
Scalable Database Management System (DBMS)
Architecture with Innesto

by

Primal Wijesekera

B.Sc, University of Colombo, Sri Lanka, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

October 2012

c© Primal Wijesekera, 2012

Abstract

Database Management systems (DBMS) have been in the core of Information Sys-

tems for decades and their importance is getting higher and higher with current

high growth in user demand and rising necessity to handle bigdata. With recent

emergence of new style of deployments in the cloud, decades old architectures

in DBMS have been greatly challenged due to their inability to scale beyond sin-

gle computing node and to handle big data. This new requirement has spawned

new directions along scaling data storage architectures. Most of the work surfaced

lacks the applicability across many domains as they were targeting only a specific

domain.

We present a novel scalable architecture which is implemented using a dis-

tributed spatial partitioning tree (SPT). This new architecture replaces only the

storage layer of a conventional DBMS thus leaving its applicability across do-

mains intact and provides strict consistency and isolation. Indexing and locking are

two important components of a Relational Database Management System (DBMS)

which pose as potential bottleneck when scaling. Our new approach based on SPT

provides a novel scalable alternative for these components.

Our evaluations using the TPC-C workload show they are capable of scaling

beyond single computing node and support more concurrent users compared to a

single node conventional system. We believe our contributions to be an important

first step towards the goal of a scalable, cloud aware and full-featured DBMS as a

service.

ii

Preface

All the work described in this thesis was performed under thesupervision of An-

drew Warfield and with regular consultation from Norm Hutchinson. The entire

project described in the thesis is implemented as a teamed upwork with Mahdi

Tayarani Najaran, a current PhD student in the NSS lab. Ken Salem from Univer-

sity of Waterloo helped a lot in guiding the project in the early phase.

The Innesto project (Section 2.2) described in the thesis isentirely devel-

oped by Mahdi as part of his PhD thesis work. Since the Indexing sub system

(Section 4.1) fully used the Innesto as it is, it also belongsto his work. Dis-

tributed locking described in (Section 4.1) needed for correct isolation semantics,

is collectively designed and implemented with Mahdi. In theTransaction Handler

(Section 4.3.2), authors’ main contribution is in the Data operations group where

core CRUD operations are implemented. The storage handler (Section 4.3.4) re-

sponsible of communication between the QPU and the Transaction Handler and

the correct handling of MySQL instructions is a work of the author.

The project described in Appendix C which was the first step inthis project

was also a work of the author. Work described in Appendix B hasbeen published

separately as Distributed Indexing and Locking: In Search of Scalable Consis-

tency, Mahdi Tayarani Najaran, Primal Wijesekera, Andrew Warfield, Norman C.

Hutchinson, 5th Workshop on Large Scale Distributed Systems and Middleware

(LADIS 2011).

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Figures . vii

Acknowledgements . viii

1 Introduction . 1

2 Background . 4

2.1 Current RDBMS Architecture 4

2.1.1 Query Processing . 4

2.1.2 Indexing . 5

2.1.3 Locking . 6

2.1.4 Known Bottlenecks . 7

2.2 Innesto . 8

2.2.1 Spatial Partitioning Tree 9

2.2.2 Two Phase Commit . 10

3 Design . 11

3.1 Design Objectives . 11

3.1.1 General Applicability . 11

3.1.2 Scalability without Higher Level Partitioning 11

iv

3.1.3 Provide Strict Isolation and Consistency12

3.1.4 Build a Platform for a DBaaS 12

3.2 High Level Design . 12

3.3 Design Challenges . 14

3.3.1 Distributed Indexing . 14

3.3.2 Distributed Locking . 14

4 Implementation . 15

4.1 Distributed Indexing . 15

4.1.1 SPT for Indexing . 15

4.2 Distributed Locking . 17

4.2.1 Logical Locking with SPT 17

4.2.2 Range Based SPT . 18

4.2.3 Locking Semantics . 18

4.2.4 Fair Queueing vs FIFO 18

4.2.5 Deadlock Detection . 19

4.2.6 Workload Profiling . 19

4.3 Higher Level Architecture . 20

4.3.1 Index and Lock Manager, Memnodes 21

4.3.2 Transaction Handler . 22

4.3.3 Query Processing unit 25

4.3.4 Storage Handler . 26

5 Evaluation . 27

5.1 Setup and Benchmark . 27

5.2 Strong Scaling . 28

5.3 Contention . 29

5.4 Web Compatible Workloads . 30

5.5 Range Queries . 32

5.6 Crash Consistency Cost . 33

6 Related Work . 36

6.1 Data Partitioning . 36

6.2 Key-Value Stores . 37

v

6.3 Scaling Storage . 37

6.4 Scalable Transactional Models 38

6.5 Distributed Indexing . 38

6.6 Distributed Locking . 39

6.7 Commercial Offerings . 39

7 Conclusion and Future Work . 40

7.1 Conclusion . 40

7.2 Future Work . 41

Bibliography . 43

A InnoDb Configuration . 47

B SinfoniaEx . 48

C MySQL over Cassandra . 51

vi

List of Figures

Figure 2.1 The Conventional Workflow in a DBMS 5

Figure 2.2 High Level Innesto Architecture 8

Figure 2.3 Three Dimensional Spatial Partitioning Tree 9

Figure 3.1 Scaling the Storage Layer 13

Figure 3.2 Scalability with Query Processing 13

Figure 4.1 Spatial Partition Tree as DBMS Index 16

Figure 4.2 Adding a Primary Key in SQL 16

Figure 4.3 Querying Index in SQL . 17

Figure 4.4 Full System Architecture .21

Figure 4.5 Current MySQL Architecture 25

Figure 5.1 Strong Scaling in Query Processing 29

Figure 5.2 Scaling with Users . 31

Figure 5.3 User Contention . 32

Figure 5.4 Web Compatible Workload 33

Figure 5.5 Range Queries . 34

Figure 5.6 Cost of Crash Consistency 35

Figure B.1 SinExTree Thrashing with High Contention 49

Figure B.2 SinExTree as an Index . 50

vii

Acknowledgements

I owe a debt of gratitude to God for all the blessings showeredupon me and espe-

cially giving me the opportunity to work in a nice place like NSS lab. This work

would not be possible without the support I got from Andrew Warfield as my su-

pervisor. After allowing me to work on my own research area; ideas, guidance,

insightful discussions and encouragement I received from Andy assisted tremen-

dously to shape the thesis in a better way. I also would like tothank Norm Hutchin-

son for numerous thoughtful discussions we had and for the valuable comments as

the second reader to this thesis. I would also like thank Kenneth Salem for the help

given to start the project along the correct direction and useful feedback given at

numerous times throughout the project.

The work presented in the thesis is the result of an collective effort put together

with Mahdi Tayarani. His help throughout the course of the project has helped

immensely to reach the state where it is now. I would also liketo thank Charles

’Buck’ Krasic for shaping my research in the early stage and for supervising me

during the MITACS intern-ship. Alan Wagner provided usefulguidance as my

advisor when I first came into UBC.

Several friends and colleagues too many to mention individually have offered

their help in numerous ways from sharing ideas to providing good company and

cheer.

Finally I am particularly grateful to my family for their immense support. I

am here today due to the sacrifices made by and continue to makeby my fam-

ily. Especially for providing the necessary encouragementduring ups and downs

throughout the course of the program.

viii

Dedicated to my Parents and Sister,

for all their support.

ix

Chapter 1

Introduction

Relational Database Management Systems (RDBMSs) have beenan integral part

of computing environments for decades and will likely to play that role for the

foreseeable future. This is mainly due to its generality, simplicity and importantly

due its expressibility in terms of querying. With the emergence of cloud computing

and hosted services as an attractive new model of systems deployment, Database-

as-a-Service (DBaaS) surfaced as an effective mechanism toprovide the luxury of

a DBMS in the form of a service hosted in a cloud environment [1, 2, 5]. It has its

advantages mainly in the perspectives of administration (most of it are taken care of

by the cloud provider), in terms of cost(pay-per-use) and resource provision based

on demand (scale in and scale out).

However, majority of the database service offerings have not being able to

provide one of the most crucial features of hosted services to its clients, i.e. scaling

beyond one computing node. Amazon RDS [1] provide the feature of scaling out

into a bigger machine when the demand goes high. However the maximum it can

go is limited by the most powerful computing node it has to offer[38]. Scalability

of DBMS has been in the center of attention due to growing necessity for scaling

(both in terms of query processing power and storage) in response to steep growth

in user demand for applications across the spectrum.

Data partitioning has been the foremost approach to solve the scalability issue

and the work still continues to find ways of efficiently partitioning data to reduce

costly distributed transactions [19, 32]. However with current complex data query-

1

ing requirements its often hard to come up with a good partition scheme that both

helps to scale and reduce the number of distributed transactions. On the other

hand, there has been some work directed towards lesser consistency levels than

strict ACID compliance consistency and lesser expressibility than SQL [17, 22].

Although such models provide greater scalability, it has been found [14] that these

new abstract and less consistent data models give hard time to developers to de-

velop stable, error-prone systems as most of the heavy work done in DBMS are

pushed to the application level making the application evenmore complex. Most

of those systems are tailored to serve specific type of workloads losing its general-

ity.

