
Automatic Basketball Tracking in Broadcast Basketball
Video

by

Shuang Yu

Bachelor of Science, The Chinese University of Hong Kong, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

August 2012

c© Shuang Yu, 2012



Abstract

We proposed and implemented an automatic basketball detection and tracking sys-

tem for broadcast basketball video recorded with a single pan-tilt-zoom camera,

using knowledge of player tracking information. The task is challenging because

the basketball is blurred due to the camera and the ball’s fast movements, and

broadcast video compression; also the motion pattern of the basketball is compli-

cated and the ball is hard to distinguish from the cluttered background region. We

incorporated three independent detection approaches to detect the basketball and

tracked the basketball using the Kalman Filter, and then we analyzed the tracklets

and selected the passing / shooting tracklets and inferred the player possession in-

formation. We tested the system using 830 frames in broadcast basketball video,

and our system demonstrated the ability to track some passing / shooting actions

and then infer the player who controls the ball. The system is a first attempt to

extend the intelligent basketball tracking system to include basketball tracking and

player possession inference. Our proposed methodologies can be extended to other

intelligent sports analysis systems, even when the ball movement in the sport is not

constrained in two dimensional space.
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Chapter 1

Introduction

1.1 Motivation
Knowing the locations of the players and the ball positions has been one important

aspect in intelligent sports video analysis. Intelligent sports video analysis can

automatically analyze sporting events and generate statistics about the games, in

order to assist the coach to analyze the statics and design strategies accordingly.

The system can also enhance the video images so that it can help the referee or

audience to perceive the game more easily.

Previous work about ball tracking in broadcast video mainly focused on soccer

ball tracking. There were also sensor-based or multiple camera systems to track

the soccer ball, the puck in a hockey game, or the basketball in a basketball game:

these systems require special hardware and are difficult to achieve in the reality. In

broadcast video, the soccer ball or the puck is constrained on the field or hockey

rink most of the time; however, the basketball bounces in the court, which makes

the basketball less distinguishable from the background and harder to track.

Based on the Lu and Little’s basketball player tracking work [Lu11], we want

to design an automated system to track the basketball in broadcast video, so that we

could gain more knowledge about the game. We could use the basketball passing /

shooting tracklets to infer which player possesses the basketball for a time period,

automatically generate the scores, and extract the passing / shooting patterns for

automated analysis, etc.
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1.2 Problem Statement
Our broadcast video used for analysis is broadcast basketball video recorded with

a single pan-tilt-zoom camera. We developed a basketball tracking system to auto-

matically find the basketball trajectories when it is being passed or shot, and infer

which player possesses the basketball in the broadcast video.

In addition to the broadcast video data, our system also used the ground truth

player position information as input. Lu and Little’s system [Lu11] demonstrated

the ability to track and identify players in broadcast videos. We chose other games

and used ground truth player tracking information for demonstration purposes, but

theoretically we could also use the player tracking information generated in Lu and

Little’s system.

The goal in our system is to detect and track the basketball when it is being

passed or shot in the broadcast video, and then infer which player possesses the

basketball when the basketball is in the player’s hand or being dribbled by the

player based on the player tracking information. We want to demonstrate that the

current automated basketball intelligent video analysis system could be extended

to include basketball tracking and player possession inference.

1.3 Challenges
Detecting and tracking the basketball robustly in broadcast sports video is a chal-

lenging task.

First of all, the broadcast video is recorded with a single pan-tilt-zoom camera,

the camera moves from one side of the court to another frequently, in order to

capture the major activities from the players; at the same time, the basketball is a

fast moving object when it is being dribbled, passed or shot, which is easy to be

blurred in the captured images.

In addition to the blurring caused by the camera and basketball movements, the

broadcast video is compressed using MPEG4 format using selected key frames and

the other frames in between are interpolated from the key frames. We expect that

the basketball will be more seriously blurred in those interpolated frames. In our

sequences, sometimes it is quite difficult for a human to see the basketball in some

frames.
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The blurred basketball is difficult to detect using edge detection methods. The

size of the basketball is small with diameters ranging from 13 to 44 in the 1200

(width) * 780 (height) images. The basketball size is not fixed, because of the

zooming camera and the basketball relative distance with the camera. The small

basketball size and the blurring effects result in the lack of distinctive features on

the basketball, which makes the basketball very hard to detect.

Previous work about soccer or puck tracking in broadcast video also has sim-

ilar challenges stated above; color was used as a key clue to detect the soccer or

puck. In a soccer or hockey game, the ball movements are almost constrained on

the grass field or the hockey rink, thus, the ball is relatively distinctive from the

background region: the soccer ball is white with mostly green color (the grass) in

the background in the soccer game; the puck is black with mostly white color (the

ice) in the background in the hockey game.

Sometimes the ball overlaps with the landmarks on logos on the field or rink,

and such cases increase the difficulties in detections because of the noise in the

ball’s background region. In a basketball game, the basketball bounces on the

court, most of the time the background color is not uniform, the basketball could

be on the court, at a player’s hand, or passing though the audience regions, etc.

These conditions greatly increase the difficulties to detect and track the basketball.

In addition to these difficulties in detecting the basketball, there are frames

where the basketball is partially or totally occluded by the game players or other

objects (for example, the hoop or net). The occluded situation is hard to solve and

it relies on other prior knowledge to infer the ball’s position.

The motion pattern of the basketball is complicated: it can be held at a player’s

hand, dribbled, passed and shot in many different ways. The complicated motion

pattern is a challenge in the basketball tracking, as well.

1.4 Contributions
Despite the challenges, our system is a first attempt to demonstrate the ability to

detect and track the basketball using 830 frames in the 2011 National Basketball

Association broadcast video.

The system incorporated three independent detection approaches to detect the

3



basketball: the ball color was trained and used to detect the basketball, as used in

soccer or puck tracking; in addition, optical flow was computed and the magnitude

of the motion was used as a clue to indicate the basketball position, based on the

prior knowledge that the basketball is moving fast when being passed / shot; affine

flow was also used to compensate for the camera movement, and to find the moving

basketball using the compensated information.

A Kalman Filter was deployed based on the detection results, and we selected

the tracklets based on the observations of the passing / shooting patterns, and prior

knowledge of the games. 6 out of the 8 passing / shooting tracklets were selected

using our system, and 2 false passing / shooting tracklets were also kept in our sys-

tem. We inferred the player possession information based on the tracklets selected

by our system.

The system is a first attempt to extend the intelligent basketball tracking system

to include the basketball tracking and player possession inference. Although in

some difficult situations, especially in occluded case, the passing / shooting actions

are not selected by our system, our system demonstrates the ability to track the

remaining passing / shooting actions and then infer the player who controls the ball.

The methodologies can be extended to other intelligent sports analysis systems,

even when the ball movement in the sport is not constrained in two dimensional

space.

1.5 Thesis Outline
The thesis is organized as follows. In Chapter 2, we review some related work in

intelligent sport video analysis. Chapter 3 overviews the structure of our proposed

basketball tracking system; Chapter 4, 5, and 6 describe the implementation details

of the system. In Chapter 7, we report our experiment results. We conclude this

thesis in Chapter 8 and also provide some suggestions for future extensions.
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Chapter 2

Related Work

2.1 UBC Sports Video Analysis System
The Laboratory for Computational Intelligence at the University of British Columbia

has worked on several sports video analysis projects, mainly using the hockey and

basketball broadcast video. The goal is to understand the sports video semantics

using computer vision algorithms.

2.1.1 Homography Estimate

In both hockey and basketball broadcast video, the cameras are not static. In order

to analyze the scenes, it is necessary to estimate the camera parameters (pan, tilt,

zoom) to map the video frame image onto a unified framework (the hockey rink

or the basketball court) with a planar projective transformation. Each frame im-

age and the unified framework in space are related by a homography, assuming a

pinhole camera model.

Okuma et al. [OLL04] combined the Kanade-Lucas-Tomasi (KLT) tracking

system [Bir99] [ST94] [TK91], RANSAC [FB81], and the normalized Direct Lin-

ear Transformation (DLT) algorithm [HZ03] to automatically compute the homo-

graphies. However, features are sometimes occluded by players or not seen due

to camera movements, resulting in significant challenges for accurately estimating

the homographies. Therefore, Gupta [GLW11] [Gup10] proposed a new method

to use line and ellipse features along with the key-point based matches to estimate
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the homographies; the approach demonstrates the ability to track long sequences

on the order of 1000 frames. In addition, Tari [Tar11] worked on automatically

initializing the homography estimate, so that the initialization is accurate enough

to guarantee the convergence to the optimal homography estimate.

