
Developer-Centric Models: Easing Access to Relevant
Information in a Software Development Environment

by

Thomas Fritz

Dipl. Informatiker, Ludwig-Maximilians-Universität München, 2005

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

April 2011

© Thomas Fritz, 2011

Abstract

During the development of a software system, large amounts of new information,
such as source code, work items and documentation, are produced continuously.

As a developer works, one of his major activities is to consult portions of this in-
formation pertinent to his work to answer the questions he has about the system and

its development. Current development environments are centered around models
of the artifacts used in development, rather than of the people who perform the

work, making it difficult and sometimes infeasible for the developer to satisfy his
information needs.

We introduce two developer-centric models, the degree-of-knowledge (DOK)
model and the information fragments model, which support developers in access-

ing the small portions of information needed to answer the questions they have.
The degree-of-knowledge model computes automatically, for each source code el-

ement in the development environment, a real value that represents a developer’s
knowledge of that element based on a developer’s authorship and interaction data.

We present evidence that shows that both authorship and interaction information
are important in characterizing a developer’s knowledge of code. We report on

the usage of our model in case studies on expert finding, knowledge transfer and
identifying changes of interest. We show that our model improves upon an existing

expertise finding approach and can accurately identify changes for which a devel-
oper should likely be aware. Finally, we discuss the robustness of the model across

multiple development sites and teams.
The information fragment model automates the composition of different kinds

of information and allows developers to easily choose how to display the composed
information. We show that the model supports answering 78 questions that involve

ii

the integration of information siloed by existing programming environments. We

identified these questions from interviews with developers. We also describe how
18 professional developers were able to use a prototype tool based on our model to

successfully and quickly answer 94% of eight of the 78 questions posed in a case
study. The separation of composition and presentation supported by the model,

allowed the developers to answer the questions according to their personal prefer-
ences.

iii

Preface

The research in this thesis has been previously published in the following articles:

1. “Does a Programmer’s Activity Indicate Knowledge of Code?” T. Fritz,
G. C. Murphy and E. Hill. In ESEC-FSE’07: Proceedings of the 6th joint
meeting of the European software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineering, pages 341–
350, 2007. ACM.

2. “A Degree-of-Knowledge Model to Capture Source Code Familiarity.” T.
Fritz, J. Ou, G. C. Murphy and E. Murphy-Hill. In ICSE’10: Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering,
pages 385–394, 2010. ACM.

3. “Using Information Fragments to Answer the Questions Developers Ask.”
T. Fritz and G. C. Murphy. In ICSE’10: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, pages 175–184, 2010.
ACM.

4. “Staying Aware of Relevant Feeds in Context.” T. Fritz. In ICSE’10: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software En-
gineering - Volume 2, pages 523–524, 2010. ACM.

All four papers are under the copyright of the ACM and for which I have permission
to reuse.

Part of this work involved other collaborators. In particular Jingwen Ou, Emer-
son Murphy-Hill and Emily Hill. Jingwen Ou participated in the implementation

and the collection of the authorship and interaction data used in the degree-of-
knowledge model. Emerson Murphy-Hill and Emily Hill contributed comments

and figures to articles mentioned above that also partially flowed into this disser-
tation. Emily Hill also helped with the statistical analysis of the data collected for

iv

the study I conducted to determine whether a programmer’s activity can indicate

knowledge of code.
The UBC Behavioural Research Ethics Board approved the research in the cer-

tificate H06-03693, “An Investigation of Knowledge Acquisition During Software
Development” and in amendments and renewals to this certificate (H06-03693-

A001, H06-03693-A002, H06-03693-A003, H06-03693-A004, H06-03693-A005,
H06-03693-A006 and H06-03693-A007).

v

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . vi

List of Tables . x

List of Figures . xii

Acknowledgments . xiii

1 Introduction . 1
1.1 A Model of a Developer’s Knowledge of Code 3

1.1.1 Earlier Efforts . 3

1.1.2 The Degree-of-Knowledge Model 4
1.1.3 Evaluating the Model . 5

1.2 A Model to Integrate Multiple Kinds of Information 6
1.2.1 Earlier Efforts . 7

1.2.2 The Information Fragments Model 8
1.2.3 Evaluating the Model . 8

1.3 Contributions . 9
1.4 Organization . 10

2 Related Work . 11
2.1 Modeling a Developer’s Knowledge 12

2.1.1 Expertise Recommenders Based on Authorship 12

vi

2.1.2 Using Interaction to Support Developers 13

2.1.3 Explicitly Modeling a Developer’s Knowledge 14
2.2 Modeling a Developer’s Information Needs Across Multiple Kinds

of Information . 15
2.2.1 Studies of Developers’ Questions 16

2.2.2 Answering a Developer’s Questions 17

3 The Degree-of-Knowledge Model . 22
3.1 A Developer’s Activity as an Indicator for Knowledge 23

3.1.1 Study . 23

3.1.2 Quantitative Results . 29
3.1.3 Qualitative Results . 32

3.1.4 Threats to Validity . 37
3.1.5 The Need for a Better Indicator of a Developer’s Knowledge 38

3.2 Authorship and Interaction . 38
3.2.1 Authorship—a Long-term Component 40

3.2.2 Interaction—a Short-term Component 43

3.2.3 Authorship and Interaction 46
3.3 Degree-of-Knowledge Model . 48

3.3.1 Degree-of-Authorship . 48
3.3.2 Degree-of-Interest . 48

3.3.3 Degree-of-Knowledge . 48
3.4 Determining DOK Weightings . 49

3.4.1 Method . 49
3.4.2 Analysis and Results . 50

4 Evaluation of the DOK Model . 53
4.1 Case Studies . 53

4.1.1 Finding Experts . 54
4.1.2 Onboarding . 59

4.1.3 Identifying Changes of Interest 61
4.1.4 Case Studies Summary . 63

4.2 Robustness of the Model . 63

vii

4.2.1 Differences in Development Teams 63

4.2.2 One Model for All . 66
4.2.3 A Site-Specific Model . 68

4.2.4 Robustness Summary . 69
4.3 Threats to Validity . 70

4.3.1 Amount of Data . 70
4.3.2 Multiple Stream Development 70

4.3.3 Project Phase . 70

4.3.4 Individual Factors . 71

5 The Information Fragments Model . 72
5.1 Developers’ Questions . 72

5.1.1 Subjects and Interview Process 73
5.1.2 Interview Results . 73

5.1.3 Threats . 79
5.2 Answering Questions Using Existing Approaches 79

5.2.1 Using an Integrated Development Environment 79

5.2.2 Using a Query Language . 80
5.3 Information Fragment Model . 81

5.3.1 Example of Use . 82
5.3.2 Information Fragments . 84

5.3.3 Composition Operators . 85
5.3.4 Presentation . 86

6 Evaluation of the Information Fragments Model 88
6.1 Applying the Model . 88

6.2 Prototype . 99
6.2.1 Information Fragments . 99

6.2.2 Composition . 99
6.2.3 Presentation . 100

6.2.4 Completeness of the Prototype 101
6.3 Study . 102

6.3.1 Subjects . 103

viii

6.3.2 Study Method . 103

6.3.3 Data Analysis . 107
6.3.4 Can Developers Use the Model? 107

6.3.5 How Do Developers Use the Model? 110
6.3.6 What Do Developers Think About the Approach? 117

6.4 Threats . 119

7 Discussion and Future Work . 121
7.1 Degree-of-Knowledge Model . 121

7.1.1 Structural Knowledge vs. User Rating 122

7.1.2 Linear Regression . 122
7.1.3 API Elements, Structural Information and Usage Expertise . 122

7.1.4 Using DOK to Prevent Bugs 123
7.1.5 Finding Relevant Bugs . 123

7.1.6 Longitudinal Study . 124
7.2 Information Fragments Model . 124

7.2.1 Automatic Composition . 124

7.2.2 Text Matching and Other Operators 125
7.2.3 Model vs SQL . 126

7.2.4 Information Fragment Selection 126
7.2.5 Extending the Tool . 127

7.2.6 Presenting the Information 127
7.3 Using Knowledge and Context for Awareness 128

8 Conclusion . 131

Bibliography . 134

Appendix A Studies: Supporting Materials 144
A.1 Sample Questions for StudyEXP DOK 144
A.2 Sample Questions for StudyINFR . 145

A.3 Sample Questions for StudyFEEDS 146
A.4 Tutorial for the Evaluation of the Information Fragments Model . . 146

ix

List of Tables

3.1 Monitored Interaction Events (see [52] for more detail) 25

3.2 General Interview Questions . 33
3.3 Average of Six Weeks of a Developer’s Authorship Data Over a

Three Month Period (FA = First Authored, DL = Delivered, AC =
Accepted, Change stands for the change in elements per week) . . . 41

3.4 Developer’s Interaction Data Averaged Over Five Work Days 44
3.5 Coefficients for Linear Regression 51

4.1 Size of Bug Recommendation Sets 62
4.2 Average of Six Weeks of a Developer’s Authorship Data Over a

Three Month Period (FA = First Authored, DL = Delivered, AC
= Accepted, Change stands for the change in elements per week;

subjects C1 to C5 are from Site2, subjects E1 and E2 from Site3) . . 65
4.3 Developer’s Interaction Data Averaged Over Five Work Days (sub-

jects C1 to C5 are from Site2, subjects E1 and E2 from Site3) 66
4.4 Coefficients for Linear Regression over all Sites. 67

4.5 Coefficients for Linear Regression for Site2. 69

5.1 Developers’ Questions and the Operators and Domains for Desired
Answers (*∶ question explicitly stated by a developer, id∶ identi f ier

matching, t∶ text matching) . 75
5.2 Sample Node Domains, Types & Properties 85

6.1 Information Fragments For Answering Developer’s Questions . . . 90

6.2 Using the Model to Answer all 78 Questions. 93
6.3 Study Questions (original developer question in brackets) 105

x

6.4 The Ten Base Fragments Available to Participants 105

6.5 Developer’s Results . 108
6.6 Answer Variations (hidden refers to the case in which a developer

used the hide action to elide an information fragment from the pre-
sentation) . 112

6.7 Correlations Between Time (T) and Fragments Used (FU), Re-
orderings (RO) and Restarts (RS) . 116

A.1 Studies Conducted for this Thesis . 145

xi

List of Figures

1.1 Answering “What Have My Coworkers Been Doing?” with the

Information Fragment Model. 9

3.1 Types of Questions in the Questionnaire 26

3.2 Questionnaire with Open Type Action 28
3.3 Correct Answers by Subject for Questionnaire 1, 2 and 3 30

3.4 Data Collection Time Periods . 40
3.5 Positive DOI Elements . 45

3.6 Authorship and Interaction over Five Days 47

4.1 Part of a Knowledge Map . 56

5.1 Approach to Answer the Question “What have people been work-

ing on?” . 83

6.1 Views of the Prototype . 101
6.2 Pre-defined Base Fragments in the Prototype 106

6.3 Variations in Answer over 18 Participants (bars represent number
of participants that used one particular solution to a question; σ*:

count functionality that allows you to count children of an element
in the tree) . 111

6.4 Aspects in the Process of Answering Questions 114
6.4 Aspects in the Process of Answering Questions (continued) 115

7.1 Presentation of Feeds. 129

xii

Acknowledgments

The mediocre teacher tells. The good teacher explains. The superior
teacher demonstrates. The great teacher inspires. – William A. Ward

My deepest thanks go to a great teacher, my supervisor Gail Murphy. Gail inspired

me to do research and to do a PhD. She not only taught me how to do research
and how fun research can be, she is better described as my “doctor mother”—the

German terminology for a PhD supervisor. I cannot count the times I dropped by
her office, asked her for advice, chatted with her and yet, she always had an open

door, a smile and encouragement for me. Thank you!
I also want to thank Gregor Kiczales and David Poole on my supervisory com-

mittee for the advice and support they provided to me.
There have been a lot of people along the way who inspired and supported me

in starting and completing my thesis and I want to thank all of them.
Special thanks go to my parents Edi and Angelika who inspired me to follow

my dreams and with their love and support contributed tremendously to who I am
and where I am today. Special thanks also go to my two brothers Alex and Olli

and their partners Susi and Petra. It is amazing to have them in my life and I can
always count on them.

I would also like to thank all my friends who supported me, taught me a lot
and made my life a lot happier and brighter. I cannot express how grateful I am for

all you have done for me. In alphabetical order: Bram, Brett, Brian, Cam, Chris,
Claire, Clint, Davey, several Davids, Denise, Derek, Ellen, Emerson, Emily, Greg,

Jelena, several Jenns, Julia, Julian, Laura, Liz, Mandeep, Meghan, Pooja, Rainer,
Ryan, Sarah, Scott, Shawn, Stefan, Stephi, Terry, Thomas. Thanks to all the people

xiii

in SPL, the triathlon and the sailing club and the rowing team at UBC.

I am also thankful for the many people at IBM who made all my studies pos-
sible, in particular Marcellus, Maria, Jean-Michel and Sara, and I am thankful for

the support of the IBM Center for Advanced Studies in general, the support of the
Natural Sciences and Engineering Research Council of Canada, the University of

British Columbia and Ms. Sudbury.

xiv

Chapter 1

Introduction

One of the effects of living with electric information is that we live
habitually in a state of information overload. There’s always more

than you can cope with. – Marshall McLuhan

In the development of a software system, large amounts of new information are
produced continuously. Source code, bugs, iteration plans and documentation, to

name just a few, are changed or newly created by developers of the software system
every day. As one example of the voluminous amounts of information generated,

over the approximately 15 months of one development cycle of Eclipse—an open-
source integrated development environment—around 10 thousand Java source files

were created or changed, more than 26 thousand Bugzilla bugs were entered and
more than 45 thousand newsgroup entries were posted [1].

As part of producing this new information, a developer must continuously an-

swer questions about the current state of the project [76, 78]. Answering these
questions typically requires searches to be performed over the large amounts of

system information to find the small portion that is pertinent to the developer’s
work. One of the commonly asked questions Ko and colleagues found by ob-

serving seventeen professional developers at Microsoft is “What have my cowork-
ers been doing?” [55]. Answering this question requires finding just the changes

completed by members of one’s team amongst the many changes that may have
been completed by the entire software development staff for the project. Given

1

the long history of integrated development environments (IDEs) used by software

developers and the many capabilities in these environments, one would expect that
answering questions of this nature would be easy.

Unfortunately, answering such questions is not straightforward because today’s
development environments are centered around models of the artifacts used in de-

velopment, rather than of the people who perform the work. For instance, a central
model in a development environment is an abstract syntax tree [38], which pro-

vides an abstraction of source code to facilitate feedback about the syntax of code

being written, facilitate navigation in terms of code structure and facilitate code
transformations. By providing feedback about artifacts, these models benefit the

developers using the environment. However, these models fall short for developers
by supporting only a small fraction of their information needs when they are per-

forming work on the system. In particular, instead of helping a developer pinpoint
just that information needed to perform work at the moment, development environ-

ments have been designed and engineered to provide information about all artifacts
associated with the system. The result for the developer is that it is often difficult,

and sometimes even infeasible, to find the answer to a question of interest.
Our thesis is that developer-centric models can be combined with artifact-

centric models in a development environment to ease a developer’s access to the in-

formation relevant to the work-at-hand. Specifically, we introduce two developer-

centric models to support a developer in answering a broader set of questions re-
lated to his information needs than is possible with existing research. One model,

the degree-of-knowledge model, represents a developer’s knowledge of the source
code comprising a system of interest. This model can be used to identify infor-

mation about the system in which the developer might be interested and who the
developer can ask to find out about parts in which the developer lacks knowledge.

The second model, the information fragments model, provides a means for a devel-
oper to integrate and compose information about the system to answer questions

that are infeasible to answer with current approaches. We now proceed to describe
each of these models in more detail.

2

1.1 A Model of a Developer’s Knowledge of Code
On large system developments, software developers tend to work in specific parts

of the system’s code base. For instance, one team may be responsible for the web-
based user interface to a system whereas another team on the development project

may be responsible for efficient storage of server-side data. When a member of
the first team needs to understand the code about how data is stored on the server,

the developer needs to be able to identify which member of the server-side data
team is the appropriate person to ask. This situation of needing to know who to

ask arises frequently on projects [56, 60]. In addition to determining who to ask,
developers also need to stay aware of changes that might break their code [18, 57],

asking which changes should I know about.
Today’s development environments model only the artifacts and not the in-

dividual developer’s perspectives of a system that is needed to support answering
questions specific to a developer’s knowledge. Existing research to support answer-

ing these types of questions also lacks focus on the individual developer, making it
difficult to answer such developer-specific questions. A model that approximates

an individual developer’s knowledge of code can be used to better support these
questions.

1.1.1 Earlier Efforts

Researchers have proposed support for answering the question of who to ask through
recommenders that suggest experts for parts of the code based on the authorship

of changes to the code (e.g., [60, 63]). A tacit assumption with these existing rec-
ommenders is that a developer’s changes to the code indicate his knowledge about

the code. These approaches focus on a system-wide knowledge model for code,
trying to find one expert for each code element. By focusing on the code instead of

the developer, these approaches fall short by assuming that authorship is the only
way that a developer can gain knowledge about code. In fact, developers must

interact with the code prior to authoring the code. These approaches also treat a
developer’s knowledge as a monotonically increasing function whereas, in reality,

a developer’s knowledge ebbs and flows as different developers change the same
part of the code base.

3

Researchers have also previously considered the question of which change

should a developer know about by flowing all notifications on changes to develop-
ers through such mechanisms as mailing lists and commit logs [37] or by displaying

the changes directly in the developer’s environment [7, 71, 72]. These approaches
place the burden on the developer to identify changes of interest. Given how much

information can change in a software system within a short amount of time, this
identification can be time-consuming and tedious [37].

Researchers have also more generally studied how to explicitly model the dif-

ferent parts of a developer’s knowledge and how developers comprehend code (e.g.,
[9, 54, 82]). These approaches focus on the mechanisms of gaining knowledge

rather than what knowledge a developer retains as a result.

1.1.2 The Degree-of-Knowledge Model

To address limitations in these earlier efforts, we introduce the degree-of-knowledge

(DOK) model that approximates an individual developer’s knowledge of the sys-
tem’s code. Similar to artifact-centric models, the DOK model can be embedded

within a development environment and can be determined automatically.
As an initial step towards a model, we performed an exploratory study with

19 professional software developers (StudyEXP DOK) to investigate the factors that
should be used in modeling a developer’s knowledge (Section 3.1). In this study,

we investigated a developer’s interaction with the code as a proxy for his knowl-
edge, since interactions always precede and are part of authoring changes. The

study establishes, with statistical significance, that the more frequently and recently
a developer interacts with a code element (as represented by a high degree of in-

terest (DOI) value [52]), the more the developer knows about the element. From
interviews with 13 of the 19 developers, we also determined a number of other

factors that may be used to model a developer’s knowledge, such as the authorship
of program elements and the code stability.

Given our pursuit to define a model that can determine automatically a devel-
oper’s knowledge of code, we chose to focus on the interaction and authorship as-

pects. We gathered data in another study, StudyDATA DOK , from seven professional
developers at one development site, which we refer to as Site1. We report on this

4

data to confirm two hypotheses (Section 3.2). First, the code that developers work

on changes rapidly. Second, authorship and interaction each capture a unique and
valuable perspective on a developer’s knowledge. Authorship represents a longer-

term component of a developer’s knowledge; interaction indicates a shorter-term
component.

Using the results of StudyEXP DOK and StudyDATA DOK , we developed the degree-
of-knowledge (DOK) model to capture a developer’s individual knowledge of code

(Section 3.3). The DOK model assigns a real value to each code element in a

developer’s development environment and is based on a linear combination of a
developer’s interaction with an element, computed by the DOI, and three factors

of authorship: whether the developer was the first author of the element (FA), the
number of changes the developer has contributed to the element (DL) and the num-

ber of changes others have made to the element (accepted changes – AC).

DOK = αFA ∗FA+αDL ∗DL+αAC ∗AC+βDOI ∗DOI

This combination accounts for knowledge gained by a developer interacting with
the code for such purposes as trying to understand how the code functions as well

as the knowledge that results from creating the code. This model also accounts for
the ebb and flow of a developer’s knowledge; for instance, a developer’s knowledge

of a code element decreases when someone else changes the element. The DOK
model enables the automatic computation of the individual knowledge of each de-

veloper in a source code element by combining authorship data from the source
revision system and interaction data from monitoring the developer’s activity in

the development environment.
To determine the weighting factors for each of the four factors (FA, DL, AC,

DOI), we conducted an experiment, ExperimentDOK , with the seven developers
from Site1 (Section 3.4). We found that both authorship and interaction improve

the quality of the model and help to explain a developer’s knowledge of an element.

1.1.3 Evaluating the Model

The availability of an individual DOK model for each developer in a team opens up

several possibilities to improve a developer’s productivity and quality of work. We
consider three possibilities in this thesis through exploratory case studies (StudyCS DOK)

5

that we conducted with three different teams at three different sites (Section 4.1).

These studies consider three questions that were raised by others as important in
the literature: who should I ask about a part of the system’s code base [56, 60],

which changes to the code base should I know about [25, 44] and what code do
I need to know about [18, 57]. We found that the DOK model performed better

than existing approaches for finding the expert in parts of a code base across teams
with different code ownership styles. We also found that the DOK model can help

to accurately identify changes of which a developer should likely be aware and

learned about kinds of source code for which our current definition of DOK does
not adequately reflect a developer’s knowledge.

To examine whether the DOK model is of value in other environments, such as
different teams, different project phases or different working styles, we collected

data from two more teams from different sites (StudyDATA 2 DOK). We found that
despite their significance, differences in the authorship and interaction behavior

between the teams only have a minor impact on the value of the DOK model.

1.2 A Model to Integrate Multiple Kinds of Information
The degree-of-knowledge developer-centric model provides a developer’s perspec-
tive on one kind of information in the development environment, namely source

code. A developer also has information needs when working on the system that
span across multiple kinds of information.

Consider the question “What have my coworkers been doing?” [55] again. De-
pending upon the developer asking the question, an answer may involve only infor-

mation from a revision system to determine what code is changing or it may also
involve information from a work item repository1 to help explain why the change

is occurring. While earlier work points at the need for answering questions across
multiple kinds of information [55, 57], this work states questions at an abstract

level and does not discuss the ambiguity that lies in the developer’s interpretations
of these questions.

To better understand the range of questions of this form that are asked by devel-
opers and to better understand the concrete forms of the questions, we performed

1Work items are similar to bug reports, issues or tasks.

6

an exploratory study, StudyEXP FR. We interviewed eleven professional software

developers and identified 78 questions of interest to them that have the character-
istic of requiring multiple kinds of information (Section 5.1). We also found that

even though a lot of the questions sound similar, there can be substantial variation
in how a developer interprets a question.

With existing development environments that put different kinds of information
into different silos [21], answering this type of questions is difficult. To answer the

question “What have my coworkers been doing?” a developer has to follow links

from work items to change sets to source code, with each link navigation resulting
in information displayed in another view. The burden is placed on the developer

to manually and mentally correlate the information between the views to answer
the question of interest. Existing research to support this type of questions is either

too expressive (e.g., [53]) or too limited (e.g., [81]) in the way information can be
integrated, making it difficult or respectively infeasible to answer such questions.

A model that matches more closely a developer’s needs for integrating information
can be used to better support these questions.

1.2.1 Earlier Efforts

One previous approach to help developers answer such questions is to provide a
query language supporting queries across all the kinds of information involved

(e.g., [53, 67]). In this case, the developer must know or learn the query lan-
guage and must specify explicitly how the different kinds of information should

be integrated. To answer “What have my coworkers been doing?”, the developer
needs to specify how work item, change set and source code information should be

integrated (see Section 5.2 for more detail).
Another approach to support such questions is to provide a fixed integration of

different kinds of information through such means as a fixed schema (e.g., [81]),
an explicit ontology that models different kinds of information and relations be-

tween the kinds (e.g., [47]) or by overlaying the information in a view (e.g., [26]).
These approaches restrict the way information can be integrated and thus limit the

flexibility required to answer the multitude of questions.

7

1.2.2 The Information Fragments Model

To enable developers to answer questions that require multiple kinds of informa-
tion, we introduce the information fragment model that supports the automatic

integration of different kinds of information using the structure of the information
(Section 5.3). A developer can indicate which portions of information in the de-

velopment environment to integrate, which we refer to as information fragments,
and can adapt the presentation of resultant integrated information to support an-

swering the questions according to personal preferences. The integration of the
information, which we refer to as composition is done automatically.

To answer the question “What have my coworkers been doing?” with the
model, a developer can select four information fragments: one comprising the team

on which he works, one comprising the work items worked on over a selected time
period, one comprising change sets over a selected time period, and one compris-

ing the source code in his workspace. The developer then drags and drops these
fragments into a special view that supports the model and orders the presentation

of the fragments according to his preference. Figure 1.1 presents the result of an
automatic composition, where the presentation is based on team members first fol-

lowed by work items, change sets and source code. This view makes it easy to see
that Alex worked on two work items over the time period of interest and to see the

changes to the code performed for these work items.

1.2.3 Evaluating the Model

Using our model, we have been able to express all 78 questions determined through

the interview study StudyEXP FR (Section 5.1). With a prototype tool we imple-
mented to support the model (Section 6.2), we conducted a case study StudyINFR.

In the study, 18 professional developers used the prototype tool to answer eight of
the 78 questions that span across multiple kinds of information. We found that de-

velopers were able to easily apply the model to successfully answer 94% of eight

questions posed. We also found that developers used the model in different ways to
answer the same question, suggesting that the approach supports individual prefer-

ences (Section 6.3).

8

Figure 1.1: Answering “What Have My Coworkers Been Doing?” with the
Information Fragment Model.

1.3 Contributions
This thesis makes contributions with respect to two developer-centric models, the

degree-of-knowledge model that represents a developer’s knowledge of code, and
the information fragments model that provides a means for a developer to integrate

information about the system according to the developer’s personal preferences.
For the degree-of-knowledge model:

• we show empirically that a developer’s interaction with code can indicate his
knowledge and enumerate additional factors that affect a developer’s knowl-

edge of code;

• we present evidence that shows a developer’s authorship of and interaction
with code capture different aspects of knowledge about code;

• we introduce the degree-of-knowledge (DOK) model, an individual view of

a developer’s knowledge of code;

• we report on the use of the DOK model in three scenarios, discussing benefits

and limitations of the model; and

9

• we discuss the robustness of the model across a variety of development

teams.

For the information fragment model:

• we identified and present 78 questions that developers ask and how the de-

velopers desire these questions to be answered;

• we introduce the information fragment model and show that it is sufficiently
expressive to answer all 78 questions;

• we demonstrate that developers can successfully apply the model through a
study with 18 professional developers.

1.4 Organization
In Chapter 2 we present earlier research efforts related to the problems addressed in

this thesis. In Chapter 3, we describe the degree-of-knowledge model together with
the results from the studies to determine the factors of the model and their relative

effect. In Chapter 4, we present our evaluation of the degree-of-knowledge model
based on three scenarios we performed at different development sites to explore the

use of DOK models and a discussion of the DOK model’s applicability in different
environments. Our second model, the information fragments model, is presented

in Chapter 5, together with the exploratory study we performed to determine the
range of questions across multiple kinds of information. In Chapter 6, we present

an evaluation of the model, by, first, showing how all 78 questions determined
through the interview study can be expressed using the model and, second, in form

of a case study with professional developers. In Chapter 7, we discuss aspects and
future work of each of the two models and describe how the two models can be

synergistically used together to support a developer’s project awareness. Finally,
we conclude and summarize the thesis in Chapter 8.

10

Chapter 2

Related Work

For many years, to help manage the complexity of building software systems, soft-

ware developers have built and relied upon the services of integrated development
environments. Early development environments, such as Interlisp [11, 80], pro-

vided developers with information about how the software they were constructing
connected together, such as which functions called which other functions. Later

efforts, expanded the capabilities of development environments beyond easing nav-
igation across source code to include such concepts as configuration management

(e.g., [12]). As building software development environments with significant func-
tionality is expensive and often tailored to one or a small number of programming

languages, researchers have also considered how to generate these environments

(e.g., [38]).
This previous research has resulted in development environments that provide

significant aid to software developers. However, as discussed in Chapter 1, these
development environments are centered around models for the artifacts, making it

difficult or infeasible to answer questions that address a developer’s individual in-
formation needs. The two models we introduce in this thesis increase the informa-

tion needs of a developer that can be satisfied within a development environment.
The degree-of-knowledge (DOK) model we introduce seeks to support devel-

opers by modeling a developer’s knowledge. We begin our discussion of earlier
efforts in Section 2.1 with a review of approaches that have either implicitly or

explicitly modeled a developer’s knowledge of code. The information fragments

11

model seeks to support developers in answering questions across multiple kinds

of information by integrating information according to the developer’s needs. In
Section 2.2 we first discuss empirical studies on questions across multiple kinds

of information, before reviewing approaches that support developers in answering
this type of questions by integrating information in an either loose or fixed manner.

2.1 Modeling a Developer’s Knowledge
Previous research on modeling a developer’s knowledge of code can be categorized
as taking either an implicit or an explicit approach. Implicit approaches make tacit

assumptions on how data retrieved from a developer can be used to model what
the developer knows or wants to know. These implicit approaches can further be

categorized into approaches that use authorship data (Section 2.1.1) or interaction
data (Section 2.1.2) to support developers. Explicit approaches empirically study

programmers, resulting in models of how to describe different parts of knowledge,
how developers comprehend code or the type of knowledge programmers have

(Section 2.1.3).

2.1.1 Expertise Recommenders Based on Authorship

Previous automated approaches to determining the familiarity (expertise) of devel-

opers with a code base rely solely on change information. For instance, the Exper-
tise Recommender [60] and Expertise Browser [63] each use a form of the “Line

10 Rule”, which is a heuristic that the person committing changes to a file1 has
expertise in that file. The Expertise Recommender uses this heuristic to present the

developer with the most recent expertise for the source file; the Expertise Browser
gathers and ranks developers based on changes over time. The Emergent Expertise

Locator refines the approach of the Expertise Browser by considering the relation-
ship between files that were changed together when determining expertise [62].

Girba and colleagues consider finer-grained information, equating expertise with
the number of lines of code each developer changes [35]. Hattori and colleagues

consider changes that have not yet been committed [41]. These systems are able

1We use the term file, but many of these techniques also apply at a finer-level of granularity, such
as methods or functions.

12

to recommend with a level of precision and recall that appears useful to developers

in the limited studies conducted. We may be able to improve the effectiveness of
these kinds of tools if we develop a better understanding of what kinds of activity

lead to particular kinds of knowledge.
None of these previous approaches consider the ebb and flow of a developer’s

expertise in a particular part of the system. The Expertise Recommender considers
expertise as a binary function, only one developer at a time has expertise in a file

depending on who last changed it. The Expertise Browser and Emergent Expertise

Locator represent expertise as a monotonically increasing function; a developer
who completely replaces the implementation of an existing method has no impact

on the expertise of the developer who originally created the method. Our DOK
models the ebb and flow of multiple developers changing the same file; a devel-

oper’s degree-of-knowledge in the file rises when the developer commits changes
to the source repository and diminishes when other developers make changes.