The thesis describes an architecture based on iEngine (Innesto-Engine), a

memory-resident distributed database storage engine. Thedescribed architecture

scales without requiring to partition the data and worryingabout distributed trans-

actions touching multiple partitions. It does not compromise strict consistency,

atomicity or isolation for greater scalability thus provides the same luxuries of a

conventional DBMS. It also offers options for crash-recoverability and durability.

Few of unique features of the system compared to the rest of available alterna-

tives are given below.

• Scalability: iEngine can scale adding either more query processing power

or more memory storage or both. This is done without partitioning the data

space at all and with strict consistency(Serializability)intact.

• Workload Generality : iEngine scales both in the presence of simple web

based (lookup and inserts) operations and in the presence ofcomplex range

operations.

• Graceful Degradation: Novel techniques used in locking enables iEngine

to scale well across many nodes and handle high contention quite well with

out degrading steeply.

• Architectural Support : iEngine is a general purpose storage engine which

can work with any modern RDBMS engine and architecturally supports be-

ing used by different engines simultaneously.

2

The iEngine is based on Innesto which is a distributed in-memory Spatial Par-

titioning Tree (SPT). Innesto functions similar to Sinfonia [12] and shares many

techniques with it. A distributed SPT provides an efficient alternative for conven-

tional BTree based indexing done in RDBMS. iEngine avoids many of the bottle-

necks found in traditional storage engines [23]. Although logging is not mandatory

in iEngine and it can provide recoverability if the user needs it. All the components

of the system are single threaded thus avoids the overhead oflatching. Buffer man-

agement is not necessary since everything is stored in memory. Although iEngine

follows the conventional two phase locking, it can scale into multiple nodes when

needed thus locking does not become a bottleneck.

3

Chapter 2

Background

2.1 Current RDBMS Architecture

2.1.1 Query Processing

As it is shown in Fig 2.1, components in a conventional DBMS architecture can be

categorized into SQL processing and storage. When a query first comes in, it will

be checked for correctness of SQL semantics and planned for optimum execution

strategy by the SQL processing components. In deciding the execution plan, factors

like number of rows to be fetched from storage, whether to useindex or to use a

table scan, which key would fetch less number of rows are taken into consideration

in order to return the data as quickly as possible to the user.Meta values such as

size of index, average scan time, index lookup, delete timesfor a given table are

usually fed into the above process by the underlying storagecomponent in order

to come up with an efficient execution plan. It is this component that provides the

rich querying feature in the DBMS.

It was the common understanding that the query processing stage is a bottle-

neck in scaling the current architecture beyond a single machine. This understand-

ing spawned a new breed of data storage systems mainly focusing on the systems’

aspect of the architecture without the support of SQL (See Section 6.3) . How-

ever this understanding later proved to be wrong to greater extent with findings of

bottlenecks in the storage layer [23]. There is some work done on scaling query

4

Figure 2.1: The Conventional Workflow in a DBMS

processing itself as well. Implementing SQL Engines using map-reduce [30] is one

such example of an attempt to scale SQL Processing by paralleling the sequential

SQL work flow.

2.1.2 Indexing

Once an execution plan is decided, data is fetched from the storage layer. Data

usually resides in the memory or in the hard disk. When hardware is provisioned

Database Administrators (DBA) make sure that the entire data set (or at least the

index) will reside in the memory for most of the time to reducethe overhead of disk

seeking. Storage layer could be serving expensive tables scans or giving data from

the index. Some requests can be entirely served from the index without reaching

out for the data (e.g. coverup index) If the query cache is configured, some queries

can be served by the query processing unit itself without waiting for the storage.

In serving index requests, some queries are index lookups with a direct map to a

key stored in the index or index range query which will most likely scan and return

a sub-tree or a slice of an index. Functionality of range queries entirely depend on

the type of the index being used. A few of the options for indexes are hash based

indexing, BTree based indexing, and RTree based indexing. While hash based

indexing provides the fastest mechanism to access the data it can not support range

queries efficiently. BTree based approach is the most commonly used method and

supports both lookups and range queries. The RTree based approach is mainly used

5

to store Spatial information for Geo information systems.

Whether to use an index lookup or a range query is decided by the query pro-

cessing unit based on the available keys. Storage layer can force the query pro-

cessing unit to always use an index without going for an expensive table scan by

providing meta data accordingly. Thus defining an index for each SQL table makes

execution a lot faster.

In scaling current DBMS architectures beyond a single machine, indexing

plays a key role as there are not any accepted mechanisms to provide distributed in-

dexing with all the features provided in the current mechanism. While hash based

indexing is used in some systems, its inability to support range queries efficiently

greatly affects the querying capability thus it usage is only limited to few use cases.

2.1.3 Locking

Locking is the sole component responsible of ensuring that the correct isolation

level is enforced among concurrent transactions by lockingdata items / data ranges

touched by each transaction. However locking only happens if the current query

is in the middle of a transaction which has correct isolationlevel defined. The

majority of DBMSs support 4 levels of the isolation levels asgiven below in from

lowest level to most highest isolation level.

• Read Uncommitted: There is no isolation among transactions. Any trans-

action can see intermediate results of other transactions.

• Read Committed: Transactions are allowed to see values only committed

by other transactions. Transaction can see values committed even after the

beginning of current transaction.

• Repeatable Reads: Transactions can see only values committed before the

beginning of the current transaction.

• Serializable: Even values not there (but could have been accessed if its were

there) are locked to avoid phantom problems. (Eg. Select * from index<70;

would lock the entire data region below 70 avoiding any new value addition

until the given transaction is terminated.)

6

Each isolation level differs from the others in deciding when to release the

locks they have acquired in the current context. To support these different isola-

tion levels, it has to support both item locking and complex range locking. Most

common approach to implement locking is to use MVCC (Multi Version Concur-

rency Control) which enforces the isolation by not locking but by keeping different

versions as seen by each transaction but its vulnerable to high contention.

Distributed locking has been implemented in some systems (see Section 6.6)

however little has been done in the context of DBMS locking. The requirement to

support both range locks and support the scalability is not trivial in a distributed

setup.

2.1.4 Known Bottlenecks

Apart from scalability issues there are couple of known bottlenecks even in the

single node setup that hinders high performance [23]. And there are lots of systems

that try to resolve at least one or two of these bottlenecks toget higher performance.

The proposed system also addresses many of the below mentioned issues.

• Logging: Logging data for recovery happens in several layers in the DBMS

and tracking changes to log incur lots of overhead too. Solution would be

to achieve recoverability by other means incurring low overheard compared

to logging. This also generates excessive amounts of I/O requests which is

another overhead.

• Locking: Traditional two phase locking is usually managed by a centralized

separate entity could also be a source of overhead.

• Latching: Modern DBMS are multi-threaded to fully use the available cores

in modern systems however many shared data structures have to latched be-

fore using it.

• Buffer Management: This creates an unnecessary indirection on each

record access.

7

Figure 2.2: High Level Innesto Architecture

2.2 Innesto

Innesto is a scalable key/value storage system based on Distributed Spatial Parti-

tioning Tree (SPT). As shown in Figure 2.2, Innesto has a two layered architecture,

where the proxy is a stateless component and the memnode store everything. When

a request comes in, the proxy does the tree traversing which is cached and commu-

nicates with memnodes to get the data in leaf nodes.

Innesto is inspired by Sinfonia [12], which emphasized thatdeveloping fault

tolerant distributed systems can be done with less hassle with distributed data struc-

tures than using complex communication protocols. Memnodes make sure that the

data stored in is it consistent and locks the particular datafor the time of a given

operation avoiding others to modify it. Locking is quite similar to traditional read

/ write locks found in DBMS. Innesto has the notion of mini-transactions which

are similar to mini-transactions proposed in Sinfonia. While Sinfonia has non-

blocking versions, Innesto has the capability to block a mini-transaction until it

acquires all the locks needed. Together with mini-transactions and light weight

two-phase commit, Innesto provides atomicity for each operation executed on the

SPT.

Each of these components are single threaded and communicate via a custom

built stream layer. Memnodes store all the data in the memorythus no disk seeks

8

Figure 2.3: Three Dimensional Spatial Partitioning Tree

are required to serve the data. However, if a requirement arises a memnode can

synchronously log the data to the disk to minimize the data loss in an event of a

crash or hardware failure.

2.2.1 Spatial Partitioning Tree

Spatial partitioning tree is a hierarchical data structureorganized into a tree, which

splits the same data region recursively when a particular region gets congested. In

Innesto as the regions get split, these new regions (referred to as node partitions

from here on) will be equally distributed across available memnodes to balance

the load. This notion of node partitions technically enables Innesto to migrate live

partitions across nodes giving scaling out and scaling in features. Figure 2.3 from

[8] shows how a three dimensional spatial partitioning treesplits its self from a one

partition to multiple partitions.

Due to the hierarchical nature of SPT; its a better candidatefor insert inten-

sive workloads compared BTree based approach. However SPT is not a balanced

tree. In a multi-dimensional SPT, serving multi-attributerange queries are imple-

mented more efficiently than in a BTree. It enables more fine grained range queries

compared to a BTree.