With the homography estimate, it is possible to transform the player track-

ing and puck tracking results into a unified framework in hockey game analysis,

with the assumption that the players and puck are roughly constrained on the Two-

Dimensional (2D) rink plane. In the basketball video, the players can also be ap-

proximated on the 2D plane because they stand or run on the court most of the

time; however, the basketball is dribbled and bounced up and down frequently in

the Three-Dimensional (3D) world, and the homograhy estimate is for the 2D trans-

formation on the court; therefore, it is not suitable to approximate the basketball

trajectories in the unified framework with the 2D homography estimate.

2.1.2 Sports Player Tracking and Identification

In the hockey video, the players are detected, tracked, and their actions are recog-

nized. In the basketball video, the players are detected, tracked, and identified.

Okuma, Little and Lowe et al. [OLL04] [OTF+04] initiated the sports video

analysis system with multi-target hockey player tracking, using a multi-color obser-

vation model [PHVG02] based on Hue-Saturation-Value (HSV) color histograms

and the boosted particle filter. In addition to tracking, Lu, Okuma, Little [LOL09]

worked on recognizing actions of multiple hockey players using the Histograms

of Oriented Gradients (HOG) to represent the players, an efficient off-line learning

algorithm to learn the templates from training data, and an efficient online filtering

algorithm to update the templates used by the tracker.

Also, Lu and Little [Lu11] tracked basketball players and recognized their

identities. The new tracking system is able to track multiple players over hundreds

of frames under severe occlusions.

The basketball player tracking and identification results can be used in our bas-

ketball tracking system, as useful domain knowledge for both basketball tracking

and player possession inference.
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2.1.3 Determination of Puck Possession and Location in Hockey
Video

With the homography estimate and player tracking results as input, Duan and

Woodham [Dua11] first attempted to extend the automated hockey video analy-

sis system to include puck detection and puck possession.

The puck is small, moves rapidly and lacks distinctive local visual features;

Duan used grey scale based blob detection to detect the puck, and used size and

shape constraints to filter out some false positive detections.

For the tracking part, an innovative hierarchical graph-based method was used.

In addition, he constructed a dense player motion field to estimate the puck location

and possession information according to motion convergence points.

To the authors’ best knowledge, there was no computer vision based previous

work on puck tracking and possession analysis. The previous research about soccer

tracking in broadcast video and other ball tracking are reviewed in Section 2.4.

2.2 Activity Recognition and Pose Estimate
As mentioned in Section 2.1.3, it is helpful to use the dense player motion field to

infer the puck position. Similarly, we believe that, in basketball broadcast video,

we could use player activities or player poses to infer the basketball position and

status (being dribbled, passed, or shot into the basket, etc.). Therefore, state-of-the-

art activity recognition and pose estimate work are briefly reviewed in this section.

Using the player motion field to infer the puck position does not work for the

basketball case. There are mainly two reasons. First of all, the basketball bounces

in 3D space, and the player can give force to the ball in any direction in the 2D

image when he passes or shoots the ball, so the ball’s moving direction has little

correlation with the player’s moving direction. Second, unlike hockey, only the

player controlling the ball runs with the basketball, with one or two opponents

around him, while others stay in some fixed region for the game strategy: it is

very hard to find the motion pattern under such situation, and infer the basketball

position.

7



2.2.1 Human Activity Recognition

Human activity recognition is an important area of computer vision research. It

can be used in surveillance systems, patients monitoring systems, and a variety of

systems that involve interactions between persons and electronic devices such as

human-computer interfaces.

Aggarwal and Ryoo [AR11] reviewed various state-of-the-art research papers

on activity recognition.

For recognizing the simple actions of a single person, space-time volume ap-

proaches and sequential approaches are used. The space-time approaches view an

input video as a 3-D (X,Y,T) volume, while sequential approaches interpret as a

sequence of observations.

For high-level activities such as human-object interactions and group activities,

different hierarchical recognition methodologies such as statistical approaches, syn-

tactic approaches, and description-based approaches are compared. Both the sta-

tistical approaches and the syntactic approaches model a high-level activity as a

string of atomic-level activities. The statistical approaches construct statistical

state-based models concatenated hierarchically to represent and recognize high-

level human activities, while the syntactic approaches use a grammar syntax such

as a stochastic context-free grammar to model sequential activities. Description-

based approaches represent human activities by describing sub-events of the activ-

ities and their temporal, spatial, and logical structures.

In basketball broadcast video, it is very hard to recognize the players’ activities,

because the players in the image do not have very high resolution (usually with

width around 80 – 100 pixels, height around 120 – 140 pixels in our video), and

they occlude each other severely due to the basketball game characteristics. There

is no known previous work about basketball player activity recognition, but we

believe it is a useful problem to tackle, and it will be a great information source for

the basketball tracking and player possession inference.

2.2.2 Human Pose Estimate

In addition to considering the player activities in the basketball game, we also

attempted to see whether it is possible to estimate the player pose in order to infer

8



Figure 2.1 has been removed due to copyright restrictions. It was
a diagram of two basketball players viewed from the rear, and
the pose estimate on them with marked head, torso, upper and
lower arm, upper and lower leg parts. Original source: National
Basketball Association Broadcast Video (2011), ESPN and ABC
Network.

Figure 2.1: Pose estimate on frontal view players

the basketball position. The observation is that the basketball is usually either on

the player’s hand, or in one of the three motion statuses: being dribbled, passed, or

shot into the basket. When the ball is in motion status, it is relatively better isolated

from the background, and we can try to search in the image to find the ball; when

it is in the player’s hand, the ball is usually connected to the player’s hand and hard

to segment: given the pose, we can focus on the players’ hand region in order to

search for the ball.

The 2D articulated human pose estimate studies by Eichner et al. [EF09]

[FMJZ08] [FMJZ09a] [FMjZ09b] have been tried on our basketball image. Their

research estimates articulated human pose in still images. The algorithms can op-

erate in uncontrolled images with difficult illumination conditions and cluttered

backgrounds. People can appear at any location and scale in the image, and can

wear any kind of clothing, in any color / texture. The only assumption in the al-

gorithm is that people are upright (i.e. their head is above their torso) and they are

seen either from the front or the rear. Figure 2.1 shows the frontal viewpoint player

pose estimate results, and Figure 2.2 shows some trials on non-frontal viewpoint

player pose estimates.

In the non-frontal pose estimate, all the four cases have some flaws: For case

(a), one leg estimate occluded with the other leg, which is not the case in the

original image; for case (b), one occluded arm could not be handled and the leg

poses are wrongly estimated; for case (c), the basketball was considered as the

head, and the arms are both wrongly estimated; for case (d), the occluded arms

9



Figure 2.2 has been removed due to copyright restrictions. It was
a diagram of four basketball players viewed from different an-
gles referred to as case (a), (b), (c), (d), and the pose estimate on
them with marked head, torso, upper and lower arm, upper and
lower leg parts. Original source: National Basketball Association
Broadcast Video (2011), ESPN and ABC Network.

Figure 2.2: Pose estimate on non-frontal view players

between the two players are wrongly estimated. Because it is crucial to estimate

the arms correctly in order to search the ball near the player’s hand region, when

the arm poses cannot be estimated accurately, it cannot provide a lot of help to

search the basketball.

In the basketball game, many players are not in frontal view, so the pose esti-

mate procedure still have a lot of room for improvements, and the pose estimate

results are not yet used for the basketball tracking in our system.

2.3 Object Tracking
Object tracking, in general, is a challenging problem. Difficulties can arise due

to abrupt object motion, changing appearance patterns of both the object and the

scene, nonrigid object structures, object-to-object and object-to-scene occlusions.

Yilmaz, Javed, and Shah [YJS06] reviewed the state-of-the-art tracking methods.

The first issue for tracking is defining a suitable representation of the object;

some common object shape and appearance representations are points, primitive

geometric shapes and object contours and appearance representations. The next

issue is the selection of image features used (such as color, motion, edges, etc.)

as an input for the tracker. Almost all tracking algorithms require detection of the

objects either in the first frame or in every frame.

