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Abstract

Database Management systems (DBMS) have been in the carohkation Sys-
tems for decades and their importance is getting higher &jtkehwith current
high growth in user demand and rising necessity to handlel&ig. With recent
emergence of new style of deployments in the cloud, decaliearohitectures
in DBMS have been greatly challenged due to their inabilitg¢ale beyond sin-
gle computing node and to handle big data. This new requinemmas spawned
new directions along scaling data storage architecturest bf the work surfaced
lacks the applicability across many domains as they wegetiaig only a specific
domain.

We present a novel scalable architecture which is impleatensing a dis-
tributed spatial partitioning tree (SPT). This new arattiiee replaces only the
storage layer of a conventional DBMS thus leaving its apliity across do-
mains intact and provides strict consistency and isolafiotiexing and locking are
two important components of a Relational Database Manage8ystem (DBMS)
which pose as potential bottleneck when scaling. Our newoagh based on SPT
provides a novel scalable alternative for these components

Our evaluations using the TPC-C workload show they are dapaftscaling
beyond single computing node and support more concurr@ms e®mpared to a
single node conventional system. We believe our contobgtito be an important
first step towards the goal of a scalable, cloud aware anddatured DBMS as a
service.
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Chapter 1

Introduction

Relational Database Management Systems (RDBMSs) havedrermtegral part
of computing environments for decades and will likely toypthat role for the
foreseeable future. This is mainly due to its generalitpicity and importantly
due its expressibility in terms of querying. With the emegeof cloud computing
and hosted services as an attractive new model of systenmydemt, Database-
as-a-Service (DBaaS) surfaced as an effective mechanipnovale the luxury of
a DBMS in the form of a service hosted in a cloud environmerg[5b]. It has its
advantages mainly in the perspectives of administratiars{rof it are taken care of
by the cloud provider), in terms of cost(pay-per-use) aisouece provision based
on demand (scale in and scale out).

However, majority of the database service offerings havebeing able to
provide one of the most crucial features of hosted servizés tlients, i.e. scaling
beyond one computing node. Amazon RDS [1] provide the feabfiscaling out
into a bigger machine when the demand goes high. However #éxénmm it can
go is limited by the most powerful computing node it has ted88]. Scalability
of DBMS has been in the center of attention due to growing sstyefor scaling
(both in terms of query processing power and storage) irorespto steep growth
in user demand for applications across the spectrum.

Data partitioning has been the foremost approach to sob/edhlability issue
and the work still continues to find ways of efficiently pactiting data to reduce
costly distributed transactions [19, 32]. However withreat complex data query-



ing requirements its often hard to come up with a good partiticheme that both
helps to scale and reduce the number of distributed transact On the other
hand, there has been some work directed towards lessestni levels than
strict ACID compliance consistency and lesser expredikitan SQL [17, 22].

Although such models provide greater scalability, it hasnbieund [14] that these
new abstract and less consistent data models give hard dirdevelopers to de-
velop stable, error-prone systems as most of the heavy wamk th DBMS are

pushed to the application level making the application awene complex. Most
of those systems are tailored to serve specific type of wadddosing its general-
ity.

The thesis describes an architecture based on iEnginesf(bramgine), a
memory-resident distributed database storage engine.dés&ibed architecture
scales without requiring to partition the data and worryatgut distributed trans-
actions touching multiple partitions. It does not compreenstrict consistency,
atomicity or isolation for greater scalability thus proegdthe same luxuries of a
conventional DBMS. It also offers options for crash-regabdity and durability.

Few of unigue features of the system compared to the restdfahble alterna-
tives are given below.

e Scalability: iEngine can scale adding either more query processing powe
or more memory storage or both. This is done without panitig the data
space at all and with strict consistency(Serializabilibtact.

e Workload Generality: iEngine scales both in the presence of simple web
based (lookup and inserts) operations and in the presermmngilex range
operations.

e Graceful Degradation: Novel techniques used in locking enables iEngine
to scale well across many nodes and handle high contentita wall with
out degrading steeply.

e Architectural Support : iEngine is a general purpose storage engine which
can work with any modern RDBMS engine and architecturallypsuts be-
ing used by different engines simultaneously.



The iEngine is based on Innesto which is a distributed in-orgri$patial Par-
titioning Tree (SPT). Innesto functions similar to Sinfarfil2] and shares many
techniques with it. A distributed SPT provides an efficidtéraative for conven-
tional BTree based indexing done in RDBMS. iEngine avoidsyra the bottle-
necks found in traditional storage engines [23]. Althouggging is not mandatory
in iEngine and it can provide recoverability if the user readAll the components
of the system are single threaded thus avoids the overhdatthing. Buffer man-
agement is not necessary since everything is stored in nyeratthough iEngine
follows the conventional two phase locking, it can scale imtultiple nodes when
needed thus locking does not become a bottleneck.



Chapter 2

Background

2.1 Current RDBMS Architecture

2.1.1 Query Processing

As itis shown in Fig 2.1, components in a conventional DBM&decture can be
categorized into SQL processing and storage. When a qustgdimes in, it will
be checked for correctness of SQL semantics and plannegfionam execution
strategy by the SQL processing components. In decidingdbeuion plan, factors
like number of rows to be fetched from storage, whether toingex or to use a
table scan, which key would fetch less number of rows arataikte consideration
in order to return the data as quickly as possible to the Weta values such as
size of index, average scan time, index lookup, delete tiimea given table are
usually fed into the above process by the underlying stocageponent in order
to come up with an efficient execution plan. It is this compunbat provides the
rich querying feature in the DBMS.

It was the common understanding that the query processaug $¢ a bottle-
neck in scaling the current architecture beyond a singlénimac This understand-
ing spawned a new breed of data storage systems mainly figcasithe systems’
aspect of the architecture without the support of SQL (Sexi®@€6.3) . How-
ever this understanding later proved to be wrong to greatenewith findings of
bottlenecks in the storage layer [23]. There is some worledum scaling query
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Figure 2.1: The Conventional Workflow in a DBMS

Storage

processing itself as well. Implementing SQL Engines usiag+reduce [30] is one
such example of an attempt to scale SQL Processing by dargltee sequential
SQL work flow.

2.1.2 Indexing

Once an execution plan is decided, data is fetched from tirage layer. Data
usually resides in the memory or in the hard disk. When harehigaprovisioned
Database Administrators (DBA) make sure that the entira dat (or at least the
index) will reside in the memory for most of the time to redtioe overhead of disk
seeking. Storage layer could be serving expensive tabéas s giving data from
the index. Some requests can be entirely served from the iwdkout reaching
out for the data (e.g. coverup index) If the query cache igigored, some queries
can be served by the query processing unit itself withoutimgafor the storage.

In serving index requests, some queries are index lookughsavdirect map to a
key stored in the index or index range query which will mdetlly scan and return
a sub-tree or a slice of an index. Functionality of range i@gezntirely depend on
the type of the index being used. A few of the options for ireteare hash based
indexing, BTree based indexing, and RTree based indexindpileWash based
indexing provides the fastest mechanism to access thetdata inot support range
queries efficiently. BTree based approach is the most corynused method and
supports both lookups and range queries. The RTree baseahahps mainly used



to store Spatial information for Geo information systems.

