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Abstract

We present a model for the simulation of the dynamics and fracturing char-
acteristics of wood, specifically its anisotropic behaviour. Existing work
focuses on FEM or other uniform lattice representations, with anisotropy
being modeled by data driven parameters. Our model instead utilizes an
underlying structure that is inherently anisotropic. We utilize an existing
description of thin discrete elastic rods to build a fibrous material, ultimately
yielding the characteristic splintering behaviour of wood. Our model extends
upon the existing work by defining coupling forces between these discrete
rods, allowing the construction of cohesive bundles of fibres. Additionally,
we describe the conditions under which fracture occurs in the material. The
rod and coupling components in the model are handled separately, as in the
dynamics, resulting in inherently anisotropic responses. We conclude with
a brief validation, followed by a discussion of possible future work.

ii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Concrete Models . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Wood Models . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Fibre-based Models . . . . . . . . . . . . . . . . . . . . . . . 4

3 Wood Mechanics Model . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Discrete Elastic Rods . . . . . . . . . . . . . . . . . . . . . . 5

3.2.1 Discrete Rod Representation . . . . . . . . . . . . . . 6
3.2.2 Rod Bending . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.3 Rod Stretching . . . . . . . . . . . . . . . . . . . . . . 8
3.2.4 Material Frame . . . . . . . . . . . . . . . . . . . . . 9
3.2.5 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Wood Model Structure . . . . . . . . . . . . . . . . . . . . . 10
3.3.1 Rod placement . . . . . . . . . . . . . . . . . . . . . . 10
3.3.2 Binding Forces . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Fracture Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.1 Single Rod Fracture . . . . . . . . . . . . . . . . . . . 15
3.4.2 Inter-rod Fracture . . . . . . . . . . . . . . . . . . . . 16

iii



Table of Contents

4 Validation and Observations . . . . . . . . . . . . . . . . . . . 17
4.1 Energy Conservation . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . 19

5 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 Mesh Initialization . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.1 Cross Sectional Mesh . . . . . . . . . . . . . . . . . . 20
5.1.2 Mesh Extrusion . . . . . . . . . . . . . . . . . . . . . 21

5.2 Mesh Alignment . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Handling Fracture Events . . . . . . . . . . . . . . . . . . . . 24

5.3.1 Single Rod Fracture . . . . . . . . . . . . . . . . . . . 24
5.3.2 Inter-rod Fracture . . . . . . . . . . . . . . . . . . . . 26

6 Future Work and Improvements . . . . . . . . . . . . . . . . 27
6.1 Twisting Mechanics . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Fracture Conditions . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Rod Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



List of Figures

3.1 Wood Cells and Fracture Photos . . . . . . . . . . . . . . . . 6
3.2 One Dimensional Rod Representation . . . . . . . . . . . . . 7
3.3 Rod Placement Diagram . . . . . . . . . . . . . . . . . . . . . 10
3.4 Rod Coupling Definition and Representation . . . . . . . . . 12
3.5 Rod Fracture Conditions and Treatment . . . . . . . . . . . . 14

4.1 Energy Conservation Example . . . . . . . . . . . . . . . . . . 18
4.2 Snapshots of Splintering Simulation . . . . . . . . . . . . . . 18

5.1 Mesh Initialization . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Mesh Alignment and Fracture Handling . . . . . . . . . . . . 23
5.3 Rendering Mesh Demonstration . . . . . . . . . . . . . . . . . 26

v



Chapter 1

Introduction

1.1 Problem

The problem of modeling material fracture is an area well studied in com-
puter graphics and physically-based animation [12]. While great advance-
ments have been made, much of the research focuses around the simulation
of isotropic materials. These include metals, ceramics, glass, and other ma-
terials whose physical properties are largely independent of orientation.

While many objects that would be of interest to simulate are in fact made
of such isotropic materials, organic matter generally does not fall under
this category. In particular, wood exhibits highly anisotropic behaviour,
especially with respect to fracturing.

This behaviour is caused by the internal structure of wood [20]. Wood
is composed of straw-like cells, arranged in a parallel configuration. Be-
cause the individual cells have directional structure, the overall material has
accordingly anisotropic mechanics.

One approach to model such mechanics is to use a uniform material
but with anisotropic response. Our research proposes a model for wood
dynamics that will allow us to capture this anisotropy by instead simulating
a structure that inherently resembles that of the original material.

We use existing work on thin elastic rods to build a fibrous structure
resembling that of wood. These rods are held together by binding forces
so that they can behave as one cohesive material. This approach allows
us to intuitively model the rods’ internal forces and external binding forces
separately, and still achieve the desired anisotropic behaviour of the overall
material.

The same approach is taken for the fracture conditions of the wood.
Since the rods themselves and the binding forces are already separate enti-
ties, each can have separate fracture models. There is no need to force any
anisotropic behaviour onto these conditions, because the underlying struc-
ture will induce anisotropic fracture patterns inherently.
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1.2. Overview

1.2 Overview

This thesis consists of 5 chapters following this introduction. In Chapter
2, we discuss related work in the field. Chapter 3 contains the details of
our wood model, and consists of 4 major sections. The first is a description
of the motivation behind our model, followed by an outline of the discrete
elastic rod work by Bergou et al. [1] that forms the basis for our wood
structure. The last two sections discuss our treatment of the rod binding
forces, and of the fracture conditions for our model. In Chapter 4, we discuss
the testing and results of our model. Chapter 5 describes the construction
of a triangle mesh that can be used in rendering our wood model, followed
by a conclusion in Chapter 6.
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Chapter 2

Related Work

There has been extensive work done in modeling the dynamics of homo-
geneous and isotropic materials. Research in modeling materials that are
inhomogeneous or anisotropic is not as prevalent, with the majority of the
work being heavily driven by experimental data. This is due to the fact that
the work often focuses on building materials such as wood or concrete, and
is intended for engineering applications. In applications where the tolerance
of a material to fracture is being simulated for engineering purposes, the
model must have a high degree of accuracy, which often requires the model
to be data driven.

