2)). This is an assumption, not

necessarily a valid inference. Notice that ISA(head(N1),head(NP2)) does not fol-

low from transitivity. In the above example, it turns out ISA(equipment, pipe)

happens to be valid.

Our observations on real data sets indicate that this assumption results in many

erroneous relationships or trivial relationships that can be found in a general on-

tology. This is because in many cases, the sense of the head word cannot be dis-

ambiguated without modifiers. According to our preliminary results, 49% of head

word pairs derived do not form valid ISA pairs. For example, following this as-

sumption on ISA(points of penetration of the vapor barrier jacket, raw edges) yields

ISA(points, edges), which is meaningless!

In summary, we extend every extracted pair ISA(NP1, NP2) from a SCIP by

generating the additional pair ISA(head (NP1), NP2). This is shown in Algorithm 2.

Then we calculate reliability scores for all extracted and extended pairs based on

the scoring mechanism described in Section 4.4. Finally, we filter those pairs with

scores smaller than average and pick the top ones as seed SCIPS for discovering

new patterns in the next iteration.

21

Algorithm 2 ISA SCIP Extension
Require: (InputSCIP): a pair of NPs n1,n2 s.t. ISA(n1,n2)
Ensure: (E) is a set of NP pairs having ISA relationship within each pair

1: add InputSCIP to E
2: if heado f (ParentNP) 6= ParentNP then
3: add (heado f (ParentNP),ChildNP) to E
4: end if

4.3 Frequent Pattern Discovery
Using the seed SCIPS (ISA/HASA relationships) produced by module (2) from Fig-

ure 3.1, we want to find new patterns that imply these relationships.

We adopt a Frequent-Substring-based Pattern Extraction approach to achieve

this new pattern discovery. The idea is to find substrings that frequently occur in

between the parent concept and the child concept of a SCIP in the corpus. Using

seed instances in the form of SCIP (NP1,NP2) as input, and we find co-occurrences

of NP1 and NP2 in the corpus where the text in between NP1 and NP2 is shorter

than a pre-defined limit.

To represent this in Datalog, for each sentence I containing both NP1 and NP2,

we have

candConn(X) :−SCIP(NP1,NP2)&contains(I,NP1,X ,NP2)

&length(X ,L)&L≤ windSize (4.1)

candConn(X) means X is a text fragment in which we want to find patterns, if X is

the text sequence linking NP1 and NP2 in the sentence I, and its length L is smaller

than a predefined constant windSize.

After collecting text sequences for each SCIP, we find frequent substrings from

them.

ESPRESSO [21] finds frequent substrings that contain both concepts of a SCIP,

by building a suffix tree for all tagged sentences containing both concepts of in-

stances. This suffix tree keeps a record of all substrings of these sentences. The

frequent substrings are considered to be candidates for new patterns.

For example, given a tagged sentence: “Sensory/JJ aspect/NN such/JJ as/IN

22

air/NN quality/NN can/MD easily/RB be/VB compromised/VBN ./.”, and it is

given ISA(sensory aspect, air quality). ESPRESSO replaces the actual parent and

child concept by “X” and “Y”, which gives the generalized tagged sentence : “X

such/JJ as/IN Y can/MD easily/RB be/VB compromised/VBN ./.” A frequent sub-

string of tagged sentences like above will look like “X such/JJ as/IN Y”, in which

ISA(X, Y).

However, this kind of pattern is not general enough because ESPRESSO requires

exact matches of both words and the corresponding POS tags. Due to data sparsity,

a problem that is especially severe for a small-scale and domain-specific corpus,

frequent patterns are hard to find and the resulting patterns will have limited power

in picking out instances in later iterations of instance extraction. ESPRESSO tries to

generalize this kind of pattern by replacing terms (their counterpart of our “noun

phrase”), that are identified by regular expression matching over tagged sentences,

with a uniform symbol “TR”. Another example pattern with generalization is “X

such/JJ as/IN Y ,/, TR” where TR is a terminology.

As we show in Chapter 5, this kind of pattern still suffers from low recall.

In contrast, instead of just finding frequent substrings in all sentences (which

can be really long) containing a SCIP, we find frequent substrings from the text

in between the two concepts of a SCIP, which corresponds to the candConn(x) in

Equation 4.1. Similarly, we do not require exact matches of both words and their

corresponding POS tags. Here is the representation we will use for our problem

definition:

Definition 4 A string that satisfies Formula Equation 4.1 is called candidate con-

nector, its lexical layer is

< word1,word2, ...,wordn >

and its syntactic layer (POS Tagging) is

< POS1,POS2, ...,POSn >

The combination representation is

< (word1,POS1),(word2,POS2), . . . ,(wordn,POSn)> .

We want to find frequent substrings of combination representations for candidate

connectors, as candidate patterns. 2

However instead of requiring strict substring of the combination representation,

23

we allow the existence of wildcard in either lexical layer or syntactic layer so that

the pattern is general enough.

Consider the input candidate connector “and others;” “or others” may also be

a valid connector but does not occur frequently enough. Instead, we may look for

a pattern like “* others”, where we require that both terms have the same part of

speech tags as the original pattern. Similarly, we could also allow for generalizing

patterns based on POS tags.