Whether to use an index lookup or a range query is decidedebgukry pro-
cessing unit based on the available keys. Storage layercree the query pro-
cessing unit to always use an index without going for an espertable scan by
providing meta data accordingly. Thus defining an index &mheSQL table makes
execution a lot faster.

In scaling current DBMS architectures beyond a single nraghindexing
plays a key role as there are not any accepted mechanisnwvidegdistributed in-
dexing with all the features provided in the current mecsianiWhile hash based
indexing is used in some systems, its inability to supparteaqueries efficiently
greatly affects the querying capability thus it usage iy dinlited to few use cases.

2.1.3 Locking

Locking is the sole component responsible of ensuring thatcbrrect isolation
level is enforced among concurrent transactions by locHlatg items / data ranges
touched by each transaction. However locking only happktieicurrent query
is in the middle of a transaction which has correct isolatevrel defined. The
majority of DBMSs support 4 levels of the isolation levelsgagen below in from
lowest level to most highest isolation level.

e Read Uncommitted There is no isolation among transactions. Any trans-
action can see intermediate results of other transactions.

e Read Committed Transactions are allowed to see values only committed
by other transactions. Transaction can see values conaneitten after the
beginning of current transaction.

e Repeatable ReadsTransactions can see only values committed before the
beginning of the current transaction.

e Serializable Even values not there (but could have been accessed ifiits we
there) are locked to avoid phantom problems. (Eg. Seleamfindex<70;
would lock the entire data region below 70 avoiding any neluevaddition
until the given transaction is terminated.)



Each isolation level differs from the others in deciding whe release the
locks they have acquired in the current context. To suppase different isola-
tion levels, it has to support both item locking and complemge locking. Most
common approach to implement locking is to use MVCC (Multisien Concur-
rency Control) which enforces the isolation by not locking by keeping different
versions as seen by each transaction but its vulnerablegtodointention.

Distributed locking has been implemented in some systeaes $&ction 6.6)
however little has been done in the context of DBMS lockinge Tequirement to
support both range locks and support the scalability is magl in a distributed
setup.

2.1.4 Known Bottlenecks

Apart from scalability issues there are couple of knownlbn#cks even in the
single node setup that hinders high performance [23]. Aackthre lots of systems
that try to resolve at least one or two of these bottleneckgethigher performance.
The proposed system also addresses many of the below nexhigsues.

e Logging: Logging data for recovery happens in several layers in tB&IB
and tracking changes to log incur lots of overhead too. wsluvould be
to achieve recoverability by other means incurring low beard compared
to logging. This also generates excessive amounts of |/Qeg which is
another overhead.

e Locking: Traditional two phase locking is usually managed by a ediatrd
separate entity could also be a source of overhead.

e Latching: Modern DBMS are multi-threaded to fully use the availaliess
in modern systems however many shared data structuresdiatehied be-
fore using it.

e Buffer Management This creates an unnecessary indirection on each
record access.
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Figure 2.2: High Level Innesto Architecture
2.2 Innesto

Innesto is a scalable key/value storage system based arbDisd Spatial Parti-
tioning Tree (SPT). As shown in Figure 2.2, Innesto has a &yeried architecture,
where the proxy is a stateless component and the memnoéessanything. When
a request comes in, the proxy does the tree traversing whicdched and commu-
nicates with memnodes to get the data in leaf nodes.

Innesto is inspired by Sinfonia [12], which emphasized tiateloping fault
tolerant distributed systems can be done with less hastiedigiributed data struc-
tures than using complex communication protocols. Memsoadake sure that the
data stored in is it consistent and locks the particular tfatshe time of a given
operation avoiding others to modify it. Locking is quite #anto traditional read
/ write locks found in DBMS. Innesto has the notion of mirdsisactions which
are similar to mini-transactions proposed in Sinfonia. M/I8infonia has non-
blocking versions, Innesto has the capability to block ai+ttamsaction until it
acquires all the locks needed. Together with mini-transastand light weight
two-phase commit, Innesto provides atomicity for each aijj@n executed on the
SPT.

Each of these components are single threaded and comn®imiaz custom
built stream layer. Memnodes store all the data in the mertiry no disk seeks



T ©COO00000 OOO0DVUVO

+

Figure 2.3: Three Dimensional Spatial Partitioning Tree

are required to serve the data. However, if a requiremesesi@ memnode can
synchronously log the data to the disk to minimize the dasa lo an event of a
crash or hardware failure.

2.2.1 Spatial Partitioning Tree

Spatial partitioning tree is a hierarchical data structuganized into a tree, which
splits the same data region recursively when a particuzionegets congested. In
Innesto as the regions get split, these new regions (refféoras node partitions
from here on) will be equally distributed across availablenmodes to balance
the load. This notion of node partitions technically enabieesto to migrate live
partitions across nodes giving scaling out and scalingatufes. Figure 2.3 from
[8] shows how a three dimensional spatial partitioning selés its self from a one
partition to multiple partitions.

Due to the hierarchical nature of SPT; its a better canditaténsert inten-
sive workloads compared BTree based approach. HoweverSidt e balanced
tree. In a multi-dimensional SPT, serving multi-attribuéamge queries are imple-
mented more efficiently than in a BTree. It enables more finangd range queries
compared to a BTree.



2.2.2 Two Phase Commit

To achieve atomicity in all operations performed on the SPlight weight two
phase commit is implemented. Each operation on SPT is ee@asging a mini-
transaction. The proxy that initiates the operation witl@sthe coordinator. When
multiple memnodes are involved in a given mini-transactieech memnode will
try to lock the data region it tries to access and send a OKwobd® acquiring the
lock or FAIL vote if the lock request times out. Coordinatoillwsend back the
final commit message to all the memnodes based on the VOTE ifirghh phase.
If there is only one memnode, it will go ahead and commit thenges as soon as
its vote is sent to the coordinator making the commit executaster. If the proxy
has a stale information on partitions it will be notified iretfirst phase and proxy
will retry the mini-transaction after updating the staleloaentries.

10



Chapter 3

Design

3.1 Design Objectives

3.1.1 General Applicability

Most of the products in the market or research carried outires| current DBMS
users to do intensive migration such as entirely re-writing data management
layer to comply with new products. Although those products/le great features
only handful of current users want to try those due to the obstoving into the
new products.

Our main design objective is to make the migration into oatfprm as smooth
as possible. Yet the system has to provide the scalabilityad to achieve. This
way users do not have to change their application comply thi#mew DBMS.

3.1.2 Scalability without Higher Level Partitioning

The de-facto partitioning method for scaling out DBMS wagé#atition the data
based on a particular access pattern E.g., based on gepghssed on depart-
ments, etc. This reduces the costly cross partition trdiosec With the modern
complex workload patterns it could not be a trivial task tetiian data based on
a simple partitioning scheme or to avoid distributed tratieas. And after certain
point the number of partitions could grow beyond control.