2.1 Concrete Models

Much of the work in the modeling of inhomogeneous materials is focused on
simulating concrete[18]. Generally concrete is composed of sand, gravel, and
stone embedded in cement, and this inhomogeneity gives concrete its unique
physical properties. In simulation, the material is frequently modeled using
a finite element method (FEM)[7, 11]. Finite element methods are a robust
representation that allows the model to be driven by experimental data,
which, as mentioned above, is common in the modeling of these materials.
The use of such a method also allows inhomogeneity to be built into the
system intuitively. The separate components of the concrete can simply be
represented with different element parameters. For example, Schlangen and
Garboczi [15] employ a lattice model, in which vertices and their connections
are modeled as separate entities, with corresponding dynamics and equations
of motion.

2.2 Wood Models

In addition to inhomogeneous materials, the modeling of materials that ex-
hibit anisotropic response is also well studied. Among such materials, a
common area of interest is the modeling of wood behaviour. Like concrete,
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2.3. Fibre-based Models

much of the work is based around FEMs [5, 6]. FEM models use a represen-
tation that is uniform across the entire model, and anisotropy is achieved
through varying the parameters controlling inter-element interaction based
on direction. Often these parameters are obtained through experimental
data [16, 19], and the work has been extended to the use of non-standard fi-
nite element formulations [13, 17]. In contrast to this work, our model strives
to build a structure using a representation that is inherently anisotropic, a
topic briefly mentioned in Vasic, Smith, and Landis [21]. We utilize existing
work in modeling thin fibre dynamics[1, 8] as a basis for our model.

2.3 Fibre-based Models

Many real world materials have a fibrous structure, such as wood, rope, and
hair. Hair modeling can be of particular interest. Physically implausible hair
movement is very noticeable to the human eye, and the level of detail re-
quired can be very expensive [24]. Many different representation techniques
exist for modeling hair, such as mass spring systems [14], rigid body chains
[9], and super helices [2, 10]. The work has been extended to methods for
dynamically grouping strands of hair for more efficient and realistic results
[3, 22]. In more abstract fibre modeling, Bergou et al. [1] define a setting
for thin elastic rods with small cross section. Our model heavily utilizes this
work as a basis for our fibrous wood structure.

4



Chapter 3

Wood Mechanics Model

We develop a physical model for wood mechanics that inherently captures
the fibrous nature of the material. We draw upon the discrete elastic rod
model described by Bergou et al. [1] as an underlying component in our
description. These rods are bound together by forces designed to oppose
relative translational movement. Finally, we implement conditions for the
fracturing of our material.

This chapter will describe the motivation behind our model, followed by
the details of each component therein.

3.1 Motivation

Wood is a naturally fibrous material, the bulk of which is made up of millions
of straw-like wood cells, as can be seen in Figure 3.1(a). This structure leads
to a lot of the characteristic behaviour we observe in wood. In particular,
it gives rise to the splintering effect we see when wood is broken, as shown
in Figure 3.1(b). While the splintered pieces are of a vastly different scale
than the wood cells themselves, the anisotropy in the fracture patterns is
largely caused by that of the underlying structure.

Anisotropy is also introduced by having the types of wood cells very
across the material, in other words the “grain” of the wood. While we do
not incorporate any notion of grain in our model, it is certainly a strong
consideration for future work.

It is not computationally feasible at present to dynamically simulate
structure on the order of individual wood cells. However, it is possible
for the model to capture the characteristic fracture behaviour even with a
relatively coarse fibre-like representation.

3.2 Discrete Elastic Rods

The first step in defining our structure is to create a model of an individual
fibre. We use the discrete elastic rod model described by Bergou et al.[1],
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3.2. Discrete Elastic Rods

Figure 3.1: (a) An image of microscopic wood cell structure. Image courtesy
of Ian Smith [16] (b) A photograph illustrating the characteristic splintering
behaviour of wood fracture. Image courtesy of Gene Wengert [23]

based on Kirchhoff’s theory of elastic rod mechanics. In this work, rods
are described by their centerline curve, and the material frame coordinates
along that curve. They are assumed to have a constant cross-section that is
small in comparison to the length of the rod.

Here we will give a brief description of the equations of motion for these
rods that are pertinent to our wood model. An in depth discussion of the
derivation and physics behind the equations can be found in the original
paper[1]. While these rods can have arbitrary undeformed configurations,
our model only uses straight rods, and therefore that will be the assumption
throughout this section.

3.2.1 Discrete Rod Representation

The state of a one dimensional continuous rod can be described by Γ =
{γ; t,m1,m2}. Here γ(s) represents the rod’s arclength parameterized cen-
terline, and {t(s),m1(s),m2(s)} describe the orthonormal material frame at
each point along the rod (see Figure 3.2). This material frame is constrained
by the property that t(s) = γ′(s), to ensure that one axis lies tangent to the
centerline curve.

In the discretized case, we replace the centerline, γ(s) with vertices
x0, . . . , xn. These vertices are connected by edges, which we refer to as
e0, . . . , en−1, with ei = xi+1 − xi. These edges are the discretization of
the tangent component t(s) of the material frame above. Each vertex also
has associated with it vectors representing the other two components of the
material frame.
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3.2. Discrete Elastic Rods

Figure 3.2: The continuous and discrete representations of a one dimensional
rod.

Rod vertices also have mass values associated with them. We assume
uniform mass distribution along the rod, so the mass of each vertex is based
on its surrounding edge lengths. In particular, the mass at vertex xi is
proportional to ∥ei−1∥ + ∥ei∥, with the appropriate term excluded for x0
and xn.

The forces governing these rods consist of two components, bending and
stretching. Our model does not incorporate any force resisting the twist of
a single rod. In both cases, we describe the potential energy of the system
resulting from such deformations, followed by the induced force. We first
look at the bending energy of a discrete rod.

