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Abstract

Emerging interactive multimedia applications, such ag-tigge visualizations,
animations, on-line games, virtual reality, and video eoaificing have low la-
tency interactions and continuous high resoureg.(CPU processing and net-
work bandwidth) demands. The combination of latency seesihteractions and
high resource demands is challenging for best-effort @lat$, such as the Inter-
net, general-purpose operating systems and Web browssaad®eethese platforms
have no timing or resource guarantees and tend to favor higgation. When de-
mands exceed available resources, it is impossible to gsadecomputations and
data in a timely fashion resulting in diminished perceivedldy (e.g., frame rate)
and brittle real-time performance. The mismatch betweeiliggion demands
and available resources is observed to varying degrees iasalurces including
network, processing, and storage.

To deal with the volatility and shortage of resources, weédbupon and ex-
tend the Priority-Progress quality adaptation model. Quor@ach enables appli-
cations to scale demands (up or down) based on availablaroesoand to utilize
the limited resources in processing the computations atal \@dah more influ-
ence over perceived quality. We develop enhancement lagansprove timeli-
ness and guarantee more consistent quality using qualgtation while main-
taining the strengths of the existing best-effort trantpand execution platforms.
DOHA, our execution layer, extends the Priority-ProgreBdJ@daptation to work
in games and across multiple execution threads. The modjéietk has better tim-
ing, higher perceived quality, and linearly scalable gyadiith a small number of
cores. Our transport layer, Paceline, introduces low ateechniques over TCP
and exposes Priority-Progress adaptation as an esseatiaport feature improv-
ing upon TCP’s end-to-end latency while preserving itseds and utilization.
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Chapter 1

Introduction

Multimedia is becoming more popular with the increasinggesaf media-rich so-
cial networks, gaming platforms, and video sharing sesviddsers are expecting
multimedia applications with more features, better viefédcts, and low latency
interactions [45]. To have an engaging user experience aget Bxpectations,
emerging multimedia applications, such as interactivealigations, animations,
on-line games, virtual reality, and video conferencingyehaontinuous high re-
source demands and low latency interactions. In additiaghédigh demands, the
resource usage over time in multimedia is bursty and higblgtile [37, 40]. We
refer to this ambitious class of multimedia applicationsndésractive multimedia

Popular interactive multimedia applications use bestrefitatforms with no
timing or resource guarantees, such as the Internet, dgnepse operating sys-
tems, and Web browsers. Best effort platforms favor higlization over time-
liness because considering both concerns complicatesghtaie platform with
other applications locally (e.g., the CPU resource) andsacthe network (i.e.,
the Internet). The combination of low latency interacti@msl high resource de-
mands in interactive multimedia is extremely challengiogtfest-effort platforms
especially when demands exceed available resources. Die ttynamic fluctua-
tions in application demands and in available resourcesadds inevitably exceed
available resources making it is impossible to consistgrtbcess all computations
and data in a timely fashion which leads to diminished qualitd brittle real-time
performance.



Our basic approach to deal with the volatility and shortafjeesources in
best effort platforms is based on Priority-Progress adiaptd37]. Our approach
addresses resource volatility by enabling applicationscale demands (up or
down) based on available resources. To efficiently utilieelimited available re-
sources, the computations and data with more influence @reeped quality are
given precedence. Unlike conventional multimedia adaptaechniques, Priority-
Progress does not require estimation of resource requitsmérastically simpli-
fying its usage. This quality adaptation technique was ldgesl for multimedia
video streaming and remains the most stable in terms of pakekay and jitter
[42]. Priority-Progress adapts quality based on time arsctim@e main principles:
quality is incremental and improves with more iterationmikir to the accuracy
in iterative algorithms or the video quality in scalable icay assigned priority is
based on the contribution to perceived quality; and finadliads processed accord-
ing to priority and low priority data is canceled when it bews stale.

The mismatch between demands and available resourcesivetito varying
degrees in all resources including network, processind,storage [37], depend-
ing on the application scenario (easy, complex) and thdadblairesources. For
ambitious interactive multimedia applications, any of thasic resources could
potentially be the limiting factor of the real-time perfaante [40]. Without an
end-to-end approach to performance engineering, it idestgihg to improve per-
formance since fixing a concern in one area can cause a nevwo @&sé¢ some-
where else [28]. To reduce the end-to-end delay and imptaveverall perceived
quality, our work spans multiple resources. We focus onwweerhost critical re-
sources: CPU and network, leaving other resources, sudorags and memory
to future work.

The context of our real-time research is interactive mudtim in the Web.
Over time the Web is becoming the de-facto standard dis&ibapplication plat-
form so our work can have an impact on the future of distridhuteultimedia. In
addition, multimedia applications using standard Web nietibgies are easier to
port across different platforms (mobile to high-end degktand wireless to gi-
gabit network) necessitating an overall framework to hamdkource volatility in
heterogeneous environments. Even though our work shelisdigsome of the
unique performance challenges facing interactive mullimmén the Web, we be-
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lieve our research contributions address the fundamesgainements of all inter-
active multimedia applications including server or clieotnponents, and native
or Web applications.

The rest of the chapter is organized as follows. Section éstribes the re-
quirements of interactive multimedia. Section 1.2 liseslimitations of best effort
platforms. Section 1.3 highlights the thesis statementragelarch contributions.

1.1 Requirements of Interactive Multimedia

Interactive multimedia is primarily driven by user intetiaos. Real-time inter-
actions have an interaction threshold to maintain comiféetaommunication be-
tween users at both ends. To get an understanding of thgesttitiming require-
ment of interactive applications, we list some of the knovguifes for interaction
delay threshold. International Telecommunication UniotX3@ [33] suggests that
150 ms is the ideal delay in most interactive applicatior) tb 400 as the tol-
erance range, and 400 as the cut-off acceptable delay. rislilealysis [49] of
the threshold levels of human attention suggests that amesgime of 100 ms is
viewed as instantaneous while a response time of more thacohd causes users
to lose the feeling of operating directly on the data. Findlie interaction delays
in the gaming domain should not exceed 100 ms for first perboonter games,
500 ms for role playing games, and 1000 ms for real-timeegisatjames [16].

In addition to low latency demands, interactive multimekigs high resource
(e.g., CPU and network) demands that vary over time. Ganeesegresentative
of processing intensive applications. Similar to desktamgs [5], popular Web
games[17, 68, 76] use most of the available processing petreen 80%-100%
of a 2GHz core). For the network resource, multimedia appbos have higher
bandwidth requirements due to either high quality multiragé.g., HD video) or
high frequency updates in large scale on-line games (FE$) [1

The combination of low latency interactions and high reseudemands leads
to missed deadlines and poor quality for interactive mudtlia running in the
prevalent best effort platforms. We aim to improve the timeds limitations and
maintain the strengths, such as high utilization and fasne best effort platforms.
The next section presents limitations in best effort transpand execution layers.



1.2 Limitations of Best-effort Platforms

We start with the generic problem statement; and then weyamahe specific
limitations facing interactive multimedia in executiordametwork communication.

1.2.1 Problem Statement

There is a conflict between interactivity and the best-éffiature of the commu-
nication and execution platforms of standard client maehinCurrent transports
and execution platforms are optimized for high utilizatenmd do not provide in-

teractive multimedia applications with mechanisms to hedatiming with other

concerns, such as utilization and fairness when resouredsrated. When appli-

cation demands exceed available resources, the percaiadity(frame rate and
jitter) diminishes because it is impossible to satisfy alblecation demands in a
timely fashion. Balancing between these concerns beconoes amallenging in

concurrent software.

1.2.2 Execution Limitations

When the application demand exceeds available CPU resplreenot feasible to
execute all application computations in a timely fashiohe Browser best-effort
execution model does not provide any mechanism to balaneebe timeliness
and utilization. One commonly used approach to run intemetpplications with
consistent quality is to hardcode the appropriate conftgurasettings, such as
games’ target frames per second [67, 76]. Static approdumbeame difficult to
manage with the expanding number of platform combinatiobhsowser versions,
operating systems, and hardware platforms. More impdytathiey can not han-
dle the dynamic fluctuations over time in application densaodin available re-
sources (due to sharing the CPU and network with other ajaits). In addition,
ambitious interactive multimedia applications heed maoe@ssing power than is
available in one core especially in mobile platforms witiviend cores. HTML5
Web workers [30] introduce concurrent execution in browsaowever, workers
do not support real-time software developers in addresdiatienging issues, such
as state management, load-balancing, and timing contrasaexecution threads.
Without a general solution that enables scaling demandsdbas all available re-



sources (including multi-core), the perceived quality ledge applications will be
brittle and sensitive to any change in the execution caoruti

1.2.3 Transport Limitations

The combination of high bandwidth bursty traffic and low fatg interactions in
interactive multimedia [77] is challenging to support irethest effort Internet.
When demands exceed available network resources, allgnoy@b transport lay-
ers, such as HTTP [23], and SPDY [71] face significant delajkese latency
limitations are inherited from TCP, the underlying tranggda all existing Web
transport layers.

TCP is the dominant transport in the Internet with more thd¥ @f the traffic
volume [25]. TCP has several advantages for high bandwidttimedia commu-
nication especially in regards to congestion-control aicbility [2€]. However,
high bandwidth communication puts pressure on TCP’s béasitt éfature leading
to delays at multiple levels. Firstly, TCP’s latency shorntings are primarily due
to queuing delay- inside TCP send buffers and network queues. In many riealist
conditions the queuing delay in the send side TCP sockeelbigfthe dominant
portion of the overall delay [28".Secondly, TCP retransmissions can add multiple
roundtrips to the end-to-end delay. For this reason, TCRrisnconly dismissed
as unsuited for latency sensitive applications. In the comoase, TCP’s fast re-
transmit mechanism limits the retransmission-inducediiopgedelay to an RTT or
two and only very congested networks face exponential lofficknd back-to-back
retransmission timeouts which degrade TCP’s performahC& needs to improve
its agility by resolving the limitations in the send-siddfbus, and retransmission
timeouts so it can provide consistent low end-to-end detadeu heavy load.

TCP also lacks a data service model that can balance betweeliness, uti-
lization, and fairness while considering application @yal Balancing between
these concerns becomes more challenging across multiptaicent streams be-
cause of the diverse requirements. Our solution shouldeaddatency at all levels
of the transport and enable adapting demands to availadbeinees.

1A full kernel socket buffer of size 64KB contributes 1700 nfsdelay to a 300 Kbps video
stream.



1.3 Thesis Statement and Contributions

This thesis addresses the limitations of best effort ptaitfo/Section 1.2) and en-
sures higher and more consistent application quality aveomncurrent software.

When execution and network demands exceed available mesiitris possible
and practical to improve timeliness and ensure more comsisjuality in real-time
games and video streaming applications by enabling apiitica to adapt with
available resources using Priority-Progress applicatiewvel adaptation.

Our approach acknowledges the immense strengths of Hedt-efatforms.
We propose enhancement layers to maintain the strengthsitigate the weak-
nesses of the existing communication and execution subsgstising application-
level quality adaptation. The next two sections presententmtails about our
approach and highlight the main research contributions.

1.3.1 Priority-Progress Adaptation (PPA)

Our approach adapts multimedia quality (a.k.a. applicatissource demands)
based on the available resources. Quality-adaptationtia new concept. Many
researchers have proposed techniques for multimediaagtaptvith much of the
pioneering work tracing back to quality adaptive video ia uasar Project [14].
Priority-Progress adaptation [37, 39] was inspired by sdwworks on quality-
adaptive streaming [22, 60, 65]. This line of research wtdads the importance
of the best-effort nature of the Internet and aims to progiolesistent multimedia
quality by adapting to varying bandwidth availability.

Classic quality-adaptation techniques are based on adekdbop that bal-
ances between application quality and resource usag=42664. Feedback con-
trol is formalized in control theory with successful apptions in electronics, and
is increasingly used in software. However, most classidityea@daptation con-
trollers assume that there is a reliable way to monitor msgand to estimate the
correct control decisions based on monitored values. Fovark bandwidth in
adaptive video, this means the adaptation mechanism shetiidate the through-
put of real-time video, estimate the network bandwidth thifitbe available, and
from these provide the control decisions that will maximvzgeo quality. Sim-



ilarly, the CPU adaptation mechanism needs to estimate Big ttne required
to process data, the amount of CPU that will be available,feord these derive
control decisions. PPA avoids two sources of complexityereht in feedback-
based adaptation mechanisms: developing a model for tbermsrequirements
in multimedia applications and estimating resource aliditg in best-effort envi-
ronments, drastically simplifying its usage. This addptatechnique adapts based
on time [37, 40] with three main principles:

e Incremental Quality: The target application can be architected to produce
results in an incremental fashion. The application quatityroves with suc-
cessive increments similar to the video quality using d#alaoding (e.qg.,
H.364 [64]).

e Prioritized Data: Data priority is assigned based on the influence on per-
ceived quality. Priority assignment in application adéptapolicies coordi-
nates between different quality dimensions, such as théaspad temporal
dimensions.

e Priority Data Dropping: Timestamps and priority are used to adapt quality
while maintaining timeliness. Timestamps subdivide timadaptation win-
dows. Data is being processed from high to low priority anthatend of
each adaptation window stale data is canceled.

Prior to our work, the PPA model [37] was only applied to vidgeaming of
stored video. PPA network suppart [39] was intermixed wlith &pplication code
without a general API to expose the adaptation primitivea familiar transport
abstraction. The network support also lacked the techsigoeninimize TCP’s
kernel socket buffering and back-to-back retransmissimaging it not suitable
for real-time scenarios, such as video conferencing. KinBPA CPU and net-
work support [39, 40] had no support for concurrent softwarg., multi-core and
concurrent communication streams).

This thesis extends the PPA model to adapt quality in a seicachctive mul-
timedia application, games, and enhances the video singasupport to meet the
requirements of real-time video conferencing. DOHA. [2(}, ®lir execution layer,
extends the PPA model to work across multiple threads witshased memory.
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DOHA is developed as part of this thesis to enhance the elrdrgn execution
model in browsers and enable adaptation in HTML5 games. lirad49], our
transport enhancement layer, factors out and extendsitta metwork support (in
QStream [37]) providing a session-layer transport withraise model supporting
adaptation within message streams and quality fairnesssconcurrent streams.
Paceline also develops latency reduction techniques fgatdt TCP’s shortcom-
ings.

DOHA and Paceline extend and enable Priority-Progresstati@ap in preva-
lent best effort transports and execution platforms (iT€P and JavaScript en-
gines). We evaluate Paceline with an experimental videtecencing application
[37] and DOHA, our JavaScript enhancement layer, with a [asgdTML5 game
[7€]. Even though DOHA and Paceline have a different codeflthgy build upon
and extend the Priority-Progress quality adaptation maa together they pro-
vide an end-to-end solution to the real-time performancstditions facing inter-
active multimedia applications.

Execution Layer: DOHA

Multimedia applications need to scale their quality, aner¢by scale processing
load, based on the resources that are available. DOHA [Zifjedescalable qual-
ity, based on the Priority-Progress quality adaptation ehods a necessary re-
quirement to write HTML5 games once and run them with coastistjuality ev-
erywhere. DOHA also extends Priority-Progress adaptadtamork across worker
threads. DOHA introduces explicit execution events andlessadaptation based
on the following Priority-Progress adaptation principles

e Incremental Quality: The modified game loop executes as many events as

possible in each iteration. The perceived quality of a gameesses if we
can execute more events within the target frame rate.

e Prioritized Data: DOHA introduces event prioritization to provide timely
execution of those events that have the greatest influerereqoality. Prior-
ity is based on spatial or temporal indicators of qualitgtsas the distance
from players or the time since last entity update.



e Priority Data Drop: DOHA executes events according to priority and intro-
duces event cancellation to adapt the application ratelaasavailable CPU
resources. Events become stale and are canceled at the emchaferation
and new events are submitted.

To evaluate DOHA, we modified an HTML5 game, RAPT. The modifacthe
has better timing and higher perceived quality when ressuere scarce. More
importantly, the overall quality of the parallel game ssdlnearly as we use more
cores and the game is playable in larger scenarios beyorstdipe of the original
version.

Transport Layer: Paceline

Paceline [19] is an enhanced transport on top of TCP to suppueractive, high-

bandwidth applications. Even though the underlying servimdel is best effort,
Paceline’s latency reduction techniques improve thetggili the transport in re-
sponding to network conditions and ensure timeliness fooitant data. Paceline
enables quality adaptation based the following Prioritgeffess principles.

e Incremental Quality:Our video streaming application uses scalable video
coding so quality improves if more data items (frames or anbment lay-
ers) are transferred.

e Prioritized Data: Our service model introduces message prioritization to
provide timely delivery of important data. Priority is agsed by the appli-
cation policy using spatial and temporal indicators of pamed quality.

e Priority Data Drop: Our service model introduces message cancellation to
adapt the application rate based on available bandwidtrssbges are sent
according to priority and stale messages are canceled emthef each adap-
tation window.

Paceline improves upon the end-to-end latency shortcangingdian and worst
case) of using TCP while preserving TCP’s fairness andzatithn. While Paceline
was initially developed to support traditional multimed®aceline was exposed in
Firefox as a standard Netscape Plugin Application Progriaxginterface (NPAPI)



[51] browser plugin. Web applications can use Paceline antiAPI that resembles
the Web socket APl with the extra adaptation mechanisms.

1.3.2 Primary Contributions

This thesis has the following three primary contributions.

e Our enhancement layers show how to expose adaptation asspdraand
execution feature without changing the best effort natdird® underlying
platform (i.e., TCP and JavaScript engines). Both layeposa& Priority-
Progress adaptation mechanisms enabling applicationapere to imple-
ment the necessary policies, improving the latency profite@oviding con-
sistent quality when demands exceed available resourdd$NML5 games
and video conferencing. The adaptation mechanisms becamefpthe
enhancement layers (DOHA and Paceline) while the policee®ine well-
defined within the application code.

e We enhance the adaptation policies and enhancement laysupport con-
current software. To utilize multi-core resources for +iale software,
DOHA augments HTML5 Web workers with mechanisms to ease &me h
dling of challenging issues, such as state managementbladcing, and
guality-adaptation across workers. For concurrent conication, Paceline
balances between timeliness and fairness among multiplucent streams
using quality-based fairness.

e We develop adaptation policies inspired by Priority-Pesgr adaptation in
a new application domain, HTML5 games. Our work in DOHA expbb
the use of Priority-Progress adaptation for CPU qualitgpagtion in game
loops.

1.3.3 Secondary Contributions

We have the following two secondary contributions.

e We examine the challenges and opportunities of using HTMIeb Workers
and share our qualitative and quantitative observations.
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e We contribute both Paceline and DOHA with their respectiasified appli-
cations to QStream’sopen-source repository to facilitate further research.

1.4 Dissertation Outline

We present background information about interactive rmmadia in the Web and
multimedia adaptation with a focus on the Priority-Prograsdel in Chapter 2.
We then present DOHA in Chapter 3 and Paceline in Chapter £hhapter 5 we
conclude by reviewing the contributions of this disseotatind suggesting avenues
for further research.

