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Abstract

Emerging interactive multimedia applications, such as real-time visualizations,

animations, on-line games, virtual reality, and video conferencing have low la-

tency interactions and continuous high resource (e.g., CPU processing and net-

work bandwidth) demands. The combination of latency sensitive interactions and

high resource demands is challenging for best-effort platforms, such as the Inter-

net, general-purpose operating systems and Web browsers because these platforms

have no timing or resource guarantees and tend to favor high utilization. When de-

mands exceed available resources, it is impossible to process all computations and

data in a timely fashion resulting in diminished perceived quality (e.g., frame rate)

and brittle real-time performance. The mismatch between application demands

and available resources is observed to varying degrees in all resources including

network, processing, and storage.

To deal with the volatility and shortage of resources, we build upon and ex-

tend the Priority-Progress quality adaptation model. Our approach enables appli-

cations to scale demands (up or down) based on available resources and to utilize

the limited resources in processing the computations and data with more influ-

ence over perceived quality. We develop enhancement layersto improve timeli-

ness and guarantee more consistent quality using quality adaptation while main-

taining the strengths of the existing best-effort transports and execution platforms.

DOHA, our execution layer, extends the Priority-Progress CPU adaptation to work

in games and across multiple execution threads. The modifiedgame has better tim-

ing, higher perceived quality, and linearly scalable quality with a small number of

cores. Our transport layer, Paceline, introduces low latency techniques over TCP

and exposes Priority-Progress adaptation as an essential transport feature improv-

ing upon TCP’s end-to-end latency while preserving its fairness and utilization.
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Chapter 1

Introduction

Multimedia is becoming more popular with the increasing usage of media-rich so-

cial networks, gaming platforms, and video sharing services. Users are expecting

multimedia applications with more features, better visualeffects, and low latency

interactions [45]. To have an engaging user experience and meet expectations,

emerging multimedia applications, such as interactive visualizations, animations,

on-line games, virtual reality, and video conferencing, have continuous high re-

source demands and low latency interactions. In addition tothe high demands, the

resource usage over time in multimedia is bursty and highly volatile [37, 40]. We

refer to this ambitious class of multimedia applications asinteractive multimedia.

Popular interactive multimedia applications use best effort platforms with no

timing or resource guarantees, such as the Internet, general purpose operating sys-

tems, and Web browsers. Best effort platforms favor high utilization over time-

liness because considering both concerns complicates sharing the platform with

other applications locally (e.g., the CPU resource) and across the network (i.e.,

the Internet). The combination of low latency interactionsand high resource de-

mands in interactive multimedia is extremely challenging for best-effort platforms

especially when demands exceed available resources. Due tothe dynamic fluctua-

tions in application demands and in available resources, demands inevitably exceed

available resources making it is impossible to consistently process all computations

and data in a timely fashion which leads to diminished quality and brittle real-time

performance.
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Our basic approach to deal with the volatility and shortage of resources in

best effort platforms is based on Priority-Progress adaptation [37]. Our approach

addresses resource volatility by enabling applications toscale demands (up or

down) based on available resources. To efficiently utilize the limited available re-

sources, the computations and data with more influence over perceived quality are

given precedence. Unlike conventional multimedia adaptation techniques, Priority-

Progress does not require estimation of resource requirements, drastically simpli-

fying its usage. This quality adaptation technique was developed for multimedia

video streaming and remains the most stable in terms of packet delay and jitter

[42]. Priority-Progress adapts quality based on time and has three main principles:

quality is incremental and improves with more iterations similar to the accuracy

in iterative algorithms or the video quality in scalable coding; assigned priority is

based on the contribution to perceived quality; and finally data is processed accord-

ing to priority and low priority data is canceled when it becomes stale.

The mismatch between demands and available resources is observed to varying

degrees in all resources including network, processing, and storage [37], depend-

ing on the application scenario (easy, complex) and the available resources. For

ambitious interactive multimedia applications, any of thebasic resources could

potentially be the limiting factor of the real-time performance [40]. Without an

end-to-end approach to performance engineering, it is challenging to improve per-

formance since fixing a concern in one area can cause a new one to arise some-

where else [38]. To reduce the end-to-end delay and improve the overall perceived

quality, our work spans multiple resources. We focus on the two most critical re-

sources: CPU and network, leaving other resources, such as storage and memory

to future work.

The context of our real-time research is interactive multimedia in the Web.

Over time the Web is becoming the de-facto standard distributed application plat-

form so our work can have an impact on the future of distributed multimedia. In

addition, multimedia applications using standard Web technologies are easier to

port across different platforms (mobile to high-end desktop, and wireless to gi-

gabit network) necessitating an overall framework to handle resource volatility in

heterogeneous environments. Even though our work sheds light on some of the

unique performance challenges facing interactive multimedia in the Web, we be-

2



lieve our research contributions address the fundamental requirements of all inter-

active multimedia applications including server or clientcomponents, and native

or Web applications.

The rest of the chapter is organized as follows. Section 1.1 describes the re-

quirements of interactive multimedia. Section 1.2 lists the limitations of best effort

platforms. Section 1.3 highlights the thesis statement andresearch contributions.

1.1 Requirements of Interactive Multimedia

Interactive multimedia is primarily driven by user interactions. Real-time inter-

actions have an interaction threshold to maintain comfortable communication be-

tween users at both ends. To get an understanding of the stringent timing require-

ment of interactive applications, we list some of the known figures for interaction

delay threshold. International Telecommunication Union G.114 [33] suggests that

150 ms is the ideal delay in most interactive applications, 150 to 400 as the tol-

erance range, and 400 as the cut-off acceptable delay. Miller’s analysis [49] of

the threshold levels of human attention suggests that a response time of 100 ms is

viewed as instantaneous while a response time of more than 1 second causes users

to lose the feeling of operating directly on the data. Finally, the interaction delays

in the gaming domain should not exceed 100 ms for first person shooter games,

500 ms for role playing games, and 1000 ms for real-time strategy games [16].

In addition to low latency demands, interactive multimediahas high resource

(e.g., CPU and network) demands that vary over time. Games are representative

of processing intensive applications. Similar to desktop games [6], popular Web

games [17, 68, 76] use most of the available processing power(between 80%-100%

of a 2GHz core). For the network resource, multimedia applications have higher

bandwidth requirements due to either high quality multimedia (e.g., HD video) or

high frequency updates in large scale on-line games (FPS) [10].

The combination of low latency interactions and high resource demands leads

to missed deadlines and poor quality for interactive multimedia running in the

prevalent best effort platforms. We aim to improve the timeliness limitations and

maintain the strengths, such as high utilization and fairness in best effort platforms.

The next section presents limitations in best effort transports and execution layers.

3



1.2 Limitations of Best-effort Platforms

We start with the generic problem statement; and then we analyze the specific

limitations facing interactive multimedia in execution and network communication.

1.2.1 Problem Statement

There is a conflict between interactivity and the best-effort nature of the commu-

nication and execution platforms of standard client machines. Current transports

and execution platforms are optimized for high utilizationand do not provide in-

teractive multimedia applications with mechanisms to balance timing with other

concerns, such as utilization and fairness when resources are limited. When appli-

cation demands exceed available resources, the perceived quality (frame rate and

jitter) diminishes because it is impossible to satisfy all application demands in a

timely fashion. Balancing between these concerns becomes more challenging in

concurrent software.

1.2.2 Execution Limitations

When the application demand exceeds available CPU resources, it is not feasible to

execute all application computations in a timely fashion. The browser best-effort

execution model does not provide any mechanism to balance between timeliness

and utilization. One commonly used approach to run interactive applications with

consistent quality is to hardcode the appropriate configuration settings, such as

games’ target frames per second [67, 76]. Static approachesbecome difficult to

manage with the expanding number of platform combinations –browser versions,

operating systems, and hardware platforms. More importantly, they can not han-

dle the dynamic fluctuations over time in application demands or in available re-

sources (due to sharing the CPU and network with other applications). In addition,

ambitious interactive multimedia applications need more processing power than is

available in one core especially in mobile platforms with low-end cores. HTML5

Web workers [30] introduce concurrent execution in browsers; however, workers

do not support real-time software developers in addressingchallenging issues, such

as state management, load-balancing, and timing control across execution threads.

Without a general solution that enables scaling demands based on all available re-

4



sources (including multi-core), the perceived quality of these applications will be

brittle and sensitive to any change in the execution conditions.

1.2.3 Transport Limitations

The combination of high bandwidth bursty traffic and low latency interactions in

interactive multimedia [77] is challenging to support in the best effort Internet.

When demands exceed available network resources, all popular Web transport lay-

ers, such as HTTP [23], and SPDY [71] face significant delays.These latency

limitations are inherited from TCP, the underlying transport in all existing Web

transport layers.

TCP is the dominant transport in the Internet with more than 90% of the traffic

volume [25]. TCP has several advantages for high bandwidth multimedia commu-

nication especially in regards to congestion-control and reliability [28]. However,

high bandwidth communication puts pressure on TCP’s best effort nature leading

to delays at multiple levels. Firstly, TCP’s latency shortcomings are primarily due

to queuing delay– inside TCP send buffers and network queues. In many realistic

conditions the queuing delay in the send side TCP socket buffer is the dominant

portion of the overall delay [28].1 Secondly, TCP retransmissions can add multiple

roundtrips to the end-to-end delay. For this reason, TCP is commonly dismissed

as unsuited for latency sensitive applications. In the common case, TCP’s fast re-

transmit mechanism limits the retransmission-induced queuing delay to an RTT or

two and only very congested networks face exponential back-off and back-to-back

retransmission timeouts which degrade TCP’s performance.TCP needs to improve

its agility by resolving the limitations in the send-side buffers, and retransmission

timeouts so it can provide consistent low end-to-end delay under heavy load.

TCP also lacks a data service model that can balance between timeliness, uti-

lization, and fairness while considering application quality. Balancing between

these concerns becomes more challenging across multiple concurrent streams be-

cause of the diverse requirements. Our solution should address latency at all levels

of the transport and enable adapting demands to available resources.

1A full kernel socket buffer of size 64KB contributes 1700 ms of delay to a 300 Kbps video
stream.
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1.3 Thesis Statement and Contributions

This thesis addresses the limitations of best effort platforms (Section 1.2) and en-

sures higher and more consistent application quality even in concurrent software.

When execution and network demands exceed available resources, it is possible

and practical to improve timeliness and ensure more consistent quality in real-time

games and video streaming applications by enabling applications to adapt with

available resources using Priority-Progress application-level adaptation.

Our approach acknowledges the immense strengths of best-effort platforms.

We propose enhancement layers to maintain the strengths andmitigate the weak-

nesses of the existing communication and execution subsystems using application-

level quality adaptation. The next two sections present more details about our

approach and highlight the main research contributions.

1.3.1 Priority-Progress Adaptation (PPA)

Our approach adapts multimedia quality (a.k.a. application resource demands)

based on the available resources. Quality-adaptation is not a new concept. Many

researchers have proposed techniques for multimedia adaptation with much of the

pioneering work tracing back to quality adaptive video in the Quasar Project [14].

Priority-Progress adaptation [37, 39] was inspired by several works on quality-

adaptive streaming [22, 60, 65]. This line of research understands the importance

of the best-effort nature of the Internet and aims to provideconsistent multimedia

quality by adapting to varying bandwidth availability.

Classic quality-adaptation techniques are based on a feedback loop that bal-

ances between application quality and resource usage [27, 44, 66]. Feedback con-

trol is formalized in control theory with successful applications in electronics, and

is increasingly used in software. However, most classic quality-adaptation con-

trollers assume that there is a reliable way to monitor progress and to estimate the

correct control decisions based on monitored values. For network bandwidth in

adaptive video, this means the adaptation mechanism shouldestimate the through-

put of real-time video, estimate the network bandwidth thatwill be available, and

from these provide the control decisions that will maximizevideo quality. Sim-

6



ilarly, the CPU adaptation mechanism needs to estimate the CPU time required

to process data, the amount of CPU that will be available, andfrom these derive

control decisions. PPA avoids two sources of complexity inherent in feedback-

based adaptation mechanisms: developing a model for the resource requirements

in multimedia applications and estimating resource availability in best-effort envi-

ronments, drastically simplifying its usage. This adaptation technique adapts based

on time [37, 40] with three main principles:

• Incremental Quality:The target application can be architected to produce

results in an incremental fashion. The application qualityimproves with suc-

cessive increments similar to the video quality using scalable coding (e.g.,

H.364 [64]).

• Prioritized Data: Data priority is assigned based on the influence on per-

ceived quality. Priority assignment in application adaptation policies coordi-

nates between different quality dimensions, such as the spatial and temporal

dimensions.

• Priority Data Dropping: Timestamps and priority are used to adapt quality

while maintaining timeliness. Timestamps subdivide time in adaptation win-

dows. Data is being processed from high to low priority and atthe end of

each adaptation window stale data is canceled.

Prior to our work, the PPA model [37] was only applied to videostreaming of

stored video. PPA network support [39] was intermixed with the application code

without a general API to expose the adaptation primitives ina familiar transport

abstraction. The network support also lacked the techniques to minimize TCP’s

kernel socket buffering and back-to-back retransmissionsmaking it not suitable

for real-time scenarios, such as video conferencing. Finally, PPA CPU and net-

work support [39, 40] had no support for concurrent software(e.g., multi-core and

concurrent communication streams).

This thesis extends the PPA model to adapt quality in a secondinteractive mul-

timedia application, games, and enhances the video streaming support to meet the

requirements of real-time video conferencing. DOHA [20, 21], our execution layer,

extends the PPA model to work across multiple threads with noshared memory.
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DOHA is developed as part of this thesis to enhance the event-driven execution

model in browsers and enable adaptation in HTML5 games. Paceline [19], our

transport enhancement layer, factors out and extends the initial network support (in

QStream [37]) providing a session-layer transport with a service model supporting

adaptation within message streams and quality fairness across concurrent streams.

Paceline also develops latency reduction techniques to mitigate TCP’s shortcom-

ings.

DOHA and Paceline extend and enable Priority-Progress adaptation in preva-

lent best effort transports and execution platforms (i.e.,TCP and JavaScript en-

gines). We evaluate Paceline with an experimental video conferencing application

[37] and DOHA, our JavaScript enhancement layer, with a popular HTML5 game

[76]. Even though DOHA and Paceline have a different codebase, they build upon

and extend the Priority-Progress quality adaptation model, and together they pro-

vide an end-to-end solution to the real-time performance limitations facing inter-

active multimedia applications.

Execution Layer: DOHA

Multimedia applications need to scale their quality, and thereby scale processing

load, based on the resources that are available. DOHA [21] defines scalable qual-

ity, based on the Priority-Progress quality adaptation model, as a necessary re-

quirement to write HTML5 games once and run them with consistent quality ev-

erywhere. DOHA also extends Priority-Progress adaptationto work across worker

threads. DOHA introduces explicit execution events and enables adaptation based

on the following Priority-Progress adaptation principles.

• Incremental Quality:The modified game loop executes as many events as

possible in each iteration. The perceived quality of a game increases if we

can execute more events within the target frame rate.

• Prioritized Data: DOHA introduces event prioritization to provide timely

execution of those events that have the greatest influence over quality. Prior-

ity is based on spatial or temporal indicators of quality, such as the distance

from players or the time since last entity update.
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• Priority Data Drop: DOHA executes events according to priority and intro-

duces event cancellation to adapt the application rate based on available CPU

resources. Events become stale and are canceled at the end ofeach iteration

and new events are submitted.

To evaluate DOHA, we modified an HTML5 game, RAPT. The modifiedgame

has better timing and higher perceived quality when resources are scarce. More

importantly, the overall quality of the parallel game scales linearly as we use more

cores and the game is playable in larger scenarios beyond thescope of the original

version.

Transport Layer: Paceline

Paceline [19] is an enhanced transport on top of TCP to support interactive, high-

bandwidth applications. Even though the underlying service model is best effort,

Paceline’s latency reduction techniques improve the agility of the transport in re-

sponding to network conditions and ensure timeliness for important data. Paceline

enables quality adaptation based the following Priority-Progress principles.

• Incremental Quality:Our video streaming application uses scalable video

coding so quality improves if more data items (frames or enhancement lay-

ers) are transferred.

• Prioritized Data: Our service model introduces message prioritization to

provide timely delivery of important data. Priority is assigned by the appli-

cation policy using spatial and temporal indicators of perceived quality.

• Priority Data Drop: Our service model introduces message cancellation to

adapt the application rate based on available bandwidth. Messages are sent

according to priority and stale messages are canceled at theend of each adap-

tation window.

Paceline improves upon the end-to-end latency shortcomings (median and worst

case) of using TCP while preserving TCP’s fairness and utilization. While Paceline

was initially developed to support traditional multimedia, Paceline was exposed in

Firefox as a standard Netscape Plugin Application Programming Interface (NPAPI)
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[51] browser plugin. Web applications can use Paceline withan API that resembles

the Web socket API with the extra adaptation mechanisms.

1.3.2 Primary Contributions

This thesis has the following three primary contributions.

• Our enhancement layers show how to expose adaptation as a transport and

execution feature without changing the best effort nature of the underlying

platform (i.e., TCP and JavaScript engines). Both layers expose Priority-

Progress adaptation mechanisms enabling application developers to imple-

ment the necessary policies, improving the latency profile and providing con-

sistent quality when demands exceed available resources inHTML5 games

and video conferencing. The adaptation mechanisms become part of the

enhancement layers (DOHA and Paceline) while the policies become well-

defined within the application code.

• We enhance the adaptation policies and enhancement layers to support con-

current software. To utilize multi-core resources for real-time software,

DOHA augments HTML5 Web workers with mechanisms to ease the han-

dling of challenging issues, such as state management, load-balancing, and

quality-adaptation across workers. For concurrent communication, Paceline

balances between timeliness and fairness among multiple concurrent streams

using quality-based fairness.

• We develop adaptation policies inspired by Priority-Progress adaptation in

a new application domain, HTML5 games. Our work in DOHA explored

the use of Priority-Progress adaptation for CPU quality-adaptation in game

loops.

1.3.3 Secondary Contributions

We have the following two secondary contributions.

• We examine the challenges and opportunities of using HTML5 Web workers

and share our qualitative and quantitative observations.
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• We contribute both Paceline and DOHA with their respective modified appli-

cations to QStream’s2 open-source repository to facilitate further research.

1.4 Dissertation Outline

We present background information about interactive multimedia in the Web and

multimedia adaptation with a focus on the Priority-Progress model in Chapter 2.

We then present DOHA in Chapter 3 and Paceline in Chapter 4. InChapter 5 we

conclude by reviewing the contributions of this dissertation and suggesting avenues

for further research.

2QStream, located athttp://qstream.org, is an experimental media streaming system that takes a
comprehensive approach to the end-to-end communication path – both in terms of software layers
(application, middleware, and OS) and resource types (network, processor, and storage).
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Chapter 2

Background

This chapter provides a brief background about the growing importance of interac-

tive multimedia in the Web and the need for multimedia quality adaptation. Section

2.1 discusses the quality of interactive multimedia in prevalent Web platforms. Sec-

tion 2.2 introduces quality adaptation in interactive multimedia with an emphasis

on Priority-Progress adaptation. Detailed related work analysis for each enhance-

ment layer is presented in the corresponding chapter.