3.2.2 Rod Bending

According to Kirchhoff’s model, the bending energy of a rod takes the form

Ebend =
1

2

∫
α∥κ∥2ds (3.1)

where α is the rod’s bending modulus and κ is the curvature of the rod. This
energy has the physical interpretation of being based on the stretching and
compressing of the outer and inner part of a curved rod. This lends itself
to the rod fracture conditions described later. Bergou et al. show in their
paper that the analysis of the geometry of a discrete rod naturally yields
the following form for the curvature at xi[1]:

κi = 2 tan
ϕi

2
(3.2)

with ϕi as defined in Figure3.2. Using this, we can then define the curva-
ture binormal as the vector having magnitude κi = 2 tan(ϕi/2) and being
orthogonal to the edges adjacent to xi:

7



3.2. Discrete Elastic Rods

κbi =
2ei−1 × ei

∥ēi−1∥∥ēi∥+ ei−1 · ei
(3.3)

where ∥ēi∥ denotes the rest length of edge ei.
When we express the bending energy above in terms of the corresponding

discrete quantities, we get

Ebend =
1

2

∑
α

(
κbi
li/2

)2
li
2
=
∑ α(κbi)

2

li
(3.4)

where li = ∥ei−1∥ + ∥ei∥, accounting for the measure of the domain in the
integral.

In order to find the forces acting upon the vertices due to bending defor-
mation, we take the gradient of this energy. Since the curvature binormal
only depends on adjacent edges, and therefore on the adjacent vertices, the
gradient term for a vertex xi will only depend on the information at xi, xi−1,
and xi+1, when they exist. The force on xi can therefore be expressed as a
sum of up to 3 terms of the form

−2α

lj
(▽i(κ

b)j)
T (κb)j (3.5)

where i− 1 ≤ j ≤ i+ 1. The gradient of the curvature binormal is given by
the following expressions

▽i−1κ
b
i =

2[ei] + (κbi)(ei)
T

∥ēi−1∥∥ēi∥+ ei−1 · ei
(3.6)

▽i+1κ
b
i =

2[ei−1]− (κbi)(ei−1)
T

∥ēi−1∥∥ēi∥+ ei−1 · ei
(3.7)

▽iκ
b
i = −(▽i−1 +▽i+1)(κ

b
i) (3.8)

where [e] is the skew symmetric 3x3 matrix satisfying [e]x = e × x for any
3-vector x.

3.2.3 Rod Stretching

For the stretching component of the rod’s energy, we use a simple spring
model

Estretch =
1

2

n−1∑
i=0

k(∥xi+1 − xi∥/∥ēi∥ − 1)2∥ēi∥ (3.9)
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3.2. Discrete Elastic Rods

where k is the rod’s spring constant. After taking the gradient, we find the
force on a vertex xi to be given by

Fstretch = −k

[(∥xi+1 − xi∥
∥ēi∥

− 1

)
xi+1 − xi

∥xi+1 − xi∥

+

(∥xi − xi−1∥
∥ēi − 1∥

− 1

)
xi − xi−1

∥xi − xi−1∥

]
(3.10)

3.2.4 Material Frame

The material frame represents the orientation of material at each vertex
point. As mentioned earlier, the t direction is constrained to be along the
edge of the rod. The m1 and m2 directions represent the twist of the rod.
As our model does not incorporate a twist force, the only use of these axes
of the material frame is for rendering purposes, described later.

At the initialization of a rod, the orientation of the twist axes of the
material frame is arbitrary, though the same for all vertices. At each time
step, and for each vertex xi, consider the edges e

t−1
i and eti with superscripts

denoting the time step. Let ρi = cos−1(et−1
i · eti/(∥e

t−1
i ∥ · ∥eti∥)) be the angle

of the rotation of the edge during the time step, and hi = et−1
i × eti the axis

of the rotation. Each of the material frame axes of xi from the previous
state are rotated by ρi about the vector hi to form the new material frame.

3.2.5 Collisions

Our model does not incorporate any detection or resolution of collisions
between two rods or rods with itself. The only such interactions our model
handles are those provided by the binding forces of our wood model described
in the next section. The potential use of such collision detection is discussed
in Section 6.4.

We do, however, model the interactions between rods and external rigid
bodies. We use the assumption that the bodies are large relative to the edge
lengths of rods, so that we need only to check the intersection of rigid bodies
with individual rod vertices.

Each rod vertex is tested as to whether it is inside a rigid body. If an
intersection is found, then the positions of the rigid body and the vertex
are adjusted as if they had undergone a perfectly elastic collision, given
their mass and current velocity. If a collision is resolved, all other intersec-
tions are rechecked until no collisions are found, up to a given threshold of
interactions.

9



3.3. Wood Model Structure

Figure 3.3: This figure illustrates the process by which rods are placed within
a cylindrical wood structure. First, 2D points are sampled within a circular
boundary. These points are then extruded in the third dimension to yield
rods.

3.3 Wood Model Structure

Using the discrete rods described above, our wood model can now be built.
We use the strand like nature of the rods to macroscopically emulate the
bundles of fibres that yield the characteristic behaviour of wood. In the
follow sections, we describe the method by which we use these rods to con-
struct our model. We discuss the inter-rod behaviour that we desire and
construct the corresponding potential functions, as well as the forces that
are derived as a result.

3.3.1 Rod placement

Our structure is built using a set of rods placed within some bound, sep-
arated by some minimum distance. For simplicity, we modeled the wood
as having an approximately cylindrical boundary. We also restricted the
rods to being parallel to the axis of the cylinder. This simplifies the rod
placement algorithm to be generating points within the 2D cross section of
the wood, and then extruding these points into rods. The rod placement is
restricted so that no two rods are within some given minimum distance, µ,
of each other.