2QStream, located diitp://qstream.org, is an experimental media streaming system that takes a
comprehensive approach to the end-to-end communicatitm-photh in terms of software layers
(application, middleware, and OS) and resource types @r&tvprocessor, and storage).
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Chapter 2

Background

This chapter provides a brief background about the growimaprtance of interac-
tive multimedia in the Web and the need for multimedia qualdaptation. Section
2.1 discusses the quality of interactive multimedia in ptert Web platforms. Sec-
tion 2.2 introduces quality adaptation in interactive nmuédia with an emphasis
on Priority-Progress adaptation. Detailed related wowdyasis for each enhance-
ment layer is presented in the corresponding chapter.

2.1 Interactive Multimedia in the Web

Browsers have become mature platforms enabling Web afiplisato rival their
desktop counterparts. An important class of such applioatis interactive mul-
timedia: games, animations, and interactive visualipatidnteractive multimedia
in the Web was limited by the lack of key technologies, suchia@sgraphics el-
ements, bi-directional continuous network transport, fastl JavaScript engines.
HTML5 [31] and related standards, such as offline storageh ¥ekets, Web
workers, and WebGL are enabling more interactive meditaajaplications. Inter-
active multimedia is becoming an integral component of fpepWeb applications
and is expected to become more important in the future.

An ambitious application that exemplifies what the Web stasids to support
in the near future is an HTML5 game which uses the state ofrtr@namations, ac-
curate physics and collision detection, advanced Al, agt fuality video chats
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for coordination between players. The network transporeggired to transmit
high quality video as well as player state updates in a tirffasfiion. Upon receiv-
ing the player updates, each player has to execute the sigmphysics, animation
and Al logic and to perform the multimedia encoding/decgdivith a consistent
rate to achieve the desired game quality. Any slowdown imstevork transport
or in the execution of logic at the client can degrade peatkuality significantly.
Multimedia Web applications are latency sensitive and tégyle resource demands
making them in dire need for techniques to enhance real{ientormance when
resources are limited.

Interactive multimedia in the Web has high CPU and bandwidtiuirements.
For the CPU resource, games are great representativesdoegsing intensive
multimedia applications. Popular Web games use most ofvhitallle process-
ing power. According to the developers [17, 76], adding neatdres is limited
by the processing capability of the execution platform = ilee browser and its
version, the operating system, and the underlying hardwdier the network
resource, high-definition (HD) video in multimedia Web aggiions have high
bandwidth demands and contribute a significant fractiorhefdata streamed on
the Internet [77]. As audio and video become more tightlegnated in browsers
[32,52, 53, 74], the usage of interactive multimedia in Wppligations will in-
crease. When demands for CPU processing and network bahdexdeed the
available resources in best effort Web platforms, the pezdequality and the real-
time performance of interactive multimedia diminishes.

To address the limitations of the Web best effort platformd have an impact
on the future of multimedia, our research focuses on intseamultimedia in the
Web context. Interactive multimedia is becoming an integoamponent of pop-
ular Web applications. To provide consistent quality angriowe timeliness, it is
imperative to develop a general framework to adapt the higtieation demands
based on available resources. The next section describegutiity adaptation
technique we used to scale demands based on availableaesour

13



2.2 Priority-Progress Adaptation (PPA)

This section describes the state of the art in multimediditgeedaptation with a
focus on Priority-Progress adaptation using adaptive gaane video streaming
scenarios.

2.2.1 Adaptive Games

Games have high CPU and network demands in loaded servdrsAl&nven-
tional approach to limit the resource demands in game seigaarea-of-interest
(AQI) geographical partitioning which limits updates otdynearby players within
your zone [9]. Geographical partitioning works well when tlistribution of play-
ers is controlled and player movements are limited. Howeagulation density in
real games follows a power law [54], and players move to orggnall number of
zones during each playing session. Thus, game designgiistrplayer clustering
by partitioning the world into mini-worlds, thereby predlng certain classes of
interesting game play, such as epic battles [18]. To meehitite resource (CPU
and network) demands in game servers handling popular zosssarchers have
designed dynamic load-balancing algorithrs [15] whichtdsehandle transient
crowding by adaptively dispersing or aggregating regiosomfservers in response
to quality of service violations. Load-balancing algonith are complementary to
our work since they do not eliminate the need for instantiguatlaptation when
demands exceed available resources in a popular server.

To support fast-paced epic scale games, DonneyBrook [Ibledeinterest sets
to reduce the bandwidth requirements of games. DonneyBhnaskiwo priority
levels: important and less frequent. Continuous priaritiethe Priority-Progress
adaptation model can better capture the range of playaesests instead of using
two discrete types of updates. Moreover, the cancellatfoexpired updates in
Priority-Progress streaming can enable rate adaptatisedoan the network con-
ditions without using a complex reservation scheme for irtgrd updates. For the
CPU resource, games are ambitious processing-intensilterradia applications.
Even simple client-side desktop games [6] or popular Webegalh7, 68, 76] use
most of the available processing power (between 80%-100&2@&Hz core). An
informal study we did on the architecture of multiple gameg graphics engines
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[1,17, 68, 76] revealed that the core of these applicationsists of one or multi-

ple execution loops that perform the basic tasks of rendenimd simulation. These
loops executes 30 to 60 times a second depending on the fi@nget rate. Current
game loops attempt to update all entities at each frame fteagtion) leading to

brittle application quality because adding one featurecis$f frame duration and
can render the game unplayable.

For adaptive games, the focus is on adapting the executimamks in the
browser environment. DOHA developed CPU adaptation psigaspired by the
Priority-Progress adaptation model for Web-based gameé®siended the adap-
tation model to work across parallel threads with no sharechory [20, 21]. In
our adaptive game, the execution loop adapts to availabl¢ &fach game loop
frame. At the beginning of each frame, the loop cancels timelipg events from
the previous frame and issues a new event for each game. eBéfgre submis-
sion to the execution layer, the priority policy method fack entity is called to
calculate the event importance and then to assign the evienityp Our current
policy defines the relative importance among different gamt@ies based on the
distance from active players. The relative importanceoffiy) among game en-
tities dictates the order of event execution in each framar f@amework easily
handles other policies.

2.2.2 Adaptive Video

A video consists of frames, at a constant nominal numberrofiés per second. To
reduce network bandwidth requirements, video frames atedmd at the sender
and decoded at the receiver. Scalable video encoders eaaodeideo frame into
abase layerand a series adnhancement layer3 he base layer contains vital infor-
mation required by the decoder to reconstruct a low quaktgion of the original
image. The quality of the decoded frame depends on the nuoflggthancement
layers used, and will resemble that of the original framdliéahancement layers
are used.

Video encoders also try to exploit similarities betweerfedént frames, and
impose temporal frame dependencies. Based on the type ehdepcies, an en-
coded frame may either depend on no other frame but have fotmees depend
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on it (I-frame), depend only on previous frames and have éslepend on it
(P-frame), or depend both on previous and next frames bet hawther frame de-
pend on it (B-frame). Dependencies between frames affegptiorities assigned
to each frame/layer. A video application may adapt to alsllaesources by either
dropping different layers of a frame (spatial quality a@djpn), or dropping an
entire frame (temporal quality adaptation), or a combaoratf both.

Dropping decisions are made according to each frame's limekept both by
the sender and receiver. For example, a network frame iimadd initialized when
the frame is released (either fetched from storage or oegtirom camera and
encoded), and allows a maximum transmission period (defigate application)
for the frame data to be sent. During the transmission peftiathes are sent based
on their priority. At the end of the transmission period,,i& the transmission
deadline, the sender cancels unsent data of the frame. Thdateon the receiving
side, which consumes 80-95% of processing time, startsditeg@ frame based
on the time-line with whatever number of layers it has resgifor that frame.
If no data has been received within the time window, the frasrgkipped. This
application scenario shows network and CPU adaptationdafovstreaming.

For adaptive video, the focus is on video streaming in therhgt. Paceline
[19], our transport enhancement layer, is layered on top ©P,Tthe dominant
component of Internet traffic volume (typically greaterrtt#0% [25]). Paceline
argues that adaptation mechanisms, such as Priority-€3®{87, 39] are essential
transport features based on 20 years of multimedia transggearch that provides
quality of service through adaptation strategies [75]. P&Aains the most stable
adaptation technigue over TCP in terms of packet delay #ied [#2]. Paceline is
a general purpose transport layer exposing a stream APIpegitimessage priority
and cancellation. Paceline was used in other applicatsunsh as a cloud-based
game prototype to scale the communication in an epic scahe gaenaric [69]. To
address TCP’s latency problems and improve timing for irtgedrdata, Paceline
develops the three following techniques: applicatioreleate control to reduce
kernel queuing delay, failover among connections to haexieeme cases of con-
gestion, and application data unit (ADU) fragmentationeuce the granularity of
pre-empting less important data. These techniques iniRaalowed and verified
that the PPA model can be used in real-time interactive vigederencing.
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2.3 Summary

Interactive multimedia is an integral component of pop¥ab applications and
is expected to become more important in the future. Inteachultimedia Web
applications have high CPU and bandwidth requirements. li@ualaptation is
necessary to provide consistent quality and improve timesh in best effort plat-
forms. Quality-adaptation mechanisms adapt quality #atesource usage) based
on the available resources. Priority-Progress qualitptdin works across differ-
ent resources (e.g., CPU and network) and in different e@ipdin scenarios, such
as adaptive video streaming and adaptive games. This tdeisds the Priority-
Progress adaptation model to work in a new multimedia agitio, Web games,
and provide a transport and execution layers to enable atitaptin in prevalent
best effort transports and execution platforms in the Weh, (TCP, JavaScript
engines).
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Chapter 3

Execution Layer: DOHA

One important area in which applications must adapt to théadility of resources
is interactive applications on the Web. Web applicatiorssexiecuted in browsers
which historically have focused on the downloading and egimgj of mostly static
content. However, browsers have recently become maturaigse platforms en-
abling Web applications to rival their desktop counterparAn important class
of such applications is interactive multimedia: gamesmations, and interac-
tive visualizations. Unlike many early Web applicationsegse applications are
latency sensitive and processing (CPU and graphics) intens&ames are great
representatives of ambitious processing-intensive maliia applications in this
class. Similar to desktop games [6], popular Web games [8,776] use most of
the available processing power (between 80%-100% of a 2@H».cGames and
other ambitious applications are shifting the performamaimization focus from
the download and parsing time of Web files to the run-timequerhnce. The dy-
namic fluctuations and the scarcity of processing resoliroéggame features and
lead to significant development effort to manage the resodetnands [1.7, 76].
When demands exceed available CPU resources in interactiltenedia, it is
not feasible to execute all application computations ealk functions) in a timely
fashion. The browser best-effort execution model does roatigee any mechanism
to balance between timeliness and utilization. One comynoséd approach to
run interactive applications with consistent quality iherd code the appropriate
configuration settings, such as the games’ target framesgoend [67, 76]. This
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static approach cannot keep up with the expanding numbeatgbpn combina-
tions (browser version, hardware, and operating systemyelnportantly, it does
not gracefully handle the dynamic fluctuations in applmatlemands (common in
multimedia applications) or available resources (due &isg the CPU with other
applications). Another major concern related to the pevaprocessing model
in browsers is single-threaded execution. Ambitious métilia applications need
more processing power than available in one core espeaaliyobile platforms
with low-end cores. To deliver the available multi-core legcto Web applica-
tions, we need to facilitate real-time concurrent softw@ggelopment. Although
HTML5 Web workers [30] enable concurrent execution as seéfigure 3.1, they
do not help developers address challenging issues in aamtigoftware, such as
state management, load-balancing, and timely executimsad¢hreads. Without
a general solution that deals with the fluctuations and #&gairc processing re-
sources, the perceived quality of these applications besdarittle and sensitive to
any change in the execution conditions.

DOHA is an execution layer written in JavaScript that enleartbe browser ex-
ecution model. Our basic approach in DOHA to deal with thetiiity and short-
age of processing resources is based on Priority-Progdeggadion [37]. DOHA
defines scalable quality as a necessary requirement toWeibeapplications once
and run them with consistent quality everywhere. Scalabkdity addresses re-
source volatility by enabling applications to scale densatup or down) based
on available resources (including multi-core) and to edfidiy utilize the limited
available resources by giving precedence to important coatipns with more in-
fluence over perceived quality. Priority-Progress adagset on time and uses the
following three principles:

e Incremental Quality: The modified game loop executes as many events as

possible in each frame. The perceived quality of a game ase®if we can
execute more events within the target frame rate.

e Prioritized Data: DOHA introduces event prioritization to provide timely
execution of those events with the greatest influence ovalitgqu Priority
is assigned based on distance from the players which is otteeddpatial
indicators of quality in a game.
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e Priority Data Drop: DOHA executes events according to priority and intro-
duces event cancellation to adapt the application demaasiiton available
CPU resources. When execution events become stale at tlo¢ @ach game
frame, they are canceled and a new set of events is submitted.

DOHA also extends Priority-Progress adaptation to workssworker threads
utilizing the widely available multi-core processors. Tiize multi-core resources,
DOHA augments HTML5 Web workers with mechanisms to ease Imgndhal-
lenging concurrency issues, such as state management aatbdtancing. The
modified game using DOHA has better timing and higher peeckguality when
resources are scarce. More importantly, the overall quatiles linearly (up to
3 cores) and larger game scenarios, beyond the scope ofitieabigame, are
playable in the parallel version of the game.

The remainder of the chapter is structured as follows: 8e@il discusses
DOHA's design and implementation details; Section 3.2 &xysl our evaluation
results; Section 3.3 describes our qualitative lessomadéea Section 3.4 presents
the related work; and Section 3.5 concludes.

3.1 Design and Implementation

While studying the architecture of a variety of Web-baseues[l 17, 6&, 76], we
observed that they have one or multiple execution loops e the basic tasks,
such as rendering and simulation. As we see in Figure 3.2emgame loops
have a global update that iterates over all game entitigs fdayers and enemies)
in a pre-determined order (creation time order in RAPT [#€] a-axis ordering in
the Render Engine [17]). The global update is called usirayaSkcript timer 30 to
60 times a second depending on the target frame rate. Cgaerg loops attempt
to update all entities at each frame in a timely fashion. Hhnihitecture leads to
brittle application quality because adding one featurecasf frame duration and
can render the game unplayable.

DOHA provides Web applications with abstractions and arceten layer to
have better control over quality and have more access téablaimulti-core re-
sources. DOHA consists of two major components: the ewmq-vhich handles
prioritized execution locally in each thread, and the corent execution module,
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Main
Worker Thread Worker

Client-side Web Application

Multi-core Machine

Figure 3.1: Web application with two HTML5 workers running in a multi-
core platform

function update (tine) {

/1 Call update for all entities
for(entity in gane_entities){
entity.update (tine);

}
}

Figure 3.2: Game loop global update function

21



MultiProc, which simplifies state management and scheduirevents on worker
threads.

3.1.1 Event-loop

An event-based architecture is a natural fit for the asynaus browser execution
environment. DOHA's event-driven programming model ispinsd by the prin-
ciples of reactive programming [5] and aims to support thedseof interactive
Web applications. Popular Web applications are evenedrivith a large number
of short callback functions [59]. DOHA introduces explieitecution events that
specify the function to be executed and the call parametespired by Priority-
Progress adaptation [39], the scalable but computatipira#nsive parts of games
are broken into explicit events. Explicit execution event®OHA give the under-
lying scheduler performance hints and define the granulatitvhich applications
adapt (scale quality up and down).

Our key observation is that time-sensitive applicationglsmme computations
that are time synchronous (e.g., sound and game loop updatdsothers that
are best-effort (e.g., Al logic and the particle engine) aad be adapted. These
two types of computations need to be clearly identified sottheir needs can be
met independently. DOHA provides an event-loop abstractibensure timely
event executior [41]. The event-loop dispatches non-ppteety, prioritizing the
time synchronous computations over the best-effort coatjuts. Events can be
dispatched with low latency because our event-based modeld ideally have
short-lived computations that avoid blocking.

The key primitives in the event-loop arsubmitan event for execution (and
start the execution loop if it was not activeyn to start the execution loogan-
cel to delete a submitted event before it is executed, sto@to pause the exe-
cution loop. Each event is given a type, a callback spedfyhre function that
will be called, and an array of arguments. Explicit exeaqute&vents have two
types: timer and best-effort In timer events, the release time specifies the time
an event becomes eligible to execute. Once eligible, timents take precedence
over best-effort events. For best-effort events, exenusoordered according to
priority. When application demands exceed available nes®) it is not feasible
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to dispatch all events in a timely fashion. Best-effort égemith more influence

over perceived quality are given high priority so they exedirst. Less impor-

tant events are canceled when they become stale (baseden ti@reby match-

ing demands to available resources. Priority and release dre assigned by an
application-specific adaptation policy.

To order the execution of both event types, the event-loagpthva internal
priority queues. Timer events use a min-heap so events waitfeerelease times
are closer to the heap root. Best effort events use a maxdwamher priority
events are closer to the root. At each event-loop iteratianpeek at the timer's
heap root to examine the closest release-time. If it has besmhed, we execute
the root event. If it has not been reached, we execute thecffest heap root. If
the best-effort events heap is empty, we yield to the unitgylyavaScript engine
until the closest release-time. If the timers heap is enmpdyyield execution of the
event-loop until a new event is submitted.

When an event is canceled or executed, it is removed fromsbmecated heap
(while maintaining the heap property). Our event-loop isimal and is designed
to co-exist with the underlying JavaScript engine. We seesuant-loop as an en-
hancement layer to add the essential adaptation mechamsimity and cancella-
tion. Heaps in our design allow applications to queue eviempsoving utilization
while keeping full control over timing through prioritizeskecution and cancel-
lation. To avoid blocking the underlying JavaScript engiwe can run DOHA's
event-loop in a timed mode by setting a threshold (e.g., 260fan the maximum
duration of an event-loop iteration.

RAPT: Events and Policies

As a case study for DOHA, we choose the game Robots Are PeopléRIAPT)

[7€]. RAPT won the most fun game award in Mozilla’s Game Ontesn[72].

RAPT is an HTMLS5 platform game ported from C++. Players junepAeen mov-
ing platforms and coordinate their movements in order t® g@sne levels. The
exit to each game level is blocked by enemies that roll, jufiyp,and shoot to
prevent escape. RAPT uses 100% of a single core CPU (2GHzinderstand
the time profile of different game components, we used therrial browser pro-
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function update (tine) {
var evt;
/| Del ete pending events
for(evt in pending_events){
event | oop. cancel (evt);

}

/1 Add events to event-loop with a priority
for(entity in gane_entities){
evt = new Event(entity.update, [tine], BestEffort);
evt.priority = entity.getPriority();
event | oop. submi t (evt);

}
}

Figure 3.3: Modified simulation loop update call

filer. The performance of RAPT is impacted by two major congrds: graphics
and simulation (physics and collision detection). In Cheors0% of the time is
spent rendering, 30% on the simulation update, and aroudi28pent inside the
browser. The major components in terms of performance figrapsimulation,
and Al) are similar to traditional desktop games [6]. We fadi our experiments
on the simulation updates because it constitutes a lardgerpemce concern espe-
cially after the rendering in browsers becomes hardwacetarated.

