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Abstract

This dissertation presents a novel verification techniquahalog and mixed sig-
nal circuits. Analog circuits are widely used in many apgions include con-
sumer electronics, telecommunications, medical eledsorrurthermore, in deep
sub-micron design, physical effects might undermine comdigital abstractions
of circuit behavior. Therefore, it is necessary to develpgieamatic methodologies
to formally verify hardware design using circuit-level nedsl

We present a formal method for circuit-level verification.urGapproach is
based on translating verification problems to reachabditglysis problems. It
applies nonlinear ODEs to model circuit dynamics using iedinodal analysis.
Forward reachable regions are computed from given initeties to explore all
possible circuit behaviors. Analog properties are cheakeall circuit states to
ensure full correctness or find a design flaw. Our specificddoguage extends
LTL logic with continuous time and values and applies Brdt&ennuli to spec-
ify analog signals. We also introduced probability into #ipecification to support
practical analog properties such as metastability behavio

We developed and implemented a reachability analysis taoicfor a sim-
ple class of moderate-dimensional hybrid systems withineat ODE dynamics.
CoHo employsprojectagonsgto represent and manipulate moderate-dimensional,
non-convex reachable regions.080 solves nonlinear ODEs by conservatively
approximating ODEs as linear differential inclusionsoH® is robust and effi-
cient. It uses arbitrary precision rational numbers to anpént exact computation
and trims projectagons to remove infeasible regions. Tadngperformance and
reduce error, several techniques are developed, inclualiggess-verify strategy,
hybrid computation, approximate algorithms, and so on.



The correctness and efficiency of our methods have been dratad by the
success of verifying several circuits, including a toggteudt, a flip-flop circuit, an
arbiter circuit, and a ring-oscillator circuit proposed tggearchers from Rambus
Inc. Several important properties of these circuits havanherified and a design
flaw was spotted during the toggle verification. During thactebility computa-
tion, we recognized new problems.g., stiffness) and proposed our solutions to
these problems. We also developed new methods to analyzpleoiproperties
such as metastable behaviors. The combination of theseodge#ind reachability
analysis is capable of verifying practical circuits.
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Introduction

1.1 Background and Motivation

Computing technology permeates nearly all aspects of molife; from desk-
top and laptop computers through cellphones and embeddaduting devices
in everything from automobiles and consumer appliancegfdcsving medical
equipments. Continuing advances in these products reliéiseosuccessful design
of new integrated circuits with ever increasing capaletitiThe design process for
these chips has become extremely complicated due to the mangber of tran-
sistors (now well over a billion) on a single chip and the @aging use of com-
bined digital and analog circuits on the same chip. A singleren a design can
be extremely costly to correct, requiring design changeskimg new masks, and
fabricating new chips. The delay in time-to-market fromfsecrors can cause a
project to fail. Thus, there is a large need for better desagification techniques
that can be used before a chip is fabricated.

This thesis develops new methods for circuit verificatiorerification at the
circuit-level is import for several reasons. Firahalog and mixed signgdAMS)
circuits are widely used in electronic devicesg., cellphones, GPS, and DSPs.
Second, physical effects affect transistor behavior irpdedmicron processes de-
signs; therefore, low-level phenomeraad.,leakage currents) must be considered
even for digital circuits. Third, circuit-level bugs acctdor a growing percentage
of critical bugs in real circuits. Digital design has becomeelatively low error



process because there are systematic specificationsndiesig, and test method-
ologies using gate and higher level abstractions. HowédiS designs rely on
designers’ intuition and expertise and lack a systematidaton flow. Further-
more, circuit-level bugs generally require re-spins arel expensive to fix. For
example, Intel discovered a design flaw in the 6-Series ehipshich is code-
named Cougar Point, and is used in systems with Sandy Bridgmgsors [7].
The SATA (Serial-ATA) ports within the chipset are suscklgtito degradation over
time, which could impact performance or functionality adrstge devices such as
hard drives. The problem in the chipset was traced back smaistor in the 3Gbps
PLL clocking tree. The transistor has a very thin gate oxideitn it on with a very
low voltage. However, the leakage current of the transistbigher than expected
because the transistor is biased with too high of a voltage.l&akage current can
increase over time and cause bit errors on a SATA link. Tenssfetry if there
is an error which degrades the performance and results lurdabn the 3Gbps
ports. The transistor is a vestige of an earlier designnmethin an engineering
oversight, and it can be completely disabled without angfikct. However, to
disable the transistor, the entire chip set (or motherfdaad to be replaced. This
design flaw has lead to a recall with an estimated cost of atr@ibillion to repair
and replace affected materials and systems in the markethefoore, the delay
of the widely anticipated Sandy Bridge processors has dfisignt effect on sales
for major hardware vendors,g.,Apple and its MacBook Pro, and also on sales of
software,e.g.,Windows.

Simulation is the most widely used method to validate bogitali and analog
circuits. This is because simulation can find errors (esflgdrivial bugs) quickly,
and the simulation results make sense with respect to desigiuition, and thus
can help to identify the sources of bugs. However, simutattiased methods have
several limitations. First, simulation only provides intplete coverage and can-
not guarantee the correctness of the circuit. Simulatidy @wers some input sig-
nals, incomplete states and a limited humber of operatimgliions. Therefore,
fabricated chips may fail to work even if the circuit passédianulations before
tape-out. For example, the 6-series chipset describedegmassed all of Intel’s
internal qualification tests as well as all of the OEM quadifion tests. These tests
include functionality, reliability and behavior at var®gonditions, such as high-
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/low temperature, and high/low voltage. However, the satiah coverage was
still not high enough to find the degradation bug. This is ey true for deep
sub-micron process designs and AMS designs as the numbermérccases is
huge. For example, the PLL circuit designed in [205] hasefezdback paths:
an analog proportional path, a digital integral path, andadditional software
control-loop. The digital part can be precisely controll®dhundreds of inputs
from the software part. It is impossible to simulate all cémaltions of the control
signals. Second, simulation is often based on highly attstriamodels and ideal
conditions, which might be unverified especially for anatdguits. Therefore,
circuit-level bugs, such as wiring errors and simple pataméaults (wire resis-
tance too high, too much cross-tatkc), can go undetected even if the simulations
(with the abstract model and ideal condition) were exhaektDesigners have to
use these abstractions and assumptions; otherwise, th&ason is too slow (typ-
ically several weeks or longer [215]). For example, it isgraifly very expensive
to simulate the start-up behavior of analog circuits beedle start-up time is too
long. Therefore, simulations are typically performed froser-specified, ideal ini-
tial states. However, these assumption are not checked myid cause re-spins of
chips. Take a ring-oscillator from Rambus Inc as an exanif2§]] Researchers
reported that the circuit failed to start to oscillate inrfahted chips. The bug
eluded detection because all initial states used in simuaktwere in the oscilla-
tion orbit. Furthermore, it is extremely difficult for desigrs to find appropriate
parameters of simulations to expose circuit-level bugs. example, Greenstreet
designed a FIFO circuit based on the C-element circuit [82ap@er 4.4]. An
analog timing race problem was found in the fabricated claéakage caused a
signal to drop slightly below the threshold voltage of PM@&hsistors. This led
to unintended oscillations that prevented the FIFO fronmdpénitialized properly.
Similar to showing correct start-up, it is also importanskmw that analog circuits
can make mode transitions properly. Such transitions péouexample, when a
CPU changes its operating voltage and frequency. Other Aik8its can include
updates of digital control values several times per secomaooe to track changes
in operating conditions. These transitions bring the dirmmporarily out of its
intended operating range, but the simulation time to veht the circuit correctly
settles at the intended operating point may be prohibit&gain, alternatives to
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simulation based validation are needed. Because of thestions of simula-
tion based methods, it is necessary to develop formal tqaksifor circuit-level
verification.

Formal verificationconservatively models a design, specifies correct behav-
iors, and automatically determines if all possible behavif the model are cor-
rect. Formal methods which employ gate-level models haea beell-studied and
applied in industry, such as equivalence checking, modetlkihg and theorem
proving. For example, STE (symbolic trajectory evaluadtibas been used in Intel
for several years [182]. The success of digital formal veaifon motivates the
work of extending formal methods to the continuous domain.

However, there are several new challengesiiuit-level formal verification
First of all, formal methods require specification langusatgedescribe the behav-
ior of circuits and properties to be verified. Precise speatiifbns are not obvious
in traditional analog design practice. For analog cirguiteny interacting physi-
cal effects and details must be considered. Currently, ik wf analog design is
largely an art: highly dependent on intuition and expemerfeurthermore, analog
circuits are often designed to work in a particular context kck precise descrip-
tions. It is challenging to extend specification methodsdigital formal methods
to analog circuits. While temporal logics have been verycessful for formally
specifying properties of digital designs; most such logios based on a discrete
notion of time and discrete states. However, analog priggeréquire continuous
time and states to be described in the specification. Theralao many proper-
ties which are difficult to express by current methods, dsfiganany properties
of interest are not time-domain propertiesg.,frequency, and transfer functions.
As another example, the properties of circuits with metdstdehaviours cannot
be expressed by most current specification methods bedaggald not support
probability which are necessary for specifying metastakleaviors.

Another new issue is to develop novel verification techniqu€ircuit-level
models are generally described by nonlinear ordinary rifféal equations, which
in general do not have closed form solutions. Numerical ogthmust be applied
to solve complex dynamics. Therefore, it is unlikely thatné&plic methods can
produce accurate results with general models. It is alsp &gpensive to solve
nonlinear ODEs using numerical methods, thus, efficient @Dlzers are neces-
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sary. To make the verification sound, over-approximatedlteare required which
exclude most available numerical integrators. Furtheenetate explosion be-
comes a problem in representing and manipulating modediategh-dimensional
continuous space. Typical analog circuits have tens of @ejmodes which cor-
responds to phase spaces with tens of dimensions. Howeventrepresentation
methods have either expensive operaterg.(polytopes) or large approximation
errors €.g.,hyper-rectangles), and thus are not capable of repregemiiterate-
dimensional regions efficiently. A new challenge is thatrégions for all possible
circuit states are generally non-convex. For exampleewdfit converging rates
often lead trajectories to hyperbolicd, “banana-like”) shapes. This makes it
difficult to develop an efficient representation method.

Because of these challenges, most prior results in cirevifization have been
either low-dimensional (often two-dimensional, never eltian four-dimensional)
or unrealistically simple models (linear or quasilineaBor example, the well-
studied timed automata model [16] is too abstracted to mudzlit-level behavior
of interest to designers. Several simple circuits have [stetied, such ad —
> modulator [50], tunnel diode oscillatar [97], voltage calied oscillator [73],
biquad lowpass filter [97]. However, verified propertiesdzhen simple models
can be checked trivially by paper-and-pencil or severabktions. More details
are given in Chapter 2. Therefore, current methods canneatppéied to verify
most properties of interest of practical circuits.

However, there is urgent need for CAD tools that can find dei&yvs of AMS
circuits automatically during hardware development. Faneple, the Pentium 1V
processor used self-resetting domino circuits to implarad¢ast ALU which com-
pletes one ALU operation in half a clock cycle [120]. Howewaanual checking
of the ALU functionality was required every time any changese made to the
design, because current CAD tools do not support dominaitstc This delayed
the release of the Pentium IV processor and the novel tegbsigere not used in
the next generation products.

Figure 1.1 illustrates the motivation of this thesis. Asalimd above, cur-
rent formal methods can only be applied to verify very simmigperties of small
circuits, such as simple oscillators and filters. Howeviguit designers are in-
terested in important properties of practical, compleguits, such as PLLs [205],
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Figure 1.1: Motivation

SRAMSs, self-resetting domino circuits, and RF circuits.eféhis a large gap be-
tween the simple examples of prior work and the verificatierchof designers.
Our goal is to bridge the gap and verify some practical ciscuin particular, |
present verifications of an arbiter, a toggle circuit, a &w@nt, and the Rambus
ring oscillator circuit.

Our solution to the circuit-level formal verification preh is based on reach-
ability analysis, which can be viewed as model checking intiooous domains.
The method models a circuit as a hybrid system, computesadthable states by
solving the discrete as well as the continuous dynamicsttarmdvalidates that the
circuit's specification holds for all reachable states. Wgighed a specification
language to express analog properties, developed a neesegpation method and
an efficient algorithm to bound solutions of ODEs. These rieqpies enable us
to develop a general verification flow for AMS circuits whichshbeen applied to
several practical circuits.



1.2 Problem Statement

Circuit-level verification is necessary to spot criticalgsubefore fabrication for
both AMS designs and deep sub-micron designs. Extendinigifigrmal methods
to continuous domains requires novel techniques for mogedircuits, specifying
analog signals and desired properties, and solving n@ailidynamics to compute
circuit states.

Reachability analysis is a promising method for formalfieation using circuit-
level models. To verify significant properties of large aits, it is important to de-
velop efficient and accurate methods to support moderatertiional €.g.,5-20)
systems with highly non-linear dynamics and non-convegheahle regions.

1.3 Contributions

This thesis demonstrates the feasibility of formally yar{ circuit behaviors for
circuits modeled by non-linear, ordinary differential eqions. This verification is
performed using projectagon-based reachability analysis

In particular, this thesis explores reachability analys@hniques and provides
a reachability computation toold@Ho for formal verification of digital or analog
circuits. This thesis makes contributions in the followargas:

e We proposed techniques for modeling and specifying anaimgits and
their behaviors, which make it possible to perform circeitification through
reachability analysis.

— We developed a method to model a circuit as a system of neaslin
differential equations (ODESs) automatically. Transistare modeled
using a simple, table-based method, and other devices cupperted
similarly.

— We applied Brockett’s annulus to specify a family of analéagnals.
Based on it, we presented an extended LTL logic that supperise
time and continuous state to specify analog propertiesrofiits. We
also introduced probability into the logic to describe git@roperties
such as metastability behaviors.



— We proposed a framework to convert verification problemstxha-
bility computation problems by a method that we believe ddod per-
formed automatically. We also suggested several techsiguebtain a
good trade-off between performance and error during thepcdation.

e We designed and implemented a robust and efficient readiatmmputa-
tion tool, CoHO, for moderate-dimensional, non-linear, hybrid systems.

— We useprojectagonsto represent moderate-dimensional, non-convex
regions. We avoid performing operations with exponent@hplex-
ity on the high-dimensional objects. Instead, all operetiare imple-
mented using efficient algorithms on the two-dimensionajgmtions
or by linear programming on convex approximations of priggon
faces.

— Highly non-linear dynamic systems are over-approximatedirear
differential inclusions which are solved efficiently. Larézation is per-
formed locally for each face of a projectagon to reduce appration
error.