First, points are sampled within a 2D circle, corresponding to the cross
section of the wood, as shown in Figure 3.3. The process for this is comprised
of two separate parts, both making use of a Poisson disk sampling method
[4]. We first use a simplified 1D implementation of the algorithm to sample
points in [0, 2π], and use these to generate points around the edge of the

10



3.3. Wood Model Structure

cross section. Then, points are sampled within the cross section using a 2D
implementation of the same algorithm.

In sampling the points from [0, 2π], we first generate a starting point,
p0, sampled uniformly in [0, µ]. We then repeat the process of taking the
most recently placed point, p, and uniformly sampling a new point in the
range [p+µ, p+2µ]. This process is stopped when a point is sampled within
distance µ of 2π + p0 or is greater than 2π. These two conditions together
are equivalent to stopping when a point is sampled with distance µ of p0,
if we interpret the boundaries of our space as being periodic. We then take
these sampled points as angles for rod placement along the edge of the wood
cross section.

Next, we sample points within the interior of the wood cross section. We
define a set of points, S, and a set of “active” point, A, both initialized to
the set of points along the cross section edge created above. The following
steps are repeated until A is empty. Step 1: take an arbitrary point p ∈ A.
Step 2: uniformly sample (r, θ) from [µ, 2µ]× [0, 2π], and consider the point
x when (r, θ) are interpreted as polar coordinates centered on p. Point x
is considered valid if it is at least distance µ from every point in S, and is
contained within the wood cross section. Step 3: If x is not valid, then repeat
step 2. This process will repeat a fixed number of times, the limit being a
tuneable parameter. If no valid point is found within these iterations, p is
removed from A, and the algorithm repeats from Step 1. If x is valid it is
added to both A and S, p is removed from A, and the algorithm repeats
from Step 1.

The set of points S generated by this algorithm are the points that will
be extruded along the length of the wood to form rods, as demonstrated
in Figure 3.3. In our model, the rods generated are always parallel and
span the entire cylindrical region of the wood. The locations of internal
vertices for each rod, however, are randomly generated with some thresholds
for minimum and maximum edge length. The random placement of rod
vertices mitigates some aliasing effects in the simulation. The introduction
of randomness at this level of the model leads to desirable noise in the
eventual fracture pattern.

3.3.2 Binding Forces

The next step in building the wood structure is to determine which portions
of the wood are bound together. While a simple approach would be to create
binding constraints between vertices of nearby rods, the random nature of
the placement of these vertices makes this often impractical. Frequently, a
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3.3. Wood Model Structure

Figure 3.4: (a) Illustrates an example of how rods may be bound together.
(b) Shows a single coupling and defines the representative variables in this
context.

vertex on a rod will be very far from the closest vertex of a nearby rod,
relative to the closest point along the rod.

Instead, we chose to take rod vertices and bind them to arbitrary places
along other rods. In particular, if we wanted to bind vertex xi of rod 1 to
rod 2, we find the closest point on rod 2 to xi, and create a binding force
between the two points (see Figure 3.4(a)).

To determine which rod vertices need to be bound to which other rods,
we first find the closest distance to each rod from a given vertex. Then for
each candidate rod with distance under some threshold, a bond is created
between the vertex and the closest point on the candidate rod. This thresh-
old is related to the minimum distance between rods mentioned previously.

Stretching Force

The binding force is composed of two components: the shear component
and the transverse component. The transverse component is the simpler
of the two and will be explained first. Its purpose is to keep the rods
from separating or colliding. In other words, it strives to keep the distance
between bound pairs of points a constant.

Like the stretching force described in the rod mechanics above, we utilize
a spring force here. One key difference is that instead of having both ends
of the spring be rod vertices, in this case one end is an interpolation of two
vertices, as shown in Figure 3.4(b). The form of the potential function and
the corresponding forces will be similar to the expressions from before, and
will not be reproduced here.
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3.3. Wood Model Structure

Shear Force

The shear component of the binding force is designed to resist relative motion
between the rods along the direction parallel to the rods. In particular,
using the notation from Figure 3.4(b), the bond would resist any motion of
xi along the direction parallel to ej , where ej = yj+1 − yj . Such a motion
would change the distance between xi and c, and well as the angle between
ej and the vector from xi to c (which we will refer to as the shear angle).
However, the transverse component of the binding force already penalizes
changing the distance from xi to c, so the shear component only needs to
account for the relative angle.

The potential function is designed to be at a minimum when the shear
angle is at its rest value, which by construction is 90 degrees. The potential
energy of a single bond involving vertex xi and a point interpolated between
yj and yj+1 is given by the expression

E ∝ cos2 θ (3.11)

= S
(yj+1 − yj) · (xi − c)

∥yj+1 − yj∥ ∥xi − c∥
(3.12)

= S
ej · (xi − c)

∥ej∥ ∥xi − c∥
(3.13)

where S is the shear constant. The negative gradient of this quantity is used
to find the force acting upon each of the degrees of freedom in our system.
As the energy depends only on xi, yj , and yj+1, these will correspond to
the only non-zero components of the gradient. We first look at a single
component of the induced force on xi:

Fxi0 = − ∂E

∂xi0
(3.14)

= −2ej0(ej · (xi − c))

∥ej∥2∥xi − c∥2
+ 2(xi0 − c0)

(
ej · (xi − c)

∥ej∥ ∥xi − c∥2

)2

(3.15)

= 2

(
ej · (xi − c)

∥ej∥ ∥xi − c∥

)2 (
(xi0 − c0)

∥xi − c∥2
− ej0

ej · xi − c

)
(3.16)

= 2E2

(
(xi0 − c0)

∥xi − c∥2
− ej0

ej · xi − c

)
(3.17)

Similar forms for the other components of xi yield the following expression
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3.4. Fracture Model

Figure 3.5: (a) A diagram of the relevant variables when considering the
bending stress at a rod vertex. (b) Illustrates the result of a rod fracture
occurring.

for the force on xi

Fxi = 2E2

(
(xi − c)

∥xi − c∥2
− ej

ej · xi − c

)
(3.18)

