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Abstract

Suppose we want to compute some function (such as convex hull or k-th small-

est element), but the input values are imprecise. Can we compute the answer? Per-

haps we need some of the input values to be more precise. What is the smallest

additional input precision we need for each input to compute the function? We

explore a model in which a query to an input allows us to uncover one more ”unit”

of its precision, at unit cost. Unfortunately, we cannot predict the results of a query

in advance. This motivates us to study online algorithms that attempt to minimize

the number of queries to compute the function.

We compare the cost of online algorithms against the minimum query cost to

compute the function. We obtain lower bounds on the ratio of these costs for a

variety of simple functions, and create algorithms with matching upper bounds.

We also consider a kinetic model in which the results of a query become more

imprecise over time (i.e., the inputs move) and our goal is to compute the function

of the inputs at some fixed time.
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Chapter 1

Introduction

Whenever a measurement is not exact, imprecision exists. In this thesis, two

different models are discussed: kinetic imprecision and static imprecision.

Kinetic imprecision is due to objects moving. Any measurements, even precise

ones, at a fixed point in time will become less precise as time passes. Movement

of real world objects are rarely confined to a strict trajectory. Fortunately, most

objects on earth have a finite maximum speed.

Even when an input element is completely static, what we know about it is

imprecise. This imprecision is known as static imprecision. In the real world,

measurement instruments have limited precision. Obtaining more precise mea-

surement requires more resources. For example, more measurements need to be

taken, or better instruments need to be used. Sometimes, imprecise data are used

because they have simpler representation, for example, using fewer bits.

In computing geometric functions, we often ignore the imprecision and assume

that the input is exact. This is because the imprecision is tiny compared to the scale

of the input. Thus we obtain an answer that is exact, or very close to the true value.

But what happens if the imprecision is significant?

In order to compute a function, we do not always require precise data for every

element. It is sometimes possible, based on imprecise data, to discard data that have

no impact on the final answer. For example, in computing a nearest neighbour,

one can easily discard elements that are too far from other elements. It is also

possible that the full precision of every element is not always needed. In the nearest
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neighbour example, we only need to know enough precision so that the nearest

element is distinguishable from the next nearest element. Thus having imprecision

inspires us to wonder what precision is required to compute a function.

So how can we measure the amount of precision used by an algorithm? The

model we use is a query based model. In this model, we can perform an action on

an imprecise element to uncover more precision. This action is called a ”query”.

1.1 Input and Query
The input I consists of many elements in Euclidean space in fixed dimension.

Each element has a final point and a continuous region. Although the final point is

initially hidden to us, the region bounds its location; the final point is guaranteed

to lie inside it. Thus an element’s region represents what we currently know about

its final point. A query to an element (or we might say to a region) reduces the size

of the region. There are two types of input models: kinetic and static.

1.1.1 Kinetic Input Model

In kinetic input model, we want to calculate a function of the input at a future

time t0. We will separate the time into two phases.

The first phase happens before t0. We can make queries for free, subject to the

limitation that we can make only one query at every unit time interval. A query at

time t in this phase returns the exact position of the element at time t. We assume

that every input has bounded speed v. Since we define the imprecise region of an

element to be relative to t0, the imprecise region of an element queried at time t is

a hypersphere of radius v ·max(0, t0− t) at time t0.

The second phase happens from t0 onwards. In this phase, a query will return

the exact position of the element at time t0. There is no limit to the number of

queries that can be made. However, in this phase, each query has a unit cost.

The first phase exists to allow a good algorithm to ”preprocess” the input, that

is, to make intelligent queries in order to minimize the number of queries required

in the second phase.
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1.1.2 Static Input Model

In the static input model, the elements do not move, and thus imprecision does

not increase with time. This is how the kinetic input model behaves after time t0.

However, unlike in that model, we do not restrict a query to always return a final

point. We allow a query to an element to return a new region that is a shrunken

version of the old region. The new region is always a subset of the old region, and

must contain the final point.

The region can be various shapes depending on the dimension and type of

the problem. In one dimension, a region is an interval, represented by its upper

and lower bounds. In higher dimensions, there exist multiple shapes to represent

imprecision. One common shape is a hypersphere, represented by a center and

radius. The radius denotes the degree of error or imprecision. Another common

shape is an orthotope, a hyperrectangle or a box. In this shape, an element has one

interval for each dimension.

A special case of the static input model is the shrink-to-point model. This is

similar to the second phase of the kinetic input model. A query to an element will

return the final point immediately.

1.2 Computing Functions and Certificates
The problems described here are simple common functions that normally take

in input points. These include sorting, k-th element, k-partitioning, extreme ele-

ments, and finding the mode.

If the inputs are uncertain then their actual value may be unknown and we can

identify them only as, for example, the fifth input element. Our answer to a prob-

lem is then the identity of the element that is the k-th smallest, or an order of the

elements that is sorted. To insure that our answer is correct, we must guarantee that

no matter what the actual values of the elements are, our answer remains correct.

To be more precise, we can define a consistent input as follows. Given a set of

elements and their associated regions R, a consistent input J is a set of final points

such that there exists a one-to-one mapping of a region in R to a final point in J.

To solve a problem means to make a sequence of queries until the family of all

consistent inputs will give the same answer. This sequence of queries constitutes a
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certificate.

In the kinetic input model, the ordering of the queries matters, because time

affects the imprecision of the element. In the static input model, the imprecision of

the element is only dependent on the total number of queries made to that element.

1.3 Online Algorithm and Competitive Analysis
The algorithms described here are in a sense online algorithms. This is because

only portions of the entire input I are initially provided. An online algorithm needs

to use queries on elements to reveal more information about the input I, and makes

more queries based on the query responses, until the problem is solved.

Simple worst-case analysis is not suitable for the algorithms described here.

This is because we can generate a bad input I for which every algorithm must

query all elements. For example, suppose we are interested in finding the minimum

element (the element whose final point has the minimum coordinate). Create n

elements. The i-th element has region [i,2n], and final point 2n− i. Assume that

a query to an element will return the final point. As you can see, the n-th element

is the minimum element. A certificate requires a query of all elements, this is

because all other elements have regions that may contain final points less than the

n-th element’s final point, and thus must be queried.