11



To avoid such hassles our system has to scale without anyinisevention
such as data partitioning. System has to be able to digtribad across available
nodes so that the load is balanced and there should not bpdtst s

3.1.3 Provide Strict Isolation and Consistency

Many systems that require high scalability sacrifice strartsistency and isolation
in favour of the scalability requirement. Such systems woekfectly well for
selected set of domains with very high scalability requeata. However there
are many with the scalability requirement yet unable toieerthe consistency.
It was also revealed that their lesser consistency andtisolanodels make the
application layer even more complex than before with hawgdthe bulk of the
work that were used to be handled by the DBMS.

Our application should provide scalability without comiising the consis-
tency or the isolation usually provided with the DBMS. Thidl water to the needs
of those who require both scalability and the high consisterr for those who
already have a complex application layer and can not afforddke it even more
complex.

3.1.4 Build a Platform for a DBaaS

Even though there is a hype about offering DBMS as a serviwmrgtare very
few offerings that truly provide the DBMS as a service. Matily sattle to scale
beyond one single machine or to provide both high consigtand scalability at
the same time as in a conventional DBMS.

Although this project would directly implement a DBMS as av#ee, this
should serve a first step towards such a goal in providiny sohlable DBMS
with guaranteed consistency and isolation. This requirdm®uld also bring, the
need to support multi tenancy in the system.

3.2 High Level Design

Our approach to this problem is to design a general purpobgffansactional and
distributed storage engine so that current DBMS could oepthe current single
node storage with the distributed storage layer. To achleate we have to replace

12
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Figure 3.1: Scaling the Storage Layer

Query Query Query
Processing Processing Processing

Distributed Distributed Distributed
Storage Index Locking
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Figure 3.2: Scalability with Query Processing

single node indexing, locking and storage with distribuitediexing, distributed
locking and distributed storage. Such a layered designowslin Figure 3.1.

To avoid manual data partitioning, when the system scalgstmindexing and
locking should cover the entire data set not only data lazéhé current machine
as happens in data partitioning. Scaling the storage lageidigive the system
scalability along more storage and adding more query psiogsinits (as shown

13



in Figure 3.2) the system can scale for more processing pmwerfixed size data
set. Thus this design provides the scalability along twoetisions.

3.3 Design Challenges

The above mentioned design has several key challenges tooove to make it a
practical solution.

3.3.1 Distributed Indexing

One of the main reasons for partitioning being the de-factacsbme time, is the
need for a good practical solution for distributed indexi¥¢hile hash based index-
ing provides good scalability it lacks the rich queryingtteas needed by DBMS.

3.3.2 Distributed Locking

Distributed locking has not been explored as it is in distiélol indexing. Although
scalable distributed locking has been already implemeunséty techniques such
as Paxos (See Section 6.6) there are not many practicailos@generic enough to
support all the complex locking semantics found in DBMS eeslly to support
range locks needed to over come the phantom problem.

14



Chapter 4

Implementation

4.1 Distributed Indexing

The foremost challenge faced during the implementationtew@®me up with an
efficient, practical distributed indexing subsystem. Aligh the proposed Dis-
tributed Btree [13] provides a good alternative as its gsiteilar to what is found
in the single node system. However it lags in performancaserit heavy work-
loads. While Innesto (See Section 2.2) is being developalderNSS lab mainly
for multi-user games, the distributed SPT used in Innessoald@antages over the
BTree based approach. Thus decision was taken to use thalHaatition Tree to
store standard non-spatial data.

4.1.1 SPT for Indexing

Figure 4.1 shows how a three dimensional SPT is used to indkxotable in the
TPC-C Benchmark. Orders table has three index attributdseanh attribute is
represented as a dimension in the SPT. Representing eebhtatas a dimension
gives finer grained querying compared to BTree.

Figure 4.2 shows the SQL to add the primary keytderstable in the order
of warehouse id, district id and order id. Since the key wéld concatenation
of three parts in the conventional BTree based indexingh gaery should have
the value for the warehouse id even to query using any otHaeand to query
with order id query should have the value to the first two congois. Most of the

15
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Figure 4.1: Spatial Partition Tree as DBMS Index

ALTER TABLE orders ADD CONSTRAINT pkey_orders PRIMARY KEY (o_w_id, o_d_id, o_id);

Figure 4.2: Adding a Primary Key in SQL

current DBMS designed to work with BTree based systems,ga@ring efficient
index queries and go for costly table scans if the first corapbis missing.

With a separate dimension representing each part in the3&Y, can serve
any type of query without depending on the previous parthéindex. Figure
4.3 shows range query where it requests all the orders thvat een made in
district 4 across all the warehouses. With SPT storage edlasrequest lik¢*,4-
4,*} saying for the first and last parts of the request can get aluesaut the
middle part should have the value 4 (with min value = max vakmesents an
equal condition). Support to these types of light weight GPL#pe queries is
becoming essential as modern systems are being used on hothand OLAP
type workloads.

With each region recursively splitting in the case of cotigeson regions due
to inserts, parent nodes keeps unchanged on splitting wilthimake sure only leaf
nodes gets affected and the rest of the tree hierarchy remaimstant. Although
this creates an un-balanced tree, this is very effectiverims of insert intensive

16



Select * from orders where o_d_id = 4;

Figure 4.3: Querying Index in SQL

workloads since cached hierarchies in proxies remaind e&lbiding unnecessary
cache reloading. And irrespective of the logical lockingaed below, each
index operation locks the data it touches for the period efdperation to further
guarantee the isolation.

Modern DBMSs have similar options for spatial data indexisgng multi di-
mensional storage however, those options are not avaiflabioring non-spatial
data while BTree based indexing is the most common option.

4.2 Distributed Locking

Locking in DBMS has some complex requirements to be fulfilede able to

serve the rich SQL features. While distributed locking Ifts&® a costly opera-

tion supporting distributed range queries is an added oexitpl Range locks are
required to prevent phantom issue to make sure that evehlisres returned in

a query will remained locked until the given transactioneigrtinated preventing
some other transaction making an insertion. With these égairements on hand,
the decision was to use the SPT for locking as well. As in withihdexing, in the

locking each different attribute is represented as a diinaria the SPT.

4.2.1 Logical Locking with SPT

Mandatory locking and logical locking are two options forsaring isolation
among concurrent transactions. While mandatory lockingsiglly hardware en-
forced locking such as page level locking, logical lockiagihigher level locking
where existence of an data item in a data structure is irgergras the given item is
locked by some transaction. With SPT being the underlyirtg gimucture, current
system uses logical locking. An entry in the tree intergtete that particular data
item or data range is locked by another transaction. Renaf\ah data item or a
range means releasing the lock held by that transaction.
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4.2.2 Range Based SPT

The original SPT which is working with data items not with ges, is changed
to work with ranges instead of items in the locking subsyst&he flexible model
under which the SPT was developed made the transition eelsilerrequiring only
new handlers to deal with ranges. Thus each item in the IgcRIT is a range; a
single item is represented as a special range where bothnaiimax have the same
value. Thus most of the range locks could spread across nuaigypartitions.