The DOK model we develop also differs from previous expertise identification
approaches by considering not just the code a developer authors and changes, but

also code that the developer consults during their work. Schuler and Zimmermann
also noted the need to move beyond authorship for determining expertise, suggest-

ing an approach that analyzed the changed code for what code was called (but not
changed) [73]. In this way, they were able to create expertise profiles that included

data about what APIs a developer may be expert in through their use of those APIs.

2.1.2 Using Interaction to Support Developers

Earlier work from our research group introduced degree-of-interest (DOI) val-
ues to represent which program elements a developer has interacted with signif-

icantly [52]. The more frequently and recently a developer has interacted with a
particular program element, the higher the DOI value; as a developer moves to

work on other program elements, the DOI value of the initial element decays. Ini-
tial applications of this concept in our research group computed DOIs across all

of a developer’s workday [51]. Subsequent work scopes the DOI computation per
task [52]. In our work on the degree-of-knowledge model, we return to the compu-

tation of DOI across all of a developer’s work to capture a developer’s familiarity
in the source across tasks.

13

Others have considered the use of interaction data for suggesting where to navi-

gate next in the code [22], for tracking the influence of copied and pasted code [66],
for informing developers of relevant design defects [65] and for understanding the

differences between novice and expert programmers [85]. None of these previous
efforts have considered the use of interaction data for determining expertise in or

familiarity with source code.

2.1.3 Explicitly Modeling a Developer’s Knowledge

A significant amount of research in the field of psychology focuses on knowledge.
Much of this work attempts to create models that describe the different parts of

knowledge, such as implicit and explicit knowledge (e.g., [13]). Ultimately, it
would be desirable to understand from the neurons up how people remember and

learn so that we could use those models to improve how we present information
to programmers. However, these neurological foundations are currently too pre-

liminary and too low level to provide much help in this regard. With our work
on the DOK model, we aim to determine if we can use one kind of activity—

programming—as a proxy for a developer’s knowledge of code without trying to
precisely understand how that knowledge is gained and represented in humans.

In the domain of programming, studies have been conducted to explore how
programmers comprehend programs, resulting in the proposal of a number of dif-

ferent cognitive models: top-down, bottom-up and integrated. Top-down theories
describe the comprehension process as a successive refinement of hypotheses start-

ing from the problem domain and going down to the specific executing problem
(e.g., [9, 10]). Bottom-up theories suggest that developers first understand pro-

grams in terms of low-level abstractions and then develop higher-level models of
it (e.g., [68]). Integrated models combine top-down and bottom-up theories to

describe the program comprehension process (e.g., [82]). More recent work by
Detienne [23] provides an overview of these approaches and discusses how the

particular task, such as reading or manipulating code, effects the understanding.
Our focus in the DOK model is different, considering not the mechanism by which

programmers learn about a program, but rather what they retain as knowledge as a
result of the learning process.

14

Altmann [3] studied the near-term memory of expert programmers by monitor-

ing them performing a task for eighty minutes. He analyzed a ten minute interval
using a computational simulation and studied what was likely entered into the pro-

grammer’s memory on a moment-to-moment basis. His focus was to characterize
near-term memory, essentially what the programmer could recall less than an hour

later. Our focus in modeling a developer’s knowledge is on longer-term memory as
the questions driving our work require an understanding of who knows what over

the longer-term about the code.

In a more recent study, Ko and colleagues [54] examined program compre-
hension of developers based on their interactions with an integrated development

environment. They found that a significant amount of time is spent on navigating
source code and propose to model program understanding as a process of search-

ing, relating and collecting relevant information. Their model suggests that knowl-
edge is not only built by authoring code but also by navigating through it. Again,

their focus is on the mechanism of program understanding, our focus with the DOK
model is on the knowledge retained as a result. Ko and colleagues work does pro-

vide evidence that interaction, through such actions as searching, can play a role in
knowledge.

Other studies consider the type of knowledge experts have compared to novices
in program comprehension tasks. As an example, Soloway and Ehrlich [77] found

that experts have two types of programming knowledge; programming plans and
rules of programming discourse. Finally, studies investigated how experts share

such knowledge with apprentices and novices (e.g., [5]). These studies do not
consider how to determine what knowledge a programmer might have about the

source, which is the focus of our DOK model.

2.2 Modeling a Developer’s Information Needs Across
Multiple Kinds of Information

With the work on the information fragments model, we are trying to match the

individual information needs of a developer across multiple kinds of information.
Similar to our empirical study on a developer’s questions (StudyEXP FR), a num-

ber of previous studies investigated the questions that developers ask. To answer

15

developers’ questions over complex information spaces, previous work has consid-

ered a variety of approaches ranging from navigation to the semantic web. In this
section, we first compare our work on developer’s questions to previous empirical

studies (Section 2.2.1). We then review related work on supporting developer’s
information needs across multiple kinds of information (Section 2.2.2).

2.2.1 Studies of Developers’ Questions

Earlier studies on investigating a developer’s information needs have considered

questions that developers ask during a software development project. Letovsky
gathered think aloud protocols from programmers and identified five general ques-

tion types within the data: why, how, what, whether and discrepancy questions [58].
Herbsleb and Kuwana focused on studying questions during software design meet-

ings and classified them by the attribute the question referred to (who, what, when,
why, and how) [42]. Erdös and Sneed identify seven basic questions from their

personal experiences maintaining programs [27]. Johnson and Erdem examined
messages posted to the Usenet newsgroup to analyze what information people ask

for. They classify the questions as either goal oriented (to achieve task-specific
goals), symptom oriented (to identify the source of a problem) or system oriented

(to understand the objects and functions of the system) [49]. In a more recent study,
Breu and colleagues categorized questions asked in bug reports from the Eclipse

and Mozilla projects into eight categories; the categories included missing infor-
mation and triaging [8]. We contribute to this body of work by identifying the

questions that developers have which involve multiple kinds of information and by
categorizing the questions in terms of the kinds of information a developer intended

to use to answer the questions.
Five recent studies provide more comprehensive question catalogs. Two of

these catalogs focus largely on questions about source code. Sillito and colleagues
described 44 questions that developers ask when programming [75]. De Alwis and

Murphy identified 36 questions from literature, blogs and their own experience that
deal largely with source code [20].

The other three studies discuss questions about a broader set of software devel-
opment activities. Ko and colleagues report on 21 types of questions determined by

16

shadowing professional developers at work [55]. Some of these question types, for

instance, “What have my coworkers been doing?”, focus on problems and issues
developers are facing not just in the source code. LaToza and colleagues propose 19

problems from their own experience as software developers and present the results
of a survey of professional developers about the seriousness of each problem [57].

In another study, LaToza and Myers surveyed developers and report on 94 hard-to-
answer questions on code that developers described [56]. These questions can be

classified as either referring to changes, to properties of elements or to relationships

between elements. They report that ten of the 94 questions overlap with questions
identified in our interview-based study (StudyEXP FR) [29]. While there is overlap

in the questions found across these studies, none of the previous studies discusses
the ambiguity that lies in the interpretation of questions such as “What have my

coworkers been doing?”; a contribution of our work on determining a developer’s
information needs across multiple kinds of information is to highlight the personal

differences in questions between developers.

2.2.2 Answering a Developer’s Questions

The information fragments model supports a developer in answering questions that

span across multiple kinds of information. Previous work on supporting a devel-
oper with this type of questions, has explored a variety of approaches ranging from

navigation through information to using a solution based on the semantic web. We
review these approaches in the following with respect to the information fragments

model.

Navigating Through Information

One of the ways that has been proposed to help address questions in complex infor-

mation spaces is support for navigating through a space by following information

links. Feldspar allows a user to follow association links between different kinds of
information, such as emails and files, to find information of interest [16]. JQuery

provides support specific for software development, allowing a developer to step
through structural links between source code elements within a single view, one

at a time [46]. These existing approaches are restricted on the navigation paths

17

that can be followed whereas our approach provides the user with more flexible

integrations, and thus navigation, across information.

Querying Information

Other approaches to help answer the questions of interest focus on helping a user
express, rather than follow, links between information. These approaches involve

a query language. They require a user to explicitly specify the links that exist be-
tween the information. Some, such as the relational views by Linton [59] and the

approach by Paul and Prakash [67], are based on a relational algebra. Others, such
as CodeQuest [39] are based on a database accessed via logic. Yet other approaches

support natural language queries: Würsch and colleagues [83] provide such support
over source while Devanbu and colleagues [24] support queries over architectural,

conceptual and code information. Not all approaches have focused on user-level
queries: Garlan considered how to enable views of data in a programming envi-

ronment to ease the creation of tools to show the information a programmer may
desire [34]. All of these approaches require a specific expression by the user or

programmer as to how information of interest links together. Different to these
approaches, the information fragments model automatically composes information

of interest.

Linking Different Kinds of Information

Alternatively, some systems have automatically linked different kinds of software
development project information. Hipikat uses a fixed schema to mine information

from software project repositories and provides a developer multiple entry points
into the created web of information [81]. The STeP IN system extends Hipikat by

including information on programmers [84]. Deep Intellisense automatically dis-
plays information relevant to a selected source code element such as change events

and the people involved[43]. To provide team awareness, Palantir [71] links change
information to source code, by presenting the changes of others in the context of

a developer’s workspace. FASTDash [7] extends the approach by also visualizing
which files are currently open or being debugged by a developer. Like FASTDash,

WIPDash [45] also provides a dashboard but focuses on visualizing information

18

on work items and the team members related to them. All of these approaches are

oriented at accessing one presentation of integrated information. Hipikat, for in-
stance, can recommend artifacts related to a provided starting artifact. In contrast,

our information fragments model approach focuses on allowing the user to com-
pose and view different kinds of project information to support the many questions

that arise during a work day.

Overlaying Information

Several approaches have tried to reduce the necessity of piecing together the in-
formation by overlaying and filtering information. Tools such as Seesoft [26] and

Augur [33], use a line-oriented visualization of the source code and overlay it with
change history and structural information. Other approaches use existing views to

overlay information. For instance the original Jazz research prototype [17] anno-
tates the package explorer view of Eclipse with team awareness information. Code

Canvas [21] allows the user to add or hide various layers of information, such as
code test coverage, execution traces or search results on top of a layer of code

documents that is also zoomable. However, all of these approaches take only one
aspect of information as the base and overlay other aspects on top of it, without

allowing the user to integrate the information the way he wants to.

Composing Information

Ferret by de Alwis and Murphy [20] supports the composition of different perspec-
tives—called spheres in their approach—on similar information. For example, a

sphere representing source code can be composed with a sphere representing dy-
namic information about the system to help a developer investigate such properties

as which calls between methods are actually occurring in a run of the system. Their
approach focuses on matching similar elements between spheres whereas our ap-

proach aims to support the composition of different kinds of information for which
links can be automatically determined. Our information fragments model also sup-

ports the user in varying the presentation of composed information to enable a
suitable interpretation for the task at hand.

19

Mapping Information in an Ontology

OASIS by Jin and Cordy [47, 48] allows for the integration of different tools. At its
core, the approach has a domain ontology that defines the common “conceptual”

space for all tools that participate in the integration. Antoniol and colleagues [4]
defined an ontology based on bug reports, versioning repository information and

source code together with the exact dependencies between the different kinds of
information. The specified ontologies are based on or require a fixed one to one

mapping between different pieces of information.
Mi and Scacchi use meta-models, similar to ontologies, to define software de-

velopment models on five types of resources and their relations: software systems,
processes, products, tools and agents and discuss the composition of such mod-

els. In this approach, the definition of the software development models and the
mapping between the resources has to be done manually [61].

In contrast to these approaches, our information fragments model allows for a
flexible integration of information, with links between different information items

determined automatically based on properties of the information.

Using the Semantic Web

The semantic web attempts to bring structure and meaning to information to allow
machines to process it directly [2, 6, 74]. It is based on the Resource Description

Framework (RDF) that provides a triple-based language and the Web Ontology
Language (OWL) to add meaning to the data. Our information fragment model is

very similar in that each node has a unique identifier and properties with certain
values, just like the RDF triples and the different kinds of information that a node

or a property represent in our model could be described in an ontology. However,
instead of using the SPARQL query language or iSPARQL [53]—an extended ver-

sion of SPARQL for software entities—to query RDF data in the semantic web,
our information fragments model approach provides automatic composition and

an adaptable presentation of the information.
Haystack is an example of how semantic web technology can be used to support

the integration of different kinds of information. Haystack encodes such informa-
tion as e-mail, calendars and the world wide wide using the Resource Description

20

Framework (RDF) format. Based on a provided user interface ontology, a user

can then specify views from different kinds of information. This approach still re-
quires the user to manually specify which information should be presented and how

it should be integrated [69], whereas our approach provides automatic composition
for many different kinds of information about a software system development.

21

Chapter 3

The Degree-of-Knowledge Model

In this chapter, we discuss the development of the degree-of-knowledge (DOK)

model. The DOK model is a developer-centric model capturing a developer’s
knowledge of code that can help to answer such questions as who a developer

should ask about parts of the code or who on a team needs to know about changes
made. The degree-of-knowledge (DOK) model computes automatically, for each

source code element in a code base, a real value that represents a developer’s
knowledge of that element.

We begin by presenting the results of our exploratory study, StudyEXP DOK , that
identify a number of factors that may be used to model a developer’s knowledge

(Section 3.1). Next, we present evidence gathered in another study, StudyDATA DOK ,

that shows that both authorship and interaction information about how a developer
interacts with the code are important in characterizing a developer’s knowledge of

code (Section 3.2). Using the results of StudyEXP DOK and StudyDATA DOK , we de-
veloped the degree-of-knowledge model to capture a developer’s individual knowl-

edge of code based on a developer’s authorship and interaction information. We
describe the DOK model in Section 3.3. Finally, we conducted an experiment,

ExperimentDOK , to determine the relative effect of authorship and interaction to-
wards modeling a developer’s knowledge. We present the results in Section 3.4.

22

3.1 A Developer’s Activity as an Indicator for Knowledge
As an initial step in understanding what factors contribute to a developer’s knowl-

edge of code, we conducted an exploratory study, which we refer to as StudyEXP DOK .
In this study, we were particularly interested in whether a developer’s interaction

can be used as an indicator for his knowledge of the structure of the source code.
After all, the idea that a developer gains knowledge of code by reading or editing

the code is consistent with cognitive models on program comprehension [23]. To
determine whether factors other than interaction contribute to a developer’s knowl-

edge of code, we interviewed the participants at the end of the study. A more
detailed description of StudyEXP DOK is presented elsewhere [31].

3.1.1 Study

The hypothesis for StudyEXP DOK was that the more frequently and recently a de-

veloper has interacted with a particular source code element, the higher the de-

veloper’s knowledge of that element. To conduct this study, we needed a means of
asking a developer about their knowledge of code. We chose to use the structural

relations of a code element as a basis for our inquiry because we believe that this
kind of knowledge plays an important role in being able to explain how the code

works, and also because the structural relationships of an element are automatically
determinable, allowing the study of a larger set of developers.

To evaluate our hypothesis, we monitored the interactions of nineteen profes-
sional Java developers with their integrated development environment (IDE) over

a period of five weeks. When a developer reached a certain threshold of interac-
tion with the environment, an automatically generated questionnaire appeared that

asked the developer about the structure of code elements with which the developer
had interacted. There were three thresholds, and thus three questionnaires, that a

developer might be asked to answer. To ensure our study did not stress memory
recall, some tool support was provided with each questionnaire to help a devel-

oper answer a question about a code element. At the end of the study period, we
interviewed developers to determine factors that may contribute to model of a de-

veloper’s knowledge of code. Thirteen of the nineteen developers volunteered to
be interviewed.

23

Subjects

Our study involved professional Java developers recruited from two sites of the
same company. To be eligible to participate in the study, a developer had to use the

Eclipse IDE1 in his daily work.2 To solicit participation, we advertised our study
at both sites in a short presentation and randomly asked people at the two sites.

We ended up with nineteen subjects that had the appropriate tool environment and
sufficient time. Eight of the nineteen subjects were at one development site and

eleven were located at the other development site. Members of the former group
worked on two different development teams and projects. Members of the latter

group were spread evenly across six different development teams. The experience
of these subjects ranged from one month to twenty years of professional software

development (M = 7 years, SD = 6.4 years)3. Two of the nineteen subjects were
female.

Method

Our overall method involved monitoring the interaction of subjects with the Eclipse

IDE and prompting the subject with a questionnaire about pieces of the system
structure with which he had interacted when certain thresholds of interactions were

reached. The interactions we monitored included selections and edits of source
code, and commands, such as the opening and closing of editors, views and per-

spectives (see Table 3.1).

Interaction Monitoring. Our goal was to have each subject answer approximately
one questionnaire per week over a three week period. To ensure that the number

of interactions was approximately equal between each questionnaire, we based the
questionnaire prompting on the number of interaction events. We assumed an aver-

age interaction event number of 4000 per day.4 To approximate one questionnaire

1www.eclipse.org/, verified 18/11/10.
2While we use the pronoun he in describing the study, the study involved both male and female

participants.
3M, SD stand for mean and standard deviation respectively.
4We made this assumption based on the average interaction events of a professional software

developer who we monitored for two weeks while working on an open source tool; we reduced
this developer’s interaction events by one-third to account for more interruption time in a co-located

24

www.eclipse.org/

Table 3.1: Monitored Interaction Events (see [52] for more detail)

Event Description

selection Selections in an editor or view of the IDE via mouse or key-
board.

edit Textual and graphical edits in an editor of the IDE.

command Operations such as opening or closing of editors, saving, build-
ing or setting preferences.

per week, we thus chose 20000, 40000 and 60000 interactions as thresholds. Once
the threshold was exceeded, a dialog in Eclipse opened automatically and the sub-

jects could either work on the questionnaire or postpone it. A questionnaire was
always generated with the most recent 20000 (40000 or 60000 events), therefore,

postponing a questionnaire did not affect the recency of exposure to the material
asked about in the questionnaire.

Questionnaire Content. Each questionnaire presented to a subject contained eigh-

teen questions about the source code elements with which the subject had inter-

acted. Each questionnaire was generated specifically for a subject based on the
interaction captured for that subject. The eighteen questions were divided into

three categories of six questions. Each group of six questions contained a question
about type hierarchy (Q1 in Figure 3.1), two questions about type parameters (Q2),

and three questions about inter- and intra-class relations (Q3 and Q4). We chose
these detailed structural questions as a starting point for investigating knowledge

because we could determine the correctness of answers to these questions objec-
tively. A questionnaire asked these six questions for three different sets of ele-

ments: one set with high DOI, one set with medium DOI and one set with low
DOI values. To avoid learning effects, the method and type elements were cho-

sen so that no element was asked about twice (over one questionnaire and over all
questionnaires).

group environment.

25

Q1 Can you recall the name of one class or interface that is directly extended,
implemented by ‘TYPE’, or can you recall the name of one class that di-
rectly extends the type ‘TYPE’?

Q2 Do you know the types of the parameters that are passed to the invocation
of method/constructor ‘METHOD’?

Q3 Do you know two methods that are called by method/constructor
‘METHOD’?

Q4 Can you recall one method/constructor that calls method/constructor
‘METHOD’?

Figure 3.1: Types of Questions in the Questionnaire

Degree of Interest. We use a real number value to represent the amount of activity

(selections and edits) a developer has had recently with a particular program ele-
ment. This value represents the degree of interest (DOI) of the element [50, 52]; it

is a combination of two components, a frequency of how many interactions a devel-
oper has had with the element and a recency that decays the DOI value based on the

number of interactions a developer has had with other source since the last interac-
tion with the element of interest. The DOI of an element starts at a positive value

with the first interaction. If a developer continues to interact with that element,
its DOI will rise. If a developer ceases to interact with the element, its DOI will

gradually decay until a developer again begins to interact with it. Different kinds
of events contribute different scaled values to the DOI of an element; for instance,

selections of an element contribute less to DOI than edits of an element. The DOI
function used in this study has been used successfully as part of the Eclipse Mylyn5

project, which is supporting hundreds of thousands of Java programmers in their
daily work. In contrast to Eclipse Mylyn, our use of DOI considers all interaction

a developer has with the environment and does not consider any task boundaries

indicated by the developer as part of their work.

5www.eclipse.org/mylyn, verified 19/11/10

26

www.eclipse.org/mylyn

Study Support

We implemented the support for the study as an Eclipse feature6 based on the
Mylyn monitor [64], a Mylyn component for computing DOI values [52], and

the questionnaire component. When a threshold is exceeded, the questionnaire
component determines elements (method and type elements) with high, medium

and low DOI values and generates the questionnaire. The component considered
the 20% of elements with the highest DOI, the 20% in the middle and the 20% of

elements with the lowest DOI value as the group of elements with high, medium
and low DOI values. The component takes into account elements that were touched

(i.e., selected or edited) at least three times to avoid elements touched by accident.
To form the questions, elements were randomly drawn from the groups of high,

medium and low DOI. We placed constraints on the elements used for a question
to make sure answers were possible. For example, for Q3 each of the method el-

ements selected had to have at least two method calls in their method body. Once
eighteen suitable elements were determined, the questionnaire component opened

a wizard dialog that had one page for each question. To ensure our study did not
stress memory recall and facilitate the answering process, some tool support—the

open type action and the outline view of Eclipse—was provided with each ques-
tionnaire to help a subject answer a question about a program element (Figure 3.2).

The answer fields of the question pages could be filled by selecting an element in
either the open type view or the outline view.

Result Scoring

Twice per week, we visited each subject and collected the relevant data and man-

ually analyzed the correctness of the subject’s answers with all possible answers
found by our tool support. To ensure our tool also found all possible answers, we

compared our results to the actual code bases on a subject’s computer for a random
sample of subjects. We then summed up the number of correct answers for each

group of six questions (low, medium, high). In each group of six questions, Q1
and Q4 were asked once with one possible answer each. Q2 was asked twice, once

about a method with two parameter types and once with one parameter type, result-

6The subjects used a variety of versions of Eclipse from 3.2.1 to 3.3M4.

27

Figure 3.2: Questionnaire with Open Type Action

ing in two possible answers in the first case and one possible answer in the second
case. Q3 was asked twice with two possible answers each time. Therefore, the

correct answer score for each group was between 0 and 9. For each questionnaire,
we thus computed three values ranging from 0 to 9, one for the group of questions

about elements with low DOI, one for medium and one for high DOI.

Interaction Levels

There was a substantial difference in the period of time it took each developer to
reach the first threshold. Several developers reached the first threshold after three

days, the second after six and the third after around nine days. Other subjects
took twelve days of programming to reach the first threshold. The mean time for

28

reaching the first threshold was 7 (SD = 3.10).

Operational Problems

We also faced several operational problems when doing our study. Eight subjects

that had completed the first questionnaire did not reach the second questionnaire
and only eight subjects reached the final questionnaire. This attrition seems to be

for one of three reasons. First, some subjects accidentally uninstalled our plug-in
by installing a new version of Eclipse and deleting the old workspace in which the

data was stored. Second, there was insufficient time from when a subject joined
the study to the end of the study period to collect the results. Third, a questionnaire

could not be created. For example, two subjects reached the second interaction
threshold without having completed the first questionnaire as the study plug-in

was unable to create the first questionnaire due to interaction with an insufficient
number of elements to fulfill the criteria for creating the first questionnaire.

3.1.2 Quantitative Results

To evaluate our main hypothesis of whether the frequency and recency of a devel-
oper’s interaction with particular parts of the source indicates knowledge of that

source, we conducted within subject statistical tests. Per subject, we paired the
number of correct answers for the six elements with a low DOI within a question-

naire with the number of correct answers for the six elements with a high DOI
within the same questionnaire. We did not consider the elements with medium

DOI in the questionnaires because the range of DOI values for those elements was
very close to the range for high and low DOI elements. In our presentation of the

data, we have altered genders so as not to identify the subjects.
We depict the results of correct answers for the elements of low and high DOI

for each subject for each of the questionnaires in Figure 3.3. We have arranged

the results per subject so that the difference between the correct answers for high
DOI and low DOI elements increases from left to right; the differences are shown

in the trend line overlying the histogram. For the subjects where the trend line is
above zero, the data supports our hypothesis that a programmer’s activity, modeled

by DOI, indicates knowledge.

29

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

19 6 15 11 33 5 24 18 35 4 20 1 12 23 17 22 7

N
um

be
r

co
rr

ec
t

Subject (sorted by High - Low correct)

Low 20% DOI
High 20% DOI

High - Low Correct

(a) First Questionnaire

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

5 14 11 9 15 19 7 4 1 22 24

N
um

be
r

co
rr

ec
t

Subject (sorted by High - Low correct)

(b) Second Questionnaire

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

5 24 20 4 11 9 1 15

N
um

be
r

co
rr

ec
t

Subject (sorted by High - Low correct)

(c) Third Questionnaire

Figure 3.3: Correct Answers by Subject for Questionnaire 1, 2 and 3

To determine whether there was statistical significance in the mean difference

between correct answers for high and low DOI elements, we performed paired t-

tests by pairing the number of correct answers for high and low DOI elements by
subject. The difference in the number of correct answers for each questionnaire

passed the Kolmogorov-Smirnov and the Shapiro-Wilk normality tests.

First Questionnaire

Seventeen subjects answered the first questionnaire.7 Using a paired t-test, we

found that the mean high DOI correct is significantly8 higher than the mean low
DOI correct per subject (two-tailed p=0.0016, DF =169, mean difference =1.7647).

7Although the interaction of two more subjects caused the subjects to pass the first threshold, the
study plug-in did not find enough elements in their interactions to create the questionnaire.

8We consider results to be statistically significant with p < 0.05.
9The degrees of freedom (DF) represent the number of observations used to estimate a parameter

(for example, the differences between mean low and high DOI correct per subject). In this case,

30

Second Questionnaire

Eleven subjects reached the threshold for the second questionnaire. For the data
provided by these subjects, the two-tailed P value for the paired t-test is 0.0578 and

is thus not significant at the 95% significance level (DF = 10). We hypothesize that
this lack of significance is from the lack of data: there are only eleven observations

in the second questionnaire versus seventeen from the first.

Third Questionnaire

Only eight subjects reached the third threshold. Performing the paired t-test on the

results of this questionnaire did not deliver a significant result. For this question-
naire, we saw more evidence of individual factors influencing the results. Subject

S24 stated that the third questionnaire was the hardest because there were hardly
any questions about elements that were written by her. In fact, most elements with

a high DOI for that questionnaire seemed to gain a high DOI because she stepped
through them a lot when debugging. Subject S4 and S9 stated that all six high

DOI elements asked about in the questionnaire were not written by them and they

thought it was interesting and even “surprising” (S9) that those elements had a high
DOI. Similarly to S24, subjects S4 and S9 stated that they had interacted with sev-

eral of the high DOI elements as a step of the debugging process. Furthermore,
these two subjects said they should have known better the six elements with low

DOI because they wrote or edited those elements significantly.

Summary of Questionnaire Results

Assuming the answers from a given subject are independent across questionnaires,

we tested whether the mean high DOI correct for a subject is significantly different
from the mean low DOI correct. Using a paired t-test, we found that the mean

high DOI correct is significantly higher than the mean low DOI correct per subject
(p = 0.0024, DF = 35, mean difference = 1.22). Although on average a subject

only has about one more correct answer for high DOI questions than low DOI
questions, this result supports our hypothesis that a programmer is more likely to

have knowledge of program elements with which he or she has frequently and

DF = number of subjects −1.

31

recently interacted.

Further Results

The DOI value is an aggregation of several primary components: selects,10 ed-

its and recency. To investigate their impact, we plotted the correct answers with
respect to these components and performed regression analysis. However, there

appears to be no trend in correct and incorrect answers for the components of DOI
even when breaking the data down by subject.

Over all subjects, the mean of the DOI values for the elements in each group
(low, medium, high) were in a close range. This result holds for the data from

all three interaction intervals. Thus, even though subjects differ in the systems on
which they are working and their tasks, the range of DOI values is similar. No

matter which subject we consider, if we take the 20% of elements with highest,
medium or lowest DOI for a certain interaction interval (e.g., 20000 events), the

DOI values for the set of elements are in a similar range.
The number of interactions per day per subject ranged from 1850 to 8550. A

reasonable assumption might be that the more a subject programs in a day, the
better the subject would know the code. However, we do not see any significant

impact on the results despite this large difference.

3.1.3 Qualitative Results

We were able to interview in-person thirteen of the nineteen subjects after each

had completed the questionnaire portion of the study.11 These are the subjects who
volunteered to be interviewed. Each interview took between five and thirty minutes

depending upon the time available from the subject. We also received some data in
response to email from subjects S1, S6 and S7. Each interview started with some

general questions (see Table 3.2), followed by a variety of questions based on a

subject’s response to previous questions.

10A select event is generated when a developer selects (clicks on) a code element to apply a
command, such as navigating from a use to a definition.

11Interviews were conducted with S4, S5, S9, S11, S14, S15, S17, S18, S19, S20, S22, S24, and
S33.

32

Table 3.2: General Interview Questions

1 Do you think that the correctness of your answers reflects what you know
about those elements?

2 Do you think there are some elements for which you should have known
the correct answer and/or are there some elements where you are surprised
that you knew the correct answer?

3 Why do you think you knew more about the elements that were answered
correctly than about the other elements?

4 What kind of knowledge do you think you keep most in your mind over a
long and/or short period of time?

Subjects’ View of the Results

We wanted to know whether the results of our study reflect what a subject be-

lieves he or she knows about the elements asked about in the questionnaires. To
investigate this issue, we showed each subject a list of the program elements that

appeared in all of the questionnaires that the subject had completed; this list indi-
cated for which of the elements the subject answered the question(s) correctly. We

then asked the subject if the split between elements for which he or she answered
questions correctly and those answered incorrectly reflects what he or she knows

about the elements. We then went over each element, asking the subject whether
the correctness of the answer surprised him or her.

Overall, eleven of the sixteen subjects (69%) whom we interviewed stated that
the correct versus incorrect answers represented “fairly well” what each subject

knew about the code and in one case, was “exactly” what the subject knew (S20).
Two subjects (12%) stated that the first and second questionnaire was fairly reflec-

tive but the third questionnaire was not. Three subjects (S5, S19, S33) (19%) stated
that she or he should have known the correct answer to some elements because she

or he wrote the code. These three subjects also expressed surprise about having a
correct answer to several elements.

Subjects’ View on Their Knowledge

In the interviews, we also asked what kind of knowledge a subject thought she had

about the program elements and what the subject thought about the questions. Most

33

subjects (S1, S4, S7, S14, S18, S19, S22, S24, S33) (56%) responded that he or

she would know what a particular method asked about does, but that the questions
in the questionnaires were too detailed. Three subjects (S14, S18, S33) stated he

or she would know the flow of control in the program, but he or she would not
necessarily know the direct calls, only that there was some collaboration between

two elements. As one subject stated, “remembering finer details isn’t my strong
point” (S19).