We solve the above problem using classical closed Sequential Pattern Min-

ing (SPM) [29]. In SPM, given a database of lists (sequences) of transactions (item-

sets) ordered by transaction time, the problem is to determine frequent sequential

patterns that have a minimum user-specified support, i.e., number of sequences

containing the pattern.

In our case, the combination representation of a candidate connector can be

transformed into a sequence according to the following definition.

Definition 5 An itemset is a non-empty set of at most two items: a word and its

corresponding POS tag; the itemset may only contain a word or a POS tag. A

sequence is an ordered list of itemsets, where each itemset correspond to a word in

the candidate connector. 2

The candidate connector “including/VBG but/CC not/RB limited/VBN to/TO”

can be written in the form of a sequence, i.e.,

< (including,V BG),(but,CC),(not,RB),(limited,V BN)(to,TO)>

in which (including,V BG) is an itemset of two items “including” and “VBG”.

Thus, we transform our problem of finding frequent substrings from candidate

connectors into one of finding frequent subsequences among all these sequences,

with the constraints: (i) a resulting frequent subsequence must have continuous

itemsets, and (ii) each itemset in the subsequence should contain at least one item.

The item missing from an itemset is represented by a wildcard *. In the above

sequence, < (including,V BG),(∗,CC)> is a subsequence, but < (including,V BG),

(not,RB)> is not because the itemsets are not continuous in the original sequence.

Also we require a frequent sequence to be closed that no super-sequences of it will

24

have the same support. We did not adopt the maximal pattern strategy that will

only retain the longest frequent sequence and abandon all its sub-sequences. For

example, both

< (including,V BG),(but,CC),(not,RB),(limited,V BN),(to,TO)

and < (including,V BG) > will be generated as closed pattern while the maximal

pattern strategy will discard the latter one because it is the sub-sequence of the

previous one. Here we gives a formal problem definition as below:

Definition 6 Given a sequence database containing all sequences representing all

candidate connectors between two concepts of an instance, the support of a con-

tinuous subsequence is the number of sequences in the sequence database that con-

tain it, while the itemsets in this subsequence are continuous in these original se-

quences. We want to find frequent closed continuous subsequence that its support

is larger than pre-defined threshold and no super-sequence of it will have the same

support. 2

In order to find frequent closed sequential patterns with the constraints we defined,

we tailored the BIDE+ algorithm [32] with respect to the generation of projected

database, and pruning non-closed patterns.

The algorithm for this module is shown in Algorithm 3, in which we find pat-

terns in different directions (parent in front of child or child in front of parent).

In Algorithm 3, constrainedBIDE plus is the BIDE+ algorithm as adapted to our

constraints.

A closed frequent subsequence discovered this way will be used as a generic

pattern: NPList1 Connector NPList2, in which the NPList can be a list of Noun

Phrases or a single Noun Phrase, and the Connector can be further represented as

constituent1, ...,constituentm where constituenti is wordi/POSi, ∗/POSi or wordi/∗
in which ∗ is a wildcard that matches with any word having that POS tag or any

POS tag applied to the word respectively. A pattern will also determine which side

on the connector is the parent and therefore the other side is the child.

However, we do not want the closed frequent subsequences to have too much

overlap in terms of support in the hope of finding more distinct patterns. For

25

Algorithm 3 Frequent Pattern Discovery

Require: A set of instances (SeedInstances) of the form (ParentNP,ChildNP)
where ISA or HASA relationship may hold between ParentNP and ChildNP

Require: A limit (WindowSize) on the number of words in the text window con-
sidered in each instance’s occurrence

Ensure: A set of generic patterns (CandidatePatterns).
1: Seqs =∅
2: ReversedSeqs =∅
3: for all instance ∈ SeedInstances do
4: if instance = (ParentNP,ChildNP) then
5: add to Seqs tagged substrings w/ length <WindowSize that occur between

ParentNP and ChildNP
6: end if
7: if instance = (ChildNP,ParentNP) then
8: add to ReversedSeqs tagged substrings with length < WindowSize that

occur between ChildNP and ParentNP
9: end if

10: end for
11: Patterns =∅
12: ReversedPatterns =∅
13: Patterns← constrainedBIDE plus(Seqs)
14: ReversedPatterns← constrainedBIDE plus(ReversedSeqs)
15: CandidatePatterns← Patterns∪ReversedPatterns

example, both < (such,JJ),(as, IN) > and < (such,JJ),(∗, IN) > are generated

as closed frequent pattern because they have different support, but most of time

< (such,JJ),(∗, IN) > occurs it is in the form of < (such,JJ),(as, IN) >. So we

propose a pattern generalization as post-processing that will discard a pattern p1

like < (such,JJ),(as, IN) > when there exists a sub-sequence p2 with the same

number of itemsets like < such,JJ >,< ∗, IN > where

support(p1)/support(p2)≥ overlapRatio

in which overlapRatio is a threshold for the ratio determined empirically. We are

conservative on this generalization so that we only consider sequences having the

same length (the number of itemsets) because we still want to get patterns specific

enough (relative longer and having fewer wildcards), which has higher precision.