9

2.2.2 Two Phase Commit

To achieve atomicity in all operations performed on the SPT,a light weight two

phase commit is implemented. Each operation on SPT is executed using a mini-

transaction. The proxy that initiates the operation will act as the coordinator. When

multiple memnodes are involved in a given mini-transaction, each memnode will

try to lock the data region it tries to access and send a OK voteupon acquiring the

lock or FAIL vote if the lock request times out. Coordinator will send back the

final commit message to all the memnodes based on the VOTE in the first phase.

If there is only one memnode, it will go ahead and commit the changes as soon as

its vote is sent to the coordinator making the commit execution faster. If the proxy

has a stale information on partitions it will be notified in the first phase and proxy

will retry the mini-transaction after updating the stale cache entries.

10

Chapter 3

Design

3.1 Design Objectives

3.1.1 General Applicability

Most of the products in the market or research carried out requires current DBMS

users to do intensive migration such as entirely re-writingthe data management

layer to comply with new products. Although those products provide great features

only handful of current users want to try those due to the costof moving into the

new products.

Our main design objective is to make the migration into our platform as smooth

as possible. Yet the system has to provide the scalability wewant to achieve. This

way users do not have to change their application comply withthe new DBMS.

3.1.2 Scalability without Higher Level Partitioning

The de-facto partitioning method for scaling out DBMS was topartition the data

based on a particular access pattern E.g., based on geography, based on depart-

ments, etc. This reduces the costly cross partition transactions. With the modern

complex workload patterns it could not be a trivial task to partition data based on

a simple partitioning scheme or to avoid distributed transactions. And after certain

point the number of partitions could grow beyond control.

11

To avoid such hassles our system has to scale without any userintervention

such as data partitioning. System has to be able to distribute load across available

nodes so that the load is balanced and there should not be hot spots.

3.1.3 Provide Strict Isolation and Consistency

Many systems that require high scalability sacrifice strictconsistency and isolation

in favour of the scalability requirement. Such systems workperfectly well for

selected set of domains with very high scalability requirements. However there

are many with the scalability requirement yet unable to sacrifice the consistency.

It was also revealed that their lesser consistency and isolation models make the

application layer even more complex than before with handling the bulk of the

work that were used to be handled by the DBMS.

Our application should provide scalability without compromising the consis-

tency or the isolation usually provided with the DBMS. This will cater to the needs

of those who require both scalability and the high consistency or for those who

already have a complex application layer and can not afford to make it even more

complex.

3.1.4 Build a Platform for a DBaaS

Even though there is a hype about offering DBMS as a service, there are very

few offerings that truly provide the DBMS as a service. Many still battle to scale

beyond one single machine or to provide both high consistency and scalability at

the same time as in a conventional DBMS.

Although this project would directly implement a DBMS as a service, this

should serve a first step towards such a goal in providing truly scalable DBMS

with guaranteed consistency and isolation. This requirement would also bring, the

need to support multi tenancy in the system.

3.2 High Level Design

Our approach to this problem is to design a general purpose, fully transactional and

distributed storage engine so that current DBMS could replace the current single

node storage with the distributed storage layer. To achievethat, we have to replace

12

Figure 3.1: Scaling the Storage Layer

Figure 3.2: Scalability with Query Processing

single node indexing, locking and storage with distributedindexing, distributed

locking and distributed storage. Such a layered design is shown in Figure 3.1.

To avoid manual data partitioning, when the system scales out, the indexing and

locking should cover the entire data set not only data local to the current machine

as happens in data partitioning. Scaling the storage layer would give the system

scalability along more storage and adding more query processing units (as shown

13

in Figure 3.2) the system can scale for more processing powerfor a fixed size data

set. Thus this design provides the scalability along two dimensions.

3.3 Design Challenges

The above mentioned design has several key challenges to overcome to make it a

practical solution.

3.3.1 Distributed Indexing

One of the main reasons for partitioning being the de-facto for some time, is the

need for a good practical solution for distributed indexing. While hash based index-

ing provides good scalability it lacks the rich querying features needed by DBMS.

3.3.2 Distributed Locking

Distributed locking has not been explored as it is in distributed indexing. Although

scalable distributed locking has been already implementedusing techniques such

as Paxos (See Section 6.6) there are not many practical solutions generic enough to

support all the complex locking semantics found in DBMS, especially to support

range locks needed to over come the phantom problem.

14

Chapter 4

Implementation

4.1 Distributed Indexing

The foremost challenge faced during the implementation wasto come up with an

efficient, practical distributed indexing subsystem. Although the proposed Dis-

tributed Btree [13] provides a good alternative as its quitesimilar to what is found

in the single node system. However it lags in performance in insert heavy work-

loads. While Innesto (See Section 2.2) is being developed inthe NSS lab mainly

for multi-user games, the distributed SPT used in Innesto has advantages over the

BTree based approach. Thus decision was taken to use the Spatial Partition Tree to

store standard non-spatial data.

4.1.1 SPT for Indexing

Figure 4.1 shows how a three dimensional SPT is used to index orders table in the

TPC-C Benchmark. Orders table has three index attributes and each attribute is

represented as a dimension in the SPT. Representing each attribute as a dimension

gives finer grained querying compared to BTree.

Figure 4.2 shows the SQL to add the primary key toorders table in the order

of warehouse id, district id and order id. Since the key will be a concatenation

of three parts in the conventional BTree based indexing, each query should have

the value for the warehouse id even to query using any other value and to query

with order id query should have the value to the first two components. Most of the

15

Figure 4.1: Spatial Partition Tree as DBMS Index

Figure 4.2: Adding a Primary Key in SQL

current DBMS designed to work with BTree based systems, are ignoring efficient

index queries and go for costly table scans if the first component is missing.

With a separate dimension representing each part in the key,SPT can serve

any type of query without depending on the previous parts in the index. Figure

4.3 shows range query where it requests all the orders that have been made in

district 4 across all the warehouses. With SPT storage will see a request like{*,4-

4,*} saying for the first and last parts of the request can get any values but the

middle part should have the value 4 (with min value = max valuerepresents an

equal condition). Support to these types of light weight OLAP type queries is

becoming essential as modern systems are being used on both OLTP and OLAP

type workloads.

With each region recursively splitting in the case of congestion on regions due

to inserts, parent nodes keeps unchanged on splitting. Thiswill make sure only leaf

nodes gets affected and the rest of the tree hierarchy remains constant. Although

this creates an un-balanced tree, this is very effective in terms of insert intensive

16

Figure 4.3: Querying Index in SQL

workloads since cached hierarchies in proxies remains valid avoiding unnecessary

cache reloading. And irrespective of the logical locking described below, each

index operation locks the data it touches for the period of the operation to further

guarantee the isolation.

Modern DBMSs have similar options for spatial data indexingusing multi di-

mensional storage however, those options are not availablefor storing non-spatial

data while BTree based indexing is the most common option.

4.2 Distributed Locking

Locking in DBMS has some complex requirements to be fulfilledto be able to

serve the rich SQL features. While distributed locking itself is a costly opera-

tion supporting distributed range queries is an added complexity. Range locks are

required to prevent phantom issue to make sure that even results not returned in

a query will remained locked until the given transaction is terminated preventing

some other transaction making an insertion. With these two requirements on hand,

the decision was to use the SPT for locking as well. As in with the indexing, in the

locking each different attribute is represented as a dimension in the SPT.

4.2.1 Logical Locking with SPT

Mandatory locking and logical locking are two options for ensuring isolation

among concurrent transactions. While mandatory locking isusually hardware en-

forced locking such as page level locking, logical locking is a higher level locking

where existence of an data item in a data structure is interpreted as the given item is

locked by some transaction. With SPT being the underlying data structure, current

system uses logical locking. An entry in the tree interpreted as that particular data

item or data range is locked by another transaction. Removalof an data item or a

range means releasing the lock held by that transaction.

17

4.2.2 Range Based SPT

The original SPT which is working with data items not with ranges, is changed

to work with ranges instead of items in the locking subsystem. The flexible model

under which the SPT was developed made the transition easierwhile requiring only

new handlers to deal with ranges. Thus each item in the locking SPT is a range; a

single item is represented as a special range where both min and max have the same

value. Thus most of the range locks could spread across many node partitions.

4.2.3 Locking Semantics

When an range is inserted, all the current ranges in the current node partition are

checked against available dimensions for overlapping ranges. If there is an overlap

the decision is taken based on the locking semantics. Locking semantics based on

both read and write locks are supported in the system. As in conventional locking

systems, if two overlapping range are read ranges (read locks) then the requesting

lock is granted. In granting read locks, if there is an exact read lock already stored

in the node partition, the counter of the lock is increased orelse new range is

inserted as a separate range even if is an overlap with an existing lock. If the

overlap is with a write region (write lock) the requesting lock is balanced until the

existing lock is released. The order in which waited locks are granted is explain

below. The counter of the write locks is always one meaning its an exclusive lock.

4.2.4 Fair Queueing vs FIFO

When a new lock request comes in, if there are no conflicting ranges existing, the

lock is granted right away. Though this works faster, this could lead to starvation

of range locks as there is always a high chance that an item lock gets ahead of a

range lock which is already pending waiting for another itemlock. Since chance of

an conflict is high in range locks compared to item locks (since range locks cover

a wider area), a workload with high number of range locks (i.e. range queries

prompting for range locks) could have bad impact on the throughput because of

starvation.