2.1 Interactive Multimedia in the Web

Browsers have become mature platforms enabling Web applications to rival their

desktop counterparts. An important class of such applications is interactive mul-

timedia: games, animations, and interactive visualizations. Interactive multimedia

in the Web was limited by the lack of key technologies, such asrich graphics el-

ements, bi-directional continuous network transport, andfast JavaScript engines.

HTML5 [31] and related standards, such as offline storage, Web sockets, Web

workers, and WebGL are enabling more interactive media-rich applications. Inter-

active multimedia is becoming an integral component of popular Web applications

and is expected to become more important in the future.

An ambitious application that exemplifies what the Web stackneeds to support

in the near future is an HTML5 game which uses the state of the art animations, ac-

curate physics and collision detection, advanced AI, and high quality video chats
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for coordination between players. The network transport isrequired to transmit

high quality video as well as player state updates in a timelyfashion. Upon receiv-

ing the player updates, each player has to execute the clientside physics, animation

and AI logic and to perform the multimedia encoding/decoding with a consistent

rate to achieve the desired game quality. Any slowdown in thenetwork transport

or in the execution of logic at the client can degrade perceived quality significantly.

Multimedia Web applications are latency sensitive and havehigh resource demands

making them in dire need for techniques to enhance real-timeperformance when

resources are limited.

Interactive multimedia in the Web has high CPU and bandwidthrequirements.

For the CPU resource, games are great representatives for processing intensive

multimedia applications. Popular Web games use most of the available process-

ing power. According to the developers [17, 76], adding new features is limited

by the processing capability of the execution platform – i.e., the browser and its

version, the operating system, and the underlying hardware. For the network

resource, high-definition (HD) video in multimedia Web applications have high

bandwidth demands and contribute a significant fraction of the data streamed on

the Internet [77]. As audio and video become more tightly integrated in browsers

[32, 52, 58, 74], the usage of interactive multimedia in Web applications will in-

crease. When demands for CPU processing and network bandwidth exceed the

available resources in best effort Web platforms, the perceived quality and the real-

time performance of interactive multimedia diminishes.

To address the limitations of the Web best effort platforms and have an impact

on the future of multimedia, our research focuses on interactive multimedia in the

Web context. Interactive multimedia is becoming an integral component of pop-

ular Web applications. To provide consistent quality and improve timeliness, it is

imperative to develop a general framework to adapt the high application demands

based on available resources. The next section describes the quality adaptation

technique we used to scale demands based on available resources.
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2.2 Priority-Progress Adaptation (PPA)

This section describes the state of the art in multimedia quality-adaptation with a

focus on Priority-Progress adaptation using adaptive games and video streaming

scenarios.

2.2.1 Adaptive Games

Games have high CPU and network demands in loaded servers [15]. A conven-

tional approach to limit the resource demands in game servers is area-of-interest

(AOI) geographical partitioning which limits updates onlyto nearby players within

your zone [9]. Geographical partitioning works well when the distribution of play-

ers is controlled and player movements are limited. However, population density in

real games follows a power law [54], and players move to only asmall number of

zones during each playing session. Thus, game designers restrict player clustering

by partitioning the world into mini-worlds, thereby precluding certain classes of

interesting game play, such as epic battles [18]. To meet thehigh resource (CPU

and network) demands in game servers handling popular zones, researchers have

designed dynamic load-balancing algorithms [15] which better handle transient

crowding by adaptively dispersing or aggregating regions from servers in response

to quality of service violations. Load-balancing algorithms are complementary to

our work since they do not eliminate the need for instant quality adaptation when

demands exceed available resources in a popular server.

To support fast-paced epic scale games, DonneyBrook [10] defines interest sets

to reduce the bandwidth requirements of games. DonneyBrookhas two priority

levels: important and less frequent. Continuous priorities in the Priority-Progress

adaptation model can better capture the range of players’ interests instead of using

two discrete types of updates. Moreover, the cancellation of expired updates in

Priority-Progress streaming can enable rate adaptation based on the network con-

ditions without using a complex reservation scheme for important updates. For the

CPU resource, games are ambitious processing-intensive multimedia applications.

Even simple client-side desktop games [6] or popular Web games [17, 68, 76] use

most of the available processing power (between 80%-100% ofa 2GHz core). An

informal study we did on the architecture of multiple games and graphics engines
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[1, 17, 68, 76] revealed that the core of these applications consists of one or multi-

ple execution loops that perform the basic tasks of rendering and simulation. These

loops executes 30 to 60 times a second depending on the targetframe rate. Current

game loops attempt to update all entities at each frame (loopiteration) leading to

brittle application quality because adding one feature affects frame duration and

can render the game unplayable.

For adaptive games, the focus is on adapting the execution ofgames in the

browser environment. DOHA developed CPU adaptation policies inspired by the

Priority-Progress adaptation model for Web-based games and extended the adap-

tation model to work across parallel threads with no shared memory [20, 21]. In

our adaptive game, the execution loop adapts to available CPU at each game loop

frame. At the beginning of each frame, the loop cancels the pending events from

the previous frame and issues a new event for each game entity. Before submis-

sion to the execution layer, the priority policy method for each entity is called to

calculate the event importance and then to assign the event priority. Our current

policy defines the relative importance among different gameentities based on the

distance from active players. The relative importance (priority) among game en-

tities dictates the order of event execution in each frame. Our framework easily

handles other policies.

2.2.2 Adaptive Video

A video consists of frames, at a constant nominal number of frames per second. To

reduce network bandwidth requirements, video frames are encoded at the sender

and decoded at the receiver. Scalable video encoders encodeeach video frame into

abase layerand a series ofenhancement layers. The base layer contains vital infor-

mation required by the decoder to reconstruct a low quality version of the original

image. The quality of the decoded frame depends on the numberof enhancement

layers used, and will resemble that of the original frame if all enhancement layers

are used.

Video encoders also try to exploit similarities between different frames, and

impose temporal frame dependencies. Based on the type of dependencies, an en-

coded frame may either depend on no other frame but have otherframes depend
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on it (I-frame), depend only on previous frames and have frames depend on it

(P-frame), or depend both on previous and next frames but have no other frame de-

pend on it (B-frame). Dependencies between frames affect the priorities assigned

to each frame/layer. A video application may adapt to available resources by either

dropping different layers of a frame (spatial quality adaptation), or dropping an

entire frame (temporal quality adaptation), or a combination of both.

Dropping decisions are made according to each frame’s time-line, kept both by

the sender and receiver. For example, a network frame time-line is initialized when

the frame is released (either fetched from storage or captured from camera and

encoded), and allows a maximum transmission period (definedby the application)

for the frame data to be sent. During the transmission period, frames are sent based

on their priority. At the end of the transmission period, i.e., at the transmission

deadline, the sender cancels unsent data of the frame. The decoder on the receiving

side, which consumes 80-95% of processing time, starts decoding a frame based

on the time-line with whatever number of layers it has received for that frame.

If no data has been received within the time window, the frameis skipped. This

application scenario shows network and CPU adaptation of video streaming.

For adaptive video, the focus is on video streaming in the Internet. Paceline

[19], our transport enhancement layer, is layered on top of TCP, the dominant

component of Internet traffic volume (typically greater than 90% [25]). Paceline

argues that adaptation mechanisms, such as Priority-Progress [37, 39] are essential

transport features based on 20 years of multimedia transport research that provides

quality of service through adaptation strategies [75]. PPAremains the most stable

adaptation technique over TCP in terms of packet delay and jitter [42]. Paceline is

a general purpose transport layer exposing a stream API withper-message priority

and cancellation. Paceline was used in other applications,such as a cloud-based

game prototype to scale the communication in an epic scale game scenario [69]. To

address TCP’s latency problems and improve timing for important data, Paceline

develops the three following techniques: application-level rate control to reduce

kernel queuing delay, failover among connections to handleextreme cases of con-

gestion, and application data unit (ADU) fragmentation to reduce the granularity of

pre-empting less important data. These techniques in Paceline allowed and verified

that the PPA model can be used in real-time interactive videoconferencing.
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2.3 Summary

Interactive multimedia is an integral component of popularWeb applications and

is expected to become more important in the future. Interactive multimedia Web

applications have high CPU and bandwidth requirements. Quality adaptation is

necessary to provide consistent quality and improve timeliness in best effort plat-

forms. Quality-adaptation mechanisms adapt quality (a.k.a. resource usage) based

on the available resources. Priority-Progress quality adaptation works across differ-

ent resources (e.g., CPU and network) and in different application scenarios, such

as adaptive video streaming and adaptive games. This thesisextends the Priority-

Progress adaptation model to work in a new multimedia application, Web games,

and provide a transport and execution layers to enable adaptation in in prevalent

best effort transports and execution platforms in the Web (i.e., TCP, JavaScript

engines).
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Chapter 3

Execution Layer: DOHA

One important area in which applications must adapt to the availability of resources

is interactive applications on the Web. Web applications are executed in browsers

which historically have focused on the downloading and rendering of mostly static

content. However, browsers have recently become mature execution platforms en-

abling Web applications to rival their desktop counterparts. An important class

of such applications is interactive multimedia: games, animations, and interac-

tive visualizations. Unlike many early Web applications, these applications are

latency sensitive and processing (CPU and graphics) intensive. Games are great

representatives of ambitious processing-intensive multimedia applications in this

class. Similar to desktop games [6], popular Web games [17, 68, 76] use most of

the available processing power (between 80%-100% of a 2GHz core). Games and

other ambitious applications are shifting the performanceoptimization focus from

the download and parsing time of Web files to the run-time performance. The dy-

namic fluctuations and the scarcity of processing resourceslimit game features and

lead to significant development effort to manage the resource demands [17, 76].

When demands exceed available CPU resources in interactivemultimedia, it is

not feasible to execute all application computations (callback functions) in a timely

fashion. The browser best-effort execution model does not provide any mechanism

to balance between timeliness and utilization. One commonly used approach to

run interactive applications with consistent quality is tohard code the appropriate

configuration settings, such as the games’ target frames persecond [67, 76]. This
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static approach cannot keep up with the expanding number of platform combina-

tions (browser version, hardware, and operating system). More importantly, it does

not gracefully handle the dynamic fluctuations in application demands (common in

multimedia applications) or available resources (due to sharing the CPU with other

applications). Another major concern related to the prevalent processing model

in browsers is single-threaded execution. Ambitious multimedia applications need

more processing power than available in one core especiallyon mobile platforms

with low-end cores. To deliver the available multi-core cycles to Web applica-

tions, we need to facilitate real-time concurrent softwaredevelopment. Although

HTML5 Web workers [30] enable concurrent execution as seen in Figure 3.1, they

do not help developers address challenging issues in concurrent software, such as

state management, load-balancing, and timely execution across threads. Without

a general solution that deals with the fluctuations and scarcity in processing re-

sources, the perceived quality of these applications becomes brittle and sensitive to

any change in the execution conditions.

DOHA is an execution layer written in JavaScript that enhances the browser ex-

ecution model. Our basic approach in DOHA to deal with the volatility and short-

age of processing resources is based on Priority-Progress adaptation [37]. DOHA

defines scalable quality as a necessary requirement to writeWeb applications once

and run them with consistent quality everywhere. Scalable quality addresses re-

source volatility by enabling applications to scale demands (up or down) based

on available resources (including multi-core) and to efficiently utilize the limited

available resources by giving precedence to important computations with more in-

fluence over perceived quality. Priority-Progress adapts based on time and uses the

following three principles:

• Incremental Quality:The modified game loop executes as many events as

possible in each frame. The perceived quality of a game increases if we can

execute more events within the target frame rate.

• Prioritized Data: DOHA introduces event prioritization to provide timely

execution of those events with the greatest influence over quality. Priority

is assigned based on distance from the players which is one ofthe spatial

indicators of quality in a game.
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• Priority Data Drop: DOHA executes events according to priority and intro-

duces event cancellation to adapt the application demands based on available

CPU resources. When execution events become stale at the endof each game

frame, they are canceled and a new set of events is submitted.

DOHA also extends Priority-Progress adaptation to work across worker threads

utilizing the widely available multi-core processors. To utilize multi-core resources,

DOHA augments HTML5 Web workers with mechanisms to ease handling chal-

lenging concurrency issues, such as state management and load-balancing. The

modified game using DOHA has better timing and higher perceived quality when

resources are scarce. More importantly, the overall quality scales linearly (up to

3 cores) and larger game scenarios, beyond the scope of the original game, are

playable in the parallel version of the game.

The remainder of the chapter is structured as follows: Section 3.1 discusses

DOHA’s design and implementation details; Section 3.2 explains our evaluation

results; Section 3.3 describes our qualitative lessons learned; Section 3.4 presents

the related work; and Section 3.5 concludes.

3.1 Design and Implementation

While studying the architecture of a variety of Web-based games [1, 17, 68, 76], we

observed that they have one or multiple execution loops to perform the basic tasks,

such as rendering and simulation. As we see in Figure 3.2, current game loops

have a global update that iterates over all game entities (e.g., players and enemies)

in a pre-determined order (creation time order in RAPT [76] and z-axis ordering in

the Render Engine [17]). The global update is called using a JavaScript timer 30 to

60 times a second depending on the target frame rate. Currentgame loops attempt

to update all entities at each frame in a timely fashion. Thisarchitecture leads to

brittle application quality because adding one feature affects frame duration and

can render the game unplayable.

DOHA provides Web applications with abstractions and an execution layer to

have better control over quality and have more access to available multi-core re-

sources. DOHA consists of two major components: the event-loop which handles

prioritized execution locally in each thread, and the concurrent execution module,
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Figure 3.1: Web application with two HTML5 workers running in a multi-
core platform

function update (time) {
// Call update for all entities
for(entity in game_entities){

entity.update (time);
}

}

Figure 3.2: Game loop global update function
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MultiProc, which simplifies state management and scheduling of events on worker

threads.

3.1.1 Event-loop

An event-based architecture is a natural fit for the asynchronous browser execution

environment. DOHA’s event-driven programming model is inspired by the prin-

ciples of reactive programming [5] and aims to support the needs of interactive

Web applications. Popular Web applications are event-driven with a large number

of short callback functions [59]. DOHA introduces explicitexecution events that

specify the function to be executed and the call parameters.Inspired by Priority-

Progress adaptation [39], the scalable but computationally intensive parts of games

are broken into explicit events. Explicit execution eventsin DOHA give the under-

lying scheduler performance hints and define the granularity at which applications

adapt (scale quality up and down).

Our key observation is that time-sensitive applications have some computations

that are time synchronous (e.g., sound and game loop updates) and others that

are best-effort (e.g., AI logic and the particle engine) andcan be adapted. These

two types of computations need to be clearly identified so that their needs can be

met independently. DOHA provides an event-loop abstraction to ensure timely

event execution [41]. The event-loop dispatches non-preemptively, prioritizing the

time synchronous computations over the best-effort computations. Events can be

dispatched with low latency because our event-based model should ideally have

short-lived computations that avoid blocking.

The key primitives in the event-loop are:submitan event for execution (and

start the execution loop if it was not active),run to start the execution loop,can-

cel to delete a submitted event before it is executed, andstop to pause the exe-

cution loop. Each event is given a type, a callback specifying the function that

will be called, and an array of arguments. Explicit execution events have two

types: timer and best-effort. In timer events, the release time specifies the time

an event becomes eligible to execute. Once eligible, timer events take precedence

over best-effort events. For best-effort events, execution is ordered according to

priority. When application demands exceed available resources, it is not feasible
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to dispatch all events in a timely fashion. Best-effort events with more influence

over perceived quality are given high priority so they execute first. Less impor-

tant events are canceled when they become stale (based on time), thereby match-

ing demands to available resources. Priority and release time are assigned by an

application-specific adaptation policy.

To order the execution of both event types, the event-loop has two internal

priority queues. Timer events use a min-heap so events with earlier release times

are closer to the heap root. Best effort events use a max-heapso higher priority

events are closer to the root. At each event-loop iteration,we peek at the timer’s

heap root to examine the closest release-time. If it has beenreached, we execute

the root event. If it has not been reached, we execute the best-effort heap root. If

the best-effort events heap is empty, we yield to the underlying JavaScript engine

until the closest release-time. If the timers heap is empty,we yield execution of the

event-loop until a new event is submitted.

When an event is canceled or executed, it is removed from the associated heap

(while maintaining the heap property). Our event-loop is minimal and is designed

to co-exist with the underlying JavaScript engine. We see our event-loop as an en-

hancement layer to add the essential adaptation mechanisms: priority and cancella-

tion. Heaps in our design allow applications to queue eventsimproving utilization

while keeping full control over timing through prioritizedexecution and cancel-

lation. To avoid blocking the underlying JavaScript engine, we can run DOHA’s

event-loop in a timed mode by setting a threshold (e.g., 200 ms) for the maximum

duration of an event-loop iteration.

RAPT: Events and Policies

As a case study for DOHA, we choose the game Robots Are People Too (RAPT)

[76]. RAPT won the most fun game award in Mozilla’s Game On contest [72].

RAPT is an HTML5 platform game ported from C++. Players jump between mov-

ing platforms and coordinate their movements in order to pass game levels. The

exit to each game level is blocked by enemies that roll, jump,fly, and shoot to

prevent escape. RAPT uses 100% of a single core CPU (2GHz). Tounderstand

the time profile of different game components, we used the internal browser pro-
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function update (time) {
var evt;
// Delete pending events
for(evt in pending_events){

eventloop.cancel(evt);
}
// Add events to event-loop with a priority
for(entity in game_entities){

evt = new Event(entity.update, [time], BestEffort);
evt.priority = entity.getPriority();
eventloop.submit(evt);

}
}

Figure 3.3: Modified simulation loop update call

filer. The performance of RAPT is impacted by two major components: graphics

and simulation (physics and collision detection). In Chrome, 50% of the time is

spent rendering, 30% on the simulation update, and around 20% is spent inside the

browser. The major components in terms of performance (graphics, simulation,

and AI) are similar to traditional desktop games [6]. We focused our experiments

on the simulation updates because it constitutes a large performance concern espe-

cially after the rendering in browsers becomes hardware-accelerated.

Our first task was to split the large monolithic simulation loop into small ex-

plicit update events reducing the granularity of adaptation to an execution event.

The main simulation loop is now triggered by a timer event executing the global up-

date function at a rate of 30 frames per second (33ms frame duration). Timer events

triggering the global simulation update take precedence over best-effort events sub-

mitted within each frame. As shown in Figure 3.3, the modifiedglobal simulation

update starts by canceling the pending best-effort events from the previous frame.

Then, a separate update event per game entity is created and submitted to the un-

derlying event-loop. Before an update event is submitted, the getPriority policy

method for each entity is called to calculate the event importance.