26

Algorithm 4 describes the process.

Algorithm 4 Pattern Generalization
Require: (ClosedPatterns) is a set of frequent closed patterns output by Algo-

rithm 3
Require: (OverlapRatio is a pre-defined threshold for the ratio of a pattern’s sup-

port to another pattern’s support)
Ensure: (GeneralizedPatterns) is a set of frequent closed patterns

1: FilteredPatterns =∅
2: for all Pattern P ∈ClosedPatterns do
3: for all Pattern Q ∈ClosedPatterns∧ length(P) = length(Q)∧Q is a subse-

quence of P do
4: if support(P)/support(Q)≥ OverlapRatio then
5: FilteredPatterns← Q
6: end if
7: end for
8: end for
9: GeneralizedPatterns←ClosedPatterns−FilteredPatterns

The closed frequent subsequences that are output and generalized are treated

as candidate lexico-syntactic patterns. We make use of a scoring mechanism, de-

scribed in the next section, for choosing the top patterns as the seed patterns for the

next iteration of extraction of instance pairs.

4.4 Scoring of Patterns and SCIPs
We need a scoring mechanism to select seed SCIPS and seed patterns to identify

new patterns and new concept pairs respectively, and decide the stopping criteria

for the iterative process. It is prohibitively expensive to evaluate the actual preci-

sion of patterns and SCIPS at run-time.

In order to estimate the confidence of a pattern or a SCIP, we need to capture

the association between a SCIP and any pattern contributing to its extraction in the

pattern instantiation step. Similarly, we need to capture the association between a

pattern and any SCIP contributing to its discovery in the frequent pattern discov-

ery step. We follow the Point-wise Mutual Information (PMI) [8] framework in

Pantel and Pennacchiotti [21] for scoring pattern and instances. Point-wise mutual

27

information measures the association strength between two events x and y, and is

defined as:

pmi(x,y) = log
P(x,y)

P(x)P(y)
(4.2)

ESPRESSO estimates the PMI between an instance pair i = (NP1,NP2) and pattern

p as:

pmi(i, p) = log
|NP1, p,NP2|

|NP1,∗,NP2||∗, p,∗|
(4.3)

In this formula, the numerator is the co-occurrence frequency of a pattern and an

instance pair and the denominator is the product of their respective frequencies.

Following Pantel and Ravichandran [22] a discount factor is applied so that this

value is not biased too much by infrequent events. Then they define the reliability

of an instance i:

r(i) =
∑p∈P′

pmi(i,p)
maxpmi

∗ r(p)

|P′|
(4.4)

in which P′ is the set of patterns in this iteration, and maxpmi is the maximum

PMI value between any (pattern, instance) pair in this iteration. Symmetrically, the

reliability of a pattern p, r(p), is calculated as

r(p) =
∑i∈I′

pmi(i,p)
maxpmi

∗ r(i)

|I′|
(4.5)

where I′ is the set of instances used to find new patterns.

However according to the PMI formula listed in the ESPRESSO paper [21], the

PMI value will always be negative, which contradicts the intuition that both instance

score r(i) and pattern score r(p) are larger if the corresponding PMI value is larger.

So instead of using this suspicious one, we follow the original definition of PMI

in Formula Equation 4.2 that uses probability instead of frequency so that our PMI

value is:
pmi(i, p) = log

|NP1,p,NP2|
∑p̂∈P′,î∈I′ |NP1î

,p̂,NP2î
|

|NP1,∗,NP2|
∑î∈I′ |NP1î

,∗,NP2î
|
|∗,p,∗|

∑p̂inP′ |∗,p̂,∗|

(4.6)

In the above equation, we divide the frequency value in the numerator and the

denominator with corresponding sum values, namely the sum of co-occurrence

frequency for all pairs of instance and pattern, the sum of frequencies of all in-

28

stances, and the sum of frequencies of all patterns respectively. Here, î ranges over

instances, i.e., î = (NP1î
,NP2î

).

Whereas ESPRESSO uses seed instances, we start with pre-defined patterns.

In the first iteration of pattern instantiation only, we estimated the precision of

patterns by manual validation on a sampled output, and used those estimates as as

initial scores.

The algorithm runs until no more new SCIPS can be found or the average score

of patterns produced in this iteration is smaller than 50% of the average score of

patterns from the previous iteration.

29

Chapter 5

Experiments and Evaluation

5.1 Dataset Description and Preprocessing
We evaluated our results on the following four datasets:

AEC: The Architecture, Engineering, and Construction dataset consists of the text

data used by the construction firm in the process of constructing the Centre

for Interactive Research on Sustainability (CIRS) building at the University

of British Columbia. It is a web archive containing scheduling data, 3D de-

sign data, meeting notes, and reports. We extracted the text and applied basic

cleaning. The resulting small corpus contains 18,805 sentences and 312,936

words. This fairly small dataset shows challenges for ontology extraction

when data is sparse.

LP: LP1 consists of text from http://www.lonelyplanet.com. This tourism-domain

small-scale dataset has 18,950 sentences and 453,299 words; LP is also used

by Cimiano and Staab [6].