The most common way to analyse online algorithms is through a comparative

method, called competitive analysis. The idea was first mentioned by Sleator and

Tarjan [13]. A more detailed explanation is available in the book by Borodin and

El-Yaniv [2].

Suppose we are given an algorithm A and input I. Let cost(A, I) be the total

query cost of algorithm A on input I. In competitive analysis, one common way to

define ρ(n)-competitiveness is as follows.

Definition 1.3.1. An algorithm A is ρ(n)-competitive against another algorithm B

if there exist an additive constant c, such that for every input I of size n, cost(A, I)≤
ρ(n)× cost(B, I)+ c.

ρ(n) can be a constant, or a function of n. Note that our competitive analysis

focus on the worst case scenario of deterministic algorithm. This distinguishes us
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from other analysis that use randomized algorithm. Also, note that unlike most

competitive analysis literature, the input I here is not a sequence, but rather ele-

ments which can be queried in the way described previously.

But what do we compare an algorithm against? In the most common compet-

itive analysis, we define an offline optimal algorithm that knows everything about

the input I. The task of the optimal algorithm is to produce the shortest sequence

of queries to generate a certificate. A good algorithm performs comparatively well

against an optimal algorithm.

1.4 Naive Algorithm
In both input models, there always exists a naive algorithm that is n-competitive

against an optimal algorithm. We define algorithm NAIVE as follows. In the ki-

netic input model, NAIVE will wait until time t0 before querying all the n elements.

Thus, NAIVE will always require a cost of n queries.

In the static input model, NAIVE simply queries all elements at each step.

Thus, every query made by an optimal algorithm will correspond to at most n

queries by NAIVE. Thus, NAIVE will know at least as much information about

the input. If the optimal algorithm solves the problem, so will NAIVE. This proves

for all the problems in the static input model, NAIVE is n-competitive against the

optimal algorithm.

1.5 Report All Queries and Refinements
Now that we have introduced competitive analysis, we return to our simple

problem in the static input model: finding the minimum element. The minimum

element is the element whose final point is the smallest or leftmost. As pointed out

by Khanna and Tan, we obtain the following result.

Lemma 1.5.1. [9] No online query algorithm that reports and certifies one mini-

mum element under the static input model is better than n-competitive against an

optimal algorithm.

Proof. Create n elements having the interval [0,1]. Let us assume for simplicity

that we are in the shrink-to-point model and a query to an element will return a final
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point. Only one of the elements, when queried, will return a final point 0. Other

elements, when queried, will return a final point 1. In the worst case, an online

algorithm queries the wrong n− 1 elements before querying the right element.

Thus it ends up querying all the elements to find the answer.

Thus, as in the example shown here, in the worst case, an online algorithm will

end up doing more queries than the optimal algorithm. In the example above, it

turns out that the optimal algorithm has certified only one possible solution; it has

not proven that it is the only solution. Although the online algorithm has made more

queries, it has certified more than the optimal algorithm. If it makes n queries, then

it has certified that the other n−1 elements cannot be the answer. Thus, the queries

made by the online algorithm give us useful information about the uniqueness of

the answer.

Also unfortunately, making use of randomized algorithm and analysing the

expected cost on the input does not seem to help. In the example above, suppose

we use a randomized algorithm that will arbitrarily query an element that has not

been queried before. The probability of having any number of tries is 1
n , thus the

expected number of tries is 1
2(n+1)(n)1

n =
n+1

2 . This is still not a good competitive

ratio against an optimal algorithm.

This motivates an important modification of the requirements, that is to require

that all possible answers be reported: the queries must prove that no other possible

solutions exist. Thus, in the event that some set of elements are candidates for

the answer, then some queries need to be done in order to prove or disprove that

the elements are part of the answer. Such a change in the requirements of the

problems can lead to a change in the competitive ratio. For example, to find the

minimum element, we can make use of k-partitioning with k = 1. As shown later in

Section 4.3, there exists an online query algorithm that solves not just the minimum

element, but the k-th smallest element in general, with competitive ratio 2.

Lastly, even with this added requirement, not all problems have algorithms with

very good competitive ratio. One such problem is the mode problem, described

later in the chapter. The standard model of competitive analysis may not be suffi-

cient to analyse competitive ratio. One idea is to define another algorithm which

is less powerful than the optimal, but still knows additional information about the

6



input I compared to an online algorithm. This algorithm, called MULTISET, will

know the multiset of final points, but not the mapping of the final points to ele-

ments. This model of competitive analysis will be further discussed in Chapter

5.

1.6 Uniqueness and Order Relations
As stated previously, all answers should be reported, because there may be

more than one possible answer. Or even if the answer is unique, the uniqueness

has to be proven.

Multiple answers usually arise because of multiplicity in the final points which

are related to the answer. In the minimum element example above, the answer is

not unique if there exist more than one element whose final point is 0.

Nevertheless, the term ”minimum” suggests that some kind of ordering exists.

In one dimension, we define an order relation on elements (i.e. intervals) that take

into account multiplicity.

Given two elements i and j.

• i≺ j if and only if the rightmost point of i lies to the left of the leftmost point

of j.

• i≡ j if and only if both elements’ final points are known and coincide.

• i� j if the rightmost point of i lies on or to the left of the leftmost point of j.

It should be noted that i ≺ j or i ≡ j implies i � j, however i � j can be

true even if neither i ≺ j nor i = j is true. A simple case would be i = [0,1] and

j = [1,2]. Also, the ordering between elements i and j is defined if and only if

either i≡ j, i≺ j or j≺ i. Note that, from this definition, the ordering between two

elements i and j is defined if and only if we can certify either they are both distinct

or identical.
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Chapter 2

Related Work

The analysis of online algorithms was first studied by Sleator and Tarjan [13].

Borodin and El-Yaniv wrote a book [2] that further explains competitive analysis.

