
Predictive Adaptation of Hybrid
Monte Carlo with Bandits

by

Ziyu Wang

B.Math., University of Waterloo, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October 2012

c� Ziyu Wang 2012

Abstract

This thesis introduces a novel way of adapting the Hybrid Monte Carlo

(HMC) algorithm using Gaussian process bandits. HMC is a powerful

Markov chain Monte Carlo (MCMC) method, but it requires careful tuning

of its hyper-parameters. We propose a Gaussian process bandit approach to

carry out the adaptation of the hyper-parameters while the Markov chain

progresses. We also introduce the use of cross-validation error measures for

adaptation, which we believe are more pragmatic than many existing adap-

tation objectives. The new measures take the intended statistical use of the

model, whose parameters are estimated by HMC, into consideration. We

apply these two innovations to the adaptation of HMC for prediction and

feature selection with multi-layer feed-forward neural networks. The experi-

ments with synthetic and real data show that the proposed adaptive scheme

is not only automatic, but also does better tuning than human experts.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

Acknowledgements . viii

Dedication . ix

1 Introduction . 1

1.1 Thesis Contribution . 3

1.2 Thesis Organization . 4

2 Hybrid Monte Carlo . 5

2.1 HMC . 5

2.2 Sensitivity to Parameter Tuning 7

3 Adaptive Hybrid Monte Carlo 14

3.1 Gaussian Process Bandits . 14

3.2 Reward Model . 17

3.3 The Algorithm . 17

3.4 Analysis . 20

4 Application to Bayesian Neural Networks 21

4.1 Robot Arm Data . 21

iii

Table of Contents

4.2 Dexter Data Set . 23

5 Conclusion . 30

Bibliography . 32

iv

List of Tables

4.1 Mean squared test error for the robot arm data set. 25

4.2 Classification error on the validation set of the Dexter data set. 26

4.3 Classification error on the test set of the Dexter data set. . . 26

v

List of Figures

2.1 Sampling from a Gaussian distribution using HMC for 1000

iterations. (a) shows the trajectory of the samples when � =

0.16 and L = 40. (b) shows the trajectory of the samples

when � = 0.16 and L = 50. (c) shows the trajectory of the

samples when � = 0.15 and L = 50. It is evident from the plot

that by changing the hyper-parameters of HMC by a small

amount, we can drastically change the convergence behavior

of the sampler. 9

2.2 Sampling from a Gaussian distribution using HMC for 1000

iterations. (a) shows the trace of the first coordinate when

� = 0.16 and L = 40. (b) shows the trace of the first coordi-

nate when � = 0.16 and L = 50. (c) shows the trace of the

first coordinate when � = 0.15 and L = 50. 11

2.3 Sampling from a Gaussian distribution using HMC for 1000

iterations. (a), (b) and (c) describes the auto-correlation

of the samplers with � = 0.16 L = 40, � = 0.16 L = 50,

and � = 0.15 L = 50 respectively. As we vary the hyper-

parameters of HMC by a small amount, the speed of mixing

of the chain can change drastically. 12

2.4 Sampling from a bivariate Gaussian distribution using HMC

for 1000 iterations. (a), (b) and (c) describes the auto-

correlation of the samplers with � = 0.16 L = 40, � = 0.16

L = 50, and � = 0.15 L = 50 respectively. As we change the

target distribution, the behavior of hyper-parameters changes

with it. 13

vi

List of Figures

4.1 Learned mean reward surface for the Robot Arm data, with

the tried parameters as dots. Notice that areas of the hyper-

parameter space with higher reward value are tried more fre-

quently. 22

4.2 The upper plot shows the approximate reward function learned

by the GP bandit along a slice with L = 1500. The blue-

shaded region is formed by adding/subtracting one standard

deviation to/from the mean (red line). The lower plot shows

the value of the acquisition function along the same slice. . . 23

4.3 Mean squared error on the test set of the Robot Arm data set

given the number of samples used (with the first 6000 samples

discarded). As more samples are drawn, the error decreases

steadily. 24

4.4 Reward surface as a contour plot learned for the Dexter data

set from the NIPS 2003 feature selection challenge. The scat-

tered dots are the hyper-parameters tried. 27

4.5 Classification errors on the validation set of the Dexter data

set from NIPS 2003 feature selection challenge given the num-

ber of samples. The first 6000 samples were discarded. 28

4.6 The upper plot shows the approximate reward function learned

by the GP bandit along a slice with � = 0.22. The blue-shaded

region is formed by adding/subtracting one standard devia-

tion to/from the mean (red line). The lower plots shows the

value of the acquisition function along the same slice. 29

vii

Acknowledgements

I would like to show my utmost gratitude to many people without whom this

thesis would not have been possible. Above all, I would thank my advisor

Nando de Freitas. He has not only devoted countless hours to myself and my

work, but also he gave me invaluable guidance and support. His optimism

and openness to new ideas motivated me to learn and explore this very

interesting but sometimes intimidating field. Nothing more could have been

asked from an advisor.

I also owe my thanks to many other people at UBC. Masrour Zoghi

helped me to understand and navigate many difficult mathematical concepts

and patiently put up with many silly questions of mine. I would like to thank

Matthew Hoffman, Frank Hutter, Firas Hamze, Misha Denil, Gabriel Goh,

and David Matheson, just to name a few, for sharing interesting discussions

and ideas with me.

Last but not least, I would like to thank my family for their tireless

support.

viii

Dedication

This thesis is dedicated to my wife Lin and my son Ben for their love and

support.

ix

Chapter 1

Introduction

Markov chain Monte Carlo (MCMC) methods [2], such as the Metropolis-

Hastings [37] algorithm, are widely used in statistics, physics and machine

learning to sample from complex high-dimensional distributions and to solve

combinatorial inference problems. Hybrid Monte Carlo (HMC), first intro-

duced as a fast method for simulating molecular dynamics [11], is a par-

ticularly powerful MCMC algorithm. It was used to produce the winning

entry of the NIPS 2003 feature selection challenge [16]. There is some ev-

idence suggesting that HMC can perform better than traditional MCMC

algorithms in high-dimensional, continuous, correlated spaces [9, 30]. Un-

fortunately, HMC has hyper-parameters that must be tuned every time it

is deployed. It is often reported by HMC experts that tuning HMC is more

difficult than tuning many other MCMC methods [20, 30].

Over the last decade, a few adaptive strategies were proposed to auto-

matically tune the parameters of MCMC algorithms. For a comprehensive

review of adaptive MCMC, we refer the reader to [5, 33]. Among the vari-

ous adaptive MCMC algorithms, the ones based on stochastic approximation

(SA) seem to be the most popular and successful. There are reasons for this.