4.2.3 Locking Semantics

When an range is inserted, all the current ranges in theunade partition are
checked against available dimensions for overlappingaanlj there is an overlap
the decision is taken based on the locking semantics. Lgdémantics based on
both read and write locks are supported in the system. Asrimestional locking
systems, if two overlapping range are read ranges (read)ldakn the requesting
lock is granted. In granting read locks, if there is an exaatirlock already stored
in the node partition, the counter of the lock is increasecelse new range is
inserted as a separate range even if is an overlap with atingxisck. If the
overlap is with a write region (write lock) the requestingkas balanced until the
existing lock is released. The order in which waited lockes granted is explain
below. The counter of the write locks is always one meanis@iit exclusive lock.

4.2.4 Fair Queueing vs FIFO

When a new lock request comes in, if there are no conflictingea existing, the
lock is granted right away. Though this works faster, thiglddead to starvation
of range locks as there is always a high chance that an itekngets ahead of a
range lock which is already pending waiting for another iteok. Since chance of
an conflict is high in range locks compared to item locks (sirenge locks cover
a wider area), a workload with high number of range locks (r@nge queries
prompting for range locks) could have bad impact on the thinput because of
starvation.
While the option is there to use a fair queueing in the lockinigpe current

workload is more like a web workload with far less ranges estgi compared to
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items requests, the systems also supports FIFO (First $h Gurt). In this scheme
when a lock request comes in, it will be checked against bothently granted
locks and against locks that currently being held beforatgrg the permission. If
the new request has a conflict with a lock from any of those Hata the new lock
is also pushed to the waiting queue and will be granted onér afl conflicts are
gone. When a lock is removed, it notifies all the locks thatengaiting on it and
the locks that have zero conflicts will go ahead and get thmigsion while other
will wait on the remaining conflicts to be released. While BIkas some overhead
on extra waiting it will serve both items and range requeistdarly and workload
with considerable range requests will get benefited from tAll the experiments
shown in the thesis are performed under the FIFO scheme.

425 Deadlock Detection

With locking in place deadlocks could be a common source éfogpmance lag-
ging. Thus early detection or prevention is a good featuret®. Modern DBMS
[6] uses approaches like wait-for graphs to detect cyclepéddencies and release
the transaction with a smaller working set (work done so faie proposed sys-
tem detect based on time-outs. Time-outs have some adesnagr the detection
mechanisms such as, in a complex workload with hundreds méurcent users
scanning through wait for graphs could be very expensitbgitontention is high
it will eventually be timed-out even if there is no deadlocldaassing one graph
scan would not guarantee that the transaction will be amiofianother deadlock
in the future and get terminated. Thus in the new systemsaions are rolled
back if lock waiting time exceeds the given time out for thepective table.

4.2.6 Workload Profiling

In solely depending on time-outs, the crucial decision isdbthe correct time-
out values. A lower value would terminate most of the tratisas lowering the
final throughput and a transaction with high contention dlthe usual victim. A
higher value would make locks wait more time and it will evezly make CPU
utilization low since the majority of the time is spent on tia. It would again
lower the final throughput.
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To decide the correct time out value per table, workload @filed against
waiting times. Once the profiling is done, a given percemtilebe selected as the
decided time out. Profiling is done per node partition thusefach locking tree
different node partitions could have different values blase the congestion. The
final percentile to be picked from the profiled data set candrdigured. Lower
percentile will have higher throughput with low contentiaa most of the slow
transaction are getting rolled back but have negative imphen the contention is
high when higher wait times become normal. System offergtmns to profile
the workload once in the beginning or periodically profilesl alecide new time
out values.

Initial time-out value which is the same across all the taldan be defined
based on the user requirements. In running TPCC our initisé but was set 2
seconds since most of the transactions should have a renerbélow 5 seconds.
The initial value has a direct impact on the profiled valuesthas to be carefully
selected based on the needs. All the lock profiling, and tinoints is done by the
memnode. The proxy is only responsible for traversing tleeanchy and sending
the request to correct node partitions residing in memnodes

4.3 Higher Level Architecture

Figure 4.4 shows the entire component architecture of tis¢esy. The index
manager and the lock manager are the components describeel. alransaction
handler exposes the generic transactional key value batethice to the DBMS
guery processing units. Storage handler which is part ofitieey processing units
bridges the conventional DBMS query processing unit withrtew transactional
key-value storage layer. The Transactional handler tegetiith the index and the
lock manager collectively are known as the proxy. Each thagers (i.e. Query
processing, Proxy and memnodes) could technically residierée different ma-
chines however there are certain optimizations being datfepassing data back
and forth if the proxy and the query processing units regidiéaé same machine.
Detailed description for each component is given below.
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Figure 4.4: Full System Architecture

4.3.1 Index and Lock Manager, Memnodes

Core functionalities of the index and lock manager is givethe above sections.
When it comes to the big picture, the index manager managfarpes the CRUD
(Create, Retrieve, Update, Delete)operations on the datadsin the memnodes.
Transaction handler gives both the data and the key to beaddehen its an in-
sertion or an update. If its a select or a delete transactoulbr will only pass the
index key to the index manager. The index manager has a keg-ased interface
and it is not aware about which index operations belongs tchwiansaction in
the SQL level. Node partitions in the index have both keysthedespective data
(both stored in the memnodes). Thus from the initial desigtiex manager acts
both as the distributed index and the distributed storage.

The functionality of lock manager in the big picture is saradtee index man-
ager. The two main operations it supports are range insentzange deletion which
correspond to the lock insert and lock release respectitadgk insert could get
returned with time out failure if the lock waiting exceeds ttefined time out value.
This will make the corresponding SQL level transactionbadk. As in the index
manager, the lock manager too is unaware about SQL levedactions.

Memnodes are the only components which have a state anddsttarelt will
save all the data in the memory thus avoid the overhead otig¢igkndency in serv-
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ing proxy requests. Once the traversing is done in both tihexiand lock tree, the
proxy will then connect with memnodes to communicate with risspective node
partitions. And the communication is managed via light wétgvo phase commit.
There are two types of memnodes in the system. All of the melesmmentioned
upto now are domain one memnodes which store node partitiomsSPT. There
are domain zero memnodes, which basically store meta dat# &dbles (i.e, in-
dex and locking tree meta data for each table) and also haigrdogted DHT to

serve UNDO REDO logging for proxies (detailed descriptiergiven below on
logging). In Figure 4.4 the small white boxes represent ruattitions stored in
memnodes.

4.3.2 Transaction Handler

The Transaction handler serves as the main interface towside query process-
ing units. This can itself serve as a transactional keyevatare with rich indexing
and locking features. The main interface can be divided tintee parts namely
meta operations, data operations and transactional opesat

Meta operations

All the table creation and deletion comes under this groupeli¢ver a new table is
created in query processing units, a respective tabledsamtén Innesto. This meta
data includes handler pointers to the index, to the lockieg &nd pointers to meta
data such number of attributes, etc. All of these will beestian the domain zero

memnodes. Before any operation is performed on data theatap table-meta

should be available in the system.