MED: OHSUMED (or “MED” for short) consists of 348,566 medical references

from MEDLINE2 [15]. We use a large subset of this collection consisting

of 1,221,462 sentences and 32,524,017 words. MED is a standard corpus in

information retrieval.
1http://olc.ijs.si/lpReadme.html
2http://www.ncbi.nlm.nih.gov/pubmed/

30

http://olc.ijs.si/lpReadme.html
http://www.ncbi.nlm.nih.gov/pubmed/
http://olc.ijs.si/lpReadme.html
http://www.ncbi.nlm.nih.gov/pubmed/

Blue: The Bluestream collection3 is a set of instructional manuals for a software

product called XDocs, which is a component content management system

developed by the Bluestream company4 based in Vancouver. This corpus

contains 4,295 sentences (81,087 words) after extracting text from about

300 XML files. It is the smallest dataset in this experiment and falls into

Computer Science domain.

We did the following preprocessing steps on all datasets:

• We cleaned the data (e.g., we removed running footers).

• We broke the text into sentences with the LingPipe toolkit5.

• We used the Stanford NLP tools to tokenize, tag, and parse the data.

• We built an inverted index with Lucene6.

5.2 Competing Algorithms and Parameters
We compare LASER with two other algorithms:

ESPRESSO: ESPRESSO [21], discussed in detail throughout the paper, is our clos-

est competitor.

GHC: GHC [6] (Chapter 2) did not describe how to generate the terms to build

the taxonomy on. To overcome this, we used the C/NC-value method [11]

proposed by the OntoGain system [10] to create multi-word candidate terms

for GHC. We slightly modified C/NC to produce single-word terms in addi-

tion to multi-word terms since GHC performs poorly when only multi-word

terms are input.

Both LASER and ESPRESSO [21] are iterative. LASER starts with the seed

patterns in Chapter 3, and ESPRESSO is given 50 seed SCIPS for AEC, LP and

Bluestrem and 100 seed SCIPS for MED. Since there exist no validated SCIPS for
3http://kb.bluestream.com/
4http://www.bluestream.com
5http://alias-i.com/lingpipe/
6http://lucene.apache.org/

31

http://kb.bluestream.com/
http://alias-i.com/lingpipe/
http://lucene.apache.org/
http://kb.bluestream.com/
http://alias-i.com/lingpipe/
http://lucene.apache.org/

both corpora, we randomly selected a set of SCIPS that have been labeled as valid

when we evaluated the experiment result for LASER.

During the ISA/HASA Pattern Instantiation iteration, both algorithms pick the

top k extracted (extended) SCIPS as seed SCIPS. For the small datasets like AEC,

LP and Bluestream, we use all extracted (extended) SCIPS as seed SCIPS ; and k is

set to 1500 on MED.

In the Frequent Pattern Discovery iteration, LASER chooses the top m patterns.

ESPRESSO produces the top m patterns during the first run and generates patterns

that increase in size by one pattern per round, e.g., the second round will find m+1

patterns. LASER sets m to 10 when finding ISA relationships on AEC and 5 for all

other cases, and ESPRESSO has m = 5.

The only parameter for GHC is the number of input terms, n. The n most

important terms from corpus chosen by our implementation of the C/NC-value

method[11] are given as input, and GHC tries to find ISA relationships among them

and build a hierarchy. We set n = 400 for Bluestream, n = 1000 for AEC, n = 2000

for LP and n = 5000 for MED because we want to keep the output size of different

algorithms comparable.

Both GHC and ESPRESSO originally used Google7 as an external source of

ISA/HASA relationship evidence. We only implemented the web extension part in

ESPRESSO with Microsoft Bing search API8, for the following reasons:

1. Search engine service providers such as Google and Yahoo! have recently

begun restricting the use of their search service API. Search service is not a

free and abundant resource for experimental or academic use anymore.

2. GHC used web expansion to improve precision, but found that web expansion

only improved precision by 2-3%.

We applied the three algorithms to the datasets in Section 5.1. LASER and

ESPRESSO find ISA/HASA relationships while GHC is only able to produce ISA

relationships.

In addition to measuring the algorithms’ precision (i.e., what fraction of the

results that are returned are correct), we would like to measure recall (i.e., what
7http://code.google.com/apis/websearch/
8http://www.bing.com/toolbox/bingdeveloper/

32

http://code.google.com/apis/websearch/
http://www.bing.com/toolbox/bingdeveloper/
http://code.google.com/apis/websearch/
http://www.bing.com/toolbox/bingdeveloper/

fraction of the correct results are returned). However, given that it is infeasible

to fully find all ontological relationships in a large text repository, we measured

relative recall — the number of valid relationships found by the algorithm divided

by the total number of valid relationships found by all algorithms [20]. This allows

us to also define relative F-score by replacing recall with relative recall. Thus

relative Fscoreβ = (1+β
2)∗ precision∗ relative recall

β 2 ∗ precision+ relative recall
(5.1)

in which recall is weighted β times as important as precision. Therefore, F1

weights precision and recall equally, F0.5 weights precision as 2 times more im-

portant than recall, and F2 weights recall as 2 times more important. We use these

F-scores here because precision and recall may be weighted differently in different

applications.