First, it can be shown theoretically that these algorithms are ergodic, de-

spite the fact that that the Markov chains defined by these algorithms are

inhomogeneous [3, 4, 35]. Secondly, these algorithms have been shown to

produce impressive results in practice [17, 33]. However, these SA methods

have important limitations too. In practice, they may be slow to converge.

If one increases the learning rate to overcome this speed issue, then the

algorithm is likely to get stuck in local optima and not fully explore the

parameter space. We would like to have a method that is not as greedy

and which allows one to have better control on the exploration-exploitation

1

Chapter 1. Introduction

trade-off. In addition, often the objective measures that SA methods opti-

mize (e.g. matching a particular acceptance rate) are based on restrictive

asymptotic results [33].

Instead of using SA, in this thesis we propose to use bandits to adapt the

parameters of HMC. Bandits are powerful optimization tools which balance

the exploration-exploitation trade-off. They have been applied successfully

in many complex stochastic domains, including web content optimization

and advertising [22] and reinforcement learning [38]. They allow us to learn

reward functions for actions. They also provide us with policies for choosing

actions in an on-line manner. In our MCMC domain, the actions will corre-

spond to the the HMC hyper-parameters and the rewards to the objective

function of the adaptation scheme.

Bandits have two important advantages over the conventional SA ap-

proaches. First, they do not impose restrictions on the reward, such as

differentiability. Second, they conduct global optimization as opposed to

local optimization. In some earlier works [18, 24], Gaussian process bandits

(GP bandits) were used to guide MCMC samplers. Although their tech-

niques work well, they do not allow for infinite adaptation because of the

unbounded growth in the GP bandit model. In some cases, as pointed out

in [18], finite adaptation can cause serious mixing problems. For this reason

we devise a technique that enables infinite adaptation while employing GP

bandits in this work. More specifically, we use an annealing schedule to

decrease the probability of a new set of parameters proposed by GP bandit

to be accepted thus limiting the total number of unique points in our Gaus-

sian process model. With fewer unique points, computation can be carried

out more efficiently which then allows for infinite adaptation. Also note

that, this annealing schedule also enforces diminishing adaptation which is

essential to show ergodicity of the adapted sampler.

In [18, 24], the cumulative autocorrelation function is used as the objec-

tive for adaptation. Our bandit model could also use this objective function

and, as a result, be applicable to any problem to which HMC is being applied.

However, since we are mostly concerned with predictive tasks in machine

learning, we introduce a new way to think about the objective function for

2

1.1. Thesis Contribution

doing adaptive MCMC in this thesis. Specifically, we use predictive losses,

such as cross-validation error, to guide the adaptation. This approach, al-

though never reported before to the best of our knowledge, makes perfect

intuitive sense. Ultimately the models whose parameters we are estimating

by running a Markov chain will be tested on predictive tasks. Hence, it is

only natural to use predictive performance on such predictive tasks to im-

prove the exploration of the posterior distribution. We expect this insight to

have a profound impact on the development of adaptive MCMC algorithms

for statistical prediction in the future. Of course, this will only be true in

settings where enough data is available to obtain good predictive measures.

The fact that bandits do not require the objective function to be analyt-

ical is what endows us with so much flexibility in the choice of the objective

function. The two improvements proposed in this thesis go hand-in-hand.

In our experiments, we use adaptive HMC to train Bayesian Neural Net-

works (BNNs) [29]. Since the end goal of BNNs is to predict well on test

data, we use the cross-validation performance as the objective function for

adapting the parameters of the HMC chain. When doing this, we can still

have the right asymptotic distribution, under vanishing adaptation, provided

the base samplers are uniformly ergodic or, at least, close to geometrically

ergodic. We expand on these theoretical considerations in the analysis sec-

tion. The experiments demonstrate, with both real and synthetic data, that

the proposed adaptation scheme performs better than human experts in the

task of tuning HMC for Bayesian neural networks.

1.1 Thesis Contribution

This thesis has two major contributions. First, it introduces an infinite adap-

tation scheme that we applied to HMC. Adapting MCMC chains by using

GP bandits has been explored before [25]. The introduction of annealing

schedules which enable infinite adaptation is however novel. This thesis also

presents a new objective function that can be used to adapt Markov chains

that are used for predictive tasks.

3

1.2. Thesis Organization

1.2 Thesis Organization

This thesis is organized as follows: chapter 2 briefly reviews HMC and mo-

tivates our work by demonstrating HMC’s sensitivity to hyper-parameters

changes. In chapter 3, we review the GP bandit model and introduces the

proposed algorithm as well as our reward model. We also discuss in short

the theoretical perspectives of our approach in chapter 3. In chapter 4, we

evaluate the proposed approach through two sets of experiments. Finally,

in chapter 5 we conclude the thesis and discuss potential future works.

4

Chapter 2

Hybrid Monte Carlo

In this chapter, we review the HMC method briefly. We also demonstrate

HMC’s sensitivity to parameter tuning with a simple set of experiments.

2.1 HMC

HMC is based on Hamiltonian mechanics. Let x be a d-dimensional position

vector and p be a d-dimensional momentum vector. The total energy, also

called the Hamiltonian, is given by: H(x,p) = U(x) + K(p), where U(x)

is the potential energy and K(p) = pTM−1p/2 is the kinetic energy for

some mass matrix M. In a closed system, the total energy H is conserved.

Consequently, the dynamics of the system, according to Newton’s law of

motion, can be described by using Hamilton’s equations:

∂H
∂x

= −ṗ, ∂H
∂p

= ẋ. (2.1)

Suppose we wish to draw samples from the distribution π(x) which is known

up to a normalization constant. That is π(x) ∝ f(x). To make use

of Hamiltonian Mechanics for sampling we can think of the vector x as

the position vector in the Hamiltonian by defining the potential energy as

U(x) = − log f(x). We introduce a kinetic energy term K(p) = pTM−1p/2

with M being positive definite and define the total energy to be H(x,p) =

U(x) + K(p).

Consider the distribution π̂(x,p) ∝ exp(−H(x,p)). Since π̂(x,p) ∝
f(x) × exp(−K(p)), to sample from π, we can simply sample from π̂ and

discard the samples for p. One way of sampling from π̂ is to follow the

Hamiltonian dynamics:

5

2.1. HMC

1. Sample p̂ ∼ N (0,M),

2. Simulate the Hamiltonian dynamics described in Equation 2.1 for a cer-

tain time starting from the current state (xt, p̂) to generate the next

state (xt+1,pt+1),

The above procedure simulates a Markov chain that leaves the target distri-

bution invariant. Suppose now (xt,pt) follows the target distribution, then

(xt, p̂) would also follow the target distribution since x and p are indepen-

dent and p is indeed distributed according to N (0,M). Step 2 of the proce-

dure employs the transformation defined in 2.1 which we shall name T for

convenience. For any subset A of the joint space of x and p, let B = T (A).