While the option is there to use a fair queueing in the lockingif the current

workload is more like a web workload with far less ranges requests compared to

18

items requests, the systems also supports FIFO (First In First Out). In this scheme

when a lock request comes in, it will be checked against both currently granted

locks and against locks that currently being held before granting the permission. If

the new request has a conflict with a lock from any of those sets, then the new lock

is also pushed to the waiting queue and will be granted only after all conflicts are

gone. When a lock is removed, it notifies all the locks that were waiting on it and

the locks that have zero conflicts will go ahead and get the permission while other

will wait on the remaining conflicts to be released. While FIFO has some overhead

on extra waiting it will serve both items and range requests similarly and workload

with considerable range requests will get benefited from this. All the experiments

shown in the thesis are performed under the FIFO scheme.

4.2.5 Deadlock Detection

With locking in place deadlocks could be a common source for performance lag-

ging. Thus early detection or prevention is a good feature tohave. Modern DBMS

[6] uses approaches like wait-for graphs to detect cycle of dependencies and release

the transaction with a smaller working set (work done so far). The proposed sys-

tem detect based on time-outs. Time-outs have some advantages over the detection

mechanisms such as, in a complex workload with hundreds of concurrent users

scanning through wait for graphs could be very expensive, ifthe contention is high

it will eventually be timed-out even if there is no deadlock and passing one graph

scan would not guarantee that the transaction will be a victim of another deadlock

in the future and get terminated. Thus in the new system, transactions are rolled

back if lock waiting time exceeds the given time out for the respective table.

4.2.6 Workload Profiling

In solely depending on time-outs, the crucial decision is toset the correct time-

out values. A lower value would terminate most of the transactions lowering the

final throughput and a transaction with high contention willbe the usual victim. A

higher value would make locks wait more time and it will eventually make CPU

utilization low since the majority of the time is spent on waiting. It would again

lower the final throughput.

19

To decide the correct time out value per table, workload is profiled against

waiting times. Once the profiling is done, a given percentilewill be selected as the

decided time out. Profiling is done per node partition thus for each locking tree

different node partitions could have different values based on the congestion. The

final percentile to be picked from the profiled data set can be configured. Lower

percentile will have higher throughput with low contentionas most of the slow

transaction are getting rolled back but have negative impact when the contention is

high when higher wait times become normal. System offers to options to profile

the workload once in the beginning or periodically profiles and decide new time

out values.

Initial time-out value which is the same across all the tables can be defined

based on the user requirements. In running TPCC our initial time out was set 2

seconds since most of the transactions should have a return time below 5 seconds.

The initial value has a direct impact on the profiled values thus has to be carefully

selected based on the needs. All the lock profiling, and timing outs is done by the

memnode. The proxy is only responsible for traversing the hierarchy and sending

the request to correct node partitions residing in memnodes.

4.3 Higher Level Architecture

Figure 4.4 shows the entire component architecture of the system. The index

manager and the lock manager are the components described above. Transaction

handler exposes the generic transactional key value based interface to the DBMS

query processing units. Storage handler which is part of thequery processing units

bridges the conventional DBMS query processing unit with the new transactional

key-value storage layer. The Transactional handler together with the index and the

lock manager collectively are known as the proxy. Each threelayers (i.e. Query

processing, Proxy and memnodes) could technically reside in three different ma-

chines however there are certain optimizations being done with passing data back

and forth if the proxy and the query processing units reside in the same machine.

Detailed description for each component is given below.

20

Figure 4.4: Full System Architecture

4.3.1 Index and Lock Manager, Memnodes

Core functionalities of the index and lock manager is given in the above sections.

When it comes to the big picture, the index manager manager performs the CRUD

(Create, Retrieve, Update, Delete)operations on the data stored in the memnodes.

Transaction handler gives both the data and the key to be indexed when its an in-

sertion or an update. If its a select or a delete transaction handler will only pass the

index key to the index manager. The index manager has a key-value based interface

and it is not aware about which index operations belongs to which transaction in

the SQL level. Node partitions in the index have both keys andthe respective data

(both stored in the memnodes). Thus from the initial design,index manager acts

both as the distributed index and the distributed storage.

The functionality of lock manager in the big picture is same as the index man-

ager. The two main operations it supports are range insert and range deletion which

correspond to the lock insert and lock release respectively. Lock insert could get

returned with time out failure if the lock waiting exceeds the defined time out value.

This will make the corresponding SQL level transaction rollback. As in the index

manager, the lock manager too is unaware about SQL level transactions.

Memnodes are the only components which have a state and storedata. It will

save all the data in the memory thus avoid the overhead of diskdependency in serv-

21

ing proxy requests. Once the traversing is done in both the index and lock tree, the

proxy will then connect with memnodes to communicate with the respective node

partitions. And the communication is managed via light weight two phase commit.

There are two types of memnodes in the system. All of the memnodes mentioned

upto now are domain one memnodes which store node partitionsfrom SPT. There

are domain zero memnodes, which basically store meta data about tables (i.e, in-

dex and locking tree meta data for each table) and also have a distributed DHT to

serve UNDO REDO logging for proxies (detailed description is given below on

logging). In Figure 4.4 the small white boxes represent nodepartitions stored in

memnodes.

4.3.2 Transaction Handler

The Transaction handler serves as the main interface to any outside query process-

ing units. This can itself serve as a transactional key-value store with rich indexing

and locking features. The main interface can be divided intothree parts namely

meta operations, data operations and transactional operations.

Meta operations

All the table creation and deletion comes under this group. Whenever a new table is

created in query processing units, a respective table is created in Innesto. This meta

data includes handler pointers to the index, to the locking tree and pointers to meta

data such number of attributes, etc. All of these will be stored in the domain zero

memnodes. Before any operation is performed on data the respective table-meta

should be available in the system.

Data Operations

All the operations on the data come under this group. There are five different

operations covering four CRUD sections. as given below.

• Insert: When a new record is inserted, the key to be indexed and the data

portion will sent to the Transaction Handler from the QPU. When an insert

is done, first the key is checked for duplicates and if found will be notified

the QPU.

22

• Lookup: When there is a retrieval request and the exact key is available the

request comes for a lookup with the key to be searched and the table giving

the which index to be searched.

• Query: When a retrieval request is for a range of keys then the request comes

as a range with min and max values to be included.

• Update: If there is a value to be updated then the Transaction Handler will

receive the key and the value to be updated.

• Delete: If there is a value to be deleted then the Transaction Handler will

receive the indexed key of the value to be removed from the index.

If the operation (insert, update or delete) is part of a transaction then the re-

sult will be buffered until the parent transaction is committed, or discarded if the

transaction get rolled-back. Depending on the isolation levels assigned for the

current transaction, a lock will be requested before each operation and will be re-

leased at the termination of the transaction. Currently only Serializable and Read

Committed isolation levels are supported. In serializableboth read and write items

including ranges are locked until the end of the terminationof a transaction. In

read committed mode, write items are locked as usual till theend of the transaction

but the read items do not acquire locks. Thus each time a read is done the same

query might return different results within a transaction since a fresh read is done

each time from the index.

If the lock is rejected due to time outs the entire operation is denied and the

QPU will get the error message. When a data operation is failed, the all the related

operations to the failed operation gets undone. However it is up to the QPU to

decide whether to rollback the entire transaction or not. E.g. if a index insert is

failed due to duplicate data, all the locks acquired for the insert will be undone and

then report the failure to the QPU.

Transactional Operations

Apart from operations on the data, the system has to manage transactions as well

in order to keep track of locks acquired and release them on time. There are three

main operations coming under this group.

23

• Transaction Start: When a new transaction is starting QPU will notify the

Transaction Handler, and it will start tracking the locks acquired and buffer-

ing required operations.

• Transaction Commit: When a transaction terminates successfully, it will

first execute all the buffered operations and then release the acquired locks.

• Transaction Rollback: When a transaction terminated unsuccessfully, all

the buffered operations are discarded and the acquired locks will be released.

Crash Consistency

If configured the proxy can run with a crash-protection mode.In that mode, all the

operations executed under a given proxy will be pushed to a DHT as a UNDO log

and when the proxy receives a commit request all the operations in that transaction

will be pushed to a REDO log. UNDO logs contain only locks acquired during the

transaction since index modification are only performed in the commit. The REDO

log includes all the index modifications performed during the transaction and not

yet executed on the actual index. Thus if a proxy gets crasheddue to some reason,

the proxy can look for the pending logs in the DHT (which is again an on-memory

distributed storage) and act accordingly. The functionality of these logs is same as

the conventional UNDO - REDO logs found in DBMS.

Apart from providing the protection for the proxy in an eventof a crash, syn-

chronous logging in the memnodes enables to recover data from a crash in the

memnode as well. Though the memnode replication is providedin the original

Sinfonia, Innesto currently does not provide replication and it is listed as the next

step to be taken in the project.