— We applied interval computation and arbitrary precisidioral arith-
metic to develop a robust linear program solver and prajacélgo-
rithm which are essential to makeo®0 numerically stable. We also
proposed novel algorithms to reduce computation error enave
performance of the reachability computation, includintgiwal clo-
sure and an approximate LP solver.

— The CoHo tool has been released to the public research comniunity

e We have formally verified practical circuits including batynchronous and
asynchronous digital circuits, and analog circuits.

— We verified the Yuan-Svensson toggle circuit [217]. The autd the
toggle should transition once for every two transitionshef tlock in-
put; in particular, the output makes a low-to-high or higHédw transi-
tion for each rising transition of the clock. We found an inaat subset

1Available onhttp://coho.sourceforge.net
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of circuit states and verified that all trajectories in tresisave a period
twice that of the clock signal [210, 211]. Because the ougmat clock
signal satisfy the same specification, an arbitrarily laigple-counter
can be composed by using the output of one toggle to driventet i
of another one. This verification also revealed that we hatksted to
add keepers circuits to the design to ensure correct operatspite of
the leakage currents in deep sub-micron designs. Once veel didelse
keepers, ©HO verified the design.

— We showed that the output of a pass-gate latch circuit idestahen
its clock signal is at logical low value. Further, we demoaitgtd that
a flip-flop consisting of two latches works properly. The &do-q
delay and maximum clock frequency of this flip-flop have alserb
measured.

— We formally specified and verified both safety and livenesgperties
of a two-input, asynchronous arbiter circuit [212, 213].this verifi-
cation, we encountered trstiffnessproblem for reachability compu-
tations and proposed two solutions. We showed that alldi@jies of
the arbiter are safe, and we extend the method from [160]de $hat
the arbiter is live for all trajectories except for a set ofamre zero.

— The Rambus oscillator challenge was posed by researcloensRiam-
bus, Inc [129]. The challenge is to show that a differentiagj ros-
cillator with an even number of stages starts properly frdininaial
conditions. We combined static analysis and reachabitiimmutation
to find the conditions under which the circuit can oscillateeapected
from all initial states.

1.4 Organization

The thesis is organized as follows:

e Chapter 2 describes prior research in circuit verificatiod aeachability
analysis. It also explores related formal verification médgand reacha-
bility analysis techniques as well as developed tools. @é\@rcuits are
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presented as verification examples to show abilities anitdliions of avail-
able verification methods. Prior research ooHO is also presented at the
end of this chapter.

e Chapter 3 presents our framework for translating a circeiitfication prob-
lem to a reachability analysis problem. It describes methiodconstruct
an ODE model from circuit netlists and obtain table-basedetsofor tran-
sistors based on simulations. It also presents our spdificenethod for
analog signals and properties which is based on Brockettialas construc-
tion and LTL logic. It introduces circuit examples used iisttissertation
and provides formal specifications of properties to be cbecht also de-
scribes implementation issues that arise when computiegulized models
and modeling input signals.

e Chapter 4 describes our reachability analysis tooHO. It first describes
the hybrid automata based interface and gives a high-lesgargbtion of the
reachability analysis algorithm. It then presents detaflthe projectagon
representation method and operations on it. Based on thesatmns, al-
gorithms to compute continuous successors are developeldding solv-
ing linear differential inclusions, computing project®and constructing a
feasible projectagon. Techniques and approximation iitgos to improve
performance and accuracy are also discussed. Severahieplation issues
such as the architecture of theogo system are described at the end.

e Chapter 55 describes the digital and analog circuits that ave lerified. It
first presents the general process for circuit verificatgingiCoHo and then
provides four examples: the toggle circuit, the flip-flope @rbiter, and the
Rambus ring oscillator.

e Chapter 5 concludes the thesis and proposes future redegics.
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2

Related Work

This chapter presents a survey of prior research relatedMt8 Aircuit verifica-
tion. Section 2.1 gives an overview of formal methods anduiises their pros
and cons. This includes equivalence checking, model chgaknd theorem prov-
ing. As reachability analysis is a promising and widely usathnique for model
checking, Section 2.2 presents existing solutions for i#gnnchallenges: model-
ing, specification and reachability computation. Sectidha?so describes methods
to reduce system complexity and compares currently availaols. Section 2.3
presents applications of these techniques, mainly fogusim four circuits that
have been widely used as benchmarks. In addition to othen¥, &ection 2.4 de-
scribes the development ofaEio by others and myself prior to my Ph.D. program.
Section 2.5 summarizes both the contributions and the olvex$issues from prior
research.

2.1 Formal Verification of AMS Circuits

This section explores existing formal techniques for yamij circuits using ana-
log models. In practice, nearly all designers rely on sitthotes using ®1Cce and
similar programs to validate their AMS designs. Many exi@ms have been made
to the basic circuit simulation programs to improve sinmolaiperformance such
as Monte Carlo simulation (Spectre [1]) and fast Spice @dltn [2]), increase
coverage [54], monitor simulation and check propertieomatically {.e., run-
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time verification) such as AMT (Analog Monitoring Tool) [15@57, 163] and
others [43, 59, 60, 138, 179, 220], or apply conservativglgraximated models
such asSPICE [193]. However, none of these tools can guarantee full ayer
Formal techniques provide full coverage by considerindrajectories of a circuit
starting from all possible initial conditions, and unddraadmissible variations on
parameter values. Like digital verification, formal methddr AMS circuits can
be grouped into three classesquivalence checkingnodel checkingand proof-
based methodslo be sound, both equivalence checking and model checkirsg m
determine all reachable circuit states in order to perfoomarisons or verify
properties. Computing the complete reachable space ignergl, an undecidable
problem unless the system dynamics are extremely simple1l0%®, 137, 173].
Therefore, approximation techniques must be applEdcretizationmethods dis-
cretized the continuous state space into a discrete onayHimh reachable sets
can be computed by well-developed digital verification sodDn the other hand,
reachability analysispproaches try to find a reasonable approximated resulj usin
efficient methods to represent continuous regions and solrénuous dynamics.
Theorem-proving based methods attempt to avoid the gpaieesexplosion prob-
lem by constructing a formal proof. However, the probleneytare addressing are
still undecidable. Furthermore, it relies on human inseyid effort to create such
a proof.

2.1.1 Equivalence Checking

Equivalence checking determines whether two systems aieadent according to
some criteria such as input/output behaviors. In [188]inGtast and Hedrich pro-
posed an equivalence checking method for analog circuggecan their system
dynamics. Given two circuits, the method samples theiestpaces, constructs a
linear mapping between sampled points in each small regriamsforms dynamics
into a canonical state space, and checks if they are the samiéhin some toler-
ance. Another approach was developecd in [178] for compavitegVHDL-AMS
designs. It applies rewriting rules and pattern matchingjrgplify analog compo-
nents and uses classical SAT/BDD equivalence checkersdgibaldcomponents.
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2.1.2 Model Checking

Model checking is a powerful technique for determining vileeta mathematical
model of a system meets a specification automatically. Teigdiiactical successes
of model checking were for discrete systems, and this hasvated extending
these techniques to handle designs with continuous motieése are two main ap-
proachesdiscretizationwhich approximates continuous models by discrete ones,
andreachability analysisvhich solves continuous dynamics directly.

Discretization

The idea ofdiscretizationtechniques is to convert a model checking problem in a
continuous space to a discrete problem by discretizingespad time. Typically,
these approaches partition the entire state space inta-hggtangles, calculate
transitions between these boxes using simulations or appation techniques,
and generate a finite-state system such as finite-state meaclriansition systems,
or graphs. Conventional model checking algorithms can Ipdieapto these dis-
crete systems. Refinement is used when the approximationigtarge.

The first work using circuit-level models was by Kurshan ancMillan [133].
The algorithm first partitions the continuous state spapeesenting the charac-
teristics of transistors into fixed size hyper-cubes an@ld continuous time into
uniform time steps. Input signals are divided similarly baty logic low and high
regions are used with the assumption of instantaneoustteanss Second, the al-
gorithm computes the transition relation between thesehgpbes using the lower
and upper bounds of the continuous dynamics. The final agtstt model is ver-
ified against properties defined bylanguage using a language containment tool,
COSPAN [96]. The partition is refined manually and the prareds repeated if
the verification fails. A similar technique is used in [S56]doeck AnaCTL specifi-
cation3. However, transitions are constructed usirrcE simulations.

The simple approach for discretization proposed by Kursirash McMillan
has been generalized in thewBHECK [97, 98] tool by Hartonget al. AMCHECK
makes several improvements on Kurshan and McMillan’s aggroFirst, it uses a

1Specification languages in this section, including AnaGTLL, CTL-AT, CTL-AMS, and ASL,
will be described in Section 2.2.2.
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varied time step rather than a constant one. Second, refiriesegerformed auto-
matically on the initial uniform partitions. This proceduis continued recursively
until behaviors of every box are uniform which is defined lolasie the length and
direction of vector fields. Third, they proposed three athamns for computing the
transition relation between boxes. The first method congparteoverestimated so-
lution by interval analysis. The second approach uses ationk from a number
of test points. The method used in Kurshan's work is a speciak of this ap-
proach, which exploits the fact that the transistor draksdurce current is mono-
tonic. This is valid for the device models used in practice allows Kurshan
and McMillan to use the lower and upper corner values to bdheddynamics.
The third approach makes the second process rigorous ugisghitz constants
of nonlinear functions. However, similar to Kurshan’s wpoitkalso assumes that
the values of input signals do not change at all or changaritesheously over the
whole input value range. MCHECK converts the nonlinear analog systems to a
transition graph on which CTL specifications can be verifigte transition graph
is augmented with delay information in [81]. Therefore, gedies specified by
CTL-AT [81] or ASL [187] can be checked. A similar tool 8&HECK is imple-
mented in[126] where properties are specified by CTL-AMS.

Discretization methods leverage the extensive work in logiteg model check-
ers for digital designs. However, the number of hyper-magies in the discretiza-
tion increases exponentially with the number of dimensi®efinement strategies
increase the number of hyper-rectangles, and this incieasbe dramatic. There-
fore, discretization methods are only suitable for smatigts.

Reachability Analysis

Reachability analysisompletely explores the state space of a system by solving
both the continuous and discrete dynamics. There are two typés of analysis.
Forward reachabilitystarts with initial states and follows trajectories ford/an
time. Backward reachabilitystarts with target states and follows trajectories back-
ward in time. In this dissertation, we distinguish two diéfet kinds ofreachable
regionsthat a reachability algorithm might generatereachable seis the set of
states occupied by trajectories at some specified time, aaachable tubés the
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set of states traversed by those same trajectories ovemals in a closed or un-
bounded interval. Forward and backward versions of botbhazle sets and tubes
can be specified.

A general framework of reachability algorithms can be ai#dibased on fixed-
point computations. In each iteration, a new (forward) nedte set is computed
by applying thepost and post; operators to the current reachable Setvhere
post(S) is thediscrete successafefined as the set of states reachable by taking a
transition from a state i§, andpost(S) is thecontinuous successdeefined as the
set of states that result by letting time elapse withouedtainsitions. The compu-
tation of post; is the same as for discrete model checking. Therefore,raphvie
continuous dynamics of thgost operator is, in general, the biggest challenge and
the most expensive step of reachability analysis for caotils or hybrid systems.
Various of techniques have been proposed which will be disediin Section 2.2.4.
The reachable tube over this time step is usually overestiii@ased on reachable
setsS and post(S), e.g.,the bloated convex hull o6 and post(S). Backward
reachability analysis is performed similarly usipge. and prey operators. For-
ward algorithms terminate when no new reachable statesoaralf Conversely,
backward algorithms terminate when no further restrictiof the safety set are
found. However, termination of algorithms is not guaradtegen for highly re-
stricted models [109]. Thus, each of these algorithms naikfdr some inputs.
This failure could be a failure to terminate, an incorre¢écdon of a correct de-
sign, or an incorrect acceptance of an incorrect design. erification context,
it is important that the particular limitations of a parti@utool are clearly and
correctly identified.

There are several reachability analysis tools for systeittsa@ntinuous state
and/or time that have been developed in recent years. Wihdise tools here for
the discussion in the remainder of this chapter. Detailatufes of these tools will
be presented in Section 2.2 and summarized in Section Zl'B&se tools include
MocCHA [1€], UpPAAL [20], KRONOS[216], TAXYS [3C, 45], RED [203] for real
time systems; MTECH [104], PHAVER [70], LEMA [144] for hybrid systems
with constant dynamics, andw#eRTECH [107], /DT [4€], CHECKMATE [4(]
for hybrid systems with linear or non-linear dynamics. Ehare also several
tools that have been developed by researchers in the cammnohunity includ-
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ing VERISHIFT [31], TOOLBOXLS [159] and zonotope based analysis |77, 79].
In [7E], Frehse and Ray present a tool frameworRAGEEX, to integrate and
compare different algorithms and features. Some constba@ised solvers such
as Hv SAT [116], HSOLVER [177] have also been used in circuit verification.

Most circuit behaviors can be modeled by nonlinear dynamids non-deter-
minism as needed to account for uncertainties in the modehnpeter values, in-
put, and operating conditions; thus, reachability analkisis the potential of verify-
ing complex properties of real circuits. However, theseayits,e.g.,differential
equations, generally do not have closed form solutionsréfbee, approximation
techniques must be applied. Furthermore, reachabilitls teaffer from the state-
space explosion problem. In addition to solving complexaihgits, all model
checking methods require formal models for circuits angeprties to be verified.
Solutions to these challenges will be discussed in Sect@n 2

2.1.3 Proof-Based and Symbolic Methods

Theorem provingstablishes design properties by using formal deductisadan
a set of inference rules. In addition to deductive based ousthinduction and
symbolic based methods have also been proposed to vegyitsir In [76], Ghosh
and Vemuri used the higher-order-logic proof checker PVi&tify DC and small
signal behaviors of synthesized analog circuits. They ymece-wise linear ap-
proximation to model each component, and a subset of VDHLSARhguage to
specify properties. A similar but more elaborate approaels wken by Hanna
in [94] for digital systems with analog-level abstractiofhe circuit behavior is
characterized by conservative rectilinear [95] or pieégevinear predicates over
the voltages and currents at the devices’ terminals. Al Sane®t al. [180] trans-
formed circuits to system of recurrence equations (SRE)elyriting rules, and
proved correctness using an induction based verificatiatesty. The work was
extended in [219], where Taylor approximations and inteavithmetic were ap-
plied in a bounded model checker to generate the SRE modelaudt properties.
In principle, symbolic theorem proving methods do not suffem the state-
space explosion problem of model checking techniques. Meryveéhey require
substantial human insight and intervention. First, theyuie a formalization of
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the underlying theory. Embedding calculus including dyitansystems theory
and circuit modeling into a theorem prover would be a hugeettadting. Second,
we would still face the problem that the models do not havelsfim solutions,
i.e., most ODEs do not have solutions in terms of polynomials aedhehtary
functions. Therefore, approximation techniques must lptiegh even if we use a
theorem prover. Then, all of the questions of how to reprekigih-dimensional
regions, how to approximate solutions to ODEs, and how tcdlaeachable sets
would still apply. Furthermore, many problems are not dalgid. There is no
guarantee that a proof (or counterexample) exists, or ligathttiman and theorem-
prover can find it if does.