Likewise, the forces upon yj and yj+1 are given by the expressions

Fyj =
2(ej · (xi − c))(xi0 − c0)

∥xi − c∥2∥ej∥
− 2ej

(
ej · (xi − c)

∥ej∥ ∥xi − c∥2

)2

(3.19)

= 2E2

(
xi − c

ej · (xi − c)
− ej

∥ej∥2

)
(3.20)

(3.21)

Fyj+1 = 2E2

(
ej

∥ej∥2
− xi − c

ej · (xi − c)

)
(3.22)

= −Fyj (3.23)

3.4 Fracture Model

The final step in building our wood model is to define the condition under
which the material undergoes fracture. Our model conceptually separates
the nature of forces within rods from those between rods, in order to incor-
porate an inherent anisotropic nature. Thus it follows that separate fracture
conditions should be created to deal with stresses within a rod, and stresses
on the binding forces between them.
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3.4. Fracture Model

3.4.1 Single Rod Fracture

The fracture conditions for a single rod are based on a combination of the
stresses within that rod. The discrete elastic rod model we use has bending
and stretching stress energies, and therefore these are the deformations that
the fracture condition will depend on.

The stresses within a rod are evaluated at each of the interior vertices,
and consist of two components: stretching and bending. In both cases, the
fracture condition is based on the ratio of the length between the deformed
material, and the rest state. This representation will later allow us to easily
combine the two terms into a single value.

While the amount of stretching on a rod is something more naturally
associated with its edges, for the purposes of evaluating fracture it is con-
venient to have both of the fracture conditions associated with the same
components of the model, in this case the vertices. As a result, we simply
average the deformation ratios for each of the vertex’s neighbouring edges
to achieve our result.

For computing the deformation ratio due to bending, we consider the
relative length of the outer edge of the rod to the centerline. Because the
discrete representation does not give us a curved centerline, we interpolate
one near the vertex in question (see Figure 3.5a). We first find the circle
that interpolates the vertex, xi, and its two neighbours, which lies in the
plane defined by those vertices. The arc of this circle within the solid angle
formed by xi−1, xi+1 and C (the circle center) are what we will use as our
reference length.

We then construct a second concentric circle with the radius increased
by half of the cross-sectional radius of the rod. The length of this circle’s
arc with the same solid angle will be the deformed outer edge length. We
divide these two length to compute the bending deformation ratio.

Rθ

rθ
=

r + 1
2h

r
= 1 +

h

2r
= 1 +

h

2∥xi − C∥
(3.24)

where r and R are the radii of the inner and outer circle respectively, h is
the cross-sectional radius of the rod, and C the center of the circles.

At each vertex we can now evaluate both the length ratios due to stretch-
ing and bending, and multiply them to obtain a total deformation ratio.
When this value passes some predetermined threshold, the rod is broken
at that point. We replace a rod consisting of vertices x0, . . . , xn, fractured
at xf , with two new rods y0, . . . , yf and z0, . . . , zn−f with vertex locations
at x0, . . . , xf and xf , . . . , xn respectively (Figure 3.5b). All of the binding
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3.4. Fracture Model

forces between the rods are also updated to reference the corresponding ver-
tices from the new rods. Any forces tied to xf are duplicated for yf and z0.
Bonds to edge ef−1 are assigned to the edge between yf−1 and yf . Similarly,
bonds to edge ef are assigned to z0 and z1.

3.4.2 Inter-rod Fracture

The condition for breaking the inter-rod binding forces is simpler than for
a single rod. For each binding force in the wood, we evaluate the sum of
the shear and transverse potential. As above, if the value crosses some
predetermined threshold, the bond is removed. A weighted mean of the two
components can be used instead, with the weight left as a parameter.
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Chapter 4

Validation and Observations

4.1 Energy Conservation

As our work is a simulation of a physical system, we want the total energy of
our system to remain as constant as possible. The result of a fracture event
occurring is a decrease in the energy of our system as we have defined it,
consisting only of potential and kinetic energy. In reality, a fracture event
would convert much of the potential energy to forms other than kinetic, such
as sound or heat.

However, it is still desirable that the other aspects of the system, specifi-
cally those concerned with forces acting upon the degrees of freedom, respect
the conservation of energy. The two determining factors of the energy sta-
bility of the simulation are the equations governing the forces in our system,
and the numerical integration method used to compute discretized motion
from these forces.

All of the forces used in our system are derived from corresponding po-
tential energy functions. This ensures that, at least in a continuous setting,
these forces would yield motion that conserves the sum of potential and ki-
netic energy, the only forms present in our model. The equations of motion
are integrated using the Symplectic, or semi-implicit, Euler method. The
energy of the system is quite close to being perfectly conserved using this
technique.

To verify this conservation of energy, an experiment was set up using a
section of wood. The initial state of the wood is set to be a bent configura-
tion, with the rest state being straight, yielding an oscillating motion. Frac-
ture events are disabled for this simulation, so that the conserving properties
of the equations of motion can be observed alone. The results are shown in
Figure 4.1.
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4.1. Energy Conservation

Figure 4.1: The graph represents the sum of the potential and kinetic energy
of the system. Snapshots indicate the oscillation occurring in the material.

Figure 4.2: Snapshots from three simulations illustrating splintering be-
haviour.
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4.2. Observations

4.2 Observations

In computer graphics, there is often no concrete metric by which to evaluate
the quality of a particular animation or model. Certainly there are specific
desirable properties, such as the conservation of energy as discussed above.
In some cases, a high degree of physical accuracy is also required. In others,
the goal is to create a model that captures the essential behaviour of some
phenomenon, rather that to create an exact physical duplication.

Our model for wood behaviour is intended to fall into the latter category.
As such, the primary method for evaluating the results is to visually identify
the desired behavioural characteristics. In Figure 4.2, we show snapshots of
a simulation intended to demonstrate splintering behaviour.