According to Yilmaz et al. [YJS06], the object detection has 4 categories:

point detectors, segmentation, background modeling, and supervised classifiers;
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the tracking has 3 categories: pointing tracking (deterministic methods, statistical

methods), kernel tracking (template and density based appearance models, multi-

view appearance models), and silhouette tracking (contour evolution, matching

shapes). They listed the representative work in the review paper.

2.4 Ball Tracking
In general tracking is a very broad topic. In this section, we narrow down the fo-

cus on reviewing the previous work of ball tracking. In Section 2.4.1 we review

the soccer ball tracking research in broadcast video. In Sections 2.4.2 and 2.4.3

we review the sensor based tracking, and tracking with multiple cameras respec-

tively. Finally, we review the 3D basketball trajectory reconstruction with domain

knowledge, in Section 2.4.4.

2.4.1 Soccer Ball Tracking

Many have studied soccer ball detection and tracking. Yow et al. [YYYL95] used

a template-based approach to detect and track the soccer ball. For the detections,

Gong et al. [GSC+95] utilized chromatic and morphological features to detect

the ball; a circle detection algorithm based on the Circle Hough Transform was

implemented to detect the soccer ball in Orazio et al.’s [DACN02] studies; Atherton

and Kerbyson [AK99] proposed a size invariant circle detection method based on

Hough transform. In addition, motion information was used in ball detection and

tracking in Ohno, Miura, and Shirai’s [YSM02] research.

In Seo et al.’s [SCKH97] studies, they first extracted the ground field to find

the half line, the side line and the center circle and compute the image-to-model

transformation, based on color histogram information under the assumption that

the region of the ground is nearly green and occupies almost areas of images. For

player tracking, template matching and Kalman filtering is applied. Occlusion

reasoning is done by the color histogram back-projection method. For soccer ball

tracking, since the ball is too small to track alone, they manually initialized the

position and bounding box of the ball, and if a player is running near the ball, the

player is marked “has ball”. Finally, they map the trajectories in the image on the

field with the image-to-model transformation.
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Figure 2.3 has been removed due to copyright restrictions. It was
an image frame showing a player is shooting the basketball. The
ball overlaped with the audience region and was not restricted in
the court region. Original source: National Basketball Associa-
tion Broadcast Video (2011), ESPN and ABC Network.

Figure 2.3: The basketball is not always restricted in the court region (image
sequence frame: 013057.jpg)

Tong, Lu, and Liu [TLL04] decided that directly detecting an object and eval-

uating whether it is a ball is not effective or robust. They proposed a coarse-to-fine

ball detection and Condensation-based tracking method. The game field is first

extracted and the posterior operations are restricted within it. Then, at the coarse

step, some distinct non-ball regions are removed via evaluation of color and shape.

And at the fine step, the remaining regions are further examined and the optimal

one is determined as the ball. Afterwards, the Condensation algorithm is utilized

to track the soccer.

In basketball, we cannot use the field color assumption as used in soccer game,

because the basketball color is not very distinctive from the court color. We cannot

restrict the ball in the court, either, because the ball moves in 3D space, it can be

on the top of the audience region, as shown in Figure 2.3. These increased the

difficulties for basketball detection and tracking.

2.4.2 Sensor Based Tracking

To track the puck in a hockey game, in addition to the vision-based approach men-

tioned in Section 2.1.3, the Fox TV network introduced their sensor based FoxTrax

system [Cav97]. Similarly, in a soccer game, the GoalRef system [Hol12] can be

used as a sensor-based approach to decide whether the soccer ball has crossed the

goal-line.

The FoxTrax puck is a standard National Hockey League puck with a tiny

circuit board and a battery placed inside. The circuit board contains a shock sensor
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and infrared emitters. During the broadcast, infrared pulses emitted by the puck

are detected by 20 pulse detectors and 10 modified IR cameras located in the rink

rafters. The system can track the puck robustly in real time, but setting up the

system has high cost.

Developed at the Fraunhofer Institute, GoalRef requires the football to be chipped

and a magnetic field set up in the goal mouth. Sensors detect changes in the field

when the ball crosses the line, notifying the referee nearly instantaneously.

2.4.3 3D Ball Tracking with Multiple Cameras

In addition to the sensor-based approach, the Hawk-Eye system [Hol12] uses a

minimum of four cameras to track the trajectory of a moving ball (in soccer, cricket,

and tennis). Pingali, Opalach and Jean [POJ00] tracked the tennis ball in 3D using

multiple cameras in real time. Ruiz and Berclaz [Rui10] tracked a basketball during

a basketball match recorded with a multi-camera system.

In the soccer game, the Hawk-Eye system will install six cameras in each goal,

each of which will monitor the location of the ball. By triangulating the ball’s

position from the images, the system can notify the referee if the ball definitively

crosses the line. Crucially, it can do this within a second (a FIFA stipulation) by

transmitting a radio signal picked up by the referee’s wristwatch. Though used by

cricket broadcasters since 2001, Hawk-Eye has only been used to help umpires ad-

judicate leg before wicket decisions since 2008, due to disputes about its accuracy.

Hawk-Eye technology also has been used to assist with line decisions in tennis

since 2006.

Pingali et al. [POJ00] used six cameras around a stadium, divided into four

pairs, to track the tennis ball on serves which sometimes exceed speeds of 225

kmph. A multi-threaded approach was taken. Each thread tracked the ball in a pair

of cameras based on motion, intensity and shape, performed stereo matching to

obtain the 3D trajectory, detected when a ball goes out of view of its camera pair,

and initialized and triggered a subsequent thread.

Ruiz and Berclaz [Rui10] first developed methods to detect a basketball in

images based on its appearance, then attempted to track the ball in three dimensions

using the cameras calibration. Their algorithm can track the ball and find its 3D
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position during several consecutive frames.

2.4.4 3D Basketball Trajectory Reconstruction with Domain
Knowledge

Both sensor-based tracking and the tracking with multiple cameras require special

hardware set up in the games, which could be difficult to achieve without signif-

icant expense. Chen et al. [CTC+09] proposed physics-based ball tracking and

3D trajectory reconstruction method in basketball video, in order to estimate the

shooting location. Their research mainly focused on the shooting trajectory recon-

struction.

2D-to-3D inference is intrinsically a challenging problem due to the loss of 3D

information in projection to 2D frames. Their system incorporated domain knowl-

edge and physical characteristics of ball motion into object tracking to overcome

the problem of 2D-to-3D inference.

They used the domain knowledge that the court lines and important markers

are in white color in their official game rules, to fit the court model; in addition,

they needed two more points which are not on the court plane to calculate the 2D-

to-3D calibration parameters. The two endpoints of the backboard top-border are

selected because the light condition makes them easy to detect in frames.

They detected the basketball based on moving pixels and color. They assumed

the camera motion is not so violent in the shooting trajectories, so that they could

use motion to detect the ball. They also refined the color detection using shape and

size sieve. Then they tracked the trajectories by fitting the detections on parabolic

curves, and identified a shooting trajectory by examining if it approaches the back-

board. With the 2D trajectories extracted and the camera parameters calibrated,

they employed the physical characteristics of ball motion in real world for 3D tra-

jectory reconstruction.

Their proposed system can greatly assist intelligence collection and statistics

analysis in basketball game, however, the 2D-to-3D calibration require the back-

board top border to be captured in the camera all the time. In our system, we are

interested in not only the shooting trajectories but also the passing trajectories and

other interactions with the ball in the basketball broadcast video.
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2.5 Optical Flow
Optical flow describes the distribution of the apparent movement of the brightness

pattern in an image. It is an important tool in image sequence analysis.

Different techniques are used in order to compute the optical flow, according to

Mesbah [Mes99], the techniques can be classified into three categories: gradient-

based, matching-based, and frequency-based.

Chambolle and Pock developed a first-order primal-dual algorithm for convex

problems with applications to imaging [CP11]. They provided a Matlab package

for computing dense duality-based TV-L1 optical flow.

We used the Matlab package by Chambolle and Pock when we tried to detect

the basketball in the image sequences.
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Chapter 3

System Overview

Figure 3.1 overviews our ball tracking and player possession analysis system. The

system mainly has three modules: the ball detection module, the ball tracking mod-

ule, and the player possession inference module.