Discretization, reachability analysis, and theorem prgwffer three basic ap-
proaches for formally verifying properties of circuits. tims thesis, we focus on
reachability methods. We will show that by using a suitaleleresentation of re-
gions in the continuous state space, reachability compuatatan overcome the
state-space explosion problems that have restrictedetization methods to low-
dimensional models. Furthermore, reachability methodsaidface the need of
finding symbolic solutions to ODESs, and thus can be used veiditigtic circuits
more readily than the theorem proving based methods thabwedeen.

2.2 Reachability Analysis of Hybrid Systems

As described in the previous section, reachability ang)yghich models AMS cir-
cuits as hybrid systems, is a promising technique for graktircuit verification.
This section presents reachability analysis techniqudst@ls. Any verification
method must start with a model and a specification, whichstess a physical
problem into a mathematical problem. Typically, modelddon well understood
abstractions such as automata or Petri nets with extengidnsorporate continu-
ous dynamics. Section 2.2.1 examines various models thatleen developed by
the hybrid-systems community. Section 2.2.2 goes on toddspecification meth-
ods, for example, extensions of traditional temporal Isgicsystems with contin-
uous state. Most prior work has focused on verifying safebperties of hybrid
systems; this amounts to computing (over-approximatidhghe regions that can
be reached by the model. Such computations require a tfaciay to represent
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multi-dimensional regions and a way to compute the evatutibsuch regions ac-
cording to the continuous dynamics of the system. Secti@i® 2lescribes many of
the most common representations for multi-dimensionabregy and Section 2.2.4
presents algorithms for advancing these regions accotdicgntinuous dynamics.
The challenges of representing and manipulating multietisional objects moti-
vates developing methods to reduce the complexity of theetsaghd analysis.
Section 2.2.5 describes such methods. Other surveys af toohybrid systems
can be found in [22, 28, 185, 201, 221].

2.2.1 Models

This section introduces some commonly used models for thgystems, including
hybrid automata, hybrid Petri nets and transition systelisthods of extracting
continuous dynamics from circuit netlists are summarizeteaend of this section.

A formal model for hybrid systems iskdybrid Automaton (HA)9, 105]. Hy-
brid automata have several similar definitions from diffénesearch groups. In-
formally, a hybrid automaton is a finite state machine augetewith continuous
variables and dynamic equations. It consists of a graph iohwdachvertex also
calledlocation, or mode is associated with a set of ordinary differential equation
(ODEs),x = f(x), or ordinary differential inclusions (ODIs¥,€ F(x), that define
the time driven evolution, referred to este, derivativeor flow, of continuous vari-
ables A stateconsists of a location and values for all continuous vaeisbIThe
edgesf the graph, also callewlansitions allow the system to jump between loca-
tions, thus changing the dynamics, and instantaneouslyfyirogl variable values
according to gump condition The jump may only take place when variable val-
ues satisfy a certain condition, specified lyuard associated with each transition.
The modified values for continuous variables after the ttimmsare also referred
to as thaeset map The system starts from one or more locations labeleditasl
and may only remain in a location as long as the variable gaduie in a region
called theinvariant associated with the location.

Hybrid automata can be classified by their associated dysaniimed Au-
tomata (TA)[12] are a simple class of hybrid automata in which all camndins
variables have a derivative efl, i.e.,they are “clocks”.Linear Hybrid Automata
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(LHA) [100] represent dynamics using linear differential indijies of the form
Ax < b. However, TA or LHA are generally not expressive enough twueately
model systems with complex dynamics, especially nonlin&&lS circuits. A
more powerful model isinear Dynamical Hybrid Automata (LDHAWwhich has
linear dynamics, such as linear ODEs or linear differenitialusions. Nonlinear
Hybrid Automata (NHAupport arbitrary nonlinear differential equations. The
reachability problenof hybrid automata is to determine if a target state is reach-
able from an initial state. It is undecidable even for quitae automata such
as LHAs [12]. More results about decidability of hybrid autata can be found
in [109, 137, 173]. Thus, verification procedures for hykistomata must use
approximate algorithms. We examine trade-offs made in nga#tiese approxima-
tions when we describe various tools in the remainder ofchégpter.

Hybrid automata are widely used by many tools, such as TAshyNOS[57],
LHAs by HY TECH[105], LDHAS byD/DT [2£], and NHAs by OOLBOXLS [194].
Models employed by other tools are listed in Table 2.1. A ciemputomaton is
usually approximated by several simpler ones. For exanyseAAL [140] and
HyTECH [105] developed methods to transform LHAs to TAs, and PHA\[70]
approximates LDHAs by LHAs.

Several similar modeling frameworks have been used by adwlily analysis
tools. For example, the line&tybrid Input Output Automata (HIOAY4] used in
PHAVER extends LHAs by specifying some variables as inputs andutsitply-
brid Petri netscombine discrete Petri nets and continuous Petri fétsed Hybrid
Petri Nets (THPN)147] and enhancetdabled Hybrid Petri Nets (LHPN[146]
are employed in LEMA. However, rates of continuous variakite THPNs or
LHPNSs are either constant values or interval values, hyBgtti nets with com-
plicated dynamics have not been studieffansition system§l49] consist of a
set of finite or infinite states, a transition relation and taaéénitial states. They
are widely used to abstract away continuous behaviors afidhgutomata in the
abstraction-refinement strategy which will be discussefention 2.2.5. For ex-
ample, GHECKMATE [41] constructs discrete-Trace Transition System (DTTS)
from its Polyhedral Invariant Hybrid Automaton (PIHAhodel in a bisimulation

2|t is called linear hybrid systems in some papers.
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based model checking algorithm.

To model an analog or mixed-signal circuit, continuous ayita must be ex-
tracted from its netlist in advance. The first approach ieasmodified nodal
analysis For examplebond graphsare used to describe a circuit in [58], from
which ODESs can be generated automatically. Another apprisdzased on tableau
data from simulation traces. For example, LEMA us&iraulation Aided Verifi-
cation (SAV)145] method to generate LHPN models automatically. Thehoabt
partitions the state space into boxes based on user prothdesholds and calcu-
lates bounds of dynamics from the simulation d&®@eICE[193] also uses conser-
vative tables which represent the I-V relationships ofugirdevices by intervals.
The first approach is similar to the one used in simulators iangell-studied.
However, the second approach can handle uncertain inpétsy&iations, distur-
bances and noise. It is especially attractive for smallidisc For large systems, an
intractably large number of simulations are often requiedbtain a reasonable
coverage.

In summary, formal models for circuits are often constrdddg deriving the
continuous dynamics from the netlist using modified nodalysis, and then cre-
ating a hybrid automaton to partition the trajectories @& thodel into bundles
of interest. We follow this framework in our tool as shown iacBon 3.3 and
Section 4.1.

2.2.2 Specification Languages

Having examined some of the most common methods for modejibgd systems,
we now consider how the analog properties can be specifiedpdel logics are
the most popular formalism for specifying properties ofitdigcircuits, such as
Linear Time Temporal Logic (LTLBranching Time Temporal Logi@.g.,CTL).
TheAccellera Property Specification Langua(ieSL, a.k.a. IEEE P185C) [64] is a
specification language that contains LTL and CTL as subsetgsasupported by
various commercially available verification tools. Thegskte temporal logics
can be applied directly to represent properties of a hybradesn. For example,
Kurshanet al. usedw-languages to specify properties of the transition graph in
their discretization based algorithm [133]HECKMATE checks properties spec-
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ified by ACTL [40, 89], which is a universal fragment of CTL without existiel
paths.

However, conventional temporal logics are based on distiree and state and
cannot express properties with continuous variables ansedeetric time. There-
fore, several researchers have extended temporal logibgimie and real-valued
variables. Generally, timed logic is obtained by puttingigtoaints on temporal
operators to limit their scope in time. For exampgReal Time CTL (RTCTUBSZ]
uses superscripts to bound the maximum number of permiteditions along a
path. Timed CTL (TCTL)8] puts subscripts on the temporal operators to limit
the lower or upper bound of accumulated time over pathetric Interval Tempo-
ral Logic (MITL)? [123] constrains the LTL temporal operators with time intdsv
On the other hand, continuous space is supported by intinglueal-valued vari-
ables and predicates to the logic. For examplealog CTL (AnaCTL)5€] adds
propositions based on linear predicates over continuotiablas to CTL. Simi-
larly, PSL has been extended to support continuous spaceibg linear pred-
icates in the boolean layer [179]. However, these logidk sk discrete time.
Temporal logics that support both dense time and continataie space have also
been developedAnalog and Timed CTL (CTL-AT81, 98] constrains temporal
operators by intervals and expresses continuous regiolisday predicatesCTL-
AMS[125] extends CTL-AT by supporting unconstrained time (@ time interval
is [0,]) over temporal operatorContinuous-Time CTL (CT-CTI[220] extends
TCTL with predicates. Signal Temporal Logic (STL/PS[150, 152] combines
MITL with linear predicates which map analog signals to leaol variables. Fur-
thermore Integrator CTL (ICTL)[100] supports accumulated time by introducing
integrator variables. These extensions have been appligthny tools. For ex-
ample, LEMA [199] uses TCTL, MTECH [1€] and PHAWR [70] uses ICTL.
Table 2.1 on page 35 lists some of the main tools from the relsditerature along
with the temporal logics that they support.

Although these temporal logics can express many importangeties of hy-
brid systems, they cannot specify many analog propertiescttii. Therefore,
designer-oriented languages have been proposed. AnaQjpods waveform

Sltis calledMIT Liab) In SOMe papers.
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propositions by comparing signal values with referenceef@wns provided by
equations or tables generated by users. STL specifies nonsnvariables by par-
tial functions and supports operations on signals such asatenation, projec-
tion, and comparison with a reference signal. STL/PSL [188¢nds STL with
a layered approach in the fashion of PSL. It uses an anal@y tayreason about
continuous signals directlyMixed-Signal Assertion Language (MSALBE] is
based on PSL and supports digital, analog and software piegeHowever, these
languages are for assertion based verification and onlyr siyeal-based proper-
ties. TheAnalog Specification Language (ASL87, 189] is designed for describ-
ing properties of analog systems over a continuous regiat.akR operator and
a bounded region, it applies the operator to every point énrtfgion and calcu-
lates the range of values based on interval arithmetic.sti alipports operations
such as derivative computation, oscillation and starthme t It is compatible with
CTL-AT and has been implemented ilV&HECK.

There are some other methods, suchiragd regular expressiof21], and the
method proposed in [74] which constructs a LHA for a propeHypwever, most
specification techniques are still based on temporal lodiigital temporal logics
have been extended to express properties of real-timensydiat are not yet pow-
erful enough to express most properties of interest for AM&iits. For example,
we are not aware of any specification approaches that faenfikkquency domain
properties which are very important for circuit analysisamy of these extended
logics are for signal-based properties and thus cannot pkedpto reachability
analysis based verification directly. It is still a major biage to make the analog
verification as fully automated as the current state of thimadigital model check-
ing tools. Furthermore, temporal logics are not familiantost circuit designers.
Therefore, more expressive designer-oriented languagesaded.

2.2.3 Representation Methods

Given a mathematical model and a formal specification, r&zitity analysis com-
putes reachable regions according to the model and cheakghise regions sat-
isfy the specification. This requires techniques to represailti-dimensional re-
gions and algorithms to compute the evolution of these regaccording to the
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a. polytope b. convex polytope

g. orthogonal polyhedra h. zonotope i. ellpsoid

Figure 2.1: Representation Examples

model. In this section, we describe approaches to reptiagemiulti-dimensional
regions, and Section 2.2.4 examines algorithms for comgutachable sets ac-
cording to continuous dynamics.

The representation of regions in continuous state spaagsiétal for reach-
ability algorithms as it usually determines the efficiendyatgorithms and ac-
curacy of results. This section describes several commasdy representation
methods along with operations on them. We first explore gégniiased meth-
ods, including polytopes which have the advantage of acgutgyper-rectangles
or intervals aimed to maximize efficiency, zonotopes whigh@osed under sev-
eral important operations, and ellipsoids. Figure 2.1stHates these methods by
a simple two-dimensional example. We then examine some aljentata struc-
tures, including widely used BDD-like structures and supfenctions. The op-
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erations used in reachability analysis include union,rggetion, and intersection
with hyperplanes. Some reachability algorithms also meqthie Minkowski sum
operation. The Minkowski sum of two sefsand B in Euclidean space is de-
fined as the result of adding every element of A to every el¢mERB, i.e., the set
A®B={a+blac Abec B}. The selection of a good representation depends on
reachability algorithms, complexities of dynamics, tradieof performance and
accuracy, and so on. Exact representation is generallyssiigle due to the com-
plexity of the geometry or dynamics. Therefore, approxiorais widely used. For
many reachability analysis algorithms, the errors fronrapimating the reachable
region accumulate over successive time steps of the cotigutd his is known as
thewrapping effect

Polytopes

Polytopescan represent a bounded convex or non-convex region wiitraaily
small errors. However, the space and time complexity ofatpmrs on non-convex
polytopes are generally exponential with the number of dsiens. Therefore,
convex polytopeare used in practical tools. There are two commonly useafepr
sentations for convex polytopes: thequality representatioand theframe rep-
resentation The first approach represents a half-plane by a linear algguthus
some operations such as intersection can be implementei@efiiy by manipulat-
ing system of inequalities. The second approach repreaaribject by points and
rays and has other efficient operations such as convex h@hslations between
these two representations can be computed by severalthlgsr[39, 143].

Convex polytopes are generally used to represent reackaldefor TAs or
LHAs which have exact reachability algorithms. Botty HEcH and PHAWER
employ convex polytopes, furthermorey ECH also supports unbounded regions
by widening[9] or extrapolation[102] techniques. MTECH uses Halbwachs’ li-
brary 92, 93] for polytope operations which uses limitedgision rational num-
bers. Therefore, MTECH suffers from the overflow problem. To overcome the
limitation, PHAVER uses the Parma polyhedra library [27] which supports arbi-
trary precision rational numbers. For more complex dynairggstems, reachable
regions cannot be represented exactly and the wrappinct efigst be considered.
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CHECKMATE developed dlow pipe representation [41], which is essentially a
convex polytope with the inequality representation, toreygproximate reachable
tubes estimated from simulation traces. It avoids the wrepeffect by restarting
simulations from initial regions in each step.