Since standard competitive analysis may produce unsatisfactory results,

Dorrigiv and López-Ortiz [5] reviewed and compared various performance

measures for online algorithms. Many of these alternative measures attempt to

weaken the power of the optimal algorithm. We also consider a weakened optimal

algorithm in Chapter 5 in an attempt to obtain better competitive bounds for the

mode problem.

2.1 Kinetic Input Model
Much research has been done that deals with moving objects. For example,

one very popular model is the (KDS) kinetic data structure framework [1]. But

unlike our model, there is no imprecision at all, because the trajectory of each

element is not only fully known, but also typically linear. KDS research emphasises

minimizing some computation cost to maintain a structure like the convex hull.

Lastly, KDS related research does not have the concept of queries.

An early model that is related to this work is the paper by Simon Kahan [8].

Similar to the model here, the input is a set of objects which are moving in real time.

One can make queries (called updates) to several elements in order to get their exact

locations at the time a user requests some function of the elements. Our model
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allows queries prior to the known time t0 when the function should be compute.

However, there can be only one query per unit time. In some ways, Kahan’s model

is more similar to our static model since multiple queries are made at the time of the

user’s request in order to compute the function, without considering their benefit

to answering future requests.

The idea of preprocessing comes from the paper by Buchan, Löffler, Morin

and Mulzer [4]. In ther paper, imprecise input is initially available. Preprocessing

is done on the imprecise input so that when the more precise data is provided at

a later time, less computation is needed. We focus on minimizing the number of

queries required, while they focus on minimizing the computation time.

2.2 Static Input Model
Research on imprecision has been around for a long time. One such early work

related to imprecision is ε-geometry [12]. The framework tries to cope with com-

putational errors in geometric algorithms that arise from the use of finite precision

arithmetic. We view imprecision as arising from the input rather from computation

and we allow more precision at a cost.

The main idea for the static model described in this paper has been earlier men-

tioned in the paper by Kirkpatrick [10], and in a subsequent paper by Kirkpatrick

and Tseng [14]. In both papers, Kirkpatrick and Tseng described a model in which

an algorithm is provided input numbers up to some precision, and additional pre-

cision can be obtained with a cost. An algorithm that can solve the problem using

as little input precision as possible is called an input-thrifty algorithm. In [10] and

[14], the query model need not be restricted to the ”bit model”. The notion of in-

trinsic cost applies to a more general query model. To quote from [14] ” Although

the restriction of accessing input information one bit at a time in order of decreas-

ing significance is perfectly natural, one could also adopt a more general model in

which individual inputs are represented as a sequence of nested uncertainty inter-

vals. It turns out all of our results apply in this more general model. Nevertheless,

we choose to first develop our results in the more restrictive, but less cumbersome,

LIB-cost model. ”

Later in Chapter 5, we will talk about the MULTISET algorithm. The MULTI-
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SET algorithm is a weaker optimal algorithm that knows only the multiset of final

values but not their corresponding element. Its cost is the same as the intrinsic cost

described by Kirkpatrick [10], and by Kirkpatrick and Tseng [14]. which takes into

account the presentation of the input.

A query model similar to that of this thesis is also earlier described by Olston

and Widom [11]. Here an interesting replication system is proposed; a cache stores

imprecise data and its values can be obtained cheaply. Precise data for each element

can be obtained from a different source using a query, but at a high cost. Like this

thesis, we want to compute some function, such as finding the minimum, maximum

and summation, while minimizing the query cost.

Unlike this thesis, Olston and Widom allow an imprecise answer as long as it

is within a specified tolerance. For example, in the k-th smallest element problem,

a user can specify a tolerance parameter p. An answer to the problem will be any

element whose actual rank differs at most p from the desired rank. Having a higher

tolerance p may reduce the number of queries needed to solve the problem. Thus,

a user can control the tradeoff between precision and query cost. Additionally, a

single query to an element will give the final result, but the cost of the query may

be different for different elements. The model proposed by Olston and Widom [11]

appears in several related papers.

Khanna and Tan [9] use the Olston and Widom model and deal with the prob-

lems of selection, summation/averaging and composition of functions. Here, the

notion of online query algorithm is defined, and in order to analyse such an al-

gorithm, competitive analysis is used. Therefore, we encounter the problem as

stated in Lemma 1.5.1 in that there exist certain inputs for which no online query

algorithm can do well against the optimal.

Bruce, Hoffmann, Kirzanc and Raman [3] use the Olston and Widom model,

online query algorithm and competitive analysis. They consider the problem of

finding maximal points and convex hull.

Feder, Motwani, O’Callaghan, Olston and Panigrahy [6] also use the Olston

and Widom model, and deal with the median element problem. However, unlike

the other papers, they consider both offline and online query algorithms. In an

online query model, an algorithm selects one element to query, receives a response,

and if the problem is not solved, the process repeats. But in an offline query model,
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an algorithm must specify all elements that it wants to query, and it must be that

regardless of the query response, the problem must be solved. Note that the offline

query model is not considered in this thesis. For such a model to apply an algorithm

needs to know how many queries it needs to make to obtain the final value of an

element.

The model described by Olston and Widom [11] can also be used for graph

problems. Feder, Motwani, O’Callaghan, Olston and Panigrahy [7] deal with the

shortest path problem. In this paper, the input is a graph, and the length of edges

have imprecise values. An algorithm can query an edge to find its exact length.

This paper is also different in that it only uses an offline query model.

The techniques we use in this thesis are based on a general scheme used in the

papers above and identified by Bruce, Hoffmann, Kirzanc and Raman [3]. If we

want to create an online algorithm that is k-competitive, for some integer k, we

will prove that for every k queries made by this online algorithm, at least one will

correspond to a query that must be made by the optimal algorithm. However, one

difference to note is that in the static model, an element can be queried multiple

times without changing its region.
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Chapter 3

Kinetic Input Model

In this model, all elements are moving about in completely arbitrary direction

with bounded maximum speed. One example is gas particles experiencing Brow-

nian motion. We want to compute a function of the elements’ positions at time t0.