In this simulation, three blocks impart force upon a section of wood, and
the resulting stresses induce fracturing. The spatial scale of the model is
intended to be on the order of a small branch, with the length of the rods
being 15cm. The time scale is approximately 3 seconds for each simulation
shown.

4.3 Implementation Details

The simulation code was written in C++ and drew upon the Discrete Elas-
tic Rods [1] project code generously provided by Miklós Bergou. At each
simulation time step, the equations of motion are integrated using the Sym-
plectic Euler method, with collisions between rods and rigid bodies then
being resolved afterwards.

Each of the simulations in Figure 4.2 had a run time of approximately
1 hour for 3 seconds of simulation time. The run time could be dramati-
cally improved through optimization techniques such as parallelization and
graphical hardware acceleration.

If the threshold distance for creating rod-rod bonds is linear in the min-
imum distance of their placement (see Section 3.3.2) then the run time
complexity in the number of rods is linear. This is because increasing the
number of rods, and therefore their density, is equivalent to decreasing the
minimum distance between them. This will result in each rod being bound
to, on average, the same number of neighbouring rods. The per-rod dynam-
ics computations are certainly linear in the number of rods, and with the
rod-rod bond dynamics being linear as well, this results in an overall linear
complexity.
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Chapter 5

Rendering

In this chapter we detail a method of creating a triangle mesh surrounding
the wood, for use in rendering. The mesh is designed with three important
properties in mind. The first is that the mesh follows the rods throughout
the simulation. This is accomplished by using coordinate systems that are
tied to the rod state. The second requirement is that a portion of the mesh
surrounding interconnected rods remains cohesive throughout simulation.
During rendering, the mesh is dynamically adjusted to maintain this cohe-
sion. The third property, crucial to the nature of the project as a whole, is
that the mesh easily accommodates fracture events during simulation. This
is done inherently through the representation, which, as can be seen below,
lends itself to both types of fracture present in our model.

5.1 Mesh Initialization

The rendering mesh is a set of triangle meshes covering each rod. The initial
mesh is created using a two step process, similar to that of initializing the
rods themselves. The cross section of the rod bundle is used to create a
Voronoi diagram, with each cell surrounding a single rod. These cells are
then extruded into meshes associated with each rod.

5.1.1 Cross Sectional Mesh

The first step is to define the boundaries between the rods, at least as far
as the mesh is concerned. This will yield a cross sectional mesh from which
we can extrude the rendering mesh. The cross sectional mesh is constructed
using a Voronoi diagram.

We first take the set of 2D points defining the cross section of the wood,
as described in Section 3.3.1. The Voronoi diagram associates regions of the
plane with the rod placement points. The boundaries between these regions
will become edges in our mesh, and the intersections of these boundaries will
become vertices. These edges and vertices make up the base of our cross
sectional mesh.
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5.1. Mesh Initialization

Figure 5.1: (a) A cross sectional mesh, consisting of a Voronoi diagram
with a boundary. (b) Copies of a cross sectional polygon, aligned with rod
vertices. (c) A pair of triangles constructed between two adjacent cross
sectional polygons.

We bound the regions associated with the rods on the outer edge by
creating an extra boundary around the entire set of rods. For each rod with
a non-bounded region, we create a vertex some fixed distance from the rod
position.

The vertices are placed radially outward relative the center of circle in
which the rod positions were sampled. The fixed distance they are placed
away from the rod is equal to the minimum distance that was required while
sampling the rod positions.

Next, we take the convex hull of these new vertices, and add the resulting
edges and vertices to the cross sectional mesh. This convex hull defines the
outer edge, and as such, everything outside of it is discarded. We also insert
new vertices at any edge intersections. The final cross sectional mesh is
shown in Figure 5.1(a).

5.1.2 Mesh Extrusion

The next step in creating the rendering mesh is to extrude the cross sectional
mesh into a 3D triangle mesh. Consider a single rod placement location in
the cross sectional mesh, and the polygon within which it is contained. Let
us notate the rod point as x0, the polygon as P 0, and the vertices of P 0 as
p01, p

0
2, . . . , p

0
m.

During the initialization of the wood, the rod placement point x0 is
extended to a full rod, with vertices x0, x1, . . . , xn. We create n additional
copies of the polygon P 0, differentiated by superscript, with each translated
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5.2. Mesh Alignment

a different length along the rod axis. Each copy of the polygon is aligned
with a rod vertex such that the polygon consisting of vertices pj1, p

j
2, . . . , p

j
m

is coplanar to xj , as shown in Figure 5.1(b).
With our vertices in place, the triangles composing the rendering mesh

can be specified. We first specify quadrilaterals between these vertices. A
quadrilateral is created between points pji , p

j
(i+1)mod m, pj+1

(i+1)mod m, pj+1
i for

1 ≤ i ≤ m and 1 ≤ j ≤ n − 1. Next, these quadrilaterals are triangulated.
The parity of the triangulation is arbitrary but kept consistent across the
entire mesh. An example is shown in Figure 5.1(c). These triangles form
the first part of the rendering mesh.

To close the mesh, geometry must be added at both ends of the rods.
The polygon p01, p

0
2, . . . , p

0
m can be triangulated by having adjacent vertices

form a triangle with the rod point x0. A similar process can be repeated for
the other end of the rod. With these triangles included, the mesh is now
closed.

The process of extruding a cross sectional mesh polygon into a full 3D
mesh is repeated for each rod. Note that many of the triangles in the interior
of the wood will not be initially visible. However creating these triangles
during initialization will greatly simplify dealing with fracture events in the
wood.

As the rod moves and deforms during simulation, the mesh must follow.
In order to accomplish this, the mesh vertices must be stored as positions
relative to the rod. The end points x0 and xn are already components of
the rod state. The polygon pj1, p

j
2, . . . , p

j
m will have its vertices stored as

coordinates with respect to xj ’s material frame axes.