Adaptation policies developed for the game define relative importance among

different game entities in each game loop iteration (game frame). Relative impor-

tance (priority) among game entities dictates the order of event execution. Since

players are at the heart of a game, their updates are the most critical indicator of

perceived game quality. Our basic adaptation policy assigns priority based on dis-
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tance from active players. Priority is a number between 0.0 and 1.0. Players get

priority 1.0. The priority assigned to the update events of other entities is inversely

proportional to their distance from the closest player.

Using distance only can lead to starvation for distant entities. These entities

will not be updated if resources are limited which causes flaws in their physics

updates. To minimize starvation and ensure correct simulation for all game entities,

we defined a minimum update heuristic based on the time since last update. As the

time since last update increases, the priority increases toreach 1.0 when we exceed

a maximum time threshold between updates. Finally, game entities have some non-

linear behaviors, such as gravity. These behaviors limit scalability because they

require a high and consistent update rate. Our policy needs to detect and account

for these behaviors while assigning priority.

All our entities sub-class two base classes: enemy and player. These base

classes define the adaptation policies other entities inherit. This current policy

can be customized at run-time with the appropriate thresholds, such as minimum

update threshold and distance ranges. We can also override apolicy to include

other factors specific to an entity type. For example, we can increase the priority

of a bullet proportional to its speed.

It is important to note that with simple modifications to the main simulation

update loop, it was possible to scale quality using DOHA’s event-loop. Web-based

games have other places where scalability can help trade accuracy for performance,

such as the particle engine (visual effects accuracy) and AIlogic (algorithm ac-

curacy). DOHA accompanied with the necessary adaptation policies can enable

scalability in these places to provide better and more consistent quality.

3.1.2 MultiProc: Concurrent Execution

HTML5 Web workers are implemented using threads in major browsers and uti-

lize multi-core hardware if available. Worker threads wereenvisioned to provide

an API to run scripts in the background without locking the user interface [30].

Since their inception, Web workers have been used in computationally expensive

demo applications to speed-up highly parallel algorithms.For example, our par-

allel factorial micro-benchmark gets around 10x speed-up with 16 cores for large
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numbers (3 * 109 in Chrome).

We believe Web workers have a larger role in enhancing the performance of

interactive multimedia Web applications especially in themobile Web. Mobile

platforms have low-end multi-core processors (e.g., 600 MHz) and browsing per-

formance is the biggest barrier to entry for a large number ofambitious Web ap-

plications. Using one of the most challenging Web application domains, HTML5

games, we show that Web workers with appropriate support cansignificantly im-

prove performance and perceived quality.

MultiProc API

MultiProc provides mechanisms to write concurrent Web applications with differ-

ent architectures. As shown in Figure 3.4, we started with a central master/slave

architecture that is tightly coupled. This architecture works well when the appli-

cation state resides in the main thread and the computationshave minimal shared

state. The application computations along with their necessary state (i.e., events

with parameters) are submitted to a central scheduler that dispatches them for ex-

ecution on worker threads.remotesubmitis used to submit a remote event to the

central scheduler. The scheduler (in the main thread) decides where to execute each

event based on worker load statistics (orders workers basedon load). Before events

are assigned to a worker, they can be canceled usingremotecancel. To inform the

main thread that an event was executed successfully, a worker callsdone. This call

updates the worker load statistics (number of active events).

To address the high communication costs across workers (as shown in Table

3.2), we moved to a less central design where the code in workers is more indepen-

dent. Concurrent Web applications with expensive communication are similar to

distributed systems. To share state between application components across work-

ers, MultiProc introduces a publish-subscribe communication API and RPC events.

To send a direct RPC event to a specific worker bypassing the central scheduler,

we use theremotedirect submitcall. Shared state can be published usingpub-

lish state. The state is transferred across worker boundaries and the method that

subscribed for the state updates using thesubscribestateAPI call is notified.
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//Central scheduler API
remote_submit(Event e);
remote_cancel(Event e);
done(Event e);

//RPC and state management API
remote_direct_submit(Event e);
publish_state(topic, msg);
subscribe_state(topic, worker_id, function_name);
unsubscribe_state(topic, worker_id);

Figure 3.4: MultiProc public API

Central Hierarchical Design

MultiProc started with support for a centralized master/slave Web application ar-

chitecture. The main browser thread is the master dispatching events to slave work-

ers. The main thread and workers each run their own event-loop to manage event

execution. Worker creation, book-keeping, and schedulingdecisions happen in the

centralized scheduler. This central design is based on the observation that the main

thread handles the Document Object Model (DOM) and that workers can only

communicate with their parents (no direct communication between siblings). To

extend our adaptation model across workers, events are queued in the main sched-

uler and sent according to their priority. DOHA’s central scheduler allows a small

fixed window of events in-flight per worker. Upon notificationthat an event was

executed successfully, another event is dispatched to the same worker. Since the

window size is small, the scheduler is agile in responding toload imbalance among

workers.

When an event reaches a worker, it is passed to the application code. The

application code at the worker adds the event to the local event-loop which re-

spects its priority. Each level of DOHA orders events according to their priority

to approximate a distributed adaptive event-loop across workers. To balance load

across workers, events are assigned to the worker with the smallest load (number

of events in progress). MultiProc uses two heaps to manage remote events and

workers. Remote events are ordered according to their priority while workers are

ordered according to the number of active events.
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Percentage Of Unique Colors 0 25 50 75 100
Delay (ms) 501 393 342 320 310

Table 3.1: Average delay to render a frame using ray tracing

Assuming each event can be executed in any worker, the centralized scheduler

will have perfect load balancing. However, some events havedependencies (e.g.,

manipulate the same data-structure). To handle these dependencies between events

our framework uses eventcoloring [82]. Programmers color events and MultiProc

adheres to the coloring constraints. Events with the same color execute in the same

worker and events with different colors can execute in parallel (in different work-

ers). Workers can generate events and assign them unique colors. Since our design

is centralized, a worker delegates the event to the main thread (master) which as-

signs it to the appropriate worker. Coloring is an easy to adopt [82] yet powerful

concurrency control mechanism. If all events have the default color, we have a se-

rial program. Having more colors reduces the scheduling constraints which leads

to better load balancing across workers.

To test dynamic load balancing in the central design, we useda 3D animation

that renders a large frame using ray tracing. Ray tracing is computationally in-

tensive and has minimal shared state. To simulate a loaded worker, we limit the

CPU share of one worker (out of 4 worker threads) to be 25% of the CPU time.

To simulate dependency between events, we vary the percentage of events with

unique colors. 100% means each event has a unique color (no dependency) and

0% means each event is colored with one of the four major colors (25% of the

total events per color to distribute work evenly across 4 workers). The original

rendering application which uses round robin scheduling takes 309ms to render a

frame when all the workers have enough resources and takes around 500ms when

one worker is limited. In Table 3.1, we see that MultiProc central load balancing

algorithm assigned events to other less loaded workers reducing the impact of the

loaded worker and maintaining the same overall applicationexecution time when

each event has a unique color (100%). As the percentage of events with unique

colors decreases (more dependencies between events), the rendering task gets de-

layed significantly. The load balancing logic was not able torun as many events in

parallel and gets the same results as the original round robin version.
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Our initial design assumed Web applications have a central design where all

execution events pass by the MultiProc scheduler. Even though our results with

a simple application were positive, in the central design all application state ac-

cessed during each computation and the generated results cross worker boundaries.

The communication cost becomes prohibitively expensive incomplex applications,

such as games, with tightly coupled components sharing state. Table 3.2 shows the

high costs of a ping-pong message in HTML5 Web workers as we vary the mes-

sage size.1 3ms is a relatively high cost considering the 33.3ms frame duration (or

16.6ms with a rate of 60 frames per second).

Message Size (bytes) 10 100 1K 10K 100K
Firefox (ms) 3 3 2.3 3 4.5

Chrome 15 (ms) 3.4 4 4.5 6 46.9

Table 3.2: Average delay for a ping-pong message between workers

State Management and Publish-Subscribe

To address these high communication costs, we moved to a lesscentral design

where the code in workers is more independent. We re-structured the simulation

loop of RAPT as a network of components running in workers. Aswe see in

Figure 3.5, each worker has an event-loop to run local events. Instead of sending

all events and their related state across worker boundaries, we send a few direct

events (synchronization and control events) and necessarystate updates between

workers. For example, we send a game loop start iteration event from the main

thread with minimum data parameters, such as the current time. Update events for

entities assigned to the worker are generated locally and added to the local event-

loop.

Without shared memory, workers cannot access the browser Document Object

Model (DOM). The code for each game entity in RAPT had to be split into two

parts: one for simulation which runs in worker threads and another for rendering

which runs in the main thread. The modified game loop performsrendering in the

main thread while the loop in each worker performs the simulation. To maintain

1Internet Explorer (IE) is not included because at the beginning of our study, IE did not support
Web workers.
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Figure 3.5: Web application using MultiProc with two workers

the game view, the rendering state of each entity is replicated. After each simula-

tion update, each entity communicates the state needed for rendering back to the

rendering replica in the main thread. This partial replication of the entity’s state

uses our publish-subscribe communication API, as we see in Figure 3.6. Partial

replication transfers the minimum amount of state needed for rendering, such as

the entity position (x, y), and orientation (angle).

Few key entities in RAPT are global. For example, players areaccessed and

modified by different types of enemies in multiple workers. Similarly, some entities

at the boundary of partitions need to have their state sharedbetween two workers.

To perform correct simulation, the entire state of each global entity is replicated

across multiple workers. One worker owns the primary (authoritative) copy of the

entity and other workers have full replicas. We synchronizeall replicas after each

entity update. The primary publishes its state to the entity’s topic which all replicas
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//Publish state in the worker
Entity.prototype.publishState = function()
{

var msg = [this.x, this.y, this.angle];
worker.publish_state(this.id, msg);

};
//Update state in the main thread
Entity.prototype.updateState = function(args)
{

this.x = args[0]; this.y = args[1];
this.angle = args[2];

};

Figure 3.6: Entity sharing rendering state in concurrent RAPT using the
publish-subscribe API

(partial and full) subscribe to.

To allow modifying global objects, each identical replica acts as a proxy. State

mutation is only allowed in the authoritative version of an entity. When a mutator

method in a replica is called, the call is published on the global object mutation

topic which the authoritative version subscribes to. Statemanagement for entities

heavily uses the publish-subscribe API for one-to-one (partial replication), one-

to-many (full replication), and many-to-one (proxy forwarding) communication.

These different communication patterns and the dynamic movements of entities

to balance load across workers are the main motivations for our publish-subscribe

communication API. Publish-subscribe provides a loosely coupled communication

API that supports various communication patterns and allows the communication

pattern to vary over time.

Our publish-subscribe logic is central. Web workers pass the communication

API calls to the main browser thread. Our main publish-subscribe unit maps topics

to a subscribers list. Each subscriber is a tuple of (worker ID, function name).

When a message is received from the topic, it is forwarded to afunction with the

given name on the specified worker. In each worker, the application registers a list

of public functions that handle state-update messages.

The topics used for publish-subscribe communication need to be unique. We

built a distributed identity manager to provide each game entity (in RAPT) with a

unique identity that is used as a topic for its communication. The primary identity

manager in the main browser thread assigns each worker a limited range in the

31



identity space. When the identity range in a worker runs out,the remote identity

manager asks the primary manager for a new range.

Load-Balancing

Our central scheduler implements load-balancing as we saw in Section 3.1.2. How-

ever, DOHA’s state management support is agnostic to the wayapplication compo-

nents are distributed across workers. Building efficient distributed algorithms for

games is an active area of research that is outside the scope of our work. We aim to

provide the necessary mechanisms so application developers can implement their

favorite distributed load-balancing algorithms on top of DOHA.

In the concurrent version of RAPT, we partition the game map geographically

into a number of grids equal to the number of workers. Each worker handles a

grid with all associated entities (enemies, and players). The state of each entity

is updated in a single worker. This design respects data locality since each en-

tity primarily interacts with other entities in its vicinity. Local interactions avoid

expensive state transfer across worker boundaries. When entities move between

grids, they migrate with all their state to a different worker.

Even though static geographical partitioning does not distribute work evenly

across workers, our experience in a few popular state of the art Web-based games

suggests that designers distribute game entities evenly across the game map. To

help developers implement the load-balancing algorithms,DOHA provides:

• load information so developers can use it to decide when to migrate entities.

• a distributed identity manager which names entities uniquely, thus avoiding

name conflicts upon migration.

• A loosely-coupled communication API to easily set-up and tear-down com-

munication channels for frequent entity migration.

Developers need to develop the load-balancing policy and then use our com-

munication layer to send the entity state.

DOHA aims to support applications with different concurrency requirements,

ranging from simple applications that only need the computational benefits of Web
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workers to the more demanding Web-based games. Simple applications without

shared state can delegate load balancing and scheduling of remote events to the

central scheduler. For more advanced applications with shared state across work-

ers, DOHA provides a publish-subscribe communication layer to manage state. In

our efforts to parallelize RAPT, we initially tempted to isolate a major game com-

ponent such as the physics engine in a worker. This would havebeen easier and

can probably enhance performance. However, it does not scale with the number

of cores. Even though current mobile platforms have at most dual-core processors,

RAPT and other Web applications should aim for scalable parallelism to improve

performance with more cores.

3.2 Evaluation

We conducted a set of experiments with gaming scenarios of various computational

demands. In the basic test map for RAPT, both players move inside a horizontal

tunnel in one direction and the enemies move in a parallel tunnel above the play-

ers. We compare the following game versions: the original RAPT (RAPT), the

modified RAPT using adaptation only (RAPT-A), and the modified RAPT using

adaptation and concurrent execution with 2 Web workers (RAPT-C).

Our evaluation takes two views on performance: the first based on lower-level

event-loop execution metrics, and the second based on higher-level application

metrics. The low-level metrics include: number of events submitted per second

and the ratio of canceled events. These low-level metrics show the throughput of

the event-loop (events per second). To understand how theselow level metrics

affect game quality, we analyze the quality of the gameplay experience using high-

level metrics, such as the simulation loop jitter profile (jitter median and jitter tail

which is the 95th percentile of the jitter distribution) to quantify the average time-

liness and the magnitude of execution glitches, and the average frames per second

(FPS) versus priority for all entities to quantify the average game quality (scalable

quality).

We performed our experiments on an AMD Opteron with 16 2GHz cores.

Multi-core hardware allowed Web workers to run on differentcores. The dura-

tion of each experiment is 80 seconds. To avoid start-up and shutdown effects, we
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Table 3.3: Jitter profile

Jitter (ms) Scenario RAPT RAPT-A RAPT-C

Median
Easy 22 0 1
Medium 47 0 0
Hard 219 0 0

Tail
Easy 26 7 7
Medium 55 8 17
Hard 291 8 33

use the middle 60 seconds. We used Google Chrome 15.0.874.102 beta in Ubuntu

10.04 LTS. The two changing experiment parameters are the computational diffi-

culty of the game scenario (which is controlled by the numberand type of enemies)

and the game version (RAPT, RAPT-A, and RAPT-C). We have three game sce-

narios: an easy scenario where all versions have reasonablequality; a medium

scenario which is the hardest playable scenario by RAPT and RAPT-A (with the

processing power of one core); and finally an extremely challenging game scenario

with processing requirements beyond the capacity of one core.

3.2.1 Adaptive Execution

In this section we discuss the effects of our adaptation model on game performance.

We analyze the low-level event-loop throughput, the timeliness of simulation loop

updates, and the average overall game quality (scalable quality).

Timeliness

Table 3.3 shows the simulation loop jitter profile for all RAPT versions running

all scenarios. The median jitter gives a measure of average timeliness and agility

in responding to stimuli, such as input and collisions. To quantify glitches which

affect quality negatively, we measure the jitter tail. The expected inter-arrival time

between frames is 33.3ms since the target frame rate is 30FPS(frame duration

1000ms/30). We measure the offset for the expected arrival time and report its

median and 95th percentile to capture the jitter distribution.

As seen in Table 3.3, the jitter median and tail in the original RAPT increases

with the difficulty of the game scenario. The median jitter reaches 219ms which

means RAPT executes 1 out of 7 frames (219/33.3=6.6) yielding a frame rate of
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around 4 FPS. This increasing jitter is due to RAPT’s game loop iterating over all

game entities in each frame leading to a large delay in processing each frame.

RAPT-A has low consistent jitter profile (median=0ms and tail=8ms) for all

game scenarios. Our reactive event-driven design gives timer events more im-

portance than best-effort events in each game loop frame. When the timer event

running the game simulation loop (global update) fires, we stop execution of best-

effort events and delete all pending events from the previous frame. Finally, RAPT-

C has low consistent median jitter. But the jitter tail in RAPT-C increases with the

difficulty of the scenario to reach 33ms in the hard scenario (95% of the jitter values

are less than 33ms). This increase in the jitter tail is mainly due to the communica-

tion and OS scheduling spikes for the two Web workers.

Low-Level Event-loop Statistics
Table 3.4: Event throughput statistics

Statistics Scenario RAPT-A RAPT-C

Event Submission Rate
Easy 7417 7127
Medium 11150 10749
Hard 33110 31317

Cancellation Ratio (%)
Easy 2.2 0.1
Medium 17 18
Hard 88 66

Our low-level event-loop statistics help us understand theevent throughput. As

seen in Table 3.4, both RAPT-A and RAPT-C submit more events as the difficulty

increases because of the increase in the number of entities.The cancellation ratio

also increases because the frame duration is not enough to update all entities as the

difficulty increases.

RAPT-A submits slightly more events per second in all scenarios than RAPT-

C indicating a higher simulation rate. The ratio of canceledevents in the easy and

medium scenarios (RAPT-A and RAPT-C) is comparable. In the hard scenario,

RAPT-C cancels less events (66%) than RAPT-A (88%). Moreover, RAPT-C has

higher event rate due to having 2 extra cores to execute the simulation updates.

35



Priority Vs Quality

The medium scenario (hardest playable scenario for RAPT-A and RAPT) tests

our capability to gracefully degrade quality when resources are scarce. RAPT in

the medium scenario has an average quality of 12.3 FPS which is similar to the

simulation rate. When resources are scarce, RAPT-A and RAPT-C cancel update

events for stale low priority entities. Thus, the overall average game quality (in

FPS) is not captured in the simulation rate (29 and 30 FPS).

To give more meaningful measure of the overall game quality (scalable qual-

ity), we measure the average frames per second for all game entities. We correlate

this quality indicator with the priority assigned by our policy. As we see in Figure

3.7, the FPS of game enemies in RAPT-A ranges from 16 for low priority entities

to 29 (maximum) for high priority entities. Similarly, the average jitter for all en-

tities decreases from 17ms to 4ms as priority increases (average jitter is inversely

related to average FPS). We notice that low priority entities never starve (have at

least 16 FPS). This is due to our minimum update threshold which ensures that

even low priority entities are updated at a lower frequency.When CPU is limited,

our adaptation model in RAPT-A improves quality for important entities so quality

has a strong correlation with priority.