However, we can only obtain the exact location of an element by querying it. If

we wanted to minimize the total number of queries, we would wait until time t0
before making queries, reducing the problem to the static case. Instead we want

to minimize the number of queries that occur from time t0 onwards, by making

intelligent queries before time t0. As mentioned in Section 1.1.1, the time before t0
is called the first phase, and the time after that is called the second phase.

The input I is a set of elements, each with a trajectory whose maximum speed

is bounded by v. Let pi(t) be the trajectory function of element i, i.e. the location

of element i at time t. Let oi be the last query (observed) time of element i (if an

element has never been observed we can set oi = −∞). A query to an element in

the first phase at time t < t0 will return the exact location of the element at time

t. A query to an element in the second phase at time t ≥ t0 will return the exact

location of the element at time t0. Since we want to compute a function at time

t0, the imprecision region ri associated with the element is simply a hypersphere

centered at pi(oi) with radius v ·max(t0−oi,0),

We define a certificate of a solution to an input to be a set of last query times

for each element, such that the imprecision region from the elements is sufficient to

compute the function. The optimal algorithm knows the trajectories of all elements
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x t0

t

Figure 3.1: Trajectory Function F(t,x)

in advance. It only has to perform queries to certify the solution.

3.1 Understanding the Problem in 1-Dimension
For all inputs that are restricted to one dimension, we can create a 2-dimensional

diagram, with the x-axis as time, and y-axis as position. Every element has a tra-

jectory with maximum slope v. If a particle is last queried at oi, we can draw two

lines with slopes v and −v, starting from the particle location at oi, to t0. The trian-

gle created by the 2 slopes and the line t0 is the region of imprecision for element

i. If element i is queried again, this triangle must be readjusted accordingly.

In the examples below, we make use of trajectory functions of the form F(t,x)=

v|t− x|− vx for different values of x. These functions describe a trajectory p(t) =

−vt for t ≤ x, after which it reverses direction, changing from a slope of −v to v.

See Figure 3.1.

13



3.2 Minimum Element
Lemma 3.2.1. No online algorithm that reports and certifies one of the minimum

elements at time t0 in a set of n kinetic elements is better than n competitive against

an optimal algorithm.

Proof. To make things simpler, let t0 = 0. Create one element with trajectory

p(t) = −vt, this will be the minimum element. Create n− 1 elements with tra-

jectory p(t) = F(t,−1). If any elements are queried at time t < 0, we would get

an imprecision region with lower bound 0. Thus no algorithm can distinguish the

elements using queries for t ≤ −1. In the worst case, an algorithm will end up

querying all elements for t ≥ 0, thus requiring n units of time. An optimal algo-

rithm simply queries the correct minimum element at t = 0, taking only 1 unit of

time.

The situation is no better if all minimum elements are desired.

Lemma 3.2.2. No online algorithm that reports and certifies all of the minimum

elements at time t0 in a set of n kinetic elements is better than n competitive against

an optimal algorithm.

Proof. To make things simpler, let t0 = 0. Create n elements, in which the i-th

element has trajectory F(t,1− i). Observe that the first element has trajectory

p1(t) = −vt for t ≤ 0. To an online algorithm, the i-th element (for i > 1) is

indistinguishable from the first, unless the i-th element is queried at time t ≥−i+1.

Consider the latest query times for each element for t ≤ 0. In the worst case,

the element queried at time −t by the algorithm happens to be the t-th element.

Thus, the algorithm is unable to distinguish the i-th element from the first, and

is required to query every element after time t0− 1, thus taking n units of time.

The optimal algorithm simply queries the i-th element at time t ≥ i+ 1. The last

element queried is the first element at time t = 0, using 1 unit of time. Thus the

online algorithm takes a factor of n more units of time after t = 0 compared to the

optimal.
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xi+1 t0

pi+1(t)

pi(t)

Figure 3.2: A pair of elements, in which element i+1 moves away from ele-
ment i.

3.3 Sorting
In the sorting problem, we would like to find a total ordering of the elements at

time t0. Enough queries need to be made such that the ordering between any pair

of elements is defined. As stated earlier, the ordering between elements i and j is

defined if and only if either i≡ j, i≺ j or j ≺ i.

Lemma 3.3.1. No online algorithm that reports and certifies an element ordering

at time t0 of a set of n kinetic elements is better than n competitive against an

optimal algorithm.

Proof. Let t0 = 0. Create n elements, where n is an even number. Let pi(t) denote

the trajectory of the i-th element.

Group the n elements into pairs, in which a pair has consecutive elements.

Choose m be the distance between different pairs to be much greater than n · v
since we want the trajectories of different pairs not to intersect. We make the input

such that, up until t0, the input is consistent with the set of trajectories described as

15



follows. The pair of elements i and i+1 (i even) have default trajectories pi(t) =

mi+ vt + ε and pi+1(t) = mi− vt− ε . Since the trajectories intersect just before

t0, no online algorithm, can separate the regions before t0. Let xi be the last query

time for element i before t0 by an online algorithm.

Note that the actual trajectories for any element i between xi and t0 is not known

to the online algorithm, and thus we are able to create any trajectory we want in that

time frame, as long as the maximum velocity is bounded. For the pair of elements

i and i+1, we either make element i move away at time xi, or make element i+1

move away at time xi+1. See Figure 3.2.

From t0 onwards, the online algorithm still needs to order the pair. However,

the online algorithm does not known which of the elements in each pair moves

away. In the worst case, for each pair, the online algorithm will query the element

that does not move away. For the pair of elements i and i+1, if element i does not

move away, a query will result in coordinate mi+ ε , and if element i+1 does not

move away, a query will result in coordinate mi− ε . This means that the online

algorithm is still unable to order the elements in the pair. In the worst case, the

online algorithm will perform n queries starting from time t0.

If i does not move away, it retains its default trajectory which is pi(t) = mi+

vt + ε , otherwise, it has pi(t) = mi−F(t,xi)+ ε . Similarly, if i+1 does not move

away, it retains its default trajectory which is pi+1(t) = mi− vt− ε , otherwise, it

has pi+1(t) = mi+F(t,xi+1)− ε .