Authorship and Editing

All subjects stated that he or she knows more about elements he or she authored.

When we asked the subjects about the questions they answered correctly, they
mostly stated those elements were the ones they had authored. As one subject

[20] explained,

when you write your own code you follow your own patterns so it is
easier to know afterwards, [...], you can tell how you would have done

it.

Two of the subjects each further stated that most of their correct answers occurred

for code they wrote recently (S1, S14). One subject (S15) said that authoring the
(Java) classes would probably cause one to know those classes better for one to two

months. Another subject (S1) stated the opposite, saying,

I would say that global knowledge of the system is maintained over a

longer period of time but the specifics of each method implementation
deteriorates quite quickly [...] if I was asked the same questions now

[2.5 weeks afterwards], I would get most of them wrong.

Overall, there was a large discrepancy about the period of time that subjects thought

they would know about code that he or she authored from three months (S22) to
one and a half to two years ago (S5, S11). These latter two subjects each noted

that his knowledge was dependent on how long it took him to write the code—the
longer the authoring time the better the knowledge—and whether he was actively

maintaining the code. Several subjects noted that he or she has to “work with code
[continuously] otherwise I forget after a while [1 month]” (S18).

34

Code Stability

The stability of the code also has an influence on how long a subject knows about
the program elements. Both subjects S11 and S5 were authoring code at a low level

of the system; this code needed to be robust and does not change often. These two
subjects each felt they had good knowledge of the code one and a half years after

the code’s creation. Other subjects, who were working on code that was changed
more frequently, stated that they would not know their code more than a couple of

months.

Role of a Program Element

Several subjects (S1, S7, S9, S11, S15, S19, S22) (43%) each mentioned that he

knew more about elements that played a more important role in the code. For
instance, if a class was a hub of an API, the subjects (S1, S11, S22) would know

the correct answers to questions posed, whereas internal code was less known.
Subjects also stated that they would know the abstract classes on the top of the type

hierarchy or the root super class in general but they did not know about intermediate

classes (S9, S19). Furthermore, if a class was part of a test, it seemed not to be as
important and therefore not to be known as well as other code (S7).

Task Locality

When we interviewed subjects about the elements, they would often refer to a set
of elements as a task or talk about a general task. One subject even remembered

the overall tasks three weeks after the actual questionnaire (S11). Some subjects
identified the kind of tasks undertaken over the period of the questionnaire as a

reason for not having a lot of correct answers. From one (S11), “I was into code
all over this place trying to thread through some of the stuff I was working on”.

Another (S33) explained that he fixed a lot of small bugs and explored a lot of code
very briefly that he has not written and therefore he did not know the answers. Yet

another (S9) explained that he worked on crosscutting changes, spread over several
modules, in other people’s code. When working on other people’s code, subjects

described that they were focusing more on getting it to work than understanding
how it works (S14, S15, S19). One subject (S1) also noted that if the task was to

35

create a new feature, she knew the code more than if it was a refactoring task.

Short-term Activity

Similarly to the overall task, the activity undertaken to complete a task in the short-

term with just a small subset of elements influenced knowledge of the elements.
For instance, one subject (S11) said,

It depends upon what you are doing, if you are fixing a bug you are

concentrating directly in there but if you are just adding an extra pa-
rameter to pass it through to something deeper you don’t know a whole

lot about what’s going on in there.

For nine subjects (S4, S9, S14, S15, S19, S20, S22, S24, S33) (56%), debugging

activity heavily influenced the subjects’ responses to the questionnaires because
elements appeared in the questionnaire as a result of activity stepping through the

elements repeatedly during debugging. This activity was intense but did not con-
sider the structure or functionality of the element. A similar situation occurred

when going through lists of search results.

IDE

Integrated development environments, such as Eclipse, provide substantial support

to find structural information about code. Four subjects (S6, S14, S15, S22) each
stated that he relies heavily on these structural determination tools, “I live by the

call hierarchy view” (S22). These subjects also noted that the presence of these
tools likely causes them to remember less about the kinds of information that can

be retrieved fairly easily and quickly (S15),

in a VI text editor I would probably know more about the actual calls

but in Eclipse I have the JDT support to help me.

Although our questionnaires provided access to some tools, for finding types and
methods, the lack of access to all tools created a “disconnect feeling” (S14) to the

code.

36

Code Patterns

Patterns in code facilitate knowledge for some subjects (S11, S22). As one (S22)
stated, “I know what this method does because it always does the same for each

class it is in”. When showing one correct element to one subject (S11), she was
surprised to have known the answer, but once she thought about it she said, “I did

not know this well [but] that’s our pattern for writing some of the tests”. This
situation also arose for another subject (S7) who stated that “a lot of our method

signatures contain common data structures which are easy to recall [patterns]” (S7).
These common patterns are similar to clichés [70].

3.1.4 Threats to Validity

The validity of our results is threatened by several factors. A primary threat to
the validity of our study is the number of subjects. In particular, for the second

and third questionnaire, the number of subjects that completed the questionnaire
is small, possibly skewing the results as we begin to look at a much smaller set of

programmers.
The validity of our results is also threatened by undertaking the study in situ

rather than in a laboratory. In situ, there are many variables which we can neither
control nor account for, such as the type of work being performed by the subject.

This lack of control shows up in several ways in our results. For example, for
subject S24, the number of correct answers for low and high changed substantially

over the three questionnaires (Figure 3.3) because of the nature of her activity dur-
ing the different periods. As another example, subject S5, who had substantially

more correct answers for the low DOI elements in the second and third question-
naire than for the high DOI elements, stated that for these questionnaires, there

were more elements that were written by him in the low DOI elements than in the
high DOI elements. Since he stated he believed he knew everything he wrote, this

provides a possible explanation for his results for these questionnaires.

The validity of our results are also threatened by measuring activity with the
source only through the programmer’s interaction with the development environ-

ment. We chose to monitor the IDE because it is a common tool used by all pro-
grammers. Other forms of activity, such as design meetings, are much more diffi-

37

cult to monitor and to conceive of using as a basis for subsequent tools. Although

our monitoring of the IDE was extensive, it was aimed at certain mechanisms that
provide good coverage of textual editing, selections, and so on. Our monitoring

misses interactions through graphical editors which some of the subjects may have
been using. In these cases, the DOI values we assigned would not be representative

of the actual interaction and activity of the subject with the source. The interviews
we conducted with the subjects did not highlight any of these issues as seriously

compromising the study.

3.1.5 The Need for a Better Indicator of a Developer’s Knowledge

The results of our study show that a developer’s interaction with the code can help
indicate the developer’s knowledge about source code. They also suggest that ad-

ditional factors should be used to augment DOI to gain a better indicator for a
developer’s knowledge of code. As most developers stated, authorship of code is

a significant factor in their knowledge of the code, supporting the tacit assump-
tion inherent in current expertise recommenders (e.g., , [63]) that are based solely

on authorship. This suggests that a knowledge model should take into account
a combination of both interaction and authorship. Furthermore, the developers’

comments on the ebb and flow of knowledge suggest, rather than taking a global
expertise approach, a model that takes an individual perspective on a developer’s

knowledge. Such an individual model can then capture the ebb and flow for each
developer that occurs in particular when code is changed frequently (code stabil-

ity). Other factors mentioned by developers in the interviews, such as the role of
a program element or the short-term activity, are more difficult to determine au-

tomatically and thus difficult to integrate into an indicator that can be determined
automatically. In the following, we will investigate whether interaction and author-

ship indeed capture different aspects and could thus lead to a better indicator of a
developer’s knowledge.

3.2 Authorship and Interaction
To investigate the possible effects of authorship and interaction on a developer’s

knowledge, we gathered data in a new study, StudyDATA DOK , from the profes-

38

sional development site we refer to as Site1. In particular, we were interested in the

following three questions:

1. how do authorship and interaction vary across developers,

2. do any patterns emerge about a developer’s authorship and interaction, and

3. do authorship and interaction capture two different aspects of a developer’s
work.

We answer the first two questions by presenting the data (Section 3.2.1 and 3.2.2).

To answer the third question, we must interpret the differences in the authorship
and interaction data (Section 3.2.3). In our presentation of the data, we use the me-

dian and the range to present data that summarizes data over all developers where
there is a big deviation between developers. We use the mean and the standard

deviation for data presented per developer.

Subjects. Site1 involved seven professional developers (D1 through D7)12 build-

ing a Java client/server system, using IBM’s Rational Team Concert (RTC)13 sys-
tem as the source repository. The professional experience of these developers

ranged from one to twenty-two years, with a mean experience of 11.6 years (SD =
5.9 years)14. These developers each worked on multiple streams (branches) of the

code; we chose to focus our data collection on a developer’s major stream. One
developer (D5) could not identify a major stream of the four on which he worked;

as this work pattern makes authorship difficult to determine, we have chosen to
exclude his data from the presentation given in this section but have included his

results in our experiment (Section 3.4) and case studies (Section 4.1). We discuss
the issue of multiple streams, which threatens the validity of our study, further in

Section 4.3.

Timeline. Figure 3.4(a) provides an overview of the different periods of data col-
lection. Authorship information was gathered for a three month period (T1 to T3).

12Five of the seven developers also participated in our initial study presented in Section 3.1.
13IBM’s Rational Team Concert is a team collaboration platform built on top of Eclipse; the sub-

jects used version 2.0 of RTC on top of Eclipse 3.4.; jazz.net verified 19/11/10.
14SD stands for standard deviation

39

jazz.net

t

T1 T2 T3 T4

authorship

interac on

3 months

7 work days 5 work days

(a) An Abstract Timeline

T1 T2 T3 T4

Site1 3/11/2008 22/1/2009 2/2/2009 7/2/2009

(b) Specific Points in Time Used

Figure 3.4: Data Collection Time Periods

The interaction data used for our experiment that we report on in Section 3.4 was

gathered over seven working days (T2 to T3). Case studies that we report on in
Section 4.1 were conducted during the period T3 to T4. The data reported on in

this section is from data collected from T1 to T4. Figure 3.4(b) maps abstract time
points to particular dates used for this development team.

3.2.1 Authorship—a Long-term Component

From a developer’s perspective, a day in a collaborative environment involves
many different kinds of authorship events. Consider a developer that creates a new

method and changes another existing method to accomplish a task. When he flows
the changes to the source code repository he shares with his team, the creation of

the new method and the change to the existent method each result in an authorship
event. When he updates his local workspace at the end of the day, he accepts the

changes a team member made to the source code resulting in one authorship event
for each code element the team member changed.

Since developers in StudyEXP DOK differentiated between authoring new code
and maintaining existing code, we distinguish between three different kinds of au-

40

Table 3.3: Average of Six Weeks of a Developer’s Authorship Data Over a
Three Month Period (FA = First Authored, DL = Delivered, AC = Ac-
cepted, Change stands for the change in elements per week)

Subj. # Events # Distinct Elements
FA DL AC FA & DL Change

D1 453 (±105) 285 (±66) 62463 (±5320) 567 (±113) 10% (±9%)
D2 297 (±128) 154 (±43) 51183 (±5457) 417 (±160) 15% (±16%)
D3 398 (±159) 445 (±112) 62358 (±5467) 678 (±214) 18% (±22%)
D4 31 (±34) 9 (±10) 63730 (±5934) 36 (±39) 14% (±38%)
D6 907 (±898) 481 (±43) 61914 (±5677) 1084 (±874) 14% (±10%)
D7 98 (±164) 399 (±725) 75540 (±11993) 485 (±868) 42% (±50%)

thorship events with respect to a developer D:

1. first authorship, representing whether D created the first version of the ele-

ment15,

2. deliveries, representing subsequent changes after first authorship made to the

element by D,

3. acceptances, representing changes to the element not completed by D.

We found that the authorship of code loaded into a developer’s environment
changed frequently. At this site, a first authorship, delivery or accept event to an

element occurred on average every 54 seconds.
For a better understanding of a developer’s authorship and its fluctuation, we

counted events and elements over a sliding window of six weeks. We started with
the first six weeks and then slid the window eight times, each time by one week

until we reached T3. Table 3.3 reports numbers for each developer averaged over
the eight data points.

First Authorship Events. The number of first authorship events developers pro-

duced over a period of six weeks ranges from 0 to 3046 with a median of 323 over
all data points collected. This high variation between different developers is not

15In this thesis, the term element stands for a class, a method or a field.

41

surprising given the different roles of the team members. Some team members

have a more coding centric job, others carry out a more managerial role (see Sec-
tion 4.3.4). This high variation can also be seen in the differences in the means of

FA events over developers in Table 3.3. For some developers this variation happens
on a weekly basis. These variations are due to the merging of streams (see Sec-

tion 4.3.2), differences in project phases, such as testing weeks (see Section 4.3.3),
or the fact that some developers seem to work for longer periods of time individ-

ually before sharing the work with others through the repository. For example,

developer D7 did not have any first authorship events for the first five points in
time we counted the events. In the end however, the number of first authorships

increased to 396, indicating that he waited for several weeks before committing
his changes. These individual variations can also be seen in the standard deviation

being relatively high compared to the mean in Table 3.3.

Delivery Events. These same variations between developers as well as within
developers occur for delivery events. The median of delivery events is 230 with

the actual number of delivery events that a developer had over a six week period
ranging from 0 to 1601.

Accept Events. In contrast, the number of accept events is relatively stable over

all developers, with a median of 62500 and a range from 45136 to 91985. The
numbers presented in Table 3.3 show that the standard deviation for accept events

is usually less than 10% of the mean value. This stability stems from the balancing
effect of the whole team, which is bigger than than the seven developers we looked

at, committing changes to the same project.

All Authorship Events. Over the three months and the six developers, there is a

ratio of 95 to 1 for accept events versus all first authorship and delivery events.
This large ratio is indicative of the high rate of change occurring to elements in a

developer’s environment.

42

Authored Elements. These aggregate statistics on first authorship, delivery and

accept events count multiple events happening to the same element. Considering
unique elements, the developers first authored a median of 323 elements ranging

from 0 to 3011. This data follows the same trend as the data on first authorship
events. The slight difference in the range between first authorship events (median:

323; range: 0 to 3046) and elements first authored is caused by developers merging
streams. The number of unique elements that a developer delivered changes to

(median: 161; range: 0 to 1551) is 1.4 times smaller than the number of delivery

events, since, on average, developers delivered more than one change to the same
element. The same occurs for unique elements that developers accepted changes

to (median: 33868; range: 22058 to 42809), which indicates that on average a
developer accepts two changes to one element every six weeks. Thus, each day,

a developer authored eight new elements, delivered changes to five elements, and
accepted changes to 792 elements on average over the period T1 to T3.16

Change in the Set of Authored Elements. To get a sense of the fluctuation in the

set of elements a developer first authored and delivered over six weeks, we com-
pared the sets for consecutive weeks. Over the eight data points we gathered for

each developer, on average, 19% of the elements in the set changed each week.
Developer specific numbers of the change are presented in the last column of Ta-

ble 3.3.

3.2.2 Interaction—a Short-term Component

To gain a better understanding of a developer’s interactions, we looked at a period

of five work days (T3 to T4). For each of these five days, we counted the devel-
oper’s interactions over the previous seven business days and then averaged the

numbers over the five days (T3 to T4) to account for fluctuations within a work
week. Table 3.4 reports numbers for each developer averaged over the five days.

16These numbers differ from the ones presented in [32]. To account for daily anomalies, such as
days with lots of meetings, we averaged over eight six week periods instead of averaging over five
days, each taking into account the past three months.

43

Table 3.4: Developer’s Interaction Data Averaged Over Five Work Days

Subj. # Interaction # Distinct # Els with Change in
Events Elements pos. DOI pos. Els

(over 7 days) (over 7 days) (per day) (per day)

D1 11948 (±570) 593 (±88) 51 (±9) 59% (±28%)
D2 4687 (±1522) 700 (±112) 36 (±11) 65% (±23%)
D3 11526 (±565) 1550 (±105) 42 (±1) 81% (±7%)
D4 5700 (±883) 899 (±179) 52 (±14) 75% (±16%)
D6 7470 (±2863) 974 (±208) 48 (±9) 57% (±41%)
D7 8219 (±1233) 1258 (±167) 40 (±17) 73% (±11%)

Interaction Events and Elements. We found that developers interacted with many
different elements over a week of work, some of them quite frequently. The num-

ber of interaction events of a developer over a period of seven business days ranges
from 3296 to 12841 with a median of 7823. Considering unique elements, a devel-

oper interacted with a median of 898 elements ranging from 514 to 1651. As with
the authorship information, the difference between individuals is quite substantial

as it depends on the individual’s role on the team and their individual work patterns
(see Table 3.4). Different to authorship information, the variation in interaction for

a single developer over the five days is relatively small with the standard deviation,
on average, only being 15% of the mean for the unique elements.

Degree-of-Interest. One way to indicate a developer’s ongoing interest in a par-

ticular code element is to consider a degree-of-interest (DOI) real value for the ele-
ment computed from the interaction information. We provided an overview of DOI

in a previous section (Section 3.1.1) and DOI is reported in earlier work [50, 52].
A positive DOI value suggests that a developer has been recently and frequently

interacting with the element; a negative DOI value indicates a developer has been
interacting with other elements substantially since the developer interacted with

this element.

Change in the Set of Elements with Positive DOI. At this development site, each

developer had 45 (SD = 12) elements with a positive degree-of-interest per day,

44

-250

-150

-50

50

150

250

350

D
e

g
re

e
-o

f-
In

te
re

st
 (D

O
I)

Monday
02/02/2009

Tuesday
03/02/2009

Wednesday
04/02/2009

Thursday
05/02/2009

Friday
06/02/2009

0

(a) D1

-250

-150

-50

50

150

250

350

Monday
02/02/2009

Tuesday
03/02/2009

Wednesday
04/02/2009

Thursday
05/02/2009

Friday
06/02/2009

0

(b) D3

Figure 3.5: Positive DOI Elements

taking into account the sliding window of seven business days. On average, 68%
of these elements with a positive DOI changed per day (see Table 3.4). We can

see the stability of the size of the set of elements with a positive DOI as well as
the high fluctuation of the set’s elements in graphs we produced for two develop-

ers. Figures 3.5a and 3.5b show, for the period of five working days (T3 to T4),
elements with a positive DOI value on at least one of the five days for each of the

45

two developers.17 For both developers, the size of elements with a positive DOI

stays fairly stable over the work week at 51 (SD = 9) and 42 (SD = 1) for D1, D3
respectively. However, the elements within these sets change substantially per day.

For developer D1 59% (SD = 28), for D3 81% (SD = 1%) of elements change each
day.

These graphs also show the differences in work patterns across the elements
for different developers. Some developers, such as D1 (Figure 3.5a), continuously

interact with a group of elements, which results in many lines above zero. Other

developers, such as D3 (Figure 3.5b) interact with more elements less frequently,
resulting in more lines below zero due to the decay of interest in elements. Most

of the six developers also had at least one code element with which he or she was
interacting with a lot more than with the rest of the code.

3.2.3 Authorship and Interaction

While 68% of the elements with a positive DOI change each single day, only 19%

of the elements a developer delivered changes to or first authored change per week.
The high change rate for positive DOI elements per day suggests a developer does

not interact with specific elements for very long, lowering the likelihood a devel-
oper knows the elements. This data is consistent with developers’ comments on

only knowing code if it was visited shortly before, but knowing it for a long time
when they are the first author (see Section 3.1.3), indicating that interaction models

a short-term component of a developer’s knowledge of code and authorship models
a more long-term component of it.

Numbers on distinct elements in Table 3.3 and Table 3.4 show that interaction
captures elements not authored. Even though the numbers on distinct elements

in the authorship table and the interaction table are computed using different slid-
ing windows, in general, developers interacted with more distinct elements over a

seven day period than they authored over a 6 weeks period. This fact is particu-

larly evident for developer D4 who first authored or delivered 36 elements over six
weeks, but interacted with 899 distinct elements over 7 business days.

An analysis of a developer’s work week also suggests the notion of author-

17The DOI values shown in these graphs were based on the prior seven days of interaction for each
day indicated.

46

authorship

0

100

200

300

400

900

1000

1100

n
u

m
b

e
r

o
f

e
le

m
e

n
ts

Monday
02/02/2009

Tuesday
03/02/2009

Wednesday
04/02/2009

Thursday
05/02/2009

Friday
06/02/2009

interac on

Figure 3.6: Authorship and Interaction over Five Days

ship and interaction capture different aspects of knowledge. The plot in Figure 3.6
shows the number of elements with at least one interaction event over the past

seven business days and the number of elements with a delivery or first authorship
event over the past three months, for each of five consecutive days (T3 to T4).18 Al-

though the number of elements developers interacted with holds relatively steady,
the number of elements delivered or first authored increases prominently on Friday.

This data suggests that the developers created changes throughout the week but de-

livered most of them on Friday. Interaction may thus be a more useful predictor

of recent knowledge whereas authorship helps capture a developer’s knowledge of
code over a longer period of time.

Summary. Authorship and interaction capture different sets of elements and each

can contribute valuable information to representing a developer’s degree-of-knowl-
edge for a source code element. Interaction models a shorter-term component of

a developer’s knowledge of code. Authorship models a longer-term component of
knowledge.

18We used all data available for this analysis: 3 months of authorship and 7 business days of
interaction.

47

3.3 Degree-of-Knowledge Model
Based on our initial study (StudyEXP DOK) and the evidence from the data (Sec-

tion 3.2), our definition of DOK includes one component indicating a developer’s
longer-term knowledge of a source code element, represented by a degree-of-

authorship value, and a second component indicating a developer’s shorter-term
knowledge, represented by a degree-of-interest value. Overall, our degree-of-

knowledge model for a developer assigns a real value to each source code element
(i.e., classes, methods and fields) for each developer.

3.3.1 Degree-of-Authorship

From our initial study of nineteen industrial developers (StudyEXP DOK), we deter-
mined that a developer’s knowledge of a source code element depends on whether

the developer has authored and contributed code to the element and how many
changes not authored by the developer have subsequently occurred (code stability).

We thus consider the degree-of-authorship (DOA) of a developer in an element to
be determined by three factors: first authorship (FA), the number of deliveries (DL)

and the number of acceptances (AC).

3.3.2 Degree-of-Interest

The degree-of-interest (DOI) represents the amount of interaction—selections and

edits—a developer has had with a source code element [52] as described in Sec-
tion 3.1.1.

3.3.3 Degree-of-Knowledge

We combine the DOA and DOI of a source code element for a developer to provide
an indicator of the developer’s familiarity in that element. We use a linear combi-

nation as an initial starting point:

DOK = αFA ∗FA+αDL ∗DL+αAC ∗AC+βDOI ∗DOI

48

3.4 Determining DOK Weightings
Completing our definition of a degree-of-knowledge value for a source code el-

ement requires determining appropriate weightings for the factors contributing
to the degree-of-authorship and for the degree-of-interest. As there is no spe-

cific theory we can use to choose the weightings, we conducted an experiment
(ExperimentDOK) to determine appropriate values empirically. In essence, the ex-

periment involves gathering data about authorship from the revision history of a
project, about interest by monitoring developers’ interactions with the code as they

work on the project and about knowledge by asking developers to rate their level of
knowledge of particular code elements. Using the developer ratings, we then ap-

ply multiple linear regression to determine appropriate weightings for the various
factors.

We report in this section on an initial determination of weighting values based
on the data collected from the seven developers at Site1. Our intent is to find

weightings that serve as a basis to support exploratory investigations of the degree-
of-knowledge model. Whether or not the weightings apply across a broader range

of development situations is discussed in Section 4.2.4.

3.4.1 Method

At time T3 in Figure 3.4, we chose, for each developer, forty random code elements

that the developer had either selected or edited at least once in the last seven days,
or which the developer had first authored (FA > 0) or delivered changes to (DL > 0)

in the last three months. We chose forty as a compromise between gaining data
about enough elements and not encroaching too much on the developer’s working

time. Each developer was asked to assess how well he or she knew each of those
elements on a scale from one to five. To help the developers with the rating scale,

we explained that a five meant that the developer could reproduce the code without
looking at it, a three meant that the developer would need to perform some inves-

tigations before reproducing the code, and a one meant that the developer had no
knowledge of the code. Although this process meant that sometimes we asked the

developer about finer-grained code (a field) and sometimes coarser-grained code (a
class), subsequent analysis of the data did not show any sensitivity to granularity.

49

Through this process, we collected 246 ratings for all seven developers. This

value is less than the 280 possible ratings because some of the elements we ran-
domly picked were not Java elements (the authorship and interaction data also

included XML, Javascript and other types of code) and the developers stated that
they would have difficulty rating them; we therefore ignored these elements.

For this experiment, we consider results to be statistically significant with
p<0.05.

3.4.2 Analysis and Results

For our first experimental setting, we applied multiple linear regression to the data

collected from the source revision logs and the interaction logs collected as the de-
velopers worked. Multiple linear regression analysis tries to find a linear equation

that best predicts the ratings provided by developers for the code elements using
the four variables: FA (first authorships), DL (deliveries), AC (accepts) and DOI

(degree-of-interest). Multiple linear regression is suitable for our data, even though
the user ratings are ordinal, because we are attempting to find an approximation,

not a certain class, for the user ratings.
The values of some of the variables, especially DOI and AC can be substantially

higher than the values of the other variables. To account for these different scales
that could potentially make the weighting factors difficult to ascertain, we applied

the analysis both with and without taking the natural logarithms of the values. With
the developer rating (on a scale of one to five) as the dependent variable, the best fit

of the data (using R Square) was achieved with the values presented in Table 3.5,
when the natural logarithm of the AC and DOI values was used. The resulting

DOK equation is as follows.

DOK = 3.293+1.098∗FA+0.164∗DL
−0.321∗ ln(1+AC)+0.19∗ ln(1+DOI)

Negative values of DOI indicate usage that is not recent. In this analysis, we con-

sidered any negative DOI value to be zero so as to not unduly penalize DOK. If

we had allowed negative DOI values, then elements that the developer had never
interacted with may have a higher DOK value than elements interacted with long

ago.

50

Table 3.5: Coefficients for Linear Regression

Weighting Std. Error p-value

Intercept 3.293 0.133 < 0.001
FA 1.098 0.179 < 0.001
DL 0.164 0.053 0.002

ln(1+AC) -0.321 0.105 0.002
ln(1+DOI) 0.190 0.100 0.059

The FA, DL and AC variables are significant in this model as well as not cor-

related and thus help to explain the user ratings. The DOI variable is very close
to being significant. An analysis shows that the DOI is not correlated to any of

the other variables. Furthermore, applying linear regression to a model without
DOI as a variable, results in weighting factors for FA, DL and AC that are very

close (on average, 4% change) to the ones from the model using DOI. However,
a model without DOI has a lower “goodness of fit”, R Square, of 0.23 instead of

the 0.25 in the other model. These results suggests that DOI still plays a predictive
role in the model, despite not reaching significance. We hypothesize that the lack

of significance is from the lack of elements with a positive DOI in the set of ran-
domly chosen elements. Only 7% of all data points have a positive DOI whereas

28% have a positive FA, 50% have a positive DL and 57% have a positive AC com-
ponent. A replication of the experiment presented in Section 4.2.4 confirms our

hypothesis. It is not surprising that the weighting factor for AC is negative: if a
developer Dev2 changes a code element for which the developer Dev1 has a high

degree-of-knowledge, the Dev1’s knowledge of the element after the change should
be lower since he does not know what was changed. This decrease in knowledge

is consistent with developer’s comments in StudyEXP DOK on code stability (Sec-
tion 3.1.3).

The F-ratio, a test statistic used for determining the predictive capability of the
model as a whole, is 19.6 with p<0.000001. This states that the model based on

our four predictor variables has a statistically significant ability to predict the user
rating. The overall model has an estimated “goodness of fit”, R Square, of 0.25

(adjusted R Square is 0.23). R Square represents the fraction of the variation in our

51

user rating that is accounted for by our variables. The correlation coefficient R that

represents a measure of the overall fit between our predictor variables and the user
rating is 0.50. The standard error of the estimate is 1.17. The 0.25 R Square value

shows that our model does not predict the user rating completely. However, the
p-value of the overall model as well as the p-values for the variables indicate that

there is a statistically significant linear relationship between our model and the user
ratings and that each of the four variables contributes to the overall explanation of

the user rating.

The threats to the validity of ExperimentDOK are further discussed in Sec-
tion 4.3.

52

Chapter 4

Evaluation of the DOK Model

To investigate whether the degree-of-knowledge model can be used to improve a

developer’s productivity and quality of work, we conducted exploratory case stud-
ies. In these case studies, we looked at the three questions that were raised by

others as important in the literature: who should I ask about a part of the system’s
code base [56, 60], which changes to the code base should I know about [25, 44]

and what code do I need to know about [18, 57]. The results of the case studies
provide support that our DOK model can support developers in identifying inter-

esting changes and can improve upon existing approaches for the expertise-finding
problem (Section 4.1).

To examine how individual differences across teams affect the factors of the

DOK model and their relative effect, we collected data from two more develop-
ment sites. We found that the factors used in the DOK model are indicative for a

developer’s knowledge of code regardless of the developer’s environment, such as
the team, project phase or working style. We also found that, despite their signif-

icance, differences in authorship and interaction only have a minor impact on the
usage of the DOK model in the expertise-finding study (Section 4.2.4).

4.1 Case Studies
To determine if degree-of-knowledge (DOK) values can provide value to software

developers, we performed several exploratory case studies. The first case study

53

considers the problem of finding experts who are knowledgeable about particular

parts of the code. The second case study considers a mentoring situation where an
experienced developer might help a new team member become familiar with that

part of the code base (i.e., onboard [18]). The third case study considers whether a
developer’s DOK values can be used to identify which changes to the code might

be of interest amongst the many changes occurring during development.
We conducted these case studies with developers at three different sites, Site1,

Site2 and Site3, with Site1 and Site2 representing different sites of the same com-

pany.1 Site1 involved the seven developers that we already reported on in Sec-
tion 3.2. Site2 involved five professional developers (C1 through C5) who were

building a client/server system, using IBM’s Rational Team Concert2 system as
the source repository. The participants had an average of 10 years of professional

experience. Site3 involved three professional developers (E1 through E3), who
were working on a closed-source development effort; one developer was working

part-time. The participating developers had an average of 2.5 years of professional
experience at the time of the case study.

The first two case studies were conducted with the seven developers at Site1.
We repeated the study on finding experts with five developers working at Site2.

The third case study was performed with three developers at Site3. We conducted
these case studies with developers at the three different sites to accommodate for

developer’s availability and the accessibility to the relevant data as well as for ro-
bustness reasons (see more in Section 4.2.4). A discussion of the threats to validity

of our case studies is presented in Section 4.3.

4.1.1 Finding Experts

The problem of finding experts is to try to identify which team member knows

the most about each part of the codebase. Our degree-of-knowledge model applies
directly to this problem since the developer with the highest DOK value for an

element across team members is likely to be the one with the highest expertise.

1The site numbers used are different from the ones presented in our previous work [32].
2The subjects used RTC version 2.0, and Eclipse 3.4 and 3.5.