Ouir first task was to split the large monolithic simulatioopainto small ex-
plicit update events reducing the granularity of adaptatman execution event.
The main simulation loop is now triggered by a timer eventetiag the global up-
date function at a rate of 30 frames per second (33ms franagion)y. Timer events
triggering the global simulation update take precedenee loest-effort events sub-
mitted within each frame. As shown in Figure 3.3, the modifjembal simulation
update starts by canceling the pending best-effort evens the previous frame.
Then, a separate update event per game entity is createdilamitted to the un-
derlying event-loop. Before an update event is submittiee getPriority policy
method for each entity is called to calculate the event itgnae.

Adaptation policies developed for the game define relativeartance among
different game entities in each game loop iteration (gameé). Relative impor-
tance (priority) among game entities dictates the ordeweheexecution. Since
players are at the heart of a game, their updates are the nitasildndicator of
perceived game quality. Our basic adaptation policy asgigiority based on dis-
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tance from active players. Priority is a number between 8 R0. Players get
priority 1.0. The priority assigned to the update eventstbépentities is inversely
proportional to their distance from the closest player.

Using distance only can lead to starvation for distant iestit These entities
will not be updated if resources are limited which causesdlawtheir physics
updates. To minimize starvation and ensure correct siiounl&r all game entities,
we defined a minimum update heuristic based on the time sastejpdate. As the
time since last update increases, the priority increasessatth 1.0 when we exceed
a maximum time threshold between updates. Finally, ganitiesrttave some non-
linear behaviors, such as gravity. These behaviors lingtagility because they
require a high and consistent update rate. Our policy needstect and account
for these behaviors while assigning priority.

All our entities sub-class two base classes: enemy and plalkese base
classes define the adaptation policies other entities itnh&his current policy
can be customized at run-time with the appropriate threlshauch as minimum
update threshold and distance ranges. We can also overpdécg to include
other factors specific to an entity type. For example, we narease the priority
of a bullet proportional to its speed.

It is important to note that with simple modifications to thaimsimulation
update loop, it was possible to scale quality using DOHAsxoop. Web-based
games have other places where scalability can help tradeaaycfor performance,
such as the particle engine (visual effects accuracy) anlbdit (algorithm ac-
curacy). DOHA accompanied with the necessary adaptatidinigm can enable
scalability in these places to provide better and more starsi quality.

3.1.2 MultiProc: Concurrent Execution

HTML5 Web workers are implemented using threads in majowbess and uti-
lize multi-core hardware if available. Worker threads wengisioned to provide
an API to run scripts in the background without locking thernisiterface [30].
Since their inception, Web workers have been used in cortipnély expensive
demo applications to speed-up highly parallel algorithfAsr example, our par-
allel factorial micro-benchmark gets around 10x speed-itp %6 cores for large
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numbers (3 * 18in Chrome).

We believe Web workers have a larger role in enhancing thiompeance of
interactive multimedia Web applications especially in thebile Web. Mobile
platforms have low-end multi-core processors (e.g., 60Qz\iihd browsing per-
formance is the biggest barrier to entry for a large numbeanabitious Web ap-
plications. Using one of the most challenging Web applosatiomains, HTML5
games, we show that Web workers with appropriate supporsicguificantly im-
prove performance and perceived quality.

MultiProc API

MultiProc provides mechanisms to write concurrent Web igppibns with differ-
ent architectures. As shown in Figure 3.4, we started witkrdral master/slave
architecture that is tightly coupled. This architecturerkgowell when the appli-
cation state resides in the main thread and the computatiaves minimal shared
state. The application computations along with their nemgsstate (i.e., events
with parameters) are submitted to a central scheduler thpatthes them for ex-
ecution on worker threadsemotesubmitis used to submit a remote event to the
central scheduler. The scheduler (in the main thread) deeidhere to execute each
event based on worker load statistics (orders workers baskzhd). Before events
are assigned to a worker, they can be canceled usmgtecancel To inform the
main thread that an event was executed successfully, a woakedone This call
updates the worker load statistics (number of active eyents

To address the high communication costs across workerdh¢agnsin Table
3.2), we moved to a less central design where the code in weoikenore indepen-
dent. Concurrent Web applications with expensive comnatitia are similar to
distributed systems. To share state between applicatioypapents across work-
ers, MultiProc introduces a publish-subscribe commuitoaaPl and RPC events.
To send a direct RPC event to a specific worker bypassing thigatescheduler,
we use theemotedirect. submitcall. Shared state can be published ugiodp-
lish_state The state is transferred across worker boundaries and etigoch that
subscribed for the state updates usingdhiescribestateAPI call is notified.
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/I Central schedul er API
renote_subnit(Event e);
renot e_cancel (Event e);
done(Event e);

/1 RPC and state nanagenent API
renote_direct_subnit(Event e);

publ i sh_state(topic, nsg);

subscri be_state(topic, worker_id, function_nane);
unsubscri be_state(topic, worker_id);

Figure 3.4: MultiProc public API

Central Hierarchical Design

MultiProc started with support for a centralized mastexs|\Web application ar-
chitecture. The main browser thread is the master dispajahients to slave work-
ers. The main thread and workers each run their own eveptitmmanage event
execution. Worker creation, book-keeping, and schedulegwjsions happen in the
centralized scheduler. This central design is based orttbereation that the main
thread handles the Document Object Model (DOM) and that srsrican only
communicate with their parents (no direct communicatiotwben siblings). To
extend our adaptation model across workers, events areduethe main sched-
uler and sent according to their priority. DOHA's centraheduler allows a small
fixed window of events in-flight per worker. Upon notificatitthat an event was
executed successfully, another event is dispatched toatie svorker. Since the
window size is small, the scheduler is agile in respondirigad imbalance among
workers.

When an event reaches a worker, it is passed to the applicatide. The
application code at the worker adds the event to the locabtdeep which re-
spects its priority. Each level of DOHA orders events acewydo their priority
to approximate a distributed adaptive event-loop acrogkeve. To balance load
across workers, events are assigned to the worker with tadesnload (number
of events in progress). MultiProc uses two heaps to managetesevents and
workers. Remote events are ordered according to theirifyri@hile workers are
ordered according to the number of active events.
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Percentage Of Unique Colors 0 25| 50 | 75 | 100
Delay (ms) 501 | 393 | 342 | 320 | 310

Table 3.1: Average delay to render a frame using ray tracing

Assuming each event can be executed in any worker, the teattracheduler
will have perfect load balancing. However, some events lependencies (e.qg.,
manipulate the same data-structure). To handle these diepars between events
our framework uses evenbloring [82]. Programmers color events and MultiProc
adheres to the coloring constraints. Events with the sarhoe erecute in the same
worker and events with different colors can execute in jlréh different work-
ers). Workers can generate events and assign them unicgure.c8ince our design
is centralized, a worker delegates the event to the maiadhfimaster) which as-
signs it to the appropriate worker. Coloring is an easy tqa{R] yet powerful
concurrency control mechanism. If all events have the dietalor, we have a se-
rial program. Having more colors reduces the schedulingtcaimts which leads
to better load balancing across workers.

To test dynamic load balancing in the central design, we aséd animation
that renders a large frame using ray tracing. Ray tracingisputationally in-
tensive and has minimal shared state. To simulate a loadekewave limit the
CPU share of one worker (out of 4 worker threads) to be 25% @fGRU time.
To simulate dependency between events, we vary the pegeenfaevents with
unique colors. 100% means each event has a unique color fremdency) and
0% means each event is colored with one of the four major sq@5% of the
total events per color to distribute work evenly across 4ker®). The original
rendering application which uses round robin schedulikge8809ms to render a
frame when all the workers have enough resources and tatescb00ms when
one worker is limited. In Table 3.1, we see that MultiProctcarioad balancing
algorithm assigned events to other less loaded workergirglthe impact of the
loaded worker and maintaining the same overall applicatixgcution time when
each event has a unique color (100%). As the percentage ofsewéth unique
colors decreases (more dependencies between eventntlexing task gets de-
layed significantly. The load balancing logic was not ablautoas many events in
parallel and gets the same results as the original round ravsion.
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Our initial design assumed Web applications have a cengsigd where all
execution events pass by the MultiProc scheduler. Evengthowrr results with
a simple application were positive, in the central desigrapplication state ac-
cessed during each computation and the generated resdtsworker boundaries.
The communication cost becomes prohibitively expensivmplex applications,
such as games, with tightly coupled components sharing.stable 3.2 shows the
high costs of a ping-pong message in HTML5 Web workers as wethe mes-
sage sizd.3ms is a relatively high cost considering the 33.3ms franatihn (or
16.6ms with a rate of 60 frames per second).

Message Size (bytes) 10 | 100 | 1K | 10K | 100K
Firefox (ms) 3 3 123 3 4.5
Chrome15(ms) | 34| 4 | 45| 6 46.9

Table 3.2: Average delay for a ping-pong message between workers

State Management and Publish-Subscribe

To address these high communication costs, we moved to adéssgal design
where the code in workers is more independent. We re-stedttine simulation
loop of RAPT as a network of components running in workers. wessee in
Figure 3.5, each worker has an event-loop to run local evénssead of sending
all events and their related state across worker boundavesend a few direct
events (synchronization and control events) and necessaiy updates between
workers. For example, we send a game loop start iterationtdx@m the main
thread with minimum data parameters, such as the curreat tilpdate events for
entities assigned to the worker are generated locally addcatb the local event-
loop.

Without shared memory, workers cannot access the browsaurbent Object
Model (DOM). The code for each game entity in RAPT had to bé spb two
parts: one for simulation which runs in worker threads anotlzar for rendering
which runs in the main thread. The modified game loop perfaendering in the
main thread while the loop in each worker performs the sitiadla To maintain

Linternet Explorer (IE) is not included because at the béginof our study, |E did not support
Web workers.
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Figure 3.5: Web application using MultiProc with two workers

the game view, the rendering state of each entity is reglitaf\fter each simula-
tion update, each entity communicates the state needeeridering back to the
rendering replica in the main thread. This partial repiaraiof the entity’s state
uses our publish-subscribe communication API, as we segyind=3.6. Partial
replication transfers the minimum amount of state neededseiadering, such as
the entity position (x, y), and orientation (angle).

Few key entities in RAPT are global. For example, playersaamssed and
modified by different types of enemies in multiple workeraniarly, some entities
at the boundary of partitions need to have their state sHatdeen two workers.
To perform correct simulation, the entire state of each @l@ntity is replicated
across multiple workers. One worker owns the primary (aitidtive) copy of the
entity and other workers have full replicas. We synchromitteeplicas after each
entity update. The primary publishes its state to the éstitypic which all replicas
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/1 Publish state in the worker
Entity. prototype. publishState = function()

{
var nsg = [this.x, this.y, this.angle];
wor ker . publ i sh_state(this.id, nsg);

s

/1 Update state in the nmain thread

Entity. prototype.updateState = function(args)

{
this.x = args[0]; this.y = args[1];
this.angle = args[2];

s

Figure 3.6: Entity sharing rendering state in concurrent RAPT using the
publish-subscribe API

(partial and full) subscribe to.

To allow modifying global objects, each identical replicdsaas a proxy. State
mutation is only allowed in the authoritative version of anity. When a mutator
method in a replica is called, the call is published on théaglmbject mutation
topic which the authoritative version subscribes to. Staémagement for entities
heavily uses the publish-subscribe API for one-to-onetigdareplication), one-
to-many (full replication), and many-to-one (proxy forndarg) communication.
These different communication patterns and the dynamicemewts of entities
to balance load across workers are the main motivationsuiopoblish-subscribe
communication API. Publish-subscribe provides a looselypted communication
API that supports various communication patterns and allthe communication
pattern to vary over time.

Our publish-subscribe logic is central. Web workers passctimmunication
API calls to the main browser thread. Our main publish-stibsanit maps topics
to a subscribers list. Each subscriber is a tuple of (workerflinction name).
When a message is received from the topic, it is forwardedftmetion with the
given name on the specified worker. In each worker, the atjic registers a list
of public functions that handle state-update messages.

The topics used for publish-subscribe communication nedzbtunique. We
built a distributed identity manager to provide each gantiyefin RAPT) with a
unique identity that is used as a topic for its communicatibime primary identity
manager in the main browser thread assigns each worker &dimange in the
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identity space. When the identity range in a worker runs thet,remote identity
manager asks the primary manager for a new range.

Load-Balancing

Our central scheduler implements load-balancing as wers&gation 3.1.2. How-
ever, DOHA's state management support is agnostic to theaywpljcation compo-
nents are distributed across workers. Building efficiestritiuted algorithms for
games is an active area of research that is outside the stopework. We aim to
provide the necessary mechanisms so application devslaparimplement their
favorite distributed load-balancing algorithms on top @IBA.

In the concurrent version of RAPT, we partition the game meqggaphically
into a number of grids equal to the number of workers. Eactkarohandles a
grid with all associated entities (enemies, and playerg)e State of each entity
is updated in a single worker. This design respects datditipsince each en-
tity primarily interacts with other entities in its viciyit Local interactions avoid
expensive state transfer across worker boundaries. Whéiegmove between
grids, they migrate with all their state to a different warke

Even though static geographical partitioning does notidisie work evenly
across workers, our experience in a few popular state ofrthé&/eb-based games
suggests that designers distribute game entities evenbgsathe game map. To
help developers implement the load-balancing algoritHD@IHA provides:

¢ load information so developers can use it to decide when ¢pate entities.

e a distributed identity manager which names entities urjguieus avoiding
name conflicts upon migration.

e A loosely-coupled communication API to easily set-up ara-tlown com-
munication channels for frequent entity migration.

Developers need to develop the load-balancing policy aed tlse our com-
munication layer to send the entity state.

DOHA aims to support applications with different concuagmequirements,
ranging from simple applications that only need the comjmrtal benefits of Web
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workers to the more demanding Web-based games. Simplecapptis without
shared state can delegate load balancing and scheduliremotteé events to the
central scheduler. For more advanced applications witreshstate across work-
ers, DOHA provides a publish-subscribe communicationrlayenanage state. In
our efforts to parallelize RAPT, we initially tempted to ligte a major game com-
ponent such as the physics engine in a worker. This would bega easier and
can probably enhance performance. However, it does nat sagh the number
of cores. Even though current mobile platforms have at maasit-core processors,
RAPT and other Web applications should aim for scalablellgdiean to improve
performance with more cores.

3.2 Evaluation

We conducted a set of experiments with gaming scenariogiougcomputational
demands. In the basic test map for RAPT, both players movweerrsshorizontal
tunnel in one direction and the enemies move in a paralleigliabove the play-
ers. We compare the following game versions: the originaPRARAPT), the
modified RAPT using adaptation only (RAPT-A), and the modifRAPT using
adaptation and concurrent execution with 2 Web workers (RER

Our evaluation takes two views on performance: the firstdbaselower-level
event-loop execution metrics, and the second based onrHiglet application
metrics. The low-level metrics include: number of eventsnsitted per second
and the ratio of canceled events. These low-level metriow/ghe throughput of
the event-loop (events per second). To understand how theskevel metrics
affect game quality, we analyze the quality of the gamepimgedence using high-
level metrics, such as the simulation loop jitter profil&téji median and jitter tail
which is the 95th percentile of the jitter distribution) toamtify the average time-
liness and the magnitude of execution glitches, and theageeirames per second
(FPS) versus priority for all entities to quantify the awggayame quality (scalable
quality).

We performed our experiments on an AMD Opteron with 16 2GH=z=%0
Multi-core hardware allowed Web workers to run on differentes. The dura-
tion of each experiment is 80 seconds. To avoid start-up huattiswn effects, we
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Table 3.3: Jitter profile

Jitter (ms)| Scenario| RAPT | RAPT-A | RAPT-C
Easy 22 0 1
Median Medium | 47 0 0
Hard 219 0 0
Easy 26 7 7
Tail Medium | 55 8 17
Hard 291 8 33

use the middle 60 seconds. We used Google Chrome 15.0.2Metd in Ubuntu
10.04 LTS. The two changing experiment parameters are tmpuetional diffi-
culty of the game scenario (which is controlled by the nunaet type of enemies)
and the game version (RAPT, RAPT-A, and RAPT-C). We haveetigaame sce-
narios: an easy scenario where all versions have reasogahlity; a medium
scenario which is the hardest playable scenario by RAPT akilTRA (with the
processing power of one core); and finally an extremely ehglhg game scenario
with processing requirements beyond the capacity of one cor

3.2.1 Adaptive Execution

In this section we discuss the effects of our adaptation tradgame performance.
We analyze the low-level event-loop throughput, the timeds of simulation loop
updates, and the average overall game quality (scalabl&ygua

Timeliness

Table 3.3 shows the simulation loop jitter profile for all RRRersions running
all scenarios. The median jitter gives a measure of averag#iness and agility
in responding to stimuli, such as input and collisions. Targify glitches which
affect quality negatively, we measure the jitter tail. Tlpected inter-arrival time
between frames is 33.3ms since the target frame rate is 3(firddBe duration
1000ms/30). We measure the offset for the expected ariived &nd report its
median and 95th percentile to capture the jitter distrduti

As seen in Tablz 3.3, the jitter median and tail in the origRAPT increases
with the difficulty of the game scenario. The median jittesialees 219ms which
means RAPT executes 1 out of 7 frames (219/33.3=6.6) y@gldiframe rate of
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around 4 FPS. This increasing jitter is due to RAPT’'s game lterating over all
game entities in each frame leading to a large delay in psioggach frame.

RAPT-A has low consistent jitter profile (median=0ms and=&émns) for all
game scenarios. Our reactive event-driven design givesr tewents more im-
portance than best-effort events in each game loop frameenWiie timer event
running the game simulation loop (global update) fires, we sixecution of best-
effort events and delete all pending events from the previame. Finally, RAPT-
C has low consistent median jitter. But the jitter tail in RRE increases with the
difficulty of the scenario to reach 33ms in the hard scen®%84 of the jitter values
are less than 33ms). This increase in the jitter tail is nyadole to the communica-
tion and OS scheduling spikes for the two Web workers.

Low-Level Event-loop Statistics
Table 3.4: Event throughput statistics

Statistics Scenario| RAPT-A | RAPT-C
Easy 7417 7127
Event Submission Rate Medium | 11150 10749
Hard 33110 31317

Easy 2.2 0.1
Cancellation Ratio (%) Medium | 17 18
Hard 88 66

Our low-level event-loop statistics help us understancetient throughput. As
seen in Table 3.4, both RAPT-A and RAPT-C submit more eventhadifficulty
increases because of the increase in the number of enfiiescancellation ratio
also increases because the frame duration is not enougldabeugll entities as the
difficulty increases.

RAPT-A submits slightly more events per second in all sdesahan RAPT-
C indicating a higher simulation rate. The ratio of cancedeents in the easy and
medium scenarios (RAPT-A and RAPT-C) is comparable. In thel lscenario,
RAPT-C cancels less events (66%) than RAPT-A (88%). MonedRAPT-C has
higher event rate due to having 2 extra cores to executertndation updates.
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Priority Vs Quality

The medium scenario (hardest playable scenario for RAPTi\ RAPT) tests
our capability to gracefully degrade quality when resosiraee scarce. RAPT in
the medium scenario has an average quality of 12.3 FPS whishmilar to the
simulation rate. When resources are scarce, RAPT-A and R2\Bdncel update
events for stale low priority entities. Thus, the overaleige game quality (in
FPS) is not captured in the simulation rate (29 and 30 FPS).