User Management

Usually there are more than one proxy running in each machineto serve query pro-

cessing units. There is one master proxy to which each new user connection from

a QPU gets connected. The master proxy will then redirect thenew connection to

a different proxy based on round robin to balance the load. Each user connection

from a QPU gets a new session in the proxy. This user model assumes the query

24

Figure 4.5: Current MySQL Architecture

processing units will work under thread-to-connection model so that proxy will get

a new connection request each time a new user thread is spawned.

4.3.3 Query Processing unit

In the work presented in the paper, the implementation and the evaluation is done

using MySQL DBMS engine [6]. The choice was made to use MySQL because

of its wide spread usage across domains specially the usage as a hosted database

service [1, 5]. Its storage plugin architecture made the integration easier and fail

proof. MySQL storage plugin gives a well defined record basedinterface to the

MySQL which matched perfectly with the Transaction Handlerwhich also works

on per record basis.

Figure 4.5 shows a further detailed architecture of MySQL. As its shown apart

from the core functionalities mentioned in Section 2.1 , there are other components

responsible for utility and management work such as logging, replication, recovery.

With multiple MySQL engines actively working at the same time, it is essential

to balance the load among MySQL engines. Although the new system does not

support any load balancing mechanism at the QPU level, any load balancing tool

such as MySQL Proxy can be directly used to balance the load based on user

25

congestion. This will become even more important when providing DBMS as a

service.

4.3.4 Storage Handler

The Storage handler is responsible for mapping SQL based queries to respective

key value based operations to be sent to the Transaction Handler. The plug-in

architecture of MySQL made the storage handler more robust and less error prone

as it already supports custom made storage handlers with a record driven interface.

It sends out corresponding requests to the proxy based on theinvoking method in

MySQL. It is the storage handler that decides whether to do a lookup or range

query and also decides on the key value range limits based on available data. The

Storage handler as part of each data operation converts DBMSspecific data types

to a generic form.

To reduce the communication with the proxy, the storage handler caches all

the returned results from the proxy and subsequent requeststo the exact same data

set will be served from the storage handler cache. Caching only happens in the

isolation level ensures that the cached data will not be modified by others for the

duration of the transaction. Cache items are modified accordingly based on opera-

tions performed on them enabling to return latest results onsubsequent requests.

It is the storage handler than makes the rest of the system independent of the

particular QPU being used. Since the storage handler is doing all the QPU spe-

cific conversion, technically multiple of QPU of different types could be running

simultaneously. This is a crucial feature to meet the designrequirement of general

applicability. This also enables the system to leave the DBMS engines’ complex

query processing subsystems intact. Thus any MySQL user (orany DBMS that sits

on top) can easily migrate to the new system with minimal hassle.

26

Chapter 5

Evaluation

5.1 Setup and Benchmark

All the experiments were performed on a cluster of commoditymachines. Each has

two quad-core Xeons (E5506) and 32 GB memory. Unless otherwise mentioned

all the experiments we followed the following set-up. In each machine, we run

the proxy, memnodes, MySQL server and the benchmark client.In each of those

machines, there are 15 single threaded proxies and 5 single threaded memnodes.

And on the same machine there are two MySQL servers serving user requests.

Apart from one experiment, logging was disabled during the experiments and the

data were only residing in the memory. Each MySQL sever is only communicating

with the local proxy.

To emulate a practical workload on the system we used a benchmark client [9]

which was based on the TPC-C [10] specification. The TPCC benchmark is a mix-

ture of read-only and update / insert heavy transactions. The nature of the query set

defined in TPCC covers a broad range of queries from complex range queries to

simple lookup / update queries thus not only it covers majority of queries found in

the real world and also its final out come gives a better picture about the underlying

systems functionality. Since our main objective was to throttle the system as much

as possible and to see how it scales none of the experiments were using wait times

as specified in the TPCC specification. All the test numbers reported have the cor-

rect transaction mix and all the reported transactions are within correct latencies

27

specified in the TPCC specification. All the transactions were executed in serializ-

able isolation level except to stock-level transaction which ran in read-committed

isolation level as permitted in the specification. Before each experiment, the sys-

tem was loaded with data based on the TPCC spec. Whenever TPCCthroughput is

given its the number of New-Order Transactions per minute.

To compare the performance of iEngine against a standard DBMS we choose

the InnoDB storage engine, the default engine in MySQL. All the experiments

were using MySQL 5.5.8 source distribution and using InnoDb1.1.4. InnoDB is

the only storage engine shipping with MySQL that supports transactions and it is

being used widely across many domains. It is also being used in couple of cloud

hosted database offerings [1, 5]. InnoDb was disabled when MySQL uses iEngine

as the storage engine. There were many configuration changesdone to fine tune

InnoDB to work in the current hardware among which buffer pool was configured

to use 28G, log is flushed only once in a second using fdatasync, double-write

was disabled and log file size was 1900M (For further configuration options see

Appendix A).

The consistency checks given in the TPCC specification is used to verify the

results of the TPCC outcome and of the functionality of iEngine. When iEngine is

used as the storage engine, internal caches are disabled in MySQL since it could

use stale data and has no information to verify it.

5.2 Strong Scaling

To evaluate how the system reacts to adding more query processing power for a

fixed dataset (commonly known asstrong scaling), we created a setup where three

machines each running 8 single threaded memnodes are dedicated to store the data.

We increase the number of machines from which we query through a benchmark

client from one to three. Each client machine had 2 MySQL servers, and 24 client

proxies. The total number of users were equally divided among each MySQL

server. The data size was 90 WH stored across three machines.

Fig. 5.1 shows that cumulative throughput increases as we increase the number

of machines querying the data stored in a fixed number of memnodes. At the

same time the maximum number of concurrent users we can go before TPCC starts

28

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 500 1000 1500 2000

T
ra

n
sa

ct
io

n
a

 P
e

r
M

in
u

te
 (

T
p

M
)

-
T

P
C

C

#Users

Clients(1) Clients(2) Clients(3)

Figure 5.1: Strong Scaling in Query Processing

failing increases from 750 (querying from single machine) to 2100 (querying from

three machines). This shows that we can add more query processing machines

for a fixed size data set and increase the throughput. This is due to the fact that

these client proxies and MySQL servers are entirely state-less enabling the user to

add or remove them as required. This proves the scalability of the system on one

dimension of adding more query processing units will gain more throughput.

5.3 Contention

We also evaluate how the system handles the high user contention compared with

InnoDB. Usually the number of active users grows with the data size which is not

harmful in the sense of contention. Contention happens whenthe user demand

grows for a fixed or small set of data where everyone is interested in the same

data portion similar to slashdot effect in web servers. Thisis quite common in the

current web or for any other software appliance (e.g., in a retailer store this could

be that every customer is interested in the special offer section only).

To emulate the above scenario, we increase the number of concurrent users

29

using fixed number of machines for two fixed data sets (144 warehouses and 240

warehouses in two separate attempts). For both datasets we increase the number

of users until TPCC starts failing. For the proposed system,it is a 6 machine setup

where each machine has memnodes, proxies, MySQL servers andthe benchmark

client. For InnoDB, it is a single machine setup where both benchmark client and

MySQL server runs on the same machine.

Figure 5.2 shows the impact of the increase in demand for a fixed size data set.

For a smaller number of users InnoDB performs really well compared to the new

system but as the demand increases InnoDB drops steeply and TPCC starts failing

(at 850 users for 144 WH and at 1100 for 240 WH). Where as the proposed system

can go upto 2700 users for 144 WH and 1950 for 240 WH. Figure 5.3shows the

number transactions executed per user. It shows how both systems degrade in that

metric but demonstrates that iEngine persists further compared to InnoDB as the

number of users increases.

We suspect that the steep drop down in InnoDB occurs due to theMVCC based

concurrency model it follows where its susceptible to high contention. It outper-

forms conventional two phase locking in low user demands mainly due to its less

overhead in MVCC however lags badly with high contention. This again reiterates

that if we remove the bottleneck of a centralized setup in twophase locking, it can

be used effectively and it handles contention quite well compared to MVCC.

5.4 Web Compatible Workloads

Though the TPCC workload emulates an online retailer, current web workloads

are less stressful in terms of types of queries that they use.Thus different TPC

benchmarks exist which more closely resemble web workloadswith less cumber-

some queries, the majority being simple lookups where as TPCC has considerable

amount of range queries. In order to both resemble a simpler workload and to

see how the systems behave in a write intensive workload we changed the bench-

mark client only to execute New-Order transaction which does not have any range

queries. With this workload, 33% are inserts, 44% are lookups and 22% are up-

dates thus it is a write intensive workload. Although for most of the systems, reads

dominate the workload writes are equally important. In thisworkload, updates are

30

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000 2500 3000

T
ra

n
sa

ct
io

n
s

P
e

r
M

in
u

te
 (

T
P

M
C

)

#Users

iEngine-144
iEngine-240

InnoDB-144
InnoDB-240

Figure 5.2: Scaling with Users

not changing any indexed keys only the value is getting changed.

The experimental setup is same as previously described where the new system

is spread across six machines where as InnoDB is running in a single machine.

We kept the data size (240 WH) and number of client machines fixed and increase

the number of users to see how the system performs. The test was running under

serializable isolation level.