Due to the fact that T is time-reversible [30], we have that A = T (B) which

implies that q(B|A) = q(A|B) = 1 where q is the transition probability of

T . Because T also preserves volume and conserves total energy [30], it can

be shown that
�
A exp(−H(x,p))dxdp =

�
B exp(−H(x,p))dxdp. Therefore,

we have the detailed balance condition:

q(B|A)

�

A
exp(−H(x,p))dxdp = q(A|B)

�

B
exp(−H(x,p))dxdp, (2.2)

which guarantees that the transformation T leaves the target distribution

invariant. Since both steps of the procedure leaves the target distribution

invariant and they only depend on the previous iteration of the algorithm,

together they can be seen as a Markov transition kernel which leaves the

target distribution invariant.

To simulate the Hamiltonian dynamics in practice, however, we must

discretize the differential equations that describe the continuous motion.

This can be accomplished by the Störmer-Verlet or leapfrog scheme [21]. It

is composed of three steps as described below:

pτ+ �
2

= pτ −
�

2

∂U

∂x

����
xτ

, xτ+� = xτ + �M−1pτ+ �
2
, pτ+� = pτ −

�

2

∂U

∂x

����
xτ+�

where τ is the current time and � is the stepsize. To simulate the dynamics,

we repeat the above steps L times with stepsize �. Although the leapfrog

6

2.2. Sensitivity to Parameter Tuning

scheme does preserve volume in the phase space and it is time-reversible, it

no longer conserves the total energy. Because of this, the detailed balance

condition no longer holds. HMC surmounts this equilibration problem with

a Metropolis-Hastings re-weighting step [11]. The full HMC algorithm is

summarized in Algorithm 1. It can be shown that Markov chain defined by

HMC satisfies the detailed-balance condition [23, 30].

Algorithm 1 Hybrid Monte Carlo Algorithm

1: for i = 1, 2, . . . do
2: Sample pt ∼ N (0,M)
3: Given � and L, apply the leapfrog scheme L times with stepsize �

starting from the current state (xt,pt) to generate a proposal state
(x∗,p∗)

4: Draw u ∼ U(0, 1)
5: if u < min[1, eH(xt,pt)−H(x∗,p∗)] then
6: Let (xt+1,pt+1) = (x∗,p∗)
7: else
8: Let (xt+1,pt+1) = (xt,pt)
9: end if
10: end for

2.2 Sensitivity to Parameter Tuning

HMC has shown great promise [9, 30], however, it has not been extensively

adopted in Bayesian statistics as a practical inference method [14]. One

of the main reasons for this is HMC’s sensitivity to changes in its hyper-

parameters, such as � and L. We demonstrate this with three experiments.

We use HMC to sample from bivariate Gaussian distribution with covari-

ance:

Σ =

�
1 0.99

0.99 1

�
. (2.3)

In the experiments, we vary the hyper-parameters of HMC. Specifically, we

set � = 0.16 L = 40 in the first experiment, � = 0.16 and L = 50 in the

second, and � = 0.15 and L = 50 in the third experiment. A total of 1000

7

2.2. Sensitivity to Parameter Tuning

samples were drawn in all three experiments. The results are summarized

in Figure 2.1, 2.2 and 2.3.

In the first experiment, as evident from the trajectory plot and the trace

plot in plot 2.1(a) and 2.2(a), the samples in the first experiment cover the

space very well and the sampler seems to have converged to the target dis-

tribution very quickly. Also from the auto-correlation plot in Figure 2.3(a),

we can see that the auto-correlation of this sampler is low (its absolute value

is bounded by 0.1). By changing L by 10 in the second experiment, how-

ever, we observe different results. Although the samples still cover the space

very well (as seen in the trajectory plot in Figure 2.1(b)), the sampler does

not mix as well despite the increase in L. To see this, note that the auto-

correlation (presented in Figure 2.3(b)) of this sampler is as high as 0.9 when

lag is 1 and that the absolute value of the auto-correlation stays relatively

high as the lag increases. One can also compare the trace plots 2.2(a) and

2.2(b) to draw the same conclusion. Finally, in the third experiment, we

decrease the value of � by 0.01. Despite the minimal change in �, however,

the behavior of the sampler changes dramatically. From Figure 2.1(c), we

can see that after 1000 iterations, the sampler has not yet converged to the

target distribution.

It is interesting to note that, theoretical results concerning the optimal

acceptance rate of HMC exist. Neal and Beskos et al. both suggested it to

be around 0.65 [8, 30]. Such results, however, would not help in choosing

the best sampler out of the three since all of them have their acceptance

rate to be around 0.7.

HMC’s sensitivity to hyper-parameters would not be a problem if good

hyper-parameters for one particular target distribution generalizes to many

other target distributions. This is, however, not the case as we demonstrate

by the following example. We again choose our target distribution to be

bivariate Gaussian but this time with the covariance matrix

Σ =

�
2 0.99

0.99 2

�
. (2.4)

8

2.2. Sensitivity to Parameter Tuning

0 1 2 3 4 5 6
2

3

4

5

6

7

8

0 1 2 3 4 5 6
2

3

4

5

6

7

8

(a) (b)

0 1 2 3 4 5 6
2

3

4

5

6

7

8

(c)

Figure 2.1: Sampling from a Gaussian distribution using HMC for 1000
iterations. (a) shows the trajectory of the samples when � = 0.16 and
L = 40. (b) shows the trajectory of the samples when � = 0.16 and L = 50.
(c) shows the trajectory of the samples when � = 0.15 and L = 50. It is
evident from the plot that by changing the hyper-parameters of HMC by
a small amount, we can drastically change the convergence behavior of the
sampler.

9

2.2. Sensitivity to Parameter Tuning

As in the previous experiment, we set � = 0.16 L = 40 in the first experiment,

� = 0.16 and L = 50 in the second, and � = 0.15 and L = 50 in the third. The

auto-correlation of the samples are summarized in Figure 2.4. By comparing

the result with that of the previous experiments, we can see that the hyper-

parameters that led to the best result in the previous experiments perform

poorly in this experiment. Also hyper-parameters with poor performance in

the last experiments perform well here. This experiment illustrates that not

only are HMC’s hyper-parameters hard to tune, but also, they may have to

be tuned for each new target distribution encountered.