5.2 Mesh Alignment

With each rod having an entirely independent mesh, it is possible that visual
artefacts will arise. The wood is intended to be a single solid object. As the
rods vertices move, however, the separate meshes may pull apart, giving the
appearance of a hole in the mesh. This problem is solved by adjusting the
locations of the mesh vertices so that the boundaries between the adjacent
rods meshes are as close to aligned as possible. For mesh edges and vertices
to be considered adjacent, we also require the existence of a binding force
between the corresponding rods. This ensures that we only align portions
of the mesh that are connected in the context of the simulation.

After initialization of the rendering mesh, we find all the vertices that
lie on the edge or vertex of another rod’s mesh. Consider such a vertex, v,
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5.2. Mesh Alignment

Figure 5.2: (a) An example of a mesh alignment iteration, with vertex-edge
associations highlighted. (b) A single rod fracture event.

that lies on the edge, q, of another mesh, with q having vertices r and s.
Let R1 be the rod associated the mesh that v belongs to, and R2 be that of
q. From the initialization, we know that each vertex of the mesh is part of
a cross sectional polygon associated with a single rod vertex. In addition,
if a vertex were to lie on the edge of another mesh, that edge must span
vertices of two different cross sectional polygons. This is because the edges
within a cross sectional polygon line up precisely with those from adjacent
meshes, both being associated with a single edge of the Voronoi diagram.
We further define xi to be the rod vertex corresponding to mesh vertex v,
yj and yj+1 the rod vertices corresponding to mesh vertices r and s, and
ej the rod edge from yj to yj+1. If it is the case that a binding force was
constructed between xi and a point along ej , we create what we call an
association between v and q.

An association consists of v, r, s, and a scalar value λ parameterizing
the point along q coinciding with v. If we interpret the vertices as spatial
locations, λ satisfies v = (1 − λ)r + λs. In the case where v lies in the
same point as a vertex w of another mesh, only v and w are stored as
an association. This process is repeated for all applicable vertices in the
rendering mesh. Note that an association of v with w is distinct from one
of w with v. A reference to the binding force we required is also stored in
the association.

During simulation, these associations can be used to adjust the mesh
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5.3. Handling Fracture Events

vertices through an iterative procedure. We first outline a single iteration.
Consider a vertex v with a single association, represented by r, s, and λ,
as above. Let a = (1 − λ)r + λs, the point along the edge which initially
coincided with v. We set the new position of v to be the midpoint between a
and the current position of v. In the case that v is associated with a vertex
w, the midpoint between v and w is instead used. In general it is possible
that v will have two or more associations. In this situation the average of v
and all associated points is used as the new position for v.

This adjustment is performed for every vertex in the mesh, and this set
of adjustments comprises a single iteration of mesh alignment. An example
of an alignment iteration is shown in Figure 5.2. Once the iterations of mesh
alignment are concluded, the mesh is ready to be rendered. The termination
condition we use for alignment iterations is simply a fixed number of itera-
tions. However, other conditions could be used, such as having an iteration
where no vertex was adjusted by more than some threshold.

Note that the adjusted vertex locations are temporary, and the original
vertex location in the material frame coordinates of the rod are always kept
intact. This is because the association may be removed during simulation, at
which point the renderer reverts to the original vertex location. The adjusted
location, transformed to material frame coordinates, can also be saved from
frame to frame. If a method with a variable number of iterations was used,
this may increase efficiency. Even with a fixed number of iterations, a better
alignment can be found, as the deformation of the wood as compared to the
previous frame is frequently smaller than as compared to the initial state.

5.3 Handling Fracture Events

The rendering mesh was designed to easily handle fracture events during
simulation. There are two types of fracture events. The first is a single rod
breaking into two pieces. The second is the binding force between two rods
being broken.

5.3.1 Single Rod Fracture

As described in Section 3.4.1, when a rod consisting of vertices x0, x1, . . . , xn
undergoes a fracture event at vertex xf , two new rods are created with
vertex locations at x0, . . . , xf and xf , . . . , xn. A similar process occurs for
the rendering mesh.

Let P j denote the cross sectional polygon of rod vertex xj . Let us
further notate the two new rods as y and z, and their vertices y0, . . . , yf
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5.3. Handling Fracture Events

and z0, . . . , zm, and Qj and Rk the cross sectional polygons of yj and zk
respectively. When a fracture event occurs at xf , first the cross sectional
polygons are copied to the new rods. For all 0 ≤ j ≤ f , Qj will take on the
coordinates as P j . Similarly, for all 0 ≤ k ≤ m, Rk will have the coordinates
of P k+f . As the material frames of the new rod vertices correspond to those
of the original rod, the material frame coordinates of the polygons do not
need to be transformed.

Triangles are then specified between vertices of adjacent cross sectional
polygons. The parity of the triangulation should be consistent with that of
the mesh of the original rod. The triangles closing the mesh at the rod ends
are constructed by the same process as in the initialization. Polygon Q0 is
triangulated using y0, along with Qf and yf , R

0 and z0, R
m and zm. This

now yields two separate meshes for rod y and rod z.
The only link between mesh vertices and their corresponding rod is a

reference to the material frame for evaluating vertex positions. As such, the
process of breaking the mesh into two can be made more efficient by simply
updating the rod from which each vertex is referencing material frames. In
this case, almost all of the triangles needed in the new meshes are in place,
and the alterations reduce to the following. The polygons P 0 to P f have
their references changed to use rod y’s material frame, and become Q0 to Qf .
The process is repeated for P f+1 to Pn and z, these polygons becoming R1

to Rm. A duplicate of P f is created with references to z0’s material frame,
corresponding to R0, and all triangles between Qf and R1 are changed to be
between R0 and R1. The last step is to triangulate Qf with yf and R0 with
z0, closing both meshes. The result of this process is illustrated in Figure
5.2.