An optimal algorithm knows the entire trajectory of all elements. Thus, in a

pair of elements i and i+ 1, if i moves away, the optimal algorithm can query the

element after time xi. Similarly, if i+ 1 moves away, the optimal algorithm can

query after time xi+1. In this way, the optimal algorithm is able to order all regions.

Since xi < t0 for all i, the latest query made by the optimal algorithm is at time

t0. Thus, the optimal algorithm performs one query from time t0.
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Chapter 4

Static Input Model

As you can see from the previous section, having points that move does not

allow an algorithm to achieve a very good competitive ratio. In this section, we

consider input elements whose underlying points are stationary.

In some of the problems, when only one solution is required, no online algo-

rithm can hope to do well against the optimal algorithm. By changing a problem

to require every correct algorithm to report and certify all possible answers, an on-

line algorithm may be able to achieve a good competitive ratio against the optimal

algorithm.

4.1 Minimum Element
Many of the problems stated here require one to know some form of ordering

relation between two or more elements. The simplest case is the problem of finding

the minimum element. As stated in Lemma 1.5.1, an online query algorithm that

needs to report and certify one of many minimum elements can be n-competitive

in the worst case. However, when we require that all possible minimum elements

be reported and certified, the lower bound changes.

Lemma 4.1.1. No online query algorithm that reports and certifies all possible

minimum elements from a set of n elements is better than 2-competitive against an

optimal algorithm.

Proof. Create one element with interval [0,2] and another element with interval
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[1,3]. Note that the elements intersect at [1,2]. One of the elements, when queried,

will always give the same interval. The other element will return the same interval

when queried the first m−1 times, and an interval outside of [1,2] afterwards.

An online query algorithm is unable to distinguish which of the two elements

will give an interval outside of their intersection. Thus, in the worst case, the online

query algorithm will take at least 2m queries to find which of the elements is the

minimum. The optimal algorithm, on the other hand, queries the correct element

m times.

Note that the competitive ratio is 2 for any input size n, where n ≥ 2. When

n = 2, we are trying to find the ordering of the two elements. As mentioned in

section 1.6, finding ordering is equivalent to certifying distinctiveness. Thus, we

can also provide the following lemma:

Lemma 4.1.2. No online query algorithm that certifies if two elements are distinct

or identical is better than 2-competitive against an optimal algorithm.

We will later show in Section 4.4 that 2-competitiveness is achievable in a more

generalized problem of finding the k-th smallest element.

4.2 Sorting
We would like to perform the minimum number of queries in order to deter-

mine a total order on the input elements. As mentioned in Section 1.6, finding the

ordering between elements is equivalent to certifying distinctiveness. Thus, the

equivalent problem is to certify if every pair of elements is distinct or identical. By

definition, there can only be one possible answer.

Lemma 4.2.1. No online query algorithm that reports and certifies the total order

on n elements is better than 2-competitive against an optimal algorithm.

Proof. Since we need to certify if every pair of elements is distinct or identical, we

can make use of the proof from Lemma 4.1.2

Let QueryOverlappingPair be an algorithm that arbitrarily chooses an overlap-

ping pair of elements and queries both of them until no pairs overlap.
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Lemma 4.2.2. Algorithm QueryOverlappingPair reports and certifies the total or-

der on n elements and is 2-competitive against an optimal algorithm.

Proof. Suppose we pause QueryOverlappingPair after it queries a pair of overlap-

ping i and j elements. Let qi and q j be the number of times QueryOverlappingPair

has queried elements i and j. Since QueryOverlappingPair queried elements i and

j, they must overlap when they are queried less than qi and q j times respectively. If

elements i and j overlap and no further query is made to them, the ordering will not

be known. Thus the optimal algorithm needs to query element i at least qi times,

or element j at least q j times.

This means that, for every pair of elements i and j that algorithm QueryOver-

lappingPair queries, the optimal needs to match the number of queries of at least

one of them. Thus for every pair of elements that QueryOverlappingPair queries,

the optimal algorithm must query at least one of them. Thus algorithm QueryOver-

lappingPair is 2-competitive.

4.3 Set of k Smallest Elements
In this problem, we would like to partition the input into two sets A and B, such

that for all a ∈ A and for all b ∈ B, a � b and |A| = k. We can extend the results

from Lemma 1.5.1 as follows.

Lemma 4.3.1. No online query algorithm that must report and certify one set

of k smallest elements (of possibly many) from a set of n elements is better than

n− k+1-competitive against an optimal algorithm.

Proof. Create n− k + 1 ranges [1,2]. Create k− 1 points at coordinate 0. Only

one of the n− k + 1 ranges, when queried, will return a point at coordinate 1,

the others will return a point with coordinate in (1,2]. To certify the k smallest

elements, an algorithm must determine the minimum element among the n− k+1

ranges. This reduces to the minimum element problem, and by Lemma 1.5.1 no

online query algorithm can be better than n− k+1 competitive against an optimal

algorithm.

For this model in which only one solution need be certified, Khanna and Tan
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[9] obtain a p-competitive algorithm where p is the maximum number of regions

(intervals) that share a common point. They also show that this is optimal.

The situation changes if we require a correct algorithm to certify the existence

of all solutions. When k is 1, the problem becomes the minimum element prob-

lem. Thus by Lemma 4.1.1, no online query algorithm that reports and certifies

all possible sets of k smallest elements is better than 2-competitive to the optimal

algorithm.

Let li,ri be the lower(left) and upper(right) bounds of element i. Let l[k] be the

k-th smallest lower(left) bound. Let r[k] be the k-th smallest upper(right) bound.

Lemma 4.3.2. For any k, there exists at least one element that has a region cover-

ing from l[k] to r[k].