5.3 Comparison of ISA Results

33

Table 5.1: Precision and Total Number of ISA Results

System AEC AEC LP LP MED MED Blue Blue
Precision Total Precision Total Precision Total Precision Total

LASER1 0.593 617 0.63 2198 0.6 19338 0.682 192
LASER1 HW 0.564 1070 0.5 3995 0.61 34390 0.634 344
LASER2 0.453 64 0.644 104 0.37 5323 0.657 35
LASER2 HW 0.459 111 0.642 179 0.42 9674 0.672 61
LASER 0.58 681 0.61 2302 0.55 24661 0.678 227
LASER HW 0.555 1181 0.6 4174 0.56 44064 0.640 405
ESPRESSO 0.673 55 0.766 141 0.53 3472 0.736 53
ESPRESSO HW 0.674 95 0.755 229 0.59 5814 0.721 86
ESPRESSO HW+W 0.337/0.562 406 0.59/0.68 1396 0.43/0.5 14077 0.322/0.439 444
GHC 0.337 734 0.51 1074 0.59 3557 0.407 302

34

Table 5.2: Relative Recall and F-score of ISA

AEC LP MED Blue
System RR F1 F0.5 F2 RR F1 F0.5 F2 RR F1 F0.5 F2 RR F1 F0.5 F2
LASER 0.39 0.47 0.53 0.42 0.36 0.45 0.53 0.39 0.41 0.47 0.52 0.44 0.30 0.42 0.54 0.34
LASER HW 0.65 0.60 0.57 0.63 0.65 0.62 0.61 0.64 0.75 0.64 0.59 0.70 0.51 0.57 0.61 0.53
ESPRESSO 0.04 0.07 0.15 0.05 0.03 0.05 0.12 0.04 0.06 0.10 0.20 0.07 0.08 0.14 0.27 0.09
ESPRESSO HW 0.06 0.12 0.23 0.08 0.05 0.08 0.18 0.06 0.10 0.18 0.31 0.13 0.12 0.21 0.36 0.15
ESPRESSO HW+W 0.14 0.19 0.26 0.15 0.21 0.31 0.44 0.24 0.18 0.26 0.34 0.21 0.28 0.30 0.31 0.29
GHC 0.25 0.28 0.31 0.26 0.14 0.22 0.34 0.17 0.06 0.12 0.22 0.08 0.24 0.30 0.36 0.26

35

Using the stopping criteria in Section 4.4, LASER ran two ISA Pattern Instan-

tiation iterations on all datasets. ESPRESSO only ran one ISA Pattern Instantiation

iteration before it reached its stopping criteria.

Table 5.19 and Figure 5.1 show the total number of all output ISA relation-

ships for each algorithm and the corresponding precision on all four corpora. We

manually validated all relationships produced for AEC and Blue. For the other

two corpora, we validated random 100 results if there were more than 1,000 rela-

tionships, otherwise did complete validation. LASER1 and LASER2 represent the

relationships directly extracted from patterns during iteration 1 and 2; LASER is the

total result from all iterations. HW denotes the results containing extended rela-

tionships found by the SCIP Extension step (Section 4.2). HW+W represents the

result with both head word extension and web extension.

From this table we can see that ESPRESSO achieves the best precision on two

datasets including AEC and LP and LASER achieves the best precision on MED

and Blue. LASER dominates on three datasets on number of results returned.

Since LASER’s precision is comparable to ESPRESSO, this means LASER extracts

many more valid relationships than ESPRESSO. Head word extension increases the

number of relationships found by both LASER and ESPRESSO, with precision re-

maining about the same or decreasing a little bit because of errors in finding head

words. ESPRESSO’s web expansion produces many additional relationships, but it

markedly degrades precision.

There are two numbers in each precision column of ESPRESSO HW+W; the

first measures precision on relationships found in the domain. The second mea-

sures precision if the relationship is valid in any domain. For example, ISA(accessories,

necklace) is extracted by ESPRESSO on the AEC dataset. This is not valid in the

architecture domain because necklace is not a concept in this domain — in this

domain, accessories stands for construction or mechanical equipment.

GHC relies heavily on ISA relationships between a term and its head word, e.g.,

ISA(system, heat recovery system), which are fairly trivial. Neither LASER, nor

ESPRESSO output these relationships. The input terms extracted for MED con-

tain a higher percentage of multi-word terms (32%) than those of AEC (23%), so

9In each table, the “best” result per column is bolded.

36

Figure 5.1: Precision Result for ISA

Figure 5.2: Relative Recall Result for ISA

GHC performs much better on the MED corpus: more “trivial” relationships can be

found.

Table 5.2 gives the relative recall and different F-scores for algorithms on these

datasets. Testing the validity of all relationships from the two larger datasets is

37

Figure 5.3: Relative F-score Result for ISA

impractical, so for those, we estimate relative recall by:

relative recall ≈ precision∗ |SCIPs|
∑ precisionx ∗ |SCIPs|x

(5.2)

in which the number of valid relationships produced by an algorithm is estimated

by the product of sample precision and the number of all generated SCIPS. Sum-

ming the estimated valid relationships for all competing algorithms, yields the

number of all valid relationships from all systems’ output, which is an overesti-

mate of the real value. Therefore, the estimated relative recall is an under estimate

but still reflects the difference between systems.