In the ball detection module, we try to detect the basketball. We use three

independent ball detection approaches: ball color detection, ball motion detection,

and shape detection using affine flow.

We hand label several basketball regions and learn the basketball color, then

search the color range in the images, and filter the regions with size constraints us-

ing morphological operation. However, we notice that when the ball is moving fast

in the image, it is blurred and hard to detect using color. To compensate, we use

the prior knowledge that the basketball and players are the most fast moving object

in the image sequences. We compute the optical flow between each pair of consec-

utive frames, and use Laplacian of Gaussian to find the regions with large motion,

which could be the fast moving basketball candidates. In addition, we take the

difference between two consecutive frames with compensated camera parameters

and find the ball-shape like regions are ball candidates as well.

The three detection candidates are all combined using logical OR operations, so

that we could keep the true ball detection in our results, even with quite a few false

positive detections. We could filter out the false positive detections in the track

analysis part in our ball tracking module. The details are discussed in Chapter 4.

With the combined detections, in the ball tracking module, we first track the
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Figure 3.1: System overview

basketball using the Kalman Filter. Then we analyze the tracks we got from the the

Kalman Filter tracking code, using the player tracking results and some basketball

domain knowledge. Chapter 5 shows the implementation details.

Finally, in Chapter 6, we use the selected tracks obtained in the tracking module

to infer which player is controlling the basketball in the image sequences.
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Chapter 4

Basketball Detection

This chapter describes how we detect the basketball candidates. In each video

frame, there should be zero (occluded case) or one true basketball candidate. In

Section 4.1, we use color to find the basketball candidates, in Section 4.2; we use

optical flow code and the motion information to identify the ball candidates; and in

Section 4.3, we use affine flow to estimate the camera parameters and try to find the

ball candidates. The detection results are combined using a logical OR operation.

4.1 Basketball Color Detection
In previous vision-based soccer [SCKH97], puck [Dua11] and basketball [CTC+09]

tracking , color was a very important clue. Similarly, we first tried to see how color

works on basketball detection.

We selected 38 images and hand labelled the ball center positions (X, Y coor-

dinates), in order to analyze and learn the ball color. The pixels around the ball

centers within radius 6 were considered as pixels on the ball, and were taken for

the color analysis.

For the ball color pixels, we got the Red Green Blue (RGB) frequency count

in Figure 4.1, 4.2, and 4.3. For the red channel the ball color lies in the range [24,

181]; for the green channel the ball color lies in the range [7, 132]; for the blue

channel the ball color lies in the range [1, 133]. In all three channels, the model for

the color distribution is a Gaussian centered on the mean of the ranges. We tested
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Figure 4.1: Ball color red channel frequency count

Figure 4.2: Ball color green channel frequency count

using the HSV representation of color and the results were similar.

With the color range we got from the training set, we tested how to find those

pixels that look like the ball color. If a pixel is within the red, green, and blue

channel range we got from the samples, we keep that pixel in the output image;

otherwise, that pixel color is set to [255,255,255] (white color) in the RGB channel
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Figure 4.3: Ball color blue channel frequency count

Figure 4.4 has been removed due to copyright restrictions. It was
a diagram showing the pixels after applying the loose color range
thresholding step. Original source: National Basketball Associa-
tion Broadcast Video (2011), ESPN and ABC Network.

Figure 4.4: Color pixel thresholding using red color in [24, 181], green
color in [7, 132], and blue color in [1, 133] (image sequence frame:
013031.jpg)

in the output image. One example output image is shown in Figure 4.4.

We observed that too many pixels are considered as ball color pixels from

Figure 4.4, including but not limited to the pixels on player skins (heads, arms,

and legs), logos on the court, and player clothes.

In the Gaussian distribution, pixels drawn from the tail may be noisy (in Figure

4.4). We manually selected stricter ranges for the RGB channels, eliminating the

tail parts of the Gaussian distribution: for the red channel, we changed the color

range from [24, 181] to [90, 136]; for the green channel, we changed the color
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Figure 4.5 has been removed due to copyright restrictions. It was
a diagram showing the pixels after applying the strict color range
thresholding step. Original source: National Basketball Associa-
tion Broadcast Video (2011), ESPN and ABC Network.

Figure 4.5: Color pixel thresholding using red color in [90, 136], green
color in [45, 80], and blue color in [32, 79] (image sequence frame:
013031.jpg)

range from [7, 132] to [45, 80]; and for the blue channel, we changed the color

range from [1, 133] to [32, 79]. We ran the same thresholding process as described

above, and the output image is shown in Figure 4.5.

The stricter color ranges with removed Gaussian tail parts worked much better

than the results shown in Figure 4.4. However, the basketball color is not so dis-

tinctive as the soccer or hockey puck. Some logo color on the court, player skin

and audience clothes color are still very similar to the basketball color.

We considered each ball-color-like pixel as the potential ball center pixel and

verified it with the following constraints: 1. In the nearby 21*21 pixel region

(centered around current pixel), there were at least 60 ball-color-like pixels; 2. We

took the difference of the pixels centered around the current pixel within radius 10

with the average ball we got in the training part; if the sum of the differences in the

RGB channels was smaller than 20000 then we consider the current pixel as a ball

center pixel. All of the constants were determined empirically.

If a pixel does not satisfy the constraints, we consider it as a noise pixel. After

the noise reduction process, the potential ball center pixels are shown in Figure 4.6.

Because the basketball size is not fixed in the image (it depends on the ball’s

distance with the camera), we used the ball size with radius 6 in training and ball

size with radius 10 in color detection to ensure the basketball is detected in most of

the cases. Due to the fixed ball size in detection, many potential ball center pixels

are clustered together; they should be actually one ball center.

We tried to find each cluster as one basketball detection candidate. We achieve
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Figure 4.6 has been removed due to copyright restrictions. It was
a diagram showing the ball center pixels after applying the noise
reduction step. Original source: National Basketball Association
Broadcast Video (2011), ESPN and ABC Network.

Figure 4.6: Ball center pixels after noise reduction

Figure 4.7 has been removed due to copyright restrictions. It was
a diagram showing the dilated ball pixels based on the results in
Figure 4.6. It contained 11 connected regions (possible basketball
candidates) in this frame. Original source: National Basketball
Association Broadcast Video (2011), ESPN and ABC Network.

Figure 4.7: Morphological dilation on ball center pixels (marked in red color)
(image sequence frame: 013031.jpg)

this by first applying the morphological dilation operation on the ball center pixels

with a disk of radius 10 (example shown in Figure 4.7), and then considering each

separate connected region as one basketball detection candidate.

4.2 Basketball Motion Detection
When the basketball is not moving very fast, the detection based on color can

often detect the true basketball although there are some false detections due to the

player skin etc. However, when the basketball is moving fast, it can be blurred

significantly in the video image, and detection based on color cannot work well.

Figure 4.8 shows one of such cases.

In a basketball game, the basketball is often the most fast moving object, and

it is blurred in many frames. Our broadcast video is compressed in MPEG for-

mat, with some key frames directly represented and other frames in between are
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Figure 4.8 has been removed due to copyright restrictions. It was
a frame with the color detection step, the basketball-color-like
connected region was only detected on one player’s arm region,
but not the fast moving and blurred basketball region. Original
source: National Basketball Association Broadcast Video (2011),
ESPN and ABC Network.

Figure 4.8: When ball is moving fast and blurred in the image, color detection
does not work well. (image sequence frame: 013346.jpg)

interpolated. This also causes further difficulties in finding the basketball. To com-

pensate for these, we try to find out the fast moving regions as possible basketball

candidates as well.

We first run the optical flow code mentioned in Section 2.5, with the color code

shown in Figure 4.9; some color-coded visualized flow results are shown in Figure

4.10 with almost no camera movement, and Figure 4.11 with moving camera. Most

of the time, the camera is not static between two frames.

The true basketball region (annotated with red rectangle bounding box) is color-

coded with more saturated color, implying that the optical flow captured the fast

brightness change in this region. In addition, as the players are moving fast, they

are color-coded with more saturated color as well.

In order to find those regions with fast movement, we first compute the mag-

nitude value of the optical flow (u,v) at each pixel. Then we created a Laplacian

of Gaussian filter, with size [25, 25] and sigma = 6, and applied the filter on the

magnitude image to identify regions with large motion. We took those pixels with

response value greater than 10 as the fast moving pixels. The response map masked

on the original image for Figure 4.8 is shown in Figure 4.12.