Proof. Let i be the element whose region contains l[k] that has the largest upper

bound, we show that ri ≥ r[k]. Observe that there exists at least k lower bounds at

or to the left of l[k]. Among all the regions with lower bounds ≤ l[k], including i, i

has the rightmost upper bound. Thus, there exist at least k−1 upper bounds at or

to the left of ri. Therefore, r[k] is at ri, or to the left of it. Thus, element i covers

from l[k] to r[k].

Let pi be the location of the final point of element i. Let p[k] be the location of

the final point of (one of) the k-th smallest element. By definition, l[k] ≤ p[k] ≤ r[k].

In other words, the final point of the k-th smallest element must lie in [l[k],r[k]]. If

we are not done, then there is no separation between the k-th smallest element and

the (k+1)-th smallest element. In terms of region bounds, l[k+1] ≤ r[k].

Let i be any element that has a region covering from l[k] to r[k]. Let j be any

element that has a region covering from l[k+1] to r[k+1]. By Lemma 4.3.2, i and j

always exist (they may or may not be the same element). Let KPart be an online

algorithm that finds such a pair of elements, i and j, queries both (if i and j are the

same element, then the element is queried twice) and repeats until we can certify

the answer.

Lemma 4.3.3. Algorithm KPart reports and certifies all solutions to the first k

smallest elements problem for a set of n elements and is 2-competitive against an

optimal algorithm.
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Proof. Let i and j be a pair of elements chosen by KPart. Since the union of

regions of elements i and j cover [l[k],r[k+1]], then p[k] and p[k+1] must be covered

by this union. If we do not ever query i or j at their current state, we cannot certify

the answer. Thus any algorithm, even the optimal, must query one of i, j at their

current state. Thus every query made by KPart corresponds to at least one query

made by the optimal algorithm. Thus, KPart is 2-competitive.

4.4 k-th Smallest Element
In this problem, we would like to partition the input into three sets A, {i} and

B, such that (1) |A|= k−1, (2) for all a ∈ A, a� i, and (3) for all b ∈ B, i� b. The

results from the set of k smallest elements problem can be applied here.

Since the minimum element problem is a specialization of the k-th smallest

element problem, from Lemma 4.1.1, no online query algorithm that reports and

certifies all possible k-th smallest elements from a set of n elements is better than 2-

competitive against an optimal algorithm. Let DoubleKPart be an online algorithm

that uses KPart to find the set of k smallest elements, and then uses KPart to find

the set of (k+1) smallest elements making use of the queries made by the first run

of KPart.

Lemma 4.4.1. Algorithm DoubleKPart reports and certifies all solutions to the k-

th smallest element problem for a set of n elements and is 2-competitive against an

optimal algorithm.

Proof. Notice that the k-th smallest element problem is solved if and only if both

the set of k smallest elements problem and the set of (k+1) elements problem are

solved. From the proof of Lemma 4.3.3, we know that every pair of queries made

by KPart corresponds to at least one query made by the optimal algorithm to solve

the set of k smallest elements problem. Therefore, every pair of queries made by

DoubleKPart must correspond to at least one query made by the optimal algorithm

to solve either the set of k smallest elements problem or the set of (k+1) smallest

elements problem, or both. Therefore, DoubleKPart is 2-competitive.
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4.5 Extreme Elements
An extreme element is an element whose final points is extreme. In this prob-

lem, we want to find the set of all extreme elements. The problem in 2D has already

been dealt with by [3]. According to their paper, if the input is restricted to the clo-

sure of open, connected areas or trivial areas, no online query algorithm that reports

and certifies the set of extreme elements is better than 3-competitive. Additionally,

they have provided an online query algorithm that is 3-competitive to the optimal.

We demonstrate that any online algorithm will perform badly against an opti-

mal adversary in 3D. This is true even if we restrict the regions to be non-overlapping

spheres.

Lemma 4.5.1. No online query algorithm that must report and certify the set of

extreme elements from a set of n elements in three or higher dimensions is better

than (n−4)-competitive.

Proof. Consider the situation in three dimensions. Let n be an even number. Draw

a large semicircle in the plane z= 0, let R be the radius of this semicircle. Place two

point regions at the ends of the semicircle. Evenly place n−4 spherical regions of

radius r on the circumference of the circle, not touching the two previous points,

with the centers of the spheres having z = 0. The radius r must be small enough,

r < R
2 (1− cos π

2n), so that for each of the spherical regions, one can draw a plane

that separates the region from all other elements. Place a point region near the

center of the semicircle, but slightly inside the semicircle, with the point having z

coordinate 0. Label this point region as i. Place a point region at the center of the

semicircle again, but with z coordinate less than −r. See Figures 4.1 and 4.2.

Notice that region i is an extreme element if and only if all of the n−4 spherical

regions has a final point z < 0. We can set up the input such that a query will return

a final point, and only one of the n− 4 regions has a final point with z > 0. Thus

any algorithm, in the worst case, has to query all n− 4 regions in order to find it,

while the optimal only needs to query the right one.
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Figure 4.1: Top-Down view. The small circles are spherical regions. The
black dots are point elements. The gray dashed lines show that each of
the spherical regions are guaranteed to be part of the convex hull. The
large circle and the gray line are drawn for clarity.
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Figure 4.2: Side view. The small circles are spherical regions. The black dots
are point elements. The gray lines are drawn for clarity.

4.6 Mode Problem
We want to find one coordinate that has a maximum number of final points in

a set of n elements. This coordinate is called a mode of the set.

Lemma 4.6.1. No online query algorithm that reports and certifies one mode (of

possibly many) of a set of n elements is better than (n/2)-competitive against an

optimal algorithm.

Proof. Create n/2 pairs of overlapping regions. The i-th pair is [6i,6i+ 2] and

[6i+ 1,6i+ 3]. Only one of the pair has final points which overlap. In the worst

case, an algorithm needs to query all pairs, while the optimal algorithm only needs

to query the right pair.

Suppose we require all modes.

Lemma 4.6.2. No online query algorithm, even one that knows k, that reports and

certifies all point modes of a set of n elements is better than k-competitive against

an optimal algorithm, where k is the multiplicity of the mode.