As it is shown in Figure 5.4, following the same pattern InnoDB starts off well

with smaller number of users and then falls steeply. On the other hand iEngine

maintains the performance level and then gradually falls down as we increase the

number of users. This pattern could be equally attributed tothe concurrency control

mechanism in InnoDB and by the BTree based indexing happening in InnoDB.

This is an indication the SPT based indexing is a better alternative to conventional

BTree based indexing as it can handle the contention better than InnoDB. This

could also give an indication how the new system could out perform InnoDB in

similar web workloads with a considerable portion of write requests.

31

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

T
ra

n
sa

ct
io

n
s

P
e

r
U

se
r

#Users

iEngine-144
iEngine-240

InnoDB-144
InnoDB-240

Figure 5.3: User Contention

5.5 Range Queries

With the current highly competitive environment most of thedatabases are used

both in OLTP and OLAP type workloads to continuously improvethe service to

end users. Thus the ability of the database to serve both types of workloads ef-

fectively is crucial. Usually most OLAP type operations consisted of costly range

queries and at the same time most of the distributed data storages suffer from lack

of efficient support to serve them.

To evaluate how iEngine behaves in the presence of a light weight OLAP type

workload, we use the Stock Level transaction in the TPCC specification. The Stock

Level transaction consists of one OLAP type query and few lookups. As with the

last two experiments, for fixed data size (240 WH) we increasethe number of users

to see how both InnoDB and iEngine scale in the presence of costly range queries.

The experiment was performed under read committed isolation level as permitted

by the TPCC specification. Thus no proxy level locking is involved in the new

system. However each time a read is performed data is locked for the time of the

operation in the memnodes.

32

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000

T
ra

n
sa

ct
io

n
s

P
e

r
M

in
u

te
 (

T
P

M
C

)

#Users

iEngine InnoDB

Figure 5.4: Web Compatible Workload

Figure 5.5 shows how differently each system responds to range queries in the

presence of increasing demand. The iEngine out performs InnoDB in the number

of Stock Level transactions it can execute per minute by order of magnitude. All

the numbers reported on iEngine was under the permitted latency given in TPCC

however as the number of users increased, percentage of transactions under correct

latency falls from 100% to 0.6% in InnoDB. This could be due tothe fact that

InnoDB tries to keep a version of every read they do to providethe read isolation

under MVCC.

5.6 Crash Consistency Cost

Although, for most of the businesses the entire data set can be fit into the memory,

there can be a requirement for recoverability in the event ofa crash, power failure,

etc. The iEngine offers couple of options to persist the dataas a precautionary

action. It can be protected from proxy crashes (from UNDO andREDO logs) and

from a memnode crash via synchronous logging. Crash consistency comes with

a cost due its increased network communication and disk dependency. Here we

33

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
ra

n
sa

ct
io

n
s

P
e

r
M

in
u

te

#Users

iEngine
InnoDB-Total

InnoDB-Passed

Figure 5.5: Range Queries

evaluate the cost by running a setup similar to previously shown experiment. Two

dedicated machines run memnodes storing the data while fourother machines do

the querying. Experiment was conducted while the iEngine was configured to have

both synchronous disk logging and transaction logging in the proxy is enabled. The

initial data size was 60 WH.

As is shown in Figure 5.6, by running the application in the crash-consistent

state it has performance reduction of 40% - 50% compared to running without

the crash-consistent options enabled. The overhead also makes the system to start

failing TPCC earlier than without logging enabled. While the current version only

supports these two options, future versions will support more options to recover

with less overhead See Section 7.2.

34

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200 1400

T
ra

n
sa

ct
io

n
s

P
e

r
M

in
u

te
 (

T
P

M
C

)

#Users

W/O Logging W/ Logging

Figure 5.6: Cost of Crash Consistency

35

Chapter 6

Related Work

Scalable data storage has been one of the most explored directions in the recent

past and there are lots of interesting new directions spawned as a result of that.

6.1 Data Partitioning

Partitioning has been the standard mechanism used in scaling out DBMS beyond

one machine. Majority of current DBMS supports partitioning one way or another.

With current complex workloads work has been shifted on new directions such as

automatic partitioning based on workloads specially in case of providing DBMS

as a service.

Schism [18] uses workload aware partitioning to minimize costly multi- par-

tition distributed transactions. The current workload is periodically monitored to

identify the set of tuples accessed together and uses graph partitioning to find bal-

anced partitions reducing the number of cut edges (which represents a distributed

transaction). Relational Cloud [19] uses the above partitioning scheme to decide

on correct data placement across autonomous DBMS engines which are used as a

back-end to a DB-as-a-service. The efficiency of the data placement thoroughly

depends on how easy it would be to partition the workload reducing distributed

transactions. The partitioning also gives the notion of a shared-nothing architec-

ture giving each DBMS engine autonomy. H-Store [26] (Commercially known

as VoltDB) is memory-resident database that partitions data across many single

36

threaded engines. Though originally VoltDB could not dynamically scale out and

scales in, [32] have shown that it can be done dynamically. However, VoltDB

cannot be considered as a general purpose DB storage due its limitations in SQL

semantics and the partition scheme has to be set upfront.

6.2 Key-Value Stores

With ever-increasing user demand and data size, industry response to even higher

scalability requirements was data management systems withlesser expressibility

and lesser consistency guarantees but with very high scalability and lower latency

operations.

Data storage systems commonly known as NoSQL systems are designed in

such a way to scale horizontally with no single-point bottleneck compared to con-

ventional DBMS [3, 17, 22]. They usually use hash based data placement to load

balance and spread the data across many nodes. While achieving high scalabil-

ity they compromise higher consistency levels and rich query interface. There are

different flavours in the query model such as column-oriented, document based,

key-value, graph based, etc. Though some systems support a variant of indexing

and range queries the majority do not have an efficient way to support such queries.

At the same time isolation among operations is hard to achieve. While these are

superior in certain domains they might not be good candidates for general use case

and it has been shown lately that conventional DBMS can out perform these in

certain workloads [20].

6.3 Scaling Storage

It did not take that long to realize that DB community moved faster than they

should have to this new NoSQL and this sudden move has put tremendous pressure

on the application development. Since most of the bulk carried out DBMS are not

in the application layer which makes already complicated application logics even

more complicated. Then the work started on coming to middle ground between

two extremes of DBMS and NoSQL.

There have been efforts to re-architect the structure of conventional DBMS by

de-coupling the storage layer from the query processing [14, 15, 21]. They have

37

built database systems on top of a highly scalable storage system and have inte-

grated the storage layer at the page-level or more granular data record level. Thus

the storage can be scaled independently from the query processing components.

However, in most of these systems a small group / partition isdefined only in

which strict consistency is guaranteed. Transactions reach beyond such a group

have lesser consistency guarantees. The iEngine also has a similar architecture but

it does not restrict full consistency to a defined set of boundaries. Strict consistency

is achieved irrespective of the data being touched in a transaction.

6.4 Scalable Transactional Models

While the main focus is on re-modelling the DBMS architecture and new query

models, there is an interesting body of work being done on finding ways to imple-

ment transactions in a DBMS in a more scalable manner.

DORA [33] explores how to implement threads-data model rather than thread-

transaction model to reduce the contention. Dueteronomy [29, 31] talks about an

architecture similar to the iEngine where there is a clear separation in the data han-

dling and transaction handling components in the DBMS. Consistency Rationing

[27] explores how we can adaptively change the required consistency level as and

when it matters to get better performance and cost effectiveness in the cloud. There

is another notable work being done on new concurrency control mechanism to scale

in the presence of high contention which is based on transactional dependency [28].

6.5 Distributed Indexing

There are similar work being carried out on scalable indexing based on distributed

data structures. Most closest work is done on Distributed Btree [13] which suffers

in the presence of insert heavy workloads. Minuet [35] is theimproved version

which supports OLAP and OLTP based queries but only supportssimple transac-

tions. Both versions run on top of Sinfonia [12]. However they still have an abstract

data model compared to iEngine and multi-dimension featurein SPT helps to have

more finer level locks. Another work is proposed to use BATON [25] as an overlay

over a cloud storage for efficient range queries [39]. However they have a scala-

bility bottleneck since they serialize all transactions ina single node and provide

38

optimistic concurrency control which suffers from high contention as shown in the

evaluation.

6.6 Distributed Locking

Specialized locking systems, such as Chubby [16] and ZooKeeper [24], provide

scalable locking along with strong consistency guarantees. Due to the way locking

is implemented in these systems, efficiently implementing complex multi-attribute

range locking (which is a common requirement of an RDBMS) is fundamentally

not feasible. Google’s Percolator [34] also implements a scalable locking mecha-

nism on top of BigTable, but only works on snapshot isolationand can not support

serialization isolation, as required by strict consistency. Thus these specialized sys-

tems lack the generality and expressibility needed by a RDBMS. The distributed

range locking offered in iEngine is very effective in a distributed setup and unique

as well.

6.7 Commercial Offerings

To keep up with the demand there are quite a few commercial services that offer

DBMS as a service in the cloud [1, 2, 5]. Main issues with theseservices are

they are either not capable of scaling beyond one machine or not providing full

consistency in the presence of distributed transactions. There are dozens more DB

products that offer products that can be deployed in-house in a private cloud or can

directly obtain the functionality from a hosted service in apublic cloud [4, 7, 11].