To give more meaningful measure of the overall game quaditaléble qual-
ity), we measure the average frames per second for all gatitiegn\We correlate
this quality indicator with the priority assigned by our jogl As we see in Figure
3.7, the FPS of game enemies in RAPT-A ranges from 16 for léaripr entities
to 29 (maximum) for high priority entities. Similarly, theerage jitter for all en-
tities decreases from 17ms to 4ms as priority increasesa@®aitter is inversely
related to average FPS). We naotice that low priority ergtitiever starve (have at
least 16 FPS). This is due to our minimum update thresholdhvbnsures that
even low priority entities are updated at a lower frequengfen CPU is limited,
our adaptation model in RAPT-A improves quality for impaittantities so quality
has a strong correlation with priority.

RAPT-C has relatively higher quality for all entities (24%PThe quality does
not have a strong correlation with priority because at eaxh instance game en-
tities with the highest priority are concentrated in onekeor(due to geographical
partitioning of entities). Other workers at the same timgdnce are processing
events with low priority leading average FPS to lose coti@tawith priority. In
addition, the communication overhead in RAPT-C with threpasate cores (2
workers and the browser thread) leads to lower FPS than RARTthe medium
scenario for high priority entities. The trade-off betwdla communication over-
head and the parallel speed-up changes in the hard scesanie see in Section
3.2.2.

Results Summary

RAPT-A and RAPT-C have better timing (lower jitter mean aait) than the orig-
inal RAPT. By canceling updates of less important entitiethe end of each sim-
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Average Frames Per Second (FPS)

14 1 1 1 1

Priority
RAPT-A ——— RAPT-C —=—
Figure 3.7: Priority versus quality (average FPS)

ulation loop, RAPT-A and RAPT-C can provide important eesit(with more in-
fluence over quality) a higher update rate. This translaidsetter overall game
quality in RAPT-A and RAPT-C.

3.2.2 Concurrent Execution

While playing the game, we noticed RAPT-A had much worse gieecl quality
than RAPT-C in the hard scenario. RAPT-A's main thread wasnwetielmed by
the extremely high load and it was not yielding executiorhtkirowser engine (to
perform the rendering). In this case, isolation betweenttletasks (simulation
and rendering) in RAPT-C provided much better perceivedityua

The hard scenario is not playable in either RAPT or RAPT-AFRAA was
overwhelmed by the load and the simulation rate in the calgRAPT is extremely
low (4 FPS). The hard scenario is only playable in RAPT-C.rEtlemugh the
hard scenario had a large number of enemies, our desigrsdb@leommunica-
tion costs. RAPT-C only executes and communicates statatepdor as many
events as the frame duration allows.
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To evaluate the effects of adding more cores on game quaktyun RAPT-C
using the hard scenario while varying the number of coreswAsee in Figure
3.8, the average FPS for all game entities (scalable quatityeases as we add
more cores. RAPT-C with 1 worker gets an average of 3.5 FP& BVivorkers,
the average FPS is between 12 and 14. Average jitter als@ ¢hmm 260ms with
1 worker to around 42ms with 3 workers. In the hard scenar®get linear im-
provement in quality with each worker added up to 3 workerswé see in Figure
3.8, using 4 workers does not improve the game quality. Witlotkers, only 3%
of the execution events are canceled which indicates thkcappn load in the
hard scenario is small relative to the available cores. imdhse, RAPT-C pays

additional concurrency costs but does not benefit from thaeore.
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Figure 3.8: RAPT FPS in the hard scenario with 1, 2, 3 and 4 workers

To look at timeliness as we add more cores, we measure thedittribution
of the simulation loop frames in the hard scenario. RAPT lydaibthe worst jitter
profile. As we see in Figure 3.9, only 20% of execution framegetiitter less than
210ms. RAPT's jitter tail extends to around 291ms causiggicantly bigger
execution glitches. RAPT-A and RAPT-C (with 1 and 2 workdraye the same
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low average jitter profile and RAPT-C has a relatively wortertail.

We also observe that latency increases as we add more coitbs3 Workers,
the mean jitter is 14ms and the jitter tail is 64ms. The jitterease is partly be-
cause the simulation loop in worker threads is triggered pgraodic update event
sent from the main thread. When the number of workers inef¢ghe communica-
tion load on the main thread increases and the loop updatdésesee delayed.

1
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RAPT — 4 \Worker RAPT-C ——
RAPT-A ——— 3 Worker RAPT-C—&—
2 Worker RAPT-C —<— 1 Worker RAPT-C—a—

Figure 3.9: Jitter cumulative distribution in the hard Scenario

Less Cores Than Workers

To test what will happen if we have more workers than corestamghe medium
scenario in a single core machine (a 2.80GHz Intel(R) Pen#)? As we see in

2All of the other experiments reported in this thesis werdgsered on a multicore machine.
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Table 3.5: Jitter profile in the easy scenario (with one core)

Jitter (ms)| RAPT | RAPT-A | RAPT-C
Median 25 5 17
Tail 28 8 28

Table 3.5, RAPT-C has lower FPS and higher jitter tail tharPRAA (but compa-

rable quality to RAPT). We also noticed in the low-level eivlrop statistics that
RAPT-C submitted less events and canceled more. This peafure gap is due to
the overhead of communication between and scheduling afitiker threads and
the lack of any parallel speed-up using the one core machine.

Ideally we should have one worker per core. Degradationiifopaance is ex-
pected if we use more or less workers than necessary. To pgligations choose
the appropriate number of workers, browsers can have andAg{gose the num-
ber of cores (user agent information) or JavaScript libd@yelopers can detect it
(using micro tests).

Results Summary

DOHA demonstrates the potential to help scale quality lilyeas we use more
cores in a challenging game scenario. It is essential tosghtioe appropriate
number of workers for the execution and communication laadithe underlying
hardware. Using more workers than needed (4 workers casgung=3.9) or using
less workers than cores (Table 3.5) can reduce performamedgodconcurrency
overheads (without getting any parallel speed-up).

3.3 Lessons Learned

This section includes few of the subjective lessons leamleidh can shed more
light on DOHA and Web-based game development. We noticed tha

e Performance engineering inside browsers is challengingowBers have
primitive debugging and performance monitoring tools. \Weirkers have
even less support. To conduct a rigorous experimental sandyquantify
performance, we had to build a number of performance arsaigsis.
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e Game adaptation in RAPT required minimal code changes. tiimduce pri-
ority and cancellation of events we only had to change the game loop
and add the policies as described in Section 3.1.1. The elaafiected
1% of the code base (including comments, counted using wtJding the
central scheduler was relatively easy having already usglic# events be-
cause most of the distribution tasks are delegated to theatestheduler.
However, using Web workers with a distributed applicati@sign requires
re-structuring existing code in a major way. For example PRAvas mod-
ified to have a distributed game loop and we used replicaitomanage
shared state as described in Section 3.1.2. Introducingublésh-subscribe
layer improved the abstraction but developers still neediite complex
distributed algorithms.

e Parallel and adaptive execution are independent and camldyseal sep-
arately. Applications can use DOHA's publish-subscribengaunication
layer for state management without adopting explicit evemtd the other
way around. Both approaches are introduced together wittleiframework
of scalable quality because adaptation scales applicdgomands (up and
down) based on the limited available resources while carogy expands
the pool of available resources allowing scalable paisaitel RAPT-C uses
both adaptive and concurrent execution to get better paence when CPU
demands exceed the resources available in one core. HoWR&ST-A
avoids the development costs and the concurrency run-tveeheads of
RAPT-C (Figure 3.9) making it appealing when the applicatan provide
adequate quality with one core. Developers need to exarm@éadvantages
in quality improvements versus the run-time overheads @@wlopment
costs) when deciding what is the level of scalability (6RAPT-A, RAPT-C
with 2 workers, or RAPT-C with 3 workers) most appropriate tfee range
of target platforms.

e HTML5 Web workers expose an elegant shared-nothing coeacyr ab-
straction. Explicit message-passing is a good fit for asyorabus event-
driven browser execution. It also allows Web developersstfamiliar dis-
tributed computing abstractions (from their experiencthwserver compo-
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nents). The main limitation is the high communication castsnplementa-

tions. Current communication cost in browsers will enaltilent-side appli-

cations to scale quality in multi-core platforms with fewes (e.g., 4 cores
in RAPT — 3 workers and the main browser thread). To scale inyrcare

platforms with tens of cores, the communication costs néed® reduced
significantly. Browsers need to optimize the communicattbannels and
expose optimization mechanisms (e.g., use immutable Bhyeith owner-

ship transfer to pass large objects across workers). Japaameworks

similar to DOHA can also perform communication optimizati@atching

and pipelining) to reduce messaging costs.

e DOHA is applicable in other Web multimedia applicationsclsas video
applications, visualizations, and animations. We obskthie same event-
driven architecture in the few animation and visualizaptatforms we stud-
ied. To extend our support to server-side game componergsposted
DOHA to node.js [35], a popular JavaScript server framewddkir future
work aims to use scalable quality in other application dormand perform
an in-depth study of the adaptation and load-balancingigeslirequired.

3.4 Related Work

DOHA builds upon the event-driven nature of popular Web igpgibns, which
have a large number of short handler functicns [59]. Evewned programming
is a natural fit for JavaScript, a single threaded progrargrfdanguage, supported
by the asynchronous browser APIs. Event-driven reactinifpOHA has its roots
in the concepts of reactive programming [5]. DOHA introdsiexecution event
classes and specifies timing information at the event lénelas to the application
model in Cooperative Polling [41]. Explicit execution eteare used for all com-
putations and the underlying scheduler adheres to hintgeinte to run important
computations in a timely fashion.

DOHA developed CPU adaptation policies for Web-based gansgsred by
Priority-Progress adaptation [37, 39]. DonneyBrook’s][itlerest sets use dis-
tance, aim, and recency from the player’s perspective tmdeghich entities are
more important. Similar to interest sets, our CPU adapigtiolicy uses distance
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from the player to determine the importance of game entitoess our priority
scheme has a continuous spectrum (between 0.0 and 1.0)rajl@wooth scal-
ability instead of the two priority levels in DonneyBrook.

Recently, developers used workers to separate the physiisecof a simple
animation [43] improving the animation’s frame rate. Hoeewffloading func-
tional units to workers will limit scalability to the humberf independent units
within an application. DOHA helps developers address ehgihg concurrency
issues, such as state management and load-balancing mtoml®vide scalable
parallelism with more cores.

Parallel architectures in games use techniques, such ahi®yization via
scheduling (SvS) [7] and Software transactional memoryMpB[46] to manage
state. SvS uses results of the static and dynamic code an@ynanage potential
shared state conflicts by exposing the data access patténa szheduler. Lupei
et al. [46] show that STM can provide better performance tharstate of the art
multi-threaded lock-based game server. Even though tlkeebaitjues are suitable
for parallel games, they assume shared memory while Webarmmhave no shar-
ing and use message-passing. The Multikerrel [4] investiga new OS structure
that treats a machine as network of independent cores wigiha@d memory and
move traditional OS functionality to a distributed systefrpmcesses that com-
municate using message-passing. Similar to the Multikewmembraced the net-
work nature of concurrent systems and re-structured owrerental Web-based
game as a network of distributed components. We use rdplictd share state
using ideas from the distributed architecture of intev&ctnulti-player games in
Colyseus![9].

Coloring [82] was introduced as a coarse grain concurreremyagement tech-
nigue for event-driven Web servers. Events with the sama eslecute in the same
worker while events with different colors can execute inaflat. Coloring was
used to manage concurrency in the central scheduler. Tairafhe browser per-
formance, the parallel browser project [47] re-writes té&lbnecks (parsing and
rule matching) in a parallel fashion. Application-levelhcarrency (in JavaScript)
is equally important especially since applications ar¢efato change and adapt
than browsers.

Native Client [81] allows Web applications to execute rnattode inside a
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browser sandbox and improve performance (by using handecadsembler and
native threads). DOHA aims to improve the performance ofiegions written
in JavaScript, the de-facto language for Web applicati@issng native code in the
browser is complementary to our work especially since JaipiSengines are be-
coming more mature. The exokernel browser architecturetlanfis 48] defines
a narrow API for basic services and allows Web applicatienextend their exe-
cution environments. Atlantis’ run-time language Syphopgorts a full threading
model. Even though the performance of threads with sharadaneis arguably
superior to Web workers with message-passing, the perfizengains come at the
high cost of introducing a concurrency model that causeg system errors [63].

3.5 Conclusions

Browsers are becoming mature platforms. Ambitious Webiegibns with high
computational demands and low latency interactions, sadpaes, animations,
and interactive visualizations are pushing the limits odilmble processing re-
sources. In overload conditions, the best-effort exeoutiodel of current browsers
lacks the necessary mechanisms to help these demandinggdippk control qual-
ity and balance between timeliness and utilization. Intaoldi ambitious multime-
dia applications need more processing power than availalidee core especially
in mobile platforms with low-end cores. Even though HTML5 Mgorkers pro-
vide a concurrency model to utilize multi-core resourcesb\Wevelopers still need
more programming support in hard concurrent software deveént issues, such
as state management, load balancing, and timely executtbmwiltiple threads.
DOHA deals with the volatility and shortage of processingpreces based on
Priority-Progress quality adaptation. Scalable qualitip OHA addresses resource
volatility by enabling applications to scale demands basedvailable resources
(including multi-core) and to utilize the limited avail&btesources to execute im-
portant computations with more influence over perceivedityuaDur evaluation
shows that when CPU resources are scarce, the modified gamgeDGHA had
better timing and higher overall quality. More importantliye quality scales lin-
early with a small number of cores. Scalable quality enaaabitious Web appli-
cations to explore more challenging scenarios without ¢lae 6f brittle quality.
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Chapter 4

Transport Layer: Paceline

Beyond interactive Web applications as addressed by Dokdnapter 3, another
area in which application adaptation is critical is stre@gndelivery and display
of multimedia content over the network. Because the dataaynapplications
and users are multiplexed over a shared common media, rlepeoformance is
highly variable both over the short-term (millisecond oc@ed granularity) and
longer term (10s of seconds or minutes granularity). Thenary motivation of

our work is to enable adaptation in applications with higindwidth (hundreds
of Kbps or more) and latency sensitive (tenths of a secondss) Inetwork com-
munication. Our example application is HD video conferagaivhich is part of a
growing real-time collaboration market. Other multimediab applications in this
class are large scale high speed online multiplayer gantgdsdfd online virtual

worlds 2]. In these applications the volume of data is lgige, HD multimedia

with a large number of participants). In addition, there strengent interactivity

requirements so applications need to keep end-to-enctiatiwn at all times, for
effective response and comfortable communication. Theswdding applications
simultaneously require high bandwidth and low end-to-eatdricy, a conflicting
combination that is poorly supported in existing best+fiansports.

Paceline introduces adaptation mechanisms as esseatigport primitives to
resolve the conflict between timeliness and best-efforisparts. Paceline en-
hances the transport service model with mechanisms foitg@alaptation. Our
guality-adaptation model is based on Priority-Progressptadion [37], which re-
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mains the most stable adaptation technique over the TrasgmiControl Proto-
col (TCP) in terms of packet delay and jitter [42]. PriorRyegress adapts quality
based on a timeline that specifies when each message istielBverity-Progress
uses three principles:

¢ Incremental Quality:The video conferencing application used in the evalu-
ation supports spatial and temporal scalability.

e Prioritized Data: Paceline introduces message prioritization to providelym
delivery for important data with more influence over quali®riority is as-
signed by an application policy using spatial and tempadiciators of per-
ceived quality.

e Priority Data Drop: Paceline introduces message cancellation to adapt the
application rate to match available bandwidth. Messagesanceled when
they becomes stale according to the application’s timeline

Using Priority-Progress adaptation mechanisms, Pacefiables applications
to scale quality with available resources and to use theaduravailable bandwidth
in transferring data with more influence over quality. Upliis tpoint, we are con-
sidering adaptation in a single stream of messages to thmygaavailability of net-
work resources. Paceline also enables Priority-Progaegstation across multiple
high-bandwidth low-latency streams in a fair fashion. Biént streams have vary-
ing requirements in terms of latency, bandwidth, and hayell application quality
metrics. For example, a game transfers several kinds aimggesuch as player
status updates, player video coordination chats, adeerésts, and game control
messages. The frequency of advertisements might be reibmedessary to help
ensure player updates are sent promptly. Similarly, amtistdearning session can
have voice, video, and slides from different users as sapateeams multiplexed
over the same communication channel and have differenitguadtrics. For fair
and timely communication across concurrent streams, iRacslipports for two
notions of fairness across streams sharing a link: quality r@source fairness.
Resource fairness guarantees fair bandwidth across styedriie quality fairness
ensures fair application level quality. Quality is definedhee application level as
the frames per second in video conferencing, or the updatesgezond in online
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games. Our service model defines a generic notion of qualiguit any type of
continuous communication.

Contrary to conventional wisdom, Paceline has not beenemehted over
the User Datagram Protocol (UDP), nor does Paceline proplageges to TCP.
Paceline is layereéntirely above TCP, the “narrow waist” of the Internet. TCP
constitutes the dominant component of Internet traffic nmy typically greater
than 90% [25]. The shortcomings of TCP with regard to endstd-latency are
well known with full Internet standards (IETF) (i.e., Stne&ontrol Transmission
ProtocolSCTP[5€] and Datagram Congestion Control ProtoPdlCP [3€]) and
mature research transports (Structured Stream Tran§&¥rf24]) proposing to
modify or replace TCP. However, the basic characteristi€@P has not changed
and no alternative transport has yet to gain any apprecaduption. In this chap-
ter, we explore the idea of improving latency without repigoor even modifying
TCP. To address TCP's latency problems and minimize thet@mad latency for
important data, we use the three following techniques:

e Application-level rate control, to reduce queuing delag thuexcessive socket
buffering.

e Failover among connections to handle extreme cases of stogéeading
to latency spikes.

e Application data unit (ADU) fragmentation to prevent heddire blocking
and reduce the granularity of pre-empting less importata.da

The contribution of Paceline is in the combination of thewabi@chniques, in a
way that mitigates TCP’s weaknesses. Even though the yirgidervice model
is best effort, Paceline’s techniques improve the trarismility to ensure that the
most important data have good timeliness. Our evaluati@wstthat Paceline
improves upon conventional end-to-end latency shortcgmof using TCP, by a
factor of 3 in median latency and a factor of 4 in worst caserley. Meanwhile,
Paceline is able to preserve TCP’s performance in termsiwofefss and utiliza-
tion. We also compare Paceline with the Structured Streansport (SST) [24].
SST is one in the class of several protocols designed togedsetter control over
timing than TCP, such as SCTP and DCCP. SST is the most réchas compa-
rable features and builds upon many ideas common to thesptiverchose SST
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Figure 4.1: Components of end-to-end latency

for our evaluation because we believe it represents themustate of the art. Us-
ing application level metrics from a video streaming systeuor evaluation shows
Paceline’s performance to be very competitive with that®TS
The rest of the chapter is organized as follows. Section rbtiges an end-

to-end analysis of TCP delays. Section/ 4.2 describes thepoat service model
and Section 4.3 explains the architecture of the low-latéechniques. Section 4.4
presents the evaluation results. Finally, Section 4.5 sarnzes the related work
and Section 4.6 concludes.