54

Method

We conducted this case study at two sites. The seven developers at Site1 have a
strong model of code ownership with code split amongst team members and certain

individuals responsible for certain packages. At Site2, the developers have a model
of mutual code ownership with team members often working on the same code.

Due to the differences in the code ownership style, we performed the case study
with slight adaptations at each site.

At both sites, the code is partitioned into projects, where a project is a logical
group of Java packages. At Site1, where there is a strong model of code ownership,

we chose two projects with which most members of the team had interacted. One
project comprised 21 Java packages; the other comprised 88 packages. For each

class in these packages, and for each of the seven developers participating in our
study, we calculated the DOK value for each class-developer pair and then com-

puted DOK values for each package-developer pair by summing the developer’s
DOK values for each class in the package. For calculating the DOK values, we

used the interaction data over the past seven work days and the authorship infor-
mation over the past three months—three months was the most history available

for these elements at this site due to a major porting of the code three months prior.
Using these DOK values, we produced a diagram, which we call a knowledge

map, that showed for each package in a project, the developer with the highest
DOK for that package. Figure 4.1 presents a part of the knowledge map for one

project.3 In this figure, each developer is assigned a color and each package is
colored (or labeled) according to the developer with the highest DOK values for

that package. For one project, 17 of the 21 packages (80%) were labeled and for
the second, 61 out of 88 (69%) were labeled. Thus, 78 packages in total were

labeled. For the remaining 31 packages, the DOK values for all developers were
not positive, meaning primary expertise might lie outside the team.

We then conducted individual sessions with each of the seven team members.
In each session, we first showed the developer a list of the packages without any

DOK values indicated and asked the developer to write down the name of the
team member whom he thought knows the package the best. When requested,

3Please note this figure is best viewed in color.

55

Figure 4.1: Part of a Knowledge Map

we showed a developer a list of the classes within a package. After gathering this

data, we showed the developer the knowledge map and asked if the map reflected
his view of which developer knows which part of the code.

At Site2, due to the mutual code ownership amongst the developers of this
team, we focused on the class level rather than package level. We again chose

two projects with which most members of the team had interacted. From these two
projects, we chose 96 classes with which most members of the team had interacted.

These 96 classes were spread over 16 packages. For each class and for each of the
five developers participating in our study, we then calculated the DOK value for

each class-developer pair. This time, due to its availability, we used the past six
months of authorship information and the past seven days of interaction data. We

then produced a knowledge map that showed for each class, the developer with the

highest DOK for the class. 89 out of the 96 classes (93%) were labeled by our
approach. For the remaining 7 classes, our approach did not determine a single

56

expert due to multiple developers having the same DOK value for the same class.

As with the developers at Site1, we conducted individual sessions with each of the
five team members and asked them for each class to determine the member whom

he thought knows the class best. After gathering this data, we again showed the
developer the knowledge map and asked if the map reflected his view of which

developer knows which part of the code.
At both sites, this approach runs the risk of developers over-inflating their ex-

pertise in a package/class to avoid not appearing as an expert in anything. We

mitigated this risk because the packages and classes we looked at represent only
a small fraction of the entire system so a developer who did not indicate expertise

in the packages that were part of the case study might still be expert in some other
part of the code.

Results from Site1

We gathered data from six developers (D1-D6); one developer (D7) did not interact
with any of the code in the two projects and thus was not able to provide meaningful

data.
For the 78 of the 109 packages labeled with a single developer, we gathered 468

(6 developers times 78 packages) assignments from the developers participating
in the study. In 301 of these cases (64%), the developers in the study assigned

one developer as being the one that “knows the most” or “owns” the package. In
166 of these 301 cases (55%), the result we computed based on DOK values was

consistent with the assignments by the developers.
The 55% accuracy value is a lower bound of our approach’s performance given

that the developer assignments were sometimes guesses; after seeing the knowl-
edge map the developers realized their assignments were likely wrong. All six

developers stated that the knowledge map was reasonable, using phrases like it is
“close” (D4) and it “reflects [reality] correctly” (D2).

For the 31 out of the 109 packages for which we did not find anyone using the
DOK values, the six developers assigned someone to a package in 104 cases. In 48

of these cases (46%), the packages had not been touched for a number of months

and were created six months ago. Given that our DOK values were based on three-

57

months of data, we were missing the initial authorship data. Developers stated that

in “blank cases” (D4) where our DOK did not determine anyone, we should adapt
the DOK to go back further in time.

Results from Site2

For the 89 of the 96 classes labeled with a single developer, we gathered 450 (5

developers times 90 classes) assignments from the developers participating in the
study. In 352 of these cases (78%), the developers assigned one developer as being

the one that “knows the most” of the class. In 190 of these 352 cases (54%), the
result we computed based on DOK values was consistent with the assignments by

the developers.
The 54% accuracy value is again a lower bound of our approach’s performance

and developers stated that the knowledge map “makes sense” (C1), “seems good”
(C3) and “seeing this now, I think I should have put this person’s name [(the one

found by our approach)] by some of these [classes]” (C5). They also commented
on the fact that for some classes that are very big it is difficult to assign one single

developer that knows the most (C2).

Comparison to Expertise Recommenders

For this task, it is possible to compare to other approaches, since earlier work in ex-
pertise recommenders has considered the problem of finding experts. As described

in Section 2.1.1, these approaches are based solely on authorship information and
do not consider interaction data and the ebb and flow in the knowledge. To approx-

imate the results of these earlier approaches at Site1, we computed experts for each
package by summing up all first authorship and delivery events from the last three

months for a developer for each class in the package. At Site2, we used the six
months of authorship information to compute experts for each class by summing

up all first authorship and delivery events. The developer with the most “experience
atoms” [63]—the most events—for a package/class is the expert.

We applied this expertise approach to the two projects at Site1. In 21 out of the
total 109 packages, the expertise approach identified a different expert developer

than our DOK-based approach. For these 21 packages, we gathered 69 assign-

58

ments, in which one of the six developers assigned one developer as being the one

that “knows the most” of the package. In 34 of these 69 cases (49%), our DOK-
based approach agreed with the developer assignments, whereas the expertise ap-

proach agreed in only 17 (24%) of these cases. Thus, the DOK approach improves
the results for the packages that were labeled differently by the two approaches by

more than 100% and the overall result by 11%.
We also applied this expertise approach to the 96 classes at Site2. In only 3

of these 96 classes did the expertise approach provide a different result than our

approach. This low number of differences likely stems from focusing on the class
level at Site2 compared to the package level at Site1. At Site1, in 72% of the cases

(79 of the 109 packages under consideration) had more than one person working on
classes in the package, resulting in more than one possibility for who is expert for

the classes in that package. At Site2, in only 34% of the cases (33 of the 96 classes
under consideration) had more than one person working on the same class. It is in

these cases where there is more than one author that one would see the differences
appearing between our approach and the expertise approach given our fine-grained

modeling of how programmers are mutually changing the class (or package). For
the 3 classes in which our approach differed from the expertise approach, we had

9 assignments from the five developers. In 3 of these 9 assignments (33%), our
DOK-based approach agreed with the developer assignments, whereas the exper-

tise approach agreed with none of the developer assignments (0%). The agreement
between our approach and the developers in the 3 cases stems from weighting first

authorship actions differently from delivery events and by modeling the ebb and
flow in a developer’s knowledge explicitly via acceptance of changes to the code.

Overall, these comparisons shows that DOK values can improve on existing
approaches to finding experts.

4.1.2 Onboarding

Becoming productive when joining a new development project requires learning
the basic structure of the code base. The process of becoming proficient with a

codebase is known as onboarding [18]. In this case study, we investigated whether
DOK values computed from developers with experience in a part of a codebase

59

could be used to indicate which code elements a newcomer should focus on when

trying to learn that part of the code base.

Method

For this study, we randomly chose three developers (D1, D3, D5) at Site1. We
chose developers from Site1 due to their availability. We asked each developer to

describe which code elements from the areas in which he was working would likely
be the most useful for a newcomer trying to come up-to-speed on the code. We

then generated, for each developer, the twenty elements with the highest DOK and
asked the developer to comment on whether these twenty elements would likely be

helpful for a newcomer.

Results

Only 2 of the 60 (3%) elements generated across all three developers were consid-

ered by the developers to likely be helpful for a newcomer. The other 58 (97%)

elements were described by the developers as not being essential for understanding
the code. The elements generated using the DOK values were, “only implemen-

tations” (D1) or “secondary consumers” (D3). The developers described that a
newcomer only needs to understand basic patterns (D1, D5) and that while the el-

ements generated using DOK could serve as examples, it would be necessary to
traverse up the inheritance hierarchy to locate the elements the newcomer should

study (D1). These comments are consistent with the description of the developers
that they often recommend newcomers to look at API elements. The DOK values

for the API elements were either very low or zero as they were neither changing
nor were they referred to frequently by the developers who authored them. Perhaps

the developers had internalized these APIs and did not need to refer to them.
For onboarding, then, the elements with high DOK values were not considered

helpful. However, the developers comments suggest that the elements with high
DOK might be used as a starting point to find useful elements for onboarding by

following call or type hierarchies. These results reflect what developers stated
in our initial study on the role of program elements (Section 3.1.3)—the more

important the role of an element in the program, the better the knowledge about it.

60

We leave the investigation of this potential use of DOK values to future research.

4.1.3 Identifying Changes of Interest

In many development projects, keeping up with how the work of teammates might

effect one’s work typically requires monitoring the progress of changes. In many
projects, changes to the source code are tied to bug reports either by listing the bug

report in the change or by attaching the change to a bug report (e.g., by attaching
the change itself or meta-information such as a task context [52]). By monitoring

bug reports instead of inspecting individual source code changes, a developer can
be provided more rationale about a change.

Many bug reports for the project change daily. A developer who wishes to
monitor changes of interest typically performs searches over the bug repository to

determine these changes. Assessing which changes matter and which are irrelevant
can be difficult for a developer.

In this case study, we investigated whether a developer’s DOK values can be
used to select changes of interest to the developer because of overlap between the

source code change and the developer’s DOK model.

Method

For this study, we computed a DOK model for each of three developers from Site3.

On a particular day, we determined all bugs that had changed in the previous seven
days; we refer to this set as BC. As these three developers work on multiple projects

and we are analyzing changes of interest for one project, we used seven days to
capture a sufficient amount of change to the project we were targeting. The same

seven days were used for developers E1 and E2; a different seven days were used
for developer E3. These dates differed to accommodate developers’ schedules.

We then determined the subset of bugs that had change information attached to

the bug; we refer to this set as BCI .4 For each bug report with change information
in BCI , we computed the aggregate DOK value for each element in the change

information based on the developer’s DOK model. We formed the set of bugs with

4For this project, the change information were task contexts collected automatically as a devel-
oper worked and thus represented both the elements changed in the revision system and elements
considered by the programmer in making the change.

61

Table 4.1: Size of Bug Recommendation Sets

Developer BC BCI BPOT BR

E1 123 26 20 3
E2 123 26 7 2
E3 76 28 5 1

an aggregate DOK value that was positive; we refer to this set as BPOT . We then
removed the bugs in BPOT when the developer was already mentioned on the bug

as an assignee, reporter or had commented on the bug. The resulting set of bugs are
those we report as bugs of interest to the developer; we refer to this set as BR. For

each bug in BR, we asked the developer whether they had read the bug or whether
they would have wanted to be aware of the bug.

Results

Table 4.1 summarizes the number of bugs in each set for each developer. Developer

E1 was asked about the relevance of three bugs. He noted that he had read each
of these bugs to make sure no further action was required on his part. Developer

E2 was asked about two bugs. She noted that for one of these bugs, she was asked
in person about the contents of the bug although she had not read it previously.

The developer was impressed our approach had picked it out of the many bugs that
were undergoing change. Developer E3 was recommended one bug. He had read

the bug but did not comment explicitly about whether the bug was relevant to his
work.

Overall, our approach provided relevant information to developers in four out
of six cases by recommending non-obvious bugs based on the developers’ DOK

values. Unfortunately, it was not possible to assess false negatives in this study.
Although our case study used a very coarse-grained metric to determine relevance

of bugs using DOK values, we were able to easily recommend more relevant bugs
than noise.

62

4.1.4 Case Studies Summary

The case studies we conducted supply initial evidence that our model can provide
value in scenarios such as expert finding and identifying changes of interest. The

case studies also show that our model does not adequately reflect a developer’s
knowledge for API elements. We discuss how our approach for approximating

DOK can be improved in Section 7.1.3. This initial evidence suggests that further
study of the DOK model is warranted. In particular, the weightings for the fac-

tors contributing to the DOK model and the appropriate amounts of data to use to
compute DOK values require experimentation with more developers in a greater

variety of situations.

4.2 Robustness of the Model
Our case studies provide initial evidence that the DOK model can help develop-
ers determine who to ask about parts of the code base and of which changes they

should be aware. These case studies leave open the question of whether the weight-
ings for the factors contributing to the DOK model are robust over different devel-

opment sites, teams and situations. A DOK model tailored specifically towards the
developers at Site2 might, for example, provide better results for the expert finding

case study we performed at that site. To investigate the robustness of our model
and how differences could influence the case studies, we collected data from five

developers (C1 through C5) at Site2 and two developers at Site3 (E1 and E2).
In the following, we report on the differences in authorship and interaction be-

havior between the sites and the effect that these differences have on the weighting
factors. We also revisit the expert finding case study and look at how a DOK model

based on weighting factors tailored specifically towards Site2 performs.

4.2.1 Differences in Development Teams

We gathered data from development teams at Site2 and Site3 to compare it to the
data we gathered from Site1 and presented in Section 3.2. Due to accessibility

to the data and developer’s availability, the developers from Site3 were working
at the same site, but are different to the ones reported on in the previous section

(Section 4.1). The team at Site3 involved two professional developers (both male),

63

who build open source frameworks for Eclipse as part (but not all) of their work

and who use CVS5 as their source repository system. One developer had three
years of professional experience, the other had five years.

Authorship

Both sites, Site2 and Site3, show a lower rate of change in authorship information

than Site1. Over a period of six weeks, developers at Site2 have a median number of
1890 accept events (range: 1176 to 2781) and developers at Site3 a median of 2081

(range: 1186 to 5710). These numbers are lower than the ones at Site1 (median of
62500), but even at the lower rate, a substantial amount of the code in a developer’s

environment is changing each day.
For developers at Site2, the rate of first authorship events (median: 53.5; range:

0 to 208) and delivery events (median: 121.5, range: 17 to 315) is also lower
than for developers at Site1 with a median of 323 for first authorship and 230 for

delivery events. Developers at Site3 had a higher rate of first authorship (median:
398.5, range: 78 to 2312) and delivery events (median: 602, range: 157 to 2712)

than developers at Site1. Both sites, Site2 and Site3, show similarly high variations
as Site1 across and within developers with respect to first authorship and delivery

events. This can also be seen in the differences in the means and the high standard
deviations presented in Table 4.2.

There are several potential reasons for the differences in the numbers between
developers at different sites. First, the code at Site2 and Site3 is smaller and is

being worked on by a smaller team, potentially causing a different event profile,
in particular causing less accept events to occur. Second, there are individual fac-

tors such as different models of code ownership (see Section 4.3). Third, different
teams were in different project phases over the period of time for which we col-

lected the data. Finally, whereas the source repository system in use at Site1 and
Site2 supported atomic change sets with explicit accept events occurring within

the development environment, at Site3, the source revision system lacked both of
these features. Instead, we inferred delivery events based on revision information

to source code elements; if a developer performed several commits to the revision

5www.nongnu.org/cvs, verified 19/11/10

64

www.nongnu.org/cvs

Table 4.2: Average of Six Weeks of a Developer’s Authorship Data Over a
Three Month Period (FA = First Authored, DL = Delivered, AC = Ac-
cepted, Change stands for the change in elements per week; subjects C1
to C5 are from Site2, subjects E1 and E2 from Site3)

Subj. # Events # Distinct Elements
FA DL AC FA & DL Change

C1 46 (±33) 71 (±29) 1945 (±510) 84 (±51) 16% (±18%)
C2 98 (±45) 225 (±62) 1836 (±563) 212 (±48) 10% (±16%)
C3 7 (±8) 32 (±20) 2134 (±518) 24 (±27) 23% (±33%)
C4 63 (±22) 118 (±27) 1885 (±505) 121 (±33) 17% (±14%)
C5 157 (±70) 271 (±62) 1879 (±324) 205 (±56) 10% (±13%)

E1 225 (±128) 349 (±141) 3388 (±1374) 446 (±237) 16% (±21%)
E2 1035 (±802) 1262 (±890) 1665 (±315) 1807 (±1496) 9% (±9%)

system as part of one logical change, we record this as multiple delivery events.

The lack of an explicit accept event that could be logged meant that we had to in-
fer at the end of each day that all outstanding changes were accepted, potentially

increasing the accept events.
The change per week in the unique elements a developer first authored or deliv-

ered changes to, is again low with 15% at Site2 and 9% at Site2, providing further
evidence that authorship captures a longer-term component of knowledge.

Interaction

Table 4.3 presents the interaction data from Site2 and Site3. The median number of

interaction events each developer had over the last seven work days, is in a similar
range at all three sites. Developers at Site2 had a median of 8594 (range: 1065

to 20291) interactions over seven working days, developers at Site3 had a median
of 6191 (range: 2151 to 10152) interactions over seven working days, compared

to a median of 7823 (range: 3296 to 12841) interaction events at Site1. Different
to the other two sites, developers at Site2 interacted with relatively few distinct

elements, with a median of only 227 (range: 58 to 634), despite to having the most
interaction events on average. In comparison, developers at Site3 interacted with a

median of 887 (range: 446 to 1271) distinct elements and developers at Site1 with

65

Table 4.3: Developer’s Interaction Data Averaged Over Five Work Days (sub-
jects C1 to C5 are from Site2, subjects E1 and E2 from Site3)

Subj. # Interaction # Distinct # Els with Change in
Events Elements pos. DOI pos. Els

(over 7 days) (over 7 days) (per day) (per day)

C1 8867 (±522) 210 (±13) 35 (±7) 19% (±19%)
C2 2467 (±1332) 96 (±39) 17 (±10) 54% (±37%)
C3 17596 (±2772) 419 (±46) 21 (±0) 0% (±0%)
C4 17654 (±2701) 552 (±99) 28 (±4) 11% (±13%)
C5 7037 (±836) 232 (±27) 24 (±4) 34% (±26%)

E1 8459 (±1747) 987 (±248) 60 (±13) 60% (±9%)
E2 3931 (±2075) 695 (±285) 61 (±20) 61% (±19%)

a median of 898 (range: 514 to 1651). When looking at the daily change of the set

of elements with a positive DOI, the change at Site3 is with 61% almost as high as
at Site1 (68%), whereas, on average, only 23% of the elements changed per day at

Site2.
The differences in interactions between individuals is again quite substantial as

it depends on factors such as the individual’s role on the team, the codebase size,
and what the developer was working on over the past seven days. For example,

one developer (C3) was gone for several days causing the change in elements to be
zero. Furthermore, developers at Site2 were working for parts of the data collection

in a testing phase, which might have caused the lower number of distinct elements
they were interacting with. The lower number in overall interaction events at Site3

might be due to the developers working only part-time on the project. We discuss
these issues further in Section 4.3.

4.2.2 One Model for All

To determine how different teams affect the weightings initially computed at Site1,
we conducted an experiment similar to the one described in Section 3.4 with the

teams from Site2 and Site3. As we did at Site1, we again chose forty random code
elements for each developer with the same characteristics as at Site1—the devel-

oper had either selected or edited the code element at least once in the last seven

66

Table 4.4: Coefficients for Linear Regression over all Sites.

Weighting Std. Error p-value

Intercept 3.223 0.081 < 0.001
FA 0.962 0.134 < 0.001
DL 0.213 0.037 < 0.001

ln(1+AC) -0.273 0.068 < 0.001
ln(1+DOI) 0.270 0.049 < 0.001

days, or first authored or delivered changes to in the last three months. We asked
each developer to score the presented elements from one to five based on how

well he or she knew each of these elements. In total, we collected 525 ratings for
all fourteen developers. We applied multiple linear regression to the data, again

using the four variables FA (first authorships), DL (deliveries), AC (accepts) and
DOI (degree-of-interest) and applying the analysis for all possible combinations

with and without taking the natural logarithms of the values. For this experiment,
we took into account three months of authorship and seven work days for interac-

tion for all three sites. The best fit of the data to the developer rating (dependent
variable) was achieved with the values presented in Table 4.4 using the natural

logarithm for AC and DOI resulting in the following DOK equation:

DOK = 3.223+0.962∗FA+0.213∗DL
−0.273∗ ln(1+AC)+0.270∗ ln(1+DOI)

Using all data, all four variables are now significant in the model, the F-Ratio

is 30.9 with p<0.000001 (F-Ratio for Site1 was only 19.6) and the standard error of
the estimate 1.19. This states that our model based on the four predictor variables

has a statistically significant ability to predict the user ratings. The R Square is 0.19
(adjusted R Square is 0.19), lower than the 0.25 R Square for the linear regression

taking into account only Site1. The 0.19 R Square indicates that our model does
not predict the user rating completely and the fact that it is even lower than before

suggests that there might be site specific factors. One reason that might also affect
the results is that in the 525 randomly picked data points, we now have 11% (before

only 7%) with a positive DOI, 20% (before 28%) with a positive FA, 47% (before
50%) with a positive DL and 48% (before 57%) with a positive AC.

67

Overall, the weighting factors for all four variables changed, on average, by

only 25% from our initial model. The weighting factor for FA changed from 1.098
to 0.962, DL from 0.164 to 0.213, AC from -0.321 to -0.273 and DOI from 0.190 to

0.270. Given that a developer, on average, only has 1.4 (SD = 0.4) first authorship
or delivery events for each element he is making changes to and accepts 2.0 (SD =

0.4) changes for each element he accepts changes for over a period of six weeks,
the changes in the authorship variables appear relatively minor. Considering the

vast differences in authorship and interaction behavior between the different sites

and developers, this suggests that our initial model can predict DOK values with
reasonable accuracy, even when the environments from which the data was col-

lected have different profiles.

4.2.3 A Site-Specific Model

Despite the small differences between our initial model and the model for all sites

combined, there are quite substantial differences in the authorship and interaction
behavior between different sites. A DOK model tailored specifically to developers

from one site might substantially improve upon our initial model. Therefore, we
applied multiple linear regression to the data that we gathered from Site2.6 The best

fit was achieved with the values presented in Table 4.5 resulting in the following
DOK equation:

DOK = 2.919+0.749∗FA+0.286∗DL
−0.044∗AC+0.353∗ ln(1+DOI)

This time, the weighting factors differ, on average, by 70% from our initial
model. In particular, the weighting factor for DOI is substantially higher, with the

variable being significant, whereas the weighting factor for first authorship is lower.
Also, the best fit was achieved without taking the natural logarithm of AC and AC is

only close to being significant in this model. These differences are not surprising
considering the lower rate of authorship events and the therefore relatively high

rate of interactions. The F-Ratio in this case is 11.0 with p<0.000001, a standard

error of 1.23, and an R Square of 0.19 (adjusted R Square of 0.17).

6Due to the small number of developers available at Site3, we chose to only create a site-specific
model for Site2.

68

Table 4.5: Coefficients for Linear Regression for Site2.

Weighting Std. Error p-value

Intercept 2.919 0.120 < 0.001
FA 0.749 0.275 0.007
DL 0.286 0.082 < 0.001
AC -0.044 0.023 0.060

ln(1+DOI) 0.353 0.062 < 0.001

To evaluate the impact of a site-specific model, we applied the Site2-specific
DOK model to the expert finding case study we conducted at Site2 and compared it

to the results we obtained by using our initial model. It turns out, that using the new
weighting factors, all assignments stay the same as the ones computed using our

initial model. One potential reason for this result is that the developers did not have
a lot of interactions with the classes under consideration over the past seven days.

The result also suggests that our initial model can be used to predict reasonable

DOK values in different environments.

4.2.4 Robustness Summary

Despite big variations in authorship and interaction behavior between different de-

velopment sites and even within development teams, our model provides value in
case studies across developers and different environments. Our initial model is

relatively stable when adding more data points and performs equally well as a site-
specific DOK model in the expert finding case study. This evidence suggests that

our model has a certain robustness and can be beneficial independent of a particular
site. However, even though we chose three different teams from different locations

and working on completely different projects, future work should include further
studies in a greater variety of situations and over different project phases of teams.

69

4.3 Threats to Validity
The degree-of-knowledge (DOK) model is influenced by both the software devel-

opment process and the software system being developed. We detail a number
of the factors influencing DOK and how they pose threats to the validity of the

experiments and studies we conducted.

4.3.1 Amount of Data

Our experiments on determining the weighting factors were based on three months

of authorship data and seven working days of interaction data. We chose this dura-
tion for authorship data based on interviews in StudyEXP DOK . In these interviews,

developers had suggested three months as a lower bound for the period of time in
which one still has knowledge about code after authoring it. Also based on our

initial study, we chose seven working days of interaction data. Seven working days
was the average number of working days that showed a significant result for the

correlation between a developer’s knowledge and his interaction.

4.3.2 Multiple Stream Development

The seven developers we studied at the first site share code in streams, which

are similar to branches in a source revision system. The developers deliver their
changes to one or more streams and accept changes from streams into their workspace.

Normally, the developers we studied work only on a small number of streams.
However, during our data collection and study period, some of the developers

were working on many streams: “it’s not a normal situation, right now [it is] very
branched out, [and] I almost spend more time merging than working on it” (D5).

When streams representing different versions of the same code are merged, addi-
tional authorship events are recorded that could skew the results of our experiment

and studies. We tried to minimize the influence of these extra events by focusing
on only one major stream for each developer.

4.3.3 Project Phase

Developers interact differently with a codebase depending on the phase of the

project on which they are working. In the week in which we collected interaction

70

data at Site1 to determine the DOK weightings, the team was in a testing phase for

an upcoming milestone release. Some of the developers reported that they were
only performing minor adjustments to the code but not really making any bigger

changes to ensure the code did not break. Some developers stated that a couple
of months before they were working on new features, during which a substantial

amount of new code was created and the focus of individual developers in a part of
the codebase was higher.

The number and size of change sets and the tasks of the developers (i.e., testing

versus feature development) influences the authorship and interaction data. By
taking into account three months of authorship data, seven days of interaction data

and also confirming the results of the DOK weighting experiment at a second site,
we have tried to minimize the impact of project phases on our results. Further

longitudinal studies are needed to better understand the impact of project phases
on indicators such as DOK.

4.3.4 Individual Factors

As previously discussed, different teams have different styles of code ownership,
varying from individual ownership of whole packages to mutual ownership for

each class. The style of code ownership within a team influences the data input to
determine DOK values. We have tried to mitigate the risk of these different styles

by considering for one scenario whether the weightings determined for one team
applied to another team.

A developer’s activity also has an influence on the data. For instance, one
developer in our study was working on more than four different streams and was

expending effort that week merging streams together. When we applied linear
regression on the data points gained from only this developer, the result was not

significant. For other developers, the goodness of fit of the model is more than
twice as good as the goodness of fit for all developers. Thus, while individual

factors, such as the team’s style of code ownership and activities of individuals
influence results, by having several developers, each with a different activity, we

have tried to minimize the risk of individual biases.

71

Chapter 5

The Information Fragments
Model

Each day, a developer faces questions over multiple kinds of information, such
as work items, documentation and web feeds, to name just a few. To support a

developer in integrating information according to his individual preference to an-
swer this type of questions, we developed the information fragments model. This

developer-centric model allows a developer to automatically compose relevant por-
tions of information and to easily choose how to display the composed information.

In an exploratory study, StudyEXP FR, we investigated the range of questions
that span across multiple kinds of information and that our model should support.

Section 5.1 presents the 78 questions we identified in the study. We then discuss
the difficulties in answering these types of questions with existing approaches (Sec-

tion 5.2), before presenting the information fragments model in Section 5.3.

5.1 Developers’ Questions
To determine the specific questions developers need answered that span different

kinds of information, we interviewed eleven experienced software developers. We
learned about 78 questions that the developers face and about the differences in

the interpretation of very similar questions. To ease presentation, we use the term
domain in the remainder of the dissertation to refer to information of a particular

72

kind, such as the domain of work items or the domain of source code.

5.1.1 Subjects and Interview Process

We conducted open interviews with eleven professional developers from three dif-

ferent sites of one company. These developers represented a spectrum of roles and
experience. The roles ranged from junior developer to team leads. The experience

of these developers ranged from 1 to 22 years.
In a pilot for this study, we asked developers directly about questions requir-

ing information from multiple domains that occur for them during development.
Through the pilot, we found that the developers had difficulty understanding the

kinds of questions that might meet this criteria.
Thus, we changed the interview method to start with a brief demonstration of a

small tool we built that enabled the composition of source code, change sets, work
items and team information. Our intent in showing this prototype was to stimu-

late developers to think about questions that might arise when such composition
is possible. We asked the developer to describe such questions and how he would

want them answered. Throughout the interview, we adapted our questions to the
scenarios the developer described.

Each interview session was between 15 and 60 minutes depending on the de-
veloper’s availability and responsiveness. Throughout each session, the interviewer

(the author of this dissertation) took handwritten notes. We parsed our notes look-
ing for the questions developers stated, as well as the meaning of the questions to

the developers.

5.1.2 Interview Results

From the eleven interviews, we determined 78 questions that span across multiple

domains. Only one of the 78 questions was stated by two different developers; the
other 77 questions were each stated by only one of the developers. Table 5.1 lists

all 78 questions. These questions span eight domains of information: source code
(SC), change sets (CHS), teams (T), work items (WI), web sites and wiki pages

(WW), comments on work items1 (CO), exception stack traces (ST) and test cases

1Based on the developers’ statements, we considered emails as being equivalent to comments.

73

(TC). Table 5.1 shows which domains, based on developer statements, are needed

to answer each question. For ease of reading, we have grouped the questions into
categories that roughly correspond to the domains needed to answer the questions.

Some questions are annotated with a *, which denotes questions explicitly stated by
at least one developer. All other questions are interpretations we have made as the

interviewed developer either gave a long statement to describe the scenario or more
context was needed to be able to state the question. The majority of the questions

(51 of the 78) are based on the domains we presented in our demonstration at the

start of the interview; the remaining questions incorporate a domain we did not
present.