The majority of these systems use MVCC as a concurrency control mechanism

and suffer a lot in a high contention scenario. While the conventional two phase

locking is a bottleneck in scaling, with a novel distributedapproach, iEngine has

shown it can withstand 3X-4X more user contention than current systems.

39

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, a new data storage architecture is presentedwhich is based on a

Scalable, Distributed Spatial Partitioning Tree. Our experimental results show that

such an architecture should be a practical alternative to the current storage sys-

tems. Locking and indexing are two core components in the storage that poses a

huge bottleneck in scaling a DBMS. Distributed SPT providesa practical alterna-

tive to those components while providing all the features provided in conventional

systems.

Most of the scalable systems compromise the generality of data storage by de-

signing to suit certain domains. The iEngine architecture presented in the thesis

can be used in any domain that was using SQL for its data management require-

ments. In fact the new architecture could actually support different DBMS front

ends at the same time. This makes the migration to the new system quite smooth

and hassle free.

In modern scalable systems, they scale only in the presence of simple web

type workloads consisting simple item lookups and inserts.In the results shown in

the evaluation, it shows that iEngine can scale even in the presence of the simple

web type workloads as well as with complex range operations.This is becoming

a crucial aspect of data storage systems since more and more users are now using

both OLTP and light weight OLAP in their databases.

40

Partitioning has been the de-facto mechanism to scale out beyond one machine.

However with distributed spatial partitioning approach asthe nodes get congested

it will automatically distribute data across available nodes thus no manual partition-

ing is required. This provides a new dimension as with complex workload patterns

partitioning is not trivial.

With novel logical locking based on SPT, the system can scalebeyond a single

machine and still provides strict isolation and consistency. This is a crucial feature

to have since its now been understood that though lesser consistency models give

higher scalability, it makes the application more complex and error-prone.

7.2 Future Work

Live Node Migration

Use of SPT makes live node migration easier with migrating live node partitions

residing in memnode to another. This will provide the much needed scale out and

scale in features which is a crucial feature to have in a cloudstyle deployments.

Dependency Aware Concurrency Model

The current optimistic concurrency model assumes no conflicts on touched data

regions. The assumption becomes less and less practical with high contention

systems. In this new model (where some early work has been already done) the

assumption is made on the completion of a transaction which is going to be more

practical in a high contention systems. Adopting such a model would further in-

crease the performance.

Multi Tenancy

In providing DBMS-as-a-service, multi tenancy is a must, iEngine does provide

multi tenancy in terms of giving a different indexing and locking each different

user, thus making sure that a given users only sees the data belongs to that user.

However providing more privacy measures would make the system more practical

for multi tenancy.

41

Data-as-a-Service

Providing Data-as-a-service is gaining popularity allowing people to use real world

data to carry out numerous activities such as market research. With iEngine using

as a DBMS-as-a-service, it gives the luxury of having real world data from different

clients. Given the permission is granted by each client we could share those real

world data with the 3rd party clients with restricted access.

Data Replication

Current iEngine does not provide any type of replication. However the architecture

of iEngine provides the ability of implement replication intwo levels. At the proxy

level we could replicate the proxy to provide fall back option in the event of a crash

of the proxy. Node replication in the memnode could provide both protection from

a crash and more performance in read operations.

42

Bibliography

[1] Amazon rds. http://aws.amazon.com/rds.→ pages1, 25, 28, 39

[2] Microsoft azure.
https://www.windowsazure.com/en-us/home/features/data-management/.→
pages1, 39

[3] Apache cassandra. http://cassandra.apache.org.→ pages37, 51

[4] Clustrix. http://www.clustrix.com.→ pages39

[5] Google cloud sql. https://developers.google.com/cloud-sql/.→ pages1, 25,
28, 39

[6] Mysql. http://www.mysql.com/.→ pages19, 25

[7] Nuodb. http://www.nuodb.com/.→ pages39

[8] Three dimensional spt. http://en.wikipedia.org/wiki/Octree.→ pages9

[9] Transaction processing performance council.
https://code.launchpad.net/ percona-dev/perconatools/tpcc-mysql.→ pages
27

[10] Transaction processing performance council. http://tpc.org/tpcc/default.asp.
→ pages27

[11] Xeround. http://www.xeround.com.→ pages39

[12] M. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis.
Sinfonia: a new paradigm for building scalable distributedsystems. In
Proceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles, pages 159–174. ACM, 2007.→ pages3, 8, 38, 48

43

[13] M. K. Aguilera, W. Golab, and M. A. Shah. A practical scalable distributed
b-tree.Proc. VLDB Endow., 1:598–609, Aug. 2008. ISSN 2150-8097.
doi:http://dx.doi.org/10.1145/1453856.1453922. URL
http://dx.doi.org/10.1145/1453856.1453922. → pages15, 38

[14] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J. Léon,
Y. Li, A. Lloyd, and V. Yushprakh. Megastore: providing scalable, highly
available storage for interactive services. InConference on Innovative Data
Systems Research (CIDR), 2011.→ pages2, 37

[15] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska. Building a
database on s3. InProceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD ’08, pages 251–264, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6.
doi:http://doi.acm.org/10.1145/1376616.1376645. URL
http://doi.acm.org/10.1145/1376616.1376645. → pages37

[16] M. Burrows. The chubby lock service for loosely-coupled distributed
systems. InProc. of the 7th symposium on Operating systems design and
implementation, pages 335–350. USENIX, 2006.→ pages39

[17] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distributedstorage system
for structured data.ACM Transactions on Computer Systems (TOCS), 26(2):
4, 2008.→ pages2, 37, 51

[18] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven
approach to database replication and partitioning.Proceedings of the VLDB
Endowment, 3(1-2):48–57, 2010. ISSN 2150-8097.→ pages36

[19] C. Curino, E. Jones, R. Popa, N. Malviya, E. Wu, S. Madden,
H. Balakrishnan, and N. Zeldovich. Relational cloud: a database service for
the cloud. InIn Proceedings of 5th Biennial Conference on Innovative Data
Systems Research (CIDR), 2011.→ pages1, 36

[20] C. Curino, E. Jones, Y. Zhang, and S. Madden. can the elephant handle
nosql onslaught.Proceedings of the VLDB Endowment, 2012.→ pages37

[21] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An elastic transactional
data store in the cloud. InProceedings of the 2009 conference on Hot topics
in cloud computing, page 7. USENIX Association, 2009.→ pages37

44

http://dx.doi.org/http://dx.doi.org/10.1145/1453856.1453922
http://dx.doi.org/10.1145/1453856.1453922
http://dx.doi.org/http://doi.acm.org/10.1145/1376616.1376645
http://doi.acm.org/10.1145/1376616.1376645

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.Dynamo:
amazon’s highly available key-value store. InProc. of 21st ACM SIGOPS
symposium on Operating systems principles, SOSP ’07, pages 205–220,
New York, USA, 2007. ISBN 978-1-59593-591-5.
doi:http://doi.acm.org/10.1145/1294261.1294281. URL
http://doi.acm.org/10.1145/1294261.1294281. → pages2, 37

[23] S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker. Oltp through
the looking glass, and what we found there. InProceedings of the 2008
ACM SIGMOD international conference on Management of data, pages
981–992. ACM, 2008.→ pages3, 4, 7

[24] P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper:wait-free
coordination for internet-scale systems. InProc. of the 2010 USENIX
annual technical conference, pages 11–11. USENIX.→ pages39

[25] H. Jagadish, B. Ooi, and Q. Vu. Baton: A balanced tree structure for
peer-to-peer networks. InProceedings of the 31st international conference
on Very large data bases, pages 661–672. VLDB Endowment, 2005.→
pages38

[26] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S.Zdonik, E. P. C.
Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J.Abadi.
H-store: a high-performance, distributed main memory transaction
processing system.Proc. VLDB Endow., 1:1496–1499, August 2008. ISSN
2150-8097.doi:http://dx.doi.org/10.1145/1454159.1454211. URL
http://dx.doi.org/10.1145/1454159.1454211. → pages36

[27] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Consistency
rationing in the cloud: Pay only when it matters.Proceedings of the VLDB
Endowment, 2(1):253–264, 2009.→ pages38

[28] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and
M. Zwilling. High-performance concurrency control mechanisms for
main-memory databases.Proc. VLDB Endow., 5(4):298–309, Dec. 2011.
ISSN 2150-8097. URLhttp://dl.acm.org/citation.cfm?id=2095686.2095689.
→ pages38

[29] J. Levandoski, D. Lomet, M. Mokbel, and K. Zhao. Deuteronomy:
Transaction Support for Cloud Data. InProc. CIDR, 2011.→ pages38

45

http://dx.doi.org/http://doi.acm.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
http://dx.doi.org/http://dx.doi.org/10.1145/1454159.1454211
http://dx.doi.org/10.1145/1454159.1454211
http://dl.acm.org/citation.cfm?id=2095686.2095689

[30] L. Lin, V. Lychagina, and M. Wong. Tenzing a sql implementation on the
mapreduce framework.Proceedings of the VLDB Endowment, 4(12):
1318–1327, 2011.→ pages5