RAPT-C has relatively higher quality for all entities (24 FPS). The quality does

not have a strong correlation with priority because at each time instance game en-

tities with the highest priority are concentrated in one worker (due to geographical

partitioning of entities). Other workers at the same time instance are processing

events with low priority leading average FPS to lose correlation with priority. In

addition, the communication overhead in RAPT-C with three separate cores (2

workers and the browser thread) leads to lower FPS than RAPT-A in the medium

scenario for high priority entities. The trade-off betweenthe communication over-

head and the parallel speed-up changes in the hard scenario as we see in Section

3.2.2.

Results Summary

RAPT-A and RAPT-C have better timing (lower jitter mean and tail) than the orig-

inal RAPT. By canceling updates of less important entities at the end of each sim-
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Figure 3.7: Priority versus quality (average FPS)

ulation loop, RAPT-A and RAPT-C can provide important entities (with more in-

fluence over quality) a higher update rate. This translates to better overall game

quality in RAPT-A and RAPT-C.

3.2.2 Concurrent Execution

While playing the game, we noticed RAPT-A had much worse perceived quality

than RAPT-C in the hard scenario. RAPT-A’s main thread was overwhelmed by

the extremely high load and it was not yielding execution to the browser engine (to

perform the rendering). In this case, isolation between thetwo tasks (simulation

and rendering) in RAPT-C provided much better perceived quality.

The hard scenario is not playable in either RAPT or RAPT-A. RAPT-A was

overwhelmed by the load and the simulation rate in the original RAPT is extremely

low (4 FPS). The hard scenario is only playable in RAPT-C. Even though the

hard scenario had a large number of enemies, our design scales the communica-

tion costs. RAPT-C only executes and communicates state updates for as many

events as the frame duration allows.
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To evaluate the effects of adding more cores on game quality,we run RAPT-C

using the hard scenario while varying the number of cores. Aswe see in Figure

3.8, the average FPS for all game entities (scalable quality) increases as we add

more cores. RAPT-C with 1 worker gets an average of 3.5 FPS. With 3 workers,

the average FPS is between 12 and 14. Average jitter also drops from 260ms with

1 worker to around 42ms with 3 workers. In the hard scenario, we get linear im-

provement in quality with each worker added up to 3 workers. As we see in Figure

3.8, using 4 workers does not improve the game quality. With 4workers, only 3%

of the execution events are canceled which indicates the application load in the

hard scenario is small relative to the available cores. In this case, RAPT-C pays

additional concurrency costs but does not benefit from the extra core.
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Figure 3.8: RAPT FPS in the hard scenario with 1, 2, 3 and 4 workers

To look at timeliness as we add more cores, we measure the jitter distribution

of the simulation loop frames in the hard scenario. RAPT has by far the worst jitter

profile. As we see in Figure 3.9, only 20% of execution frames have jitter less than

210ms. RAPT’s jitter tail extends to around 291ms causing significantly bigger

execution glitches. RAPT-A and RAPT-C (with 1 and 2 workers)have the same
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low average jitter profile and RAPT-C has a relatively worse jitter tail.

We also observe that latency increases as we add more cores. With 3 workers,

the mean jitter is 14ms and the jitter tail is 64ms. The jitterincrease is partly be-

cause the simulation loop in worker threads is triggered by aperiodic update event

sent from the main thread. When the number of workers increase, the communica-

tion load on the main thread increases and the loop update events are delayed.
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Figure 3.9: Jitter cumulative distribution in the hard Scenario

Less Cores Than Workers

To test what will happen if we have more workers than cores, weran the medium

scenario in a single core machine (a 2.80GHz Intel(R) Pentium 4).2 As we see in

2All of the other experiments reported in this thesis were performed on a multicore machine.
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Table 3.5: Jitter profile in the easy scenario (with one core)

Jitter (ms) RAPT RAPT-A RAPT-C
Median 25 5 17
Tail 28 8 28

Table 3.5, RAPT-C has lower FPS and higher jitter tail than RAPT-A (but compa-

rable quality to RAPT). We also noticed in the low-level event-loop statistics that

RAPT-C submitted less events and canceled more. This performance gap is due to

the overhead of communication between and scheduling of theworker threads and

the lack of any parallel speed-up using the one core machine.

Ideally we should have one worker per core. Degradation in performance is ex-

pected if we use more or less workers than necessary. To help applications choose

the appropriate number of workers, browsers can have an API to expose the num-

ber of cores (user agent information) or JavaScript librarydevelopers can detect it

(using micro tests).

Results Summary

DOHA demonstrates the potential to help scale quality linearly as we use more

cores in a challenging game scenario. It is essential to choose the appropriate

number of workers for the execution and communication load and the underlying

hardware. Using more workers than needed (4 workers case in Figure 3.9) or using

less workers than cores (Table 3.5) can reduce performance due to concurrency

overheads (without getting any parallel speed-up).

3.3 Lessons Learned

This section includes few of the subjective lessons learnedwhich can shed more

light on DOHA and Web-based game development. We noticed that:

• Performance engineering inside browsers is challenging. Browsers have

primitive debugging and performance monitoring tools. Webworkers have

even less support. To conduct a rigorous experimental studyand quantify

performance, we had to build a number of performance analysis tools.
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• Game adaptation in RAPT required minimal code changes. To introduce pri-

ority and cancellation of events we only had to change the core game loop

and add the policies as described in Section 3.1.1. The changes affected

1% of the code base (including comments, counted using wc -l). Using the

central scheduler was relatively easy having already used explicit events be-

cause most of the distribution tasks are delegated to the central scheduler.

However, using Web workers with a distributed application design requires

re-structuring existing code in a major way. For example, RAPT was mod-

ified to have a distributed game loop and we used replication to manage

shared state as described in Section 3.1.2. Introducing thepublish-subscribe

layer improved the abstraction but developers still need towrite complex

distributed algorithms.

• Parallel and adaptive execution are independent and can be adopted sep-

arately. Applications can use DOHA’s publish-subscribe communication

layer for state management without adopting explicit events and the other

way around. Both approaches are introduced together withinthe framework

of scalable quality because adaptation scales applicationdemands (up and

down) based on the limited available resources while concurrency expands

the pool of available resources allowing scalable parallelism. RAPT-C uses

both adaptive and concurrent execution to get better performance when CPU

demands exceed the resources available in one core. However, RAPT-A

avoids the development costs and the concurrency run-time overheads of

RAPT-C (Figure 3.9) making it appealing when the application can provide

adequate quality with one core. Developers need to examine the advantages

in quality improvements versus the run-time overheads (anddevelopment

costs) when deciding what is the level of scalability (e.g.,RAPT-A, RAPT-C

with 2 workers, or RAPT-C with 3 workers) most appropriate for the range

of target platforms.

• HTML5 Web workers expose an elegant shared-nothing concurrency ab-

straction. Explicit message-passing is a good fit for asynchronous event-

driven browser execution. It also allows Web developers to use familiar dis-

tributed computing abstractions (from their experience with server compo-
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nents). The main limitation is the high communication costsin implementa-

tions. Current communication cost in browsers will enable client-side appli-

cations to scale quality in multi-core platforms with few cores (e.g., 4 cores

in RAPT – 3 workers and the main browser thread). To scale in many-core

platforms with tens of cores, the communication costs needsto be reduced

significantly. Browsers need to optimize the communicationchannels and

expose optimization mechanisms (e.g., use immutable objects with owner-

ship transfer to pass large objects across workers). JavaScript frameworks

similar to DOHA can also perform communication optimization (batching

and pipelining) to reduce messaging costs.

• DOHA is applicable in other Web multimedia applications, such as video

applications, visualizations, and animations. We observed the same event-

driven architecture in the few animation and visualizationplatforms we stud-

ied. To extend our support to server-side game components, we ported

DOHA to node.js [35], a popular JavaScript server framework. Our future

work aims to use scalable quality in other application domains and perform

an in-depth study of the adaptation and load-balancing policies required.

3.4 Related Work

DOHA builds upon the event-driven nature of popular Web applications, which

have a large number of short handler functions [59]. Event-driven programming

is a natural fit for JavaScript, a single threaded programming language, supported

by the asynchronous browser APIs. Event-driven reactivityin DOHA has its roots

in the concepts of reactive programming [5]. DOHA introduces execution event

classes and specifies timing information at the event level similar to the application

model in Cooperative Polling [41]. Explicit execution events are used for all com-

putations and the underlying scheduler adheres to hints in events to run important

computations in a timely fashion.

DOHA developed CPU adaptation policies for Web-based gamesinspired by

Priority-Progress adaptation [37, 39]. DonneyBrook’s [10] interest sets use dis-

tance, aim, and recency from the player’s perspective to decide which entities are

more important. Similar to interest sets, our CPU adaptation policy uses distance
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from the player to determine the importance of game entities, but our priority

scheme has a continuous spectrum (between 0.0 and 1.0) allowing smooth scal-

ability instead of the two priority levels in DonneyBrook.

Recently, developers used workers to separate the physics engine of a simple

animation [43] improving the animation’s frame rate. However, offloading func-

tional units to workers will limit scalability to the numberof independent units

within an application. DOHA helps developers address challenging concurrency

issues, such as state management and load-balancing in order to provide scalable

parallelism with more cores.

Parallel architectures in games use techniques, such as Synchronization via

scheduling (SvS) [7] and Software transactional memory (STM) [46] to manage

state. SvS uses results of the static and dynamic code analysis to manage potential

shared state conflicts by exposing the data access pattern tothe scheduler. Lupei

et al. [46] show that STM can provide better performance thanthe state of the art

multi-threaded lock-based game server. Even though these techniques are suitable

for parallel games, they assume shared memory while Web workers have no shar-

ing and use message-passing. The Multikernel [4] investigates a new OS structure

that treats a machine as network of independent cores with noshared memory and

move traditional OS functionality to a distributed system of processes that com-

municate using message-passing. Similar to the Multikernel, we embraced the net-

work nature of concurrent systems and re-structured our experimental Web-based

game as a network of distributed components. We use replication to share state

using ideas from the distributed architecture of interactive multi-player games in

Colyseus [9].

Coloring [82] was introduced as a coarse grain concurrency management tech-

nique for event-driven Web servers. Events with the same color execute in the same

worker while events with different colors can execute in parallel. Coloring was

used to manage concurrency in the central scheduler. To improve the browser per-

formance, the parallel browser project [47] re-writes the bottlenecks (parsing and

rule matching) in a parallel fashion. Application-level concurrency (in JavaScript)

is equally important especially since applications are faster to change and adapt

than browsers.

Native Client [81] allows Web applications to execute native code inside a
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browser sandbox and improve performance (by using hand-coded assembler and

native threads). DOHA aims to improve the performance of applications written

in JavaScript, the de-facto language for Web applications.Using native code in the

browser is complementary to our work especially since JavaScript engines are be-

coming more mature. The exokernel browser architecture in Atlantis [48] defines

a narrow API for basic services and allows Web applications to extend their exe-

cution environments. Atlantis’ run-time language Syphon supports a full threading

model. Even though the performance of threads with shared memory is arguably

superior to Web workers with message-passing, the performance gains come at the

high cost of introducing a concurrency model that causes most system errors [63].

3.5 Conclusions

Browsers are becoming mature platforms. Ambitious Web applications with high

computational demands and low latency interactions, such as games, animations,

and interactive visualizations are pushing the limits of available processing re-

sources. In overload conditions, the best-effort execution model of current browsers

lacks the necessary mechanisms to help these demanding applications control qual-

ity and balance between timeliness and utilization. In addition, ambitious multime-

dia applications need more processing power than availablein one core especially

in mobile platforms with low-end cores. Even though HTML5 Web workers pro-

vide a concurrency model to utilize multi-core resources, Web developers still need

more programming support in hard concurrent software development issues, such

as state management, load balancing, and timely execution with multiple threads.

DOHA deals with the volatility and shortage of processing resources based on

Priority-Progress quality adaptation. Scalable quality in DOHA addresses resource

volatility by enabling applications to scale demands basedon available resources

(including multi-core) and to utilize the limited available resources to execute im-

portant computations with more influence over perceived quality. Our evaluation

shows that when CPU resources are scarce, the modified game using DOHA had

better timing and higher overall quality. More importantly, the quality scales lin-

early with a small number of cores. Scalable quality enablesambitious Web appli-

cations to explore more challenging scenarios without the fear of brittle quality.
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Chapter 4

Transport Layer: Paceline

Beyond interactive Web applications as addressed by Doha inChapter 3, another

area in which application adaptation is critical is streaming delivery and display

of multimedia content over the network. Because the data of many applications

and users are multiplexed over a shared common media, network performance is

highly variable both over the short-term (millisecond or second granularity) and

longer term (10s of seconds or minutes granularity). The primary motivation of

our work is to enable adaptation in applications with high bandwidth (hundreds

of Kbps or more) and latency sensitive (tenths of a second or less) network com-

munication. Our example application is HD video conferencing which is part of a

growing real-time collaboration market. Other multimediaWeb applications in this

class are large scale high speed online multiplayer games [10], and online virtual

worlds [2]. In these applications the volume of data is large(i.e., HD multimedia

with a large number of participants). In addition, there arestringent interactivity

requirements so applications need to keep end-to-end latency down at all times, for

effective response and comfortable communication. These demanding applications

simultaneously require high bandwidth and low end-to-end latency, a conflicting

combination that is poorly supported in existing best-effort transports.

Paceline introduces adaptation mechanisms as essential transport primitives to

resolve the conflict between timeliness and best-effort transports. Paceline en-

hances the transport service model with mechanisms for quality adaptation. Our

quality-adaptation model is based on Priority-Progress adaptation [37], which re-
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mains the most stable adaptation technique over the Transmission Control Proto-

col (TCP) in terms of packet delay and jitter [42]. Priority-Progress adapts quality

based on a timeline that specifies when each message is relevant. Priority-Progress

uses three principles:

• Incremental Quality:The video conferencing application used in the evalu-

ation supports spatial and temporal scalability.

• Prioritized Data:Paceline introduces message prioritization to provide timely

delivery for important data with more influence over quality. Priority is as-

signed by an application policy using spatial and temporal indicators of per-

ceived quality.

• Priority Data Drop: Paceline introduces message cancellation to adapt the

application rate to match available bandwidth. Messages are canceled when

they becomes stale according to the application’s timeline.

Using Priority-Progress adaptation mechanisms, Pacelineenables applications

to scale quality with available resources and to use the limited available bandwidth

in transferring data with more influence over quality. Up to this point, we are con-

sidering adaptation in a single stream of messages to the varying availability of net-

work resources. Paceline also enables Priority-Progress adaptation across multiple

high-bandwidth low-latency streams in a fair fashion. Different streams have vary-

ing requirements in terms of latency, bandwidth, and high-level application quality

metrics. For example, a game transfers several kinds of streams, such as player

status updates, player video coordination chats, advertisements, and game control

messages. The frequency of advertisements might be relaxedif necessary to help

ensure player updates are sent promptly. Similarly, a distance learning session can

have voice, video, and slides from different users as separate streams multiplexed

over the same communication channel and have different quality metrics. For fair

and timely communication across concurrent streams, Paceline supports for two

notions of fairness across streams sharing a link: quality and resource fairness.

Resource fairness guarantees fair bandwidth across streams, while quality fairness

ensures fair application level quality. Quality is defined at the application level as

the frames per second in video conferencing, or the updates per second in online
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games. Our service model defines a generic notion of quality to suit any type of

continuous communication.

Contrary to conventional wisdom, Paceline has not been implemented over

the User Datagram Protocol (UDP), nor does Paceline proposechanges to TCP.

Paceline is layeredentirely above TCP, the “narrow waist” of the Internet. TCP

constitutes the dominant component of Internet traffic volume, typically greater

than 90% [25]. The shortcomings of TCP with regard to end-to-end latency are

well known with full Internet standards (IETF) (i.e., Stream Control Transmission

ProtocolSCTP[56] and Datagram Congestion Control ProtocolDCCP [36]) and

mature research transports (Structured Stream TransportSST[24]) proposing to

modify or replace TCP. However, the basic characteristic ofTCP has not changed

and no alternative transport has yet to gain any appreciableadoption. In this chap-

ter, we explore the idea of improving latency without replacing or even modifying

TCP. To address TCP’s latency problems and minimize the end-to-end latency for

important data, we use the three following techniques:

• Application-level rate control, to reduce queuing delay due to excessive socket

buffering.

• Failover among connections to handle extreme cases of congestion leading

to latency spikes.

• Application data unit (ADU) fragmentation to prevent head of line blocking

and reduce the granularity of pre-empting less important data.

The contribution of Paceline is in the combination of the above techniques, in a

way that mitigates TCP’s weaknesses. Even though the underlying service model

is best effort, Paceline’s techniques improve the transport agility to ensure that the

most important data have good timeliness. Our evaluation shows that Paceline

improves upon conventional end-to-end latency shortcomings of using TCP, by a

factor of 3 in median latency and a factor of 4 in worst case latency. Meanwhile,

Paceline is able to preserve TCP’s performance in terms of fairness and utiliza-

tion. We also compare Paceline with the Structured Stream Transport (SST) [24].

SST is one in the class of several protocols designed to provide better control over

timing than TCP, such as SCTP and DCCP. SST is the most recent,it has compa-

rable features and builds upon many ideas common to the others, we chose SST
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Figure 4.1: Components of end-to-end latency

for our evaluation because we believe it represents the current state of the art. Us-

ing application level metrics from a video streaming system, our evaluation shows

Paceline’s performance to be very competitive with that of SST.

The rest of the chapter is organized as follows. Section 4.1 provides an end-

to-end analysis of TCP delays. Section 4.2 describes the transport service model

and Section 4.3 explains the architecture of the low-latency techniques. Section 4.4

presents the evaluation results. Finally, Section 4.5 summarizes the related work

and Section 4.6 concludes.

4.1 End to End Latency Analysis

Since interactivity and transport latency are a key focus ofthis work, we now briefly

characterize the sources of latency and set the context for our approach in Paceline.

As depicted in Figure 4.1, end-to-end latency is commonly broken down into four

components of 1)processingdelay, due to processing speed, 2)queuingdelays in
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nodes (hosts and network routers and switches), 3)transmissiondelay due to the

bit-rate of transmission, and 4)propagationdelays due to physical distances. When

one or more of those delays becomes large, interactivity (application to application

message delivery) will suffer. As we will show later in Section 4.4, the total end-to-

end latency of TCP can be several seconds. In the following analysis, we explain

that of the four latency components,queuing delay(inside TCP send buffers and

network node queues) is the dominant cause of latency for high bandwidth TCP

applications.