74

Table 5.1: Developers’ Questions and the Operators and Domains for Desired Answers
(*∶ question explicitly stated by a developer, id∶ identi f ier matching, t∶ text matching)

Question O
pe

ra
to

r

So
ur

ce
C

od
e

C
ha

ng
e

Se
ts

Te
am

s
W

or
k

It
em

s
C

om
m

en
ts

W
eb

/W
ik

i
St

ac
k

Tr
ac

es
Te

st
C

as
es

Who is working on what (people specific)
1. Who is working on what?∗ id X X X X
2. What are they [coworkers] working on right now?∗ id X X X X
3. What have other people been working on?∗ id X X X X
4. How much work [have] people done?∗ id X X X X
5. Who changed this [code], focused on person?∗ id X X X X
6. Who to assign a code review to? / Who has the knowledge to do the code

review?
id X X X X

7. What [have] people done lately?∗ id X X X X
8. Who is working on what at the moment?∗ id X X X X
9. What has [a particular team member] been doing?∗ id X X X
10. What have people been working on?∗ id X X
11. Which code reviews have been assigned to which person?∗ id X X
12. Who to assign a code review to? / Who has time for a code review? id X X

Changes to the code (code specific)
13. What is the evolution of the code? id X X X X
14. Why were they [these changes] introduced?∗ id X X X X
15. Who made a particular change and why? id X X X X
16. What classes has my team been working on?∗ id X X X X
17. What are the changes on newly resolved work items related to me? id X X X X
18. Who is working on the same classes as I am and for which work item? id X X X X
19. Who changed this [code], focused on code?∗ id X X X X
20. What is the whole history of this file? id X X X X
21. What has been happening on [this] class?∗ id X X X X
22. What [have] people changed lately?∗ id X X X X
23. What changes have been made and why?∗ id X X X
24. What has changed between two builds [and] who has changed it?∗ id X X X
25. Who has made changes to my classes? id X X X
26. Who is using that API [that I am about to change]?∗ id X X X
27. Who created the API [that I am about to change]?∗ id X X X
28. Who owns this piece of code? / Who modified it the latest?∗ id X X X

75

Table5.1: (Continued)

Question O
pe

ra
to

r

So
ur

ce
C

od
e

C
ha

ng
e

Se
ts

Te
am

s
W

or
k

It
em

s
C

om
m

en
ts

W
eb

/W
ik

i
St

ac
k

Tr
ac

es
Te

st
C

as
es

29. Who owns this piece of code? / Who modified it most?∗ id X X X
30. Who to talk to if you have to work with packages you haven’t worked

with?
id X X X

31. How much has changed [in the project code]?∗ id X X X
32. [Is anyone] intending to commit anything to that class?∗ id X X X
33. Where have changes been made related to you?∗ id X X X
34. Who is responsible for this code? (Who made the latest change?) id X X X
35. Which team is responsible for this code? (Who has made most changes to

the code?)
id X X X

36. What classes have been changed?∗ id X X
37. [Which] API has changed (to see which methods are not supported any

more)?∗
id X X

38. What’s the most popular class? [Which class has been changed most?]∗ id X X
39. Which other code that I worked on uses this code pattern / utility function? id X X
40. Which code has recently changed that is related to me? id X X
41. How do recently delivered changes affect changes that I am working on?∗ id X X
42. What code is related to a change? id X X
43. Where has code been changing [this week]?∗ id X X
44. Which classes have been changed between two builds? id X X
45. What is going on [in a package]?∗ id X X
46. [Which] changes [have been made] between these days or after this day?∗ id X X
47. What classes in this component were modified since version [...]?∗ id X X

Work item progress
48. What is the recent activity on a plan item? id X X
49. Which features and functions have been changing?∗ id X X
50. Has progress been made on blockers (blocking work items) in your mile-

stone?
id X X

51. Which work items/plan items are most active? id X X
52. How active is the [plan item]? [How many comments were made on re-

lated work items?]∗
id X X

53. Are there any new comments on interesting work items? id X X
54. [What are the] emails related to line items and defects that are features?∗ t X X
55. Which work item has recently changed that is related to me? id X X X

76

Table5.1: (Continued)

Question O
pe

ra
to

r

So
ur

ce
C

od
e

C
ha

ng
e

Se
ts

Te
am

s
W

or
k

It
em

s
C

om
m

en
ts

W
eb

/W
ik

i
St

ac
k

Tr
ac

es
Te

st
C

as
es

56. What are the comments on newly resolved work items that are related to
me?

id X X X

57. Is progress (changes) being made on plan items? id X X
58. What is the activity on a line item (feature)? id X X

Broken builds
59. What caused this build to break? (Which change caused the stack trace?) id X X X
60. What has caused this build to break? (look at stack trace and intersect

with change sets)
id X X

61. Who caused this build to break? (Who owns the broken tests?) id X X X X
62. Who changed the test case most recently that caused the build to fail? id X X X X
63. Which changes caused the tests to fail and thus the build to break? id X X X X

Test cases
64. Who owns a test case? (Who resolved the last work item that fixed the test

case?)
id X X X X X

65. Who is responsible for a failing test case? (stack trace) id X X X X X
66. How do test cases relate to work items? id X X X X
67. How do test cases relate to packages/classes? id X X

References on the web
68. Which API has changed (check on web site)? t X X
69. [Is an entry] in newsgroup forum addressed to me because of the class

mentioned?∗
t X X

70. What is coming up next week [for my team]? [What is my team doing?]∗ t X X
71. What am I supposed to work on [plan on wiki]?∗ t X X
72. Who has to do what? [team activity]∗ t X X

Other Questions
73. How is the team organized?∗ id X X X
74. Who has made changes to [a] defect?∗ id X X X
75. Who has made comments in [a] defect?∗ id X X X
76. [What is] the collaboration tree around a feature?∗ id X X X
77. Which conversations in work items have I been mentioned [in]?∗ t,id X X X
78. What are people commenting [on] all work items I am involved with?∗ id X X X

77

In our interviews, we focused on the variety and richness of questions rather

than their frequency. From the interviews, we determined that some of these ques-
tions are considered a couple of times a day, such as “What classes have been

changed?”(36). On other questions, developers spend a lot more time. One devel-
oper stated that he spends 70% of his time on the question “Which conversations

in work items have I been mentioned [in]?”(77) to make sure he does not block
other developers from working. A more extensive field study is needed to measure

exactly how often each of these questions arises throughout a work day or week,

or how much time a developer spends on each of these questions.
Some of the questions sound very similar in their wording, but their answer

differs depending on the individual interpretation of the developer. For example,
even though the two questions “Who is working on what?”(1) and “What have

people been working on?”(10) seem very similar, the answer to question (1) uses
the four domains SC, CHS, T and WI, whereas the answer to question (10) uses

only the two domains T and WI.
A lot of the questions also require the same domains to be answered. How-

ever, the developers expressed a desire for the answer to be presented in different
ways. “Who is working on what?”(1) and “What classes has my team been working

on?”(16), both require information on SC, CHS, T, and WI to lead to a meaningful
answer. However, based on developers’ statements, “Who is working on what?”

should display the team members first and the work they have done below with
the changed source code last, whereas “What classes has my team been working

on?”, the developer wanted to see the elements in the opposite order. In Table 5.1,
(1)-(8) and (13)-(22) are two blocks of such questions, where the questions require

the same domains but different presentations.
A last subtlety comes with the selection of the actual information. Similar

questions often just differ in small details of the information of relevance. However,
this difference influences the size of the result and the ease of interpreting it. For

example, “What has changed between two builds and who has changed it?”(24)
as well as “Who has made changes to my classes?”(25) require information from

the same domains. The latter question is however only looking for classes the
developer is working on, whereas the first (24) refers to all classes of the project.

78

5.1.3 Threats

Because of difficulties we had getting subjects to articulate questions involving
multiple domains, in this study, we stimulated developers to think about such ques-

tions by demonstrating a very early version of the tool we subjected to later testing
(Section 6.2). This demonstration may have biased developers to state questions

answerable with our approach. We believe this threat to validity is small as other
researchers have found similar questions (e.g., [55–57]), adding credence to these

being questions developers ask when working. The list of questions we present is
partial and is not representative of all multi-domain questions a developer may ask.

5.2 Answering Questions Using Existing Approaches
To answer questions over multiple kinds of software system information, there are

mainly two existing classes of approaches: linked views in a programming envi-
ronment and query languages. We consider whether and how each of these broad

classes of approaches supports the answering of the 78 questions we identified
from developers.

5.2.1 Using an Integrated Development Environment

Current integrated development environments (IDEs) provide one or more views
for each kind of information. Answering the 78 questions in these environments

requires a developer to follow links between related information across multiple
views and requires a developer to manually correlate the viewed information. Ra-

tional Team Concert (RTC), a team collaboration platform on top of the Eclipse

IDE, should be well-positioned to answer questions across multiple domains of
information as it provides support for a broader range of information than other

IDEs. To see how a developer might use an IDE to answer a question of interest,
let us consider the use of RTC to answer two of the 78 questions questions adapted

to data from a commercial software system development. We provide more detail
on these questions and the data later in Section 6.3.2.

The first question we consider is “In the last week, who on the “. . . ” team
has been working on the classes in package “. . . ”?” (Q3 in Table 6.3). To answer

this question in RTC, one would start out from the package explorer, a view that

79

presents a hierarchy of Java code (projects, packages, classes and more). To in-

vestigate who made changes to the package, the developer must click through the
hierarchy to reach the class level and then must open the change history for each

class in the history view by selecting the corresponding action within the context
menu of each class. Once the change information is populated in the history view,

the developer must identify the changes that were made in the last week by look-
ing at the column on the creation date and then he has to determine who made the

changes from the column on the creator. He has to do this—opening the history

view and identifying the relevant information in it— for each class in the package
under consideration. For the commercial project data we use later in Section 6.3, a

developer has to open the history view for 83 different classes and identify the team
members that made changes over the last week. Switching back and forth 83 times

between the two views, the package explorer and the history view, and scanning
the information within the view is tedious and time consuming. For the data we

considered, all of this work results in determining only two developers who made
changes to classes in the package over the last seven days.

The second question we consider is “What is the most popular class in the
SCM project? (Q6 in Table 6.3)”. An answer to this question requires determining

which class has changed most over the last month. As the views in RTC either
focus on source code or on change sets, answering this question in RTC is infeasi-

ble for a human to perform. Starting from the source, for the commercial project
data we consider, a developer would have to go through each of the 200 packages

of the project, open the history view for each of the more than 1000 classes in
those packages and count the number of entries in the view. From the change ex-

plorer which shows change set information, the question cannot be answered as the
change explorer does not provide the number of changes that were made to each

class.

5.2.2 Using a Query Language

Query languages, such as SQL, are sufficiently expressive to answer questions over

multiple kinds of information. However, the use of a query language is not trivial;
a developer has to be trained to use the query language and even once trained,

80

writing the queries is not always an easy task.

Assuming that different kinds of information are stored in different tables, an-
swering a question such as “In the last week, who on the SCM team has been

working on the classes in package A?” (Q3 in Table 6.3) in SQL can be achieved
by joining information on the team, the change sets and source code. The following

query provides an example of how this question might be answered.

SELECT t.name
FROM teamInfo AS t, changeSet AS chs,

sourceCode AS sc
WHERE t.groupId = ’SCM’ AND

chs.resolved >= ’#7_DAYS_AGO’ AND
sc.packageId = ’A’ AND
t.name = chs.author AND
chs.changedElement = sc.id

ORDER BY t.name

Although this query looks simple, it is not easy to get it right on the first try.

A study on query languages has shown that users with some computer and little
database experience, after substantial training (1.5 hours), can write queries that

join elements from two domains in a mean time of 5.1 minutes [15]. Considering
that the 78 questions we identified require on average 2.9 information fragments for

the answer, a developer would, on average, likely spend over 5 minutes to answer
a single question. Given the vast amount of questions a developer faces, he would

have to continuously write or adapt queries. We believe that this approach is not
practical.

5.3 Information Fragment Model
To enable a developer to practically answer the wide range of questions that may

arise, we introduce a model that supports the composition and presentation of in-
formation fragments.

81

5.3.1 Example of Use

We introduce our model by showing how it can be used to answer a specific version
of the more generic question, “What have people been working on?”(Question 10

in Table 5.1). We define the approach in Section 5.3.2 to Section 5.3.4.
Consider a software developer Sue who gets back to work after a week of hol-

idays. When she starts working, she wants to know what other developers have
been working on while she was away. For this question, Sue is interested in two

different information domains: teams and work items. From these two domains,
Sue is interested in certain portions of information, which we refer to as informa-

tion fragments. One information fragment consists of the developers of her team
(Figure 5.1(a)), and the second consists of the work items on which people have

been working (Figure 5.1(b)). In our approach, information fragments are modeled
as graphs with nodes and edges. Nodes represent uniquely identifiable items with

properties; at least one property is specified as a unique identifier (e.g., id in Fig-
ure 5.1(b)). For example, a work item includes an identifier (id), a creator and an

owner property. Edges represent relationships between items, such as a “duplicate-
of” relationship between two work items, stating that a work item is a duplicate of

another work item.
Each fragment in isolation is not meaningful to Sue. However, by compos-

ing these two fragments, Sue can create the context that allows her to answer the
question at hand. Our approach provides composition operators to compose infor-

mation fragments. When Sue composes the two information fragments using⊗id , a
new information fragment (Figure 5.1(c)) is created from the input fragments with

new edges introduced between nodes based on the nodes’ properties. For example,
in the new information fragment, a new “owner” edge is created between David

and the defect 303, because the owner property of the node representing defect
303 matches the identifier of the node representing David. Another edge is created

between Julie and work item 316 because Julie is the owner and creator of 316.
As the answer to her question, Sue likes to see the work items ordered by devel-

opers. Therefore, she chooses a presentation that orders nodes of the team fragment
(t) above the ones from the work item fragment (wi); this presentation is referred

to as a projection (ϕ(t,wi)). Figure 5.1(d) shows the result of this projection. In

82

Julie

id: Julie

David

id: David

Allen

id: Allen

D 303: Popup can not be cancelled

id: 303

Creator: Paul

owner: David

WI 315: Can’t cancel prompt

id: 315

creator: Julie

owner: David

WI 317: Empty entries in history

id: 317

Creator: Steve

owner: Paul

WI 316: Create reusable ac!ons

id: 316

creator: Julie

owner: Julie

duplicate of

Julie

David

Allen

WI 316

D 315

D 303

WI 317

duplicate of

owner

owner

creator

creator,
owner

(a) Team Fragment

(b) Work Item Fragment

(WI = work item, D = defect)

(c) Composed Fragment

(d) Fragment Presentation (T-WI)

(e) Fragment Presentation (WI-T)

Figure 5.1: Approach to Answer the Question “What have people been working on?”

83

this presentation, her teammate Allen does not show up in the final presentations

as he did not work on, and is thus not connected to, any work item in the fragment.
Alternatively, Sue might be interested in seeing her team members in context

of the work items on which they have been working. In this case, she would use a
projection ϕ(wi,t). This projection shows the work items her fellow team members

have been working on first and the developers below (Figure 5.1(e)). By separating
the presentation from the composition of the information, either interpretation of

the question is easily supported.

5.3.2 Information Fragments

An information fragment is a portion of development information recorded about
the software system of interest. We describe an information fragment, building

from the foundations of a fragment: nodes and edges.
A node in an information fragment captures an item of information, such as

defect 303 or team member Julie. Each node must be uniquely identifiable within
its domain of information, where a domain defines the set of types for nodes in that

domain, e.g., in the source code domain, the type of a node can be field, method
or class. Each node has, based on its type, a set of properties that describe the

node. A property is a triple of name, value and domain that denotes the domain
of information to which the property refers, e.g., the owner property of work item

315 in Figure 5.1 has name “owner”, value “David” and refers to domain “teams”.
Each node also has an id property that uniquely identifies the node and refers to

the domain of the node. An exemplary list of domains, types and properties, is
given in Table 5.2; for instance, a defect of the work items domain has an identifier

and information on the creator and owner of the defect, amongst other properties.
Although all types shown in Table 5.2 have the same properties within a domain,

in general, this need not be the case.
An edge represents a relationship between nodes. An edge is directed and can

be labeled with an arbitrary labeling function. The intuition behind an edge is that
it can be based on explicit information, such as a method call, or can be implicit,

inferred from the nodes, such as a relationship between a work item and its author
(team member).

84

Table 5.2: Sample Node Domains, Types & Properties

Domain Types Properties
source code (SC) class, method, field id, referenced source code ele-

ments
work items (WI) defect, work item,

plan item
id, creator, owner, linked change
sets, linked comments

change sets (CHS) change set id, author, changed source code
elements

teams (T) team, team member id, name

comments (CO) comment id, text, author

web/wiki (WW) web page id, text, last updated

An information fragment is a graph F = (V,E), with a set of nodes V and a set

of edges E. An information fragment can either be a base information fragment
(hereafter referred to as a base fragment) or a composition of base fragments. In a

base fragment, all nodes are from a single domain. A node can be part of several
base fragments. Base fragments can be composed to new information fragments

using composition operators as described in the next section.

5.3.3 Composition Operators

A composition operator ⊗ ∶ F1 × F2 ↦ F
′

takes two information fragments F1 =
(V1,E1) and F2 = (V2,E2) and creates a new information fragment F ′ = (V ′,E ′).
The set of nodes of the new information fragment is the union of nodes (V ′ =
V1∪V2). E ′ (E ′ = E1∪E2∪E∗) is the union of E1 and E2 and E∗ (E∗ ⊆ E1 × E2),

a set of newly created directed, labeled edges that are defined based on the specific
composition operator being used. Furthermore, we restrict the composition oper-

ators to be commutative. Thus, the order of the input fragments does not matter.
This constraint is important for the separation of composition and presentation.

We have determined that only two composition operators are needed to support
answering the questions empirically determined from professional programmers

detailed in Table 5.1: an identifier matching and a text based matching composition
operator.

85

ID Matching

The id composition operator, denoted by⊗id , creates a new edge when the identifier
property (id) of one node n1 exactly matches the value of a property p2 of another

node and the domain of property p2 matches the domain of the id of node n1. For
example, when applying ⊗id to the team and the work item fragment in Figure 5.1,

a new edge is created between the node Julie from the teams domain and work
item 315, since the id property of Julie matches the value of the creator property of

work item 315 and the creator property is of domain teams. The label of the newly
created edge is the name of property p2. In our example, the newly created edge

between the team member and the defect is labeled creator.

Text Matching

The text matching operator, denoted by ⊗t , creates new edges when there is an

exact textual match between the identifier property of one node with a textual
property in another node. This operator can be generalized by extending it with

a similarity measure. The similarity of the identifier on the one side and the textual

match on the other side can be based on a text matching measure, such as the Lev-
enshtein [36] or the Hamming distance [40], with a threshold for similarity used to

determine if there is a match. Consider a team member and a comment node. If the
identifier property of the team member has a textual match in the text property of

the comment with a high enough similarity, a new edge will be created. This new
edge between the team member and the comment has properties that describe the

match, such as the similarity value and the location of the match in the comment.
We discuss issues and possibilities surrounding text matching later in the thesis

(Section 7.2.2).

5.3.4 Presentation

Our interviews (Section 5.1) identified variations in the ways developers would

like a composed information fragment to be presented. To support this variety, our
approach provides a projection function that transforms an information fragment

(a graph) into a set of trees. Specifically, given an information fragment F = (V,E)
and an ordering (b f1, ...,b fn) of the base fragments the information fragment is

86

composed of, a projection denoted by ϕ(b f1,...,b fn) creates a set of trees, T S. All tree
roots are nodes of base fragment b f1 for which a path to nodes of base fragment

b fn exists, so that the nodes on the path follow the given order (b f1, ...,b fn). For
convenience, we introduce a mapping function lF (lF ∶ v↦ {F1, ...,Fn} with Fi =
(Vi,Ei) and v ∈Vi for i = 1, ..n) that maps each node to the set of base fragments of
which the node is a part. Formally, for each path (v1, ...,vn) through a created tree

T = (VT ,ET) with T ∈ T S, VT ⊆V and ET ⊆ E the following holds: b f j ∈ lF(v j) for
j = 1, ...,n and there is no other tree T∗ ∈ T S that contains the path. In our example,

ϕ(t,wi) creates two trees (shown in Figure 5.1(d)) that represent all possible paths of
length two from a node of the team fragment to a node of the work item fragment.

Sometimes, a developer needs to count nodes on a particular level in the pre-
sentation for a summary. For instance, several questions are about the relative

occurrences of composed information, such as “What’s the most popular class”
(Question 38 in Table 5.1). Therefore, our model provides a counting function, de-

noted by σ(levelO f (b f)), that counts all nodes on the level of a base fragment b f in
the set of trees. For example, to find out how many work items each team member

worked on in our example, a developer can count the nodes of the team fragment
level (σ(levelO f (t))) in Figure 5.1(e). This tells him that Julie and David each occur

twice in the trees and thus worked on two work items. For simplicity, we use the
short form, σ(b f), to denote the counting function.

87

Chapter 6

Evaluation of the Information
Fragments Model

To investigate whether the information fragments model can support a developer
in answering questions that span across multiple kinds of information according

to the developer’s personal preferences, we examined two aspects: the model’s
expressibility and the model’s usefulness to developers.

We present how all 78 questions determined in the interview study StudyEXP FR

can be expressed using our model (Section 6.1). To allow the investigation of

the usefulness of the information fragments model, we implemented a prototype
supporting the model within an integrated development environment (Section 6.2).

We present the results of a case study, StudyINFR, with 18 professional developers,
showing that the developers were able to easily apply the model to successfully

answer 94% of eight questions posed (Section 6.3).

6.1 Applying the Model
We have applied our model to answer the 78 questions presented in Section 5.1.

Table 5.1 shows the domains and composition operators needed to answer each
question as it was intended by the developers who stated the question. The compo-

sitions shown in Table 5.1 rely on 22 information fragments presented in Table 6.1.
These fragments use various abstractions that we believe are faithful to the mean-

88

ing of the developers’ questions. For instance, we grouped developers’ statements

such as “newly resolved” and “lately” to “recently”. We use the phrase “of interest”
for fragments that refer to a small and specific set of nodes in which a developer

was interested. The major difference between fragments is how the information
source is filtered by time.

Based on developers’ comments about what they wanted to see for the answer,
Table 6.2 shows the answer to each of the 78 questions. We present the answers to

9 of the 78 questions in more detail. We chose the following 9 questions to cover

all eight domains of information, as well as text and id matching, projection and
counting. The selected questions also involve multiple information fragments from

the same domain.

What have people been working on? (10)

As an answer, the developer who stated this question wanted to see the list of his
team members with work items on which they have been active beneath the rele-

vant team member. Applying our model, we first need access to the information
fragments of interest:

T1 the direct team members of the developer,

WI3 work items resolved recently and in progress.
We then apply the composition operator that matches identifiers (⊗id). The com-
position of these fragments can be expressed as

T1⊗id WI3.

As the composition is commutative, the order in which the composition takes place

does not matter.
To display the composed information as desired by the developer we apply a

suitable projection (i.e., team first and then work items)

ϕ(T1,WI3).

Overall, the answer to the question is

ϕ(T1,WI3)(T1⊗id WI3).

Who is working on what? (1)

This question is similar to the one above, but the developer who stated it, wanted

89

Table 6.1: Information Fragments For Answering Developer’s Questions

T1 direct team members of the developer
T2 all team members on the project
T3 team members of interest
T4 the developer

WI1 work items resolved recently
WI2 work items in progress
WI3 work items resolved recently and in progress
WI4 work items of interest
WI5 all work items for last couple of months

CHS1 change sets recently delivered
CHS2 change sets in progress
CHS3 change sets recently delivered and in progress
CHS4 change sets of interest
CHS5 all change sets for last couple of months

SC1 source code of the project
SC2 source code of interest

CO1 comments recently created
CO2 all comments for last couple of months

ST1 stack trace of interest

TC1 test cases of project
TC2 test cases of interest

W1 web site(s) of interest

to also see the changes made to the code. The additional information fragments are:

CHS3 change sets recently delivered and in progress,
SC1 source code of the project.

To reach the answer with our model, we use:

ϕ(T1,WI3,CHS3,SC1)(SC1⊗id CHS3⊗id WI3⊗id T1).

What classes has my team been working on? (16)

Answering this question requires the same information fragments as question (1).

However, the developer’s focus for this question was on the code and he wanted to

90

see the work items and team members in the context of his current project. Com-

pared to question (1), the answer differs only in the order of the projection:

ϕ(SC1,CHS3,WI3,T1)(SC1⊗id CHS3⊗id WI3⊗id T1).

Who owns/modified this piece of code most? (29)

Answering this question requires three information fragments:

T2 all team members on the project,

CHS5 all change sets for the last couple of months, and
SC2 source code of interest.

To find out who made most changes over the last couple of months, the com-

posed information is projected and then the occurrences of the team members are
counted:

σ(T2)(ϕ(SC2,CHS5,T2)(T2⊗id CHS5⊗id SC2)).

Which conversations in work items have I been mentioned [in]? (77)

The developer wanted to see the comments he is mentioned in ordered by work

items.
T4 the developer,

CO1 comments recently created,
WI4 work items of interest.

As textual matches of the developer in the comments are of interest, the team frag-

ment is composed using the text matching composition operator (⊗t). Overall, with
work items first and comments second, this results in:

ϕ(WI4,CO1,T4)(T4⊗t CO1⊗id WI4).

Who is using that API [that I am about to change]? (26)

To determine which other code is using the API the developer is about to change,

two information fragments of source code are required: the API (SC2) and the code
of the project (SC1). With the referenced elements property of source code nodes,

the ⊗id composition operator will create links between the API nodes and other
source code elements that reference (use) them. To determine which developers

use the API, we now only have to compose the change set information (CHS5) and
an information fragment of all team members (T2):

91

ϕ(SC2,SC1,CHS5,T2)(T2⊗id CHS5⊗id SC1⊗id SC2).

What’s the most popular class? [Which class has been changed most?] (38)

Answering this question requires two information fragments: SC1 and CHS5. To

find out, which class has the most change sets delivered to it, the projected infor-
mation is projected and then the classes are counted:

σ(SC1)(ϕ(CHS5,SC1)(CHS5⊗id SC1)).

Which changes caused the tests to fail and thus the build to break? (63)

The developer wanted to trace starting from the stack trace (ST1), the test cases that

failed (TC1) and the corresponding source code elements (SC1). From there, he
wanted to see the actual code that is executed by the test cases (another occurrence

of SC1) and then find the changes (CHS1) that were recently made to the source
code. Overall, he was interested in the changes that caused the test cases to fail, so

together with the projection with the change sets first, the answer to the question is
achieved by:

ϕ(CHS1,SC1,SC1,TC1,ST1)(ST1⊗id TC1⊗id SC1⊗id SC1⊗id CHS1).

Which API has changed (check on web site)? (68)

To stay aware of changes to a third-party API used, a developer stated that he often

monitors web sites that announce API changes. Using the ⊗t composition oper-
ator, the textual matches of the usage of the API in the source code and the API

change announcements on the monitored web site can be determined. Projecting
the composed fragment to source code first shows the developer the elements that

call API that has a match on the web site:

ϕ(SC1,W1)(SC1⊗t W1).

92

Table 6.2: Using the Model to Answer all 78 Questions.