These experiments demonstrate that even with a small change in hyper-

parameters, the behavior of HMC can be altered substantially and the

changes affect both convergence speed and mixing. This sensitivity to pa-

rameter changes hinders HMC’s practical use. To overcome this problem,

we introduce an automatic adaptation algorithm in the following section.

10

2.2. Sensitivity to Parameter Tuning

0 100 200 300 400 500 600 700 800 900 1000
−2

−1

0

1

2

3

4

5

6

7

8

V
a
lu

e
 o

f
th

e
 f
ir
s
t
c
o
−

o
rd

in
a
te

Iterations
0 100 200 300 400 500 600 700 800 900 1000

−2

−1

0

1

2

3

4

5

6

7

8

V
a
lu

e
 o

f
th

e
 f
ir
s
t
c
o
−

o
rd

in
a
te

Iterations

(a) (b)

0 100 200 300 400 500 600 700 800 900 1000
−2

−1

0

1

2

3

4

5

6

7

8

V
a
lu

e
 o

f
th

e
 f
ir
s
t
c
o
−

o
rd

in
a
te

Iterations

(c)

Figure 2.2: Sampling from a Gaussian distribution using HMC for 1000
iterations. (a) shows the trace of the first coordinate when � = 0.16 and
L = 40. (b) shows the trace of the first coordinate when � = 0.16 and
L = 50. (c) shows the trace of the first coordinate when � = 0.15 and
L = 50.

11

2.2. Sensitivity to Parameter Tuning

10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

−
c
o
rr

e
la

ti
o
n

Lag
10 20 30 40 50 60 70 80 90 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

−
c
o
rr

e
la

ti
o
n

Lag
(a) (b)

10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

−
c
o
rr

e
la

ti
o
n

Lag
(c)

Figure 2.3: Sampling from a Gaussian distribution using HMC for 1000
iterations. (a), (b) and (c) describes the auto-correlation of the samplers
with � = 0.16 L = 40, � = 0.16 L = 50, and � = 0.15 L = 50 respectively.
As we vary the hyper-parameters of HMC by a small amount, the speed of
mixing of the chain can change drastically.

12

2.2. Sensitivity to Parameter Tuning

10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

−
c
o
rr

e
la

ti
o
n

Lag
10 20 30 40 50 60 70 80 90 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

−
c
o
rr

e
la

ti
o
n

Lag
(a) (b)

10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
u
to

−
c
o
rr

e
la

ti
o
n

Lag
(c)

Figure 2.4: Sampling from a bivariate Gaussian distribution using HMC
for 1000 iterations. (a), (b) and (c) describes the auto-correlation of the
samplers with � = 0.16 L = 40, � = 0.16 L = 50, and � = 0.15 L = 50
respectively. As we change the target distribution, the behavior of hyper-
parameters changes with it.

13

Chapter 3

Adaptive Hybrid Monte

Carlo

Our adaptive algorithm uses GP bandits to update L and � on-line, as the

HMC chain explores the parameter space of the model (e.g. a neural net-

work). The rewards in our setting are given by the cross-validation accuracy

of the predictive model. It is clear that our approach is more general and

could in fact use any other reasonable objective functions to learn L and �

on-line. However, if the model over whose parameters we define the Markov

chain is used for prediction, then it is reasonable to use prediction loss to

update the hyper-parameters of the Markov chain sampler.

3.1 Gaussian Process Bandits

GP bandits (also known as Bayesian optimization, Kriging) is an efficient

gradient-free optimization tool well suited for expensive black box functions

such as our reward function which is based on cross-validation. It operates

on a compact action space A 1 , where in our case an action a ∈ A corre-

sponds to a specific choice of the hyper-parameters L and �. GP bandits

assume a Gaussian process prior for the reward function which is defined

over A. That is

f(·) ∼ GP (m(·), k(·, ·))
1 It is common in the GP bandit literature to assume A to be a bounding box such

that each dimension is restricted to be within some interval [bl, bh]. In our experiments,
we set A to be a box constraint such that

A = {(�, L) : � ∈ [b�l , b�u], L ∈ [bLl , bLu]}

for some b�l ≤ b�u and bLl ≤ bLu .

14

3.1. Gaussian Process Bandits

where m(·) is the mean function and k(·, ·) is the covariance function. Here

we assume a Gaussian noise model such that an observation at an action

a is assumed to be r(a) = f(a) + ε where ε ∼ N (0, σ2η). Given noisy

evaluations of the objective function {rk}ik=1 evaluated at points {ak}ik=1,

we can compute the likelihood P(Di|f(·)) where Di =
�
{ak}ik=1, {rk}ik=1

�
.

By combining the prior and the likelihood using Bayes rule, we acquire the

posterior distribution of the reward model

P [f(·)|Di] ∝ P[Di|f(·)]P[f(·)].

The posterior contains updated information about the reward model.

More specifically, by assuming m(·) = 0, we arrive at the posterior pre-

dictive distribution:

r|Di, a ∼ N (µi(a), σ
2
i (a))

µi(a) = kT (K+ σ2η I)
−1Ri

σ2i (θ) = k(a, a) − kT (K+ σ2η I)
−1k

where

K =




k(a1, a1) . . . k(a1, ai)
...

. . .
...

k(ai,a1) . . . k(ai,ai)


 ,

k = [k(a, a1) . . . k(a, ai)]
T , and Ri = [r1 . . . ri]

T . In this work, we used

the Gaussian ARD kernel with k(ai,aj) = exp(−1
2a

T
i Σ−1aj) where Σ is a

positive definite matrix2. For more details of the above model please refer

to [31].

2 In our experiments we set

Σ =

�
[α(b�u − b�l)]

2 0

0
�
α(bLu − bLl)

�2

�

where α = 0.2.

15

3.1. Gaussian Process Bandits

To sample efficiently, GP Bandits choose the next action a ∈ A to be

the optimizer of an acquisition function. The role of an acquisition function

is to guide the GP bandit towards regions of potentially better objective

values by sampling either a region known to have good values or a region

with high uncertainty. That is to either exploit or explore. There are several

popular choices of acquisition functions in the literature. For our purposes,

we choose the Upper Confidence Bound (UCB) [36] which is defined as

u(a|Di) = µi(a) + β
1
2
i+1σi(a).