Data Operations

All the operations on the data come under this group. Thezefiee different
operations covering four CRUD sections. as given below.

e Insert: When a new record is inserted, the key to be indexed and tfae da
portion will sent to the Transaction Handler from the QPU.aN'an insert
is done, first the key is checked for duplicates and if founlll lvé notified
the QPU.
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e Lookup: When there is a retrieval request and the exact key is &laithe
request comes for a lookup with the key to be searched aneitie giving
the which index to be searched.

e Query: When aretrieval request is for a range of keys then the se@qoenes
as a range with min and max values to be included.

e Update: If there is a value to be updated then the Transaction Hamdle
receive the key and the value to be updated.

e Delete If there is a value to be deleted then the Transaction Handlé
receive the indexed key of the value to be removed from thexind

If the operation (insert, update or delete) is part of a tmatisn then the re-
sult will be buffered until the parent transaction is contedt or discarded if the
transaction get rolled-back. Depending on the isolatiaelie assigned for the
current transaction, a lock will be requested before eaehation and will be re-
leased at the termination of the transaction. Currently @drializable and Read
Committed isolation levels are supported. In serializddah read and write items
including ranges are locked until the end of the terminatbm transaction. In
read committed mode, write items are locked as usual tiletieeof the transaction
but the read items do not acquire locks. Thus each time a seddnie the same
query might return different results within a transactiamce a fresh read is done
each time from the index.

If the lock is rejected due to time outs the entire operat®déanied and the
QPU will get the error message. When a data operation iglfaie all the related
operations to the failed operation gets undone. However lifpi to the QPU to
decide whether to rollback the entire transaction or nog. H. a index insert is
failed due to duplicate data, all the locks acquired for tieeit will be undone and
then report the failure to the QPU.

Transactional Operations

Apart from operations on the data, the system has to managsaittions as well
in order to keep track of locks acquired and release thennos. tThere are three
main operations coming under this group.
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e Transaction Start: When a new transaction is starting QPU will notify the
Transaction Handler, and it will start tracking the lockg@iced and buffer-
ing required operations.

e Transaction Commit: When a transaction terminates successfully, it will
first execute all the buffered operations and then releasadfuired locks.

e Transaction Rollback: When a transaction terminated unsuccessfully, all
the buffered operations are discarded and the acquired l@itkoe released.

Crash Consistency

If configured the proxy can run with a crash-protection mddehat mode, all the
operations executed under a given proxy will be pushed to @ Bdda UNDO log
and when the proxy receives a commit request all the opesatiothat transaction
will be pushed to a REDO log. UNDO logs contain only locks acsghiduring the
transaction since index modification are only performedédommit. The REDO
log includes all the index modifications performed during ttansaction and not
yet executed on the actual index. Thus if a proxy gets cradbedo some reason,
the proxy can look for the pending logs in the DHT (which isiagan on-memory
distributed storage) and act accordingly. The functiaypaf these logs is same as
the conventional UNDO - REDO logs found in DBMS.

Apart from providing the protection for the proxy in an evehta crash, syn-
chronous logging in the memnodes enables to recover data drarash in the
memnode as well. Though the memnode replication is providete original
Sinfonia, Innesto currently does not provide replication & is listed as the next
step to be taken in the project.

User Management

Usually there are more than one proxy running in each madbiserve query pro-
cessing units. There is one master proxy to which each nexcosaection from
a QPU gets connected. The master proxy will then redirechéweconnection to
a different proxy based on round robin to balance the load¢hkger connection
from a QPU gets a new session in the proxy. This user modeireessthe query
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processing units will work under thread-to-connection el that proxy will get
a new connection request each time a new user thread is spawne

4.3.3 Query Processing unit

In the work presented in the paper, the implementation aaewaluation is done
using MySQL DBMS engine [6]. The choice was made to use MyS@tabse
of its wide spread usage across domains specially the usagdasted database
service [1, 5]. Its storage plugin architecture made thegirgtion easier and fail
proof. MySQL storage plugin gives a well defined record baseztface to the
MySQL which matched perfectly with the Transaction Handlich also works
on per record basis.

Figure 4.5 shows a further detailed architecture of MySQ4.it8 shown apart
from the core functionalities mentioned in Section 2.1 rétere other components
responsible for utility and management work such as loggegication, recovery.

With multiple MySQL engines actively working at the samedirit is essential
to balance the load among MySQL engines. Although the netesysloes not
support any load balancing mechanism at the QPU level, a balancing tool
such as MySQL Proxy can be directly used to balance the loaddban user
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congestion. This will become even more important when pliogi DBMS as a
service.

4.3.4 Storage Handler

The Storage handler is responsible for mapping SQL basedegue respective
key value based operations to be sent to the Transactionlétan@ihe plug-in
architecture of MySQL made the storage handler more romgstess error prone
as it already supports custom made storage handlers witdoedrdriven interface.
It sends out corresponding requests to the proxy based danubidng method in
MySQL. It is the storage handler that decides whether to doolup or range
guery and also decides on the key value range limits baseudadlatsde data. The
Storage handler as part of each data operation converts Digid&fic data types
to a generic form.

To reduce the communication with the proxy, the storage lear@hches all
the returned results from the proxy and subsequent reqieettts exact same data
set will be served from the storage handler cache. Cachihghappens in the
isolation level ensures that the cached data will not be fisatby others for the
duration of the transaction. Cache items are modified acugigdbased on opera-
tions performed on them enabling to return latest resultsulisequent requests.

It is the storage handler than makes the rest of the systeepémtient of the
particular QPU being used. Since the storage handler igdairthe QPU spe-
cific conversion, technically multiple of QPU of differerypies could be running
simultaneously. This is a crucial feature to meet the designirement of general
applicability. This also enables the system to leave the [3BMgines’ complex
guery processing subsystems intact. Thus any MySQL usangoDBMS that sits
on top) can easily migrate to the new system with minimal leass
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Chapter 5

Evaluation

5.1 Setup and Benchmark

All the experiments were performed on a cluster of commaui#¢hines. Each has
two quad-core Xeons (E5506) and 32 GB memory. Unless otkermientioned
all the experiments we followed the following set-up. In leawachine, we run
the proxy, memnodes, MySQL server and the benchmark cliargach of those
machines, there are 15 single threaded proxies and 5 simgladed memnodes.
And on the same machine there are two MySQL servers serviaegraguests.
Apart from one experiment, logging was disabled during tkgeements and the
data were only residing in the memory. Each MySQL sever ig coinmunicating
with the local proxy.

To emulate a practical workload on the system we used a bear&hetient [9]
which was based on the TPC-C [10] specification. The TPCChiaad is a mix-
ture of read-only and update / insert heavy transactions.nglture of the query set
defined in TPCC covers a broad range of queries from compleyergueries to
simple lookup / update queries thus not only it covers mgjaf queries found in
the real world and also its final out come gives a better gicailnout the underlying
systems functionality. Since our main objective was tottledhe system as much
as possible and to see how it scales none of the experimergsusieig wait times
as specified in the TPCC specification. All the test numbgrsrted have the cor-
rect transaction mix and all the reported transactions att@nivcorrect latencies
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specified in the TPCC specification. All the transactionsenxecuted in serializ-
able isolation level except to stock-level transactionalihian in read-committed
isolation level as permitted in the specification. Beforeheexperiment, the sys-
tem was loaded with data based on the TPCC spec. Whenever tHie@@Qhput is
given its the number of New-Order Transactions per minute.