1. Who is working on what?
ϕ(T1,WI3,CHS3,SC1)(T1⊗id WI3⊗id CHS3⊗id SC1)

2. What are they [coworkers] working on right now?
ϕ(T1,WI2,CHS2,SC1)(T1⊗id WI2⊗id CHS2⊗id SC1)

3. What have other people been working on?
ϕ(T3,WI1,CHS1,SC1)(T3⊗id WI1⊗id CHS1⊗id SC1)

4. How much work [have] people done?
ϕ(T1,WI1,CHS1,SC1)(T1⊗id WI1⊗id CHS1⊗id SC1)

5. Who changed this [code], focused on person?
ϕ(T2,WI1,CHS1,SC2)(T2⊗id WI1⊗id CHS1⊗id SC2)

6. Who to assign a code review to? / Who has the knowledge to do the code review?
ϕ(T1,WI1,CHS1,SC2)(T1⊗id WI1⊗id CHS1⊗id SC2)

7. What [have] people done lately?
ϕ(T1,WI1,CHS1,SC1)(T1⊗id WI1⊗id CHS1⊗id SC1)

8. Who is working on what at the moment?
ϕ(T1,WI2,CHS2,SC1)(T1⊗id WI2⊗id CHS2⊗id SC1)

9. What has [a particular team member] been doing?
ϕ(T3,CHS1,SC1)(T3⊗id CHS1⊗id SC1)

10. What have people been working on?
ϕ(T1,WI3)(T1⊗id WI3)

11. Which code reviews have been assigned to which person?
ϕ(T1,WI4)(T1⊗id WI4)

12. Who to assign a code review to? / Who has time for a code review?
ϕ(T1,WI2)(T1⊗id WI2)

13. What is the evolution of the code?
ϕ(SC2,CHS5,WI5,T2)(T2⊗id WI5⊗id CHS5⊗id SC2)

14. Why were they [these changes] introduced?
ϕ(SC2,CHS4,WI1,T2)(T2⊗id WI1⊗id CHS4⊗id SC2)

15. Who made a particular change and why?
ϕ(SC2,CHS4,WI1,T1)(T1⊗id WI1⊗id CHS4⊗id SC2)

93

Table6.2: (Continued)

16. What classes has my team been working on?
ϕ(SC1,CHS3,WI3,T1)(T1⊗id WI3⊗id CHS3⊗id SC1)

17. What are the changes on newly resolved work items related to me?
ϕ(SC1,CHS1,WI1,T2)(T2⊗id WI1⊗id CHS1⊗id SC1)

18. Who is working on the same classes as I am and for which work item?
ϕ(SC2,CHS2,WI2,T2)(T2⊗id WI2⊗id CHS2⊗id SC2)

19. Who changed this [code], focused on code?
ϕ(SC1,CHS1,WI1,T2)(T2⊗id WI1⊗id CHS1⊗id SC1)

20. What is the whole history of this file?
ϕ(SC2,CHS5,WI5,T2)(T2⊗id WI5⊗id CHS5⊗id SC2)

21. What has been happening on [this] class?
ϕ(SC2,CHS1,WI1,T2)(T2⊗id WI1⊗id CHS1⊗id SC2)

22. What [have] people changed lately?
ϕ(SC1,CHS1,WI1,T2)(T2⊗id WI1⊗id CHS1⊗id SC1)

23. What changes have been made and why?
ϕ(SC1,CHS1,WI1)(WI1⊗id CHS1⊗id SC1)

24. What has changed between two builds [and] who has changed it?
ϕ(SC1,CHS4,T2)(T2⊗id CHS4⊗id SC1)

25. Who has made changes to my classes?
ϕ(SC2,CHS1,T2)(T2⊗id CHS1⊗id SC2)

26. Who is using that API [that I am about to change]?
ϕ(SC2,SC1,CHS5,T2)(T2⊗id CHS5⊗id SC1⊗id SC2)

27. Who created the API [that I am about to change]?
ϕ(SC2,CHS5,T2)(T2⊗id CHS5⊗id SC2)

28. Who owns this piece of code? / Who modified it the latest?
ϕ(SC2,CHS1,T2)(T2⊗id CHS1⊗id SC2)

29. Who owns this piece of code? / Who modified it most?
σ(T2)(ϕ(SC2,CHS5,T2)(T2⊗id CHS5⊗id SC2))

30. Who to talk to if you have to work with packages you haven’t worked with?
σ(T2)(ϕ(SC2,CHS5,T2)(T2⊗id CHS5⊗id SC2))

94

Table6.2: (Continued)

31. How much has changed [in the project code]?
ϕ(SC1,CHS1,T2)(T2⊗id CHS1⊗id SC1)

32. [Is anyone] intending to commit anything to that class?
ϕ(SC1,CHS2,T2)(T2⊗id CHS2⊗id SC1)

33. Where have changes been made related to you?
ϕ(SC2,CHS1,T2)(T2⊗id CHS1⊗id SC2)

34. Who is responsible for this code? (Who made the latest change?)
ϕ(SC2,CHS1,T2)(T2⊗id CHS1⊗id SC2)

35. Which team is responsible for this code? (Who has made most changes to the code?)
σ(T2)(ϕ(SC2,CHS5,T2)(T2⊗id CHS5⊗id SC2))

36. What classes have been changed?
ϕ(SC1,CHS1)(CHS1⊗id SC1)

37. [Which] API has changed (to see which methods are not supported any more)?
ϕ(SC2,CHS1)(CHS1⊗id SC2)

38. What’s the most popular class? [Which class has been changed most?]
σ(SC1)(ϕ(CHS5,SC1)(CHS5⊗id SC1))

39. Which other code that I worked on uses this code pattern / utility function?
ϕ(SC1,SC1,CHS4)(CHS4⊗id SC1⊗id SC1)

40. Which code has recently changed that is related to me?
ϕ(SC2,SC1,CHS1)(CHS1⊗id SC1⊗id SC2)

41. How do recently delivered changes affect changes that I am working on?
ϕ(CHS4,SC1,CHS1)(CHS4⊗id SC1⊗id CHS1)

42. What code is related to a change?
ϕ(CHS4,SC1,SC1)(CHS4⊗id SC1⊗id SC1)

43. Where has code been changing [this week]?
ϕ(SC1,CHS4)(CHS4⊗id SC1)

44. Which classes have been changed between two builds?
ϕ(SC1,CHS4)(CHS4⊗id SC1)

45. What is going on [in a package]?
ϕ(SC2,CHS1)(CHS1⊗id SC2)

95

Table6.2: (Continued)

46. [Which] changes [have been made] between these days or after this day?
ϕ(SC1,CHS4)(CHS4⊗id SC1)

47. What classes in this component were modified since version [...]?
ϕ(SC2,CHS4)(CHS4⊗id SC2)

48. What is the recent activity on a plan item?
ϕ(WI4,WI3,CO1)(WI4⊗id WI3⊗id CO1)

49. Which features and functions have been changing?
ϕ(WI4,CO1)(WI4⊗id CO1)

50. Has progress been made on blockers (blocking work items) in your milestone?
ϕ(WI4,CO1)(WI4⊗id CO1)

51. Which work items/plan items are most active?
σ(WI5)(ϕ(CO1,WI5)(WI5⊗id CO1))

52. How active is the [plan item]? [How many comments were made on related work items?]
ϕ(WI4,WI3,CO1)(WI4⊗id WI3⊗id CO1)

53. Are there any new comments on interesting work items?
ϕ(WI4,CO1)(WI4⊗id CO1)

54. [What are the] emails related to line items and defects that are features?
ϕ(WI4,CO1)(WI4⊗t CO1)

55. Which work item has recently changed that is related to me?
ϕ(T4,WI1,CO1)(T4⊗id WI1⊗id CO1)

56. What are the comments on newly resolved work items that are related to me?
ϕ(T4,WI1,CO1)(T4⊗id WI1⊗id CO1)

57. Is progress (changes) being made on plan items?
ϕ(WI4,CHS3)(WI4⊗id CHS3)

58. What is the activity on a line item (feature)?
ϕ(WI4,CHS3)(WI4⊗id CHS3)

59. What caused this build to break? (Which change caused the stack trace?)
ϕ(ST1,SC1,CHS1)(ST1⊗id SC1⊗id CHS1)

96

Table6.2: (Continued)

60. What has caused this build to break? (look at stack trace and intersect with change sets)
ϕ(ST1,CHS1)(ST1⊗id CHS1)

61. Who caused this build to break? (Who owns the broken tests?)
σ(T2)(ϕ(TC2,SC1,CHS1,T2)(TC2⊗id SC1⊗id CHS1⊗id T2))

62. Who changed the test case most recently that caused the build to fail?
ϕ(T2,CHS1,SC1,TC2)(TC2⊗id SC1⊗id CHS1⊗id T2)

63. Which changes caused the tests to fail and thus the build to break?
ϕ(CHS1,SC1,SC1,TC1,ST1)(ST1⊗id TC1⊗id SC1⊗id SC1⊗id CHS1)

64. Who owns a test case? (Who resolved the last work item that fixed the test case?)
ϕ(TC2,SC1,CHS1,WI1,T2)(TC2⊗id SC1⊗id CHS1⊗id WI1⊗id T2)

65. Who is responsible for a failing test case? (stack trace)
ϕ(T1,CHS1,SC1,TC1,ST1)(ST1⊗id TC2⊗id SC1⊗id CHS1⊗id T2)

66. How do test cases relate to work items?
ϕ(TC1,SC1,SC1,CHS1,WI1)(TC1⊗id SC1⊗id SC1⊗id CHS1⊗id WI1)

67. How do test cases relate to packages/classes?
ϕ(TC1,SC1,SC1)(TC1⊗id SC1⊗id SC1)

68. Which API has changed (check on web site)?
ϕ(SC1,W1)(SC1⊗t W1)

69. [Is an entry] in newsgroup forum addressed to me because of the class mentioned?
ϕ(SC2,W1)(SC2⊗t W1)

70. What is coming up next week [for my team]? [What is my team doing?]
ϕ(T1,W1)(T1⊗t W1)

71. What am I supposed to work on [plan on wiki]?
ϕ(W1,T4)(T4⊗t W1)

72. Who has to do what? [team activity]
ϕ(T1,W1)(T1⊗t W1)

73. How is the team organized?
ϕ(T1,CHS5,SC1)(T1⊗id CHS5⊗id SC1)

97

Table6.2: (Continued)

74. Who has made changes to [a] defect?
ϕ(WI4,CHS1,T2)(WI4⊗id CHS1⊗id T2)

75. Who has made comments in defect?
ϕ(WI4,CO1,T2)(WI4⊗id CO1⊗id T2)

76. [What is] the collaboration tree around a feature?
ϕ(WI4,CO2,T2)(WI4⊗id CO2⊗id T2)

77. Which conversations in work items have I been mentioned [in]?
ϕ(WI4,CO1,T4)(WI4⊗id CO1⊗t T4)

78. What are people commenting [on] all work items I am involved with?
ϕ(T4,WI3,CO1)(WI3⊗id CO1⊗id T4)

98

6.2 Prototype
We have implemented a prototype that supports our information fragments model.

Our prototype extends IBM Rational Team Concert (RTC)1, a team collaboration
platform on top of the Eclipse IDE2.

6.2.1 Information Fragments

Our prototype supports five domains of information: work items, source code (Java
packages, classes, methods and fields), change sets, teams (teams and team mem-

bers) and test cases (see Section 7.2.5 for the latter). We enhanced existing views
for these domains in RTC to support the creation of information fragments from

elements selected in the view. The next phase of our research will focus on better
support for selecting fragments (see Section 7.2.4).

6.2.2 Composition

With the prototype, a developer can compose information fragments by adding
them to the composed viewer. Figure 1.1 presented in Section 1.2 shows the answer

to “Who is working on what?” (Question 1 in Table 5.1) in the composed viewer.
The answer was created by adding the team, work item, change set and source code

fragments described in Section 6.1 to the viewer. The appropriate composition
operator is applied automatically when information is placed into the composed

viewer. In this example, the relations that can be seen in the view are all based on
the identifier matching operator.

Figure 6.1a displays the answer to the question “Does a work item mention
a class of interest to me?” (similar to question 69 in Table 5.1) in the composed

viewer. The answer was created by adding two fragments, the source code of in-
terest and the newly created work items, to the viewer. In this case, the result

contains edges (named “matches”), created automatically by the text matching op-
erator, based on when the class or method name matched text to the work item

summary. In contrast to the identifier matching operator that creates edges only
for exact matches, the text matching operator can account for variations in the tex-

1jazz.net, verified 11/11/10
2www.eclipse.org, verified 11/11/10

99

jazz.net
www.eclipse.org

tual match, such as word synonyms or even spelling mistakes. This approximation

may result in information being presented that is not relevant to the developer’s
question. We leave the determination of appropriate text matching operators and

representation of variance in edge confidence to future research.
We discuss how to determine which composition operators to apply in Sec-

tion 7.2.1.

6.2.3 Presentation

The prototype supports projection and counting of our model as well as a feature
for hiding certain information. Figure 1.1 displays the answer to “Who is working

on what?” as described in Section 6.1. The projection order of the base fragments
is represented by the icons in the fragment bar in the upper right corner of the view.

If the developer is interested in a code-centric interpretation of the same question,
he only has to change the order of the original base fragments by dragging and

dropping the icons in the fragment bar into the appropriate order. This reordering
action changes the projection; the underlying composed information fragment does

not change. The resulting view is shown in Figure 6.1b. The highlighted rectangle
in Figure 6.1b shows the fragment bar with the projection order.

Answering a question such as which of the team members made the most
changes requires a count. A developer can perform this count using the drop down

menu of the teams icon in the fragment bar. The count functionality counts the
occurrences of nodes of a particular base fragment, in this case the team fragment,

presented in the view. The developer can also count the children of a specific el-
ement. For example, he can count the team members that changed a specific Java

package by right-clicking on the Java package in the view and selecting the “Count
Team Members” action in the context menu.

As an additional feature for eliding information in the view, the prototype sup-
ports a hide action that allows the developer to hide nodes of a certain level. This

functionality is again accessible through the drop down menus of each icon in the
fragment bar.

100

(a) Using Text Matching to Find Work Items that Mention
Classes of Interest

(b) “Who is working on what?”—Code Centric Presentation

Figure 6.1: Views of the Prototype

6.2.4 Completeness of the Prototype

Our current implementation supports the identifier composition, the text matching
composition and the presentation operators of our model. With these operators,

the prototype supports the composition and presentation of all 78 questions de-

101

scribed earlier (Section 5.1). As currently implemented, the prototype supports six

domains of information: source code, change sets, teams, work items, web feeds
and test cases. Thus, the prototype can be used directly to answer 61 of the 78

questions; direct answers for the remaining questions would require support for
comments on work items and stack traces. Extending our initial prototype with in-

formation on test cases suggests that adding support for these additional domains is
straightforward (Section 7.2.5) when the underlying environment provides access

to these domains as uniquely identified items.

6.3 Study
For the information fragment model to be useful, a developer must be able to easily

apply the model to answer questions of interest about a software development.
To determine whether the model is useful, we posed the following four research

questions:

(1) Can developers use the information fragment model to answer questions that
we have demonstrated that developers ask?

(2) Can developers use the model effectively without requiring a detailed under-

standing of how the model works? (This condition can improve adoption and
use.)

(3) How do developers use the model?

(4) What do developers think about the approach?

To answer these questions, we conducted a study in which eighteen professional
developers used our prototype tool that supports the information fragments model

to answer eight questions selected from those described in Table 5.1. Our study
setup was an embedded, multiple-case, replication design.

We chose not to perform a comparative study as the only available approach is
to follow links in a development environment. As we argued in Section 5.2, this

approach is infeasible to use for realistic data sets.

102

6.3.1 Subjects

We originally recruited twenty-one developers from two different locations of a
multi-national company who were working on four different teams. To be eligible

to participate in the study, a developer had to use IBM’s Rational Team Concert
client in his daily work. To solicit participation, we randomly asked people at the

two locations. We report on eighteen of the participants: ten from one location (S1-
S10) and eight from the other location (T1-T8). The remaining three individuals

had difficulty with the experimental situation; for instance, one subject experienced
a strong test anxiety and could not focus. The roles of the eighteen developers

ranged from junior developer to team lead and also included one student. The
professional experience ranged from seven months to twenty-three years. Three of

the developers (T6,T7,T8) had never used the source control mechanism referred
to in the study. Six of these eighteen developers participated in our interview-based

on developer’s questions that we conducted six months previous to this study (see
Section 5.1).

6.3.2 Study Method

We selected a set of eight questions from the 78 questions derived from the inter-
views with developers. Each question was made more specific for two reasons: 1)

to reduce the range of interpretations of the questions so that we could compare
how the participants answered each question and 2) to match the data available in

our study setup. For example, we adapted the question

(16) “What classes has my team been working on?”

to

(Q5) Yesterday, on which classes (of the SCM code) have Alex and

Allen on the SCM team been working on and why? For each developer
name one class and the reason for the change.

These changes to the question reflect the desire of the developer who originally
stated question 16 to see the reason for the changes in terms of work items and

reflect the specification of the scope of the team, code and timespan of interest. We

103

narrowed Q5 to ask about one class for each developer to allow us to determine

when a participant’s given answer was correct. For Q5, we considered an answer
correct if the participant mentioned, for each of Alex and Allen, a class which the

respective developer changed yesterday and the work item requiring that change.
Table 6.3 shows the eight specific questions; the second column in Table 6.3

maps the study questions to the original questions shown in Table 5.1. We chose
these eight to cover the most common domains as can be seen from the corre-

sponding questions and also to cover a range of complexity and number of do-

mains required for answering each question. Four of the questions (Q1, Q4, Q6,
Q8) require information from at least two different domains to be composed, three

questions (Q2, Q3, Q7) require information from at least three domains and one
(Q5) requires information from four different domains to be composed. One of

the questions (Q8) also requires two base fragments from the same domain to be
composed for its answer.

The version of the prototype used in the study was adapted with a view to
show ten predefined base fragments, such as “all SCM source code” or “work items

worked on yesterday”. Figure 6.2 and Table 6.4 provide a list of all ten fragments
available to each study participant. We predefined these base fragments to focus the

study on the core parts of the model: the composition and projection of information
fragments. The predefinition of the fragments simplifies the problem by removing

the burden of choosing appropriate fragments from the user; this approach also
makes the problem harder by prohibiting the user from just choosing the portions

of information he or she was interested in. In Section 7.2.4 we further discuss the
selection of information fragments.

The data used for these base fragments was prepared from the history of the Ra-
tional Team Concert development from a year ago, with developer names changed.

The source code fragments used ranged from 22,000 (SC1) to 36,000 (SC2) Java el-
ements, including packages, classes, methods and fields. The change set fragments

used ranged from more than 100 (CHS1) to over 1000 (CHS3) change sets. The
work item fragments used ranged from 50 (WI1) to more than 350 (WI2) items.

Team fragment (T1) consisted of one team with 9 developers and team fragment
(T2) consisted of 34 developers from four different teams.

104

Table 6.3: Study Questions (original developer question in brackets)

Q1 (36) Which classes in the “. . . ” package of the SCM project have been
changed in the last week?

Q2 (25) In the last week, who on the SCM team has changed classes that I am
interested in?

Q3 (5) In the last week, who on the SCM team has been working on the classes
in package “. . . ”?

Q4 (10) In the last week, who on my team (SCM) was working on which work
item? For two different developers name one work item each.

Q5 (16) Yesterday, on which classes (of the SCM code) have Alex and Allen
on the SCM team been working on and why? For each developer name
one class and the reason for the change.

Q6 (38) What is the most popular class in the SCM project? (Which class in
the SCM project has been changed most over the last month?)

Q7 (35) Who on my team is responsible for the classes in package “. . . ” of
the SCM project? (Who made most changes to the classes over the
last month?) Name the responsible developer for each class that was
changed.

Q8 (41) Name one class that you (Alex) worked on yesterday that was affected
by changes delivered in the last week. (How do recently delivered
changes affect changes that Alex was working on?)

Table 6.4: The Ten Base Fragments Available to Participants

SC1 source code of interest to me (my code)
SC2 all SCM source code

CHS1 change sets delivered yesterday
CHS2 change sets delivered in the last week
CHS3 change sets delivered in the last month

T1 SCM team
T2 Jazz team
T3 SCM team without you (Alex)

WI1 work items worked on yesterday
WI2 work items worked on in the last week

105

Figure 6.2: Pre-defined Base Fragments in the Prototype

At the start of each study session, a participant worked through a two-page
tutorial about the prototype’s features: composition, reordering, counting and hid-

ing. This step took approximately ten to fifteen minutes. The examples used in this
tutorial were straightforward, such as relying on the well-known fact that change

sets contain links to their authors and, as a result, can be composed with team infor-
mation. After finishing the tutorial, a participant was given time to read the eight

questions (Q1-Q8) and ask clarification questions. A participant had the choice to
answer these eight questions in whichever order he preferred, but was told that the

questions were ordered from easier to more difficult ones.
Participants were then given time to work on the questions. If a participant

spent five minutes on a question and was still not close to an answer we provided a
hint. This situation only occurred for Q5 and Q8. For Q5, two participants required

a hint about ordering; one participant who had not used the source control system
needed a hint about work items containing links to change sets. Six participants for

Q8 were given a hint about what the question meant. If a participant was not done
with a question after ten minutes we stopped him and asked him to move to another

question. We consider ten minutes per question to be a justifiable time limit that
does not put too much stress on a participant.

106

After a participant finished all eight questions, we interviewed the participant

about the experience of using the tool.

6.3.3 Data Analysis

For each participant, we captured screen videos as the participant worked and took
written notes. From our notes, we determined, for each question, the worst case

time that it took the participant to get to the correct answer based on our interpreta-
tion of correctness. Only for Q5 was there a distinct difference between our notion

of correctness and the participant’s notion of correctness. For Q5, eight participants
(S3,S6,S7,S10,T3,T4,T6,T8) interpreted the reason for a change as the one-line de-

scription of the change set, and did not consider work items. When directed by the
experimenter to consider work items, the participants continued working on the

question, taking, on average, an extra three minutes to get to the correct answer.
We used only these worst case times for our analysis.

We used the video to analyze the interaction of a participant with the features
of the tool.

6.3.4 Can Developers Use the Model?

To evaluate our first research question “Can developers use the information frag-
ment model to answer questions that previous developers have posed?”, we con-

sider how many of the eight questions participants were able to answer correctly. If
our model is usable, we expect participants to succeed in answering most questions.

Moreover, for our model to improve on a query approach, participants should suc-
ceed in answering most questions in less than five minutes. As mentioned before

(see Section 5.2.2), studies of SQL have shown that users, after substantial training
(1.5 hours), use a mean time of 5.1 minutes to write queries that join elements from

two domains [15]. Given the, on average, 2.75 domains of information that must
be joined to answer any of the eight study questions, a mean time of less than five

minutes constitutes a reasonable answering time for these questions.
Table 6.5 shows, for each question in the study, the time and success per de-

veloper in each cell, the mean time needed for each question in the last column
and the mean time per question for each developer in the bottom-most row. The

107

Table 6.5: Developer’s Results

Question Time (in minutes) and Success per Question for each Developer
(orig. dev.
question)

✓ = success, ∎ = failure, ⋆ = hint given

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 T1 T2 T3 T4 T5 T6 T7 T8 Mean

Q1 1.1✓ 0.7✓ 2.2✓ 1.8✓ 1.9✓ 1.1✓ 3.2✓ 1.4✓ 1.1✓ 0.6✓ 1.1✓ 0.6✓ 1.5✓ 1.9✓ 0.6✓ 2.6✓ 5.7✓ 1.1✓ 1.7

Q2 2.9✓ 0.6✓ 1.0✓ 2.1✓ 1.2✓ 1.7✓ 2.1✓ 0.7✓ 1.3✓ 0.8✓ 5.1✓ 0.7✓ 1.6✓ 2.5✓ 0.5✓ 2.5✓ 3.9✓ 4.9✓ 2.0

Q3 2.0✓ 1.5✓ 2.2✓ 2.1✓ 1.3✓ 5.9✓ 1.0✓ 3.0✓ 2.3✓ 1.5✓ 0.9✓ 1.7✓ 4.0✓ 1.9✓ 1.0✓ 1.5✓ 6.6✓ 5.4✓ 2.5

Q4 1.1✓ 0.8✓ 0.6✓ 0.4✓ 0.8✓ 0.7✓ 0.8✓ 1.0✓ 1.3✓ 1.0✓ 0.8✓ 0.8✓ 1.7✓ 2.1✓ 1.0✓ 1.7✓ 1.3✓ 0.4✓ 1.0

Q5 1.5✓ 5.6✓ 3.4✓ 4.2⋆ 6.1✓ 3.3✓ 5.8✓ 1.8✓ 5.0✓ 1.7✓ 7.2✓ 6.8⋆ 7.2✓ 5.5✓ 2.8✓ 7.0✓ 6.5⋆ 1.4✓ 4.4

Q6 1.0✓ 0.8✓ 0.9✓ 0.7✓ 0.7✓ 1.8✓ 3.0✓ 0.6✓ 5.0✓ 1.2✓ 1.7✓ 0.6✓ 2.9✓ 1.6✓ 0.8✓ 1.5✓ 1.6✓ 3.5✓ 1.7

Q7 2.7✓ 2.6✓ 3.2✓ 2.6✓ 4.9✓ 3.4✓ 1.3✓ 1.5✓ 2.2✓ 2.0✓ 2.3✓ 3.5✓ 2.9✓ 2.5✓ 1.8✓ 5.2✓ 1.9✓ 1.6✓ 2.7

Q8 1.7✓ 2.1✓ 4.3✓ 3.1✓ – ∎ 5.3✓ 8.1⋆ 1.2✓ 3.3✓ 2.0✓ 6.5⋆ – ∎ 5.4✓ 5.3✓ 2.6✓ 7.8⋆ – ∎ 2.7✓ 3.3

Mean 1.8 1.8 2.2 1.8 2.4 2.9 2.5 1.4 2.7 1.3 2.7 1.3 3.4 2.9 1.4 3.1 3.5 2.6 2.3

108

data in the table shows that in 135 of the 144 cases (94%), participants answered

the questions successfully without any hint and with a mean time of 2.3 minutes
per question; in computing the mean, we did not include cases (shown in italics in

Table 6.5) we considered unsuccessful in which a hint was given or the ten minutes
time limit was exceeded. We consider that this data shows strong support for the

usefulness of our model.
In only 23 cases (16%), participants required more than five minutes to answer

the question and a hint (see Section 6.3.2) was given in nine cases (6%). In one

case (S4), a hint was given before the five minutes as the subject was under time
pressure to complete the study and return to a high priority work task. Two of

the three subjects (T6-T8) that did not have any prior knowledge of the source
control mechanism in use had the highest mean time per answered question. Even

with this lack of knowledge, these participants still successfully completed most
questions with a mean time of less than five minutes per question. In only three

cases (2%) a participant did not reach the answer of a question within 10 minutes
at which point we considered the case as a failure and asked the participant to move

on to another question. The low number of hints given and unsuccessful answers
support the statement that developers can use the information fragment model to

answer questions they face.
To evaluate our second research question “Can developers use the model effec-

tively without requiring a detailed understanding of how the model works?”, we
consider how much information we needed to provide a participant while working

on a question and how a participant used the model to answer questions. In terms
of information provided to participants, we gave participants only ten to fifteen

minutes of training on the model; in comparison, in a study of SQL, Chan and col-
leagues trained participants for an hour and a half [15]. Despite this low amount of

training, for 135 cases (94%) this training was sufficient for the participants to use
the model to answer questions correctly. In only 9 cases (6%), an additional hint

was given by the experimenter. This low rate of hints and the low amount of time
required on average, 2.3 min, to successfully answer a question, provides support

for the statement that our model can be used effectively without understanding the
details of the model.

We also considered how a participant used the model to answer questions. By

109

analyzing the screen capture videos of the participants working, we found that the

participants reordered the information shown in the composition view more often
(277 times) than the participants restarted the composition (213 times). Partici-

pants stated in follow-up interviews that the ability to change the projection of the
composition through reordering was “definitely helpful” as “you can really do it in

two steps”(S10), that “I throw everything in it [the view], reorder it [...] and see if
it seems reasonable”(S2), and even that it was “great” (T8). The higher number of

reorderings compared to restarts and comments of the participants provide further

evidence that the participants understood enough features of the model to use it
effectively without extensive training.

6.3.5 How Do Developers Use the Model?

Each of the eight questions can be answered in multiple ways with our model. To
determine which aspects of the model developers use, we analyzed the combina-

tion of fragments, composition and presentation developers used to provide each
answer and the process of getting there.

Variations in Answers

Participants answered the eight questions in a variety of ways. Figure 6.3 presents
the number of variations for each question and how many of the eighteen partici-

pants used each variation to answer the question. The figure also shows the most
commonly used answer. The less commonly used answers are listed in Table 6.6.

The base fragments in the figure and the table refer to the ones presented in Ta-
ble 6.4. If the base fragment has no index, any of the predefined base fragments of

a domain of information leads to the correct answer and it does not matter which
one is used.

For each question, there were at least two, and up to four, different varia-

tions that developers used to answer the question. For example for question Q4,
twelve developers answered the question by combining the team Fragment T1 with

the work item fragment WI2 and ordering it so that the team fragment was first
(ϕ(T1,WI2)(T1⊗id WI2)). Five developers used an inverse projection order, putting
the work item fragment first (ϕ(WI2,T1)(T1⊗id WI2)), and one developer composed

110

0 2 4 6 8 10 12 14 16 18

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8)(3211),,,,(3211
TCHSSCCHST

ididididTCHSSCCHST
UUUUφ

))((31),,(

*

)(131
SCCHST

ididTCHSSCT
UUφσ

))((23),()(232
SCCHS

idSCCHSSC
Uφσ

)(2221),,,(2221
SCCHSWIT

idididSCCHSWIT
UUUφ

)(21),(21
WIT

idWIT
Uφ

))((21),,(

*

)(121
SCCHST

ididTCHSSCT
UUφσ

)(121),,(121
SCCHST

ididSCCHST
UUφ

)(2),(2
CHSSC

idCHSSC
Uφ q1

q2

q3

q4a

q5a

q6

q7a

q8a

q4b

q5b

q7b q7c

q8b q8c

Figure 6.3: Variations in Answer over 18 Participants (bars represent number of participants that used one particular
solution to a question; σ*: count functionality that allows you to count children of an element in the tree)

111

Table 6.6: Answer Variations (hidden refers to the case in which a developer
used the hide action to elide an information fragment from the presenta-
tion)

Question Answer Variation

Q1 q1 ϕ(CHS2,SC)(SC⊗id CHS2)
(CHS2 hidden)

Q2 q2 σ(T1)(ϕ(SC1,CHS2,T1)(T1⊗id CHS2⊗id SC1))

Q3 q3 ϕ(SC,CHS2,T1)(T1⊗id CHS2⊗id SC)
(expanded/hidden parts)

Q4 q4a ϕ(WI2,T1)(T1⊗id WI2)
Q4 q4b ϕ(T1,CHS2,WI2)(T1⊗id CHS2⊗id WI2)

(CHS2 hidden)

Q5 q5a ϕ(T1,CHS2,WI2,CHS2,SC2)(SC2⊗id CHS2⊗id WI2⊗id CHS2⊗id T1)
Q5 q5b ϕ(SC2,CHS2,WI2,T1)(SC2⊗id CHS2⊗id WI2⊗id T2)

Q6 q6 σ(SC2)(ϕ(T1,CHS3,SC2)(T1⊗id CHS3⊗id SC2))

Q7 q7a ϕ(SC,CHS3)(SC⊗id CHS3)
(expanded; change set labels contain author names in this
case)

Q7 q7b σ(CHS3)(ϕ(SC,CHS3,T1)(SC⊗id CHS3⊗id T1))
Q7 q7c ϕ(SC,CHS3,T1)(SC⊗id CHS3⊗id T1)

(expanded/hidden parts)

Q8 q8a ϕ(T1,CHS1,SC,CHS2)(T1⊗id CHS1⊗id SC⊗id CHS2)
Q8 q8b ϕ(CHS1,SC,CHS2)(CHS1⊗id SC⊗id CHS2)
Q8 q8b ϕ(CHS1,SC,CHS2,T3)(CHS1⊗id SC⊗id CHS2⊗id T3)

an additional change set fragment CH2 for his answer. All three variations al-

lowed developers to answer question Q4 correctly. In general, the most common
variations in answers to the eight questions were: an inverse presentation order in

combination with an additional counting function (see for example answer varia-
tions for Q2); manually expanding and counting the presented information versus

using the provided counting functionality (see variations for Q3); and instead of
adding a team fragment to determine the author of a change, some developers just

112

used the information provided from the change set fragment, since the change set

label contains the author name in most cases (see variations for Q8).
This variety in combining fragments, composition and presentation to answer

the eight questions provides further evidence that the developers understood enough
features of the model to use it effectively without extensive training and shows that

the model supports individual preferences.

Variations in Answering Process

We looked at the screen capture videos of developers to analyze how they used the

model in the process of answering the eight questions. In particular we were inter-
ested in how developers composed base fragments, how many times they restarted

a question, how often they reordered the presentation of information and how their
different usage of the tool correlated to time used to answer a question.

To identify trends, we plotted the data for each question for each subject rela-
tive to the factor of interest. For instance, Figure 6.4b presents the total number of

base fragments each developer used in the process of answering a question. The
bigger the bubble, the more fragments used. Developer T3, for example, used 46

base fragments in the process of answering question Q5 including restarts and only
two to answer question Q1. Figure 6.4c presents the number of restarts people

used in the process of answering a question and Figure 6.4d displays the number
of times a developer reordered the information in the composition view to answer

a question. For all four figures, developers are ordered by their mean time for an-
swering all eight questions (faster mean time being further to the left) and questions

are ordered by the mean time spent to answer it (faster answer time being closer to
the bottom). If a developer did not succeed in answering a question, no bubble is

displayed for that question.
To investigate the data further, Table 6.7 lists the Pearson’s product-moment

coefficients between the time and the number of fragments, the number of restarts
and the number of reorderings used in the process of answering the eight questions.

Since certain questions took considerably more time to be answered and certain

developers took considerably more time to answer the questions, the table also lists
the coefficients between the time and any of the other three variables, averaged over

each question and over each developer.