In addition to Chambolle and Pock’s TV-L1 optical flow code, Brox’s high

accuracy optic flow using a theory for warping [BBPW04] was also compared,

Figure 4.13 shows the color-coded optical flow and the motion detection results on

image sequence 013060.jpg using the two approaches. TV-L1 optical flow code
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Figure 4.9: The color code for the normalized optical flow (u,v): x-axis is
for u from -1 to 1 (left to right), y-axis is for v from -1 to 1 (bottom to
top).

Figure 4.10 has been removed due to copyright restrictions. It was
a color-coded optical flow image between two consecutive images
with almost static camera. There was strong motion evidence in
the basketball region for this image. Original source: National
Basketball Association Broadcast Video (2011), ESPN and ABC
Network.

Figure 4.10: Visualized optical flow result between two frames (camera is
almost static, image sequence frame: 013058.jpg)
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Figure 4.11 has been removed due to copyright restrictions. It
was a color-coded optical flow image between two consecutive
images with moving camera. There was strong motion evidence
in the basketball region for this image. Original source: National
Basketball Association Broadcast Video (2011), ESPN and ABC
Network.

Figure 4.11: Visualized optical flow result between two frames (with moving
camera, image sequence frame: 013346.jpg)

Figure 4.12 has been removed due to copyright restrictions. It was
a diagram showing 5 connected regions with large motion as pos-
sible basketball candidates. Original source: National Basketball
Association Broadcast Video (2011), ESPN and ABC Network.

Figure 4.12: Regions with large motion (basketball motion detection candi-
dates on image sequence frame 013346.jpg)

works more stably in our image sequences most of the time.

Again, we used each connected region as one basketball candidate if the con-

nected region is within the ball size range.

4.3 Basketball Differenced Shape Detection using Affine
Flow

In addition to the color and motion based approaches, David Young [You10] pro-

vided efficient Matlab code to compute the affine optic flow between two images,

which has 6 parameters describing image translation, dilation, rotation and shear.

Figure 4.14 shows the edges matched from the images under affine flow; the green

color edges are the first image edges, the blue color edges are the second image
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Figure 4.13 has been removed due to copyright restrictions. It
was a diagram showing the TV-L1 and Brox optical flow results
on two consecutive frames, and the motion response on the 2 op-
tical flow results. The motion response using TV-L1 optical flow
result shows better evidence of the basketball region than that us-
ing Brox optical flow. Original source: National Basketball As-
sociation Broadcast Video (2011), ESPN and ABC Network.

Figure 4.13: Optical flow comparison

Figure 4.14 has been removed due to copyright restrictions. It was
a diagram showing the affine flow mapping between two consec-
utive frames. It displayed the edges in the first and the second
image, as well as the edge warped from the first image using
the affine flow. Original source: National Basketball Association
Broadcast Video (2011), ESPN and ABC Network.

Figure 4.14: Edges match from the images under affine flow (image sequence
frame: 013096.jpg)

edges, and the red color edges are the edges from the first image after warping by

the flow field.

The affine flow idea is somehow similar to the motion detection part, with the

assumption that the basketball is moving very fast. The affine flow shape detec-

tion approach and motion detection complement each other: sometimes the true

basketball ball candidate can only be found by the motion detection part, while

sometimes the true basketball can only be found by the affine flow shape detection.

The affine flow provides an approximation to the true flow, though it does not

capture its details or exact form. Therefore, we can use the affine flow to compen-

sate for the camera movement between the current frame and its previous frame,
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Figure 4.15 has been removed due to copyright restrictions. It
was a diagram of one frame and its affine warped images in red,
green, blue channels. It also displayed the differenced images
between the original and the warped images in the three color
channel. In the differenced images there is evidence of the bas-
ketball region. Original source: National Basketball Association
Broadcast Video (2011), ESPN and ABC Network.

Figure 4.15: Affine flow warped and differenced images

Figure 4.16 has been removed due to copyright restrictions. It was
a frame that displayed the basketball candidate using the affine
flow and shape detection. In this example, exactly one basket-
ball candidate region was detected using this approach. Original
source: National Basketball Association Broadcast Video (2011),
ESPN and ABC Network.

Figure 4.16: Shape detection candidates (image sequence frame:
013096.jpg)

by warping the previous frame image onto the current frame, and then taking the

difference of the current frame and the warped image, as shown in Figure 4.15.

The basketball is a small region (the details), so when the basketball is moving fast

between the two frames, the region difference should be large.

We computed the difference in the red, green, blue channels separately using

the affine flow to compensate for the camera motion and thresholded the large dif-

ference region as possible basketball pixels. Then we combined the three channel

thresholding results using a logical OR operation. One combined thresholding re-

sult masked on the original image is shown in Figure 4.16.

Similarly, we used each connected region as one basketball candidate if the
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connected region is within the ball size range.

4.4 Combining Detections and Player Region Removal
There is at most one true basketball candidate in each frame; however, we noticed

that the three independent detection methods complemented each other: when the

basketball is not moving fast and is clear in the image, color detection works well

most of the time; when the basketball is moving fast, motion or shape detection can

sometimes detect the true basketball candidate. In order to keep the true basketball

candidate, we combine the three detection threshold map results using the logical

OR operation.

By combining the detections with the logical OR operation, we inevitably in-

troduced many false basketball candidates in our detection result. We noticed many

false basketball candidates are on the players, because the skin colors are very sim-

ilar to the basketball color, and the player motion is large too.

Because there are too many false basketball detections inside the player region,

and our tracking should focus on the passing and shooting actions where the bas-

ketball is far away from the players most of the time in those actions, we could

use the ground truth player tracking results (mentioned in Section 2.1.2) to remove

those basketball candidates inside the player regions. When a basketball candidate

is totally within one player region, we remove that basketball candidate.

The basketball detection candidates before and after the player region removal

process are shown in Figure 4.17 and 4.18 separately.
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Figure 4.17 has been removed due to copyright restrictions. It
was a frame showing all basketball candidates using the three de-
tection approaches, as well as the marked ground truth basketball
player regions. Original source: National Basketball Association
Broadcast Video (2011), ESPN and ABC Network.

Figure 4.17: All basketball candidates (marked with red rectangles) be-
fore the player region removal process (image sequence frame:
013061.jpg)

Figure 4.18 has been removed due to copyright restrictions. It
was a frame showing all basketball candidates after the player
region removal process. It also showed the marked ground truth
basketball player regions. Original source: National Basketball
Association Broadcast Video (2011), ESPN and ABC Network.

Figure 4.18: Basketball candidates (marked with red rectangles) after the
player region removal process (image sequence frame: 013061.jpg)
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Chapter 5

Basketball Tracking and Tracks
Analysis

With the basketball candidates we got in the detection phase in Chapter 4, we can

try to link the candidates and get the basketball tracks. As we mentioned, the ideal

case should be that there is only at most one true basketball detection in each frame,

and there is only one track for some time period when the basketball is being passed

or shot into the basket; however, we detected more than one basketball candidate

most of the time in order to keep the true basketball in our detection results, and

thus computed multiple tracks for a time period. Therefore, in addition to the

basketball tracking, we also analyze all the tracks we derived, to eliminate some

false basketball tracks.

5.1 Basketball Tracking
The Kalman filter is an algorithm to use a series of measurements with noise and

inaccuracies observed over time to produce estimates of unknown variables. It can

be used as a classical tracking algorithm. The Kalman filter we used is from Lu’s

thesis work [Lu11].

In our basketball case, the measurements are the basketball candidates over

time. The Kalman filter implements a predictor-corrector type estimator that is

optimal in the sense that it minimizes the estimated covariance. Two Kalman filter
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Figure 5.1 has been removed due to copyright restrictions. It was
a diagram showing connected tracklets based on the detection
results after one player’s shooting action. The shooting action
was tracked, and there are also other 8 false tracklets due to the
noisy detections. Original source: National Basketball Associa-
tion Broadcast Video (2011), ESPN and ABC Network.

Figure 5.1: Kalman filter tracking on the detection results (image sequence
frame: 013097.jpg). The trajectories are formed by connecting all x, y
coordinates positions of the detections with the same tracking id.