4.1 End to End Latency Analysis

Since interactivity and transport latency are a key focukisfwork, we now briefly
characterize the sources of latency and set the contextuf@pproach in Paceline.
As depicted in Figure 4.1, end-to-end latency is commonbkén down into four
components of 1processingdelay, due to processing speedgReuingdelays in
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nodes (hosts and network routers and switchesfaBsmissiorndelay due to the
bit-rate of transmission, and glopagationdelays due to physical distances. When
one or more of those delays becomes large, interactivigli@giion to application
message delivery) will suffer. As we will show later in Seal.4, the total end-to-
end latency of TCP can be several seconds. In the followiadysis, we explain
that of the four latency componenigeuing delayinside TCP send buffers and
network node queues) is the dominant cause of latency fdr Igpndwidth TCP
applications.

Firstly, processing delays generally negligible due to fast CPUs and careful
design of transport algorithms. Second, if we assume fomttenent that applica-
tion data units (ADUSs) fit within transport segments up to imam size (ns3,
then transmission delayvill be bounded todelayansmit = msglink_rate. With
common values ofink_rate (Mbps or Gbps) andanss(e.g., 1500B)delay ansmit
will be a small value (e.g., sub-millisecond). This leavespagation delay and
gueuing delays as the dominant contributors to latency. -@mepropagation
delay has lower bounds set by the laws of physics. Typical Intepagth round-
trip-time (RTT) values are in tens of milliseconds for int@ntinental distances,
or around one or two hundred milliseconds for distancesdis oceans or tra-
verse satellites. In addition, TCP provides reliabilita vetransmissions that can
add extra queuing delay (multiples of the propagation ddlayhe total. For this
reason, TCP is commonly dismissed as unsuited for latemsits® applications.
However, in the common case, TCP’s fast retransmit mechmasgiuld limit the
retransmission-induced queuing delay to an RTT or two. @nihe case of very
congested networks will back to back retransmission tirtetaad to a series of
exponential backoffs which degrade TCP’s performance.n@mther hand, TCP’s
socket buffer is often large enough that it can cause quedetays in the order of
seconds. In a previous study, it was shown that in many tiatisnditions, the
gueuing delay (specifically due to the send side TCP socKétrbus the domi-
nant portion of the total delay because of large kernel sdukiers employed by
TCP implementations [28].To address this, that study proposed and implemented
a modification in the Linux kernel to dynamically tune the lestcbuffer size to

1For example, with a typical TCP send buffer size of 64KB, ar@ Kbps video stream, a full
send buffer contributes 1700 ms of delay.
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avoid unnecessary queuing delay, bringing the end-to-etaly dvithin 2 RTTs

most of the time, while leaving TCP’s congestion controlharged. In this paper
we build upon that work, but our current solution is desigtedvoid altogether
the need for kernel modifications.

A kernel approach has several limitations that motivateousvestigate user-
space solutions. First, the need to modify the kernel isréyfaiajor obstacle to
deployment, as new implementations of TCP can take yeamsrtmiate widely to
existing systems. Second, under unusual duress of backltddsses and retrans-
mission timeouts, TCP can effectively become stalled. Tdresb this challenge,
we enhance our transport service with a failover mechanigermal to TCP. Third,
in circumstances where transparent proxies are employetS@s, CDNs, etc.),
splitting the end-to-end flow across multiple TCP connexjoan in-TCP based
approach looses effectiveness. For example, if the TCPextiom to a proxy (first
hop) is local, and the proxy to server connection (second spans a slow wide-
area path, then the first connection will mistakenly send fatsarate and allow
the proxy to queue up an undesirable amount of data. Coirgiddrese issues
together, we were inspired to explore a user-level approach

4.2 Data Service Model

Paceline provides a transport service targeted to apjglitcatvith both tight timing
and high bandwidth requirements. These applications areasingly designed to
support diverse environments from gigabit broadband nedsvio congested wire-
less links. Network resources (e.g., bandwidth) can bea@i either due to vari-
ability in an application’s own demands (applications cawmehdifferent resource
requirement over time) or variability in resources (whearstg resources with
other applications). Adaptive applications fine-tune thaliy of their outcome
depending on the available resources. This section descifile service model in-
tegrating Priority-Progress adaptation mechanisms tpatiparget applications.
In contrast to the reliable byte-stream service model of, TR2eeline provides
a reliable message-based service model. Like TCP, theiRaaarvice is full-
duplex, but for simplicity of presentation, we will desa&ithe two endpoint appli-
cations and Paceline in terms of application sender orveceoles. We chose a
message based model because low-latency is a primary gdahessages provide

50



a natural explicit means for the application to inform thensport about latency
preferences as well as representing an application datéADU).

Paceline’s programming interface allows the applicatiorspecify message
importance on a per-message basis, and Paceline delivesages in order of im-
portance, which is not necessarily first-in first-out (FIEEOjhe ability to queue
messages ahead of time is essential to achieve high baingidt the ability to
prioritize messages is necessary to prevent head-of-loeking® and the attend-
ing loss of responsiveness. Since re-ordering is impliciPaceline’s model, the
message send primitive provides an option (per-messag&)dsender to be no-
tified when the message has been delivered to the receivikelime byte-stream
service model, Paceline allows the sender to cancel a pgnussage, this feature
is motivated by the goal of responsiveness because the @advilbslow down new
messages and waste bandwidth. At the receiver, Pacelisegpamessages directly
to the application. Applications need to handle out-ofesrdelivery and missing
data introduced by message priority and cancellation.

In conjunction with congestion control, cancellation ieddy the application
to adapt the rate of message delivery to the underlying m&teanditions — such
adaptation is an essential requirement to reconcile therémt conflict between
the application’s need for control over timing and the béfstrenature of Internet
service. Informed cancellation maintains reliable dejiveemantics while allow-
ing applications to cancel stale messages. This providedtamative to random
dropping of messages (e.g., UDP) under congestion.

Paceline’s delivery service model comprises two requdstifives and two
notification primitives (callbacks). The requests amegwrite and msgcance)
and the notifications areent andrecv. One notable absentee from this model is
any explicit notion of time, deadline, expiratiogic. Given Pacelines’s objective
of supporting low-latency applications, we could have exjegal the model to have
Paceline assist directly in expiring messages deemed teddauseful delivery
(e.g., as in SCTP’s partial reliability option). Howevere wejected such an ap-
proach as the cancel primitive is sufficient for the appi@ato expire messages
itself (as in the example below), and it provides a means fiptieation specific

2paceline does enforce FIFO ordering among messages ofietqp@tance.
3A delay that occurs when a line of packets is held-up by thegasket.
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send_vi deo_frane (player, stream franme) {

/* Set message data and length =/
nsg_init.data frane. dat a;
nmsg_init.length franme. data_l en;

/+* Set nessage inportance *
nsg_init.inportance
neg_init.marginal _utility
nsg_init.sent

server_get _utility(frane);
server_get _marginal _utility(frame);
vi deo_franme_sent;

Inom =

/* Sending a frane with cancellation */
stream nsg_create(nsg_init, & rane.nsg_handl e);
stream nsg_wite(frane. nsg_handl e);
frame. expire_event = expire_video_franeg;
add_tiner(frane. deadli ne,

frane. expire_event);

}
expire_video_frame (frame, stream ({
stream nsg_cancel (franme. nsg_handl e) ;

}

vi deo_franme_sent (player, frame) {
cancel _tiner(player, frane. expire_event);

}

Figure 4.2: Adaptive video conferencing client

canceling policies. Furthermore, an expiry mechanism ot subsume the
need for a cancel primitive, because there would stilsperadicevents (such as
user initiated seek to a new position in video streaming) bguire the ability to
cancel immediately.

To help illustrate Paceline’s service model, Figure 4.2aims a pseudo-code
example of the logic that an adaptive real-time applicatiight employ, in this
case an adaptive video conferencing client. The cliens ¢aésendvideaframe
function to send a video frame message. This function sdramessage with an
importance specified using an application-specific utititgasure, reflecting the
relative importance of individual frames to perceived gyalf congestion control
restricts the rate of the stream, messages of low importailidee canceled by the
client when their utility has expired while high importanoessages will be sefit.

4For messages of equal utility, Paceline breaks the tie dizapto position.
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Paceline’s service model provides a clean interface fa& aalaptation to match
application demands with network conditions, instead @heotting messages to
the network transport (i.e., socket buffer ) and then simgefrom head of line
blocking.

To benefit from Paceline’s data service model, applicatioage to develop
domain-specific adaptation policies. In HD video confenegcwe have two di-
mensions for adaptation: spatial and temporal quality. demh application data
unit (ADU), the application calculates a utility value tdiesate its contribution to
the video quality. Each ADU represents a video layer and agtceline message.
Our example application, QStream [39] video conferencitpptation policies fa-
vor maintaining temporal quality (frame rate per secondr®patial quality (e.g.,
peak signal-to-noise ratio PSNR) to have less interrugdian if the spatial quality
per frame is minimal. In addition to these two quality dimiens, we can incor-
porate higher-level indicators, such as the active tab,smalicks, and position of
scroll bar to derive our adaptation policies.

In the gaming domain, first person shooter (FPS) games hantedi upload
bandwidth to send frequent updates to all game players iedlgeia epic fights
with a large number of players that are concentrated in ozee drherefore, recent
research [10] has introduced the idea of interest sets &dge limits of human
cognition in reducing bandwidth requirements. Interess see measured using
three criteria: proximity, recency, and aifaroximity is important because players
are most likely interested in players near them. Howevexiprity is not the only
spatial locality indicator because players have an oriemtaThey are more likely
to be interested in players they are aimingRé&cencyndicates temporal locality
so players who have recently interacted are more likely togitention to each
other. Interest sets can be used to derive the adaptatiaigsaoh epic-scale first
person shooter games to adapt bandwidth requiremantsmaintain timeliness.

Each application message sent in Paceline is part of a fiplledt transport
instance we refer to as a stream. Multimedia applicatioimsguBaceline can per-
form the following operations on streams: creation, segdinmessage, canceling
a message, and deletion. Even though streams are decoumiethe underlying

5Each peer receives 10 Mb/s in a 900-player game [10]
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Figure 4.3: Paceline architecture

communication channels, all streams with the same hoseasidind port num-
ber are multiplexed over the same persistent chai@tennelsare the underlying
communication primitive, identified by the host address jpoid number.

To summarize, Paceline’s service model provides apptinativith the ability
to prioritize and cancel messages. Paceline messagesra@ pastream. Inter-
active applications with high bandwidth requirements caa these primitives to
develop domain-specific adaptation policies to maintaimetiness in best effort
networks (i.e., the Internet).

4.3 Architecture

Paceline is implemented as a user-level library and is é&tyabove standard TCP
implementations as depicted in Figure 4.3. Paceline'sitaatiaire consists of four

main subsystems: message framing and multiplexing, adateantroller, connec-

tion management, and a stream layer. The stream layer alirded at Section

4.3.4Z. We describe the subsystems in the remainder of ttimse

4.3.1 Framing and Multiplexing

Fragmentation is the first of several techniques employeBdneline to improve
transport latency. Paceline allows application level ragss of arbitrary size. To
decouple transmission delay of potentially large applicatessages from lower
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level queuing delays, the data transfer mechanism of P&cslipports sender-side
fragmentation of application messages into Paceline chuarkd receiver-side re-
assembly of chunks back into the original application mgssaPaceline chunks
are bounded to a small size, typically a fraction of TCP’s imaxn segment size
(MSS). Paceline includes application level message queUedike lower level
gueues that operate in FIFO order, Paceline’s messagesjaszipriority queues,
so that chunks of newly-arrived important messages maykiyugreempt older
less-important one& Therefore, chunks of messages with high importance are re-
leased to the network faster and observe minimal queuindgri®aceline as well as
minimum application level transmission delay. Cancedlatallows the application
to abort a low importance message if its overall transmisdiglay is too large.

4.3.2 Latency Controller

In order to give applications more agility in adapting da&diwtry, Paceline re-
duces the amount of committed data in TCP’s outgoing buffier lkeeps data in
its own message queues. The latency controller is the coempdhat monitors
the progress of the underlying TCP flow and regulates theofag@plication data
(chunks) delivered to the sending side TCP. The goal of thigroller is to send
chunks into TCP fast enough to allow the congestion confréGP below to claim
the flow's fair share of available bandwidth, but not so fastioacause unnecessary
amount of FIFO queuing to accumulate in TCP’s outgoing sobbuéfer. We have
devised two distinct schemes: kernel-assisted and puseltlavel approach, each
having specific advantages.

Kernel-Assisted

The first scheme, which we call the PaceK controller, utditéormation directly
from the kernel TCP via the socket API. PaceK regulates tligngrof application
data to TCP in a way that dynamically matches the buffer fitléo a value close
to the size of TCP’s congestion window (cwnd), namelynd+ 3 x MSS This
design implements at user level the same strategy that walerimented inside

6SCTP provides similar support to avoid head of line blockingt there the focus is blocking
between sessions rather than individual messages.
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the kernel in a previous study [28]. In that previous stutdyyas shown through
extensive experimental evaluation that this strategiesrihe best balance between
latency and throughput.

While this scheme is simple and effective, it requires infation that only
some implementations of TCP make available. The PaceKatartwe have im-
plemented in Paceline is Linux based, and it uses the Linexip TCRINFO
getsockopt to query TCP’s congestion window (cwnd) sizd, SiOCOUTQ ioctl
to query the TCP socket buffer fill level. In Windows, the dapped IO feature
of the WINSOCK2 API can provide similar information. Hendhis approach
is more portable than the previous modification to the Linexnkl. However,
to the best of our knowledge, the TCP socket API's of otheruteopOS's such
as MacOSX, Solaris, Symbian OS, and BSD Unix do not providessto such
information, hence our PaceK controller is not fully pofeabAlso, transparent
proxies in the network path would likely defeat the PaceKtaler's ability to
regulate queuing delay, as the TCP socket buffers in theigg@perate indepen-
dently, and can easily become points of major queuing délthey precede the
path bottleneck.

Purely User-Level Approach

The second latency controller available in Paceline isedafPaceA. Unlike the
PaceK controller, it uses only the common TCP socket APllabk on all ma-
jor operating systems. PaceA is designed to be layered aioPewhich entails
both advantages and obstacles not applicable in true werispel solutions. The
main advantages are portability (no need to extend or mdaifgiels), ease of de-
ployment (e.g., in relation to firewalls), and avoiding devhs due to intermediate
proxies.

As with the kernel-assisted method, the user-level lateocyroller regulates
writing of new chunks to TCP, so as to keep the value of TCRebdif level close
to cwnd+ 3 x MSS In this way, the amount of FIFO queuing, which is the root
cause of head of line delays, is minimized. However, at tle-level the value
of cwnd is not available. Hence, the primary goal of PaceA is to Mﬁd,
an estimate of TCP’swnd as accurately as possible using only information that
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is available to the application. Throughout the developnoémour algorithm, we
used time series traces from our prototype to compare oworidig’'s estimates
against TCP’s true behavior. Section /4.4 describes theriexpetal setups under
which these traces were taken. Using this experimentaloagpht we iteratively
developed our latency controller. The rest of this sectiescdbes the derivation
of our algorithm to accurately calculatsvnd from estimates of network latency
(tt) and available bandwidtibg).

Paceline utilizes application-level acknowledgmentA@EKs) to measure la-
tency and bandwidth as follows Paceline generates a unique sequence number
for every Paceline chunk. When a chunk is written by Pacdbn€CP, it enters
that chunk into a FIFO queue (since TCP delivery is FIFO) andes the cur-
rent time with the chunk. A valuenackedis maintained that totals the size of all
chunks written but as yet unacknowledged, hence refledtied CP socket buffer
fill level.2 When reading chunks, the Paceline receiver will generatd&IR con-
taining the sequence number of the last chunk receivedn(afidtiple chunks are
received at a time). Upon receiving a P-ACK, the Pacelinelsescans the queue
for the chunk matching the sequence number. When foundcltoatk and all prior
chunks are de-queued and considered acknowledged (P-ACRd& each chunk
P-ACK'd, the round-trip time is computed and the chunk si&zedunted for use in
a periodic bandwidth calculation biv.

TCP keeps CWND bytes in flight. The simplest formawind would be the
product of latency and bandwidth. Being a user-level atgorj Paceline can not
directly know about TCP events such as retransmit, whiattsléa significant mea-
surement noise in the latency and bandwidth values providedP-ACKs. There-
fore, we applied simple smoothing to the measurements efdgt ftt ewms and
bandwidth EVvewma), using exponentially weighted averaging (EWMA).

After implementing a naive controller based ornd= It ewmax BJvewma(Fig-
ure 4.4a), we observed thawndis able to follow the general trend of the real value
of cwnd, but lacks the fine details where TCP exhibits rapid changéss slow

7P-ACKs are also essential to the failover component of Rezéd be discussed later in this
section.

8We verified this using time-series traces of socket bufféa.da

%ewmdavg samplealpha : avg= avgxalpha+-samplex (1—alpha.
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responsiveness of the controller impairs performance omregpects. First, when
TCP drops its rate by resetting cwnd to the initial value (iehen a TCP retrans-
mission timeout occurs), our controller does not responuédiately, causing the
socket buffers to fill and latency to increase. Second, aasirstart-up or when
there is a major increase in available bandwidth (e.g., dueduction of compet-
ing traffic), the controller’s slow response impairs TCHiflity to claim available
bandwidth.

To improve the controller, we devised a hybrid estimate tiests TCP’s de-
crease and increase modes separately. To identify TCP'e mibdperation, we
use an indicator of the trend in TCP rate which we ga#issure

bw

pressure= P
2xbWewma

Pressure normalizes the ratio betwedsmn (the short term estimate of band-
width) andEVvewma(a long term estimate of bandwidth). If necessary the vafue o
pressure is clipped, so it fits in the ranf§el]. During rapid decreases in band-
width, pressure drops to zero, while during rapid incre@sgses to one.

Sudden drops or increases in bandwidth measurements camlpsignals of
congestion or available bandwidth. This is similar to TClBa&congestion control
[13], which uses increases in RTT measurements as a siggakok buildup.

To treat TCP increases separately from decreases, weedﬁm\@gmawith two
separate temiglv+ andbw_. Theth+ term responds immediately to increases in
bw but smooths decreases, using asymmetric EWMA:

ewma(avg, sanpl e, a):
i f(sanple > avg)
avg = sanple
el se

avg = ewma(avg, sanpl e, a)

The objective is to fav06\7v+ when TCP’s rate is increasing, asessureap-
proaches onebw._ works in precisely the opposite fashiontt/&+, and is favored
as pressure approaches zero. Thus, our hybrid estimatéokomgs:

cwnd = rttewmar ((1— pressureg x bw_ + pressure:bw;, )
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This estimate succeeded in responding more accuratehetwua TCRcwnd
under most network conditions (Figure 4.4b), however, undey heavy load we
observed it still overshoots. In these conditions, thetikedly small adjustments to
the rate can have large effects on queuing delay. This caupesitive feedback
loop, where a small overestimate of BW leads to an increasétdpma Which
results in further over estimation, manifesting as a ptsily rising rtteyma TO
detect this situation, we introduce a new stability checkhim algorithm, it uses
the ratio ofrtteyymato rtt_, wherertt_ is based on asymmetric filtering dt. The
rtt_ responds immediately to decreases in latency, smoothivegwise. From our
traces, we found it to be representative of the minimum paridatency defined
by TCP’s RTT measurement. We expect that a heavily smootrerdge oftteyma
should remain close to the average TCP RTT. We take a ratibeofwto to be a
conservative sign that a correction is necessary.