When a system has non-linear dynamics, a line-segment cdweeo a more
general curve. Accordingly, polytopes are not closed umdeiution with non-
linear dynamics, and approximations must be used. In gli@cthese approxima-
tions can be made arbitrarily precise by using a polytopé weiiough faces, but
the space and time required to represent and operate upbmsiytopes quickly
become intractable.Template polyhedrdl81] have been proposed to limit the
complexity of reachable sets. These are polytopes whosgidtites have fixed
expressions (template) but with varying constant termsrdfore, the number of
faces of a template polyhedron does not increase with ssigegiime steps. How-
ever, it can produce large approximation errors, and it isalenging problem to
find a good templatft

Rectangles

Polytope-based representations are accurate but expersithe other extreme,
thehyper-rectangleepresentation optimizes performance at a cost of largeapp
imation errors. The space complexity of hyper-rectangdiméar with the number
of dimensions, and the time complexities of operations opehyectangles are
typically small. Many interval arithmetic algorithms usgdrval-valued variables
where the valid solution is equivalent to a hyper-rectangler example, MPER-
TECH [107] uses an interval based ODE solvery $AT [6€] also applies interval
arithmetic to solve nonlinear constraints and ODEs.

Several variations of hyper-rectangles have been dewltipenprove accu-
racy. D/DT developed techniques based on orthogonal polyhedra [38o@onal
polyhedra represent a region as the union of a finite humbeniéérm or non-
uniform hyper-rectangles. This representation allowgraily small approxima-
tion errors by using sufficiently small hyper-rectanglas,the number of rectangle
needed to represent a region grows rapidly with decreasipgrirectangle size.

“Flow pipes are essentially template polyhedra where theltmis computed from simulation
results.
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The Oriented Rectangular Hull (ORH)epresentation [191] reduces approxima-
tion error by rotating a rectangle to an orientation thathiesen according to the
dynamics of the system. The space complexity of ORH is quiadséth the num-
ber of dimensions. However, ORH is not closed under oparatsuch as union
and intersection. Théace region[167, 172] representation over-approximates a
n-dimensional region by the convex hull of a set(of-1)-dimensional hyper-
rectangular faces with one dimension fixed to a constantvalu

Zonotopes

A zonotope is a polytope which can be represented as the Mskisum of seg-

ments. The order of a zonotope is defined as the ratio of théeuonf segments
to the number of dimensions. Particularly, a hyper-rede2ig a special zono-
tope with order 1. Zonotopes have many attractive featUrast, they are closed
under linear transformations and Minkowski sum operati@msl there are effi-
cient algorithms for implementing these operations. Ségctre representation is
very compact. However, zonotopes have two main drawbadkst, Ehe order of

zonotopes increases after each Minkowski sum operationeduce the order of a
zonotope, an efficient algorithm was proposed in [77] to coi®mjn approximation
of the zonotope. However, the approximation causes wrapgfiect errors. Sec-
ond, itis expensive to compute the intersection of a zoretop a hyperplane. An
efficient approximate algorithm was proposed in [78] by ecting the zonotope
onto two-dimensional planes.

Ellipsoids

A promising representation from the control communityelBpsoids [134]. A
d-dimensional ellipsoid is specified by a center point andliesxis vectors. Al-
gebraically, an ellipsoid can be described as the set ofailitpx satisfying:
xTAx < 1. This is similar to an oriented hyper-rectangle that caey@essed by
systems of inequalitiesAx < 1. Like the ORH representation, the space com-
plexity for the ellipsoidal representation is quadrati¢tia number of dimensions,

5More generally, zonotopes of order 1 are the set of parallsels.
6The mathematical form" Ax < 1 is for ellipsoids centered at the origin; a more generahfisr
(x—xc) TA(X—xc) < 1.
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and the time complexity of ellipsoidal operations is alstypomial. Furthermore,
a reachable region can be approximated with an arbitranigliserror through

intersection (union) of a family of external (internal)ip#ioids. Operations on
ellipsoids are implemented in the Ellipsoidal Toolbox [188d in 31].

Symbolic Data Structures

In addition to geometry based representations, symbatictfons have also been
used in reachability analysis tools. For exampleOLBoxLS uses implicit sur-
face functions to represent sets [161]. An implicit surfawection for a subset of
a given state space is a scalar function defined over theeesttite space whose
value is negative inside the subset, positive outside, @&nd an the boundary.
Implicit surface functions can represent sets with an iotexactly; however, rep-
resentation of the implicit surface function itself oftequires an amount of data
(e.g.,function values on a grid) which increases exponentiallhwdimension. A
support function90], employed in the BACEEX tool, is a function that bounds
the maximum value on all possible directions. They can aTEa convex set
with arbitrary precision and have efficient algorithms faran, Minkowski sum as
well as affine transformation operations. However, it lagk®fficient intersection
operation. An over-approximation can be computed baseti@priojection con-
cept [90] which is similar to the algorithm for zonotopas]78he well-developed
BDDs and BDD-like structures are also used in reachabitigiysis tools, includ-
ing Difference Bound Matrices (DBMg$146] in LEMA, Multi-Terminal BDDs
(MTBDDs)[126] in MscHECK, Clock Difference Diagrams (CDD4$2C] in Up-
PAAL, Clock Restriction Diagrams (CRD$200], and Hybrid-Restriction Dia-
grams (HRDsJ202] in RED.

Summary

The choice of representation for reachable regions ha®agstmpact on the ef-
ficiency of analysis techniques. Prior representation® havious trade-offs be-
tween the complexity of the model and the number of dimerssadra region that
can be efficiently represented. To support complicatedslim@ar dynamics, these
methods are restricted to low-dimensional models. Coelgrsome represen-
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tations such as zonotopes [79] and support functions [71¢ leeen used with
higher-dimensional models, but these applications haes bestricted to linear,
and piecewise-linear models. Furthermore, most prior austitan only represent
convex regions. The exceptions to this are level sets arldctioins of hyper-
rectangles that are only practical for representing lometisional sets. The tra-
jectories that arise from circuit models are often roughlgédrbolic, and this gives
rise to non-convex reachable regions, where the non-cdgniexcritical to verify-
ing the circuits. There remains a need for ways to represedemate-dimensional
(e.g.,ten to twenty dimensions), non-convex regions with nomingynamics.

2.2.4 Solving Dynamics

One of the most challenging aspect of computing reachagleneg is solving con-
tinuous dynamics. Commonly used dynamics for hybrid systeciudeOrdinary
Differential Equations (ODEs)Ordinary Differential Inclusions (ODIs)Differ-
ential Algebraic Equations (DAEs)Nnd Difference Equations (DEs) Usually,
ODEs are used to describe deterministic dynamics; and O®lssed to describe
non-deterministic dynamic®(g.,inputs, and noise) or to conservatively approx-
imate complicated dynamics. DEs are used for discrete-igséem and can be
solved easily in many cases. DAEs are generally solved Imgfivaming them to
ODEs, for example, they are converted to the semi-expbicinfin [50]. Therefore,
this section focuses on computing the forward reachableas(S) as shown in
Section 2.1.2 with dynamics modeled by ODEs or ODIs.

ODEs includeclock ODEsof the formx = 1, constant ODE®f the formx = c,
linear ODEsof the formX = Ax+ b, andnonlinear ODEsof the formx = f(x).
Two commonly used ODIs areonstant ODIsof the formX € [¢,cp] or AX < b
andlinear ODIsof the formx € Ax+U, whereU is a set or region used to model
uncertainty, non-determinism or errors. Table 2.1 on pdsjdisds the forms of
dynamics supported by many of the tools reported in the resdaerature. We
first describe reachability algorithms for constant dyrantiriefly as they can be
solved efficiently and exactly. We then describe methodsdtvring linear ODEs
or ODls, including theoptimal controland theMinkowski summethods. We focus
on nonlinear ODEs because they are used to model AMS circlite survey
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related technigues to compute approximated solutionkjdirey hybridizationand
level sets

Constant ODEs and Constant ODlIs

Mathematical solutions exist for some simple dynamicsluiiog clock ODEs,
constant ODEs, and constant ODIs. Therefore, reachabilensegre generally
computed exactly for TAs and LHAS by either symbolic mangpiain or geometric
operations. Model checking algorithms for TAs and LHAs carfdund in [8, 110,
112, 201] and are used in several tools includingPllaL [139], KRONOS[32],
LEMA [198, 199], HY TECH [122], and PHAWR [73].

Linear ODEs and Linear ODIs

The solution of a linear ODEx = Ax, is x(t) = €*x(0). However, the problem

of finding reachable sets for ODIs is more difficult. The chiadje lies in the un-
certainty setJ. Typically, U has the form of a hyper-rectangle or other convex
polytope. The vertex df) that leads to an extremal trajectory can change during
a time-step. Exact computation of the extremal trajecsoisedifficult; thus, prac-
tical tools use various forms of over-approximation. Tw@m@aches have been
developed for computing a conservative approximaRarf forward reachable set
with linear ODIs. The first methodyptimal contro] is based on the maximum
principle of the optimal control theory [197]. This methodds the optimal input
u*(t) which leads to the boundary &and numerically computes the integration.
The optimal input for a hyperplane with normal vectbis a functionu*(t), where

at timet, u*(t) is a valueu € U that maximize='td - u. The second method is
based oMinkowski sunand approximates the reachable region by the Minkowski
sum of a regiorR and an error regiofE as the equatiol® € R& E. The region

R is computed using the autonomous dynamics Ax (i.e., R.1 = "R} and

the error regiorE accounts for the influences of inputs or disturbances. The er
ror region can be bounded using error analysis. For exarfmleany nonlinear
ODE with Lipschitz constant, the radiusr of the error regiork is bounded by
r=||[R-R[| < 5(e-% —1), p=maxey ||ul|, which is proved by the fundamental
inequality theorem from the theory of dynamical system3.[23
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An example of the first approach is tbéDT tool [197]. It assumes the uncer-
tain setU is a bounded convex polytope and finds the optimal input Balirpro-
gramming. The zonotope based methoc! in [77] uses the Mirkasusn method.

It constrains seU as a hyper-rectangle, and approximates the error regias
a hyper-rectangle and consequently a zonotope with radiug%t“‘lu. Based
on this method, a reachability algorithm was developed 8 {¥hich is free of
the wrapping effect. VERISIFT also employs the Minkowski sum approach and
approximates the error regida using the Hausdorff semi-distance of reachable

sets [31].

Nonlinear ODEs

Unlike linear ODEs, nonlinear ODEs do not, in general, haesed-form solu-
tions; thus approximation techniques must be applied. Fijigidizationmethod
partitions the state space into small regions and boundsahinear dynamics by
simple ODIs in each region. Thaet integrationmethod extends numerical inte-
gration to reachability analysis by interval arithmetiadaraylor expansion. The
constraint base@pproach transforms ODESs to constraints which can be sblyed
constraint solvers. Other methods sucleas! setflow pipeand methods for some
special classes of nonlinear ODEs are presented at the ¢hig s&ction.

The idea othybridizationis to (over-)approximate complex dynamics by sim-
pler ones which can be solved efficiently. The approximai®mralculated in
a small region in order to obtain small error. Therefore, higbridization pro-
cedure usually consists of two steps: partitioning theesgmtace of the system
into small regions, and computing an (over-)approximatiérihe solution. Of-
ten, the state space is discretized into disjoint regionsh s hyper-rectangles
or simplexes [24]. To obtain a conservative result, noalin®@DEs are over-
approximated by ODIs. The commonly used ODIs are constans@bDlinear
ODlIs, which can be solved as described above. As the methedésl on discretiz-
ing the state space, refinement strategies can be appliedalyl the dynamics of
the approximated system changes when moving from one régemother. There-
fore, the intersection of reachable sets and the regiondasymust be computed
as the initial set for the reachability computation in thetnegion. Dynamic hy-
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bridizationwas presented in [51] to avoid possibly expensive inteis@computa-
tions. Rather than partitioning the state space into disti#gions, this method gen-
erates overlapped regions. However, it may compute a forveschable set twice
with different approximated dynamics in two adjacent regioThe hybridization
approach has been applied in several toole.T developed two classes of approx-
imate systems: the piecewise affine [23] system based oresimggions and the
piecewise multi-affine [24] system based on hyper-rect@amgegions. In[53],
the orientation of simplex regions is adapted to achieveebétme efficiency for
affine hybridization. The idea of constructing hybridipatidomains bases on the
dynamics has been extended to more general nonlinear dgmamj55]. D/DT
also presentedface liftingmethod [52] which calculates the maximum derivative
of the nonlinear dynamics in a small neighborhood of eack fafcan orthogo-
nal polyhedra. Constant ODIs are applied in PH&RV7C], HY TECH [105] and
LEMA [148].

Set integratiorcomputes all possible trajectories from a set of initianp®by
using intervals to represent the initial points and usingriral arithmetic through-
out the algorithm. ADIODES [186] used inHPERTECH [107, 174] is an example
of this approach. ADIODES approximates a nonlinear ODE hpguéts Tay-
lor expansion with its remainder. The wrapping effect is doses problem for
interval-arithmetic based methods such as set integration

Closely related to set integration agzenstraint-based methodslere, the ap-
proach is to represent an integration algorithm by a sefie®iwstraints. Then,
properties of trajectories can be verified by solving thest@int systems. For ex-
ample, Hickeyet al. [118, 119], developed th€onstraint Logic Programming
(Functions) (CLP(F))which combines constraint languages programming with
interval arithmetic. It transforms ODEs to constraintsdsh®n Taylor expan-
sions. HSOLVER [177] converts nonlinear ODEs to constraints without défe
tial operators. N SAT [62] integrates set integration and CLP(F) methods into
its iISAT [65, 66] constraint solver. As with set integratidhe constraint solvers
rely on interval arithmetic for much of their computatiomdathese methods suffer
from serious errors due to the wrapping effect.

There are several other approaches for solving nonlineaeODThelevel
set[161] method solves nonlinear ODEs based on the theorenthbatolution
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of a particular Hamilton JacobidPartial Differential Equation(PDE) corresponds
to the boundary of the reachable region of a nonlinear ODRvever, PDEs are
even more difficult to solve than ODEs, and the number of gaduhts increases
exponentially with the number of dimensionsHECKMATE developed thdlow
pipetechnique based on simulations. It samples several paoitkeiinitial region,
runs simulations from these points until time poitdsndtc, 1, and computes a
convex hull of all simulation points. To contain the realaleable tube, the convex
hull is bloated outward. The bloat distance is bounded bgreanalysis assum-
ing the ODE is a Lipschitz continuous function [40, 42]. Thigproach is free of
the wrapping effect and allows parallel simulations. Hogrethe bloat distance
is largely over-estimated, and the approximation erroreiases rapidly with the
number of system dimensions. Several techniques have lexefoded for some
special forms of nonlinear ODEs. For example, a projectaseld method was pro-
posed in [24] to solve multi-affine systems. Polynomial sygst are solved in [49]
by using Taylor expansions in the integration. There are stsne techniques to
analyze properties of nonlinear dynamics, such as bareigificates [170], poly-
nomial invariants [192] and Lyapunov functions [36, 128].