Here βi+1 = 2 log

�
(i+1)

d
2+2π2

3δ

�
where d is the dimension of A and δ is set to

0.1. UCB is a standard acquisition function for which asymptotic rates of

convergence have been proved [36] for the GP bandits. There are, however,

a few other reasonable alternatives to UCB, such as Thompson sampling [26]

and expected improvement (EI) [27]. A comparison among these options as

well as portfolio strategies to combine them appeared recently in [19].

Algorithm 2 Gaussian Process Bandit

Given: function f , constraint A, and a1.
Initialize D0 = ∅.
for i = 1, 2, . . . , I do

Obtain a noisy evaluation of the reward function ri = f(ai) + �.
Augment the data Di = {Di−1, (ai, ri)}.
Update the bandit model.
Optimize the acquisition function to acquire ai+1: ai+1 =
arg maxa∈A u(a|Di).

end for

There are several good ways of optimizing the acquisition function, in-

cluding the method of DIvided RECTangles (DIRECT) of [13] and many

versions of the projected Newton methods of [7]. We found DIRECT to

provide a very efficient solution in our domain. Note that optimizing the

acquisition function is much easier than optimizing the original objective

function. This is because the acquisition functions can be easily evaluated

and differentiated. For the full algorithm of GP bandit please refer to Algo-

16

3.2. Reward Model

rithm 2.

3.2 Reward Model

To evaluate different parameter settings, we introduce super-transitions,

which were first described by Neal in [29]. A super-transition consists of

a number of HMC samples. This number can vary. A super-transition,

however, defines the total number of leapfrog steps used. If each sample

requires more leapfrog steps, then there will be fewer HMC samples gener-

ated in one super-transition. When running HMC with different parameters

for one super-transition, we may have a different number of HMC iterations

and a different L, but all runs will take approximately the same CPU time.

Super-transitions thus enable us to evaluate the effectiveness of different

parameter settings while preserving the total computational cost.

We use cross-validation to construct the reward signal. As in classical

n-fold cross-validation, we divide the data into n sets, and train n BNNs

each on n−1 sets and test them on the remaining set like in the case of nor-

mal cross-validation. Alternatively, we can think of the process as a single

Markov chain exploring the state space which is a combination of n inde-

pendent copies of the original state space. During each super-transition, we

draw samples for each of the BNNs and calculate the mean cross-validation

error by using only the samples drawn in this super-transition. The mean

cross-validation error is then used to calculate the reward.

Here we remind the reader again that the samples of HMC are eventually

used for prediction tasks. Therefore adapting the sampler to gain prediction

accuracy is pragmatic.

3.3 The Algorithm

Our objective function cannot be evaluated analytically. However, noisy ob-

servations of the objective value can be obtained by running HMC with the

specified parameter settings for one super-transition. These noisy observa-

tions together with the parameter settings can then be used to update the

17

3.3. The Algorithm

posterior distributions for the reward model. Finally, we use the acquisition

function to propose a new set of parameters.

To ensure that the diminishing adaptation condition [32] is satisfied, we

introduce an annealing schedule. Let pi denote the probability of a new

proposal generated by our bandit model being accepted at iteration i. In

each iteration, pi is calculated as follows, pi = exp(−λ(i− 1)) where λ > 0.

As pi goes to 0, we change our parameter settings less frequently.3 It is easy

to check that the diminishing adaptation condition is satisfied.

As pi decreases, it becomes increasingly difficult for the bandit to propose

new hyper-parameters for HMC. Thus the sampler would often be using the

same set of hyper-parameters for many iterations. In this case, we argue,

it is more reasonable to exploit known good hyper-parameters rather than

exploring for better ones. To this goal, we propose to adopt the following

acquisition function:

ū(a|Di) = µi(a) + piβ
1
2
i+1σi(a).

Some may argue that changing the acquisition function could lead to pre-

mature exploitation which may prevent the GP bandit from locating the

true optimum of the reward function. This argument certainly holds. Our

goal of adapting the Markov chain, however, is less about finding the abso-

lute best hyper-parameters but more about finding sufficiently good hyper-

parameters given the computational resources we have. Given enough time,

we can slow the annealing schedule or simply delay annealing for a certain

number of super-transitions thus allowing the bandit algorithm to explore

fully the hyper-parameter space. During an aggressive annealing schedule

though, we argue, it is important not to waste computational resources

on hyper-parameters with little potential. As we demonstrate in out experi-

ments, this form of aggressive exploitation still leads to promising outcomes.

The full algorithm is presented in Algorithm 3.

Because of the use of GP priors, we could run into the situation where

it becomes computationally prohibitive to update the bandit model or to

3 λ is set to 0.01 in all our experiments.

18

3.3. The Algorithm

Algorithm 3 Adaptive HMC with Bayesian GP Bandits

1: Given: constraint A and a1.
2: for i = 1, 2, . . . , I do
3: Run HMC for 1 super-transition with hyper-parameters ai = (�i, Li).
4: Use the drawn samples to obtain a noisy evaluation of the reward

function ri (say, cross-validation accuracy).
5: Augment the data Di = {Di−1, (ai, ri)}.
6: Draw u ∼ U(0, 1)
7: let pi = exp(−λ(i− 1)), with λ > 0.
8: if u < pi then
9: Optimize the acquisition function: a� = argmaxa∈A ū(a|Di).
10: Let ai+1 = a�

11: else
12: Let ai+1 = ai
13: end if
14: end for

optimize the acquisition function since GP bandits require the inversion of

the covariance matrix, which has the complexity of O(i3) where i is the

number of iterations. However, observe that as i increases, pi decreases

exponentially. Thus the total expected cost of kernel matrix inversion is

O
� ∞�

i=1

i3

exp(λ(i− 1))

�
= O(1).

Please bear in mind that the proposed approach does not restrict itself from

adopting other reasonable annealing schedules without losing its potential

for infinite adaptation. For example, one could set pi to be pi = i−γ , where

γ > 0. This schedule would allow for more adaptation which may prove

critical in recovering from bad hyper-parameters as hyper-parameters that

perform well in the initial phase of adaptation do not necessarily work af-

ter the sampler converges to its target distribution. It would also enable

infinite adaptation as the number of unique points in our Gaussian process

model would only grow logarithmically in the number of iterations. This

slow growth would in turn endow us the power to use kernel specification

techniques like the one proposed in [12] to reduce the computational cost.

19

3.4. Analysis

3.4 Analysis

In the proposed approach, the Markov chain is adapted so as to minimize

prediction loss. In doing this, the question of ergodicity arises immediately.