Finalizing our estimation ofwnd we have:

if ewma > 2
Mtsignal = rt—
el se
Mtsignal = rttewma
cwnd= (1— pressurg x rttsjgna x bw_+

pressurex rtteywmax bw,-

Encouraging Fast Retransmit

One of the fundamental components of TCP congestion caatited fast-retransmit
algorithm, which normally allows TCP to recover from a lo&H segment within

a single extra RTT, instead of waiting for the retransmisgimeout. Retransmis-
sion timeouts are highly undesirable as they cause an afiplicto experience a
dead zone, typically hundreds of milliseconds with no datagfer. Fast retransmit
requires four segments to generate the necessary dupfi€is. If the applica-
tion sends less than 4 MSS bytes at a time, it may impair TCP fast retransmit.
Paceline includes heuristics to prevent this,, it promotes bursting of at least
four segments at a time. In some cases, if the available sldas than 4 MSS’s,
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Paceline interleaves sends with calls to the TRIPDELAY socket option, to en-
courage TCP to generate four sub-MSS segments.

Implementation of P-ACKs

As described above, the receiver notifies the sender of tlst recently received
sequence number via P-ACKs. We constrain this process sthihéotal P-ACK
bandwidth remains a modest fraction of the sender to recbamdwidth (between
30 and 50Kbps in our implementation).

It should be possible to eliminate P-ACKs entirely in the éacontroller,
based on knowledge of the amount of data written and the séittkevel to infer
which data has been ACK'd by TCP.

4.3.3 Failover and Connection Management

In Paceline, the message framing and latency controllepooents are the basic
means to limit the latency experienced by the applicatiow, \&e evaluate their
effectiveness in Section 4.4.1. However, we foreshadowebelts of our evalua-
tion here in order to motivate Paceline’s failover compdndariefly, we see that
message fragmentation and application pacing can gepérgdrove latency (in
some cases more than a factor of three), but the distribofidatencies retains a
prominent tail and there is a wide gap (e.g., more than afadteight) between
median and worst case latencies. We diagnosed the worstataseies through
a combination of instrumentation in Paceline and packeetemalysis using tcp-
dump [70] and Wireshark [73]. Under heavy congestion, TGPesgerience back
to back losses leading to one or more retransmission tirme@uir diagnosis con-
firmed the worst case latencies were correlated with sudodps of exponential
backofflC To reduce their impact, Paceline further includes a failawechanism
to supplement its basic latency limiting mechanisms.

One can think of Paceline’s failover analogously to the adenwhere a user
presses the stop/reload buttons in their Web browser upoouetering slow re-
sponse. Automated failover may sound quite radical, buegaluation shows that

10 Although it is outside the scope of this work, we have alsdcedk similar problems when
testing Paceline over wireless links (WiFi) with poor sigstaength.
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our implementation achieves significant reductions in woase latencies while
preserving bandwidth fairness (see Section 4.4.1). Weadyreliscussed further
justification and rationale for failover in the related wankalysis, for now we fo-
cus on the design of failover in Paceline.

Failover Implementation

Paceline’s failover mechanism works by maintaining a pdahannels between
the pair of communicating applications. Each channel éostavo TCP sockets.
Paceline uses just one of these channels for data deliverga@h direction) at
a time. However, if a Paceline sender detects that a chunkdtdseen acknowl-

edged within a time threshold, namdigilovernresh it migrates data delivery away
from the current active channel to one of the available starahannels. Pace-
line implements failover in a manner that is fully transpert the application.

The migration may include retransmission of chunks on the aetive channel

so Paceline introduces receiver-side logic to suppresbicdtg chunks that may
result. Also, concurrent to activation of the new activeroiel, Paceline’s connec-
tion manager terminates the old one, and initiates a newcepient channel that,
once established, enters the pool of available standbys.

The failover threshold is set dynamically in Paceline. Threshold setting is
subject to a trade-off between latency and fairness. Simeplacement channel
starts in TCP slow-start, frequent failover will inhibit é&dine’s ability to attain
a fair share of bandwidth, possibly resulting in underizdtion of the network.
Paceline calculates the failover threshold as follows:

rttyar is the maximum variance in round-trip times calculated fogrg Pace-
line chunk andhresholdi, sets a lower bound ohailoveknes, Which we set to
225ms, similar to what is set as the minimum RTO for TCP cotioies inside
the Linux kernel. We also intended to S&tiloveriactor to be the same as what is
used in RTO, which is four. However, since our measuremeartaiahe applica-
tion level and subject to greater noise than measurements idside the kernel,
we observed that a factor of four results in too many falsetiges, i.e., Paceline
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would failover even when TCP is not in an exponential backtdfe. Thus adding
a safety margin and usingfailover;,ctor Of five significantly reduced the number
of false positives.

When replacing a failed channel, the connection mini-pottgends dailover
message from the sender to the receiver on the newly selectigd channel sock-
ets to ensure both sides are synchronized. This messagedésch counter value,
maintained by the sender side, incremented each time tldeiséails the current
active channel. If very severe congestion causes more thariadover to occur
back to back, then it is possible that standby channels wilestablished in an
order different than how they were initiated. The countarsed to ensure that the
sender and receiver remain correctly synchronized on tiieathannel.

When replacing a channel in this way, Paceline does not khatwinks that
were in-flight on the failed channel were delivered or not.eJé chunks are re-
turned to Paceline’s sending queue, and possibly retraeshon the new active
channel. To maintain transparency, the Paceline receagitd detect and sup-
press duplicate chunks. This is complicated somewhat byaittethat Paceline
continuously sorts messages according to importancefmuebly the application.
Thus, the sequence of chunks outstanding when failoverrsenay not be equal
to the initial sequence of chunks sent on the newly seleattdeachannel. Some
new high importance chunks may have arrived, and also sontieeobld low-
priority chunks may be canceled (by the application). Toecwyith this, Paceline
receiver maintains a lookup table containing sequence atsrdf chunks received.
When a chunk arrives, the table is used to detect duplicdtegrevent this table
from growing unboundedly, the sender periodically sendsaeelhe message to
indicate the maximum and minimum sequence numbers actitieeosender side.
The receiver uses this information to clear out sequencebasroutside the given
range. In this way, the set of sequence numbers in the redabie will always be
bounded, and all sequence numbers will eventually be rethivoen the table.

Connection Manager

The connection manager is responsible for managing thegoahinstances used
by Paceline, including the standbys used for failover. Rahsessionmeaning a
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pair of processes communicating via Paceline, Pacelineemgfoy several TCP
sockets. The precise number of sockets and their roles degemconfiguration
settings, such as the number of standbys used for failoveepted in Figure
4.5. Prior to the flow of application data, Paceline execatesini-protocol to
establish the initial set of session sockets. This protbed two phases. The
first phase exchangesanfigurationgreeting and response between client process
and server process, using the first socket. The client geeestts the session-
wide configuration parameters, such as a globally uniquaifier (UUID) for the
Paceline session, and the number of standbys. The secosd phthe protocol
creates the remaining sockets, and exchandpisdayreeting and response on each
of them. The bind greeting contains the UUID of the sessitowdthg the server to
associate the socket to the correct session state. Aftémitla set of sockets are
established, the connection manager may also remove alatediiled sockets,
as part of the failover functionality described above.
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4.3.4 Stream Fairness

Figure 4.6 illustrates the added stream fairness layer frenPaceline sender side
view. The fairness design in this chapter is between stredraing the same un-
derlying communication channel. One important decisionhae to make while
implementing the stream fairness layer was to choose aoppate policy to mul-
tiplex data of different streams over the underlying chanwéhile a simple FIFO
or round-robin policy is simple to implement, timelinescessitates a better no-
tion of fairness among concurrent streams especially wiaaalwidth is limited.
Thus, we implemented a fair sharing policy inspired by wadgdtfair queuing. In
essence, our policy shares the available resources aautivg streams in a fair
manner. An active stream is a stream that has data availalbe written. If the
send buffer of a stream is empty, we refer to that strearndlas Each stream is
assigned airtual time, a counter quantifying the resources a stream has used since
it was created. We use the term “time” due to the invariarntwenever allow this
counter to decrease, it can only increase.
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The stream layer maintains a priority queue of active stegasorted in as-
cending order of virtual times. Each time the channel isydadvrite data to the
underlying communication channel, it removes the streath thie lowest virtual
time from the queue, writes a message from that stream arategpthe stream’s
virtual time. If the stream is still active, i.e., still hasore messages to be writ-
ten, it is re-inserted in the queue. Otherwise, the streamasked as idle and
will re-enter the queue when it has more data available. gJ&iis mechanism we
can multiplex different streams at message-level graitylarhe important factor
regulating how streams are multiplexed is how we initiabael adjust the virtual
times of the streams.

Virtual Time Initialization

Virtual time initialization is based on the following twolas:

e Rule 1 (fair start): when a stream is created its virtual time is set to the
minimum virtual time of all the active streams. If no actiteeams exist, the
virtual time of the newly entered stream is set to the maxinvintoal time
of all idle streams, or zero if this is the only stream.

e Rule 2 (use it or loose it)if a stream becomes active after being idle, the
stream’s virtual time is set to the maximum of its virtual érand the mini-
mum virtual time of all active streams.

Rule 1 ensures that when some active streams have non-zeral times and
a new stream X joins, we cannot set X’s virtual time to zerng¢siit implies that
all other streams would have to starve while X uses all theuregs to catch up
with the rest of the streams. If stream X is created when b#rostreams are idle,
setting X's virtual time to the minimum is no longer fair. Wet X’s virtual time to
the maximum virtual time of all idle streams. Now no strears &iaadvantage over
the other because rule 2 guarantees that no stream can sabarié of resources
and use it at a future time. If stream Y goes idle for some tintkal other streams
use D units of resources, we adjust Y’s virtual time onceattiwates to penalize
it for not using its share.
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Virtual Time Updates

In this section, we will give a clear definition ¢dirness Fairness should have a
definition that is independent from the type of applicati@ing the stream API.
For example defining fairness between two video streams a&sjaal number of
frames per second depends on the video application, and ohayen be valid for
multiplexing two videos with different encodirig.

Fair sharing is governed by how virtual time in each streaupdated. When a
stream transmits a message over the underlying channeitital time is updated
according to the fairness criteria. We implement two fampolicies: resource
fairness and quality fairness, using message size and mahrgility respectively.
Conventional resource fairness is implemented by incréimgrhe virtual time
based on the size of each message transmitted by the streatie @ther hand,
guality fairness allocates resources based on the apphiatiuality of experience.
Quality fairness may cause un-fair resource allocationefample, video quality
depends on a number of factors such as temporal fidelity ésgmer second) and
spatial fidelity (image size or PSNR). Two streams with equality in those terms
may have drastically different resource (bandwidth) rezquents as we show in
our evaluation.

To implement quality fairness consistently across comarstreams, we pro-
pose a neutral model of quality based on a generic utilitchEpplication ADU
will have a utility to the user, which can be expressed in raizad units (in the
range [0,1], from the least acceptable quality to the marinhetween the ap-
plication and the transport. Our service AP| exposes thesaggsnarginal utility
value for this purpose. The virtual time of the stream iséased by the marginal
utility of each message. The intuition is the following,rthe application is con-
tinuous, we can think of the cumulative utility as the sumnstantaneous utilities.
For the virtual time of each stream to be meaningful acroterbgeneous streams,
the marginal utilities should be computed such thatdt =t, for the full sequence
of messages having marginal utilitiesin a time intervak. If some messages are
canceled, then virtual time will advance more slowly. Cohtnessages are not
adaptive so they use a default utility value of zero and irgoae of one.

11sending one frame in an MPEG encoded video may be useless thiertframe dependencies.

67



By scaling virtual times of streams with different factonge can allocate dif-
ferent shares to different streams, providing weighted gharing. In the next
section, we evaluate fairness across streams.

4.4 Evaluation

We evaluated Paceline experimentally within an Emulab agtwestbed [80]. Our
implementation of Paceline is written in C, the size of thedfiae codebase is
around 10,000 lines (including comments, counted uging- | ). Our evaluation
consists of three main sections: the first based on lowespi@hlevel metrics, and
the second based on higher application level (multimedielyios. The first two
sections evaluate adaptation in one stream while the thirtion evaluates fairness
across concurrent streams. The low level evaluation casametrics of latency,
fairness, and utilization in a range of network conditiofike high level part of our
evaluation uses our video streaming framework, QStreai {@eelate the impact
of low-level performance gains to metrics more applicabléhe user experience.
At the transport level, we use latency to mean the time toeletihunks end-to-end
with Paceline, and by fairness we mean the sharing of bartdw@idong competing
flows. At the application level, latency refers to the onerwalay tolerance of the
application.

Our measurements are compared against two points of referdrhe first is
TCP, which we use to quantify the improvements due to Pazelline second is
the Structured Stream Transport (SST), which is implenteoter UDP [24]. SST
provides a rich service model including reliable messagimgjcongestion control,
but unlike TCP it provides direct support for applicationopities without head of
line blocking. We chose it because we feel it includes theeréulge of capabilities
one might expect from any realistic clean-slate replacearfoer CP. Thus, we use
SST to approximate a best-case reference point againshwheompare Paceline.

4.4.1 Transport Level Performance

We compare Paceline (PaceA and PaceK modes) to TCP. In thenbG®, our ap-
plication still uses the service API of Paceline but therayecontroller is disabled,
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hence we send data via TCP as fast as it will aftéw.

Our network setup uses the common dumbbell topology, wheet @f servers
on a LAN connect through a single bandwidth-delay constciiink, emulating
a wide-area (WAN) path, to a set of clients on a remote LAN.tRerWAN path,
we emulate a 30ms RTT delay with a bandwidth limit of 16Mbpshe TWAN
bottleneck uses drop-tail queuing with a queue size of twtieebandwidth-delay
product of the WAN adding 60ms when the bottleneck becomegesied. Each
experimental run lasts more than 6 minutes. To control theusrnof workload
in each experiment, we vary the number of flows sharing thh. patl of the
nodes run the Ubuntu 9.04 Linux distribution with the Linu%.28 kernel, and
the default TCP Reno congestion control. We configure thebmurof clients
and servers to ensure that the WAN path is the bottlenecks@me other client
or server resource). To eliminate experimental start-upsdnutdown effects, our
measurements exclude the first and last 60 seconds of eackaah experiment
was executed 10 times and the average is reported. Confiaidanels were used
to check the consistency of results but we do not report theertal lack of space.

Our first set of experiments focus on transport latency. Qmria to quan-
tify Paceline’s low level latency improvements over plai@H. In the remainder
of this evaluation, our experiments are set up to reflecterattarsh conditions,
where the bottleneck WAN link is persistently saturated. fdéais on these con-
ditions because we expect that if high-bandwidth low-leyespplications, such as
video conferencing, online games, and virtual reality epilons become main-
stream, they will make the network saturated, much as ofigrtandwidth (but
high-latency) applications such as peer to peer file shatingow. These are the
conditions where normal TCP’s latency leaves much to beaatsiOn the other
hand TCP’s abilities to utilize the network and divide baiditv fairly (in a de-
centralized fashion) while avoiding congestion collagss/e been critical to the
ongoing success of the Internet.

12A]1 of the flows are actually video flows [39] that cancels Iprierity messages based on the
flow rate. We mention this to confirm that the cancellatiortdemof Paceline is exercised in all our
experiments.
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Latency

To identify the settings at which TCP’s latency begins tdesufwe streamed a
variable number of video files over our testbed network. Badko flow has a

constant maximum rate of 4Mbps. As described in SectiorR4Raceline mea-
sures the application-level round-trip time for each chittdansmits. Throughout
the course of the experiment, the senders record a conservaeasure of la-

tency we call Oldest Un-Acked. The value is sampled peralljicas either the

oldest outstanding chunk still in flight, or the maximum RT€asured (for each
acknowledged chunk) in the interval, whichever is greaidnis value provides a
conservative estimate of the delay the application canrexqee for its most im-

portant data, although it explicitly excludes extra posstbansmission delay due
to large application messages. Through the remainder sfséttion, when we
refer to latency, the measurement used is Oldest Un-Ackesl dé\hot consider
the latency of SST in this section, because its implememadliminates transport
gueuing delay, however we will consider SST's performaru application level

delays generally in Section 4.4.2.

Flows 2 4 8
Median Latency| 1.6 | 7.1 | 7.4
99.9 Percentile| 25| 17.9| 18.4

Worst Case | 2.9| 20.4| 22.8

Table 4.1: Latency measurements for TCP (normalized to path RTT)

To understand the latency distribution of data delivenbl@ad.l. shows the
median, 99.9% percentile and worst-case latencies, whedveork load is varied
between two and eight flows. Each value in the table is nomedlagainst the
average of TCP’s measured RTTs for the correspondind<rim.our setup, these
averages were usually around 88 ms. We believe the TCP RETqu#te accurate
and give a faithful representation of network level profiegeand queuing delays,
hence the normalized ratios give a clear view of the addifiaielay due to the
transport level. According to the data of Table 4.1, the @diting in which TCP
has acceptable latency, below typical human interactioestiold, is a run with

B3Wwe used the Linux TCPINFO socket option to query the actudl Rieasured by TCP.
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2 flows, which is the only run where the bandwidth requirermesttthe flows
does not fully saturate the bottleneck link. With 8 video€PTs performance has
median latency over 650 ms (7.4 RTTs) and worst case latenocyd 2 sec (22.8
RTTs) which is not suitable for interactive applications.

Median Latency
TCP | PaceK| PaceA
8 7.4 2.0 2.0
16 9.3 2.0 2.1
24 8.8 2.1 2.7
32 9.5 2.7 3.0

(a) Median

Flows

99.9 percentile Worst Case
TCP | PaceK| PaceA| TCP | PaceK| PaceA
8 184| 5.4 57 | 228| 94 9.4
16 | 27.3| 94 9.8 | 35.7| 13.8 15.0
24 | 355| 134 140 | 49.6| 24.1 23.1
32 | 45.3| 18.0 20.8 | 73.6| 34.6 37.7

(b) Tail
Table 4.2: Latency measurements for different latency controlleisr(ral-
ized to path RTT)

Flows

Using 8 flows as a starting point, we consider a range of traifids, consisting
of 8, 16, 24, and 32 Paceline flows (with aggregate bit-rafe32p 64, 96, and
128 Mbps respectively compared to our 16Mbps bottlenecihler4.2 shows the
latency measurements for TCP, PaceK and PaceA. To focusgretformance of
the latency controllers, these results are with the failéeature disabled. For each
number of flows, PaceA and PaceK consistently improve on TVC® dignificant
margin in median (improvement factor 3—4.5), 99.9% latgirmyprovement factor
2-3), and worst case latency (improvement factor 2—2.5allimodes, the worst
case latency measure is significantly higher than the median

In Table 4.3, we show Latency results for PaceK and PaceA wieeanable
failover. Enabling failover doesn't make noticeable clesgn the median, but
improves the 99.9% latency and the worst case noticeably.imiprovement over
the non-failover case is up to a factor of 2 in congestednggttiFor the remainder
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Median Latency
PaceK| PaceA
8 2.0 2.0
16 2.1 2.1
24 2.2 2.7
32 2.8 2.9

(a) Median

Flows

99.9 percentile| Worst Case
PaceK| PaceA| PaceK| PaceA
8 4.4 5.1 6.5 7.2
16 7.4 8.4 10.8 | 11.0
24 9.4 10.1 | 139 | 144
32 11.4 | 12,7 | 18.2 | 183

(b) Tail

Flows

Table 4.3: Latency measurements for different latency controllerghwi
failover (normalized to path RTT)

of the evaluation, all results quoted for Paceline are vétlofer enabled.