2.2.5 Reducing System Complexity

In order to apply reachability analysis to high-dimensipmanlinear hybrid sys-
tems, it is important to reduce system dimensionality amddbmplexity of the
system dynamics. There are two main approaches, naabstyactionandmodu-
lar analysis

The abstractionmethod maps a given model into a less complex model that
retains the behaviors of interest. It is usually based omlatract-verify-refine
paradigm: build an abstract model, compute transitiond,ciueck desired proper-
ties; if the abstract model is too coarse to analyze the fipegiroperties, it can be
refined, and the checking process is repeated. The abstratép tries to trans-
form an infinite state system into a finite state system by gjrautogether states
that have similar behaviors. Such a grouping of states isllysmplemented based
on partitioning the state space into hyper-rectangles][&77egions according to
a set of predicates [11]. The computation of transitionsvbeh abstract states is
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generally based on reachability analysis as describedahdde2.2.4. For exam-
ple, CHECKMATE [41] uses the flow pipe method to compute over-approximated
guotient transition systemis each iteration of its modifiethisimulation proce-
dure algorithm [99, 136]. Other examples are available in PHA73] and
D/DT [11]. Lazy abstractionwas proposed in [108] which builds and refines an
abstract model on demand to improve performance. One frankegf lazy ab-
straction isCounterexample Guided Abstraction Refinement (CEG#AR)h has
been extended to hybrid systemsin [44]. CEGAR has beeneaapii CHECK-
MATE [190], PHAVER [73] andD/DT[10].

Modular analysisor compositional reasoning a divide-and-conquer mecha-
nism for decomposing a verification problem of a large sysit@im subtasks for
each individual component of the system. Modular analysisrénes parts of the
system and verifies properties of the entire system in a dieduway. A partic-
ularly effective form of compositional reasoningAssume-Guarantee Reasoning
(AGR) which analyzes a subsystem using the specification of aystdms as an
assumption that can be made about its behavior when vagifytimer subsystems.
AGR has been studied in [15, 111, 114, 115] and applied in PER67, 72].

2.2.6 Summary and Reachability Analysis Tools

This section presented the four main challenging problérasrust be addressed
in the design of a reachability analysis tool: 1) constngrtmathematical models
for the system to be verified; 2) formally specifying the pmudjes to be verified,;
3) representing reachable regions and 4) solving nonlidgaamics. We explored
the prevalent techniques for these four problems and asemisiied methods to re-
duce system complexities. Representing reachable regimhsolving continuous
dynamics are crucial when performing reachability analgdicomplex systems.
Many representations of multi-dimensional regions havenh@oposed based on
geometric objects and symbolic functions. However, moghem do not work
efficiently for systems with more than three dimensions, #ey do not address
the problem of representing non-convex regions. There @&elyvused methods
to solve linear ODEs and linear ODIs, whereas approximagchniques such as
hybridization must be applied to solve nonlinear ODEs. Ikenmnore, standard
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mathematical models for circuits and their properties amessary to apply reach-
ability analysis tools to verify AMS circuits. Hybrid aut@ta are a widespread
formal model for hybrid systems, and there are general ndsthmextract contin-
uous dynamics from circuit netlists. Discrete temporaidediave been extended
to continuous domain. However, there remains much work tddoe to develop
a logic that can express the full range of properties needednalog designs, and
can be integrated in reachability algorithms.

This section described techniques of many reachabilitlyaisaools. We sum-
marize features of these tools/in Table’2.Tools for real-time systems are well-
developed, including McHA [1€], UpPAAL [20, 29], KrRONOS[57, 216], and
RED [200, 202, 203]. These tools typically model systemsaisiock variables
and timed automata, specify properties by timed tempogit$oe.g., TCTL),
and represent reachable regions by BDD-like structuresadtiition to verifica-
tion, they usually also support simulation, parametriclysis, counterexample
generation and so on. YTECH [103, 107, 113] (The HYbrid TECHnology Tool)
is one of the earliest tool for hybrid systems modeled by LHAsvas devel-
oped by Henzingeet al. The earliest prototype was implemented based on sym-
bolic computation in MTHEMATICA [1€]. The second version [101] represented
reachable regions by convex polytopes to improve perfoomarThe third ver-
sion [103] reimplemented the whole system in C++. It washirtextended to
support nonlinear dynamics based on interval ODESs solvetyaE=RTECH [107].

In this dissertation, the term “HyTech” is used to refer te third version unless
otherwise stated. It also supports parametric analysisdéaghostic error gen-
eration [105]. However, it is limited to simple.@.,linear and low-dimensional)
hybrid systems because it uses limited precision ratiomalbers for exact compu-
tation. To solve the overflow problem, Freheteal. employed arbitrary precision
rational numbers and implemented the PH&R/[6E, 70] tool. They also imple-
mented a separate engine for assume-guarantee reaso®j 26 LEMA [144]
(LHPN Embedded/Mixed-signal Analyzer) is a verificatiooltspecified for AMS
circuits developed by Scott Littlet al. It models AMS circuits as Petri net based
models which are compiled from VHDL-AMS codes or generatedifsimulation

"Details of our tool @HO will be presented i1 Chapte’ 3 and Chapter 4.
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Tool Model Spec Representation | Linear Nonlinear Reduction Others
MOCHA Reactive ATL [17] BDD clock ODEs [13] AGR [114] diagnostic trace [2.8]
module [14]
UPPAAL TA [140] TCTL [29] CDD [20] clock ODEs diagnostic trace [20]
KRONOS TA [57] TCTL [216] symbolic [32] clock ODEs forward & backward
[216]
RED TA [201], | TCTL[204] CRD [200], | constant ODIs parametric analysis o
LHA[202] HRD [202] LHA[203]
HYTECH LHA [LOE] ICTL [1€] symbolic [16], | constant ODIs| hybridization diagnostic error, para;
convex polytope| [100] [105] metric analysis [103]
[102]
PHAVER linear HIOA | ICTL [70] convex polyhe-| constant ODIs| hybridization flb  refinement| same algorithm with
[74] dron [70] [7C] [70] [7Z], AGR | HYTECH
[67,72]
LEMA THPN TCTL [199] DBM [14€] constant ODIs| hybridization SAV [148]
[147], [144] [148]
LHPN [146]
HYPERTECH | NHA[107] ICTL [1€] interval [107] set integration extension of WTECH
[107]
D/DT LDHA [25] orthogonal poly-| linear ODIs | hybridization CEGAR 10]
hedron [33] [197] [25, 24], face
lifting [52]
CHECKMATE | PIHA, ACTL [4C] flow pipe [41] linear ODEs[42] | flow pipe [40, | CEGAR 190]
DTTS[41] 42]
VERISHIFT | LDHA[31] ellipsoid [134] linear ODIs [31]
Zonotope LDHA[79] zonotope [77] linear ODIs [77]
SPACEEX LDHA [75] support  func- development platform
tions [75]
TooLBoOXLS | NHA [194] level set [161] level set [161]
HY SAT NHA [11€] interval [66] constraint based BMC [65]
[62]
HSOLVER NHA [177] interval [176] constraint based abstraction
[176] refinement [177]
CoHO NHA Brockett's projectagon linear ODIs hybridization AGR
annulus, LTL

Table 2.1: Comparison of Reachability Analysis Tools



traces automatically. It implemented three engines: a DBSED model checker,
a BDD based model checker and a SMT based bounded model chédkese
tools (.e., HYTECH, PHAVER, LEMA) support constant dynamics directly and
nonlinear dynamics by hybridization.

More complicated dynamics are supported t\pT, CHECKMATE, VER-
ISHIFT, TOOLBOXLS, SPACEEX, etc. D/DT [23, 48] is a reachability analysis
tool developed originally by Thao Dang. It represents raht# regions by or-
thogonal polyhedra and solves linear ODIs by the maximumcsle method and
nonlinear ODEs by face-lifting. Later extensions includgort for hybridiza-
tion [23, 24] and CEGAR [10, 11]. @eckMATE [40, 184] is a Matlab based tool
for modeling, simulating and verifying properties of noar systems, developed
by Krogh et al. It models systems by PIHAs, which are converted to tramsitio
systems by a modified bisimulation procedure, and appliefiolv pipe technique
to estimate transitions between abstract state®I'BOXLS [159, 161] is a MT-
LAB toolbox for level set methods, developed by Mitchell. Itnegents reachable
regions by level sets and solves nonlinear ODEs directly diwerting them to
PDEs. VERISIIFT [31] is a bounded time reachability analysis tool for LDHAs
and represents reachable regions by ellipsoidsac8EXx [7£] is a development
platform from Verimag labs on which several different veation algorithms are
implemented. The current implementation includes the PHR¥cenario which
uses the PHA¥R algorithm and the LGG scenario which computes reachalde set
of linear systems using support functions.y 8hT [62, 66, 115] is a satisfiabil-
ity checker for nonlinear arithmetic constraints and a lstmeshmodel checker for
hybrid systems. SAT solving techniques and interval-bas@timetic constraint
solving have been integrated in its iSAT algorithms&lveER[176, 177] is a sim-
ilar verification system based on the constraint solvepR/ER [175].

2.3 Verified Circuits

The verification methods and tools presented in Sectionrd1Ssection 2.2 have
been applied to verify some circuit examplas. Table 2.2 sarimas these exam-
ples. In short, equivalence checking and proof-based rdsthave only been ap-
plied to verify simple circuit elements, such as NAND gat®&84] and TTL logic
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gates [95]. Simulation based tools includir§PicE and AMT have been applied
to relatively larger circuits such as the DDR2 memory irgeef [130], and the
Rambus ring oscillator (RRO) [193]. Both discretizatiordamachability analysis
are restricted to simple circuits.g.,2-3 variables) and simple properties. To show
the capabilities of these verification methods, we desc¢hbdour, simple circuits
that have been widely used as benchmarks by researchers farthal methods
community: a> — A modulator AZM), atunnel diode oscillator (TDQ)avoltage
controlled oscillator (VCO)and abiquad lowpass filter (BLF)

2.3.1 AA -3 Modulator

1 » »
v
z-1

Input 1-bit Quantizer Output
(Oversampled Signal)

Figure 2.2: The First OrdeA — =~ Modulator

Figure 2.2 shows the block diagram of a first orfler~ modulator AZM) [26].
The AZM is an analog-to-digital converter circuit which takes awalag value as
input and encodes it into a digital value. The differenceMeen analog and dig-
ital values is called the quantization error. The modulatees anntegrator to
sum the error based on a feedback loop. When the accumulatedreaches a
certain threshold, the quantizer switches the value of thput. Theorder of the
modulator is given by the number of integrators it uses. &Hategrators and
feedback loop perform noise shaping that moves most of tl@tation error
out of the frequency range of interest. Thus, higher-ordeduttators can achieve
a desired resolution with a lower sample rate (or higherlogisn with the same
sample rate). However, they can bestable One form of this instability is that
the integrator output values can exceed their specifiederaBgch saturation can
compromise the quality of the analog-to-digital convemsio

Ignoring noise, PVT variatioretc, an ideal model of thé&>M circuit is lin-
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Method Tool AXM TDO | VCO | RRO | BLF | PLL | Others
Non-Formal FSPICE [193] | [193]
AMT DDR2 [130], flash mem;
ory [163
Others [43, 127, 179]| [220] [60]
Equivalence bandpass filter [188]
Checking NAND [18€]
Discretization | AMCHECK [97] | [187] [97] Schmitt trigger [189], ampli-
fier [189], charge pump [137]
MSCHECK [125] [125]
Others [56] arbiter [133]
Reachability | KRONOS half [34], a 4-input cir-
Analysis cuit [153], XOR, 4-input
AND [35]
PHAVER [73] | [73]
LEMA [144] [144] [144] | integrator [144]
D/DT [50] [50]
CHECKMATE | [91] [91]
Theorem [180] telephone  receiver | [76]
Proving TTL [95], Colpitts oscilla-
tor [218]

Table 2.2: Verified Circuits



ear and all dynamics are monotonic functions. Therefore,etkireme value of
integrators can be found by considering finite number of @ooases. Computing
worst case trajectories is an optimization problem. In [Bnget al. modeled a
third-order modulator as a discrete-time hybrid automatih four variables and
checked the stability problem using mixed integer lineagpamming. Their re-
sults show that the modulator circuit is stable up to 30 stepsome input signals
and initial states. In [91], Guptet al. studied the same problem using a reachabil-
ity analysis approach by applying a discrete-time versfdth®@CHECKMATE tool.
They reported initial conditions and input values underchitsaturation levels can
be reached. In [222], a method was presented for boundingttte variables
of a second ordeAZM. The method uses a piecewise-affine equation to model
the circuit, employs polygons to represent circuit statwsl finds an invariant set
in state-space using either an analytic or algorithmic e@gin. Symbolic meth-
ods have been applied to prove the stability of the circufirat counterexamples

in [180]. The modulator circuit has been used as an exampieaofy simulation-
based methods. For example, Sammeinal. applied their symbolic monitoring
algorithm [179] to the third-order modulator and Jesseal. applied assertion-
based verification to the first order modulator. In [43], €&et al. applied their
random input generator to the third-order modulator andsoneal the probability

of stability failure within a bounded time.

2.3.2 A Tunnel Diode Oscillator

Figure 2.3 shows the tunnel-diode oscillator (TDO) cirtliét has been studied by
many verification researchers. It consists of a capacitomaductor, and a tunnel
diode. An ideal LC oscillator can oscillate forever if thetia current through
inductor or voltage across the capacitor is non-zero. Hewekie parasitic resis-
tance of the inductor makes the oscillation decay expoalntiThe tunnel diode
compensates for the parasitic resistance because it hasveegsistance charac-
teristics at low voltages. As shown in Figure 2.4, the curtbrough the tunnel
diode decreases as the voltage is increased in its negesigance region.
Oscillation conditionsof oscillator circuits refer to all conditions that ensure
the circuit oscillates stably. These conditions includewt parameters and ini-
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tial node voltages. The circuit can be modeled by a two-tdgiaystemj.e., the
voltageV, across the capacitor and the currgnthrough the inductor. All DC
equilibrium points can be computed based on the |-V charatite of the tun-
nel diode and the inductor. Then two simulations can bouradsthble oscillation
region because trajectories cannot cross and there is ntichahaviors in a two-
dimensional system. Figure 2.5 shows the equilibrium paive stable orbit and
two simulations: a trajectory spiraling out from near thaiélgrium point, and one
spiraling in from outside of the stable orbit.