113

Q5

Q8

Q7

Q3

Q2

Q1

Q6

Q4

T2 S10 T5 S8 S1 S4 S2 S3 S5 S7 T8 S9 T1 S6 T4 T6 T3 T7

(a) Time used by Developer in Process of Answering Question (Bubble Area Reflects the Time
to Complete)

Q5

Q8

Q7

Q3

Q2

Q1

Q6

Q4

T2 S10 T5 S8 S1 S4 S2 S3 S5 S7 T8 S9 T1 S6 T4 T6 T3 T7

(b) Fragments used by Developer in Process of Answering Question (Bubble Area Reflects the
Number of Fragments Used)

Figure 6.4: Aspects in the Process of Answering Questions

114

Q5

Q8

Q7

Q3

Q2

Q1

Q6

Q4

T2 S10 T5 S8 S1 S4 S2 S3 S5 S7 T8 S9 T1 S6 T4 T6 T3 T7

(c) Restarts used by Developer in Process of Answering Question (Bubble Area Reflects the
Number of Restarts)

Q5

Q8

Q7

Q3

Q2

Q1

Q6

Q4

T2 S10 T5 S8 S1 S4 S2 S3 S5 S7 T8 S9 T1 S6 T4 T6 T3 T7

(d) Reorderings used by Developer in Process of Answering Question (Bubble Area Reflects
the Number of Reorderings)

Figure 6.4: Aspects in the Process of Answering Questions (continued)

115

Table 6.7: Correlations Between Time (T) and Fragments Used (FU), Re-
orderings (RO) and Restarts (RS)

mean mean mean
over all per question per developer

T - FU 0.71 0.85 0.70
T - RS 0.64 0.71 0.70
T - RO 0.43 0.85 −0.25

Time and Number of Fragments. Both, Figure 6.4a and 6.4b show the same trend,
with bubbles being bigger towards the upper right corner. A Pearson’s product-

moment coefficient of 0.71 supports this trend, confirming that there is a strong
positive correlation between the time and the number of fragments used to get-

ting to the answer of a question. Looking into the correlation averaged over each
question or each developer still provides us the same picture. This states that the

longer it took to answer a question the more fragments were used in the process of

answering the question, and that the longer a developer took to answer questions,
the more fragments he used in the process of answering them.

Time and Restarts. A similar trend is visible for the restarts shown in Figure 6.4c

and a Pearson’s coefficient of 0.64 shows that there is a strong positive correlation
between time and restarts, stating that developers that took more time to answer a

question also restarted more often. As for the number of fragments, the correlation
over each question and over each developer provides the same picture.

Time and Reordering. No real trend is visible in Figure 6.4d and a Pearson’s co-

efficient of 0.43 between time and reordering shows that even though there is a
positive correlation, it is not strong. Averaging over each developer or each ques-

tion shows a different picture. The correlation between the mean time per question
and the mean number of reorderings per question is strong with a coefficient of

0.85, stating that the longer it took all developers to answer a question, the more
reorderings were used by all developers in the process. The weak negative cor-

relation between time and reorderings (−0.25) suggests that using more or less
reorderings in the answering process has no impact on the time it takes a developer

116

to answer all eight questions. This is not surprising, as developers comments sug-

gest that they used the reordering with different intensity. For example, developer
S7 did not use reordering at all as he was “not comfortable with it” and he stated

that “until I get comfortable [...], I use the basics” which for him did not include
reordering. Others stated that they forgot about the reordering in the beginning but

then used it more later (T1, T3), or that they needed to get used to it, but that at the
end of the study it was already easier (S2, S3, S9, T1, T2, T3, T6, T7) and that the

reordering “was great” (T8).

Reordering vs Restarting. Since developers commented on when they used restart-

ing or reordering, we also looked into the correlation between these two aspects.
While there is no real correlation (coefficient of 0.05) between these two aspects

over all questions and subjects, the strong negative correlation (coefficient of −0.68)
per developer shows that the more reordering a developer used the less restarts he

used and that the more restarts he used the less reorderings he used. This reflects
the varying preference amongst developers for using either of these aspects. For

instance, T6 stated explicitly that “at first it felt easier to start from scratch [but]
now that I understand [reordering], moving around is easier”. Developer S1 stated

that sometimes a clear start is easier than reordering, and T3 said that “if there are
two elements [fragments] I prefer to reorder but if there are like five elements I

can’t remember how I did that so I prefer to restart”.
The overall usage of the composition of base fragments, the restarting and the

reordering shows that developers were able to use the different aspects of the model
to answer the questions successfully without having to understand every detail. In

particular, the difference in the usage of the reordering shows that developers were
able to use the model in their preferred way to answer the question.

6.3.6 What Do Developers Think About the Approach?

We analyzed transcripts of the interviews for comments related to the developer’s
experience of using the approach.

117

Answers Multi-Domain Questions. Developers commented that the approach helps

answering questions that are unsupported at the moment—-“it [the tool] is answer-
ing questions that I don’t think we can answer right now” (T1). Developer S7

talked about it in more detail: “there are two links we are missing [...] and it’s
nice to have something that ties them together like this”, “for this type of thing I

never really thought of trying to solve these problems [...], like if I was asking what
classes of this have changed in the past week you know I try and find some obscure

way of comparing baselines or whatever [...] and then I’d see if there were changes

to those files [...] and then I look at those change sets and browse the work items”.
This comment supports our statement that the approach is supporting developers

in answering questions that are difficult to answer with existent approaches.

Understanding Links Takes Time. One aspect of the user interface developers
commented on was the empty view displayed when two fragments that had no

edges or links between them were ordered next to each other. For example, S1,
S6, S7 and T4 stated that not showing anything because there are no links be-

tween neighboring fragments is unintuitive. Others stated that it took a “lot of
trial and error” (S2) to find out “which one [fragment] links” (S5), but that it

“made sense in the end” (T4) and that it just takes some time to get used to
it (S1,S2,S3,S9,T1,T2,T3,T4,T5,T6,T7). Developers suggested that the “linkage

should be more intuitive”(T4) and that the UI could have been more explicit and
show which fragments have links and which ones do not (S9,S10,T6,T7,T8).

Suggestions for the User Interface. Developers pointed out that the user interface

could have been more explicit about the contents being displayed. In particular,
developers commented that the icons representing the ordering of the projection

were too small and subtle (S1,S6,T1,T2,T4). Furthermore, developers stated that
at least one path of the tree should be fully expanded after composing a fragment,

or the tool should have a visual indicator to show that the tree has more levels
underneath, as it was not obvious what was in the view (T1,T2,T5). Developers S6

and T4 said that they would have liked to have a phrase summarizing the contents

of the view. Another feature often commented upon was the lack in the tool’s user

118

interface of a way to remove a base fragment once added to the composed view.

Developers said that they had to restart more often due to the lack of this feature,
especially in cases where they just added a fragment by accident.

Overall Positive. When asked explicitly, all developers stated that, if available,
they can imagine and would use the prototype. Some developers even stated with-

out us asking that it was “pretty nifty”(S4), “pretty cool”(S3), “cool”(S7,S6), a
“neat tool”(T2), “really really cool”(T8) and that “it is answering questions that I

don’t think we can answer right now”(T1).

6.4 Threats
A threat to the validity of the study is that the set of questions might not be repre-
sentative of the questions developers ask for two reasons. First, the case study only

included eight of the 78 questions. We tried to minimize this threat by choosing the
eight questions to cover the most common domains as can be seen from the corre-

sponding questions shown in Table 5.1. Second, the 78 questions were identified
in interviews by using a prototype of the tool as prompt which might have biased

the questions found. As other research has found similar questions (e.g., [55–57]),
we believe that the effect of the prompt was limited.

Another threat to the study is that the group of developers might not be repre-
sentative of the population of developers. We mitigated this risk by having devel-

opers from different teams as well as different locations participating in our study.
Several threats might have influenced the time it took developers to answer

questions. One threat is that some developers participating in the case study also
participated in the interview sessions for finding developer’s questions. These de-

velopers saw the prototype before the case study and might have had an advantage.
However, as there were six months in between the two studies and the prototype

was only presented for a very short amount of time without being used by the
developers, we believe that it does not have an impact on the outcome of the study.

Developers also had to identify themselves when they were done with answer-
ing a question. This assumes that the developers understand the questions correctly.

As some questions were still slightly ambiguous and developers used different ap-

119

proaches to answering each question, this might have influenced the results.

Another threat to the findings of our study is the use of data with which the
developers were unfamiliar. If the data had been of the developers own team and

work, it would have been easier for the developer’s to interpret the results of com-
positions, possibly easing the task of answering the questions.

Furthermore, three developers were unfamiliar with the source control mech-
anism used in our study. This might negatively impact the results for these devel-

opers. The results actually show that two of these three developers had a worse

average mean time, but still completed most of the questions successfully.
Finally, we predefined the information fragments available for use in the study.

As these information fragments were tailored towards the questions asked, devel-
opers may have had to spend less time than otherwise to answer a question of

interest. On the other hand, these predefined fragments also made it more difficult
for a developer to restrict the information shown to what he desired seeing.

120

Chapter 7

Discussion and Future Work

In investigating each of the two developer-centric models, we had to make a num-

ber of choices about the design of each model and how we evaluated each model.
We discuss these issues for each model in turn (Section 7.1 and Section 7.2). We

then discuss how these models might be combined to support developers in stay-
ing aware of relevant web feeds (Section 7.3). As part of this discussion, we also

consider ways in which the work described in this thesis can be extended in the
future.

7.1 Degree-of-Knowledge Model
We first review the choices we made in the two studies StudyEXP DOK and
StudyDATA DOK to determine a developer’s knowledge of a code element (Sec-

tion 7.1.1). Second, we discuss the choice we made for combining interaction
and authorship in the DOK model (Section 7.1.2). In the onboarding scenario,

one of the three scenarios we covered in our exploratory case studies, the DOK
model did not provide any benefit. We describe possible shortcomings of the DOK

model for this scenario and how we can improve the model for this scenario (Sec-
tion 7.1.3). Finally, we propose directions for future research for the DOK model

(Section 7.1.4 through Section 7.1.6).

121

7.1.1 Structural Knowledge vs. User Rating

In our exploratory study for determining factors to capture a developer’s knowledge
(StudyEXP DOK), we focused our investigation on knowledge of the structure of

the source code and whether or not a developer can answer correctly a question
about the structure of the code. We believe that structural knowledge represents an

important part of a developer’s knowledge. In the later experiment we conducted
to determine the relative effects of authorship and interaction (ExperimentDOK), we

were concerned with finding a qualitative ranking of how much a developer knows
about an element. Therefore, we instead asked developers in ExperimentDOK to

rate their knowledge of each code element on a five point Likert-scale. Optimally,
we would have used the same approach in each of the studies. We chose to use the

qualitative approach for the second study because of limitations on developer time.
Asking the developers’ to answer detailed structural questions about a large number

of code elements would have exceeded the time developers had to participate. In
addition, ranking the level of a developer’s knowledge based on structural questions

would be difficult to do objectively.

7.1.2 Linear Regression

Our definition of a DOK model uses a linear combination of the degree-of-interest

and the degree-of-authorship. The case studies we conducted provide evidence that
a simple linear combination can help developers. Other combinations of the factors

might provide a better fit for modeling a developer’s knowledge. Given the initial
evidence from the scenarios, a more sophisticated and sensitive combinations of

factors may now be warranted.

7.1.3 API Elements, Structural Information and Usage Expertise

In the onboarding case study (Section 4.1.2), using the DOK model to determine
code elements a project newcomer should focus on when trying to learn about parts

of the code did not provide any benefit. In this case study, developers suggested
API elements as important that DOK values did not capture. The root of the prob-

lem is that API elements, by necessity, do not change often. In the three month
period we considered for the authorship component of DOK when conducting this

122

case study, there was not a sufficient number of events on the API elements for their

DOK to rise based on authorship, because the API elements were first authored
and had not changed substantially in the last three months. Furthermore, as API

elements often become basic knowledge, experienced developers do not need to in-
teract with them frequently so there will be little to no interaction data to cause the

DOK values to rise. The developers who participated in the case study stated that
the elements for which DOK values were high are often one or two layers below the

API elements. A possible improvement to the DOK model could be to propagate

DOK values along structural relationships, such as subclass or call relationships,
as it is likely that a developer writing code that uses or extends API elements also

has some knowledge about the used or extended API element. In general, inte-
grating structural information, such as type hierarchy and call hierarchy, into the

model could help infer a developer’s knowledge for closely related code elements
and improve the model’s performance on scenarios such as onboarding.

7.1.4 Using DOK to Prevent Bugs

Making changes to code elements a developer has little knowledge about might
result in more bugs in the code changes. A DOK model could help to examine

whether certain changes to the code might be more error prone than others due to
the developer’s lack of knowledge on the code. We are interested in conducting

a retrospective study in which we examine whether change sets delivered by de-
velopers with a high degree-of-knowledge in the area of change result in less bug

reports being created on the changed code and whether we might be able to use the
DOK model to predict error proneness of code.

7.1.5 Finding Relevant Bugs

With the flood of information a developer faces each day through incoming emails,
news feeds and other sources, mechanisms to rank and filter the incoming informa-

tion can provide value to help a developer stay aware of relevant information. In
one of the three exploratory case studies we conducted to determine whether the

DOK model can provide value to software developers, we applied our DOK model
to identify changes of interest and their corresponding bug reports for a group of

123

three developers (Section 4.1.3). In future work, we intend to extend our study

onto more teams and extend the model to incorporate information elements other
than just source code, such as bug reports. Similar to code, bug reports have a first

author, have changes made by many developers as comments are added, and have
interactions performed on them by developers who read and consult the reports. A

DOK model might be helpful in prioritizing which bug reports a developer should
consider first.

7.1.6 Longitudinal Study

Since there are many individual and project specific factors that might influence

indicators for a developer’s knowledge, a longitudinal study that captures different
phases of a project could provide additional insight of how a DOK model might

be improved. Such a study could also provide more evidence on whether or not a
general DOK model is robust enough to handle most situations or whether different

project situations require different models.

7.2 Information Fragments Model
The three major components of the information fragments model are the informa-
tion fragments, the composition and the presentation. We first describe how the

composition in our approach is automated (Section 7.2.1), before discussing the
text matching operator (Section 7.2.2). Second, we compare the composition and

presentation to a query language (Section 7.2.3). We then talk about the selection
of information fragments (Section 7.2.4) and how we extended our prototype by

another domain of information (Section 7.2.5). Finally, we review possible presen-
tations (Section 7.2.6).

7.2.1 Automatic Composition

Using the information fragments model, a developer can focus on indicating the
portions of information from the project in which he is interested. Once the in-

formation of interest is determined, the composition of the different portions of
information is done automatically.

For 71 of the 78 questions in study StudyEXP FR, only the identifier matching

124

operator is required to answer the question. For all of these 71 cases, the operator

can be chosen and will find the necessary identifier matches automatically based
on the properties of the nodes. The remaining seven questions are 68 to 72, 54 and

77 in Table 5.1. Five of these remaining questions (68 to 72) require information
from the web site domain to be composed with other information using the text

matching operator. Since these are the only five questions of the 78 that require
web site information, the composition operator can be automatically chosen by al-

ways just applying text matching for this type of fragment. To answer the question

“What are the emails related to line items and defects that are features?” (54), the
text matching operator is needed to match emails to line items using the subject

line in the email. For this question, the text matching operator can also be cho-
sen automatically since the identifier matching operator does not apply for these

two kinds of information, email and line item. Finally, for the question “Which
conversations in work items have I been mentioned [in]?” (77), the text matching

operator is needed to match team member names in comments. Applying the iden-
tifier matching operator to compose the comment and team information fragment

will result in comments being matched with their authors. Applying both compo-
sition operators automatically for this question, as well as for the questions that

also require fragments of comments and of teams in the same order (75 and 76) an-
swers the question properly. Only some additional information that the user might

not want to see is displayed based on the identifier matching operator. For instance
in case of the question 77, the developer would not only see which conversations

he is mentioned in but also which conversations he authored. However, since the
presentation of edges in the composed viewer includes a rational for the edge be-

tween information nodes, such as a team member is the author of a comment, the
user can easily distinguish relevant from irrelevant information.

7.2.2 Text Matching and Other Operators

As described in Section 5.3, different to matching identifiers, text matching intro-
duces a certain fuzziness in the result to account for variations in the textual match,

such as word synonyms or spelling mistakes. Different developers might prefer
text matching with different levels of confidence on the text match. To support

125

confidence thresholds, the model needs to be adapted to either provide different

operators or to adapt the threshold of the edges presented in the integrated view. In
addition to variations in the text matching, there might be other operators that de-

velopers want to answer additional questions. Whether or not future operators can
also be chosen automatically is an open question. Another open question is how

to handle cases in the future in which more than one composition operator applies.
For now, the composition operators can be chosen automatically. However, with

new composition operators, such as text matching operators with different con-

fidence thresholds, several composition operators might apply at the same time.
Allowing the developer to choose the composition operators puts more burden on

the developer, while limiting the choice decreases the flexibility and the number of
possible questions that can be answered.

7.2.3 Model vs SQL

Our information fragments model is less expressive than general query languages
such as SQL [14, 19]. We can map the composition operators in our model to

inner joins in SQL and the presentation operators to the order or aggregate func-
tions in SQL. With the information fragments model, we intentionally chose not to

provide the full power of a query language. We made this choice to allow us to au-
tomate the composition and therefore reduce the complexity, while still providing

the flexibility to answer all 78 questions according to the information needs of the
developers.

7.2.4 Information Fragment Selection

In our study of the prototype tool we built to support the information fragments
model, we relied on predefined fragments and focused our attention on the com-

position and presentation of information fragments. Although we have enhanced
existing views in RTC to provide simple support for user-selected fragments, an

open research question is how to best support a developer in selecting fragments
of interest. It may be possible to predefine fragments for such a large number of

questions to make sophisticated selection mechanisms unnecessary. Most infor-
mation fragments required to answer the 78 questions (Section 6.1) varied only

126

with respect to time, for instance WI1 through WI3, or CO1 and CO2 in Table 6.1.

Providing a set of predefined fragments together with an option to choose the time
frame of the fragment, such as a time slider, e.g., for choosing the last day, the last

week or the last month, may be sufficient. We leave this investigation to future
work.

7.2.5 Extending the Tool

Several developers stated that they would like the information fragments model to

be extended to other types of information. For instance, developers wanted it to
provide support for answering questions on test cases, such as “Which changes

caused the tests to fail and thus the build to break?” (63 in Table 5.1). To evaluate
the generality of our approach, we extended our tool with test case information.

The major component of the work was in defining the properties for test cases and
determining how to retrieve this information within the development environment.

No changes were required in the composition operators or the overall model. Only
locally constrained and straightforward changes were required, suggesting that our

approach is easy to extend for other kinds of information.

7.2.6 Presenting the Information

An early prototype tool we developed to support the model provided a more graph-

like presentation of the composed information. However, through conversations
with developers, we found that developers often prefer tree-based views; in part

because they want to avoid using up extra screen real estate typically required of
graph-like presentations. Since the focus of our study was to evaluate whether or

not developers can apply the model to answer the questions they face, we restricted
our prototype to a tree view. In the interviews after our case study, several devel-

opers suggested more sophisticated presentations based on pivot tables or graph-
like presentations due to their higher expressiveness. Due to the separation of the

presentation from the other aspects of the model, extending our approach with dif-
ferent presentations is straightforward. We leave the investigation of the possible

benefit from different presentations for future work.

127

7.3 Using Knowledge and Context for Awareness
The degree-of-knowledge and the information fragments model can be synergisti-

cally used together, for instance, for project awareness. To stay aware of relevant
information in a project, developers often subscribe to information streams, such as

RSS feeds. However, not all of the information in a stream is relevant. Finding the
relevant information within the vast amount of information a developer faces each

day is difficult, in particular, since the information is presented without context and
the developer has to manually relate it to his work.

The case study on identifying interesting change sets presented earlier (Sec-
tion 4.1.3) provides evidence that the DOK model can be used to identify relevant

information. In addition, by supporting the composition of fragments of various
kinds of information, the information fragments model provides context that can

ease the task of staying aware. For instance, using the developer’s workspace as
a context to rank and sort the information in a stream, might allow the developer

to quickly determine which items in the information stream affect or reference the
code in the workspace that are of relevance to him [28]. By combining the DOK

model with the information fragment model we might be able to provide relevant
information in context to support a developer in staying aware of feeds.

Exploratory Study. To investigate the value of using the two models together, we

conducted an exploratory study, which we refer to as StudyFEEDS, on determining
relevant news items in feeds (see [30] for more details on this study and its results).

Our study involved five professional developers that used IBM’s Rational Team
Concert (RTC) in their daily work. For this study, we interviewed each developer

two times. In each interview, we presented the participant with a list of 30 random
news items from default feeds in RTC that captured changes to the code and to

work items (see Figure 7.1a). We asked each participant to review the items and
tell us whether or not the item was relevant. In the second round of interviews

we used the information fragments model to present the news items in the context
of the source code on which the developer’s team worked (see Figure 7.1b) and

also in the context of the team. In the case of source code context, if a news item
could be related to the source code, the news item was shown hierarchically be-

neath the related source code (respective, in the case of team context, the related

128

The Ok bu�on doesn’t work 1 hour ago

The user adapter … 1 hour ago

Thomas delivered … 3 hours ago

Alex delivered ‘some work’ 3 hours ago

Oli delivered ‘1034: Work on …’ 3 hours ago

Alex delivered ‘987: Test for …’ 3 hours ago

Meghan delivered ‘1104: Test for …’ 3 hours ago

More problems with … 3 hours ago

Test execu!on for … failed 3 hours ago

Filtering of Strings … 3 hours ago

(a) Traditional List-Based Feed Reader

org.foo.more

org.foo.server
Client

getUser(String)

Server

Events outside the Workspace

Work on … Yesterday

Alex delivered ‘some work’ Yesterday

Server Work Yesterday

Tom delivered … Aug 17, 2010

(b) Feeds in Source Code Context

Figure 7.1: Presentation of Feeds.

team member). If one of the news items did not relate to the source code (respec-

tive, the team), it was shown in the by default flat list. We asked the participant

whether presenting the news in terms of context changed their determination of the
relevance of an item and whether or not the context was helpful. We chose to in-

vestigate source code and team context as developers described them as important
based on our interview-based study about which questions developers ask (Sec-

tion 5.1). For each developer, we also collected the interaction history over the last
seven workdays and the authorship information over the past three months needed

to calculate the DOK value of the element.
Each interview session took between 20 and 60 minutes. All interviews were

recorded and the interviewer (author of this thesis) took handwritten notes. Due
to the exploratory nature of our study, we parsed our data using an open coding

technique to develop and identify categories of data [79].

Providing Context With the Information Fragments Model. From the 150 news
items that we presented to the five developers in the second session, only 37 (25%)

were easily determined to relate to the code on which the participants worked and
presented in the context of the source code. In 20 of the 37 (54%) cases, partic-

ipants considered the source code context to be helpful. In 9 of 37 (24%) cases
the participants referred to the context as being somewhat helpful and in 8 (22%)

cases as being not helpful. In particular, when the short form of the summary used
to identify the news item was too generic, such as “delivered 2 change sets”, the

129

context provided a significant benefit to the participant in explaining the item.

When asked about source code context in general, three out of the five par-
ticipants considered the placement of news items in context helpful. One of the

three stated that he “had problems with the [news items] out of context, but [for]
the ones within, [he could determine relevancy] pretty quick”. Another participant

preferred the team context, stating that the source code context provided too much
information but that the team context allows skimming over people quickly. Three

more participants conceived the team context as helpful, in particular in situations

in which you do not have to work with a lot of source code, such as quality control.

Using the DOK Model to Identify Relevant News Items. We think that combin-

ing the DOK model with the information fragments model can provide valuable
support to help a developer identify relevant items of information. In our case

study on identifying interesting change sets presented earlier (Section 4.1.3) we
showed how the DOK model can support the developer. To stay aware of relevant

web feeds, we think that we can apply a similar approach to identify relevant feed
items. Instead of just presenting feed items in context using the information frag-

ments model, we could use the information on which feed items are relevant to

rank and maybe filter the presented information.
To investigate whether DOK values provide value in the exploratory study

(StudyFEEDS) and can indicate whether or not a news item is relevant, we looked
at source code elements related to the news item and calculated the DOK values

for each of these source code element with respect to the interviewed developer. It
turns out that for only one of the five developers was a single news item related to

source code elements with a positive DOK value. This news item was considered
as relevant by the developer. However, a single data point does not provide any

evidence. All other 29 items in that interview as well as the items used in all other
interviews with the five developers did not relate to a source code element with a

positive DOK value. We believe that the lack of related source code elements with
positive DOK might be due to the fact that we conducted the study at the end of

an iteration cycle with less coding activity as well as the completely random selec-
tion of the news items. Further study is needed to support our hypothesis on the

combination of the two models to support a developer’s awareness.

130

Chapter 8

Conclusion

During a workday, a software developer must continuously search for the small

portions of information pertinent to his work within the flood of project informa-
tion. Today’s artifact-centered development environments make finding the needed

information tedious or infeasible.
In this thesis, we have introduced the idea of a developer-centric model that

helps support the developer in accessing the needed information. Two developer-
centric models were introduced and investigated: the degree-of-knowledge (DOK)

model and the information fragments model.
The degree-of-knowledge (DOK) model provides a means of describing which

part of a code base each developer knows. This model takes an individual perspec-

tive on a developer’s knowledge of code. A developer’s degree-of-knowledge is
based on two components: the developer’s authorship of the code and the devel-

oper’s interaction of the code. Two empirical studies we conducted, StudyEXP DOK

and StudyDATA DOK , showed that both components, interaction and authorship, are

important to capture a developer’s knowledge of code. StudyEXP DOK showed that,
with statistical significance, a developer’s interaction with code can be used as an

indicator for the developer’s knowledge of the code. StudyDATA DOK provided ev-
idence that authorship plays an important role in a developers knowledge of the

code and that authorship and interaction capture two different aspects of a devel-
oper’s knowledge.

Using the DOK model, questions such as who knows which code and who

131

should know about a change can be supported. To evaluate the benefits and limita-

tions of our approach, we conducted case studies with professional developers. For
answering who knows which code, we conducted case studies on expert finding at

two different sites and provide evidence that the DOK model outperforms tradi-
tional approaches. For the question who should know about a change, we have

shown in a different case study, how our DOK model might be used to pick out
changes of interest in the environment to the developer. Despite substantial vari-

ations in the authorship and interaction behavior between different development

sites, the DOK model is generic enough to perform well at the different sites and
thus robust enough to be applied across different sites.

The combination of authorship and interaction in our model allows us to bet-
ter capture the ebb and flow in a developer’s knowledge than existing approaches

solely based on authorship and to take into account one shorter- and one longer-
term aspect of a developer’s knowledge. Despite the simplicity of the linear re-

gression and the model itself, the degree-of-knowledge model provides value in
different scenarios that a developer faces. Extending the model with more struc-

tural information as well as increasing the granularity of the approach, such as
taking into account the number of lines being changed rather than just looking

at the element level, could help to improve the accuracy of the model and better
capture API elements.

The information fragment model supports the composition of information from
multiple sources and the presentation of the composed information in flexible ways.

In an interview-based study with eleven professional developers, we identified 78
questions that developers ask and that span across different domains of information

together with the answers the developers desired for the questions. We showed
that the information fragments model can support all of these 78 questions with

respect to the developers’ desired answers. We also showed that a prototype tool
can choose the composition operators to combine this information automatically.

Just because a model is expressive does not mean it is usable. To show that
developers can use the model easily and effectively, we conducted a study with

18 professional developers. These developers were able to successfully answer a
high percentage (94%) of questions posed in minimal time with little training. The

information fragment model is an approach to balance expressivity with simplicity.

132

While it is expressive enough to support the 78 questions we identified in the inter-

views with the developers, it supports the questions by automatically composing
the information fragments easing the composition of the information done by the

developer. The automatic composition allows a developer to avoid specifying how
different information fragments have to be linked. The separation of composition

from presentation in the information fragments model allowed the developers to
tailor the composed information to their personal needs.

These two models show that it is possible to add developer-centric models to

a development environment and ease a developer’s access to the information rele-
vant to work-at-hand addressing the developer’s individual information needs. We

have discussed how these two models might even be synergistically combined to
support a developer in staying aware of relevant information in a project, helping

him to rank and filter the new information in his working context. Directions for
future work lie in applying both models to other scenarios as well as other kinds of

software artifacts.