To compare the performance of iEngine against a standard ®&#&! choose
the InnoDB storage engine, the default engine in MySQL. A# experiments
were using MySQL 5.5.8 source distribution and using InndDb4. InnoDB is
the only storage engine shipping with MySQL that suppodsagactions and it is
being used widely across many domains. It is also being useddple of cloud
hosted database offerings [1, 5]. InnoDb was disabled whgBQL uses iEngine
as the storage engine. There were many configuration chalogesto fine tune
InnoDB to work in the current hardware among which bufferlpoas configured
to use 28G, log is flushed only once in a second using fdatasjouble-write
was disabled and log file size was 1900M (For further configpmaoptions see
Appendix A).

The consistency checks given in the TPCC specification id tseerify the
results of the TPCC outcome and of the functionality of iExegiWWhen iEngine is
used as the storage engine, internal caches are disablegS@Msince it could
use stale data and has no information to verify it.

5.2 Strong Scaling

To evaluate how the system reacts to adding more query iogepower for a
fixed dataset (commonly known asong scalingj, we created a setup where three
machines each running 8 single threaded memnodes are @ebioastore the data.
We increase the number of machines from which we query thr@ugenchmark
client from one to three. Each client machine had 2 MySQLemnand 24 client
proxies. The total number of users were equally divided amesach MySQL
server. The data size was 90 WH stored across three machines.

Fig. 5.1 shows that cumulative throughput increases asevease the number
of machines querying the data stored in a fixed number of mde®o At the
same time the maximum number of concurrent users we can gobEPCC starts
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Figure 5.1: Strong Scaling in Query Processing

failing increases from 750 (querying from single machime2100 (querying from

three machines). This shows that we can add more query gingesiachines

for a fixed size data set and increase the throughput. Thigdgalthe fact that

these client proxies and MySQL servers are entirely segs-¢nabling the user to
add or remove them as required. This proves the scalabflitiyeosystem on one
dimension of adding more query processing units will gaimertbroughput.

5.3 Contention

We also evaluate how the system handles the high user ciomtexatmpared with
InnoDB. Usually the number of active users grows with thexddte which is not
harmful in the sense of contention. Contention happens wthemnser demand
grows for a fixed or small set of data where everyone is intedes the same
data portion similar to slashdot effect in web servers. Thiuite common in the
current web or for any other software appliance (e.g., inailez store this could
be that every customer is interested in the special offdiaseonly).

To emulate the above scenario, we increase the number oticent users
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using fixed number of machines for two fixed data sets (144 hearges and 240
warehouses in two separate attempts). For both datasetscvemse the number
of users until TPCC starts failing. For the proposed systeisma 6 machine setup
where each machine has memnodes, proxies, MySQL servethahénchmark
client. For InnoDB, it is a single machine setup where bothchenark client and
MySQL server runs on the same machine.

Figure 5.2 shows the impact of the increase in demand for d iize data set.
For a smaller number of users InnoDB performs really well pared to the new
system but as the demand increases InnoDB drops steeplyR@@ $tarts failing
(at 850 users for 144 WH and at 1100 for 240 WH). Where as thegggexd system
can go upto 2700 users for 144 WH and 1950 for 240 WH. Figuresi5o8vs the
number transactions executed per user. It shows how bothnsgslegrade in that
metric but demonstrates that iEngine persists further esatpto InnoDB as the
number of users increases.

We suspect that the steep drop down in InnoDB occurs due td¥eC based
concurrency model it follows where its susceptible to hightention. It outper-
forms conventional two phase locking in low user demandsiynaiue to its less
overhead in MVCC however lags badly with high contentionisEuyain reiterates
that if we remove the bottleneck of a centralized setup infhvase locking, it can
be used effectively and it handles contention quite well garad to MVCC.

5.4 Web Compatible Workloads

Though the TPCC workload emulates an online retailer, atimeeb workloads
are less stressful in terms of types of queries that they Uibeis different TPC
benchmarks exist which more closely resemble web workleatisless cumber-
some queries, the majority being simple lookups where asCTR43 considerable
amount of range queries. In order to both resemble a simpiekload and to
see how the systems behave in a write intensive workload waegdd the bench-
mark client only to execute New-Order transaction whichsdoat have any range
queries. With this workload, 33% are inserts, 44% are loskapd 22% are up-
dates thus it is a write intensive workload. Although for tafthe systems, reads
dominate the workload writes are equally important. In tixigkload, updates are
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Figure 5.2: Scaling with Users

not changing any indexed keys only the value is getting cbdng

The experimental setup is same as previously describedevihemew system
is spread across six machines where as InnoDB is running ingéesnachine.
We kept the data size (240 WH) and number of client machinesl fad increase
the number of users to see how the system performs. The testuwaing under
serializable isolation level.

As itis shown in Figure 5.4, following the same pattern InBofarts off well
with smaller number of users and then falls steeply. On theraband iEngine
maintains the performance level and then gradually fallgrdas we increase the
number of users. This pattern could be equally attributedg¢@oncurrency control
mechanism in InnoDB and by the BTree based indexing hapgeniinnoDB.
This is an indication the SPT based indexing is a betterradtee to conventional
BTree based indexing as it can handle the contention bétéer innoDB. This
could also give an indication how the new system could oufoper InnoDB in
similar web workloads with a considerable portion of writguests.
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Figure 5.3: User Contention

5.5 Range Queries

With the current highly competitive environment most of thetabases are used
both in OLTP and OLAP type workloads to continuously imprakie service to
end users. Thus the ability of the database to serve botls typworkloads ef-
fectively is crucial. Usually most OLAP type operations sisted of costly range
gueries and at the same time most of the distributed datagesrsuffer from lack
of efficient support to serve them.

To evaluate how iEngine behaves in the presence of a liglghw@LAP type
workload, we use the Stock Level transaction in the TPCCifipation. The Stock
Level transaction consists of one OLAP type query and fewups. As with the
last two experiments, for fixed data size (240 WH) we incrélaseaumber of users
to see how both InnoDB and iEngine scale in the presence dfcasge queries.
The experiment was performed under read committed isoldgieel as permitted
by the TPCC specification. Thus no proxy level locking is Imed in the new
system. However each time a read is performed data is lockeitid time of the
operation in the memnodes.
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Figure 5.4: Web Compatible Workload

Figure 5.5 shows how differently each system responds tgergaeries in the
presence of increasing demand. The iEngine out perforn@DBrin the number
of Stock Level transactions it can execute per minute byrooflenagnitude. All
the numbers reported on iEngine was under the permittedciatgiven in TPCC
however as the number of users increased, percentage sdi¢taons under correct
latency falls from 100% to 0.6% in InnoDB. This could be duete fact that
InnoDB tries to keep a version of every read they do to protideread isolation
under MVCC.