Firstly, processing delayis generally negligible due to fast CPUs and careful

design of transport algorithms. Second, if we assume for themoment that applica-

tion data units (ADUs) fit within transport segments up to a maximum size (mss),

then transmission delaywill be bounded todelaytransmit = mss/link rate. With

common values oflink rate (Mbps or Gbps) andmss(e.g., 1500B),delaytransmit

will be a small value (e.g., sub-millisecond). This leaves propagation delay and

queuing delays as the dominant contributors to latency. One-way propagation

delayhas lower bounds set by the laws of physics. Typical Internetpath round-

trip-time (RTT) values are in tens of milliseconds for intra-continental distances,

or around one or two hundred milliseconds for distances thatcross oceans or tra-

verse satellites. In addition, TCP provides reliability via retransmissions that can

add extra queuing delay (multiples of the propagation delay) to the total. For this

reason, TCP is commonly dismissed as unsuited for latency sensitive applications.

However, in the common case, TCP’s fast retransmit mechanism should limit the

retransmission-induced queuing delay to an RTT or two. Onlyin the case of very

congested networks will back to back retransmission timeouts lead to a series of

exponential backoffs which degrade TCP’s performance. On the other hand, TCP’s

socket buffer is often large enough that it can cause queuingdelays in the order of

seconds. In a previous study, it was shown that in many realistic conditions, the

queuing delay (specifically due to the send side TCP socket buffer) is the domi-

nant portion of the total delay because of large kernel socket buffers employed by

TCP implementations [28].1 To address this, that study proposed and implemented

a modification in the Linux kernel to dynamically tune the socket buffer size to

1For example, with a typical TCP send buffer size of 64KB, and a300 Kbps video stream, a full
send buffer contributes 1700 ms of delay.
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avoid unnecessary queuing delay, bringing the end-to-end delay within 2 RTTs

most of the time, while leaving TCP’s congestion control unchanged. In this paper

we build upon that work, but our current solution is designedto avoid altogether

the need for kernel modifications.

A kernel approach has several limitations that motivate us to investigate user-

space solutions. First, the need to modify the kernel is a fairly major obstacle to

deployment, as new implementations of TCP can take years to percolate widely to

existing systems. Second, under unusual duress of back to back losses and retrans-

mission timeouts, TCP can effectively become stalled. To address this challenge,

we enhance our transport service with a failover mechanism external to TCP. Third,

in circumstances where transparent proxies are employed (by ISPs, CDNs, etc.),

splitting the end-to-end flow across multiple TCP connections, an in-TCP based

approach looses effectiveness. For example, if the TCP connection to a proxy (first

hop) is local, and the proxy to server connection (second hop) spans a slow wide-

area path, then the first connection will mistakenly send at afast rate and allow

the proxy to queue up an undesirable amount of data. Considering these issues

together, we were inspired to explore a user-level approach.

4.2 Data Service Model

Paceline provides a transport service targeted to applications with both tight timing

and high bandwidth requirements. These applications are increasingly designed to

support diverse environments from gigabit broadband networks to congested wire-

less links. Network resources (e.g., bandwidth) can be saturated either due to vari-

ability in an application’s own demands (applications can have different resource

requirement over time) or variability in resources (when sharing resources with

other applications). Adaptive applications fine-tune the quality of their outcome

depending on the available resources. This section describes the service model in-

tegrating Priority-Progress adaptation mechanisms to support target applications.

In contrast to the reliable byte-stream service model of TCP, Paceline provides

a reliable message-based service model. Like TCP, the Paceline service is full-

duplex, but for simplicity of presentation, we will describe the two endpoint appli-

cations and Paceline in terms of application sender or receiver roles. We chose a

message based model because low-latency is a primary goal, and messages provide
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a natural explicit means for the application to inform the transport about latency

preferences as well as representing an application data unit (ADU).

Paceline’s programming interface allows the application to specify message

importance on a per-message basis, and Paceline delivers messages in order of im-

portance, which is not necessarily first-in first-out (FIFO).2 The ability to queue

messages ahead of time is essential to achieve high bandwidth, but the ability to

prioritize messages is necessary to prevent head-of-line blocking3 and the attend-

ing loss of responsiveness. Since re-ordering is implicit in Paceline’s model, the

message send primitive provides an option (per-message) for the sender to be no-

tified when the message has been delivered to the receiver. Unlike the byte-stream

service model, Paceline allows the sender to cancel a pending message, this feature

is motivated by the goal of responsiveness because the old data will slow down new

messages and waste bandwidth. At the receiver, Paceline passes messages directly

to the application. Applications need to handle out-of-order delivery and missing

data introduced by message priority and cancellation.

In conjunction with congestion control, cancellation is used by the application

to adapt the rate of message delivery to the underlying network conditions — such

adaptation is an essential requirement to reconcile the inherent conflict between

the application’s need for control over timing and the best effort nature of Internet

service. Informed cancellation maintains reliable delivery semantics while allow-

ing applications to cancel stale messages. This provides analternative to random

dropping of messages (e.g., UDP) under congestion.

Paceline’s delivery service model comprises two request primitives and two

notification primitives (callbacks). The requests aremsgwrite and msgcancel,

and the notifications aresent, andrecv. One notable absentee from this model is

any explicit notion of time, deadline, expiration,etc.. Given Pacelines’s objective

of supporting low-latency applications, we could have expanded the model to have

Paceline assist directly in expiring messages deemed too late for useful delivery

(e.g., as in SCTP’s partial reliability option). However, we rejected such an ap-

proach as the cancel primitive is sufficient for the application to expire messages

itself (as in the example below), and it provides a means for application specific

2Paceline does enforce FIFO ordering among messages of equalimportance.
3A delay that occurs when a line of packets is held-up by the first packet.
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send_video_frame (player, stream, frame) {

/* Set message data and length */
msg_init.data = frame.data;
msg_init.length = frame.data_len;

/* Set message importance */
msg_init.importance = server_get_utility(frame);
msg_init.marginal_utility = server_get_marginal_utility(frame);
msg_init.sent = video_frame_sent;

/* Sending a frame with cancellation */
stream.msg_create(msg_init, &frame.msg_handle);
stream.msg_write(frame.msg_handle);
frame.expire_event = expire_video_frame;
add_timer(frame.deadline,

frame.expire_event);
}
expire_video_frame (frame, stream) {

stream.msg_cancel(frame.msg_handle);
}
video_frame_sent (player, frame) {

cancel_timer(player,frame.expire_event);
}

Figure 4.2: Adaptive video conferencing client

canceling policies. Furthermore, an expiry mechanism would not subsume the

need for a cancel primitive, because there would still besporadicevents (such as

user initiated seek to a new position in video streaming) that require the ability to

cancel immediately.

To help illustrate Paceline’s service model, Figure 4.2 contains a pseudo-code

example of the logic that an adaptive real-time applicationmight employ, in this

case an adaptive video conferencing client. The client calls thesendvideo frame

function to send a video frame message. This function sends the message with an

importance specified using an application-specific utilitymeasure, reflecting the

relative importance of individual frames to perceived quality. If congestion control

restricts the rate of the stream, messages of low importancewill be canceled by the

client when their utility has expired while high importancemessages will be sent.4

4For messages of equal utility, Paceline breaks the tie according to position.
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Paceline’s service model provides a clean interface for rate adaptation to match

application demands with network conditions, instead of committing messages to

the network transport (i.e., socket buffer ) and then suffering from head of line

blocking.

To benefit from Paceline’s data service model, applicationshave to develop

domain-specific adaptation policies. In HD video conferencing, we have two di-

mensions for adaptation: spatial and temporal quality. Foreach application data

unit (ADU), the application calculates a utility value to estimate its contribution to

the video quality. Each ADU represents a video layer and usesa Paceline message.

Our example application, QStream [39] video conferencing,adaptation policies fa-

vor maintaining temporal quality (frame rate per second) over spatial quality (e.g.,

peak signal-to-noise ratio PSNR) to have less interruptioneven if the spatial quality

per frame is minimal. In addition to these two quality dimensions, we can incor-

porate higher-level indicators, such as the active tab, mouse clicks, and position of

scroll bar to derive our adaptation policies.

In the gaming domain, first person shooter (FPS) games have limited upload

bandwidth to send frequent updates to all game players especially in epic fights

with a large number of players that are concentrated in one area. Therefore, recent

research [10] has introduced the idea of interest sets to leverage limits of human

cognition in reducing bandwidth requirements. Interest sets are measured using

three criteria: proximity, recency, and aim.Proximity is important because players

are most likely interested in players near them. However, proximity is not the only

spatial locality indicator because players have an orientation. They are more likely

to be interested in players they are aiming at.Recencyindicates temporal locality

so players who have recently interacted are more likely to pay attention to each

other. Interest sets can be used to derive the adaptation policies in epic-scale first

person shooter games to adapt bandwidth requirements5 and maintain timeliness.

Each application message sent in Paceline is part of a full-duplex transport

instance we refer to as a stream. Multimedia applications using Paceline can per-

form the following operations on streams: creation, sending a message, canceling

a message, and deletion. Even though streams are decoupled from the underlying

5Each peer receives 10 Mb/s in a 900-player game [10]
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communication channels, all streams with the same host address and port num-

ber are multiplexed over the same persistent channel.Channelsare the underlying

communication primitive, identified by the host address andport number.

To summarize, Paceline’s service model provides applications with the ability

to prioritize and cancel messages. Paceline messages are part of a stream. Inter-

active applications with high bandwidth requirements can use these primitives to

develop domain-specific adaptation policies to maintain timeliness in best effort

networks (i.e., the Internet).

4.3 Architecture

Paceline is implemented as a user-level library and is layered above standard TCP

implementations as depicted in Figure 4.3. Paceline’s architecture consists of four

main subsystems: message framing and multiplexing, a latency controller, connec-

tion management, and a stream layer. The stream layer is introduced at Section

4.3.4. We describe the subsystems in the remainder of this section.

4.3.1 Framing and Multiplexing

Fragmentation is the first of several techniques employed byPaceline to improve

transport latency. Paceline allows application level messages of arbitrary size. To

decouple transmission delay of potentially large application messages from lower
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level queuing delays, the data transfer mechanism of Paceline supports sender-side

fragmentation of application messages into Paceline chunks, and receiver-side re-

assembly of chunks back into the original application messages. Paceline chunks

are bounded to a small size, typically a fraction of TCP’s maximum segment size

(MSS). Paceline includes application level message queues. Unlike lower level

queues that operate in FIFO order, Paceline’s message queues are priority queues,

so that chunks of newly-arrived important messages may quickly preempt older

less-important ones.6 Therefore, chunks of messages with high importance are re-

leased to the network faster and observe minimal queuing inside Paceline as well as

minimum application level transmission delay. Cancellation allows the application

to abort a low importance message if its overall transmission delay is too large.

4.3.2 Latency Controller

In order to give applications more agility in adapting data delivery, Paceline re-

duces the amount of committed data in TCP’s outgoing buffer and keeps data in

its own message queues. The latency controller is the component that monitors

the progress of the underlying TCP flow and regulates the rateof application data

(chunks) delivered to the sending side TCP. The goal of this controller is to send

chunks into TCP fast enough to allow the congestion control of TCP below to claim

the flow’s fair share of available bandwidth, but not so fast as to cause unnecessary

amount of FIFO queuing to accumulate in TCP’s outgoing socket buffer. We have

devised two distinct schemes: kernel-assisted and purely user-level approach, each

having specific advantages.

Kernel-Assisted

The first scheme, which we call the PaceK controller, utilizes information directly

from the kernel TCP via the socket API. PaceK regulates the writing of application

data to TCP in a way that dynamically matches the buffer fill level to a value close

to the size of TCP’s congestion window (cwnd), namelycwnd+ 3×MSS. This

design implements at user level the same strategy that was implemented inside

6SCTP provides similar support to avoid head of line blocking, but there the focus is blocking
between sessions rather than individual messages.
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the kernel in a previous study [28]. In that previous study, it was shown through

extensive experimental evaluation that this strategy strikes the best balance between

latency and throughput.

While this scheme is simple and effective, it requires information that only

some implementations of TCP make available. The PaceK controller we have im-

plemented in Paceline is Linux based, and it uses the Linux specific TCPINFO

getsockopt to query TCP’s congestion window (cwnd) size, and SIOCOUTQ ioctl

to query the TCP socket buffer fill level. In Windows, the overlapped IO feature

of the WINSOCK2 API can provide similar information. Hence,this approach

is more portable than the previous modification to the Linux kernel. However,

to the best of our knowledge, the TCP socket API’s of other popular OS’s such

as MacOSX, Solaris, Symbian OS, and BSD Unix do not provide access to such

information, hence our PaceK controller is not fully portable. Also, transparent

proxies in the network path would likely defeat the PaceK controller’s ability to

regulate queuing delay, as the TCP socket buffers in the proxies operate indepen-

dently, and can easily become points of major queuing delay if they precede the

path bottleneck.

Purely User-Level Approach

The second latency controller available in Paceline is called PaceA. Unlike the

PaceK controller, it uses only the common TCP socket API available on all ma-

jor operating systems. PaceA is designed to be layered aboveTCP, which entails

both advantages and obstacles not applicable in true transport level solutions. The

main advantages are portability (no need to extend or modifykernels), ease of de-

ployment (e.g., in relation to firewalls), and avoiding problems due to intermediate

proxies.

As with the kernel-assisted method, the user-level latencycontroller regulates

writing of new chunks to TCP, so as to keep the value of TCP buffer fill level close

to cwnd+ 3×MSS. In this way, the amount of FIFO queuing, which is the root

cause of head of line delays, is minimized. However, at the user-level the value

of cwnd is not available. Hence, the primary goal of PaceA is to derive ĉwnd,

an estimate of TCP’scwnd, as accurately as possible using only information that
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is available to the application. Throughout the development of our algorithm, we

used time series traces from our prototype to compare our algorithm’s estimates

against TCP’s true behavior. Section 4.4 describes the experimental setups under

which these traces were taken. Using this experimental approach, we iteratively

developed our latency controller. The rest of this section describes the derivation

of our algorithm to accurately calculatêcwnd from estimates of network latency

(r̂tt ) and available bandwidth (̂bw).

Paceline utilizes application-level acknowledgments (P-ACKs) to measure la-

tency and bandwidth as follows.7 Paceline generates a unique sequence number

for every Paceline chunk. When a chunk is written by Pacelineto TCP, it enters

that chunk into a FIFO queue (since TCP delivery is FIFO) and stores the cur-

rent time with the chunk. A valueunackedis maintained that totals the size of all

chunks written but as yet unacknowledged, hence reflecting the TCP socket buffer

fill level.8 When reading chunks, the Paceline receiver will generate a P-ACK con-

taining the sequence number of the last chunk received (often multiple chunks are

received at a time). Upon receiving a P-ACK, the Paceline sender scans the queue

for the chunk matching the sequence number. When found, thatchunk and all prior

chunks are de-queued and considered acknowledged (P-ACK’d). For each chunk

P-ACK’d, the round-trip time is computed and the chunk size is counted for use in

a periodic bandwidth calculation of̂bw.

TCP keeps CWND bytes in flight. The simplest form of̂cwnd would be the

product of latency and bandwidth. Being a user-level algorithm, Paceline can not

directly know about TCP events such as retransmit, which leads to significant mea-

surement noise in the latency and bandwidth values providedfrom P-ACKs. There-

fore, we applied simple smoothing to the measurements of latency (̂rtt ewma) and

bandwidth (̂bwewma), using exponentially weighted averaging (EWMA).9

After implementing a naive controller based on̂cwnd= r̂tt ewma× b̂wewma(Fig-

ure 4.4a), we observed that̂cwndis able to follow the general trend of the real value

of cwnd, but lacks the fine details where TCP exhibits rapid changes.This slow

7P-ACKs are also essential to the failover component of Paceline to be discussed later in this
section.

8We verified this using time-series traces of socket buffer data.
9ewma(avg,sample,alpha) : avg= avg×alpha+sample× (1−alpha).
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responsiveness of the controller impairs performance in two respects. First, when

TCP drops its rate by resetting cwnd to the initial value (i.e., when a TCP retrans-

mission timeout occurs), our controller does not respond immediately, causing the

socket buffers to fill and latency to increase. Second, at stream start-up or when

there is a major increase in available bandwidth (e.g., due to reduction of compet-

ing traffic), the controller’s slow response impairs TCP’s ability to claim available

bandwidth.

To improve the controller, we devised a hybrid estimate thattreats TCP’s de-

crease and increase modes separately. To identify TCP’s mode of operation, we

use an indicator of the trend in TCP rate which we callpressure:

pressure= b̂w
2×b̂wewma

Pressure normalizes the ratio between̂bw (the short term estimate of band-

width) andb̂wewma(a long term estimate of bandwidth). If necessary the value of

pressure is clipped, so it fits in the range[0,1]. During rapid decreases in band-

width, pressure drops to zero, while during rapid increasesit rises to one.

Sudden drops or increases in bandwidth measurements can be early signals of

congestion or available bandwidth. This is similar to TCP Vegas congestion control

[13], which uses increases in RTT measurements as a signal ofqueue buildup.

To treat TCP increases separately from decreases, we replace b̂wewmawith two

separate termŝbw+ andb̂w−. Theb̂w+ term responds immediately to increases in

b̂w but smooths decreases, using asymmetric EWMA:

ewma(avg,sample,α):

if(sample > avg)

avg = sample

else

avg = ewma(avg,sample,α)

The objective is to favor̂bw+ when TCP’s rate is increasing, aspressureap-

proaches one.̂bw− works in precisely the opposite fashion tôbw+, and is favored

as pressure approaches zero. Thus, our hybrid estimate is asfollows:

ĉwnd= rttewma∗ ((1− pressure)∗ b̂w−+ pressure∗bw+)
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Figure 4.4: User-level estimation of CWND compared to instantaneous val-
ues obtained from kernel
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This estimate succeeded in responding more accurately to the true TCPcwnd

under most network conditions (Figure 4.4b), however, under very heavy load we

observed it still overshoots. In these conditions, the relatively small adjustments to

the rate can have large effects on queuing delay. This causesa positive feedback

loop, where a small overestimate of BW leads to an increase inrttewma, which

results in further over estimation, manifesting as a persistently rising rttewma. To

detect this situation, we introduce a new stability check inthe algorithm, it uses

the ratio ofrttewmato rtt−, wherertt− is based on asymmetric filtering ofrtt . The

rtt− responds immediately to decreases in latency, smoothing otherwise. From our

traces, we found it to be representative of the minimum transport latency defined

by TCP’s RTT measurement. We expect that a heavily smoothed average ofrttewma

should remain close to the average TCP RTT. We take a ratio of the two to be a

conservative sign that a correction is necessary.

Finalizing our estimation ofcwnd, we have:

if rttewma
rtt−

≥ 2

rttsignal = rtt−

else

rttsignal = rttewma

ĉwnd= (1− pressure)× rttsignal×bw−+

pressure× rttewma×bw+

Encouraging Fast Retransmit

One of the fundamental components of TCP congestion controlis the fast-retransmit

algorithm, which normally allows TCP to recover from a lost TCP segment within

a single extra RTT, instead of waiting for the retransmission timeout. Retransmis-

sion timeouts are highly undesirable as they cause an application to experience a

dead zone, typically hundreds of milliseconds with no data transfer. Fast retransmit

requires four segments to generate the necessary duplicateACKs. If the applica-

tion sends less than 4× MSS bytes at a time, it may impair TCP fast retransmit.