133

Bibliography

[1] http://www.eclipse.org/eclipse/development/eclipse 3 0 stats.html. → pages
1

[2] http://www.w3.org/standards/semanticweb/. → pages 20

[3] E. M. Altmann. Near-term memory in programming: a simulation-based
analysis. International Journal of Human Computer Studies, 54(2):189–210,
2001. → pages 15

[4] G. Antoniol, M. D. Penta, H. C. Gall, and M. Pinzger. Towards the
integration of versioning systems, bug reports and source code meta-models.
Electronic Notes in Theoretical Computer Science, 127(3):87–99, April
2005. → pages 20

[5] L. M. Berlin. Beyond program understanding: A look at programming
expertise in industry. In C. R. C. Jean C. Scholtz and J. C. Spohrer, editors,
Proc. of the Fifth Workshop on Empirical Studies of Programmers, pages
6–25. Ablex Publishing Corporation, 1993. → pages 15

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, May 2001. → pages 20

[7] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson. Fastdash: a
visual dashboard for fostering awareness in software teams. In Proceedings
of the SIGCHI conference on Human factors in computing systems, CHI ’07,
pages 1313–1322, New York, NY, USA, 2007. ACM.
doi:http://doi.acm.org/10.1145/1240624.1240823. → pages 4, 18

[8] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Information needs in
bug reports: improving cooperation between developers and users. In
Proceedings of the 2010 ACM conference on Computer supported
cooperative work, CSCW ’10, pages 301–310, New York, NY, USA, 2010.
ACM. doi:http://doi.acm.org/10.1145/1718918.1718973. → pages 16

134

http://dx.doi.org/http://doi.acm.org/10.1145/1240624.1240823
http://dx.doi.org/http://doi.acm.org/10.1145/1718918.1718973

[9] R. Brooks. Using a behavioral theory of program comprehension in software
engineering. In Proceedings of the 3rd international conference on Software
engineering, ICSE ’78, pages 196–201, Piscataway, NJ, USA, 1978. IEEE
Press. → pages 4, 14

[10] R. Brooks. Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18(6):543 – 554, 1983.
doi:DOI:10.1016/S0020-7373(83)80031-5. → pages 14

[11] R. R. Burton, L. M. Masinter, D. G. Bobrow, W. S. Haugeland, R. M.
Kaplan, and B. A. Sheil. Overview and status of doradolisp. In Proceedings
of the 1980 ACM conference on LISP and functional programming, LFP’80,
pages 243–247, New York, NY, USA, 1980. ACM. → pages 11

[12] R. H. Campbell and P. A. Kirslis. The saga project: A system for software
development. In Proceedings of the first ACM SIGSOFT/SIGPLAN software
engineering symposium on Practical software development environments,
SDE 1, pages 73–80, New York, NY, USA, 1984. ACM. → pages 11

[13] N. R. Carlson, W. Buskist, M. E. Enzle, and C. D. Heth. Psychology: the
Science of Behaviour. Prentice Hall Canada, 2005. → pages 14

[14] D. D. Chamberlin and R. F. Boyce. Sequel: A structured english query
language. In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)
workshop on Data description, access and control, SIGFIDET ’74, pages
249–264, New York, NY, USA, 1974. ACM. → pages 126

[15] H. Chan, K. Siau, and K.-K. Wei. The effect of data model, system and task
characteristics on user query performance: an empirical study. SIGMIS
Database, 29(1):31–49, 1997.
doi:http://doi.acm.org/10.1145/506812.506820. → pages 81, 107, 109

[16] D. H. Chau, B. Myers, and A. Faulring. What to do when search fails:
finding information by association. In Proc. of CHI ’08, pages 999–1008,
New York, USA, 2008. ACM.
doi:http://doi.acm.org/10.1145/1357054.1357208. → pages 17

[17] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson. Jazzing up eclipse with
collaborative tools. In Eclipse’03: Proc. of the 2003 OOPSLA eTX
Workshop, pages 45–49, New York, NY, USA, 2003. ACM.
doi:http://doi.acm.org/10.1145/965660.965670. → pages 19

135

http://dx.doi.org/DOI: 10.1016/S0020-7373(83)80031-5
http://dx.doi.org/http://doi.acm.org/10.1145/506812.506820
http://dx.doi.org/http://doi.acm.org/10.1145/1357054.1357208
http://dx.doi.org/http://doi.acm.org/10.1145/965660.965670

[18] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko. Let’s go to the
whiteboard: how and why software developers use drawings. In Proc. of
CHI’07, pages 557–566. ACM, 2007.
doi:http://doi.acm.org/10.1145/1240624.1240714. → pages 3, 6, 53, 54, 59

[19] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13:377–387, June 1970. → pages 126

[20] B. de Alwis and G. C. Murphy. Answering conceptual queries with ferret. In
Proc. of ICSE’08, pages 21–30, New York, USA, 2008. ACM.
doi:http://doi.acm.org/10.1145/1368088.1368092. → pages 16, 19

[21] R. DeLine and K. Rowan. Code canvas: zooming towards better
development environments. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ICSE ’10,
pages 207–210, New York, NY, USA, 2010. ACM.
doi:http://doi.acm.org/10.1145/1810295.1810331. → pages 7, 19

[22] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson. Towards
understanding programs through wear-based filtering. In Proc. of SoftVis’05,
pages 183–192. ACM, 2005.
doi:http://doi.acm.org/10.1145/1056018.1056044. → pages 14

[23] F. Détienne. Software design—cognitive aspects. Springer-Verlag New
York, Inc., New York, NY, USA, 2002. → pages 14, 23

[24] P. T. Devanbu, R. J. Brachman, P. G. Selfridge, and B. W. Ballard. Lassie: a
knowledge-based software information system. In Proc. of ICSE’90, pages
249–261, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press. →
pages 18

[25] P. Dourish and V. Bellotti. Awareness and coordination in shared
workspaces. In CSCW ’92: Proceedings of the 1992 ACM conference on
Computer-supported cooperative work, pages 107–114, New York, NY,
USA, 1992. ACM. doi:http://doi.acm.org/10.1145/143457.143468. → pages
6, 53

[26] S. G. Eick, J. L. Steffen, and J. Eric E. Sumner. Seesoft-a tool for visualizing
line oriented software statistics. IEEE Transactions on Software
Engineering, 18(11):957–968, 1992.
doi:http://dx.doi.org/10.1109/32.177365. → pages 7, 19

136

http://dx.doi.org/http://doi.acm.org/10.1145/1240624.1240714
http://dx.doi.org/http://doi.acm.org/10.1145/1368088.1368092
http://dx.doi.org/http://doi.acm.org/10.1145/1810295.1810331
http://dx.doi.org/http://doi.acm.org/10.1145/1056018.1056044
http://dx.doi.org/http://doi.acm.org/10.1145/143457.143468
http://dx.doi.org/http://dx.doi.org/10.1109/32.177365

[27] K. Erdos and H. Sneed. Partial comprehension of complex programs
(enough to perform maintenance). In Program Comprehension, 1998. IWPC
’98. Proceedings., 6th International Workshop on, pages 98 –105, 1998.
doi:10.1109/WPC.1998.693322. → pages 16

[28] T. Fritz. Staying aware of relevant feeds in context. In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering -
Volume 2, ICSE ’10, pages 523–524, New York, NY, USA, 2010. ACM.
doi:http://doi.acm.org/10.1145/1810295.1810462. → pages 128

[29] T. Fritz and G. C. Murphy. Using information fragments to answer the
questions developers ask. In ICSE ’10: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, pages 175–184, New
York, NY, USA, 2010. ACM.
doi:http://doi.acm.org/10.1145/1806799.1806828. → pages 17

[30] T. Fritz and G. C. Murphy. Determining relevancy: How software
developers determine relevant information in feeds. Technical Report
TR-2010-12, University of British Columbia, December 2010. → pages 128

[31] T. Fritz, G. C. Murphy, and E. Hill. Does a programmer’s activity indicate
knowledge of code? In ESEC-FSE’07: Proceedings of the 6th joint meeting
of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 341–350,
New York, NY, USA, 2007. ACM.
doi:http://doi.acm.org/10.1145/1287624.1287673. → pages 23

[32] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill. A degree-of-knowledge
model to capture source code familiarity. In ICSE’10: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering, pages
385–394, New York, NY, USA, 2010. ACM.
doi:http://doi.acm.org/10.1145/1806799.1806856. → pages 43, 54

[33] J. Froehlich and P. Dourish. Unifying artifacts and activities in a visual tool
for distributed software development teams. In ICSE’04: Proc. of the 26th
International Conference on Software Engineering, pages 387–396,
Washington, DC, USA, 2004. IEEE Computer Society. → pages 19

[34] D. Garlan. Views for tools in integrated environments. In R. Conradi,
T. Didriksen, and D. Wanvik, editors, Advanced Programming
Environments, volume 244 of Lecture Notes in Computer Science, pages
314–343. Springer Berlin / Heidelberg, 1986.
doi:http://dx.doi.org/10.1007/3-540-17189-4 105. → pages 18

137

http://dx.doi.org/10.1109/WPC.1998.693322
http://dx.doi.org/http://doi.acm.org/10.1145/1810295.1810462
http://dx.doi.org/http://doi.acm.org/10.1145/1806799.1806828
http://dx.doi.org/http://doi.acm.org/10.1145/1287624.1287673
http://dx.doi.org/http://doi.acm.org/10.1145/1806799.1806856
http://dx.doi.org/http://dx.doi.org/10.1007/3-540-17189-4_105

[35] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How developers drive
software evolution. In Proc. of IWPSE’05, pages 113–122. IEEE Computer
Society, 2005. doi:http://dx.doi.org/10.1109/IWPSE.2005.21. → pages 12

[36] D. Gusfield. Algorithms on strings, trees, and sequences : computer science
and computational biology. Cambridge Univ. Press, 2007. → pages 86

[37] C. Gutwin, R. Penner, and K. Schneider. Group awareness in distributed
software development. In CSCW ’04: Proceedings of the 2004 ACM
conference on Computer supported cooperative work, pages 72–81, New
York, NY, USA, 2004. ACM.
doi:http://doi.acm.org/10.1145/1031607.1031621. → pages 4

[38] A. N. Habermann and D. Notkin. Gandalf: software development
environments. IEEE Trans. Softw. Eng., 12:1117–1127, December 1986. →
pages 2, 11

[39] E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Scalable source code
queries with datalog. In D. Thomas, editor, Proc. of ECOOP’06, volume
4067 of Lecture Notes in Computer Science, pages 2–27, Berlin, Germany,
2006. Springer. → pages 18

[40] R. Hamming. Error Detecting and Error Correcting Codes. Bell System
Technical Journal, 26(2):147–160, 1950. → pages 86

[41] L. Hattori and M. Lanza. Mining the history of synchronous changes to
refine code ownership. Mining Software Repositories, International
Workshop on, 0:141–150, 2009.
doi:http://doi.ieeecomputersociety.org/10.1109/MSR.2009.5069492. →
pages 12

[42] J. D. Herbsleb and E. Kuwana. Preserving knowledge in design projects:
what designers need to know. In Proceedings of the INTERACT ’93 and CHI
’93 conference on Human factors in computing systems, CHI ’93, pages
7–14, New York, NY, USA, 1993. ACM.
doi:http://doi.acm.org/10.1145/169059.169061. → pages 16

[43] R. Holmes and A. Begel. Deep intellisense: a tool for rehydrating
evaporated information. In Proc. of MSR’08, pages 23–26, New York, USA,
2008. ACM. doi:http://doi.acm.org/10.1145/1370750.1370755. → pages 18

[44] R. Holmes and R. J. Walker. Customized awareness: recommending relevant
external change events. In Proceedings of the 32nd ACM/IEEE International

138

http://dx.doi.org/http://dx.doi.org/10.1109/IWPSE.2005.21
http://dx.doi.org/http://doi.acm.org/10.1145/1031607.1031621
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MSR.2009.5069492
http://dx.doi.org/http://doi.acm.org/10.1145/169059.169061
http://dx.doi.org/http://doi.acm.org/10.1145/1370750.1370755

Conference on Software Engineering - Volume 1, ICSE ’10, pages 465–474,
New York, NY, USA, 2010. ACM. → pages 6, 53

[45] M. Jakobsen, R. Fernandez, M. Czerwinski, K. Inkpen, O. Kulyk, and
G. Robertson. Wipdash: Work item and people dashboard for software
development teams. In Human-Computer Interaction INTERACT ’09,
volume 5727 of Lecture Notes in Computer Science, pages 791—804.
Springer, 2009. → pages 18

[46] D. Janzen and K. D. Volder. Navigating and querying code without getting
lost. In Proc. of AOSD’03, pages 178–187, New York, NY, USA, 2003.
ACM. doi:http://doi.acm.org/10.1145/643603.643622. → pages 17

[47] D. Jin and J. R. Cordy. Ontology-based software analysis and reengineering
tool integration: The oasis service-sharing methodology. In ICSM ’05:
Proceedings of the 21st IEEE International Conference on Software
Maintenance, pages 613–616, Washington, DC, USA, 2005. IEEE Computer
Society. doi:http://dx.doi.org/10.1109/ICSM.2005.68. → pages 7, 20

[48] D. Jin and J. R. Cordy. Integrating reverse engineering tools using a
service-sharing methodology. In ICPC ’06: Proceedings of the 14th IEEE
International Conference on Program Comprehension, pages 94–99,
Washington, DC, USA, 2006. IEEE Computer Society.
doi:http://dx.doi.org/10.1109/ICPC.2006.30. → pages 20

[49] W. L. Johnson and A. Erdem. Interactive explanation of software systems.
Automated Software Engineering, 4:53–75, 1997.
doi:http://dx.doi.org/10.1023/A:1008655629091. → pages 16

[50] M. Kersten. Focusing knowledge work with task context. PhD thesis,
University of British Columbia, 2007. → pages 26, 44

[51] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model for ides.
In AOSD’05: Proc. of the 4th International Conference on Aspect-Oriented
Software Development, pages 159–168, New York, NY, USA, 2005. ACM.
doi:http://doi.acm.org/10.1145/1052898.1052912. → pages 13

[52] M. Kersten and G. C. Murphy. Using task context to improve programmer
productivity. In SIGSOFT’06/FSE-14: Proc. of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
1–11, New York, NY, USA, 2006. ACM.
doi:http://doi.acm.org/10.1145/1181775.1181777. → pages x, 4, 13, 25, 26,
27, 44, 48, 61

139

http://dx.doi.org/http://doi.acm.org/10.1145/643603.643622
http://dx.doi.org/http://dx.doi.org/10.1109/ICSM.2005.68
http://dx.doi.org/http://dx.doi.org/10.1109/ICPC.2006.30
http://dx.doi.org/http://dx.doi.org/10.1023/A:1008655629091
http://dx.doi.org/http://doi.acm.org/10.1145/1052898.1052912
http://dx.doi.org/http://doi.acm.org/10.1145/1181775.1181777

[53] C. Kiefer, A. Bernstein, and J. Tappolet. Mining software repositories with
isparql and a software evolution ontology. In ICSEW ’07, Washington, DC,
USA, 2007. IEEE Computer Society.
doi:http://dx.doi.org/10.1109/ICSEW.2007.139. → pages 7, 20

[54] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory study
of how developers seek, relate, and collect relevant information during
software maintenance tasks. IEEE Transactions on Software Engineering,
32:971–987, 2006.
doi:http://doi.ieeecomputersociety.org/10.1109/TSE.2006.116. → pages 4,
15

[55] A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated
software development teams. In Proc. of ICSE’07, pages 344–353,
Washington, DC, USA, 2007. IEEE Computer Society.
doi:http://dx.doi.org/10.1109/ICSE.2007.45. → pages 1, 6, 17, 79, 119

[56] T. D. LaToza and B. A. Myers. Hard-to-answer questions about code. In
Second Workshop on the Evaluation and Usability of Programming
Languages and Tools at SPLASH ’10, 2010. → pages 3, 6, 17, 53

[57] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental models: a
study of developer work habits. In Proc. of ICSE’06, pages 492–501, New
York, NY, USA, 2006. ACM.
doi:http://doi.acm.org/10.1145/1134285.1134355. → pages 3, 6, 17, 53, 79,
119

[58] S. Letovsky. Cognitive processes in program comprehension. In Papers
presented at the first workshop on empirical studies of programmers on
Empirical studies of programmers, pages 58–79, Norwood, NJ, USA, 1986.
Ablex Publishing Corp. → pages 16

[59] M. A. Linton. Implementing relational views of programs. In Proceedings
of the first ACM SIGSOFT/SIGPLAN software engineering symposium on
Practical software development environments, pages 132–140, New York,
NY, USA, 1984. ACM. doi:http://doi.acm.org/10.1145/800020.808258. →
pages 18

[60] D. W. McDonald and M. S. Ackerman. Expertise recommender: a flexible
recommendation system and architecture. In CSCW ’00: Proceedings of the
2000 ACM conference on Computer supported cooperative work, pages
231–240, New York, NY, USA, 2000. ACM Press.
doi:http://doi.acm.org/10.1145/358916.358994. → pages 3, 6, 12, 53

140

http://dx.doi.org/http://dx.doi.org/10.1109/ICSEW.2007.139
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2006.116
http://dx.doi.org/http://dx.doi.org/10.1109/ICSE.2007.45
http://dx.doi.org/http://doi.acm.org/10.1145/1134285.1134355
http://dx.doi.org/http://doi.acm.org/10.1145/800020.808258
http://dx.doi.org/http://doi.acm.org/10.1145/358916.358994

[61] P. Mi and W. Scacchi. A meta-model for formulating knowledge-based
models of software development. Decision Support Systems, 17(4):313 –
330, 1996. doi:DOI:10.1016/0167-9236(96)00007-3. → pages 20

[62] S. Minto and G. C. Murphy. Recommending emergent teams. In Proc. of
MSR’07. IEEE Computer Society, 2007. → pages 12

[63] A. Mockus and J. D. Herbsleb. Expertise browser: a quantitative approach to
identifying expertise. In ICSE’02: Proceedings of the 24th International
Conference on Software Engineering, pages 503–512, New York, NY, USA,
2002. ACM. doi:http://doi.acm.org/10.1145/581339.581401. → pages 3, 12,
38, 58

[64] G. C. Murphy, M. Kersten, and L. Findlater. How are java software
developers using the eclipse ide? IEEE Softw., 23(4):76–83, 2006.
doi:http://dx.doi.org/10.1109/MS.2006.105. → pages 27

[65] E. Murphy-Hill and A. P. Black. An interactive ambient visualization for
code smells. In Proceedings of the 5th international symposium on Software
visualization, SOFTVIS ’10, pages 5–14, New York, NY, USA, 2010. ACM.
doi:http://doi.acm.org/10.1145/1879211.1879216. → pages 14

[66] C. Parnin, C. Görg, and S. Rugaber. Enriching revision history with
interactions. In Proc. of MSR’06, pages 155–158. ACM, 2006.
doi:http://doi.acm.org/10.1145/1137983.1138019. → pages 14

[67] S. Paul and A. Prakash. A query algebra for program databases. IEEE
Trans. Softw. Eng., 22(3):202–217, 1996.
doi:http://dx.doi.org/10.1109/32.489080. → pages 7, 18

[68] N. Pennington. Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology, 19(3):295 –
341, 1987. doi:DOI:10.1016/0010-0285(87)90007-7. → pages 14

[69] D. Quan, D. Huynh, and D. R. Karger. Haystack: A platform for authoring
end user semantic web applications. In Proc. of ISWC’03, volume
2870/2003, pages 738–753. Springer, 2003. → pages 21

[70] C. Rich and R. C. Waters. The programmer’s apprentice: A research
overview. Computer, 21(11):10–25, 1988.
doi:http://dx.doi.org/10.1109/2.86782. → pages 37

141

http://dx.doi.org/DOI: 10.1016/0167-9236(96)00007-3
http://dx.doi.org/http://doi.acm.org/10.1145/581339.581401
http://dx.doi.org/http://dx.doi.org/10.1109/MS.2006.105
http://dx.doi.org/http://doi.acm.org/10.1145/1879211.1879216
http://dx.doi.org/http://doi.acm.org/10.1145/1137983.1138019
http://dx.doi.org/http://dx.doi.org/10.1109/32.489080
http://dx.doi.org/DOI: 10.1016/0010-0285(87)90007-7
http://dx.doi.org/http://dx.doi.org/10.1109/2.86782

[71] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantı́r: raising awareness
among configuration management workspaces. In ICSE ’03: Proceedings of
the 25th International Conference on Software Engineering, pages 444–454,
Washington, DC, USA, 2003. IEEE Computer Society. → pages 4, 18

[72] A. Sarma, G. Bortis, and A. van der Hoek. Towards supporting awareness of
indirect conflicts across software configuration management workspaces. In
ASE ’07: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages 94–103, New York,
NY, USA, 2007. ACM. doi:http://doi.acm.org/10.1145/1321631.1321647.
→ pages 4

[73] D. Schuler and T. Zimmermann. Mining usage expertise from version
archives. In Proc. of MSR’08, pages 121–124. ACM, 2008.
doi:http://doi.acm.org/10.1145/1370750.1370779. → pages 13

[74] N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web revisited.
IEEE Intelligent Systems, 21:96–101, May 2006.
doi:http://dx.doi.org/10.1109/MIS.2006.62. → pages 20

[75] J. Sillito, G. C. Murphy, and K. D. Volder. Questions programmers ask
during software evolution tasks. In Proc. of FSE’06, pages 23–34, New
York, NY, USA, 2006. ACM.
doi:http://doi.acm.org/10.1145/1181775.1181779. → pages 16

[76] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An examination of
software engineering work practices. In Proceedings of the 1997 conference
of the Centre for Advanced Studies on Collaborative research, CASCON
’97, 1997. → pages 1

[77] E. Soloway and K. Ehrlich. Empirical studies of programming knowledge.
IEEE Trans. Software Eng., 10(5):595–609, 1984. → pages 15

[78] E. Soloway, R. Lampert, S. Letovsky, D. Littman, and J. Pinto. Designing
documentation to compensate for delocalized plans. Commun. ACM, 31(11):
1259–1267, 1988. doi:http://doi.acm.org/10.1145/50087.50088. → pages 1

[79] A. C. Strauss and J. Corbin. Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Sage Publications, Inc, 2nd edition,
1990. → pages 129

[80] W. Teitelman and L. Masinter. The interlisp programming environment.
IEEE Computer, 14(4):25–33, 1981.
doi:http://dx.doi.org/10.1109/C-M.1981.220410. → pages 11

142

http://dx.doi.org/http://doi.acm.org/10.1145/1321631.1321647
http://dx.doi.org/http://doi.acm.org/10.1145/1370750.1370779
http://dx.doi.org/http://dx.doi.org/10.1109/MIS.2006.62
http://dx.doi.org/http://doi.acm.org/10.1145/1181775.1181779
http://dx.doi.org/http://doi.acm.org/10.1145/50087.50088
http://dx.doi.org/http://dx.doi.org/10.1109/C-M.1981.220410

[81] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth. Hipikat: A project
memory for software development. IEEE Trans. Softw. Eng., 31(6):446–465,
2005. doi:http://doi.ieeecomputersociety.org/10.1109/TSE.2005.71. →
pages 7, 18

[82] A. von Mayrhauser and A. M. Vans. Comprehension processes during large
scale maintenance. In Proc. of 16th International Conference on Software
Engineering, pages 39–48, 1994. → pages 4, 14

[83] M. Würsch, G. Ghezzi, G. Reif, and H. C. Gall. Supporting developers with
natural language queries. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE ’10,
pages 165–174, New York, NY, USA, 2010. ACM.
doi:http://doi.acm.org/10.1145/1806799.1806827. → pages 18

[84] Y. Ye, Y. Yamamoto, and K. Nakakoji. A socio-technical framework for
supporting programmers. In Proc. of ESEC-FSE’07, pages 351–360, New
York, NY, USA, 2007. ACM.
doi:http://doi.acm.org/10.1145/1287624.1287674. → pages 18

[85] L. Zou and M. W. Godfrey. Understanding interaction differences between
newcomer and expert programmers. In Proc. of RSSE’08, pages 26–29.
ACM, 2008. → pages 14

143

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2005.71
http://dx.doi.org/http://doi.acm.org/10.1145/1806799.1806827
http://dx.doi.org/http://doi.acm.org/10.1145/1287624.1287674

Appendix A

Studies: Supporting Materials

This chapter provides a table (Table A.1) that lists all studies conducted for this

thesis and the supporting materials for the studies.

A.1 Sample Questions for StudyEXP DOK

1. How much and what kind of experience do you have with this code base?

2. How long did you work on this part (or a particular code element) before the

monitoring period?

3. Are you the author of this part of the code?

4. Why do you think you know this part of the program well?

5. Is there a particular reason why you answered this question (question from

the questionnaire) the way you did?

6. Did your responsibilities for parts of the code base change during the study
and how?

7. Do you think the questions in the questionnaire are appropriate and adequate

for measuring your knowledge and why or why not?

144

Table A.1: Studies Conducted for this Thesis

Study Name Study Description Supporting Material

StudyEXP DOK Formative study to investigate the fac-
tors in modeling knowledge

Sample questions
(Section A.1)

StudyDATA DOK Data study to investigate authorship
and interaction behavior of developers

none

ExperimentDOK Experiment to determine the weight-
ing factors for the factors in the DOK
model

none

StudyCS DOK Case studies to evaluate the DOK
model

none

StudyDATA 2 DOK Data study to investigate the general
applicability of the DOK model

none

StudyEXP FR Interview study to investigate the
range of questions that span across
multiple kinds of information

none

StudyINFR Case study to evaluate the usefulness
of the information fragments model

Tutorial (Section A.4),
sample questions
(Section A.2)

StudyFEEDS Exploratory study on determining rel-
evant news items in feeds

Sample questions
(Section A.3)

A.2 Sample Questions for StudyINFR

1. How would you use our tool to answer the question ”Who is working on

what?”?

2. In which situations and for which questions can you imagine using our tool?

3. How much and what kind of experience do you have with this code base?

4. What does the information presented in the view mean to you?

5. Is there any information missing in the view that you want to see to answer

the question at hand?

6. Are there any features missing that you would like the tool to have?

145

A.3 Sample Questions for StudyFEEDS

1. What is the reason for an item of information to be relevant?

2. Are there any particular rules you are using to determine whether an infor-

mation item is relevant or not?

3. When do you consider an item of information as irrelevant?

4. Does the context provided in the Awareness View help you to interpret the
information or rather make it more difficult?

5. Is there any information missing in the view that you want to see to stay
aware of relevant information?

6. Is the presentation in the Awareness View well-suited for staying aware of

relevant information?

7. Are there any features missing in the Awareness View that you would like it
to have?

8. Can you imagine using the Awareness View and in which situations?

9. With respect to the two views: which one was easier to use for you and why?

A.4 Tutorial for the Evaluation of the Information
Fragments Model

The Fragment Explorer is a view inside of Jazz that allows you to compose dif-
ferent kinds of information, such as Java source code, change sets, work items and

teams. We use the term fragment to refer to a subset of a kind of information, such

as all change sets created yesterday or all members of your team.

The Fragment Explorer has two parts. The lower part (marked A in the attached
screenshot) lists the fragments you can select to compose. The upper part of the

view (marked B in the attached screenshot) shows the result of composed frag-
ments. We refer to the upper part as the composed viewer.

146

For the remainder of this session, please assume that you are Alex, one of 9 devel-

opers on the Source Control Mechanism team for Jazz (March 18th, 2008). The
code for your team and any dependent code is loaded into your workspace. Imag-

ine that you have just arrived at the office in the morning and you have a couple of
questions about the development. Please follow the steps as described below!

Question #1: “Which changes have been delivered in the last week by the Jazz
team and by whom have they been delivered?”
To answer this question,

• Select the fragment “Change sets delivered in the last week” and press the
“+” Button (marked C in the attached screenshot) to add the fragment to

the composed viewer. You can also right click on the fragment and press

“Compose Selection” or double click on the fragment. (Please do so now.)

Adding the fragment will display the elements of the fragment as a tree. For

now, the tree has one level and thus appears as a list. Also, a button with an
icon representing the added change set fragment will be added on the top

right of the composed viewer that lets you perform additional actions on the
representation of the added fragment (marked D in the attached screenshot).

• Next add the fragment “Jazz team” to the composed viewer by selecting it
and pressing the “+” Button (marked C in the attached screenshot). The

newly added fragment is composed with the fragment that was already in the
composed viewer. As change sets have information about the team member

that authored the change, the composition creates links between change sets
and team members. The viewer now displays the intersection. So if you, for

example, expand the first change set node, you can see that Todd from the
Work Item and the Agile Planning team delivered changes on March 12th.

(Note: change sets that have been delivered by developers that are not on the
Jazz team will not be displayed!)

Adding the fragment will again result in an icon/button being added in the

top right corner of the view (marked D) that represents the team fragment .
The order of the icons represents the order of the fragments in the common

147

viewer. Right now the order is meaning that change sets come first
and team elements second in the composed viewer.

These two steps answer the first question.

Question #2: “Which member of the Jazz team created most changes in the
last week?”
To answer this question,

• Use the “Count... > Contributors” (or the “Count Team Elements”) action of
the drop down menu of the button representing the team fragment in the top

right corner (marked D in the screenshot). You will see a table view appear

as a separate window that summarizes the occurrences of each of the Jazz
team members (and the teams). In this case Matt made most changes (77).

Note that the count view will summarize the occurrences of each element on
that level in the composed viewer. Changing the order of fragments in the

composed viewer can change the occurrences of an element in the viewer
and thus the occurrence count in the count view.

Question #3: “Which team created which change sets in the last week?”
To answer this question,

• Change the order of the presentation in the composed viewer by changing

the order of the fragment icons using drag and drop on the top right of the
view (marked D). The order should look like afterwards so that

team elements come before change sets.

NOTE: As the composition shown in the composed viewer is commutative, the

order in which you add the fragments does not have any effect on the underlying
composition. Changing the fragment order adapts the presentation but does not

change the composed information.

• As you are only interested in the teams and not the members, you can use
the “Hide... > Contributors” action in the drop down menu of the Team frag-

ment button . This action shows only the teams and the change sets they

148

Fragment Order and

addi!onal ac!ons

Composed

Viewer

Base Viewer

created in the last week underneath.
The drop down menus and provide actions on the elements in the

view of the previously added fragments (team and change set respectively).

Now please clear the composed view by pressing the red X button in the top right

corner of the view (just above D).

149

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 A Model of a Developer's Knowledge of Code
	1.1.1 Earlier Efforts
	1.1.2 The Degree-of-Knowledge Model
	1.1.3 Evaluating the Model

	1.2 A Model to Integrate Multiple Kinds of Information
	1.2.1 Earlier Efforts
	1.2.2 The Information Fragments Model
	1.2.3 Evaluating the Model

	1.3 Contributions
	1.4 Organization

	2 Related Work
	2.1 Modeling a Developer's Knowledge
	2.1.1 Expertise Recommenders Based on Authorship
	2.1.2 Using Interaction to Support Developers
	2.1.3 Explicitly Modeling a Developer's Knowledge

	2.2 Modeling a Developer's Information Needs Across Multiple Kinds of Information
	2.2.1 Studies of Developers' Questions
	2.2.2 Answering a Developer's Questions

	3 The Degree-of-Knowledge Model
	3.1 A Developer's Activity as an Indicator for Knowledge
	3.1.1 Study
	3.1.2 Quantitative Results
	3.1.3 Qualitative Results
	3.1.4 Threats to Validity
	3.1.5 The Need for a Better Indicator of a Developer's Knowledge

	3.2 Authorship and Interaction
	3.2.1 Authorship—a Long-term Component
	3.2.2 Interaction—a Short-term Component
	3.2.3 Authorship and Interaction

	3.3 Degree-of-Knowledge Model
	3.3.1 Degree-of-Authorship
	3.3.2 Degree-of-Interest
	3.3.3 Degree-of-Knowledge

	3.4 Determining DOK Weightings
	3.4.1 Method
	3.4.2 Analysis and Results

	4 Evaluation of the DOK Model
	4.1 Case Studies
	4.1.1 Finding Experts
	4.1.2 Onboarding
	4.1.3 Identifying Changes of Interest
	4.1.4 Case Studies Summary

	4.2 Robustness of the Model
	4.2.1 Differences in Development Teams
	4.2.2 One Model for All
	4.2.3 A Site-Specific Model
	4.2.4 Robustness Summary

	4.3 Threats to Validity
	4.3.1 Amount of Data
	4.3.2 Multiple Stream Development
	4.3.3 Project Phase
	4.3.4 Individual Factors

	5 The Information Fragments Model
	5.1 Developers' Questions
	5.1.1 Subjects and Interview Process
	5.1.2 Interview Results
	5.1.3 Threats

	5.2 Answering Questions Using Existing Approaches
	5.2.1 Using an Integrated Development Environment
	5.2.2 Using a Query Language

	5.3 Information Fragment Model
	5.3.1 Example of Use
	5.3.2 Information Fragments
	5.3.3 Composition Operators
	5.3.4 Presentation

	6 Evaluation of the Information Fragments Model
	6.1 Applying the Model
	6.2 Prototype
	6.2.1 Information Fragments
	6.2.2 Composition
	6.2.3 Presentation
	6.2.4 Completeness of the Prototype

	6.3 Study
	6.3.1 Subjects
	6.3.2 Study Method
	6.3.3 Data Analysis
	6.3.4 Can Developers Use the Model?
	6.3.5 How Do Developers Use the Model?
	6.3.6 What Do Developers Think About the Approach?

	6.4 Threats

	7 Discussion and Future Work
	7.1 Degree-of-Knowledge Model
	7.1.1 Structural Knowledge vs. User Rating
	7.1.2 Linear Regression
	7.1.3 API Elements, Structural Information and Usage Expertise
	7.1.4 Using DOK to Prevent Bugs
	7.1.5 Finding Relevant Bugs
	7.1.6 Longitudinal Study

	7.2 Information Fragments Model
	7.2.1 Automatic Composition
	7.2.2 Text Matching and Other Operators
	7.2.3 Model vs SQL
	7.2.4 Information Fragment Selection
	7.2.5 Extending the Tool
	7.2.6 Presenting the Information

	7.3 Using Knowledge and Context for Awareness

	8 Conclusion
	Bibliography
	Appendix A Studies: Supporting Materials
	A.1 Sample Questions for StudyEXP_DOK
	A.2 Sample Questions for StudyINFR
	A.3 Sample Questions for StudyFEEDS
	A.4 Tutorial for the Evaluation of the Information Fragments Model