5.6 Crash Consistency Cost

Although, for most of the businesses the entire data setedihinto the memory,
there can be a requirement for recoverability in the eveatafsh, power failure,
etc. The iEngine offers couple of options to persist the data precautionary
action. It can be protected from proxy crashes (from UNDORE®MO logs) and
from a memnode crash via synchronous logging. Crash censigstcomes with
a cost due its increased network communication and diskndigpey. Here we
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Figure 5.5: Range Queries

evaluate the cost by running a setup similar to previoustywshexperiment. Two
dedicated machines run memnodes storing the data whileotber machines do
the querying. Experiment was conducted while the iEnging eafigured to have
both synchronous disk logging and transaction loggingerpttoxy is enabled. The
initial data size was 60 WH.

As is shown in Figure 5.6, by running the application in thastrconsistent
state it has performance reduction of 40% - 50% compared rtoimg without
the crash-consistent options enabled. The overhead alsesntize system to start
failing TPCC earlier than without logging enabled. While tturrent version only
supports these two options, future versions will supporteraptions to recover
with less overhead See Section 7.2.
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Chapter 6

Related Work

Scalable data storage has been one of the most explorediatiseet the recent
past and there are lots of interesting new directions spdwee result of that.

6.1 Data Partitioning

Partitioning has been the standard mechanism used in g@alinDBMS beyond
one machine. Majority of current DBMS supports partitianome way or another.
With current complex workloads work has been shifted on neactions such as
automatic partitioning based on workloads specially irecasproviding DBMS
as a service.

Schism [13] uses workload aware partitioning to minimizetlyomulti- par-
tition distributed transactions. The current workload ésipdically monitored to
identify the set of tuples accessed together and uses geaptigning to find bal-
anced partitions reducing the number of cut edges (whictesgnts a distributed
transaction). Relational Cloud [19] uses the above paiitig scheme to decide
on correct data placement across autonomous DBMS enginieb afe used as a
back-end to a DB-as-a-service. The efficiency of the dateeptent thoroughly
depends on how easy it would be to partition the workload eedudistributed
transactions. The partitioning also gives the notion of @areti-nothing architec-
ture giving each DBMS engine autonomy. H-Stcre [26] (Conuiadly known
as WoltDB) is memory-resident database that partitiong daross many single
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threaded engines. Though originally VoltDB could not dyizatty scale out and
scales in, [32] have shown that it can be done dynamicallywéver, VoltDB

cannot be considered as a general purpose DB storage dimiigtions in SQL
semantics and the partition scheme has to be set upfront.

6.2 Key-Value Stores

With ever-increasing user demand and data size, indusiporese to even higher
scalability requirements was data management systemslagisier expressibility
and lesser consistency guarantees but with very high sligland lower latency
operations.

Data storage systems commonly known as NoSQL systems aigne@sn
such a way to scale horizontally with no single-point boitlek compared to con-
ventional DBMS [3, 17, 22]. They usually use hash based datement to load
balance and spread the data across many nodes. While achtegh scalabil-
ity they compromise higher consistency levels and rich yjugerface. There are
different flavours in the query model such as column-origntiocument based,
key-value, graph based, etc. Though some systems suppartaatvof indexing
and range queries the majority do not have an efficient waygpart such queries.
At the same time isolation among operations is hard to aehi®Vhile these are
superior in certain domains they might not be good candidategeneral use case
and it has been shown lately that conventional DBMS can orfope these in
certain workloads [20].

6.3 Scaling Storage

It did not take that long to realize that DB community movedtéa than they
should have to this new NoSQL and this sudden move has putt@ous pressure
on the application development. Since most of the bulk edrout DBMS are not
in the application layer which makes already complicatepliegtion logics even
more complicated. Then the work started on coming to middbeigd between
two extremes of DBMS and NoSQL.
There have been efforts to re-architect the structure ofertional DBMS by

de-coupling the storage layer from the query processingI5421]. They have
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built database systems on top of a highly scalable storagferayand have inte-
grated the storage layer at the page-level or more granatarrdcord level. Thus
the storage can be scaled independently from the query gsiogecomponents.
However, in most of these systems a small group / partitiodefned only in
which strict consistency is guaranteed. Transactionshréagond such a group
have lesser consistency guarantees. The iEngine also ra#a architecture but
it does not restrict full consistency to a defined set of bawied. Strict consistency
is achieved irrespective of the data being touched in adicius.

6.4 Scalable Transactional Models

While the main focus is on re-modelling the DBMS architeetand new query
models, there is an interesting body of work being done onrfinadiays to imple-
ment transactions in a DBMS in a more scalable manner.

DORA [33] explores how to implement threads-data modelerathian thread-
transaction model to reduce the contention. Dueteronoréiy3d?2] talks about an
architecture similar to the iEngine where there is a clepaaion in the data han-
dling and transaction handling components in the DBMS. Gotescy Rationing
[27] explores how we can adaptively change the requiredisiamy level as and
when it matters to get better performance and cost effe@s®in the cloud. There
is another notable work being done on new concurrency dantohanism to scale
in the presence of high contention which is based on traiosettdependency [28].

6.5 Distributed Indexing

There are similar work being carried out on scalable indgpkiased on distributed
data structures. Most closest work is done on DistributedeBftL 3] which suffers
in the presence of insert heavy workloads. Minuet [35] isithproved version
which supports OLAP and OLTP based queries but only supgortple transac-
tions. Both versions run on top of Sinfonia [12]. Howeventksll have an abstract
data model compared to iEngine and multi-dimension featu&PT helps to have
more finer level locks. Another work is proposed to use BATQE jas an overlay
over a cloud storage for efficient range querles [39]. Howdlvey have a scala-
bility bottleneck since they serialize all transactionsaisingle node and provide
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optimistic concurrency control which suffers from high tamtion as shown in the
evaluation.

6.6 Distributed Locking

Specialized locking systems, such as Chubby [16] and Zop&e@4], provide
scalable locking along with strong consistency guaranteas to the way locking
is implemented in these systems, efficiently implementimguiex multi-attribute
range locking (which is a common requirement of an RDBMSuisdamentally
not feasible. Google’s Percolator [34] also implementsadadite locking mecha-
nism on top of BigTable, but only works on snapshot isolatiod can not support
serialization isolation, as required by strict consisyeidus these specialized sys-
tems lack the generality and expressibility needed by a RBBWhe distributed
range locking offered in iEngine is very effective in a distited setup and unique
as well.

6.7 Commercial Offerings

To keep up with the demand there are quite a few commercigicesrthat offer
DBMS as a service in the cloud [1, 2, 5]. Main issues with thesevices are
they are either not capable of scaling beyond one machinetopnoviding full
consistency in the presence of distributed transactioherélare dozens more DB
products that offer products that can be deployed in-hauaeprivate cloud or can
directly obtain the functionality from a hosted service ipublic cloud [4, 7, 11].
The majority of these systems use MVCC as a concurrency alomi@&chanism
and suffer a lot in a high contention scenario. While the eational two phase
locking is a bottleneck in scaling, with a novel distribut@gproach, iEngine has
shown it can withstand 3X-4X more user contention than cusgstems.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, a new data storage architecture is presemtéch is based on a
Scalable, Distributed Spatial Partitioning Tree. Our eipental results show that
such an architecture should be a practical alternative @éacthirent storage sys-
tems. Locking and indexing are two core components in thegéothat poses a
huge bottleneck in scaling a DBMS. Distributed SPT providgsactical alterna-
tive to those components while providing all the features/joled in conventional
systems.