LASER HW outperforms the other two algorithms and corresponding exten-

sions in terms of relative recall and F-scores, thanks to the large output and stable

precision. In contrast, ESPRESSO suffers from low relative recall. This behavior is

consistent on both small and large datasets, which reflects a problem of starting an

iterative algorithm from seed SCIPS. Although ESPRESSO’s set of SCIPS are valid,

the distribution of these seeds in the corpus is unknown beforehand, leading to

possibly re-discoverying the same pattern repeatedly and hence a consistently low

recall. GHC has better relative recall and F-score than ESPRESSO on AEC and Blue

38

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

10 20 30 40 50 60 70 80 90 100

LASER precision

LASER relative
recall

LASER F-score

ESPRESSO
precision

ESPRESSO relative
recall

ESPRESSO F-score

top X%

Figure 5.4: Comparing the Top X% ISA SCIPS

even when its precision is low on these two datasets. On the large corpus, GHC has

worse relative recall mainly because the agglomerative clustering algorithm does

not scale well. As we show later, even running GHC with 5000 terms took more

than two days.

Figure 5.2 shows the relative recall of ISA relationships. Since the variation

in precision across different parts of the algorithms (e.g., the difference between

ESPRESSO and ESPRESSO HW) is relatively low, the F-scores (Figure 5.3) are

very similar to the relative recall graph. We can conclude that Head Word Ex-

tension and Web Extension both improve F-scores, and LASER HW dominates

consistently.

It is interesting to see how these measures vary for output SCIPS with different

scores. In Figure 5.4 we plot precision, relative recall, relative F1-Score as a func-

tion of X, in which top X% stands for the top X% SCIPS having highest scores on

AEC. The precision of LASER remains relatively steady even when we dig to the

bottom of the scores, i.e., as X increases. Additionally, both LASER’s relative recall

and F-score increase rapidly as X increases, showing LASER’s dominance over the

competition.

39

Table 5.3: Precision and Total Number of HASA Results

System AEC Precision AEC Total LP Precision LP Total MED Precision MED Total

LASER1 0.415 82 0.626 673 0.42 4011
LASER2 0 0 0.429 7 0.25 417
LASER 0.415 82 0.624 680 0.39 4428
ESPRESSO 0.25 4 0.588 51 0.35 428
ESPRESSO HW 0.11 9 0.521 71 0.31 649
ESPRESSO HW+W 0.1 10 0.454/0.471 121 0.34/0.39 1072

5.4 Comparison of HASA Results
LASER ran one HASA Pattern Instantiation iteration on AEC and two iterations on

other two larger datasets LP and MED. ESPRESSO still ran only one HASA Pattern

Instantiation iteration. Table 5.3 shows that both the precision and number of HASA

relationships are worse than ISA relationships for all algorithms. This is because in

a corpus, HASA relationships are not as frequent as ISA relationships. We did not

show the result for the Blue dataset because ESPRESSO fails to produce any HASA

relationships on this extremely small corpus.

LASER outperforms ESPRESSO in every case for all datasets. One thing to note

is that LASER only extends ISA SCIPs in the SCIP Extension step (Section 4.2),

but ESPRESSO extends both ISA and HASA SCIPs. We made this choice because

HASA has different semantic meanings from ISA and contains many subtypes [12].

For example, HASA(treatment of occlusive disease, endarterectomy) is a valid rela-

tionship from MED, but its head word extension HASA(treatment, endarterectomy)

does not make sense because “treatment” is too abstract that “endarterectomy” is

not part of “treatment” in the general sense. ESPRESSO’s drop in precision when it

applies HASA headword extension also reflects this.

The relative recall and F-scores on the three corpora are presented in Table 5.4.

LASER dominates both measurements consistently while ESPRESSO still suffers

from low recall. Figure 5.5, 5.6, and 5.7 show that the various components con-

tribute at about the same fashion as they do for ISA relationships.

Similar to the ISA experiments, we plot precision, relative recall, relative F1-

Score as a function of X, in which top X% stands for the top X% SCIPs having

highest scores on LP. We choose LP instead of AEC because the number of valid

40

Table 5.4: Relative Recall and F-score of HASA

AEC LP MED
System RR F1 F0.5 F2 RR F1 F0.5 F2 RR F1 F0.5 F2
LASER 0.97 0.58 0.47 0.77 0.89 0.73 0.66 0.82 0.83 0.53 0.44 0.68
ESPRESSO 0.03 0.05 0.10 0.04 0.06 0.11 0.22 0.08 0.07 0.12 0.20 0.09
ESPRESSO HW 0.03 0.05 0.07 0.03 0.08 0.13 0.24 0.09 0.10 0.15 0.22 0.11
ESPRESSO HW+W 0.03 0.05 0.07 0.03 0.12 0.18 0.29 0.14 0.17 0.23 0.29 0.19

Figure 5.5: Precision Result for HASA

HASA relationships found by ESPRESSO is too small. The curve (Figure 5.8) looks

consistent with the ISA result, showing LASER is stable algorithm.