Reachability regions of the TDO circuit have been computed lacHECK [97],
PHAVER[73], CHECKMATE [91], and LEMA [144]. The stable oscillation prop-
erty can be verified by checking whether the curtenycles above an upper bound
and below a lower bound periodically. In [97], Hartosital. applied AMCHECK to
find an invariant set that contains the oscillation orbit. tmother hand, Eeck-
MATE combined reachability analysis over finite time horizon ayapunov func-
tion to show the stability over infinite tima [91]. A conditiovhere the oscillation
may die out was also found. In [220], Za&i al. checked the property by mon-
itoring circuit behaviors generated by an interval basetuitor. Hr TECH can-
not complete the verification due to arithmetic overflow esid44]. Two further
properties were studied by Frehseal. [732]. They used a monitor automaton to
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stable orbi

Figure 2.5: Simulations of the Tunnel Diode Oscillator

measure cycle amplitude variations and period jittersrdutine reachability com-
putation in PHAWER. However, this makes the reachability computation much
slower (> 20x) and there is no jitter in the simple circuit model which does
include noise. A forward/backward refinement strategy Wa$ used to reduce
the memory usage, but this increases the running time furthe

2.3.3 \oltage Controlled Oscillators

A voltage controlled oscillator (VCO) is an oscillator wigosscillation frequency
is controlled by a voltage input. Two kinds of VCOs have beensidered in the
formal verification literature: differential, LC VCOs5 (Rige 2.6, Figure 2.7) and
RC ring VCOs (Figure 2.8, Figure 2.9). The differential VC&e constructed us-
ing a parallel inductor and capacitor combination whosecidamce is very large at
the resonant frequency. The MOSFET transistors form twerievs in a positive
feedback loop, and the circuit will oscillate at a frequertyse to the resonant
frequency of the inductor and capacitor if the gain of theiters at this frequency
is sufficient to overcome the parasitic losses of the reshefcircuit. The capac-
itances are controlled by an input voltage which changegdkenant frequency
and hence the oscillation frequency. The ring VCOs are bareal ring with an
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Figure 2.8: A Opamp-Based VCO Figure 2.9: A Ring VCO Circuit
Circuit (Fig.4 of [187]) (Fig.3 of [56])

odd number of inverters. The oscillation frequency is aaigd by changing the
delay of the inverters by adjusting their output current.

The differential VCO as shown in Figure 2.6 has three cootiisuvariable®
and its dynamics is less contractive than the TDO circuier€fore, the reachabil-
ity computation of this VCO circuit is more challenging. Fo@ample, PHAER
failed to find an invariant set because of large over-appnakon error [73]. To

8There are four variableslp,, Vp,, I, andly, in Figure 2.6. Noting the sum df, andly, is a
constant valudy, the circuit can be modeled by three-state equations.
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solve the problem, Frehsst al. developed an abstraction-refinement technique
which performs forward as well as backward reachability eefthes models in a
smaller region if the verification fails=SPICE has been applied to simulate a sim-
ilar differential VCO as shown in Figure 2.7 and analyze theiltation frequency

by periodic steady state analysis. Discretization metihess been applied to ring
VCOs. In [187], Steinhorset al. applied their AMCHECK tool to compute the
period of the VCO circuit as shown in Figure 2.8. Similarlyaddidaret al. ap-
plied discretized models and showed that the circuit in FEidu9 oscillates when
parameter values such as transistor widths have apprepahies.

2.3.4 A Biquad Lowpass Filter

Figure 2.10: A Second Order Biquad Lowpass Filter

Figure 2.10 shows a biquad low-pass filter which consistsnobgerational
amplifier and a feedback capacitor. The dynamics of the itieme not linear,
thus, nonlinear models, corresponding to saturating tleeadipnal amplifier out-
put voltage and current capabilities, must be applied iriot accurately analyze
the circuit. However, from the transfer function of the aitcit is easy to see that
the circuit passes low-frequency signals but attenuatgsals with frequencies
higher than its cutoff frequency.

One property that has been studied is the absence of overishthe filters
C1,Cy, i.e., W1, Uce never exceed their steady state values. This property can be
verified by computing reachable regions of the circuit angicking the bounds of
Uc: anducy. In [97,98], Hartonget al. used a linear operational amplifier with
finite gain and unlimited bandwidth. They partitioned thérerthree-dimensional
(i.e., U,uc1, Ucp) State space into boxes and computed transitions betwesamtii
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the AMCHECK tool. The method has been applied to a highly damped filter cir
cuit and a less damped one. The result shows that the valug, @g€mains in a
specified rangeg(g.,+ 2 V) in the highly damped case whereas it reaches higher
levels in the other case. In [24, 50], Dargal. checked the same property of
the filter using theip/DT tool in a more efficient way. The circuit is modeled by
differential algebraic equations (DAES). A hyperbolicdent function was used
to model the non-linearity of the operational amplifier autpoltage. They in-
troduced the output voltage in to the equations but tredtedrput voltage as a
parameter. Therefore, their model has three variables (b, uUc1, Uc2). To com-
pute reachable regions, DAEs are transformed to the septici#xorm which can

be solved by combining projection and reachability comipaia for ODES. Non-
linear ODEs are transformed automatically to a piecewiireadynamics using
the hybridization techniques (as described in Sectio?.2.

Summary

As described above, existing verification tools have begiieghto a variety of
simple circuits, typically with two- or three-dimensiorsthte spaces, and with lin-
ear or quasi-linear models. Some of the circuits, such asithreel-diode oscillator,
are not practical for implementation on VLSI chips. The mdigs that have been
verified are simple, time-domain properties of the circthigt in many cases are
straightforward to prove manually or with a few simulatioi$e models used in
the published results are very abstract and do not captetethbehaviors of VLSI
circuits. For example, th&>M circuit is modeled as a discrete-time system which
excludes important phenomena such as noise, and PVT wasatUsually, these
examples only show that their methods or tools “work” for gienxdemos but fail
to show that they can verify properties that actually matféerefore, there is still
a huge gap between the ability of available formal verifaratiools and complex
circuits and properties that could benefit from formal mego

2.4 Prior Research of @HO

Development on GHO started several years before | entered the Ph.D. program.
Many of the initial ideas for using reachability analysisvarify circuits were de-
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veloped by Mark Greenstreet. This led to the idea of usingeption-based reach-
ability analysis which was developed by Mark Greenstreet s students from
1997 to 2003. | joined this effort with my M.Sc. research irD20vhere | im-
plemented numerically robust methods fooi@’s linear program solver. This
re-engineering finally provided @40 with the robustness needed to be used with
some hybrid system examples and enabled the researchbaekirithis disserta-
tion. The remainder of this section gives a more detailedri®son of the work

on CoHo that preceded my Ph.D. research.

As described in Section 2.1..2, Kurshan and McMillan pulgisthe first paper
reporting the formal verification of circuits using ODE mési€This was followed
by a series of papers [83--85] that introduced the idea ofguBiockett's annuli
as the basis for abstraction mappings from continuous twetss signals, and gave
the first examples of projection-based representationdbtairoa tractable repre-
sentation of moderate-dimensional objects. In [83], th@®gections were onto
rectilinear polygons. For each bloated face,, a hyper-rectangle, the maximum
outward derivative was computed easily as the first-ordetehis a convex func-
tion®. A fourth-order Runge-Kutta integrator was used to integ@DES to move
forward each face. The toggle circuit that we examirie iniSe@&.2.1. was verified
as a proof-of-concept example. Manual model reduction wasl@yed to obtain
a three-dimensional system by ignoring capacitances a¢ smues and rewriting
the ODEs to be an integration with respect to the input clamkage rather than
time.

The use of rectilinear projectagons in [83] resulted in daoyer approxima-
tions that prevented the verification of other circuits. BB1, Greenstreet and
Mitchell proposed a generalization of the projection-llasgethod to use gen-
eral, non-convex polygons. These ideas were implementéukifirst version of
CoHo [8€] where the numerical integration and LP solver were anpnted in
MATLAB, and the geometric operations were implementediya JThey manually
constructed circuit models using the modified nodal analfesihniques described
in'Section 3.3. The tool was demonstrated using some sirplagles [87]. How-
ever, it was observed that the linear programs associattd prdjectagons are

9This motivates the idea déce liftingandorthogonal polyhedraf b/pT. However, orthogonal
polyhedra do not use the projecting idea and limit vertidesctilinear polygons as fixed grid points.
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often highly ill-conditioned, and this prevented the us€af1o on more compli-
cated examples.

In 2000, Greenstreet, Laza, and Varah recognized that thetste of linear
programs associated with projectagons can be exploitedtiupe an efficient and
robust implementation of the Simplex algorithm. Laza depet these ideas in his
M.Sc. thesis [142] including the error analysis of the alipon and a preliminary
implementation in ©HO. However, Laza’s implementation only handled uses of
the LP solver for optimization, but did not support projentioperations. In the
summer of 2003, Karen Brennan studied theH® codes and wrote a proposal for
using Laza’s algorithms for all linear programming basedrafions.

From 2005 to 2006, | re-engineered thei software and solved the nu-
merical problems of GHO to make it more robust [208]. Interval arithmetic was
applied to both the LP solver and the geometry computatiginen The interval-
based LP solver [214] overestimated the optimal value argaled integrated with
a new projection function. However, the LP solver may not firelcorrect optimal
basis if the LP is ill-conditioned, which may generate laagproximation errors
in the projection operations. These enhancements madssiipe to apply ©HO
to two hybrid system examples [208].

To summarize, the work on@Ho preceding my Ph.D. research established the
basic algorithms for projectagon based reachability amsalgnd showed that these
methods had promise for circuit verification. However, mgogstions needed to
be answered and problems needed to be solved to show thatletisods are use-
ful in practice. First of all, we needed a systematic way @efciying the properties
that we wanted to verify about circuits. Next, trying thesetihods on real circuits
revealed places wheredEiO's algorithms introduced unacceptable approximation
errors. By revising these algorithms, | have reduced tt@rto enable verification
of real circuits. In some cases, this required developing degta structures and al-
gorithms to replace or complement those used in the origdaalo. Finally, the
run-time for GHO’s algorithms tended to be very large, limiting the appimat
of the tool. | made many improvements to the efficiency afHO by reformulat-
ing the details of the reachability problem, developing rdgorithms, and tuning
the existing implementation. These contributions are ril@sd in the remaining
chapters of this dissertation.
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2.5 Summary

This chapter explored formal methods of analog verificatempecially reachabil-
ity analysis, and their application to circuit examples.isTprovides background
for the methods and tools in this dissertation: Section 24cdbe the main ap-
proaches used in prior work on circuit verification: equarale checking, model
checking and theorem-proving based approaches. We argate@achability anal-
ysis is the most promising of these approaches, and SecfaheBcribed the var-
ious algorithms and data-structures that have been useshahability analysis
tools. Then, Section 2.3 described circuits and their ptagsethat have been veri-
fied using these techniques. The circuits that have beerndesad have been very
simple, and the properties that have been verified oftenctdfie capabilities of
the tools more than the concerns of designers.

Verifying relevant properties of practical circuits wikkquire capabilities that
are well beyond those of current tools. High-dimensiorad.(> 4) regions should
be represented and manipulated efficiently because madigalaanalog circuits
have tens to hundreds of nodes. Existing methods use repaéeas that either
have expensive operations.g.,polytopes) or have large approximation errer,
hyper-rectangles). Because many circuits have highly cumvex reachable re-
gions, it is important to support non-convex regions otheevthe wrapping effect
will often generate false-negative results. It is necgstasupport nonlinear dy-
namics because ODEs extracted from circuits are neitheadinor even weakly
non-linear. Most current methods are very expensivg. representation methods
do not scale) or have large approximation errars.,(they only work for mod-
els with linear or nearly-linear dynamics). Furthermoight approximations are
required to verify complicated systems without false-itiega. Therefore, we de-
velop an efficient, robust, and accurate reachability amlyool for moderate-
dimensional, nonlinear hybrid systems which will be présérin Chapter 4.

In addition to a powerful reachability computation toolisitalso important to
convert circuit verification problems to reachability arsié automatically. This
includes constructing mathematical models from circuilists and formally spec-
ifying analog properties. Although there exist many teghes for modeling and
specification as shown in Section 2.2.1 and Section 2.2.281 ewailable tools do
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not support circuit verification tasks directiye., users have to create mathemat-
ical models for circuits and check properties manually. réfare, we propose a
general solution to model and specify AMS circuits in Chafte
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3

Circuit Verification as
Reachability

This chapter describes our method for translating circeitfication problems to
reachability analysis problems. Section 3.1 presents lizsgyspace representa-
tion of circuit behaviours and our verification strategy.cigm 3.2 provides a set
of real circuits that we use as a testbench suite for veiificahethods. Section 3.3
describes how to model circuits as ODE systems and Secdqmr@&sents our meth-
ods to specify analog signals and properties. Finally, sonpéementation issues
are discussed in Section 3.6.

3.1 Phase Space and Reachability Based Verification

Circuit simulators usually present circuit behaviours &signers as waveforms,
i.e.,signal voltages as functions of time. Thlease-spaceepresentation provides
another view of circuit behaviors which is well-suited faeuin formal verifica-
tion. In the phase-space representation, each circugtistegpresented by a unique
point, and the set of all possible states is represented igh-allmensional region.
For most of the circuits that we consider, the state of theudircan be repre-
sented by the voltage on each node of the circuit. Thus, themkionality of the
phase space is the same as the number of nodes for theséscifeoi example,
an inverter circuit has an input node and an output node, iteyshase space is
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two-dimensional as shown in Figure 3.2.
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Figure 3.1: Waveforms of Inverters Figure 3.2: Phase-Space View

Based on the phase-space representation, many verifigatidalerns can be
solved as reachability analysis problems. For examplefesygaroperty of a circuit
can be verified by exploring the entire reachable region efcircuit and demon-
strating that the property holds everywhere in this regur verification strategy
consists of the following four steps:

1. Construct a mathematical modieg., ODESs as described in Section 3.3, for
the circuit to be verified.

2. Formally specify properties to be checked using an eidanaf LTL for
continuous behaviours as described in Section 3.4.

3. Apply our reachability analysis tool@Ho (see Chapter 4) to compute an
overapproximation of the entire reachable space of thaitirc

4. Check the specification on the reachable space as comf@@edver ap-
proximated) above.

This chapter focuses on how to formally model circuit systemd specify analog
properties. Steps 3 and 4 will be discussed in Chapter 4 aagt€hb.
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Figure 3.3: Toggle Circuit Figure 3.4: State Transition Diagram

3.2 Circuit Examples

In this dissertation, we use four circuits as examples audirverification prob-
lems. Our testbench includes a toggle circuit, a flip-flop,aditer and a ring
oscillator. It covers synchronous circuits (toggle and-figp), asynchronous cir-
cuits (arbiter) and analog circuits (oscillator).
inputs (oscillator), one input (toggle), two inputs thah dange at arbitrary time
with respect to each other (arbiter) and two inputs whosesitians must occur
according to a specified timing relationship (flip-flop).