Proof. Let k ≥ 1. Create k elements with point regions at coordinate 2k. Create k

elements, in which the i-th element has region [i− k,2+ i]. Note that the size of

the mode is k, and an algorithm will have to certify if there is a mode in [0,2]. One

element, when queried, will return a final point outside of [0,2], while the rest will

return a final point at coordinate 1. In the worst case, an online query algorithm
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will have to query all k regions. An optimal algorithm needs only one query to the

right element.

Let QueryAllMode be an algorithm that finds a coordinate that intersects the

largest number of regions, and queries all elements that intersect this coordinate.

Notice that QueryAllMode does not know k, the multiplicity of the mode.

Lemma 4.6.3. QueryAllMode reports and certifies all point modes of a set of n

elements and is k-competitive (with additive constant 2k− 2) against an optimal

algorithm, where k is the multiplicity of the mode.

Proof. Let p be a point chosen by one step of the QueryAllMode algorithm. Sup-

pose p is a mode. If multiple modes exist in the input, then all algorithms, even

the optimal, must query all elements at that point. But this is not true if only one

mode exists. There must be less than k−1 regions extending to the left from p that

the optimal algorithm does not query, otherwise it is possible for k such regions to

form a new mode. There also must be fewer than k− 1 regions extending to the

right. Thus, in total, there can be at most 2k− 2 regions intersecting p that the

optimal does not query. This gives the additive constant in the competitive ratio.

Suppose p is not a mode and is contained in m ≥ k elements. To prove that p

is not a mode, an optimal algorithm must query some elements until there are at

most k−1 elements whose regions intersect p. The number of elements queried by

the optimal algorithm is at least m−k+1, while QueryAllMode queries exactly m

elements. Note that m≤ k(m− k+1), with equality when m = k. Thus, for the m

elements queried by QueryAllMode, at least m− k+1 of the elements are queried

by the optimal algorithm in their current state.

In both cases, QueryAllMode maintains its k-competitiveness.
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Chapter 5

Multiset Model

In some of the problems, no online algorithm has good competitive ratio. Per-

haps, using the standard model of competitive analysis is not sufficient, this moti-

vates us to adopt a more precise competitive framework. We can define an algo-

rithm that knows more about the input, but at the same time knows less than the

optimal algorithm.

Let MULTISET be an algorithm that performs the fewest number of queries to

certify an answer knowing the multiset of final points but not the exact mapping be-

tween these points and the input elements. When MULTISET queries an element,

the final point that is returned may be any one of the multiset of final points that

is consistent with the element so that a mapping between the remaining points and

elements still exists. We consider the number of queries performed by an online

algorithm versus the number performed by MULTISET.

We will use this MULTISET model to solve a problem in which an online

algorithm cannot achieve a good competitive ratio. In particular, we pick the mode

problem, since no online algorithm can do well against the optimal algorithm, even

if we consider the problem where we require certification of all answers.

Since MULTISET is no better than the optimal algorithm, we can always

achieve n competitiveness against MULTISET by using the NAIVE algorithm as

described in Section 1.4.
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5.1 Mode Problem
Lemma 5.1.1. No online query algorithm that reports and certifies one of possibly

many point modes from a set of n elements is better than (n/2)-competitive against

MULTISET.

Proof. We will use the example from Lemma 4.6.1. Then, we provide MULTI-

SET with the multiset of final points. Notice that there exists a unique one-to-one

mapping from each final point in the multiset to each element. Thus, MULTISET

is able to identify which pair contains the point mode, and is thus able to query the

right pair.

Now suppose we require that all possible modes be reported and certified.

Lemma 5.1.2. No online query algorithm that reports and certifies all possible

point modes from a set of n elements is better than 2-competitive against MULTI-

SET.

Proof. Create a pair of elements whose coordinate is 0. This establishes the mode

to be at least 2. Create n pairs of elements in which the i-th pair has regions

[4i,4i+2] and [4i+1,4i+3]. Observe that the i-th pair intersects at [4i+1,4i+2].

Thus, the task of any algorithm is to prove or disprove if a mode exists in each of

these n pairs. Let A be the set of these n pairs of elements.

The multiset of final points can be set up as follows. For the i-th pair from A,

one of the elements has a final point inside [4i+1,4i+2], while the other does not.

Notice that there exists a one-to-one mapping between an element and a final point

from the multiset. Thus, for the i-th pair from A, MULTISET simply queries the

element which is mapped to a final point outside of [4i+1,4i+2]. Thus, for each

pair, MULTISET requires one query.

An online query algorithm does not know this mapping, and has to guess which

of the two elements from each pair from A have a final point outside of [4i+1,4i+

2]. In the worst case, for each pair from A, an online query algorithm will need

two queries to disprove that a mode exists. Thus, an online query algorithm is

2-competitive at best.
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-1 0 1 2 3 4 5

Figure 5.1: Proof of Lemma 5.1.3. The lines are regions and the dots are
point regions. The crosses are the multiset of final points; there are
three final points located at coordinate −1.

Having established a lower bound of 2-competitiveness, the next intuitive step

is to create an algorithm that hopefully has the same upper bound. Unfortunately,

QueryAllMode is not 2-competitive against MULTISET.

5.1.1 QueryAllMode

What happens if we apply algorithm QueryAllMode from Section 4.6 to this

problem?

Lemma 5.1.3. QueryAllMode reports and certifies all point modes of a set of n

elements and is no better than 3-competitive against MULTISET.

Proof. Create elements regions [0,3], [1,4] and [2,5]. Create 3 elements with point

regions at coordinate −1.

From the 3 elements at coordinate −1, we know that the mode size is 3. The

task of any online algorithm is thus to look at [2,3], and report and certify if there

exists another mode. QueryAllMode will query all the elements intersecting [2,3],

thus taking up three queries.

We can simply create a multiset of final points: −1,−1,−1,0,2,5. Note that

there exists a one-to-one mapping of final points to regions. MULTISET can query

the element with region [0,3] to obtain a final point of 0, or query the element with

region [2,5] to obtain a final point of 5. See Figure 5.1.