Paceline includes heuristics to prevent this,i.e., it promotes bursting of at least

four segments at a time. In some cases, if the available data is less than 4 MSS’s,
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Paceline interleaves sends with calls to the TCPNODELAY socket option, to en-

courage TCP to generate four sub-MSS segments.

Implementation of P-ACKs

As described above, the receiver notifies the sender of the most recently received

sequence number via P-ACKs. We constrain this process so that the total P-ACK

bandwidth remains a modest fraction of the sender to receiver bandwidth (between

30 and 50Kbps in our implementation).

It should be possible to eliminate P-ACKs entirely in the PaceK controller,

based on knowledge of the amount of data written and the socket fill level to infer

which data has been ACK’d by TCP.

4.3.3 Failover and Connection Management

In Paceline, the message framing and latency controller components are the basic

means to limit the latency experienced by the application, and we evaluate their

effectiveness in Section 4.4.1. However, we foreshadow theresults of our evalua-

tion here in order to motivate Paceline’s failover component. Briefly, we see that

message fragmentation and application pacing can generally improve latency (in

some cases more than a factor of three), but the distributionof latencies retains a

prominent tail and there is a wide gap (e.g., more than a factor of eight) between

median and worst case latencies. We diagnosed the worst caselatencies through

a combination of instrumentation in Paceline and packet trace analysis using tcp-

dump [70] and Wireshark [73]. Under heavy congestion, TCP can experience back

to back losses leading to one or more retransmission timeouts. Our diagnosis con-

firmed the worst case latencies were correlated with such episodes of exponential

backoff.10 To reduce their impact, Paceline further includes a failover mechanism

to supplement its basic latency limiting mechanisms.

One can think of Paceline’s failover analogously to the scenario where a user

presses the stop/reload buttons in their Web browser upon encountering slow re-

sponse. Automated failover may sound quite radical, but ourevaluation shows that

10 Although it is outside the scope of this work, we have also noticed similar problems when
testing Paceline over wireless links (WiFi) with poor signal strength.
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our implementation achieves significant reductions in worst-case latencies while

preserving bandwidth fairness (see Section 4.4.1). We already discussed further

justification and rationale for failover in the related workanalysis, for now we fo-

cus on the design of failover in Paceline.

Failover Implementation

Paceline’s failover mechanism works by maintaining a pool of channels between

the pair of communicating applications. Each channel contains two TCP sockets.

Paceline uses just one of these channels for data delivery (in each direction) at

a time. However, if a Paceline sender detects that a chunk hasnot been acknowl-

edged within a time threshold, namelyf ailoverthresh, it migrates data delivery away

from the current active channel to one of the available standby channels. Pace-

line implements failover in a manner that is fully transparent to the application.

The migration may include retransmission of chunks on the new active channel

so Paceline introduces receiver-side logic to suppress duplicate chunks that may

result. Also, concurrent to activation of the new active channel, Paceline’s connec-

tion manager terminates the old one, and initiates a new replacement channel that,

once established, enters the pool of available standbys.

The failover threshold is set dynamically in Paceline. The threshold setting is

subject to a trade-off between latency and fairness. Since areplacement channel

starts in TCP slow-start, frequent failover will inhibit Paceline’s ability to attain

a fair share of bandwidth, possibly resulting in under-utilization of the network.

Paceline calculates the failover threshold as follows:

f ailoverthresh= MAX(thresholdmin, rtt−+ f ailoverf actor× rttvar) (4.1)

rttvar is the maximum variance in round-trip times calculated for every Pace-

line chunk andthresholdmin sets a lower bound onf ailoverthresh, which we set to

225ms, similar to what is set as the minimum RTO for TCP connections inside

the Linux kernel. We also intended to setf ailoverf actor to be the same as what is

used in RTO, which is four. However, since our measurements are at the applica-

tion level and subject to greater noise than measurements done inside the kernel,

we observed that a factor of four results in too many false positives, i.e., Paceline
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would failover even when TCP is not in an exponential backoffstate. Thus adding

a safety margin and using af ailoverf actor of five significantly reduced the number

of false positives.

When replacing a failed channel, the connection mini-protocol sends afailover

message from the sender to the receiver on the newly selectedactive channel sock-

ets to ensure both sides are synchronized. This message includes a counter value,

maintained by the sender side, incremented each time the sender fails the current

active channel. If very severe congestion causes more than one failover to occur

back to back, then it is possible that standby channels will be established in an

order different than how they were initiated. The counter isused to ensure that the

sender and receiver remain correctly synchronized on the active channel.

When replacing a channel in this way, Paceline does not know if chunks that

were in-flight on the failed channel were delivered or not. These chunks are re-

turned to Paceline’s sending queue, and possibly retransmitted on the new active

channel. To maintain transparency, the Paceline receiver has to detect and sup-

press duplicate chunks. This is complicated somewhat by thefact that Paceline

continuously sorts messages according to importance specified by the application.

Thus, the sequence of chunks outstanding when failover occurs may not be equal

to the initial sequence of chunks sent on the newly selected active channel. Some

new high importance chunks may have arrived, and also some ofthe old low-

priority chunks may be canceled (by the application). To cope with this, Paceline

receiver maintains a lookup table containing sequence numbers of chunks received.

When a chunk arrives, the table is used to detect duplicates.To prevent this table

from growing unboundedly, the sender periodically sends a Paceline message to

indicate the maximum and minimum sequence numbers active onthe sender side.

The receiver uses this information to clear out sequence numbers outside the given

range. In this way, the set of sequence numbers in the receiver table will always be

bounded, and all sequence numbers will eventually be removed from the table.

Connection Manager

The connection manager is responsible for managing the transport instances used

by Paceline, including the standbys used for failover. For eachsession, meaning a
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pair of processes communicating via Paceline, Paceline mayemploy several TCP

sockets. The precise number of sockets and their roles depends on configuration

settings, such as the number of standbys used for failover asdepicted in Figure

4.5. Prior to the flow of application data, Paceline executesa mini-protocol to

establish the initial set of session sockets. This protocolhas two phases. The

first phase exchanges aconfigurationgreeting and response between client process

and server process, using the first socket. The client greeting sets the session-

wide configuration parameters, such as a globally unique identifier (UUID) for the

Paceline session, and the number of standbys. The second phase of the protocol

creates the remaining sockets, and exchanges abindgreeting and response on each

of them. The bind greeting contains the UUID of the session allowing the server to

associate the socket to the correct session state. After theinitial set of sockets are

established, the connection manager may also remove and replace failed sockets,

as part of the failover functionality described above.
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Figure 4.6: Paceline’s architecture with stream fairness

4.3.4 Stream Fairness

Figure 4.6 illustrates the added stream fairness layer fromthe Paceline sender side

view. The fairness design in this chapter is between streamssharing the same un-

derlying communication channel. One important decision wehad to make while

implementing the stream fairness layer was to choose an appropriate policy to mul-

tiplex data of different streams over the underlying channel. While a simple FIFO

or round-robin policy is simple to implement, timeliness necessitates a better no-

tion of fairness among concurrent streams especially when bandwidth is limited.

Thus, we implemented a fair sharing policy inspired by weighted fair queuing. In

essence, our policy shares the available resources amongactivestreams in a fair

manner. An active stream is a stream that has data available to be written. If the

send buffer of a stream is empty, we refer to that stream asidle. Each stream is

assigned avirtual time, a counter quantifying the resources a stream has used since

it was created. We use the term “time” due to the invariant that we never allow this

counter to decrease, it can only increase.
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The stream layer maintains a priority queue of active streams, sorted in as-

cending order of virtual times. Each time the channel is ready to write data to the

underlying communication channel, it removes the stream with the lowest virtual

time from the queue, writes a message from that stream and updates the stream’s

virtual time. If the stream is still active, i.e., still has more messages to be writ-

ten, it is re-inserted in the queue. Otherwise, the stream ismarked as idle and

will re-enter the queue when it has more data available. Using this mechanism we

can multiplex different streams at message-level granularity. The important factor

regulating how streams are multiplexed is how we initializeand adjust the virtual

times of the streams.

Virtual Time Initialization

Virtual time initialization is based on the following two rules:

• Rule 1 (fair start): when a stream is created its virtual time is set to the

minimum virtual time of all the active streams. If no active streams exist, the

virtual time of the newly entered stream is set to the maximumvirtual time

of all idle streams, or zero if this is the only stream.

• Rule 2 (use it or loose it):if a stream becomes active after being idle, the

stream’s virtual time is set to the maximum of its virtual time and the mini-

mum virtual time of all active streams.

Rule 1 ensures that when some active streams have non-zero virtual times and

a new stream X joins, we cannot set X’s virtual time to zero, since it implies that

all other streams would have to starve while X uses all the resources to catch up

with the rest of the streams. If stream X is created when all other streams are idle,

setting X’s virtual time to the minimum is no longer fair. We set X’s virtual time to

the maximum virtual time of all idle streams. Now no stream has an advantage over

the other because rule 2 guarantees that no stream can save its share of resources

and use it at a future time. If stream Y goes idle for some time and all other streams

use D units of resources, we adjust Y’s virtual time once it reactivates to penalize

it for not using its share.

66



Virtual Time Updates

In this section, we will give a clear definition offairness. Fairness should have a

definition that is independent from the type of application using the stream API.

For example defining fairness between two video streams as anequal number of

frames per second depends on the video application, and may not even be valid for

multiplexing two videos with different encoding.11

Fair sharing is governed by how virtual time in each stream isupdated. When a

stream transmits a message over the underlying channel, itsvirtual time is updated

according to the fairness criteria. We implement two fairness policies: resource

fairness and quality fairness, using message size and marginal utility respectively.

Conventional resource fairness is implemented by incrementing the virtual time

based on the size of each message transmitted by the stream. On the other hand,

quality fairness allocates resources based on the application’s quality of experience.

Quality fairness may cause un-fair resource allocation, for example, video quality

depends on a number of factors such as temporal fidelity (frames per second) and

spatial fidelity (image size or PSNR). Two streams with equalquality in those terms

may have drastically different resource (bandwidth) requirements as we show in

our evaluation.

To implement quality fairness consistently across concurrent streams, we pro-

pose a neutral model of quality based on a generic utility. Each application ADU

will have a utility to the user, which can be expressed in normalized units (in the

range [0,1], from the least acceptable quality to the maximum) between the ap-

plication and the transport. Our service API exposes the messagemarginal utility

value for this purpose. The virtual time of the stream is increased by the marginal

utility of each message. The intuition is the following, since the application is con-

tinuous, we can think of the cumulative utility as the sum of instantaneous utilities.

For the virtual time of each stream to be meaningful across heterogeneous streams,

the marginal utilities should be computed such that
∫

vt dt= t, for the full sequence

of messages having marginal utilitiesvt in a time intervalt. If some messages are

canceled, then virtual time will advance more slowly. Control messages are not

adaptive so they use a default utility value of zero and importance of one.

11Sending one frame in an MPEG encoded video may be useless due to inter-frame dependencies.
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By scaling virtual times of streams with different factors,we can allocate dif-

ferent shares to different streams, providing weighted fair sharing. In the next

section, we evaluate fairness across streams.

4.4 Evaluation

We evaluated Paceline experimentally within an Emulab network testbed [80]. Our

implementation of Paceline is written in C, the size of the Paceline codebase is

around 10,000 lines (including comments, counted usingwc -l). Our evaluation

consists of three main sections: the first based on lower transport level metrics, and

the second based on higher application level (multimedia) metrics. The first two

sections evaluate adaptation in one stream while the third section evaluates fairness

across concurrent streams. The low level evaluation concerns metrics of latency,

fairness, and utilization in a range of network conditions.The high level part of our

evaluation uses our video streaming framework, QStream [39], to relate the impact

of low-level performance gains to metrics more applicable to the user experience.

At the transport level, we use latency to mean the time to deliver chunks end-to-end

with Paceline, and by fairness we mean the sharing of bandwidth among competing

flows. At the application level, latency refers to the one-way delay tolerance of the

application.

Our measurements are compared against two points of reference. The first is

TCP, which we use to quantify the improvements due to Paceline. The second is

the Structured Stream Transport (SST), which is implemented over UDP [24]. SST

provides a rich service model including reliable messagingand congestion control,

but unlike TCP it provides direct support for application priorities without head of

line blocking. We chose it because we feel it includes the full range of capabilities

one might expect from any realistic clean-slate replacement for TCP. Thus, we use

SST to approximate a best-case reference point against which to compare Paceline.

4.4.1 Transport Level Performance

We compare Paceline (PaceA and PaceK modes) to TCP. In the TCPmode, our ap-

plication still uses the service API of Paceline but the latency controller is disabled,
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hence we send data via TCP as fast as it will allow.12

Our network setup uses the common dumbbell topology, where aset of servers

on a LAN connect through a single bandwidth-delay constrained link, emulating

a wide-area (WAN) path, to a set of clients on a remote LAN. Forthe WAN path,

we emulate a 30ms RTT delay with a bandwidth limit of 16Mbps. The WAN

bottleneck uses drop-tail queuing with a queue size of twicethe bandwidth-delay

product of the WAN adding 60ms when the bottleneck becomes congested. Each

experimental run lasts more than 6 minutes. To control the amount of workload

in each experiment, we vary the number of flows sharing the path. All of the

nodes run the Ubuntu 9.04 Linux distribution with the Linux 2.6.28 kernel, and

the default TCP Reno congestion control. We configure the number of clients

and servers to ensure that the WAN path is the bottleneck (notsome other client

or server resource). To eliminate experimental start-up and shutdown effects, our

measurements exclude the first and last 60 seconds of each run. Each experiment

was executed 10 times and the average is reported. Confidenceintervals were used

to check the consistency of results but we do not report them due to lack of space.

Our first set of experiments focus on transport latency. Our aim is to quan-

tify Paceline’s low level latency improvements over plain TCP. In the remainder

of this evaluation, our experiments are set up to reflect rather harsh conditions,

where the bottleneck WAN link is persistently saturated. Wefocus on these con-

ditions because we expect that if high-bandwidth low-latency applications, such as

video conferencing, online games, and virtual reality applications become main-

stream, they will make the network saturated, much as other high-bandwidth (but

high-latency) applications such as peer to peer file sharingdo now. These are the

conditions where normal TCP’s latency leaves much to be desired. On the other

hand TCP’s abilities to utilize the network and divide bandwidth fairly (in a de-

centralized fashion) while avoiding congestion collapse,have been critical to the

ongoing success of the Internet.

12All of the flows are actually video flows [39] that cancels low-priority messages based on the
flow rate. We mention this to confirm that the cancellation feature of Paceline is exercised in all our
experiments.
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Latency

To identify the settings at which TCP’s latency begins to suffer, we streamed a

variable number of video files over our testbed network. Eachvideo flow has a

constant maximum rate of 4Mbps. As described in Section 4.3.2, Paceline mea-

sures the application-level round-trip time for each chunkit transmits. Throughout

the course of the experiment, the senders record a conservative measure of la-

tency we call Oldest Un-Acked. The value is sampled periodically, as either the

oldest outstanding chunk still in flight, or the maximum RTT measured (for each

acknowledged chunk) in the interval, whichever is greater.This value provides a

conservative estimate of the delay the application can experience for its most im-

portant data, although it explicitly excludes extra possible transmission delay due

to large application messages. Through the remainder of this section, when we

refer to latency, the measurement used is Oldest Un-Acked. We do not consider

the latency of SST in this section, because its implementation eliminates transport

queuing delay, however we will consider SST’s performance and application level

delays generally in Section 4.4.2.

Flows 2 4 8
Median Latency 1.6 7.1 7.4
99.9 Percentile 2.5 17.9 18.4

Worst Case 2.9 20.4 22.8

Table 4.1: Latency measurements for TCP (normalized to path RTT)

To understand the latency distribution of data delivery, Table 4.1 shows the

median, 99.9% percentile and worst-case latencies, where network load is varied

between two and eight flows. Each value in the table is normalized against the

average of TCP’s measured RTTs for the corresponding run.13 In our setup, these

averages were usually around 88 ms. We believe the TCP RTTs are quite accurate

and give a faithful representation of network level propagation and queuing delays,

hence the normalized ratios give a clear view of the additional delay due to the

transport level. According to the data of Table 4.1, the onlysetting in which TCP

has acceptable latency, below typical human interaction threshold, is a run with

13We used the Linux TCPINFO socket option to query the actual RTT measured by TCP.
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2 flows, which is the only run where the bandwidth requirements of the flows

does not fully saturate the bottleneck link. With 8 videos, TCP’s performance has

median latency over 650 ms (7.4 RTTs) and worst case latency around 2 sec (22.8

RTTs) which is not suitable for interactive applications.

Flows
Median Latency

TCP PaceK PaceA
8 7.4 2.0 2.0
16 9.3 2.0 2.1
24 8.8 2.1 2.7
32 9.5 2.7 3.0

(a) Median

Flows
99.9 percentile Worst Case

TCP PaceK PaceA TCP PaceK PaceA
8 18.4 5.4 5.7 22.8 9.4 9.4
16 27.3 9.4 9.8 35.7 13.8 15.0
24 35.5 13.4 14.0 49.6 24.1 23.1
32 45.3 18.0 20.8 73.6 34.6 37.7

(b) Tail
Table 4.2: Latency measurements for different latency controllers (normal-

ized to path RTT)

Using 8 flows as a starting point, we consider a range of trafficloads, consisting

of 8, 16, 24, and 32 Paceline flows (with aggregate bit-rates of 32, 64, 96, and

128 Mbps respectively compared to our 16Mbps bottleneck). Table 4.2 shows the

latency measurements for TCP, PaceK and PaceA. To focus on the performance of

the latency controllers, these results are with the failover feature disabled. For each

number of flows, PaceA and PaceK consistently improve on TCP by a significant

margin in median (improvement factor 3–4.5), 99.9% latency(improvement factor

2–3), and worst case latency (improvement factor 2–2.5). Inall modes, the worst

case latency measure is significantly higher than the median.

In Table 4.3, we show Latency results for PaceK and PaceA whenwe enable

failover. Enabling failover doesn’t make noticeable changes in the median, but

improves the 99.9% latency and the worst case noticeably. The improvement over

the non-failover case is up to a factor of 2 in congested settings. For the remainder
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Flows
Median Latency
PaceK PaceA

8 2.0 2.0
16 2.1 2.1
24 2.2 2.7
32 2.8 2.9

(a) Median

Flows
99.9 percentile Worst Case
PaceK PaceA PaceK PaceA

8 4.4 5.1 6.5 7.2
16 7.4 8.4 10.8 11.0
24 9.4 10.1 13.9 14.4
32 11.4 12.7 18.2 18.3

(b) Tail

Table 4.3: Latency measurements for different latency controllers with
failover (normalized to path RTT)

of the evaluation, all results quoted for Paceline are with failover enabled.