Figure 5.2 has been removed due to copyright restrictions. It
was a diagram showing connected tracklets based on the detec-
tion results after one player’s passing action. The passing action
was tracked, and there are also other 7 false tracklets due to the
noisy detections. Original source: National Basketball Associa-
tion Broadcast Video (2011), ESPN and ABC Network.

Figure 5.2: Kalman filter tracking on the detection results (image sequence
frame: 013473.jpg)

tracking results are shown in Figure 5.1 and Figure 5.2, with a unique tracking ID

associated with each track.

In Figure 5.1 the track with ID C8 is actually the true basketball track, which is

a basketball shooting action. All other tracks are noisy tracks because of detections

with too many false positive basketball candidates. Similarly, in Figure 5.2, the

track with ID C130 is the true basketball track, which is a basketball passing action

from one player to another player; other tracks are noisy tracks, and we want to get

rid of those false tracks intelligently.
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5.2 Track Analysis
With the many tracks we got from the previous section, we analyzed each of them

and tried to eliminate the false tracks, using some prior knowledge about the bas-

ketball game.

We first selected the passing / shooting actions using Algorithm 1. The input

were the tracklets in Section 5.1, the output were some new tracklets, which are the

continuous segments of points in the input tracklets (called snippet); some tracklets

in the input are removed.

We associated each track with the players, using the ground truth player track-

ing information. We first loaded the track starting position in the image, and loaded

the ground truth player tracking results at the starting time: we did a linear search

on the absolute position of the track starting position to see whether the basketball

candidate is completely inside any of the player bounding boxes, if yes, we marked

the starting player ID with the track, otherwise, we used ’NO’ to represent that the

starting position is not associated with any player. Similarly, we loaded the track

positions in each of the following frames and associated the positions with either

the player ID or ’NO’ to represent the position is not associated with any players.

The passing and shooting action are actions that are not associated with any

players in between, so we are only interested in the track snippet that is not as-

sociated with the players for some frames. We selected tracks that have ’NO’

associated with them for at least k ( k = 8 ) frames. In addition, we allowed for at

most d ( d = 2 ) frames noise (i.e., track associated with player ID in those frames)

in the selection process, because occlusions with other players could occur in the

passing or shooting actions – the occlusions should be no more than d frames most

of the time though, due to the fast movement in the passing or shooting actions. If

a track does not contain a snippet with ’NO’ with at least k frames, then it is proba-

bly not a true basketball track being passed or shot: we discarded such tracks. The

parameters k and d are determined empirically.

In the passing / shooting action selection step, some tracklets are deleted di-

rectly, while part of other tracklets are selected for further analysis. Figures 5.3

and 5.4 shows the results after the passing / shooting selection.

Many tracklets in Figure 5.1 and Figure 5.2 are discarded because they do not
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Algorithm 1 Passing / Shooting Track Selection

for each track do
for each frame in the current track do

associate track position in current frame with player ID or ’NO’
end for

end for
k = 8
d = 2
for each track do

count = 0
output track = []
noise count = 0
for each frame in the current track do

if track position association is ’NO’ & noise count ≤ d then
count = count + 1
output track.append(current frame)
noise count = 0

else
if count < k & track position association is ’NO’ & noise count > d

then
count = 1
output track = [current frame]
noise count = 0

else
noise count = noise count + 1

end if
end if

end for
if count ≥ k then

update track with output track
else

delete current track
end if

end for
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Figure 5.3 has been removed due to copyright restrictions. It was
a diagram showing connected tracklets after the first step track
analysis. The shooting action was tracked, and there is 1 remain-
ing false tracklet left. Original source: National Basketball Asso-
ciation Broadcast Video (2011), ESPN and ABC Network.

Figure 5.3: First step track analysis results (image sequence frame:
013097.jpg)

Figure 5.4 has been removed due to copyright restrictions. It was
a diagram showing connected tracklets after the first step track
analysis. The passing action was tracked, and there is no other
false tracklet. Original source: National Basketball Association
Broadcast Video (2011), ESPN and ABC Network.

Figure 5.4: First step track analysis results (image sequence frame:
013455.jpg)

satisfy the passing / shooting selection criteria. Part of track C8 and C12 snippets

were selected as new tracklets from Figure 5.1 to Figure 5.3; similarly, part of track

C130 snippet was selected as new tracklet from Figure 5.2 to Figure 5.4.

In the remaining passing / shooting tracklet candidates, we further selected the

tracks using mainly three criteria: 1. The true basketball track is always from one

player (A) to another player (B). 2. For the true basketball track, player A and B

are from the same team most of the time, unless in the occasional case the passing

action failed because the passing is intercepted by the player in the other team. 3.

The track trajectories in between are either passing or shooting trajectories, and the

curve looks like a parabola.

We can assume the passing or shooting trajectory curves look like a parabola,
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because usually in those actions, the camera does not move very fast. In addition,

the time duration of a shot is about 1 – 3 seconds (20 – 90 frames) which is very

fast, so the camera movement does not change the parabola curves a lot.

We took the remaining passing / shooting tracklet candidates and analyzed

them using the three criteria mentioned above. First, we took the track snippet

start and end positions, and saw which players the track snippet started and ended

from by searching the nearby players. If the track snippet started and ended from

players in different team in a short track, we discarded the track snippet.

For the remaining tracks, we first fit the whole track on the parabola curve, if

it is a short track and has large error on the parabola fitting, it is discarded; if it is

a short track and has small error, it could be a valid passing action; if it is a long

track, we keep it for further analysis. Figure 5.5 shows the initial fitting on the

shooting action C8, it is a long track and we keep it for further analysis; Figure 5.6

shows a fitting on invalid short track C12, the error value on the fitted curve is large,

therefore the tracklet is discarded. The lines on the Figures are the trajectories and

the circles are the parabola curve estimated points.

For the long tracks like C8, we used the RANSAC algorithm [FB81] to fit the

trajectories with a parabola. The RANSAC process picked 3 points randomly and

estimate the parabola parameters, and tested how all the points fitted the parabola.

This process was repeated 100 times, so that there was a high chance to get a good

fit if the trajectory was like parabola. If the trajectory fitted well on the parabola,

we considered the whole tracklet as a true basketball track (as shown in Figure 5.7

as an example); otherwise, we discarded the track as a noisy track.

We keep the whole tracklet as the true basketball track, so that we can use it to

connect to the rest of the play. However, the part of the tracklets using RANSAC

algorithm could be used to further analyze the trajectory between the shooting

player and the basketball, and the falling trajectory after the basketball hits the

backboard. This could be used in the further work.

After all the tracks analysis steps, one result is shown in Figure 5.8, where

the identifier C8-0.64-0.12-M1-D3 means that the track C8 starts from player M1,

ends at player D3 as a long track, with the initial fitting confidence 0.12, and the

RANSAC refitting confidence value 0.64. The false tracklet C12 was discarded

from Figure 5.3 to Figure 5.8 when we selected the tracklets using the three criteria
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Figure 5.5: Initial fitting on long track C8, kept it for further analysis

Figure 5.6: Fitting on short track C12, rejected because of error
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Figure 5.7: RANSAC fitting on C8, red stars are points draw from the detec-
tions on tracklet C8, blue circles are the fitted points using the RANSAC
algorithm

Figure 5.8 has been removed due to copyright restrictions. It dis-
played the tracklets after the analysis with the three criteria. The
tracklet displayed had track ID C8-0.64-0.12-M1-D3 and it was
a shooting tracklet. In addition, the ground truth player regions
were also shown on the image. Original source: National Basket-
ball Association Broadcast Video (2011), ESPN and ABC Net-
work.

Figure 5.8: Track analysis results with the three criteria (image sequence
frame: 013100.jpg)

mentioned above.
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Chapter 6

Player Possession Inference

If we have all the true basketball tracks, which are either shooting or passing trajec-

tories, then it is easy to infer which player is controlling the ball by using the track

starting and ending information from Chapter 5. However, there are still some false

positive tracks in our tracks analysis results (though we already eliminated many),

especially when the camera is moving fast; also, there are some missing true ball

tracks, due to occlusion or the low basketball detection rate in some frames. We

tried to infer the player possession information from the tracks we obtained in

Chapter 5.

We first took the data file we obtained from Chapter 5, and processed them into

formats that were easy to analyze for player possession inference.