Fortunately, there exist theoretical results that establish the ergodicity of

general adaptive MCMC schemes [6, 32]. Specifically two sets of conditions

together guarantee ergodicity of an adaptive MCMC algorithm. First, the

adaptation has to diminish eventually. This condition is usually ensured

by the design of the adaptation scheme. The second set of conditions is

usually placed on the underlying MCMC samplers. In [32], the samplers

are required to be either uniformly ergodic or geometrically ergodic. Since

the state space of HMC is unbounded, it is unlikely that HMC is uniformly

ergodic. To the best of our knowledge, no theoretical results exist on the

geometric ergodicity of HMC. However, Roberts et al. showed in [34] that

Langevin diffusion, which is closely related to HMC, is geometrically ergodic.

Thus one potential challenge would be to prove or disprove geometric ergod-

icity of HMC. In [6], Atchadé et al. weakened the conditions required for a

general adaptive MCMC algorithm to be ergodic. In their work, although

the authors still require diminishing adaptation, the requirements on the

underlying MCMC samplers were reduced to sub-geometric ergodicity. Al-

though these conditions are weaker, it remains hard to check whether HMC

indeed satisfies them. Alternatively, if the HMC dynamics were defined on

a compact space, then the proposed adaptive scheme would be ergodic [32].

20

Chapter 4

Application to Bayesian

Neural Networks

We demonstrate in this section the proposed adaptive HMC strategy on two

applications of BNNs. We choose this domain not only because it is very

challenging, but also because in this case we can benchmark our adaptive

algorithms against the results obtained by human experts.

4.1 Robot Arm Data

The robot arm data set is a classical nonlinear regression benchmark [10].

There are two real input variables x1 and x2 representing the joint angles and

two real output variables y1 and y2 representing the resulting arm position

in rectangular coordinates. The data is generated from the following model:

y1 = 2.0 cos(x1) + 1.3 cos(x1 + x2) + e1 (4.1)

y2 = 2.0 sin(x1) + 1.3 sin(x1 + x2) + e2, (4.2)

where e1 and e2 are independent Gaussian noise variables of mean 0 and

standard deviation 0.05. This data set contains 600 input-target pairs. The

first 200 cases of the data are used for training and the last 200 cases are

used for testing. Neal in [29] applied BNNs to this problem. For inference,

he used HMC. The hyper-parameters of HMC were hand tuned.

In the experiment that produced the best results, Neal used super-

transitions of 32000 leapfrog steps to train a network of one hidden layer with

16 hidden units for 150 super-transitions. The dimension of the state space

for HMC , formed by the weights, biases and, a few other parameters of the

21

4.1. Robot Arm Data

��� ��� ��� ��� ��� ���

��������������������

�

����

����

����

����

����

�
�
��
�
��
��
�
�
��
�
�
��
��

�
� ������

������

��
���

�

������
������

��
��
��

��
���

�

��
��
��

���
��

�

������

��
���

�

���
��
�

������

��
��
��

���
��

�

����
��

������

���
��

�

���
��

�

���
��

�

������

������

���
��

�

���
���

��
��
��

������

��
��
��

��
��
�
�

�����
�����

�
��
�
�

�����

�
��
�
�

�����

Figure 4.1: Learned mean reward surface for the Robot Arm data, with the
tried parameters as dots. Notice that areas of the hyper-parameter space
with higher reward value are tried more frequently.

network, is 82. We follow Neal on the structure of the network and train the

network using super-transitions of 24000 leapfrog steps for 200 iterations.

In doing this we preserve the total number of leapfrog steps. We use 8-fold

cross-validation to obtain the rewards. That is, after each super-transition,

the cross-validation error is calculated by averaging the mean squared error

of each network. We would like to stress here that the cross-validation error

is calculated on the training data set alone. In this experiment, we set A to

be such that b�l = 0.01, b�u = 1.01, bLl = 20, and bLu = 5020.

The test set error (discarding the first 6000 samples) is summarized in

Table 4.1. The table also includes results from other samplers [1]. The

proposed adaptive scheme not only outperforms the human expert (Neal

in this case), but also does better than state-of-the-art methods such as

22

4.2. Dexter Data Set

��� ��� ��� ��� ���

��������������������

���

���

���

���

���

���

���

�
�
�
�
��

��� ��� ��� ��� ���

��������������������

���

���

���

���

���

���

���

�
�
�
�
��
��
��
�
��
�
�
�
��
�
�
��
�
��
�

Figure 4.2: The upper plot shows the approximate reward function learned
by the GP bandit along a slice with L = 1500. The blue-shaded region
is formed by adding/subtracting one standard deviation to/from the mean
(red line). The lower plot shows the value of the acquisition function along
the same slice.

reversible jump MCMC. Figure 4.1 shows the reward surface learned by the

GP bandit. Figure 4.2 shows the reward function along a slice L = 1500.

The figure also shows the value of the acquisition function along this slice.

Last but not least, Figure 4.3 shows the averaged mean squared error on the

test set given the number of samples with the first 6000 samples discarded.

4.2 Dexter Data Set

For our second demonstration, we use the Dexter data set from the Neu-

ral Information Processing Systems (NIPS) feature selection challenge in

23

4.2. Dexter Data Set

��
�
��
�
��
�
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����������������

������

������

������

������

������

������

������

�
��
�
�
��
��
�
�
��
�
��
�
�
�
�

Figure 4.3: Mean squared error on the test set of the Robot Arm data set
given the number of samples used (with the first 6000 samples discarded).
As more samples are drawn, the error decreases steadily.

24

4.2. Dexter Data Set

Table 4.1: Mean squared test error for the robot arm data set.

Method Mean Squared Error

Rios Insua and Muller’s (1998) MLP with
reversible-jump MCMC

0.00620

Mackay’s (1992) Gaussian approximation
with highest evidence

0.00573

Neal’s (1996) HMC 0.00554

Neal’s (1996) HMC with ARD 0.00549

Reversible-jump MCMC with Bayesian
model by Andrieu et al.

0.00502

Adaptive HMC (Median Error) 0.00499

Adaptive HMC (Mean Error) 0.00498 ± 0.00012

2003 [16]. The Dexter data set is a subset of the well-known Reuters text

categorization benchmark. The data was originally collected and labeled

by Carnegie Group Inc. and Reuters Ltd. in the course of developing the

CONSTRUE text categorization system. The winning entries submitted by

Neal and Zhang used a number of feature selection techniques followed by

Bayesian Neural Networks and Dirichlet diffusion trees [28]. The entry that

used only BNNs was placed second and achieved highly competitive results

[16]. In this experiment, we apply our adaptation strategy to sample from

this model.