It alsontains circuits with no

3.2.1 The Yuan-Svensson Toggle

Figure 3.3 shows a toggle circuit that was originally puidid by Yuan and Svens-
son [217]. The operation of this circuit can be understoodgigg a simple switch
model starting from a state where tlpenput is low. In this casey is driven high;
zis floating; andk is the logical negation af. Figure 3.4 shows the state transition
diagram for the toggle starting from the state where high wheng is low — the
other case, witlz high, is reached on step 2 of the figure. Note that from step 2 to
3 in the figure, all three of, y andz change values. This is a critical race for the
toggle. As a consequence, if the rise time or fall timegare too large, the toggle
will fail.

We specify the behavior of the toggle as a safety propertyahticular, there
is an invariant subset &9 such that all trajectories in this set have a period twice
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that of the clock signal. Another property is to show thatitipat clock and output
signal satisfies the same specification in order to consérugple-counter.

3.2.2 AFlip-Flop
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Figure 3.5: Latch Circuit Figure 3.6: Flip-Flop

A latch is a circuit that has two stable states and therebgpsiole of serving
as one bit of memory. Figure 3.5 shows a static, transpaasg-gate latclf207,
Chapter 7.3]. The output of the latch circuit holds its oldueawhen the clock
signal @ is low and is set to the value of the input whenis high. Flip-flops
are typically implemented as master-slave devices. Figu-shows a D flip-flop
which consists of two latches. The flip-flop only updates ittpat value on the
rising edge of the clock sign@. However, the output value may not be stable if
the input signal changes on the rising edgepof

The input specification of the flip-flop requires that the inpalue cannot
change during the rising transition of the clock siggal The output of the flip-
flop must guarantee that the output signal is stable withipexified time after
the rising clock edge. Other interesting properties inetuthe maximum clock
frequency and the lower (upper) bounds of the clock-to-qudel

3.2.3 An Arbiter

An arbiter is a circuit that provides mutually exclusive @egto a resource for some
set of clients. We consider an asynchronous arbiter withdliemts as shown in
Figure 3.7(a). The two clients interact with the arbitemgsa four-phase hand-
shake protocol: client raisesr; to request the privilege; the arbiter raisgsto
grant clienti the privilege; when the client is done with the privilegeloiversr;;
and finally the arbiter lowerg; to complete the handshake.
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Figure 3.7: Arbiter Circuit

Figure 3.7(b) shows an implementation of an arbiter based 8R-latch us-
ing a pair of cross-coupled NAND gates (see [155, Fig. 5]). ilAstrated in
Figure 3.8, whemr; andr, are both low, the NAND gate outputg; andx, are
both driven high, and thenetastability filters(to be described shortlyMF; and
MF2 will drive the grant signalg;; andg, low. If requestr; is asserted (i.e. driven
to a high value), then the; will go low and g; will go high to grant the request.
If ro makes a request whilg holds the grant, then the request froapnwill be
blocked. In particularx, will remain high even whem, goes high becausq is
low. When the first client drops;, X1 will go high andg; will go low; if there
is a pending request an, thenx, will go low in response to the rising of;, and
this will causeg, to go high. The arbiter operates in an analogous manmerisf

asserted well-beforg,.

1 ;\ request

r1
concurrent requests
r i :

T~
. Eg| .
pending request < metastable region

T [

o1t [
92 J grant g2 \ ; resolved

Figure 3.8: Uncontested Requests Figure 3.9: Contested Requests

As shown in Figure 3.9, if both requests,andr, are asserted at roughly the
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same time, then signals andx, will both start to fall. This results in a falling
input for each NAND-gate and the consequent possibility efastability if the
two NAND-gates reach a balance point with their outputs ahtermediate level
between the power supply voltage and ground. This condi&@mpersist for an
arbitrarily long time [33, 154, 183] but eventually resau@vith probability one)

to a state with one af; or x, going high and the other going low. The metasta-
bility filters (MF; andMF, in Figure 3.7(c)) prevent the outputs of the arbiter from
changing until metastability resolves.

The metastability filter is a modified inverter. Considecuit MF;. The gates
of the transistors in the inverter are connected;toUnlike a traditional inverter,
the source of the PMOS pull-up is connectedkto With this configuration, the
pull-up transistor remains in cut-off untii is at least the PMOS threshold voltage
belowx,. This preventg); from moving any significant amount above ground until
client 1 has clearly won the arbitration.

The arbiter must satisfy the handshake protocol and guegamitual exclu-
sion i.e., signalsg; andgy, may not both be high at the same time. Obviously,
it would be desirable if the arbiter were guaranteed to exadlyt issue a grant
when a request is pending. It is well known that a real artligemot satisfy this
requirement along with the safety requirements descrilledea (see, for exam-
ple, (154, 157]).

3.2.4 The Rambus Ring Oscillator

de XZn

Figure 3.10: The Rambus Ring Oscillator

Figure 3.10 shows a differential ring oscillator. The datdr consists of an
even number of stages;, and each stage has tdaward (labeledfwd in the figure)
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inverters connected by a pair ofoss-couplinglabeledcc) inverters. Consider an
initial state wherex; is high ifi is odd and < n, ori is even and > n, andx; is
low otherwise. As shown in Figure 3.11, if the forward ineegtare strong enough
to overpower the cross-coupled inverters, tlewill be excited to make a high-
to-low transition andk, 1 will be excited to make a low-to-high transition. This
will lead to a state where signals andx,.» are excited to change, and so on.
The cross-coupled inverters ensure that the rising anthdaltansitions happen
at roughly the same time. In particular,Xftransitions earlier thar,,, then the
inverter fromx; to x,; will accelerate the transition of,. ;, while the inverter from
Xnti tox will retard the transition ok;.

Figure 3.11: Expected Oscillation Mode

Researchers reported that some implementations of thataiid not oscillate
as described above in real, fabricated chips. They posedfecagon problem of
showing that the oscillator starts from all initial condiis for a particular choice
of transistor sizes. Furthermore, they posed an additiormddlem of determining
the sizes of the inverters that guarantee that the circllienter a stable oscillating
condition from any initial condition.

The failure occurred when the forward and cross-couplingriers do not
have comparable strength. If the forward inverters are ntarger than the cross-
coupling inverters (as shown in Figure 3.12), then the dircts like a ring of &
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Figure 3.12: Forward Inverters Too Figure 3.13: Cross-Coupling
Large Inverters Too Large

inverters and will settle to one of two states:

State 1! Xi,Xni1,X3,%n13,-" " ,Xn—1,Xen—1 are high, and

X2>Xn+2>x47Xn+4> e 7Xﬂ7X2ﬂ are IOW (3 1)
State 2: X1, Xn+1,X3,Xn+3, " ; Xn—1,Xon—1  alé |OW1 and .
X2>Xn+2>x47Xn+4> e 7Xﬂ7X2ﬂ are hlgh

Conversely, if the cross-coupling inverters are much latigan the forward ones
(as shown in Figure 3.13), then the circuit acts likeeparate static latches and has
2" stable states.

3.3 Modeling Circuits as ODE Systems

This section describes how we obtain ODE models from cirsciitematics (or
equivalently, netlists). Section 3.3.1 describes theitauide operation of n-channel
and p-channel MOSFETS, the basic building block of mosgiraed circuits. We
then describe our use of modified nodal analysis to derive £fdn the circuits;
this process is essentially the same one that is used by inogt simulators. De-
vice models for state-of-the art processes are very coatplicwith a large num-
ber of parameters. Rather than implementing these mode@lsricodes, we use
a table-driven approach described in Section 3.3.2. THegalve generated using
standard circuit simulators. Thus, we use the same modeferioal verification
as the circuit designers are using for simulations.

3.3.1 Circuit Models

We construct mathematical models based on nonlinear ODASsdircuit netlists.
The circuits that are used on chips are typically composetdaokistors, capaci-
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Figure 3.14: Transistors: Switch-Level Models
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Figure 3.15: Device Models

tors and resistors. For simplicity, we will not consideruistbrs or diodes in this
dissertation.

For CMOS technologies, transistors come in two main typeshannel and
p-channel, as shown in Figure 3.14. Both types of transidtave three terminals
markeds (the “source”),g (the “gate”) andd (the “drain”) in the figuré. For
digital circuits, a transistor can be viewed as a voltagetroied switch. The
behavior of a n-channeldsp. p-channel) transistor is like that of a switch that
makes a connection between the source and drain when this gégé fesp.low)
and does not make a connection when the gate is tesp(high). However, we
model transistors as voltage-controlled current sourcesifcuit-level behaviors.
That is, the drain-to-source current of a transistor is &tion of the voltages of
its terminals. As shown in Figure 3.15(a), we wrigg(Vsqq) to denote the current
function of transistors, whehsyq is the vector of node voltages.

A capacitor is a device that holds a charge that is a functfdheovoltages of
its terminals as shown in Figure 3.15(b). Current is the tifegvative of charge
which yieldsic = C(ny)%vx,y, whereC is the capacitance of the capacitor and
Vyy is the vector of terminal voltages. While on-chip capasitoan be between

IThere is actually a fourth terminal, the “body” or “channéfiat corresponds to the silicon
substrate or well in which the transistor is fabricated. siorplicity, we assume that all n-channel
transistors have their bodies connected to ground and etilapnel transistors have their bodies
connected t&/yq (i.e. the positive voltage from the power supply).
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Figure 3.16: Kirchoff's Laws

arbitrary pairs of nodes and have capacitances that dependde voltages, for
simplicity we model capacitances as being to ground anchgasnstant values
independent of node voltages. Likewise, we omit resistrice simplicity and
brevity but note that they can be treated as voltage-cdettr@urrent sources in a
manner analogous to our treatment of transistors descabede.

Given models for all devices of a circuit, we construct a m@dr ODE model
for the whole system using standard nodal analysis teckrigased on Kirchoff’s
current law (KCL). As depicted in Figure 3.16(a), KCL statkat the sum of all
currents flowing into a node must be equal to zero. \Ldie the vector whose
elements are the voltages of nodes of the circuit of intevdsith consists oY/ for
input nodes an¥f, for internal and output nodes. Ligt be a function from vectors
of node voltages to vectors of transistor currents. riLieé the number of nodes of
the circuit andm be the number of transistors. Lt e R™™ be the connectivity
matrix for transistors to nodes:

+1, if the source of transistoy is connected to node
M(i,j) =< —1, ifthe drain of transistoj is connected to node
0, otherwise

Finally, letC be the diagonal matrix whef& i, i) is the capacitance from nodéo
ground. We now have:

%vo =C M lgs(V). 3.2)
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This gives us the time derivative function for all internaldsoutput nodes of the
circuit we wish to verify. The ODE models for external inpate determined using
a Brockett’'s annulus abstraction which will be describe&eaation 3.4.3.

Let us take the NAND gate shown in Figure 3.16(b) as an examplehis
circuit, we haveV = [Vss,Vid, Va, Vb, Vx, V| andlgs = [im1,imz, ims,ima). By KCL,
we obtain:

—ima(Vad: Va, Vi) — ima(Vad, Vb, Vi) — im2(Vz, Vb, Vi) — Cxgk Vi 0
im2(Vz7Vb,Vx)—iml(Vs&Va7Vz)—Cz%Vz = 07
which yields
SV = =& (ima(Vad, Va, Vi) + ima(Vatd, Vo, Vi) + e (Vz, Vo, Vi)
%Vz = —C%(imz(vbvb,vx)—iml(V55Va,Vz))-

When constructing the ODE model, we impose the physicalllistic require-
ment that all circuit nodes have some non-zero capacitangeound, which en-
sures that the diagonal matKixis positive definite and therefore invertible. These
assumptions avoid complexity while retaining the key fezdLof realistic circuits.
More generally, the procedure we described above providgnaral way for a
verification researchers to obtain a system of non-lineaE®fom a schematic
diagram; in other words, a schematic is simply syntacticasdigr a system of
ODEs according to this interpretation.

3.3.2 Circuit-Level Models Based on Simulations

We now describe how we obtain tlg functions. Of course, there are plenty of
textbooks that present models for transistors (for exarfi@é, 207]). However,
these are simplifications of the models that are used in tndte real fabrication
processes. These simplified models provide designers mtiihion to understand
qualitative circuit behaviors, but they do not provide thewracy to verify detailed
behaviors. For the latter, designers rely on the models bgetbmmercial cir-
cuit simulators such as $bICE or Spectre [1]. In other words, circuit simulators
provide the interface between device modeling experts anditdesign experts.
In the same manner, we did not write our own code to implemate-©f-the-art
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transistor models. Instead, we use thertHtEsimulator to obtain tables afs data
on a relatively fine grid and use bilinear (or other kinds aferpolation to com-
pute transistor currents. The key advantage of this appr@aits simplicity and
generality. We can generate accurate models for any preddssendor provided
SPICE models. Furthermore, our table is interval value dyaset is, the lower
and upper bounds of the current are provided for each grict pGDHO generates
differential inclusions from the ODE circuit models; thuge can incorporate the
intervals from the tables in the differential inclusion tsare that our verification
includes the exact 8ce model in the set of behaviors that it considers. Further-
more, we can use wider intervals in the table to model PVTatians, add error
bounds to the device models themsehs,

Compared with other simulation-aided verification techieis| such as the one
used in LEMA [143], our approach has the benefit that we ontyutite a small
number of basic device®.g.,transistors, instead of the whole circuit or macro-
models. Therefore, it is much easier to simulate more coctases in order to
obtain a higher coverage. Our table-based method can bedshilarly to ob-
tain accurate models of circuit capacitance, resistandeductances. It has not
been implemented but it is an obvious future work.

We extended our table-based approach to create macro nfodaimall cir-
cuit blocks (see Section 5.4 for an example). However, thebaur of grid points
increases exponentially as the number of device terminateases. For example,
the tables for transistors have three indices, one eachdmdurce, gate and drain
voltages, and we sampled these on a relatively fine grid d\0for the 180nm
CMOS process. This means that each table has 483 x 10° entries. A four-
dimensional table using the same grid would have abotieh€ies which would
consume a prohibitively large amount of memory and caude ¢taghe miss-rates.
Therefore, we developedmlynomial tabletechnique which uses a coarser grid
and uses a higher-order polynomial to approximate the sufumction with ac-
ceptable errors. We found that second-order polynomiatergdly provided suf-
ficient accuracy for our verification work, thus each entrythaf table holds the
coefficients for the quadratic polynomial model. Using ttEishnique, the table
with a 0.1V grid only holds roughly fovalues for a four-terminal deviéewhich

2A three-variable quadratic has ten coefficients, and a tatitea 0.1V grid has roughly 19~
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is quite practical.