Most of the scalable systems compromise the generalitytafstarage by de-
signing to suit certain domains. The iEngine architectuesented in the thesis
can be used in any domain that was using SQL for its data merageequire-
ments. In fact the new architecture could actually suppifierént DBMS front
ends at the same time. This makes the migration to the newrsygtite smooth
and hassle free.

In modern scalable systems, they scale only in the presensinple web
type workloads consisting simple item lookups and insénthe results shown in
the evaluation, it shows that iEngine can scale even in tesgmce of the simple
web type workloads as well as with complex range operatidiss is becoming
a crucial aspect of data storage systems since more and isEngare now using
both OLTP and light weight OLAP in their databases.

40



Partitioning has been the de-facto mechanism to scale gohkdeone machine.
However with distributed spatial partitioning approachiasnodes get congested
it will automatically distribute data across available easdhus no manual partition-
ing is required. This provides a new dimension as with complerkload patterns
partitioning is not trivial.

With novel logical locking based on SPT, the system can dz&jend a single
machine and still provides strict isolation and consisgeiitis is a crucial feature
to have since its now been understood that though lesseistamsy models give
higher scalability, it makes the application more compled arror-prone.

7.2 Future Work

Live Node Migration

Use of SPT makes live node migration easier with migratiag fiode partitions
residing in memnode to another. This will provide the muchdeal scale out and
scale in features which is a crucial feature to have in a ciiyle deployments.

Dependency Aware Concurrency Model

The current optimistic concurrency model assumes no ctsftioc touched data
regions. The assumption becomes less and less practidalhigih contention
systems. In this new model (where some early work has beead3lrdone) the
assumption is made on the completion of a transaction wkigjoing to be more
practical in a high contention systems. Adopting such a madeld further in-
crease the performance.

Multi Tenancy

In providing DBMS-as-a-service, multi tenancy is a mustigibe does provide
multi tenancy in terms of giving a different indexing andkowy each different
user, thus making sure that a given users only sees the datzgbdo that user.
However providing more privacy measures would make thesgyshore practical
for multi tenancy.
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Data-as-a-Service

Providing Data-as-a-service is gaining popularity allogvypeople to use real world
data to carry out numerous activities such as market rese®ith iEngine using
as a DBMS-as-a-service, it gives the luxury of having realevdata from different
clients. Given the permission is granted by each client wedcehare those real
world data with the 3rd party clients with restricted access

Data Replication

Current iEngine does not provide any type of replicationwieer the architecture
of iEngine provides the ability of implement replicationtimo levels. At the proxy

level we could replicate the proxy to provide fall back optin the event of a crash
of the proxy. Node replication in the memnode could providthiprotection from

a crash and more performance in read operations.
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Appendix A

InnoDb Configuration

This is the configuration used with InnoDB while performiregts given in the
evaluation.

—transaction—isolation=serializable
—max._connections=2000
—max_prepared_stmt_count=232784
—back_log=2000
—thread_cache=100
—innodb_buffer_pool_size=28G
—innodb_io_capacity =4000
—innodb_read_io_-threads=10
—innodb_write_io_threads=10
—innodb_buffer_pool.instances=8
—innodb_concurrency_tickets=2000
—innodb_additional_-mem_pool_size=160M
—innodb_log_file_size=1900M
—innodb_log_buffer_size=8M
—aquery_cache_size=200M
—thread_concurrency=16
—table_cache=10000
—innodb_purge_threads=1
—innodb_log_files_in_group=2
—innodb_file_per_table=1
—innodb_max_dirty_pages_pct=90
—innodb_flush_log_at_trx_.commit=2
—skip—name—-resolve
—skip—innodb—doublewrite
—innodb_lock_wait_timeout=2
—query._cache_limit=6M
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Appendix B

SinfoniaEx

Before moving to the Innesto based system which is inspise&ibfonia [12],
an earlier system was using something called SinExTree W8ii¢h is again a
Spatial Partition Tree which is running on top of Sinfonigl3&] an open source
version of Sinfonia. Sinfonia from the design has an optiimisoncurrency model
which forces mini-transaction to rollback and retry whesrethere is a conflict.
In the original design, memnodes do not have any knowledgtherdata they
store and their main function was to expose memory range tsée by proxies
transactionally.

When the SinExTree was used, the architecture had threeasegamponents,
namely; Index manager, Locking manager and DHT basedhistd storage. In-
dex only had the key and the DHT key as the respective datg ugiitch we can
retrieve the data from the DHT. For each operation the indescanned first and
using the result set each data item is fetched from the DHOriimg lots of over-
head.

With SinfoniaEx, the minitransaction was following itsginal design of com-
pare items thus data was also cached in the proxy. Howeveitlagh& original
design these minitransactions were rolling back as soadmeas ts a conflict. With
locking based on SinExTree, whenever there is a lock cotifiectock request was
returned with an error. Since there was no queueing mechanishe older ver-
sion of memnodes, retrying lock requests never guaranteggtte lock will be
granted. Thus this leads to a huge number of rollbacks in th&8QL level trans-
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Figure B.1: SinExTree Thrashing with High Contention

12

action as we increase the number of users. Thus the systeniraaking with a
higher number of users. As shown in Figure B.1 while InnoDBttwes to grow
with number of users SinExTree starts failing after 10 usgrse some transaction

keeps on getting rolled back.

However the SinExTree was performing well if it is used ordy ihdexing. It
was not sufficient enough to keep the system from thrashiiguiréB.2 shows how
SinExTree was scaling across machines for the TPCC worldeauh indexing sub

system.
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Figure B.2: SinExTree as an Index
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Appendix C

MySQL over Cassandra

When the project was initially started the implementatitwice was Cassandra
[3]. Because of its scalability it was good candidate totstdth. Cassandra has
the column family model inspired by BigTable [17]. As with st@ther key-value
based systems, Cassandra was using an eventual consistedey to scale out
and to have availability over consistency in the event of @engartition. However
it has the option for a fully consistent model as well basedworum voting.

Locking

With zero isolation support from Cassandra, providing ingkor any sort of iso-
lation is a huge challenge. In the case of a single node My3Qlps a data-store
like Berkeley DB could provide logical locking and it work$he issue becomes
non-trivial as soon as the locking goes distributed acrasshines.

Because isolation based on locking seems to be hard, Isskidelation was
the only option so Multi Version Concurrency Control was lempented on top
of Cassandra. Each update or write triggers a new versianedeh row there are
different columns corresponds to a different version. Waé&able is first accessed,
a transaction knows the highest version number and subseqeeds will only
return columns with less than or equal to above version numhbfile this does
not provide serializability, it provides snapshot isaati
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Indexing

Cassandra does provide the hash based indexing out of thé\fule the default
data placement strategy provided good load / congesticanbialg, it does not
provide features like range queries at all. However wittebydered partitioning
data placement will be done in order thus range queries isnpmissible yet very
inefficient compared to the conventional tree-based rangeycapproach.

With both lack of suitable setup for isolation and for thehriguery model,
Cassandra was not a good choice to move ahead with the itibegod MySQL.
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