Thanks to the public release of the code for the competition, we were

able to use the same neural network model as Neal: “New-Bayes-nn-sel”.

This model uses 295 input features and 2 hidden layers with 20 and 8

hidden units respectively. The input features are selected from the full set

of features through univariate feature selection. The weights and bias as

well as a few other parameters of this particular network adds up to form a

6097 dimensional state space for a HMC sampler.

For a detailed description of this model and the feature selection steps

please refer to [28]. In his entry, Neal used in total 3200000 leapfrog steps.

In our experiments we used 160 super-transitions each with 20000 leapfrog

25

4.2. Dexter Data Set

Table 4.2: Classification error on the validation set of the Dexter data set.

Method Classification Error

New-Bayes-nn-sel 0.0800
Adaptive HMC (Mean error) 0.0730 ± 0.0096
Adaptive HMC (Median error) 0.0700
Adaptive HMC + Majority Voting 0.0667

Table 4.3: Classification error on the test set of the Dexter data set.

Method Classification Error

New-Bayes-nn-sel 0.0510
Adaptive HMC (Mean error) 0.0498
Adaptive HMC (Median error) 0.0458
BNN + Dirichlet Diffusion Tree 0.0390
Adaptive HMC + Majority Voting 0.0355

steps. That is to say we used the same number of leapfrog steps that Neal

used. We divided the 300 training cases into 10 equal parts and carried out

10-fold cross-validation to generate the reward. In this experiment, we set

b�l = 0.01, b�u = 0.61, bLl = 20, and bLu = 2000.

In addition to the training set, the competition also provides a validation

set which is used to assess the performance of one’s method before formally

submitting the result to the competition. The median and mean classifica-

tion error rate of all 10 networks on the validation set as well as Neal’s result

is provided in Table 4.2 [15]. Figure 4.4 depicts the contour plot learned by

the bandit approach, as well as, the hyper-parameters tried over time. Fig-

ure 4.5 presents the classification errors on the validation set. Figure 4.6

shows the mean reward function as well as the acquisition function learned

along the slice � = 0.22.

The test set of the Dexter dataset is not publicly available. However, we

were able to submit our result to the competition site to calculate the errors

26

4.2. Dexter Data Set

��� ��� ��� ��� ��� ��� ���

��������������������

�

���

����

����

����

�
�
��
�
��
��
�
�
��
�
�
��
��

�
�

�����

�
��

�
�

�����
�����
�����

�����
�
��
�
�

�����

�����

�
��
�
�

�����

�����

��
��
�

�����

��
��
�

�����

��
��
�

�����

�����

�����

�����

����� �
��
�
�

���
��

�����

���
��

�����

��
��
�

�����

�
��
�
�

��
��

�

�����

Figure 4.4: Reward surface as a contour plot learned for the Dexter data
set from the NIPS 2003 feature selection challenge. The scattered dots are
the hyper-parameters tried.

on the test set. The mean classification error of our 10 networks is 0.04975

whereas the median is 0.04575. In comparison, Neal and Zhang’s entry with

the same model had a 0.0510 error rate.

To assess whether we could combine the 10 neural networks trained to

achieve better results, we used the 10 networks (from the 10-fold cross-

validation procedure) to classify the test data set via majority voting. The

majority voting procedure is implemented as such: We classify each input

in the test data set with all 10 networks and obtain the resulting labels.

The input is then assigned the majority label of the 10. Ties are broken

arbitrarily. By using training data alone, our method attained on the test

dataset a 0.0355 classification error rate. The best entry by Neal and Zhang

for this data set, using Dirichlet diffusion trees together with BNNs trained

27

4.2. Dexter Data Set

on the training data set as well as the validation data set, achieved an error

rate of 0.0390. The results on the test set is summarized in Table 4.3. The

same majority voting procedure is also applied to the validation set and

the result is shown in Table 4.2. The gains of the adaptive HMC strategy

in this example from the NIPS competition are very clear and significant,

demonstrating that good adaptation can sometimes be preferable to the

introduction of more sophisticated models.

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�����������������

����

����

����

����

����

����

�
��
�
�
��
��
�
�
��
�
��
�
�
�
�

Figure 4.5: Classification errors on the validation set of the Dexter data set
from NIPS 2003 feature selection challenge given the number of samples.
The first 6000 samples were discarded.

28

4.2. Dexter Data Set

��� ���� ���� ����

��������������������

���

���

���

���

���

���

���

���

�
�
�
�
��

��� ���� ���� ����

��������������������

���

���

���

���

���

�
�
�
�
��
��
��
�
��
�
�
�
��
�
�
��
�
��
�

Figure 4.6: The upper plot shows the approximate reward function learned
by the GP bandit along a slice with � = 0.22. The blue-shaded region
is formed by adding/subtracting one standard deviation to/from the mean
(red line). The lower plots shows the value of the acquisition function along
the same slice.

29

Chapter 5

Conclusion

In this thesis we were able to show that GP bandits can be effectively used

to adapt the hyper-parameters of hybrid Monte Carlo. This approach was

shown not only for a simple, but high-dimensional dataset but also for a

complex classification task, where Bayesian neural networks have proven

their worth. The experiments showed that it is indeed possible to not only

eliminate the tedious exercise of choosing the hyper-parameters, but that

this can in fact lead to better results (as measured by NIPS competition

standards).

This thesis also introduces a new data-driven objective function for adap-

tive MCMC. We believe this strategy increases the level of practicality of

adaptive MCMC in statistical prediction tasks.

In proving ergodicity of the proposed approach, the lack of geometric

ergodicity results for HMC poses a serious difficulty. Therefore a natural

question to ask is whether HMC is indeed sub-geometrically ergodic or not.

Let us keep in mind, however, the bandit strategy outlined here can be ap-

plied to other geometrically ergodic samplers. In such settings, the adaptive

MCMC method would be provably ergodic.

Another reasonable next step is to carry out analysis that proves or

disproves convergence of the GP bandit used in the proposed algorithm

without the need of an annealing schedule. This result would be useful

as convergence of the GP bandit given non-i.i.d. noise would not only be

theoretically interesting but it would also ensure diminishing adaptation

without the need of an annealing schedule. Moreover, since there are finite

regret bounds for bandit methods as well as finite bounds for MCMC in

discrete state spaces, we conjecture that these results together with our

adaptive method should allow for the establishment of the first finite bounds

30

Chapter 5. Conclusion

on the convergence of adaptive MCMC schemes.

31

Bibliography

[1] C. Andrieu, N. Freitas, and A. Doucet. Robust full Bayesian learning

for radial basis networks. Neural Computation, 13(10):2359–2407, 2001.