The algorithm for the preprocessing is shown in Algorithm 2 and 3. The new

track file (prep1) item format after the preprocessing in Algorithm 2 is:

track id track start frame number of following frames

The new track file (prep2) item format after the preprocessing in Algorithm 3

is:

track id track start frame number of all following frames

boolean has overlap with other tracks

As we mentioned in Chapter 5, a true basketball track does not overlap with

other tracks in time. If a track overlaps with one or more other tracks after the

preprocessing steps, we consider those tracks as false tracks due to false bas-

ketball detections and camera movements. We only keep those track items with
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Algorithm 2 Preprocess Tracks Step 1 (write tracks with continuous track id)
# Tracks file item format: image seq name ball start pos x ball start pos y
ball end pos x ball end pos y track id
# The tracks items are sorted according to image seq name
Open and read tracks file
Open a prep1 file to write the preprocessing results
for track item in tracks file do

number of following frames = 0
while track item.track id has continuous same following track id do

increase number of following frames by 1
end while
write item: track id track start frame number of following frames

end for

Algorithm 3 Preprocess Tracks Step 2 (Check track overlaps)
Open and read prep1 file
Open a prep2 file to write the preprocessing results
idList = empty idList # keep records of all written track id
for track item in prep1 file do

current id = track item.track id
if not current id in idList then

# create a new item in the prep2 file
count = number of following frames
boolean has overlap with other tracks = False
# count and add all together
for remaining track item in prep1 file do

if remaining track id == current id then
count = count + number of following frames
boolean has overlap with other tracks = True

end if
end for
# write the item to prep2 file
idList.append(current id)
write item with format: current id track start frame count

boolean has overlap with other tracks
end if

end for
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boolean has overlap with other tracks equal to False for the player inference.

Given the ball tracks without any overlaps with each other, and the knowledge

of which player each track starts with and ends at from Chapter 5 (saved in the

track id in each track item), we can simply fill in the time gaps between the tracks

by inferring the controlling player of the ball, using Algorithm 4.

If all the ball tracks are true basketball tracks, then the inference algorithm

works 100% correctly, and the track ending player is always the next track’s start-

ing player. However, in our tracks result, it is not always correct because of some

missing tracks (due to occlusions, low detection rate, etc.) and some false positive

basketball tracks. We handled the case by simply dividing the gap between current

track and next track into 2 parts, with the assumption that the first part being con-

trolled by current track ending player, and the second part being controlled by the

next track starting player.

40



Algorithm 4 Player Inference
Open and read prep2 file
Open a player inference file to write the inference results
Set image seq start frame, image seq end frame
prev track start player = ”
prev track end player = ”
for track item in prep2 file do

if track item.boolean has overlap with other tracks == False then
# get the values
Set start player, end player from track item.track id
Get track start frame
Compute track end frame

# link the gaps
if prev track end player == ” then # the initial gap

Fill initial gap from image seq start frame to track start frame with
start player

else
if prev track end player == start player then

Fill the gap from prev track end frame to track start frame with
start player

else# split the gap in 2 parts
middle frame = (prev track end frame + track start frame) / 2
Fill the gap from prev track end frame to middle frame with

prev track end player
Fill the gap from middle frame to track start frame with

start player
end if

end if

# set current track item to be the previous track item
prev track start player = start player
prev track end player = end player
prev track start frame = track start frame
prev track end frame = track end frame

end if
# Fill in the last gap
Fill the gap from track end frame to image seq end frame with end player

end for
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Chapter 7

Experiments and Results

7.1 Ground Truth Data for Evaluation
We evaluated our system on 830 frames of the National Basketball Association

Broadcast Video in 2011. We annotated the basketball ground truth on these frames

for the purpose of evaluation.

The video was originally in MPEG4 format and was converted into consecutive

JPEG images using the FFMPEG tool, and the image sequences were divided into

sequences of passing and shooting actions. We took 830 frames (013031.jpg -

013860.jpg) and evaluated the system performance on them.

We hand labelled the position of the basketball if it is visible in these frames.

In each frame, if the basketball is visible, we use a bounding box to indicate the

basketball position. In addition, we specify the basketball motion status using one

of the three labels: player, pass, or shoot. The player label indicates the basketball

is either in a player’s hand, or being dribbled by the player. The pass label indicates

the basketball is being passed from one player to another player. The shoot label

indicates the basketball is being shot into the basket. If the basketball is occluded

by the player or too blurred to be identified, we do not label it in that image frame.

Figure 7.1 shows one image frame with the bounding box and label shoot, and

the trajectory of the previous frames with the shoot label.
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Figure 7.1 has been removed due to copyright restrictions. It was
a frame showing the hand-labelled bounding box of the basketball
and its ground truth basketball shot trajectory used for evalua-
tion. Original source: National Basketball Association Broadcast
Video (2011), ESPN and ABC Network.

Figure 7.1: Ground truth bounding box and the trajectory (image sequence
frame: 013103.jpg)

Figure 7.2 has been removed due to copyright restrictions. It
showed detection results on 4 frames with cases (a), (b), (c),
(d). The detection results using the three different detection ap-
proaches were shown in different colors, and the detection re-
sults after the player region removal step were also shown seper-
ately. Original source: National Basketball Association Broad-
cast Video (2011), ESPN and ABC Network.

Figure 7.2: Basketball detection results

7.2 Experiments and Error Measurements

7.2.1 Basketball Detection Experiments

Figure 7.2 shows some basketball detection results: the basketball candidates de-

tected using color (mentioned in Section 4.1) are shown in red bounding boxes;

the candidates detected using motion information (mentioned in Section 4.2) are

shown in yellow bounding boxes; the candidates detected using differenced affine

flow image (mentioned in Section 4.3) are shown in green bounding boxes. The

combined bounding boxes with player region removal step mentioned in Section

4.4 are shown in the second column in the table.
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Table 7.1: Basketball Detection Candidates Count

Method Candidates #

Basketball Color Detection 5091
Basketball Motion Detection 2108

Basketball Differenced Shape Detection using Affine Flow 142
Sum of All Detections 7341

Combined Detections after Player Region Removal 3746

Table 7.2: Basketball Detected Frames

Count Recall

Total Number of Frames 830
Number of Frames with True Basketball 696
Number of Detected Frames using Color 247 35.5%

Number of Detected Frames using Motion 91 13.1%
Number of Detected Frames using Affine Flow 28 4.0%

Total Number of Detected Frames 314 45.1%
Number of Detected Frames after Player Region Removal 211 30.3%

In the 830 image frames, there are 696 ground truth basketball detections. Ta-

ble 7.1 counts the number of detections after each step. On average, there are 8.84

basketball detection candidates in each frame before the player region removal

step, and 4.51 candidates in each frame after the player region removal step.

If the combined detection after the player region removal step contains a bas-

ketball candidate that overlaps with the labelled ground truth bounding box, we

consider the true basketball is detected in that frame. The number of detected

frames using different approaches are shown in Table 7.2. Recall is computed us-

ing # of detected frames divided by # of frames with true basketball.

The false basketball candidates generated using the color detection approach

are mainly due to the players’ / audience’s skin color on the head, arms, and legs,

as well as the reddish logo color on the basketball court. The false candidates

generated using the motion / affine flow detection approach are mainly due to the

fast player motions; when the camera is moving fast from one side of the court to

the other side, false candidates are generated in some noisy parts in the audience
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Table 7.3: Basketball Detected Pass / Shoot Frames

Count Recall

Total Number of Frames 830
Number of Pass / Shoot Frames with True Basketball 94

Number of Detected Pass / Shoot Frames 74 78.7%

Table 7.4: Basketball Tracklets Count

Count

# of tracklets using Kalman Filter 73
# of tracklets after passing / shooting action selection 70

# of tracklets after the three criteria 15
# of non-overlapping tracklets in player inference 8

region as shown in Figure 7.2 (d).

It is hard to distinguish the false candidates with the true basketball under small

scale and the compression and camera blurring effects, but we can use the fact that

the false candidates are mostly inside the player regions to eliminate all candidates

that are totally inside the player region, and focus on finding the passing and shoot-

ing actions in the video, then infer the subsequences where the basketball is being

controlled by players. We listed the detection rates on those frames with pass /

shoot labels in Table 7.3. Recall here is computed using # of detected pass / shoot

frames divided by # of pass / shoot frames with true basketball.