[31] D. Lomet, A. Fekete, G. Weikum, and M. Zwilling. Unbundling transaction
services in the cloud.Arxiv preprint arXiv:0909.1768, 2009.→ pages38

[32] U. F. Minhas, R. Liu, A. Aboulnaga, K. Salem, J. Ng, and S.Robertson.
Elastic scale-out for partition-based database systems. In Proc. International
Conference on Data Engineering Workshops, Workshop on Self-Managing
Database Systems (SMDB’12), 2012.→ pages1, 37

[33] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.Data-oriented
transaction execution.Proceedings of the VLDB Endowment, 3(1-2):
928–939, 2010.→ pages38

[34] D. Peng and F. Dabek. Large-scale incremental processing using distributed
transactions and notifications. InProc. 9th Usenix Symp. Operating Systems
Design and Implementation, pages 251–265.→ pages39

[35] B. Sowell, W. Golab, and M. A. Shah. Minuet: a scalable distributed
multiversion b-tree.Proc. VLDB Endow., 5(9):884–895, May 2012. ISSN
2150-8097. URLhttp://dl.acm.org/citation.cfm?id=2311906.2311915. →
pages38

[36] M. Tayarani Najaran and C. Krasic. SinfoniaEx : Fault-Tolerant Distributed
Transactional Memory. Technical report, University of British Columbia,
Department of Computer Science, 03 2011.→ pages48

[37] M. Tayarani Najaran, C. Krasic, and N. C. Hutchinson. Sinextree : Scalable
multi-attribute queries through distributed spatial partitioning. Technical
report, University of British Columbia, Department of Computer Science, 07
2011.→ pages48

[38] M. B. Uddin, B. He, and R. Sion. Cloud performance benchmark series,
amazon relational database service (rds) tpc-c benchmark.Technical report,
Stony Brook Network Security and Applied Cryptography Lab.→ pages1

[39] H. Vo, C. Chen, and B. Ooi. Towards elastic transactional cloud storage with
range query support.Proceedings of the VLDB Endowment, 3(1-2):
506–514, 2010.→ pages38

46

http://dl.acm.org/citation.cfm?id=2311906.2311915

Appendix A

InnoDb Configuration

This is the configuration used with InnoDB while performing tests given in the

evaluation.

−−t ransac t i on−i s o l a t i o n = s e r i a l i z a b l e

−−max connections =2000

−−max prepared stmt count =232784

−−back log=2000

−−thread cache=100

−−i n n o d b b u f f e r p o o l s i z e=28G

−−i nnodb io capac i t y =4000

−−i nnodb read io th reads =10

−−i n n o d b w r i t e i o t h r e a d s =10

−−i n n o d b b u f f e r p o o l i n s t a n c e s=8

−−i nnodb concu r rency t i c ke ts =2000

−−i nnodb add i t i ona l mem poo l s i ze=160M

−− i n n o d b l o g f i l e s i z e =1900M

−−i n n o d b l o g b u f f e r s i z e =8M

−−query cache s ize=200M

−−th read concurrency=16

−−tab le cache =10000

−−i nnodb purge threads=1

−−i n n o d b l o g f i l e s i n g r o u p =2

−− i n n o d b f i l e p e r t a b l e =1

−−i nnodb max d i r t y pages pc t=90

−−i n n o d b f l u s h l o g a t t r x c o m m i t =2

−−skip−name−reso lve

−−skip−innodb−doub lewr i t e

−−i n n o d b l o c k w a i t t i m e o u t=2

−−q u e r y c a c h e l i m i t=6M

47

Appendix B

SinfoniaEx

Before moving to the Innesto based system which is inspired by Sinfonia [12],

an earlier system was using something called SinExTree [37]which is again a

Spatial Partition Tree which is running on top of SinfoniaEx[36] an open source

version of Sinfonia. Sinfonia from the design has an optimistic concurrency model

which forces mini-transaction to rollback and retry whenever there is a conflict.

In the original design, memnodes do not have any knowledge onthe data they

store and their main function was to expose memory range to beused by proxies

transactionally.

When the SinExTree was used, the architecture had three separate components,

namely; Index manager, Locking manager and DHT based distributed storage. In-

dex only had the key and the DHT key as the respective data using which we can

retrieve the data from the DHT. For each operation the index is scanned first and

using the result set each data item is fetched from the DHT incurring lots of over-

head.

With SinfoniaEx, the minitransaction was following its original design of com-

pare items thus data was also cached in the proxy. However as with the original

design these minitransactions were rolling back as soon as there is a conflict. With

locking based on SinExTree, whenever there is a lock conflictthe lock request was

returned with an error. Since there was no queueing mechanism in the older ver-

sion of memnodes, retrying lock requests never guarantees that the lock will be

granted. Thus this leads to a huge number of rollbacks in the MySQL level trans-

48

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 4 6 8 10 12

T
ra

n
sa

ct
io

n
s

P
e

r
M

in
u

te

#Users

SinEx-1WH
SinEx-2WH

InnoDB-1WH
InnoDB-2WH

Figure B.1: SinExTree Thrashing with High Contention

action as we increase the number of users. Thus the system wasthrashing with a

higher number of users. As shown in Figure B.1 while InnoDB continues to grow

with number of users SinExTree starts failing after 10 userssince some transaction

keeps on getting rolled back.

However the SinExTree was performing well if it is used only for indexing. It

was not sufficient enough to keep the system from thrashing. Figure B.2 shows how

SinExTree was scaling across machines for the TPCC workloadas an indexing sub

system.

49

 0

 5000

 10000

 15000

 20000

 25000

 10 20 30 40 50 60

In
d

e
x

O
p

e
ra

tio
n

s
p

e
r

S
e

co
n

d
 (

O
p

s)

#Users

1 host
4 host

8 host
16 host

32 host
64 host

Figure B.2: SinExTree as an Index

50

Appendix C

MySQL over Cassandra

When the project was initially started the implementation choice was Cassandra

[3]. Because of its scalability it was good candidate to start with. Cassandra has

the column family model inspired by BigTable [17]. As with most other key-value

based systems, Cassandra was using an eventual consistencymodel to scale out

and to have availability over consistency in the event of a node partition. However

it has the option for a fully consistent model as well based onquorum voting.

Locking

With zero isolation support from Cassandra, providing locking or any sort of iso-

lation is a huge challenge. In the case of a single node MySQL setup, a data-store

like Berkeley DB could provide logical locking and it works.The issue becomes

non-trivial as soon as the locking goes distributed across machines.

Because isolation based on locking seems to be hard, lock-less isolation was

the only option so Multi Version Concurrency Control was implemented on top

of Cassandra. Each update or write triggers a new version. For each row there are

different columns corresponds to a different version. Whena table is first accessed,

a transaction knows the highest version number and subsequent reads will only

return columns with less than or equal to above version number. While this does

not provide serializability, it provides snapshot isolation.

51

Indexing

Cassandra does provide the hash based indexing out of the box. While the default

data placement strategy provided good load / congestion balancing, it does not

provide features like range queries at all. However with byteordered partitioning

data placement will be done in order thus range queries is notimpossible yet very

inefficient compared to the conventional tree-based range query approach.

With both lack of suitable setup for isolation and for the rich query model,

Cassandra was not a good choice to move ahead with the integration of MySQL.

52

	Abstract
	Preface
	Table of Contents
	List of Figures
	Acknowledgements
	1 Introduction
	2 Background
	2.1 Current RDBMS Architecture
	2.1.1 Query Processing
	2.1.2 Indexing
	2.1.3 Locking
	2.1.4 Known Bottlenecks

	2.2 Innesto
	2.2.1 Spatial Partitioning Tree
	2.2.2 Two Phase Commit

	3 Design
	3.1 Design Objectives
	3.1.1 General Applicability
	3.1.2 Scalability without Higher Level Partitioning
	3.1.3 Provide Strict Isolation and Consistency
	3.1.4 Build a Platform for a DBaaS

	3.2 High Level Design
	3.3 Design Challenges
	3.3.1 Distributed Indexing
	3.3.2 Distributed Locking

	4 Implementation
	4.1 Distributed Indexing
	4.1.1 SPT for Indexing

	4.2 Distributed Locking
	4.2.1 Logical Locking with SPT
	4.2.2 Range Based SPT
	4.2.3 Locking Semantics
	4.2.4 Fair Queueing vs FIFO
	4.2.5 Deadlock Detection
	4.2.6 Workload Profiling

	4.3 Higher Level Architecture
	4.3.1 Index and Lock Manager, Memnodes
	4.3.2 Transaction Handler
	4.3.3 Query Processing unit
	4.3.4 Storage Handler

	5 Evaluation
	5.1 Setup and Benchmark
	5.2 Strong Scaling
	5.3 Contention
	5.4 Web Compatible Workloads
	5.5 Range Queries
	5.6 Crash Consistency Cost

	6 Related Work
	6.1 Data Partitioning
	6.2 Key-Value Stores
	6.3 Scaling Storage
	6.4 Scalable Transactional Models
	6.5 Distributed Indexing
	6.6 Distributed Locking
	6.7 Commercial Offerings

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography
	A InnoDb Configuration
	B SinfoniaEx
	C MySQL over Cassandra