[2] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I.

Jordan. An Introduction to MCMC for Machine Learning. Machine

Learning, 50(1):5–43, January 2003.

[3] Christophe Andrieu and Eric Moulines. On the ergodicity properties of

some adaptive MCMC algorithms. The Annals of Applied Probability,

16(3):1462–1505, 2006.

[4] Christophe Andrieu and Christian Robert. Controlled MCMC for op-

timal sampling. Technical Report 0125, Cahiers de Mathematiques du

Ceremade, Universite Paris-Dauphine, 2001.

[5] Christophe Andrieu and Johannes Thoms. A tutorial on adaptive

mcmc. Statistics and Computing, 18(4):343–373, 2008.

[6] Y. Atchadé and G. Fort. Limit theorems for some adaptive MCMC

algorithms with subgeometric kernels. Bernoulli, 16(1):116–154, 2010.

[7] Dimitri P. Bertsekas. Projected Newton methods for optimization prob-

lems with simple constraints. SIAM Journal on Control and Optimiza-

tion, 20(2):221–246, 1982.

[8] Alexandros Beskos, Natesh S. Pillai, Gareth O. Roberts, Jesus M. Sanz-

Serna, and Andrew M. Stuart. Optimal tuning of the hybrid monte-

carlo algorithm. Arxiv preprint arXiv:1001.4460, 2010.

32

Bibliography

[9] Lingyu Chen, Zhaohui Qin, and Jun S. Liu. Exploring Hybrid Monte

Carlo in Bayesian Computation. sigma, 2:2–5, 2001.

[10] J.F.G. De Freitas. Bayesian methods for neural networks. Unpublished

doctoral dissertation, Cambridge University, Cambridge, UK, 1999.

[11] S Duane, A D Kennedy, B J Pendleton, and D Roweth. Hybrid Monte

Carlo. Physics Letters B, 195(2):216–222, 1987.

[12] Yaakov. Engel. Algorithms and representations for reinforcement learn-

ing. Doktorarbeit, The Hebrew University of Jerusalem, 2005.

[13] Daniel E Finkel. DIRECT Optimization Algorithm User Guide. Center

for Research in Scientific Computation, North Carolina State Univer-

sity, 2003.

[14] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and

Hamiltonian Monte Carlo methods. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 73(2):123–214, 2011.

[15] I. Guyon. Feature extraction: foundations and applications, volume

207. Springer Verlag, 2006.

[16] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the

NIPS 2003 feature selection challenge. In Advances in Neural Informa-

tion Processing Systems, volume 17, pages 545–552, 2005.

[17] Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive

Metropolis algorithm. Bernoulli, 7(2):223–242, 2001.

[18] Firas Hamze, Ziyu Wang, and Nando de Freitas. Self-avoiding

random dynamics on integer complex systems. Technical Report

arXiv:1111.5379v2, 2011.

[19] Matthew Hoffman, Eric Brochu, and Nando de Freitas. Portfolio alloca-

tion for Bayesian optimization. In Uncertainty in Artificial Intelligence,

pages 327–336, 2011.

33

Bibliography

[20] Hemant Ishwaran. Applications of hybrid Monte Carlo to Bayesian gen-

eralized linear models: Quasicomplete separation and neural networks.

Journal of Computational and Graphical Statistics, 8(4):779–799, 1999.

[21] B. Leimkuhler and S. Reich. Simulating Hamiltonian dynamics, vol-

ume 14. Cambridge Univ Press, 2004.

[22] L. Li, W. Chu, J. Langford, and R.E. Schapire. A contextual-bandit

approach to personalized news article recommendation. In Proceedings

of the 19th international conference on World wide web, pages 661–670.

ACM, 2010.

[23] Jun S. Liu. Monte Carlo strategies in scientific computing. Springer,

2001.

[24] Nimalan Mahendran, Ziyu Wang, Firas Hamze, and Nando de Fre-

itas. Bayesian optimization for adaptive MCMC. Technical Report

arXiv:1110.6497v1, 2011.

[25] Nimalan Mahendran, Ziyu Wang, Firas Hamze, and Nando de Freitas.

Adaptive mcmc with bayesian optimization. Articial Intelligence and

Statistics, 2012.

[26] Benedict C May, Nathan Korda, Anthony Lee, and David S Leslie.

Optimistic Bayesian sampling in contextual bandit problems. 2011.

[27] Jonas Močkus. The Bayesian approach to global optimization. In Sys-

tem Modeling and Optimization, volume 38, pages 473–481. Springer

Berlin / Heidelberg, 1982.

[28] R. Neal and J. Zhang. High dimensional classification with Bayesian

neural networks and Dirichlet diffusion trees. Feature Extraction, pages

265–296, 2006.

[29] Radford M Neal. Bayesian learning for neural networks, volume 118.

Springer Verlag, 1996.

34

Bibliography

[30] Radford M Neal. MCMC using Hamiltonian dynamics. Handbook of

Markov Chain Monte Carlo, 54:113–162, 2010.

[31] Carl Edward Rasmussen and Christopher K I Williams. Gaussian Pro-

cesses for Machine Learning. MIT Press, Cambridge, Massachusetts,

2006.

[32] Gareth O. Roberts and Jeffrey S. Rosenthal. Coupling and ergodicity

of adaptive Markov chain Monte Carlo algorithms. Journal of applied

probability, 44(2):458–475, 2007.

[33] Gareth O. Roberts and Jeffrey S. Rosenthal. Examples of adaptive

MCMC. Journal of Computational and Graphical Statistics, 18(2):349–

367, June 2009.

[34] GO Roberts and O. Stramer. Langevin diffusions and Metropolis-

Hastings algorithms. Methodology and computing in applied probability,

4(4):337–357, 2002.

[35] Eero Saksman and Matti Vihola. On the ergodicity of the adaptive

Metropolis algorithm on unbounded domains. Annals of Applied Prob-

ability, 20(6):2178 – 2203, 2010.

[36] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias

Seeger. Gaussian process optimization in the bandit setting: No re-

gret and experimental design. In International Conference on Machine

Learning, 2010.

[37] W. Keith Hastings. Monte Carlo sampling methods using Markov

chains and their applications. Biometrika, 57(1):97–109, 1970.

[38] T.J. Walsh, I. Szita, C. Diuk, and M.L. Littman. Exploring compact

reinforcement-learning representations with linear regression. In Pro-

ceedings of the Twenty-Fifth Conference on Uncertainty in Artificial

Intelligence, pages 591–598. AUAI Press, 2009.

35