7.2.2 Basketball Tracking and Player Inference Experiments

We manually counted the number of passing / shooting trajectories in the 830 test-

ing frames. There is one long shot and 7 passing actions in these frames. We

counted the number of tracklets we got after each step after the Kalman Filter

tracking and track analysis steps, as shown in table 7.4.

In the 8 non-overlapping tracklets we obtained before the player inference step,

the one shot trajectory is included, and 5 out of the 7 passing actions are also in-

cluded in the tracklets. The hand labelled ground truth trajectories and the tracklets

we obtained in the analysis are shown in Figure 7.3. The remaining 2 tracklets are
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Figure 7.3 has been removed due to copyright restrictions. It
showed the 1 ground truth shooting and 5 passing trajectories and
the corresponding tracklets generated using our algorithms. The
tracklets generated by us were similar to the ground truth trajecto-
ries. Original source: National Basketball Association Broadcast
Video (2011), ESPN and ABC Network.

Figure 7.3: Ground truth trajectories and tracklets

Figure 7.4 has been removed due to copyright restrictions. It
showed the two remaining false tracklets generated using our
algorithms. Original source: National Basketball Association
Broadcast Video (2011), ESPN and ABC Network.

Figure 7.4: False tracklets

false tracklets, shown in Figure 7.4.

Two passing actions were not tracked in our algorithm. The ground truth tra-

jectories are shown in Figure 7.5. In the left missed trajectory (a), one player made

a bounce pass to another player: the basketball was occluded by other players when

it hit the court, so it could not be detected in those frames; the remaining visible

frames are too short to form a tracklet to be considered as a valid passing action. In

the right missed trajectory (b), although the basketball is visible in most frames, it

passes on top of another player, those detections were removed in the player region

removal step; therefore, no tracklet was formed.

The major reason that caused a missing tracklet is the low basketball detection

rate. In our algorithm, occlusions, overlaps with other players, and image / motion

blur all can result in a low basketball detection rate. These problems remains to be

tackled.
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Figure 7.5 has been removed due to copyright restrictions. It
showed the two ground truth passing trajectories which were not
successfully tracked using our algorithms. Original source: Na-
tional Basketball Association Broadcast Video (2011), ESPN and
ABC Network.

Figure 7.5: Missed ground truth trajectories

The player inference step highly relies on the accuracy of the track analysis

results: if the track analysis generate tracks with 100% accuracy, then the player

inference results are 100% correct too. Since we have already reported our track

analysis results in the Figures 7.3, 7.4, and 7.5, we do not see the necessity to set

up a qualitative measurement for the player inference accuracy here.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion
Our proposed basketball tracking system demonstrated the ability to extend the

current intelligent sports video analysis system for broadcast video to include ball

tracking and player possession inference even when the ball movement in the sport

is not generally constrained to the two dimensional space of the court.

Despite the small basketball with few features and the cluttered background, we

proposed three independent detection approaches to try to find the true basketball

candidate. Training and using color can detect the basketball with the 35.5% recall

accuracy; in addition, because we know the basketball is usually the fastest moving

object in the broadcast video, including the detections using the optical flow and

affine flow increased the recall by 17.1%.

If we focus the detections on the ball passing / shooting frames, the recall

accuracy is 78.7%; it is harder to detect the basketball on the remaining frames,

because the ball can be connected with player’s hand, overlaps with player’s skin

color, or occluded – color and size filtering cannot work when the ball overlaps with

regions with similar color, and the ball is not moving very fast when it is controlled

by a player. Our strategy to deal with the situation is to track the passing / shooting

actions in our system, and then infer which player controls the ball before or after

the passing / shooting actions.

The Kalman Filtering generated 73 tracklets in our experiment. We performed
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track analysis and selected 15 parabola-like tracklets. In the player inference part,

we further selected 8 non-overlapping tracklets out of the 15 tracklets to infer the

player possession. One shooting trajectory and 5 out of 7 true passing trajectories

were found by our system, while 2 true trajectories were still missed in our system.

The player possession inference accuracy depends on the accuracy of the selected

passing / shooting tracklets.

8.2 Future Work
The following are some possible directions to improve the ball tracking system in

the broadcast video.

8.2.1 Probabilistic Detections

In our current proposed system, all the three basketball detection approaches make

binary decisions about the basketball candidates, and the candidates are combined

using the logical OR operation.

We can consider adopting some confidence measures in all the three detection

approaches, and track the basketball with the confidence measures. In addition,

when we combine the detections using the different detection approaches, instead

of using the logical OR operation, we can also train and assign some weight-

ing in different detection approaches and then combine the detections with a new

weighted confidence.

8.2.2 Tracking Methods

We used the Kalman Filter to track the basketball, under the assumption that the

basketball motion correspondence is straightforward. Predictions are made as to

the expected locations and the predictions are matched to actual measurements.

Ambiguities may arise here because predictions may not be supported by mea-

surements. The basketball might move outside the frame or be occluded; or, for

example, more than one measurement might match a predicted location, etc.

To deal with the ambiguous motion correspondences, Kalman Filtering and a

cross correlation measure to compare the basketball measurements [SWB92] could

be adopted. The tracking splitting filter [SB75] or multiple hypothesis tracking
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[CH96] can use track trees to delay correspondence decisions until more measure-

ment evidence is available. If we adopt one of these tracking methods or others

such as [SBF+11], the tracking results should be able to handle frames with the

occluded basketball better.

8.2.3 Splitting the Tracklets

In our track analysis, we used RANSAC to refit a long tracklet and generated more

accurate confidence value to indicate how similar the tracklet is compared with a

parabola. However, instead of using the refitted parabola-like part of the tracklet,

we kept the whole tracklet in order to use it to connect to the rest of the play.

We can try to split the long tracklet into 3 parts: the parabola-like part of the

tracklet, and the remaining two parts. The parabola-like part of the tracklet is

probably the passing / shooting trajectory, and we can possibly infer some more

information using the remaining parts. For example, if the part after the parabola-

like part is a falling trajectory down to the court, then this tracklet is probably

a shooting tracklet (Figure 5.7). It is possible to consider the falling part as a

category of motion, after a shot.

8.2.4 Player Inference

Our current player possession inference algorithm is a simple inference approach

based on the assumption that the tracklets we selected are mostly correct tracklets.

Errors are introduced if there is any missing passing / shooting trajectory, or any

false passing / shooting tracklet.

We assumed that those tracklets overlaping with other tracklets are false pass-

ing / shooting tracklets. Those tracklets are usually generated because of the fast

camera movement, and therefore the false basketball detections. However, a true

passing / shooting trajectory might also exist among those tracklets. One possible

way to deal with the situation is to split those long tracklets into small segments

(several new tracklets) and re-run the inference step.

The player possession inference part can use more prior knowledge or adopt

some advanced algorithms to increase the inference accuracy.
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8.2.5 Player Pose Estimation and Other Information for Inference

Detecting and tracking the basketball itself is a hard problem, because the ball is

small and lacks distinctive features. However, prior knowledge is a great assistance

in determining where the ball is. We used the player tracking information in our

system. More information could be used in the future work.

As mentioned and attempted in the related work, player pose estimation could

be a very helpful clue to detect the basketball. Current difficulties in player pose

estimation include the low player resolution and the many non-frontal poses. If the

difficulties are tackled, we could focus on the player’s hand region in order to find

the basketball. In addition, we could possibly train, learn, and infer the player’s

action and then predict the trajectory of the ball.

In addition, we can also consider analyzing the score display in the broadcast

video, and the which half court the basketball is in to infer the defense and of-

fense team, and use the information to help with basketball detection and tracking

analysis.
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Appendix A

Supporting Materials

List of parameters decided empirically:

• Ball RGB color detection ranges: red channel [90, 136], green channel [45,

80], blue channel [32, 79]

• Ball center pixel selection: there are at least 60 ball-color-like pixels in

the nearby 21*21 pixel region; sum of the difference of the pixels centered

around the current pixel within radius 10 minus the average ball is smaller

than 20000.

• Laplacian of Gaussian filter in motion detection: size [25, 25] and sigma = 6

• Passing / shooting action selection: tracklets that have NO associated at least

k (k = 8) frames, with at most d (d = 2) frames noise
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