The final step in handling a fracture event is to update the associations.
Every association that made reference to a vertex in rod x’s mesh will instead
reference the corresponding vertex in the mesh for y or z, with the exception
of vertices from P f . Associations from vertices in P f , and associations to a
vertex or edge from P f , are duplicated and referenced to the corresponding
vertices in Qf and R0. In the case where a vertex from P f was referenced
as part of an edge to a different polygon, Qf or R0 is used when the edge
was originally connected to P f−1 or P f+1 respectively. The associations’
references to binding forces can also be updated, as the binding forces for
the new rods are handled in a similar way.
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5.3. Handling Fracture Events

Figure 5.3: A wood simulation rendered using rod meshes.

5.3.2 Inter-rod Fracture

The process for updating the mesh for an inter-rod fracture is much simpler
than for a single rod fracture. An inter-rod fracture consists of the deletion
of a binding force between the two rods. During initialization, each of the
associations between meshes vertices and edges required a binding force
between the corresponding rods. The removal of such a bond should imply
the removal of any associations that required it. Therefore when a binding
force is removed due to inter-rod fracture, we remove any mesh associations
that were contingent on the bond.

It is also worth noting that when such inter-rod fracture occurs, it is
possible that the two rod meshes may intersect one another. We make
no attempt to remove such interpenetration as there are no obvious visual
problems resulting from this.
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Chapter 6

Future Work and
Improvements

Our model has served as a proof of concept for a fibre based model of wood
fracture. However there are many improvements or refinements that can be
made. In this chapter we discuss some of the ideas that could be used to
build on the existing work.

6.1 Twisting Mechanics

Our current version of the model does not incorporate any forces within a
rod to resist twisting. However, the discrete elastic rods work by Bergou et
al. does discuss and derive all the necessary equations to handle the twisting
forces. We would need only to incorporate them into our model.

In addition to the twisting forces, we would also require fracture condi-
tions based on twisting. One option would be to formulate such conditions
in a similar way to those presented earlier. For each edge of the rod, we
consider a line along the edge of the cylinder aligned to the rod edge, with
the radius given by the cross-sectional radius of the rod. If the ends of the
cylinder are twisted by some angle and we interpolate the interior uniformly,
the line is curved into a spiral. We could take the ratio between the length
of this curve and the length of the original line (equivalent to the edge) as
our deformation due to twisting. This could then be treated together with
the other rod fracturing conditions described before.

Note that while our rod model does not yet have torsion resistance, the
wood model as a whole will still resist twisting due to the inter-rod binding
forces.

6.2 Fracture Conditions

Another area for potential refinement is the conditions under which fracture
occurs within a rod. The current model allows for fracture to occur only at
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6.3. Constraints

rod vertices. Thus the specific locations where fracture is possible depend
entirely on where the vertices in the rod happen to lie.

Ideally, we would like to be able to compute some notion of bending
and/or stretching stress that varies continuously along the rod. Given such
a system a much improved fracture model could be easily built.

One such model would be to first take the set of points along the rod
for which the stress is higher than some threshold. This set could then be
partitioned into contiguous sections, and the local maximum computed for
each section. These local maxima could then be the candidate points for
fracture.

The development of a continuously varying stress model can still be
a difficult problem. For bending, the solution would likely be to create
a spline curve though the vertex points, either interpolating them or just
passing nearby. This can be tricky, however. For many types of splines with
low polynomial degree, the curvature will be piecewise constant or linear. In
both cases, the model will still only allow for fracture at a few specific points.
If the degree of the polynomial is too high, the spline may be overfitting,
resulting in poor approximation of the rod shape between vertices.

6.3 Constraints

The model we presented does not enforce any hard constraints. However,
there are a number of aspects of our system that attempt to represent near-
rigidity. For example, the transverse component of the binding forces for
rods is designed to have a very low tolerance for deformation. This is simi-
larly true of the stretching force within a rod. The downside to the approach
we took is that it leads to the system becoming very stiff, requiring intoler-
ably small time steps to retain stability.

In place of these forces, we could have instead implemented hard con-
straints, alleviating the stiffness of the system. Replacing too many spring
components of the system with constraints can cause the model to behave
too rigidly, and can also lead to situations where there are no solutions
satisfying the constraints.

Another potential solution to maintaining stability with stiff forces is to
use implicit integration for our simulation’s time steps. Both approaches
clearly have their advantages and are certainly worth looking into in future
work.
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6.4. Rod Collisions

6.4 Rod Collisions

Our model could also be further improved through the addition of rod-rod
collision handling. In principle, the model resists collisions between rods
within the wood structure through the use of binding forces. This could
be enforced more strongly through the use of hard constraints as discussed
above.

However, this will not prevent collisions between rods that do not have
binding forces between them. This is of particular concern after fracture
events occur, as rods that were previously kept separated through a binding
force are now free to intersect.

Implementing a collision handler between rods would solve this problem,
making the model further realistic. However, handling potential collisions
between every pair of rods in the model can be computationally expensive,
especially if used in conjunction with rigid body collision handling, as in our
simulations.

A potential solution would be to only detect collisions between rods that
are not already bound together. In particular, detecting collisions between
rod edges if no vertex-edge pair involved has an existing bond. With this
method, rod collisions within the wood structure are resisted using the model
dynamics already in place, and collisions can still be handled explicitly for
rods that have undergone fracture.
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Chapter 7

Conclusion

This thesis presented an approach to modeling wood using an internal fibre
structure. Wood exhibits anisotropic behaviour both in dynamics and frac-
ture patterns as a result of its fibrous cell structure. Our model captures
this behaviour by building a model with an anisotropic underlying structure.
This structure is composed of bundles of one dimensional fibres, which are
based on existing work, joined together by binding forces. This results in
an intuitive model that inherently exhibits the anisotropic behaviour char-
acteristic of wood.

Within the scope of this project, future work on the topic includes re-
finement of the various components of the model. As mentioned earlier,
improvements can be made to the binding forces and fracture conditions.
However future work in the area as a whole can

This project is a step in the direction of modeling materials through
representations that reflect the physical structure of the material. Such
methods can lead to more intuitive and higher quality models.
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