5.5 Comparison of Running Time
Table 5.5 shows the running times for extracting ISA relationships. LASER and

LASER HW have the same running time because both versions of LASER require

headword extension for seed generation; the only difference is whether we count

these extended relationships during evaluation. This is also true for ESPRESSO and

ESPRESSO HW.

LASER is the most efficient algorithm and is between 1.4 times and two orders

of magnitude faster than other algorithms. Indeed LASER’s constrained closed se-

41

Figure 5.6: Relative Recall Result for HASA

Figure 5.7: Relative F-score Result for HASA

42

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

10 20 30 40 50 60 70 80 90 100

LASER precision

LASER relative recall

LASER F-score

ESPRESSO precision

ESPRESSO relative
recall

ESPRESSO F-score

top X%

Figure 5.8: Comparing the Top X% HASA SCIPS

Table 5.5: ISA Extraction Running Time (in Seconds)

System AEC LP MED Bluestream

LASER 65 107 6,862 27
ESPRESSO 518 308 9,627 133
ESPRESSO HW+W 10,939 10,439 72,154 2,727
GHC 1,160 1,709 >2 days 146

quential pattern mining approach to finding new patterns is much more efficient

than ESPRESSO’s frequent substring finding using a suffix tree. ESPRESSO HW+W

takes even longer because search engines constrain the frequencies of queries. This

can only get worse as more search engines limit their access. The running time for

GHC is quadratic in the number of input terms because agglomerative clustering

requires pairwise term similarity. This becomes GHC’s bottleneck when the num-

ber of input terms gets larger. Indeed, it takes GHC more than two days to finish

on an input of 5,000 terms! The running time for extracting HASA relationships is

similar to the ISA case and it is shown in Table 5.6.

In summary, LASER (equals or) outperforms the two other algorithms on preci-

sion, relative recall and F-score for both ISA and HASA relationships in most cases.

43

Table 5.6: HASA Extraction Running Time (in Seconds)

System AEC LP MED

LASER 49 22 2,302
ESPRESSO 149 92 17,705
ESPRESSO HW+W 178 496 22,506

While ESPRESSO suffers from low recall and GHC finds too many “trivial” relation-

ships, LASER outputs a lot of relationships on both small and large corpora, which

shows the superiority of using an iterative framework that starts from reliable seed

patterns. Using parse tree information and identifying appropriate noun phrases

from nested noun phrases, contribute to the discovery of more complex and accu-

rate relationships. This parse-once-use-many-times strategy and the adaptation of

constrained frequent closed sequential pattern mining make LASER very efficient,

while the competing algorithms have serious running time bottlenecks.

44

Chapter 6

Conclusions and Future Work

Many state-of-the-art algorithms for learning ontologies from free text confine

themselves to concepts represented as single-word terms or common compounds.

In contrast, we find a richer ontology by covering multi-word terms. We build

on and extend previous pattern-based iterative frameworks [14, 21], and make the

following contributions:

1. We identify concepts in ISA/HASA relationships by analyzing parse trees

instead of simple POS tag matching, and use an efficient parse-once-use-

many-times strategy.

2. We develop a novel algorithm to determine the appropriate noun phrases

from nested noun phrases present in the corpus.

3. We tailor sequential pattern mining to find constrained frequent patterns con-

siting of words, POS tags, and wildcards.

We empirically show on four real web datasets that LASER performs very

well and is particularly good at stably extracting rich and complex concepts and

ISA/HASA relationships between them, regardless of the size of corpus or data spar-

sity. In terms of precision, it is comparable to or better than the competitors while

in terms of relative recall and F-scores it significantly and consistently outperforms

them. It is also much more efficient than the competing algorithms on running time

and is scalable to very large data sets.

45

An interesting future challenge is to post-process concepts found by LASER

with statistical methods to boost the precision even further while maintaining scal-

ability.

46

Bibliography

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and Z. Ives. Dbpedia: A
nucleus for a web of open data. In ICSW, 2007. → pages 8

[2] M. Berland and E. Charniak. Finding parts in very large corpora. In ACL,
pages 57–64. ACL, 1999. → pages 3, 13

[3] C. Biemann. Ontology learning from text: A survey of methods. LDV
Forum, 20(2):75–93, 2005. → pages 1, 5

[4] S. Brin. Extracting patterns and relations from the world wide web. In
WebDB, 1999. → pages 3

[5] S. Caraballo. Automatic construction of a hypernym-labeled noun hierarchy
from text. In ACL, 1999. → pages 1, 6

[6] P. Cimiano and S. Staab. Learning concept hierarchies from text with a
guided hierarchical clustering algorithm. In ICML workshop on Learning
and Extending Lexical Ontologies with Machine Learning Methods, 2005.
→ pages 6, 7, 13, 15, 30, 31

[7] P. Cimiano and J. Völker. Text2onto. Natural Language Processing and
Information Systems, pages 227–238, 2005. → pages 8