It is informative to notice that PaceA with 32 videos (with failover enabled)

has significantly lower latency profile (median, 99%, and worst case) compared to

TCP with 4 videos. Thus, Paceline can maintain TCP’s currentlatency profile with

8 times the number of flows. In addition, the worst case latency in Paceline with

failover enabled is more predictable and consistent with a maximum confidence

interval of 1. However, the worst case latency without failover varies considerably

in congested networks with confidence intervals reaching 10.

Fairness

The previous experiments showed that Paceline significantly improves latency rel-

ative to TCP. We examine bandwidth fairness for PaceK, PaceA, SST and TCP. We

do this in two steps, first where all flows are of the same type, and second when

mixing Paceline or SST flows with TCP flows. We use two metrics to quantify

bandwidth fairness. These two metrics were calculated using application level data

to allow fair comparison with SST.
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The first metric is the Jain fairness index [34] (results in Table 4.4), which is

defined by the following equation:f airness= (∑xi )
2

(n∑x2
i )

, wheren is the number of

flows andxi is the bandwidth allocated to flow numberi in a given time slot. This

index ranges from 1/n (worst case) to 1 (best case), we scale it to percentages.

SST flows has relatively better fairness than TCP flows when the link is extremely

congested (i.e., 32 videos). More importantly, Paceline generally matches TCP’s

standard level of fairness in addition to improving upon TCP’s latency profile.

Flows
Jain fairness index

TCP PaceK PaceA SST
8 92.5 90.5 89.9 85.8
16 90.7 88.5 88.6 88.3
24 85.1 83.0 82.8 85.6
32 79.0 79.4 77.3 85.5

Table 4.4: Fairness measurements for different latency controllers

To understand fairness in greater detail than allowed with the Jain index, we

also convert bandwidth measurements from the same experiments into a form of

CDF for the sharing ratio between different flows. We computed the fairness CDF

as follows. We subdivided the measurement time-line into uniform time slots (e.g.,

every 500ms). For each time slot, we compute the sharing ratio of each flow’s

bandwidth to the fair bandwidth share (i.e., total bandwidth / number of flows).

We then plot the CDF of the sharing ratio for each transport mode. We prefer these

CDF’s to a single metric because their shapes convey unfairness both in terms of

per-flow bandwidth (x position) and degree of affected flows (y position). In the

case of perfect fairness, the CDF would appear as a single vertical step at 1/n, i.e.,

all flows get equal bandwidth in every time slot. In general, as fairness decreases,

so will the slope of the CDF line. Also, if the left y-intercept is non-zero, as seen in

Figure 4.8 with the extremely congested scenario of 32 flows,it indicates that some

of the flows experienced total starvation. This fairness measure was instrumental

in refining our rate control and failover algorithms to meet our goal of maintaining

fairness equivalent to TCP.

We computed these fairness CDFs for all of the cases of the previous experi-

ment: with the number of Paceline flows ranging from 8 to 32, for each case of
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TCP, PaceK, PaceA, and SST. In Figures 4.7 and 4.8, we show results when using

500ms intervals. We show only the 8 and 32 flow CDFs since the general trend

across all the link load configurations (i.e., 8, 16, 24, and 32 videos) is consistent.

The shape of the CDFs show that Paceline is able to preserve TCP’s fairness. SST’s

fairness is the same, which is not surprising since SST’s congestion algorithm is

based on that of TCP. Also as expected, comparing Figures 4.7and 4.8 shows that

fairness degrades as more flows share a link.
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Figure 4.7: Fairness CDF of SST, PaceA and PaceK compared to TCP using
8 flows

Incremental Deployment

In the fairness experiments above, the flows in a given experiment were of the same

type. Since TCP is the dominant transport in the Internet, itis important to see how

a new transport such as Paceline or SST can be incrementally deployed and share

bandwidth fairly and safely with TCP flows. In addition, it isimportant to verify

that the latency advantages of Paceline still exist when Paceline flows compete with

normal TCP flows. Paceline ideally should deliver its latency advantages even in
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Figure 4.8: Fairness CDF of SST, PaceA and PaceK compared to TCP using
32 flows

mixed deployment without harming existing TCP traffic.

We conduct a series of experiments with a mixture of TCP and PaceK, PaceA

or SST flows, with 16 video flows total. We vary the mix of flows using TCP from

0-75 percent. Table 4.5 shows the median latency, for PaceK and PaceA, for each

mixture of flows. As the fraction of TCP flows in the mix increases, the median,

99.9%, and worst case latency of PaceA and PaceK are not affected.

TCP %
Median Latency 99.9 percentile Worst Case
PaceK PaceA PaceK PaceA PaceK PaceA

0 2.1 2.1 7.4 8.4 10.8 11.0
25 2.1 2.2 7.2 8.4 10.0 11.3
50 2.0 2.2 6.9 8.2 8.7 10.2
75 2.0 2.3 6.8 8.4 9.1 10.1

Table 4.5: Median latency measurements (normalized to path RTT) for dif-
ferent latency controllers and mixed TCP with 16 flows

Considering fairness, we show the result for one case, PaceKand TCP with
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Figure 4.9: CDF of fairness with 8 PACE-K flows 8 TCP flows

8 flows each (50% TCP), in Figure 4.9. The general fairness trend is preserved,

although TCP gets more than its fair share with constant factor, on average about

10% with PaceA. The other cases exhibit the same pattern, butthe factors differ,

with PaceA we see 8% and with SST we see 9%. We can see that neither Paceline

nor SST represent a threat to TCP traffic.

Utilization and Wire Overhead

The general premise of adaptive delivery is that available bandwidth is dynamic,

and that the application should use its full fair share to maximize quality. Hence a

basic requirement for the transport is that it be effective in finding available band-

width. We showed that Paceline shares bandwidth fairly (Table 4.4). While fairness

concerns division of bandwidth between flows, it is also important that the aggre-

gate bandwidth utilize the capacity of the bottleneck. We measured raw utilization

using packet traces collected via tcpdump on the bottlenecklink of our experiment.

Also, to understand how much of the raw utilization is consumed by transport level

76



 0

 20

 40

 60

 80

 100

PaceA PaceK SST TCP

P
e
rc

e
n
ta

g
e
 o

f 
B

o
tt

le
n
e
c
k
 B

a
n
d
w

id
th

Transport Type

Network Application

Figure 4.10: Network utilization versus application-level throughput

overhead, we measured the data rate delivered at the application level on the re-

ceiver. This rate is lower than raw utilization due to lower layer packet header

overheads (Paceline, SST, TCP, IP, etc.). Note this throughput does not account for

data that is delivered to the receiver, but is dropped at the application layer because

of high latency. We consider that issue in the next section.

The difference between tcpdump utilization and the application throughput rep-

resents the basic wire overheads of the transport (and lower) layers. From Figure

4.10, all transports in our experiment achieve high networklevel utilization, the

numbers are between 98.7% (SST) and 96.6% (PaceA).

Transport Level Performance Summary

Compared to TCP, Paceline’s PaceA and PaceK algorithms reduce the median end-

to-end latency by a factor of 3–4x. With failover, the 99.9% and worst case latency

improves by a factor of 3–4x (in Tables 4.2 and Table 4.3). PaceA and PaceK

have similar bandwidth fairness to TCP while SST has better fairness in congested
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settings. In addition, Paceline shares bandwidth fairly with TCP flows while retain-

ing all latency improvements so it is incrementally deployable in the Internet. All

transports we examined have high network utilization and reasonable wire over-

head.

4.4.2 Application Level Performance

In Section 4.2 we gave an overview of how adaptive applications could work over

best effort transport, by prioritizing ADUs and canceling low importance ADUs if

they can not be delivered before an expiry time. We now evaluate the performance

of such an application with Paceline, in terms of application level quality metrics.

We show the message latency with respect to assigned priority; and then we shed

light on the nature of the tradeoff between overall quality and interactivity.

Latency Effects on Quality

In this section, we conduct a simple experiment to support our claim that Paceline

provides low latency for important data. The bottleneck link in this experiment

allows 12Mbps of traffic in each direction with a 30ms round-trip time between the

two LANs. We conduct this experiment with two servers and eight clients. In each

run, the servers stream a single video to their clients usingeither TCP or Paceline.

We measure one-way message delay in relation to the message importance. Ev-

ery message given to the stream layer is timestamped with itswrite time and the

receiver compares it against the arrival time.14 The network is highly congested

forcing the application to drop some messages. We expect some low importance

data to be dropped (or sent late), while higher importance data be delivered with

low latency. Figure 4.11 shows one-way end-to-end latency of delivered messages.

Messages are spread into buckets, according to their importance. Figure 4.11a

presents the median latency, while Figure 4.11b is the 99.9th percentile latency.

The servers enforce strict timing on outgoing messages. If amessage has not

been transmitted 200ms after it has been given to the stream layer, the application

cancels it. The one way delay from a server to a client is 15ms,and the constrained

14We synchronize times using ntp. We do this only for experimental purposes, in normal operation
QStream adjusts server and client side expiry times independently.
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Figure 4.11: End-to-end message latency based on message importance
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link imposes an additional two bandwidth delay product (BDP) queuing delay, for

a total of 75ms one-way delay. We would expect to see messagesdelivered with

end-to-end latency of 275ms or less. As can be seen in both figures, TCP has high

latency, where the median is well above the 275ms threshold.Paceline, on the

other hand, manages to keep the median latency very close to the one-way delay

(75ms) for more important data (importance equal to 1). BothTCP and Paceline

exhibit higher median latency for less important messages.

Large application messages that are spread over multiple TCP packets may be

transmitted over the network in different round trips, increasing the overall end-to-

end delay of the message. The situation is aggravated if any of the packets have to

be retransmitted, adding more round trips to the message delay. Thus, we expect

the 99.9th percentile message delays to be more than the 275ms threshold allowed

by the application. We can see that Paceline has a consistent99.9th percentile

latency, compared to TCP, which is close to 400ms for all messages. For TCP, the

99.9th percentile is above a second for the majority of messages, almost reaching

1.8 seconds in some cases.

In summary, Paceline reduces latency significantly compared to TCP. Median

latency is relatively lower for important data (minimum one-way delay for Pace-

line) and higher for less important data. Paceline has a moreconsistent worst case

latency compared to TCP. These results support previous results about Paceline’s

performance.

Quality and Interactivity Tradeoff

We use the same experimental setup as in the transport level evaluation (16Mbps).

One of the main issues we wish to shed light on in this part of our evaluation is the

nature of the tradeoff between overall quality and interactivity—better interactivity

(lower latency) generally comes at the expense of video quality (e.g., spacial de-

tail). In the following experiments, we fix the number of flowsat eight videos, but

we vary the level of interactivity, using a configuration parameter we calllatency

threshold. The latency threshold is the amount of time each ADU is givenbefore

it expires. In our experimental setup, we synchronize the expiry times between

client and server, so that latency threshold exactly determines the application-to-
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application transport latency.

To quantify video performance close to the level of user experience, we use

three metrics. The first two metrics are the average temporalquality (fps) and av-

erage spatial quality (number of spatial layers per frame).The application used

is QStream adaptive video streaming application. Adaptation in QStream priori-

tizes ADUs according to two dimensions of video quality, namely temporal qual-

ity (frame rate) and spatial quality (PSNR of frames). The video format used in

QStream is called SPEG (Scalable MPEG). In SPEG, each video frame consists

of eight ADUs with one base spatial layer ADU and seven (progressive) enhance-

ment spatial layer ADUs. QStream prioritizes ADUs according to a configurable

policy that describes the utility of temporal and spatial quality. The default policy

is biased toward temporal quality, that is as the bit-rate ofa video stream drops,

spatial enhancement ADUs are dropped, and when the spatial quality nears mini-

mum, then further reductions in bit-rate will cause dropping of base ADUs which

will result in dropping entire frames (lower temporal quality).
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Figure 4.12: Latency threshold versus temporal quality

Figure 4.12 shows the average temporal quality (fps) as the latency threshold
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is varied. Notice that in the rightmost side of the graph withhighest latency thresh-

olds (10s of seconds), all transports allow QStream to achieve full temporal quality

of the video (30fps). The temporal quality when using TCP drops much more

rapidly moving leftward (with lower latency thresholds). Despite the fact that TCP

delivers high throughput (see previous section), the high transport latency with

TCP (see Section 4.4.1) causes frequent head of line (HOL) blocking between low

priority ADUs (spatial enhancements) and high priority ADUs (base layers), trans-

lating to dropped frames and much lower fps. The trend between SST and Paceline

are very similar to each other. Recall that SST’s implementation completely avoids

HOL blocking. Comparing temporal qualities of Paceline andSST, we see that

Paceline also eliminates most of the HOL blocking. Our testbed has a link delay

of 15ms and bottleneck link queuing delay of approximately 60ms, for total sender

to receiver network delay of about 75ms. Hence, it is not surprising that the tem-

poral quality is very low for all transports as the latency threshold drops below

75ms. However, we can also notice the knee of the Paceline andSST curves in the

100-200ms zone. This indicates that even in this heavily congested network, it is

possible to keep within the zone of reasonable interactivity for an application such

as video conferencing with a modest impact on quality. On theother hand, using

TCP as the transport results in quality not increasing substantially until well over

the 500ms point, which is probably not acceptable for comfortable interaction.

To quantify spatial quality, we measured the average numberof spatial en-

hancement layers per frame. There are some similarities with temporal quality,

but also some notable differences. Firstly, in the rightmost region, we notice that

spatial quality actually drops slightly relative to the peak in the middle. The rea-

son for this has to do with the relative size of spatial layersin our SPEG video

format, notably the fact that the base layer ADU is larger than the enhancement

layer ADUs, so each base layer ADU (frame) that is dropped actually leaves room

to transmit a slightly larger number of enhancement layer ADUs. Since QStream’s

default policy is biased to temporal quality and the larger latency threshold allows

it to send more base layers (higher fps), this in turn causes the mild decrease spa-

tial quality. In the leftmost zone, we see an odd effect whereTCP has high spatial

quality. Again this is due to HOL blocking, and is not desirable, the small gain in

spatial quality comes at severe expense to temporal quality. Although not shown,
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Figure 4.13: Latency threshold versus spatial quality

we observed a very similar result in a version of SST that usedround-robin delivery

rather than strict priority order.

Although averages capture the general level of quality a user may perceive,

they can obscure transient problems that may be very noticeable to a user. To

characterize the impact of transient problems (visible glitches or stutters), we use

a third metric that we calldisplay jitterwhich is the measured time between each

frame displayed. Nominally, display jitter would be the inverse of frame rate, e.g.,

30fps translates a display jitter of 33ms. However, becauseframes are uniformly

spaced, dropped frames cause display jitter values that aremultiples of the base

rate (e.g., 66ms, 99ms,etc.), For example, a 20 fps average yields a mix of 33ms

and 66ms display jitters.

Noting the knees in the average video quality in Figures 4.12and 4.13, we

choose the case of latency threshold of 200ms and analyze thedistribution of all

display jitter values. From Figure 4.12, we saw the average temporal quality for

Paceline and SST are in the range of 21-23 fps, so we expect most frames to have
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Figure 4.14: Cumulative number of frames displayed at or above level of dis-
play jitter

either 33ms or 66ms of display jitter. We do not consider plain TCP here as it’s

performance is unacceptable. The graph in Figure 4.14 plotsthe cumulative num-

ber of displayed frames, totaled over all videos (around 50000 frames) according to

display jitter. The bottom right hand zone shows display jitter to be the same for the

vast majority of frames whether Paceline or SST is used, which was already shown

in Figure 4.12. Notice that both axes are log scale, which helps clearly see the tail

of the distribution. To put these number of frames quantities in perspective, Table

4.6 provides a mapping between number of frames exhibiting aglitch and median

time between occurrences. For example, the 100 largest display jitters (glitches)

occur with mean period of 23 seconds and with glitch magnitude of 167ms in SST,

300ms in PaceK and 380ms in PaceA.
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Number of Mean time
Frames between occurrences

1 39 minutes
10 3.9 minutes
100 23 seconds

Table 4.6: Mapping from number of frames to mean time between occurrence

Application Level Performance Summary

Quality improves if we can tolerate more latency so an application needs to bal-

ance between the target latency threshold and the quality level. Using SST as our

reference transport with minimum head of line blocking, PaceK and PaceA have

a comparable temporal and spatial quality as well as frequency and magnitude of

glitches. Therefore, we believe that Paceline is within thesimilar zone of respon-

siveness to protocols such as SST. Plain TCP performs very poorly with small

latency thresholds, which effectively defeats the application adaptation policy.

PaceA and PaceK have identical application-level performance. PaceA is more

portable across different operating systems and more robust in the face of trans-

parent proxies. However, PaceK has less run-time overhead and can eliminate the

need for acknowledgments (P-ACKs) simplifying the design of Paceline. PaceA is

the more general algorithm while PaceK can be used as a performance optimization

in the supported platforms.

4.4.3 Stream Fairness Evaluation

The setup in this experiment consists of four client machines and two server ma-

chines. The link allows 12Mbps of traffic in each direction with a 30ms round-trip

time between the two LANs. The shaper employs drop-tail queue management

with a queue size of twice the bandwidth-delay product.

The real-time video adapts based on a timeline and the policies are imple-

mented through proper selection of message importance and marginal utility. The

marginal utility is calculated similar to priority, takinginto account the improve-

ment in utility (combined from spatial and temporal quality), and the number of

frames affected. We start by evaluating two policies of fairness across streams: re-
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source and quality fairness. Then, we investigate weightedfare sharing using both

policies.

Resource Fairness

TCP utilizes available bandwidth efficiently and shares bandwidth fairly among

concurrent streams. Being layered on top of TCP, independent Paceline channels

share bandwidth fairly. In addition, Paceline provides tighter control over resource

sharing by performing fair resource sharing across streamsmultiplexed over the

same underlying channel. In the following experiment, we compare TCP’s re-

source sharing (if each stream were to have its own channel) to Paceline’s resource

sharing when streams share a single channel. We ran the experiment with two

servers and four clients. In each run, every server streams three different videos

to each client. For TCP fairness, every video was transmitted over its own TCP

connection. To demonstrate Paceline’s fairness, all the streams used the same un-

derlying channel.

We quantify the fairness of bandwidth sharing between the videos of a single

client using the Jain fairness index [34]. We measured the Jain indices of TCP and

Paceline bandwidth sharing to be 95.47% and 99.98% respectively. This implies

both transports are able to fairly share resources in the long run. To verify the

fairness behavior in small time scales, we measured the bandwidth of each video

by one client using a 125ms sampling period in Figure 4.15.15 We see an almost

ideal sharing between Paceline streams (Figure 4.15a), whereas the bandwidth of

the TCP streams seem less correlated (Figure 4.15b). In small time scales, Paceline

can have tighter control over bandwidth sharing.