It is informative to notice that PaceA with 32 videos (withildaer enabled)
has significantly lower latency profile (median, 99%, andsit/oase) compared to
TCP with 4 videos. Thus, Paceline can maintain TCP’s cutegahcy profile with
8 times the number of flows. In addition, the worst case lateéméaceline with
failover enabled is more predictable and consistent withaaimum confidence
interval of 1. However, the worst case latency without faglovaries considerably
in congested networks with confidence intervals reaching 10

Fairness

The previous experiments showed that Paceline significantiroves latency rel-
ative to TCP. We examine bandwidth fairness for PaceK, Pa8&X and TCP. We
do this in two steps, first where all flows are of the same typd, second when
mixing Paceline or SST flows with TCP flows. We use two metricgwantify
bandwidth fairness. These two metrics were calculatedyueplication level data
to allow fair comparison with SST.
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The first metric is the Jain fairness index [34] (results ibl€x4.4), which is
defined by the following equationfairness= ((nz;g)’ wheren is the number of
flows andy; is the bandwidth allocated to flow numken a given time slot. This
index ranges from An (worst case) to 1 (best case), we scale it to percentages.
SST flows has relatively better fairness than TCP flows whetiik is extremely
congested (i.e., 32 videos). More importantly, Pacelineegaly matches TCP’s

standard level of fairness in addition to improving upon TJ&ency profile.

Jain fairness index
TCP | PaceK| PaceA| SST
8 925| 905 89.9 | 85.8
16 90.7| 885 88.6 | 88.3
24 | 851| 83.0 82.8 | 85.6
32 79.0| 794 77.3 | 85.5

Flows

Table 4.4: Fairness measurements for different latency controllers

To understand fairness in greater detail than allowed vhighJain index, we
also convert bandwidth measurements from the same expagreo a form of
CDF for the sharing ratio between different flows. We comgule fairness CDF
as follows. We subdivided the measurement time-line initoum time slots (e.g.,
every 500ms). For each time slot, we compute the sharing cditeach flow's
bandwidth to the fair bandwidth share (i.e., total bandwidhumber of flows).
We then plot the CDF of the sharing ratio for each transpordendVe prefer these
CDF’s to a single metric because their shapes convey uefsrboth in terms of
per-flow bandwidth (x position) and degree of affected flowpdsition). In the
case of perfect fairness, the CDF would appear as a sindiealestep at In, i.e.,
all flows get equal bandwidth in every time slot. In generalfaarness decreases,
so will the slope of the CDF line. Also, if the left y-interdgp non-zero, as seen in
Figure 4.8 with the extremely congested scenario of 32 flawslicates that some
of the flows experienced total starvation. This fairnesssueawas instrumental
in refining our rate control and failover algorithms to meet goal of maintaining
fairness equivalent to TCP.

We computed these fairness CDFs for all of the cases of theéopiseexperi-
ment: with the number of Paceline flows ranging from 8 to 32,dach case of
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TCP, PaceK, PaceA, and SST. In Figures 4.7 and 4.8, we sholtsragen using

500ms intervals. We show only the 8 and 32 flow CDFs since tinergé trend

across all the link load configurations (i.e., 8, 16, 24, addi8eos) is consistent.
The shape of the CDFs show that Paceline is able to prese&s Tdrness. SST's
fairness is the same, which is not surprising since SST'gestion algorithm is
based on that of TCP. Also as expected, comparing Figuresnl 4.8 shows that
fairness degrades as more flows share a link.
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Figure 4.7: Fairness CDF of SST, PaceA and PaceK compared to TCP using
8 flows

Incremental Deployment

In the fairness experiments above, the flows in a given exyri were of the same
type. Since TCP is the dominant transport in the Internes,imhportant to see how
a new transport such as Paceline or SST can be incremenégllgydd and share
bandwidth fairly and safely with TCP flows. In addition, itimportant to verify

that the latency advantages of Paceline still exist wheelPeacflows compete with
normal TCP flows. Paceline ideally should deliver its lajeadvantages even in
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mixed deployment without harming existing TCP traffic.

We conduct a series of experiments with a mixture of TCP amgRaPaceA
or SST flows, with 16 video flows total. We vary the mix of flowsngsTCP from
0-75 percent. Table 4.5 shows the median latency, for PandKPaceA, for each
mixture of flows. As the fraction of TCP flows in the mix increasthe median,

99.9%, and worst case latency of PaceA and PaceK are noteaffec

TCP % Median Latency| 99.9 percentile| Worst Case
PaceK| PaceA | PaceK| PaceA| PaceK| PaceA

0 2.1 2.1 7.4 8.4 10.8 | 11.0
25 2.1 2.2 7.2 8.4 10.0 | 11.3
50 2.0 2.2 6.9 8.2 8.7 10.2
75 2.0 2.3 6.8 8.4 9.1 10.1

Table 4.5: Median latency measurements (normalized to path RTT) fier di

ferent latency controllers and mixed TCP with 16 flows

Considering fairness, we show the result for one case, PaoeKTCP with
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Figure 4.9: CDF of fairness with 8 PACE-K flows 8 TCP flows

8 flows each (50% TCP), in Figure 4.9. The general fairneswitie preserved,
although TCP gets more than its fair share with constanbfaoh average about
10% with PaceA. The other cases exhibit the same patterrthbedactors differ,
with PaceA we see 8% and with SST we see 9%. We can see thameébeline
nor SST represent a threat to TCP traffic.

Utilization and Wire Overhead

The general premise of adaptive delivery is that availakledividth is dynamic,
and that the application should use its full fair share toim&e quality. Hence a
basic requirement for the transport is that it be effectivénding available band-
width. We showed that Paceline shares bandwidth fairlyl€ldld.). While fairness
concerns division of bandwidth between flows, it is also ingat that the aggre-
gate bandwidth utilize the capacity of the bottleneck. Weasneed raw utilization
using packet traces collected via tcpdump on the bottlelieiclof our experiment.
Also, to understand how much of the raw utilization is conedrhy transport level
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Figure 4.10: Network utilization versus application-level throughput

overhead, we measured the data rate delivered at the amplidevel on the re-
ceiver. This rate is lower than raw utilization due to lowaydr packet header
overheads (Paceline, SST, TCP, IP, etc.). Note this thjmutgtoes not account for
data that is delivered to the receiver, but is dropped atppécation layer because
of high latency. We consider that issue in the next section.

The difference between tcpdump utilization and the apptoahroughput rep-
resents the basic wire overheads of the transport (and Jdayars. From Figure
4.10, all transports in our experiment achieve high netwevil utilization, the
numbers are between 98.7% (SST) and 96.6% (PaceA).

Transport Level Performance Summary

Compared to TCP, Paceline’s PaceA and PaceK algorithmsedta median end-
to-end latency by a factor of 3—4x. With failover, the 99.984 avorst case latency
improves by a factor of 3—4x (in Tables 4.2 and Teble 4.3). eRaand PaceK

have similar bandwidth fairness to TCP while SST has bediendss in congested
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settings. In addition, Paceline shares bandwidth fairhh WiCP flows while retain-
ing all latency improvements so it is incrementally depladgan the Internet. All
transports we examined have high network utilization armdaaable wire over-
head.

4.4.2 Application Level Performance

In Section 4.2 we gave an overview of how adaptive applioaticould work over

best effort transport, by prioritizing ADUs and canceliogvlimportance ADUs if

they can not be delivered before an expiry time. We now etalilee performance
of such an application with Paceline, in terms of applicgalevel quality metrics.

We show the message latency with respect to assigned priarit then we shed
light on the nature of the tradeoff between overall qualitgd ateractivity.

Latency Effects on Quality

In this section, we conduct a simple experiment to supparctaim that Paceline
provides low latency for important data. The bottleneck lin this experiment
allows 12Mbps of traffic in each direction with a 30ms rourig-time between the
two LANs. We conduct this experiment with two servers andhedjents. In each
run, the servers stream a single video to their clients usitigr TCP or Paceline.
We measure one-way message delay in relation to the messagetance. Ev-
ery message given to the stream layer is timestamped withrits time and the
receiver compares it against the arrival tiieThe network is highly congested
forcing the application to drop some messages. We expect smmimportance
data to be dropped (or sent late), while higher importande lda delivered with
low latency. Figure 4.11 shows one-way end-to-end latefdglivered messages.
Messages are spread into buckets, according to their iampe®t Figure 4.11a
presents the median latency, while Figure 4.11b is the B®&tcentile latency.
The servers enforce strict timing on outgoing messagesméssage has not
been transmitted 200ms after it has been given to the stragan lthe application
cancels it. The one way delay from a server to a client is 1amd the constrained

14e synchronize times using ntp. We do this only for experimmlgourposes, in normal operation
QStream adjusts server and client side expiry times indiply.
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Figure 4.11: End-to-end message latency based on message importance
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link imposes an additional two bandwidth delay product (BQ&euing delay, for
a total of 75ms one-way delay. We would expect to see messhgliesred with

end-to-end latency of 275ms or less. As can be seen in botle§igliCP has high
latency, where the median is well above the 275ms threshBkiteline, on the
other hand, manages to keep the median latency very close tone-way delay
(75ms) for more important data (importance equal to 1). Bdit® and Paceline
exhibit higher median latency for less important messages.

Large application messages that are spread over multipiepeCkets may be
transmitted over the network in different round trips, gasing the overall end-to-
end delay of the message. The situation is aggravated if faime packets have to
be retransmitted, adding more round trips to the messagg.d€hus, we expect
the 99.9th percentile message delays to be more than thes2iseshold allowed
by the application. We can see that Paceline has a cons&9®th percentile
latency, compared to TCP, which is close to 400ms for all agss. For TCP, the
99.9th percentile is above a second for the majority of mgEssaalmost reaching
1.8 seconds in some cases.

In summary, Paceline reduces latency significantly contparéd CP. Median
latency is relatively lower for important data (minimum eway delay for Pace-
line) and higher for less important data. Paceline has a cmisistent worst case
latency compared to TCP. These results support previoustsexbout Paceline’s
performance.

Quality and Interactivity Tradeoff

We use the same experimental setup as in the transport i@tabéion (16Mbps).
One of the main issues we wish to shed light on in this part oewaluation is the
nature of the tradeoff between overall quality and intevagt—better interactivity
(lower latency) generally comes at the expense of videoitgu@.g., spacial de-
tail). In the following experiments, we fix the number of floatseight videos, but
we vary the level of interactivity, using a configuration grmeter we callatency
threshold The latency threshold is the amount of time each ADU is givefore
it expires. In our experimental setup, we synchronize th@rgximes between
client and server, so that latency threshold exactly detersnthe application-to-
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application transport latency.

To quantify video performance close to the level of user gepee, we use
three metrics. The first two metrics are the average tempoiaity (fps) and av-
erage spatial quality (number of spatial layers per framig)e application used
is QStream adaptive video streaming application. Adagwtatn QStream priori-
tizes ADUs according to two dimensions of video quality, edyrtemporal qual-
ity (frame rate) and spatial quality (PSNR of frames). Thaewa format used in
QStream is called SPEG (Scalable MPEG). In SPEG, each videwefconsists
of eight ADUs with one base spatial layer ADU and seven (sgive) enhance-
ment spatial layer ADUs. QStream prioritizes ADUs accagdio a configurable
policy that describes the utility of temporal and spatiahliy. The default policy
is biased toward temporal quality, that is as the bit-rata gfdeo stream drops,
spatial enhancement ADUs are dropped, and when the spatlitygnears mini-
mum, then further reductions in bit-rate will cause drogpai base ADUs which
will result in dropping entire frames (lower temporal qogli

30
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Temporal Quality (Frames Per Second)
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: SST ——
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Figure 4.12: Latency threshold versus temporal quality
Figure/ 4.12 shows the average temporal quality (fps) asatieady threshold
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is varied. Notice that in the rightmost side of the graph waigihest latency thresh-
olds (10s of seconds), all transports allow QStream to aeHidl temporal quality
of the video (30fps). The temporal quality when using TCPpdranuch more
rapidly moving leftward (with lower latency thresholds)egpite the fact that TCP
delivers high throughput (see previous section), the highsport latency with
TCP (see Sectian 4.4.1) causes frequent head of line (H@kkislg between low
priority ADUs (spatial enhancements) and high priority AB(base layers), trans-
lating to dropped frames and much lower fps. The trend betV&&T and Paceline
are very similar to each other. Recall that SST's implent@riaompletely avoids
HOL blocking. Comparing temporal qualities of Paceline 8&IT, we see that
Paceline also eliminates most of the HOL blocking. Our &dthas a link delay
of 15ms and bottleneck link queuing delay of approximatélyns, for total sender
to receiver network delay of about 75ms. Hence, it is notrsirg that the tem-
poral quality is very low for all transports as the latencyetthold drops below
75ms. However, we can also notice the knee of the Pacelin€8mcurves in the
100-200ms zone. This indicates that even in this heavilygested network, it is
possible to keep within the zone of reasonable interagtioit an application such
as video conferencing with a modest impact on quality. Orother hand, using
TCP as the transport results in quality not increasing sultisily until well over
the 500ms point, which is probably not acceptable for cotafie interaction.

To quantify spatial quality, we measured the average numbepatial en-
hancement layers per frame. There are some similaritigs teihporal quality,
but also some notable differences. Firstly, in the rightrmegion, we notice that
spatial quality actually drops slightly relative to the haa the middle. The rea-
son for this has to do with the relative size of spatial layiareur SPEG video
format, notably the fact that the base layer ADU is largentttee enhancement
layer ADUs, so each base layer ADU (frame) that is droppediadlgtleaves room
to transmit a slightly larger number of enhancement layetJ&DSince QStream’s
default policy is biased to temporal quality and the largeéemcy threshold allows
it to send more base layers (higher fps), this in turn causesnild decrease spa-
tial quality. In the leftmost zone, we see an odd effect wAeZ® has high spatial
quality. Again this is due to HOL blocking, and is not deslegtthe small gain in
spatial quality comes at severe expense to temporal qualitgough not shown,
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we observed a very similar result in a version of SST that usedd-robin delivery
rather than strict priority order.

Although averages capture the general level of quality a os®y perceive,
they can obscure transient problems that may be very nbteda a user. To
characterize the impact of transient problems (visiblichéis or stutters), we use
a third metric that we calflisplay jitter which is the measured time between each
frame displayed. Nominally, display jitter would be theénse of frame rate, e.g.,
30fps translates a display jitter of 33ms. However, bec#fiasres are uniformly
spaced, dropped frames cause display jitter values thanhaltiples of the base
rate (e.g., 66ms, 99msic), For example, a 20 fps average yields a mix of 33ms
and 66ms display jitters.

Noting the knees in the average video quality in Figures 4d@ 4.13, we
choose the case of latency threshold of 200ms and analyzgigiibution of all
display jitter values. From Figure 4.12, we saw the averaggbral quality for
Paceline and SST are in the range of 21-23 fps, so we expettfraoes to have
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either 33ms or 66ms of display jitter. We do not considerrplBCP here as it's
performance is unacceptable. The graph in Figure 4.14 hietsumulative num-
ber of displayed frames, totaled over all videos (aroundBdames) according to
display jitter. The bottom right hand zone shows displagijito be the same for the
vast majority of frames whether Paceline or SST is used, wihes already shown
in Figure 4.12. Notice that both axes are log scale, whichshelearly see the tail
of the distribution. To put these number of frames quarstiteperspective, Table
4.6 provides a mapping between number of frames exhibitigigeh and median
time between occurrences. For example, the 100 largedadigtiers (glitches)
occur with mean period of 23 seconds and with glitch mageitfdl67ms in SST,
300ms in PaceK and 380ms in PaceA.
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Number of Mean time
Frames | between occurrences

1 39 minutes
10 3.9 minutes
100 23 seconds

Table 4.6: Mapping from number of frames to mean time between occuerenc

Application Level Performance Summary

Quality improves if we can tolerate more latency so an appiicn needs to bal-
ance between the target latency threshold and the quali&y. l&)sing SST as our
reference transport with minimum head of line blocking, éka@nd PaceA have
a comparable temporal and spatial quality as well as freyuand magnitude of
glitches. Therefore, we believe that Paceline is withindimeilar zone of respon-
siveness to protocols such as SST. Plain TCP performs vesglypaith small
latency thresholds, which effectively defeats the apfibceadaptation policy.

PaceA and PaceK have identical application-level perfogaaPaceA is more
portable across different operating systems and more trabuke face of trans-
parent proxies. However, PaceK has less run-time overhaédan eliminate the
need for acknowledgments (P-ACKs) simplifying the desifgRaceline. PaceA is
the more general algorithm while PaceK can be used as a penfae optimization
in the supported platforms.

4.4.3 Stream Fairness Evaluation

The setup in this experiment consists of four client machiaed two server ma-
chines. The link allows 12Mbps of traffic in each directiorttwa 30ms round-trip
time between the two LANs. The shaper employs drop-tail gumanagement
with a queue size of twice the bandwidth-delay product.

The real-time video adapts based on a timeline and the psliaie imple-
mented through proper selection of message importance argimal utility. The
marginal utility is calculated similar to priority, takingto account the improve-
ment in utility (combined from spatial and temporal quglitgnd the number of
frames affected. We start by evaluating two policies ofrfags across streams: re-
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source and quality fairness. Then, we investigate weigfatexisharing using both
policies.

Resource Fairness

TCP utilizes available bandwidth efficiently and sharesdwadth fairly among
concurrent streams. Being layered on top of TCP, indepérfeleceline channels
share bandwidth fairly. In addition, Paceline providesti#y control over resource
sharing by performing fair resource sharing across streaanitiplexed over the
same underlying channel. In the following experiment, wenpare TCP’s re-
source sharing (if each stream were to have its own charmBRdeline’s resource
sharing when streams share a single channel. We ran theiragpérwith two
servers and four clients. In each run, every server strehras different videos
to each client. For TCP fairness, every video was transthitier its own TCP
connection. To demonstrate Paceline’s fairness, all fleausts used the same un-
derlying channel.

We quantify the fairness of bandwidth sharing between theos of a single
client using the Jain fairness index [34]. We measured timeiddices of TCP and
Paceline bandwidth sharing to be 95.47% and 99.98% resphctiThis implies
both transports are able to fairly share resources in thg tan. To verify the
fairness behavior in small time scales, we measured thenddtidof each video
by one client using a 125ms sampling period in Figure 4*1%Ve see an almost
ideal sharing between Paceline streams (Figure 4.15ayeafi¢he bandwidth of
the TCP streams seem less correlated (Figure 4.15b). Ihtmalscales, Paceline
can have tighter control over bandwidth sharing.