[8] T. Cover and J. Thomas. Elements of information theory, volume 6. Wiley
Online Library, 1991. → pages 27

[9] P. Derose, W. Shen, F. Chen, A. Doan, and R. Ramakrishnan. Building
structured web community portals: A top-down, compositional, and
incremental approach. In VLDB, 2007. → pages 8

[10] E. Drymonas, K. Zervanou, and E. Petrakis. Unsupervised ontology
acquisition from plain texts: the OntoGain system. Natural Language
Processing and Information Systems, pages 277–287, 2010. → pages 6, 31

47

[11] K. Frantzi, S. Ananiadou, and H. Mima. Automatic recognition of
multi-word terms:. the c-value/nc-value method. International Journal on
Digital Libraries, 3(2):115–130, 2000. → pages 31, 32

[12] R. Girju, A. Badulescu, and D. Moldovan. Automatic discovery of
part-whole relations. Computational Linguistics, 32(1):83–135, 2006. ISSN
0891-2017. → pages 3, 13, 40

[13] Z. Harris. Distributional structure. Word, 1954. → pages 5

[14] M. Hearst. Automatic acquisition of hyponyms from large text corpora. In
COLING. ACL, 1992. → pages 1, 3, 6, 10, 13, 45

[15] W. Hersh, C. Buckley, T. Leone, and D. Hickam. Ohsumed: an interactive
retrieval evaluation and new large test collection for research. In SIGIR,
1994. → pages 30

[16] J. Jiang and D. Conrath. Semantic similarity based on corpus statistics and
lexical taxonomy. Arxiv preprint cmp-lg/9709008, 1997. → pages 19

[17] D. Lin. An information-theoretic definition of similarity. In ICML,
volume 1, pages 296–304, 1998. → pages 19

[18] A. Maedche and S. Staab. Semi-automatic engineering of ontologies from
text. In SEKE, pages 231–239, 2000. → pages 8

[19] C. Manning and H. Schütze. Foundations of statistical natural language
processing, volume 59. MIT Press, 1999. → pages 11

[20] A. Moosavi, T. Li, L. Lakshmanan, and R. Pottinger. Ontectas: Bridging the
gap between collaborative tagging systems and structured data. In CAiSE,
2011. → pages 6, 33

[21] P. Pantel and M. Pennacchiotti. Espresso: Leveraging generic patterns for
automatically harvesting semantic relations. In COLING, pages 113–120.
ACL, 2006. → pages 1, 3, 7, 15, 22, 27, 28, 31, 45

[22] P. Pantel and D. Ravichandran. Automatically labeling semantic classes. In
HLT/NAACL, 2004. → pages 6, 28

[23] T. Pedersen, S. Patwardhan, and J. Michelizzi. WordNet:: Similarity:
measuring the relatedness of concepts. In HLT/NAACL, pages 38–41, 2004.
→ pages 19

48

[24] H. Poon and P. Domingos. Unsupervised ontology induction from text. In
ACL, pages 296–305, 2010. → pages 8

[25] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and S. Vaithyanathan. An
algebraic approach to rule-based information extraction. In ICDE, 2008. →
pages 8

[26] P. Resnik. Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural language.
JAIR, 11:95–130, 1999. → pages 19

[27] M. Sanderson and B. Croft. Deriving concept hierarchies from text. In
SIGIR, pages 206–213, 1999. ISBN 1581130961. → pages 1, 6, 7

[28] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative
information extraction using datalog with embedded extraction predicates.
In VLDB, page 7, 1997. → pages 8

[29] Srikant and Agrawal. Mining sequential patterns: Generalizations and
performance improve. EDBT, 1996. → pages 24

[30] F. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge. In WWW, pages 697–706, 2007. → pages 8

[31] F. Suchanek, M. Sozio, and G. Weikum. SOFIE: A self-organizing
framework for information extraction. In WWW, 2009. → pages 8

[32] J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences.
2004. ISSN 1063-6382. → pages 25

[33] F. Wu and D. S. Weld. Autonomously semantifying wikipedia. In CIKM,
pages 41–50, 2007. → pages 8

[34] F. Wu and D. S. Weld. Automatically refining the wikipedia infobox
ontology. In WWW, pages 635–644, 2008. → pages 8

[35] E. Zavitsanos, G. Paliouras, G. Vouros, and S. Petridis. Learning
subsumption hierarchies of ontology concepts from texts. WIAS, 8(1):37–51,
2010. → pages 8

49

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	2 Related Work
	3 System Architecture and Background
	3.1 LASER System Architecture
	3.2 Background

	4 Ontology Extraction
	4.1 isa/hasa Pattern Instantiation
	4.1.1 Extracting Noun Phrases
	4.1.2 Nested Noun Phrase Challenge

	4.2 SCIP Extension
	4.3 Frequent Pattern Discovery
	4.4 Scoring of Patterns and SCIPs

	5 Experiments and Evaluation
	5.1 Dataset Description and Preprocessing
	5.2 Competing Algorithms and Parameters
	5.3 Comparison of isa Results
	5.4 Comparison of hasa Results
	5.5 Comparison of Running Time

	6 Conclusions and Future Work
	Bibliography