Quality Fairness

We ran the same Paceline fairness experiment using the quality fairness policy

instead of resource fairness. Quality of the video is definedby temporal quality

(frames per second) and spatial quality (spatial enhancement layers). Figure 4.16a

plots the frame rate and Figure 4.16b plots the number of spatial layers of the 3

15For clarity we only present a ten second snapshot. We verifiedthat the entire logs exhibit the
same pattern.
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Figure 4.15: Resource fairness policy
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Figure 4.16: Quality fairness policy
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Figure 4.17: Bandwidth with quality fairness

videos over time. The videos (transferred over 3 streams) displays with identical

quality (frame rates and spatial layers), which changes based on network condi-

tions, according to quality fairness. Even though the videoquality (spatial and

temporal) is equal over time, the bandwidth requirements ofthese video streams

are different. Figure 4.17 shows that streams were allocated different shares in the

same period in order to achieve equal quality.

Weighted Fairness

While defining both fairness policies, we assumed all streams are equally impor-

tant. In this section, we evaluate how weighted fair sharingcan be used to define

importance across streams. For example, in a distance learning software, each

client might be generating multiple streams (video, presentation slides, text mes-

sages, and advertisements). However, not all these streamsare of equal importance.

While the video of the speaker may have the core focus of attention, text messages

or the slides have lower importance. One would expect decreases in the quality of
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Figure 4.18: Weighted bandwidth fairness

other streams to be more acceptable and less noticeable thanthe focus video. Such

relative importance can be expressed using stream weights.

We use video streams in a setup consisting of four client machines and two

server machines. Each server streams three videos to each client. For each resource

sharing policy, the clients request one of their videos to beassigned a weight twice

the other two, representing the focus video. Figure 4.18 shows the bandwidth

allocation to each video stream of a single client with resource fairness. Stream 1

has weight 2 while Stream 2 and Stream 3 have weight 1. Therefore, we see 2:1

relationship in Figure 4.18.

Figure 4.19 shows the temporal quality relationship between streams according

to their weights. Stream 1 and Stream 3 were assigned a weightof 1, while Stream

2 was assigned a weight of 3. The sharing policies are work conserving, providing

equal resources when available (around the 96th second in the figure), or according

to service guarantees when facing resource limitations. Weshould point out that

the utility function we use to map temporal quality (frames per second) to message

importance is non-linear. The non-linearity is because we deem importance to vary
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more rapidly at lower frame rates, hence a 3:1 ratio of streamweights translates to

a less than 3:1 ratio of temporal quality.
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Figure 4.19: Weighted quality fairness

It is interesting to note that quality fairness is completely controlled by appli-

cation quality metrics. We provide applications with the notion of importance to

control adaptation within streams. Weights and marginal utility, on the other hand,

specify importance across streams’ boundaries.

Summary of Stream Fairness Results

While individual streams can adapt to available resources,the stream layer provides

two different notions of fairness across streams: quality and resource fairness. In

small time scales, Paceline resource fairness can have tighter control over band-

width sharing than TCP. Paceline also allows video streams to have equal frame

rates and spatial quality using a novel representation of quality fairness.
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4.5 Related Work

High bandwidth streams with low latency requirements are challenging to sup-

port in current transports. To enhance the quality of service, the best-effort model

of the Internet was challenged with various service models,such as IntServ [12],

DiffServ [11], and more recently Rate-Delay (RD) network services [55]. For ex-

ample, RD proposes changing routers to implement a separatequeue per traffic

type so applications can choose either low delay or high bandwidth traffic, not

both. Service models share our motivation of providing highbandwidth and low

delay communication; however, the Internet remains a best-effort platform with

TCP as the dominant transport (typically carrying more than90% of the data in the

Internet) [25]. Paceline reflects the general trend in multimedia and Web transports

[71] toward user-level implementations that leverage TCP’s strengths and mitigate

its latency weaknesses.

Framing and multiplexing messages in Paceline is similar toRTMP’s [78]

small fragments that are interleaved and multiplexed over asingle TCP connection.

Failover, on the other hand, happens when TCP experiences back to back retrans-

missions and is analogous to the scenario where a user presses the stop/reload but-

tons in their Web browser upon encountering a slow response.Automated failover

may sound quite radical, but it resembles removing exponential backoff from TCP

which has been argued to be safe [50].

The main influences on our latency controller have been work on congestion

control and alternative transport protocols. TCP Vegas wasa seminal work in con-

gestion control that proposed the use of delay measurementsto proactively respond

to congestion [13]; so Paceline’s latency controller is part of the long line of work

that has since employed similar techniques. Later work on slowly responsive TCP-

friendly congestion control better suits the needs of multimedia applications [3].

A major inspiration for Paceline was work of Bhandarkar [8] which proposed to

overcome obstacles facing active queue management (AQM), by emulating it at

end hosts. Paceline is similar in that its latency controller can be viewed as a user-

level emulation of TCP Vegas rate-based congestion control.

Aside from congestion control, alternative transport service models have also

appeared, such as SCTP [56] and DCCP [36], and more recently Structured Streams
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[24]. SST is state of the art TCP replacement supporting a light-weight stream ab-

straction (which acts like the message abstraction in Paceline), congestion-control

and reliability. Streams are delivered fully independently with minimum head-of-

line blocking. Similar to Paceline, SST supports priority and reset (cancellation)

of streams so using one stream per multimedia frame, we were able to support our

adaptation service model.

Like SCTP, Paceline identifies head-of-line blocking as a major issue at the

transport level. Paceline’s use of multiple transport connections has some similarity

to SCTP’s support of multi-homing, but SCTP’s connections are negotiated at ses-

sion startup and are used with redundant physical paths, while Paceline’s failover

is dynamic and employed for connections on the same path. Paceline shares the

datagram (message) orientation of DCCP, and like DCCP, Paceline was designed

with multimedia applications such as video streaming as themain target. However,

Paceline works above TCP rather than providing a complete replacement.

Similar to Paceline, SST [24] supports the stream abstraction. Concurrent

streams in SST use FIFO scheduling with minimum head-of-line blocking over

UDP. On the other hand, Paceline streams share the same underlying TCP channel

and use weighted fair sharing across concurrent streams. Paceline’s support for

fairness across multiple concurrent streams is influenced by CPU scheduling for

multimedia applications [41]. Finally, application-level protocols, such as MUX

[26] and BEEP [62] multiplex logical streams over one communication channel

similar to Paceline; however, they do not deal with timeliness or fairness across

streams.

A recent evaluation study for adaptation algorithms [42] has shown that priority-

progress adaptation for streaming video is more stable thanfeedback-based adap-

tation algorithms in terms of packet delay and jitter. Otherinteractive multimedia

applications can benefit from the adaptation mechanisms in Paceline. Fast-paced

large scale games have high bandwidth requirements [10], sothey do not adhere to

the old wisdom of network games having thin communication streams [53]. Don-

neyBrook’s [10] main contribution is defining interest setsto reduce the bandwidth

requirements of games. Priorities can better capture the range of players’ inter-

ests instead of using two discrete types of updates (important and less frequent).

Moreover, cancellation of expired updates can enable rate adaptation based on the
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network conditions without using a complex reservation scheme for important up-

dates.

Paceline was used in a cloud-based game prototype to scale the communication

in an Epic scale game scenario [69]. The authors used interest sets with two priority

classes based on distance to scale communication. Even though the study was

limited to a small prototype, adaptation in Paceline improved the performance of

wide area networking (WAN).

4.6 Conclusions

Paceline is a transport service supporting interactive high bandwidth applications,

such as HD video conferencing, online large scale multi-player games, and virtual

reality. Such applications require low latency, but due to their high bandwidth re-

quirements they also require effective congestion control. Paceline leverages the

strengths of current TCP implementations, which include their robust and proven

congestion control, while mitigating TCP’s weaknesses in latency. Paceline em-

ploys several techniques to improve latency: message framing and multiplexing to

limit transmission delays, a latency-controller to manageclient-side queuing de-

lays, and a failover mechanism to handle transient TCP stalls. Paceline reduces

TCP’s latency profile, enabling an increase in the traffic volume by a factor of 8

with the same latency profile as plain TCP. Using a video conferencing application

as an example, Paceline brings dramatic improvements over TCP in terms of video

quality metrics and is competitive with the Structured Stream Transport (SST),

which is representative of clean-slate replacements for TCP.

Paceline introduces adaptation mechanisms as essential transport primitives to

resolve the conflict between timeliness and best-effort transports for high band-

width multimedia streams. Paceline also enables Priority-Progress adaptation across

concurrent video streams. Streams get timely message delivery and equal quality

(e.g., frame rates and spatial quality) using a generic representation of quality fair-

ness. Priority-Progress adaptation mechanisms, Pacelineenables applications to

scale quality with available resources and to use the limited available bandwidth in

transferring data with more influence over quality. Paceline’s data service model

provides interactive applications with the necessary mechanisms:priority to pro-
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vide timely delivery of important data andcancellationto perform informed drop-

ping to match the application data rate with available network bandwidth. These

mechanisms can be utilized by domain-specific application-level adaptation poli-

cies to provide timely data delivery over best effort transports, mainly TCP and in

general other congestion-controlled transports (e.g., SST).
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Chapter 5

Conclusions and Future Work

Interactive multimedia applications have low latency interactions and high resource

(network bandwidth, CPU, and storage) demands. The demandsof multimedia can

exceed available resources due to the dynamic fluctuations in application demands

or in available resources while using best-effort platforms with no guarantees. The

key insight is that it is impossible to process all computations and data in a timely

fashion when demands exceed available resources. Our approach, based on the

Priority-Progress quality adaptation model, addresses resource volatility by scaling

demands (up and down) with the available resources and utilizes scarce resources

by giving precedence to computations and data that have moreinfluence over per-

ceived quality.

The mismatch between application demands and available resources is ob-

served to varying degrees in all resources. To reduce the end-to-end delay and

improve the overall perceived quality, our research addresses the performance lim-

itations in multiple resources. This thesis addresses the conflict between interac-

tivity and the best effort nature of current transports and execution platforms. We

have built enhancement layers to maintain the strengths of best-effort platforms

and mitigate their weaknesses through Priority-Progress adaptation. The execution

layer, DOHA [20, 21], extends the Priority-Progress CPU adaptation to work in

games and across multiple execution threads with no shared memory. Similarly,

the transport layer, Paceline [19], introduces low latencytechniques over TCP and

exposes Priority-Progress adaptation mechanisms as essential transport features.
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In the rest of this chapter, we summarize the research contributions of this

dissertation. Then, we reflect on the research approach; andfinally we suggest

venues for future research.

5.1 Primary Research Contributions

The following three primary contributions arose from our research work.

5.1.1 Adaptation as an Essential Infrastructure Feature

This thesis produced a general purpose transport and execution infrastructures that

expose Priority-Progress adaptation primitives to address the limitations of best

effort Web platforms (i.e., TCP and JavaScript engines) in supporting real-time

games and video conferencing. The adaptation primitives were introduced at the

appropriate level: the transport stream level in Paceline and at the event-loop level

in DOHA without changing the best effort nature of the underlying platforms. Both

DOHA and Paceline enable application adaptation through prioritization to provide

timely processing of important data with more influence overquality and cancel-

lation to adapt the application rate to match available resources. Important high

priority data and computations get better application quality, measured in frames

per second and jitter profile, in both DOHA (Section 3.2.1) and Paceline (Section

4.4.2) yielding better overall perceived quality.

In order to provide consistent quality in best effort platforms, the infrastructure

and the application need to be agile in responding quickly tothe adaptation policy

hints. For execution agility, the prevalent monolithic game loop architecture was

broken up to only issue one explicit execution event for eachgame entity allowing

adaptation at the fine-granularity of a single event insteadof the coarse-granularity

of the game frame with all the updates. Secondly, DOHA gives precedence to timer

events and respects the priority of best-effort events maximizing quality within the

timing limits. To improve transport agility in Paceline, wedeveloped several mech-

anisms (Section 4.4.1): a rate controller to reduce queuingdelay due to excessive

socket buffering; a failover mechanism among TCP connections to handle extreme

cases of congestion; and a message fragmentation techniqueto reduce the granular-

ity of preemption. The low-latency techniques in DOHA and Paceline are general
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and can allow adaptation policies to respond quickly to fluctuations in resource

availability.

5.1.2 Support for Concurrent Software

The Priority-Progress model was extended in this thesis with policies and enhance-

ment layers that support concurrent software. DOHA supported timely execution

using multiple concurrent threads with no shared memory andPaceline supported

timely message delivery across multiple concurrent streams over a shared TCP

channel. For timely execution using HTML5 worker threads, DOHA provided

an event loop per worker to allow adaptation in all threads and a communication

layer to support state management and load balancing acrossworkers. As a result,

quality scaled linearly with a small number of cores in the parallel version of the

game (using DOHA) as shown in Section 3.2.2. For timely and fair communication

using multiple concurrent message streams, Paceline supports two notions of fair-

ness: resource and quality fairness. Resource fairness in Paceline guarantees fair

bandwidth allocation among streams at a finer granularity than TCP. More impor-

tantly, Paceline supports quality fairness to ensure fair application-level quality, in

terms of frames per second for example, across streams as shown in Section 4.4.2.

5.1.3 Priority-Progress in Games

This thesis developed CPU quality-adaptation policies inspired by Priority-Progress

adaptation in a new application domain, HTML5 games. Priority-Progress was de-

veloped in video streaming so the policies assumed scalablevideo coding and the

quality dimensions were well-studied in the multimedia literature. Our work in

DOHA explored the use of Priority-Progress adaptation in game loops. Our test

policy used distance from the player as the criteria to decide what entities have

more influence over perceived quality. We also developed a second policy to mini-

mize starvation based on a minimum frequency update per gameentity. These are

the basic policies for game loop adaptation so they can be extended or overridden

in different entities. For example, a bullet entity can add apolicy to assign higher

priority based on the current speed. Finally, Web-based games have other places

where scalability can help trade accuracy for performance,such as the particle en-
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gine (visual effects accuracy) and AI logic (algorithm accuracy).

Paceline improved the performance of wide area networking (WAN) in a cloud-

based game prototype running an epic scale game scenario [69]. The authors used

Paceline with a limited adaptation scheme that has two priority classes based on

distance to scale communication. Further research is needed to validate the results

of this small study but as the bandwidth demands for games increase Paceline’s

adaptation mechanisms would be more applicable.

5.2 Secondary Contributions

The following two secondary contributions arose from our work.

1. While re-structuring the simulation engine of an award-winning Web-based

game (RAPT [76]), we examined the challenges and opportunities of using

HTML5 Web workers and share our qualitative and quantitative observa-

tions.

2. Paceline and DOHA with their respective modified applications were con-

tributed to the QStream open-source repository at http://qstream.org to facil-

itate further research.

5.3 Reflections on the Research Approach

In this thesis, we spanned multiple resources instead of choosing one resource and

conducting more studies on adaptation in that resource. We chose two different

resources that appeared to define the end-to-end performance of interactive multi-

media applications. Our main motivation is that the mismatch between demands

and available resources is observed to varying degrees in all resources so any re-

source can be the performance bottleneck based on the environment conditions and

application loads. In addition, fixing a performance concern in one area can cause

a new one to arise somewhere else. We reflect on the advantagesand disadvantages

of this research approach.

Our approach allowed us to get a deeper understanding of adaptation and the

overall real-time performance in different interactive multimedia scenarios and
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across multiple resources. We were also able to focus on adaptation policies and

mechanisms while developing an appreciation of the detailsspecial to each re-

source. On the other hand, we spent more time than anticipated to review related

work and gain the required expertise to test our ideas in realapplication scenarios.

5.4 Future Work

In this section, we present future venues for research related to this thesis.

• The natural extension for DOHA is to build the load-balancing policies that

can distribute work evenly across workers. Currently, our adaptation poli-

cies and the location-based partitioning algorithms are developed separately.

Developing a load-balancing algorithm that is quality-aware can improve the

game quality significantly. For example, the load-balancing policy can dis-

tribute high priority entities evenly across cores to maximize their chance of

getting updated. Since communication is the major performance limitation,

this direction of research requires an in-depth study of thecommunication

requirements of entities in different games.

• Concurrency is generally hard and it is a major source of systems errors [63].

More tools to support understanding concurrent programs would be very

useful especially after introducing real concurrency in parallel Web workers.

In Dingo [63], a state-machine based formal language was used to describe

the protocol between device drivers and the operating system. Similarly, we

need to capture communication protocols between application components

running in different Web workers.

• Performance of multimedia in browsers is not well understood because of the

lack of performance monitoring tools and benchmarks to quantify and com-

pare perceived multimedia quality. Browsers have primitive debugging and

performance monitoring tools and Web workers have even lesssupport. To

conduct a rigorous experimental study and quantify performance, we built

a few performance analysis tools. We built a parallel performance monitor

to capture performance data from workers, a server to receive and persist

data, and a visualization tool to display performance signals in real-time for
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interactive performance debugging. We plan to build a tool to record and

replay the performance data and the JavaScript execution sessions. We can

enable querying over the data for interactive performance analysis to answer

questions, such as what are the ten functions with the worst duration? Which

functions took more than 50ms to execute? What are the functions leading

to a specific performance anomaly? In addition, we can automatically gen-

erate representative multimedia Web benchmarks using a similar technique

to [61]. The benchmark can use the application-level quality metrics and our

visualization tool to compare the browser support for interactive multimedia.

• As explained in Paceline, the main contributing factor to the end-to-end

latency isqueuingdelays in nodes (hosts and network routers). Paceline

addresses end-hosts queuing delays. To reduce queuing delay in network

routers, we can use active queue management (AQM) techniques, such as

Explicit Congestion Notification (ECN) [57]. However, these techniques

are hard to configure and errors in configuration can reduce bandwidth uti-

lization. Recent work [8] designed an end-host technique for active queue

management by modifying TCP. Our future objective would be to emulate

AQM at the application-level and eliminate the end-to-end queuing delay

without modifying routers or TCP kernel implementations. The main re-

quirement for such a technique is to automatically configureits parameters

without manual intervention.

• The storage and memory [59] resources are becoming more important for

Web applications. Multimedia storage is server-side challenge especially

since browsers limit client-side storage to 5 megabytes (10MB in Internet

Explorer) [79]. The work by Krasic and Légaré [38] proposes the use of

Priority-Progress adaptation in the server to enhance the interactivity while

accessing stored video. Storage adaptation can be extendedto work for real-

time persistence and retrieval of interactive content (i.e., video and game

sessions) for reply purposes. To match the high demands for interactive con-

tent, storage adaptation ideas for one server [38] can be extended to work

in a distributed storage model using distributed data structures [29]. On the

other hand, memory is not a schedulable resource that we can adapt. Appli-
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cations can either have enough memory and function correctly or run out of

memory and fail.

5.5 Concluding Remarks

When demands exceed available resources, scaling quality based on available re-

sources using Priority-Progress adaptation improves timeliness and ensures con-

sistent quality in interactive multimedia. Adaptation is an essential infrastructure

feature enabling the exploration of ambitious more challenging scenarios without

the fear of brittle real-time performance and inconsistentquality. It is imperative

to continue investigating the tools, techniques, and infrastructure features needed

to support the growing number of interactive multimedia applications.
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