Quality Fairness

We ran the same Paceline fairness experiment using thetygtailiness policy
instead of resource fairness. Quality of the video is defimgedemporal quality
(frames per second) and spatial quality (spatial enhancelangers). Figure 4.16a
plots the frame rate and Figure 4.16b plots the number ofadpayers of the 3

15For clarity we only present a ten second snapshot. We vettfigtithe entire logs exhibit the
same pattern.
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videos over time. The videos (transferred over 3 streansplairs with identical

quality (frame rates and spatial layers), which changeedas network condi-

tions, according to quality fairness. Even though the videality (spatial and

temporal) is equal over time, the bandwidth requirementhes$e video streams
are different. Figure 4.1.7 shows that streams were alldaditeerent shares in the
same period in order to achieve equal quality.

Weighted Fairness

While defining both fairness policies, we assumed all steeare equally impor-
tant. In this section, we evaluate how weighted fair shadaig be used to define
importance across streams. For example, in a distanceirigasoftware, each
client might be generating multiple streams (video, pres@n slides, text mes-
sages, and advertisements). However, not all these star@§equal importance.
While the video of the speaker may have the core focus oftaiteriext messages
or the slides have lower importance. One would expect deegeia the quality of
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Figure 4.18: Weighted bandwidth fairness

other streams to be more acceptable and less noticeabléhth&otus video. Such
relative importance can be expressed using stream weights.

We use video streams in a setup consisting of four client mashand two
server machines. Each server streams three videos to éaah Ebr each resource
sharing policy, the clients request one of their videos tassgned a weight twice
the other two, representing the focus video. Figure 4.1&shte bandwidth
allocation to each video stream of a single client with resedairness. Stream 1
has weight 2 while Stream 2 and Stream 3 have weight 1. Therefie see 2:1
relationship in Figure 4.1.8.

Figure 4.19 shows the temporal quality relationship betwstgeams according
to their weights. Stream 1 and Stream 3 were assigned a waightvhile Stream
2 was assigned a weight of 3. The sharing policies are workareing, providing
equal resources when available (around the 96th second figtire), or according
to service guarantees when facing resource limitations.shéeld point out that
the utility function we use to map temporal quality (frames pecond) to message
importance is non-linear. The non-linearity is because @andimportance to vary

90



more rapidly at lower frame rates, hence a 3:1 ratio of stre@ights translates to
a less than 3:1 ratio of temporal quality.
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Figure 4.19: Weighted quality fairness

It is interesting to note that quality fairness is comphletbntrolled by appli-
cation quality metrics. We provide applications with thdiow of importance to
control adaptation within streams. Weights and marginfityiton the other hand,
specify importance across streams’ boundaries.

Summary of Stream Fairness Results

While individual streams can adapt to available resoutbesstream layer provides
two different notions of fairness across streams: qualilyy Besource fairness. In
small time scales, Paceline resource fairness can havertigbntrol over band-
width sharing than TCP. Paceline also allows video streanisve equal frame
rates and spatial quality using a novel representation altgfairness.
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4.5 Related Work

High bandwidth streams with low latency requirements ar@lehging to sup-
port in current transports. To enhance the quality of serice best-effort model
of the Internet was challenged with various service modrlsh as IntServ [12],
DiffServ [11], and more recently Rate-Delay (RD) networkveges [55]. For ex-
ample, RD proposes changing routers to implement a sepauaige per traffic
type so applications can choose either low delay or high watid traffic, not
both. Service models share our motivation of providing Higindwidth and low
delay communication; however, the Internet remains a &#éstt platform with
TCP as the dominant transport (typically carrying more 9@% of the data in the
Internet) [25]. Paceline reflects the general trend in rmédia and Web transports
[71] toward user-level implementations that leverage B&Rengths and mitigate
its latency weaknesses.

Framing and multiplexing messages in Paceline is similaRTdP’s [78]
small fragments that are interleaved and multiplexed ogangle TCP connection.
Failover, on the other hand, happens when TCP experiencksdéack retrans-
missions and is analogous to the scenario where a user ptessstop/reload but-
tons in their Web browser upon encountering a slow respohismmated failover
may sound quite radical, but it resembles removing expdaerdckoff from TCP
which has been argued to be safe [50].

The main influences on our latency controller have been workamgestion
control and alternative transport protocols. TCP Vegasavesminal work in con-
gestion control that proposed the use of delay measurernteptsactively respond
to congestion [13]; so Paceline’s latency controller ig pathe long line of work
that has since employed similar techniques. Later work @nlglresponsive TCP-
friendly congestion control better suits the needs of métiia applications [3].
A major inspiration for Paceline was work of Bhandarkar [8jigh proposed to
overcome obstacles facing active queue management (AQMantulating it at
end hosts. Paceline is similar in that its latency contraén be viewed as a user-
level emulation of TCP Vegas rate-based congestion control

Aside from congestion control, alternative transport mermodels have also
appeared, such as SCTP [56] and DCCP [36], and more recdnifsti@ed Streams
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[24]. SST is state of the art TCP replacement supportingra-ligeight stream ab-
straction (which acts like the message abstraction in Pejecongestion-control
and reliability. Streams are delivered fully independgemiith minimum head-of-
line blocking. Similar to Paceline, SST supports prioritydaeset (cancellation)
of streams so using one stream per multimedia frame, we vidked@support our
adaptation service model.

Like SCTP, Paceline identifies head-of-line blocking as gomasue at the
transport level. Paceline’s use of multiple transport @mions has some similarity
to SCTP's support of multi-homing, but SCTP’s connectioresreegotiated at ses-
sion startup and are used with redundant physical path$e Whieline’s failover
is dynamic and employed for connections on the same patteliRashares the
datagram (message) orientation of DCCP, and like DCCP|iRacgas designed
with multimedia applications such as video streaming asrtaim target. However,
Paceline works above TCP rather than providing a complglacement.

Similar to Paceline, SST [24] supports the stream abstractiConcurrent
streams in SST use FIFO scheduling with minimum head-ef-bfocking over
UDP. On the other hand, Paceline streams share the samdyimgldiCP channel
and use weighted fair sharing across concurrent streamselifgls support for
fairness across multiple concurrent streams is influenge@m®U scheduling for
multimedia applications [41]. Finally, application-léverotocols, such as MUX
[2€] and BEEP [62] multiplex logical streams over one comioation channel
similar to Paceline; however, they do not deal with timedmer fairness across
streams.

A recent evaluation study for adaptation algorithms [42] $laown that priority-
progress adaptation for streaming video is more stablefdedback-based adap-
tation algorithms in terms of packet delay and jitter. Otimégractive multimedia
applications can benefit from the adaptation mechanismsdeliPe. Fast-paced
large scale games have high bandwidth requiremeants [18esado not adhere to
the old wisdom of network games having thin communicatioaeashs [53]. Don-
neyBrook’s [10] main contribution is defining interest sietseduce the bandwidth
requirements of games. Priorities can better capture thgeraf players’ inter-
ests instead of using two discrete types of updates (immioatad less frequent).
Moreover, cancellation of expired updates can enable daptation based on the
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network conditions without using a complex reservatioreset for important up-
dates.

Paceline was used in a cloud-based game prototype to seatertimunication
in an Epic scale game scenario [69]. The authors used ihsEswith two priority
classes based on distance to scale communication. Eveghhba study was
limited to a small prototype, adaptation in Paceline impabthe performance of
wide area networking (WAN).

4.6 Conclusions

Paceline is a transport service supporting interactiva bandwidth applications,
such as HD video conferencing, online large scale multrgdi@ames, and virtual
reality. Such applications require low latency, but duehiirthigh bandwidth re-
quirements they also require effective congestion contRalceline leverages the
strengths of current TCP implementations, which includsrtrobust and proven
congestion control, while mitigating TCP’s weaknessesatericy. Paceline em-
ploys several techniques to improve latency: messagetigaanid multiplexing to
limit transmission delays, a latency-controller to manalijent-side queuing de-
lays, and a failover mechanism to handle transient TCPsst&lhceline reduces
TCP’s latency profile, enabling an increase in the trafficznwd by a factor of 8
with the same latency profile as plain TCP. Using a video aenfgng application
as an example, Paceline brings dramatic improvements @verii terms of video
quality metrics and is competitive with the Structured &tneTransport (SST),
which is representative of clean-slate replacements fd?. TC

Paceline introduces adaptation mechanisms as esseatigport primitives to
resolve the conflict between timeliness and best-effortspparts for high band-
width multimedia streams. Paceline also enables Pridtiygress adaptation across
concurrent video streams. Streams get timely messageedelwnd equal quality
(e.g., frame rates and spatial quality) using a generiessmtation of quality fair-
ness. Priority-Progress adaptation mechanisms, Paashakles applications to
scale quality with available resources and to use the lahatailable bandwidth in
transferring data with more influence over quality. Paesdimata service model
provides interactive applications with the necessary raeisims: priority to pro-
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vide timely delivery of important data arwncellationto perform informed drop-
ping to match the application data rate with available neétmandwidth. These
mechanisms can be utilized by domain-specific applicdgual adaptation poli-
cies to provide timely data delivery over best effort trasrég mainly TCP and in
general other congestion-controlled transports (e.dl)SS
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Chapter 5

Conclusions and Future Work

Interactive multimedia applications have low latencyiations and high resource
(network bandwidth, CPU, and storage) demands. The denudinaisltimedia can
exceed available resources due to the dynamic fluctuatioagplication demands
or in available resources while using best-effort platfermith no guarantees. The
key insight is that it is impossible to process all compuotadiand data in a timely
fashion when demands exceed available resources. Ourampprbased on the
Priority-Progress quality adaptation model, addressssuree volatility by scaling
demands (up and down) with the available resources andagiicarce resources
by giving precedence to computations and data that have imitwence over per-
ceived quality.

The mismatch between application demands and availabteiness is ob-
served to varying degrees in all resources. To reduce thd¢oeedd delay and
improve the overall perceived quality, our research adeethe performance lim-
itations in multiple resources. This thesis addresses dhéict between interac-
tivity and the best effort nature of current transports axetation platforms. We
have built enhancement layers to maintain the strengthsstfdffort platforms
and mitigate their weaknesses through Priority-Progrdaptation. The execution
layer, DOHA [20, 21], extends the Priority-Progress CPUpaalon to work in
games and across multiple execution threads with no shaesdony. Similarly,
the transport layer, Pacelire [19], introduces low latetecyniques over TCP and
exposes Priority-Progress adaptation mechanisms agiass@msport features.
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In the rest of this chapter, we summarize the research batibns of this
dissertation. Then, we reflect on the research approachfimalty we suggest
venues for future research.

5.1 Primary Research Contributions

The following three primary contributions arose from oweaarch work.

5.1.1 Adaptation as an Essential Infrastructure Feature

This thesis produced a general purpose transport and exedofrastructures that
expose Priority-Progress adaptation primitives to addthe limitations of best
effort Web platforms (i.e., TCP and JavaScript engines)uippsrting real-time
games and video conferencing. The adaptation primitiva® wdroduced at the
appropriate level: the transport stream level in Pacelimkad the event-loop level
in DOHA without changing the best effort nature of the ungied platforms. Both
DOHA and Paceline enable application adaptation throuigimifization to provide
timely processing of important data with more influence ayeality and cancel-
lation to adapt the application rate to match available uesgs. Important high
priority data and computations get better application igyaheasured in frames
per second and jitter profile, in both DOHA (Section 3.2.1d &aceline (Section
4.4.2) yielding better overall perceived quality.

In order to provide consistent quality in best effort platis, the infrastructure
and the application need to be agile in responding quickipécadaptation policy
hints. For execution agility, the prevalent monolithic galop architecture was
broken up to only issue one explicit execution event for egaine entity allowing
adaptation at the fine-granularity of a single event instddde coarse-granularity
of the game frame with all the updates. Secondly, DOHA givesgxence to timer
events and respects the priority of best-effort events miaiig quality within the
timing limits. To improve transport agility in Paceline, weveloped several mech-
anisms (Section 4.4.1): a rate controller to reduce quedétgy due to excessive
socket buffering; a failover mechanism among TCP connestio handle extreme
cases of congestion; and a message fragmentation techaoicpdrice the granular-
ity of preemption. The low-latency techniques in DOHA and&ime are general
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and can allow adaptation policies to respond quickly to flatbns in resource
availability.

5.1.2 Support for Concurrent Software

The Priority-Progress model was extended in this thesis paticies and enhance-
ment layers that support concurrent software. DOHA supplotimely execution
using multiple concurrent threads with no shared memoryRawkline supported
timely message delivery across multiple concurrent steeawer a shared TCP
channel. For timely execution using HTML5 worker thread$QHA provided
an event loop per worker to allow adaptation in all thread$ acommunication
layer to support state management and load balancing aemg&srs. As a result,
quality scaled linearly with a small number of cores in theapial version of the
game (using DOHA) as shown in Section 3.2.2. For timely aictcanmunication
using multiple concurrent message streams, Paceline ggfpo notions of fair-
ness: resource and quality fairness. Resource fairnesacieliRe guarantees fair
bandwidth allocation among streams at a finer granularay thCP. More impor-
tantly, Paceline supports quality fairness to ensure fgitieation-level quality, in
terms of frames per second for example, across streams\as §h&ectior 4.4.2.

5.1.3 Priority-Progress in Games

This thesis developed CPU quality-adaptation policieginasl by Priority-Progress
adaptation in a new application domain, HTML5 games. RgieProgress was de-
veloped in video streaming so the policies assumed scaladdge coding and the
quality dimensions were well-studied in the multimediaritture. Our work in

DOHA explored the use of Priority-Progress adaptation imgdoops. Our test
policy used distance from the player as the criteria to degitiat entities have
more influence over perceived quality. We also develope@angkepolicy to mini-

mize starvation based on a minimum frequency update per gatitg. These are
the basic policies for game loop adaptation so they can lemdgt or overridden
in different entities. For example, a bullet entity can adubéicy to assign higher
priority based on the current speed. Finally, Web-basedegamave other places
where scalability can help trade accuracy for performagsgaeh as the particle en-
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gine (visual effects accuracy) and Al logic (algorithm aemy).

Paceline improved the performance of wide area networkigN) in a cloud-
based game prototype running an epic scale game scenelid fEauthors used
Paceline with a limited adaptation scheme that has twoipriotasses based on
distance to scale communication. Further research is deedalidate the results
of this small study but as the bandwidth demands for gamesase Paceline’s
adaptation mechanisms would be more applicable.

5.2 Secondary Contributions

The following two secondary contributions arose from ourkvo

1. While re-structuring the simulation engine of an awaidning Web-based
game (RAPT [76]), we examined the challenges and oppoiggnif using
HTML5 Web workers and share our qualitative and quantiéatibserva-
tions.

2. Paceline and DOHA with their respective modified appiice were con-
tributed to the QStream open-source repository at htgirégm.org to facil-
itate further research.

5.3 Reflections on the Research Approach

In this thesis, we spanned multiple resources instead afsthg one resource and
conducting more studies on adaptation in that resource. Wsectwo different
resources that appeared to define the end-to-end perfoendiirtteractive multi-
media applications. Our main motivation is that the mismdtetween demands
and available resources is observed to varying degrees liesalurces so any re-
source can be the performance bottleneck based on the mmérd conditions and
application loads. In addition, fixing a performance condarone area can cause
a new one to arise somewhere else. We reflect on the advasatageéisadvantages
of this research approach.

Our approach allowed us to get a deeper understanding ofaitepand the
overall real-time performance in different interactive Itiniedia scenarios and
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across multiple resources. We were also able to focus ontaaappolicies and
mechanisms while developing an appreciation of the desaiécial to each re-
source. On the other hand, we spent more time than antidipatesview related
work and gain the required expertise to test our ideas inaggalication scenarios.

5.4 Future Work

In this section, we present future venues for researchectlatthis thesis.

e The natural extension for DOHA is to build the load-balagcpolicies that
can distribute work evenly across workers. Currently, aapgation poli-
cies and the location-based partitioning algorithms aveldeed separately.
Developing a load-balancing algorithm that is quality-esvean improve the
game quality significantly. For example, the load-balaggiolicy can dis-
tribute high priority entities evenly across cores to maxartheir chance of
getting updated. Since communication is the major perfagadimitation,
this direction of research requires an in-depth study ofctiamunication
requirements of entities in different games.

e Concurrency is generally hard and it is a major source oesysterrors [€3].
More tools to support understanding concurrent programgldvbe very
useful especially after introducing real concurrency iraflal Web workers.
In Dingo [63], a state-machine based formal language wad tesdescribe
the protocol between device drivers and the operating isys&milarly, we
need to capture communication protocols between apmitatbmponents
running in different Web workers.

e Performance of multimedia in browsers is not well undemdtoecause of the
lack of performance monitoring tools and benchmarks to tiiyaand com-
pare perceived multimedia quality. Browsers have priraitiebugging and
performance monitoring tools and Web workers have evensigggort. To
conduct a rigorous experimental study and quantify peréoce, we built
a few performance analysis tools. We built a parallel pentoice monitor
to capture performance data from workers, a server to recaid persist
data, and a visualization tool to display performance dgjimereal-time for
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interactive performance debugging. We plan to build a toalecord and
replay the performance data and the JavaScript executssinss. We can
enable querying over the data for interactive performamedyais to answer
guestions, such as what are the ten functions with the waratidn? Which
functions took more than 50ms to execute? What are the ainxteading
to a specific performance anomaly? In addition, we can auioatly gen-

erate representative multimedia Web benchmarks using itasitechnique
to [61]. The benchmark can use the application-level gualiétrics and our
visualization tool to compare the browser support for imtéve multimedia.

As explained in Paceline, the main contributing factor te #nd-to-end
latency isqueuingdelays in nodes (hosts and network routers). Paceline
addresses end-hosts queuing delays. To reduce queuingidetetwork
routers, we can use active queue management (AQM) teclmigueh as
Explicit Congestion Notification (ECN) [57]. However, tlesechniques
are hard to configure and errors in configuration can reducdviadth uti-
lization. Recent work [8] designed an end-host techniqueafbive queue
management by modifying TCP. Our future objective would derulate
AQM at the application-level and eliminate the end-to-en@uing delay
without modifying routers or TCP kernel implementationsheTmain re-
quirement for such a technique is to automatically configisrparameters
without manual intervention.

The storage and memory [59] resources are becoming morertampdor
Web applications. Multimedia storage is server-side engie especially
since browsers limit client-side storage to 5 megabytesMBQin Internet
Explorer) [79]. The work by Krasic and Légaré [38] propsghe use of
Priority-Progress adaptation in the server to enhancentieesictivity while
accessing stored video. Storage adaptation can be extendedk for real-
time persistence and retrieval of interactive content,(vi&eo and game
sessions) for reply purposes. To match the high demandstéractive con-
tent, storage adaptation ideas for one server [38] can lEm@st to work
in a distributed storage model using distributed data giras [29]. On the
other hand, memory is not a schedulable resource that wedegm. 2Appli-
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cations can either have enough memory and function coyrectlun out of
memory and fail.

5.5 Concluding Remarks

When demands exceed available resources, scaling quagdbon available re-
sources using Priority-Progress adaptation improveslitiess and ensures con-
sistent quality in interactive multimedia. Adaptation is @ssential infrastructure
feature enabling the exploration of ambitious more chaiieg scenarios without
the fear of brittle real-time performance and inconsistprlity. It is imperative
to continue investigating the tools, techniques, and #tfteture features needed
to support the growing number of interactive multimedialeyagions.
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