Thus, QueryAllMode uses at least three queries, while MULTISET uses only
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Figure 5.2: Proof of Lemma 5.1.4. The lines are regions and the dots are
point regions. The crosses indicate one possible multiset of final points.
The circles indicate another possible multiset of final points. In both
multisets, there are three final points located at coordinate −1.

one. We can make as many independent (non-overlapping) copies of this example

as we wish to show that competitiveness is at least a factor 3.

Since QueryAllMode is proven to be k-competitive against the optimal algo-

rithm, where k is the size of the mode not informed to QueryAllMode. QueryAllMode

must also be no worse than k-competitive against MULTISET.

5.1.2 QueryMaxSpan

Perhaps we can do better than querying all the elements that overlap the coor-

dinate contained in the most elements. In the spirit of the QueryOverlappingPair

algorithm, we might choose two of these elements in the hope that MULTISET

must query at least one of them. Let p be a coordinate contained in the largest

number of elements. QueryMaxSpan queries a pair of elements containing p: one

that stretches farthest left and one the stretches farthest right. Ties can be broken

arbitrarily. In the previous example, algorithm QueryMaxSpan would query ele-

ments [0,3] and [2,5], which would return the final points 0 and 5, thus solving the

problem using only two queries. It turns out that no competitive ratio better than 3

can be achieved using QueryMaxSpan.
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Lemma 5.1.4. QueryMaxSpan reports and certifies all point modes of a set of n

elements and is no better than 3-competitive against an MULTISET algorithm.

Proof. Create element a with region [0,3], element b with region [1,5], element c

with region [2,6] and element d with region [4,7]. Create three elements with point

regions at coordinate −1. From the three elements at coordinate −1, we know that

the mode size is 3. The task of QueryMaxSpan is to certify if that is the only point

mode. See Figure 5.2.

Suppose QueryMaxSpan picks a coordinate p from [2,3]. Then a and c will

be chosen and queried. Among the family of input values consistent, there exists

a multiset of final points with coordinates: −1,−1,−1,0,1,5,6 (see the crosses in

Figure 5.2). Thus, a query to a and c must return coordinates 0 and 5 respectively.

QueryMaxSpan is not done because there still exists a possible point mode at co-

ordinate 5. MULTISET queries b and obtains 1 as final point, certifying that there

is no mode at [0,7].

By symmetrical argument, QueryMaxSpan can also pick a coordinate p from

[4,5], in which it will query b and d. We can create the multiset of final points

with −1,−1,−1,1,2,6,7 (see the circles in Figure 5.2). A query to b and d must

return 2 and 7 respectively. QueryMaxSpan is not done because there still exists a

possible point mode at coordinate 2. MULTISET queries c and obtains 6 as final

point, certifying that there is no mode at [0,7].

Thus, QueryMaxSpan uses at least three queries, while MULTISET requires

only one.

We are not sure if either QueryAllMode or QueryMaxSpan has 3-competitiveness

against MULTISET. As of this point, the question that is still open is whether there

exists an online algorithm that can achieve better than k-competitiveness against

MULTISET. Lastly, note that in both Lemma 5.1.3 and Lemma 5.1.4, we came up

with examples in which MULTISET is able to figure out the mapping between the

elements and final points.
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Chapter 6

Conclusion

We have looked at a model in which we are given inputs which are imprecise,

but we can make queries to improve the precision. In this model, a query to an

element allows us to uncover more information about the element’s precision, at a

unit cost. Unfortunately, we cannot predict the results of a query in advance.

The model can be divided into two types, kinetic and static. In the kinetic input

model, a query to an element will provide the full trajectory up to the time of the

query. In this model, we want to compute some functions at a specific time in the

future. It turns out that no online algorithm has good competitive ratio against the

optimal algorithm for the problems we considered.

The other model is the static input model. A query to an element simply gives

more precision. We explored problems such as minimum element, sorting, set of k

smallest elements, convex hull and the mode problem.

In both models, we compare the cost of online algorithms against the minimum

query cost to compute the function. We obtained lower bounds on the ratio of these

costs for a variety of simple functions. In the static input model, we looked at

algorithms with matching upper bounds for the problems of sorting, finding the set

of k smallest elements, finding the k-th smallest element and finding the extreme

elements. In the kinetic input model, it turns out that in the worst case, no algorithm

can do significantly better than the naive algorithm, which does not take advantage

of the preprocessing available in the first phase.

Since the standard model of competitive analysis may not be sufficient, we
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also studied the multiset model, with focus on the mode problem. Unfortunately,

the question that is still open is whether there exists an online algorithm that can

achieve 2-competitiveness against the MULTISET algorithm.

6.1 Future Work
More research can be done on the multiset model. For example, we can try to

apply this multiset model on the kinetic input model.

Another idea is that, in the kinetic input model, we can simply focus on the

first phase and measure the amount of value the preprocessing gives. Instead of

considering how many more queries are needed in the second phase to answer the

question, we can consider how much ”work” has been done in the first phase. In

order to do that, we define a metric to indicate how close we are to the answer. For

example, in the sorting problem, one possible metric is the number of permutations

consistent with the input. We compare algorithms by how much this metric is

reduced in the preprocessing phase.

We can also further advance the kinetic input model. Instead of computing

a function only at time t0, perhaps we want the function to be computed at for a

certain increasing sequence of times t0, t1, t2, ... etc.

We can also try to apply the idea of tolerance from related papers such as Olston

and Widom [11]. In other words, we accept an answer as long as it is within some

tolerance of the correct answer.

Perhaps, we can try to think of other ways to analyse the static input model.

Or perhaps, instead of worst-case analysis, we can analyse the cost in terms of

some probability distribution. Or perhaps, there are other ways to come up with

an algorithm that knows more than an online algorithm, but less than the optimal

algorithm, other than MULTISET.

There are also other variations of the mode problem that can be explored. For

example, we can look at the problem in two or three dimensions. Or we can con-

sider the problem of making the fewest number of queries to certify that the mode

has modality less than k.
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