3.4 Specification

Section 3.3 described how to construct a mathematical nfodel circuit. This
section describes our approach for specifying circuit prigs. We extend linear
temporal logic (LTL) to continuous time and values to specihalog properties.
Atomic propositions in this logic correspond to regionsha# tircuit’'s state space.
A particular class of such regions that is of interest to oarkare the regions that
can be specified using Brockett’s annulus construction h segions correspond
to the intuitive notion of a signal being “digital”.

3.4.1 Extended LTL

To specify circuit-level properties of circuits, we gerie@ conventional temporal
logics to formulas with continuous time and values. Our #madion language
is based orinear-time temporal logic (LTL]16&)] rather than CTL for simplic-
ity because we are mainly interested in safety propertiesoaty use universal
quantifiers. The approach to support dense time is very airtol MITL [1€] as
described in Section 2.2.2. We then introduce continuotiahas to describe con-
tinuous trajectories similar to the approach used in STL/RSC]. The novelty of
our method is that we introduce probability into the logic $pecifying important
circuit properties such as metastable behaviors.

Given a set of stateS we call p anatomic propositionif it is a function from
statesS to booleansi(e., p: S— {0,1}). A trace tis an infinite sequence of
valuations inS: t = tit5---, whereVi € R*,t; € S We saypis a LTL formula that
is satisfied for trace if p(t;) is true. If p andq are LTL formulas, ther-p is the
formula that holds iffp does not hold, ang A g is the formula that holds if botp
andq holds. Other boolean operators are just syntactic sugaofobinations of-
andA. Thus, we will usepv q= —-(-pA—q) andp = q= —pV g for disjunction
and implication.

Based on atomic propositions and logical operators defibhesdea temporal
operators of the discrete LTL are defined as:

1C° entries. Therefore, there are roughly? Iiumbers in the four-dimensional table.
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Np next p holds in the next state.

Op always shorthand fop A (N O p); p holds this and all subse-
quent states.

$p  eventually shorthand for,(CJ—p); p holds in this or some future
state.

pUq until shorthand fomp A (gVv N (pUq)); p holds in this state
and continues to hold until a state in whigtnolds.

p W gweak until shorthand fofp U q) v O p; p holds in the current state
and continues to hold forever or until a state in which
holds.

p§>q imply until shorthand fop=- (p U q); if pholds in the current state,

p will continue to hold until a state in whict holds.
pgq imply weak shorthand forp = (pW q); if p holds in the current
until state,p will continue to hold forever or until a state in
which g holds.

In order to specify analog properties of circuits, we defin&ike formulas
for continuous trajectories and introduce a few basic cpiscérom probability
theory into the logic.

The state of a circuit is represented byl-aimensional vector of real num-
bers; we say thatl is the dimensionof the model. We write?” to denote this
d-dimensional state space of the circuit, ahd to denote thal-dimension time-
derivative of the state. The circuit is modeled adiféerential inclusion if AC ¥
andx € Athen

x € F(A), (3.3)

wherex denotes the derivative afwith respect to time. In other wordEk,: ¥ —
d? maps regions of the state space to regions of the derivgi@ees By using
an inclusion rather than an equation, the time derivativehefcircuit is not fully
determined. Deterministic circuit models (evesmice are only approximations
of reality, the differential inclusion model solves the Iplem and could model
non-deterministic behavior of the environment, such asotidering, timing, and

62



details of the waveform shape for input transitions. A bébraef the circuit is a
function from time (the non-negative reals) to states ttatsin the initial region
and satisfies the derivative relation. Such a behavior Iedta@trajectory, and a
circuit is characterized by the (infinite) set of trajeatsrallowed by its model:

®(Qo,F) = {9:R" = 7] (¢(0) € Qo) A(VteRT. (t) € F({9(t)}))}, (3.4)

where we assume(t) is C1. For our circuit models, signal voltages are bounded
by simple invariants of the forgnd < 7 < vdd. Therefore,dd;f is bounded and
@(t) is defined for alt > 0 if ¢ € ®(Qy,F). Our continuous model for circuits is a
tuple, (Qo, F ), whereQq C ¥ is the initial region for the model, arfel: 2”" — 297
is the time-derivative relation.

We extend LTL to specify continuous behaviors. etR* — ¥ be a trajec-
tory, and define

shift(g,to)(t) = @(t+to). (3.5)

If @ is a trajectory and&is a continuous LTL formula (defined below), we write
@ = Siff Sis satisfied byp. For a modeM = (Qq,F), we writeM = Siff V¢ €
P(Qo.F), ¢ =S

A continuous LTL formula has a set of atomic propositio#ts These propo-
sitions can correspond to subsets/affor P C 7, a trajectoryp = P iff ¢(0) € P.
To specify properties related to variable derivatives sagthe Brockett's annulus
in the next section, we also support atomic propositionsesponding to subsets
of ¥ xd¥. ForPC ¥ xd¥, @ = Piff (¢(0),9(0)) € P. Our continuous-time
logic has no equivalent to the next-state operator; insteaddefine-, A, O and
U directly on trajectories:

Pp=-S = @FS (3.6)
PESANS = (PESINOES) 3.7)
OF Oy S = Vet ). shift(o,t) =S (3.8)
OF QS = et shift(p,t) =S (3.9

S UyS = (@FS) A e it (Shift(@,tz) = ) A (3.10)

(\V/O <t <to. Shift((p,tl) ’: Sl)
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We put subscripts on the temporal operators to limit the foswed upper bound
of accumulated time. We omit the subscripts if there is neetimstriction,i.e.,

ty = 0,tp, = . Other logical and temporal operators, including=, W, X and

¥V>, can be defined from these in a manner analogous to the dmfmitf their
continuous counterparts.

3.4.2 Probability for Metastable Behaviors

Our extended LTL also includes some qualitative concepis fprobability. The
need for a probabilistic formulation arises from circuitgls as the arbiter where
metastable behaviors can occur. In particular, any artdéscribed by a continuous
model must have input conditions that result in an unbouniddaly between assert-
ing a request by a client and the assertion of the correspgrgiant by the arbiter.
For a well-designed arbiter, the probability of a reque#tdpeingranted should go
to zero in the limit that time goes to infinity. As we will dedm in Chapter 5, sim-
ilar issues occur for the Rambus oscillator, and we expetitietastability will be
an issue for verifying any circuit that has multiple distintodes of operation. The
key idea is to find a sé8 c RY whered is the dimensionality of the ODE model
for the circuit and its environment, such thats a surface of dimension less than
or equal tod — 1. If we can show that at some tinteall trajectories that fail to sat-
isfy the specification must be B, then we argue that such failures only occur with
zero probability. However, our ODE models are determigistd, the rest of this
section describes two approaches for introducing proipabito the framework.

We recognize that the ODE models that we use @HO are an approximation
of the actual physical circuit. For example, ODE models ateininistic and
neglect the noise that is present in real circuits due tathenoise, crosstalk and
other disturbances. In principle, one could use stochdsfierential equations to
account for this noise, but to do so would make a challengerdiwation problem
even harder.

One way to handle this problem would be to view the ODE model cifcuit
and its environment as an abstraction of a stochastic ODEemdebr example,
the ODEX = f(x) could be concretized to the Langevin equatioa f(x) 4+ n(t),
wheren (t) represents the contribution of random processes (a.ko#s€eT) to the
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dynamics at time¢. Often, in the treatment of stochastic ODEgt) is assumed
to be Gaussian, but this raises a problem in our verificatioriext: for any bound
M and any time intervalAT, the integral ofn(t) over the intervaAT has some
non-zero probability of being greater thivh Thus, any signal could be perturbed
by any amount. This means that noise, with some small buizeom{probability,
could cause any digital circuit to fail, and no propertiea be verified. From a
practical perspective, we'll note that noise-margin asialys an area where ex-
tensive research has been done (e.qg. [L32, 141, 223]), gaddréhe details of
noise-margin analysis as beyond the scope of the curresgrtigion. Instead, we
will assume that the noise margins are sufficient so that tbbghbility of failure
of a logic gate is so small that it can be ignored. In particulee will assume
thatn (t) is bounded. We also assume that all nodes of the circuit aterped by
noise, and that these perturbations are independent feratit nodes and different
times. We will say that such a noise model is “reasonable”thWiis approach,
we will say that a specificatiorg is satisfied “almost-surely” (or “with probability
one”) if Sis satisfied almost-surely for any stochastic ODE with ascemble’n.

In this case, the bounded noisg,of the stochastic model provides the underlying
randomness that allows us to consider the probability dbuarevents.

An alternative approach is to stay with an ODE model for threuif and its
environment but to assume that there exists a probabildlyibution of the initial
states for trajectories. We require the ODE model t&hedn which case solutions
of the ODE are unique. Thus, the initial state of the circuid &s environment
determine the entire trajectory. We will not specify theailstof the probability
distribution of the initial states, but we will again reaiit to be “reasonable.” If
the model for the circuit and its environment tésariables, the state space for
the model isRY. If B is a measurable set, we wrif@|| to denote the Lesbesgue
measure oB (intuitively, ||B|| is the volume occupied bB), and we writeu (B)
to denote the probability measure Bf We say thaiu is “reasonable” ifu(B) is
zero for any seB for which ||B|| is zero. With this approach, we will say thats
satisfied “almost-surely” (or “with probability one”) if is satisfied for all trajec-
tories except for those starting from points in azetith ||Z|| = 0. In practice, this
amounts to showing that at any timeall “bad” trajectories must lie on a manifold
whose dimensionality is less than that of the full-systenhusl, nearly-all small
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perturbations to such a trajectory would move it off of thenif@dd so as to obtain
a behavior that satisfies the specification.

We conjecture that these two mechanisms of introducinggiidity into our
logic are equivalent. In particular, the “cone” argumehtst tve use for the arbiter
and the oscillator circuits appear to be robust to the inictidn of a noise com-
ponent,n, into the model. However, we do not have a proof of this edeiee.
Thus, we will use the second approach to define “almostgui@l our version of
LTL. If our conjecture is true, then the “almost-surely” uéis extend to the more
physical notion of randomness of the first approach as well.

We define aralmost surelyersion of the LTL “always” operator as shown
below:

¢=0z8 = (e (O9V(eeZ) A (2] =0), (3.11)

where the term((@ € Z) A (]|Z|| = 0)) is treated as an atomic proposition in the
formula. In other wordsg satisfies(I;Siff Sholds everywhere along or if @

is in a negligible setZ. This means that the probability &holding everywhere
along ¢ is equal to 1. Note that there is oZefor all trajectories, and only a
negligible subset of the trajectories aredn Furthermore, we only have to show
the existence of a negligiblé that contains all of the failure trajectories. It is not
necessary to construct the set explicitly. In fact, in maayes finding the exact
set may be very difficult or even uncomputable, but showiagiistence can be
straightforward.

3.4.3 Brockett's Annuli

To specify analog signals, we make extensive use of Brdskaethulus construc-
tion [37] as shown in Figure 3.17. When a variable is in redipits value is con-
strained but its derivative may be either positive or negatlhus, region 1 of the
annulus specifies a logically low signal: it may vary in a sfied interval around
the nominal value for low signals. When the variable leawggon 1, it must be
increasing; therefore, it enters region 2. Because theatam of the variable is
positive in region 2, it makes a monotonic transition legdimregion 3. Regions 3
and 4 are analogous to regions 1 and 2 corresponding to llygnigh and mono-
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A "typical" trajectory A "ricochet" trajecton

Figure 3.17: A Brockett's Annulus

tonically falling signals respectively. This provides gatogical basis for discrete
behaviors — the hole in the middle of the annulus forcesgisind falling transi-

tions to be unambiguous — regions 2 and 4 of the annulus adynils with the

same levels, but are distinguished by the value of the sgytiimle derivative. This

construction forbids a signal from making a partial transitto some value in re-
gion 2 or 4 and then returning to where it came from without imgla complete

transition.

Furthermore, the horizontal radii of the annulus define th&mum and mini-
mum high and low levels of the signal (i, Von, Vai, andVay in Figure 3.17). The
maximum and minimum rise time for the signal corresponddjettories along the
upper-inner and upper-outer boundaries of the annulugcésply. Likewise, the
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lower-inner and lower-outer boundaries of the annulusi§péte maximum and
minimum fall times. For simplicity, we often specify a BraKs annulus using
two ellipses as shown below:

—\V0; )2 ;

(v-v0) +bﬁi2 _ 1

(V—VOO)Z ﬁ _

& Tw 1V (3.12)
VO = 0hJ2r 1 g = Yo

Vo +V Vin+M
V0, = 0I21h 8, = 1h2 o

whereb; andb, are the minor radii of inner and outer rings. Trajectorieg&o
sponding to the inner and outer boundaries of the annulusiaeewaves. How-
ever, it is not the case that these waves give upper and looerds of the signal
period. First, a signal may remain in regions 1 or 3 for anteahbly long time.
Furthermore, the signal is not required to spend any timegons 1 or 3. The
minimum period signal corresponds to a “ricochet” trajegtas depicted by the
solid curve in the right most plot of Figure 3.17. The periddsoch a signal is
much less than that of the sine wave corresponding to the botendary of the
annulus (the dashed curve). To exclude “ricochet” trajéeso we add constraints
specifying the minimum low tim& and minimum high timdy,, i.e.,the minimum
duration of sojourns in region 1 and 3. Therefore, we spexiBrockett’s annulus
DY B\ NonVa M b bosti 1) (OF Bovpy) fOr short). To express that a signesatisfies
the annulus?y ), we include propositions of the forwgy ) (x) in the set of
atomic propositions for our continuous LTL from Section.3.4

This Brockett's annulus construction allows a large classignals to be de-
scribed in a simple and natural manner. Given any trajecxgrythat is contained
in the interior of the annulus, any trajectoxi(t) that is obtained from a small,
differentiable perturbation of(t) is also in the annulus. This is in contrast with
traditional circuit simulators that test a circuit for sgecstimuli such as piece-
wise linear or sinusoidal waveforms. Thus, a Brockett'stdins can be given that
contains all trajectories that will occur during actual igi®n, something that tra-
ditional simulation cannot achieve. Of course, such an kasralso includes trajec-
tories that will never occur during actual operation. Thhig abstraction is sound
in that false positives are excluded, but false negativesdcdan principle, occur.

68



In our experience, the Brockett's annulus abstraction babeen a cause for false
negatives.

A Brockett's annulus provides the mapping from continugagettories to dis-
crete traces. We writB;(x) to indicate that variablg is in regioni of the annulus,
andB; j(x) to indicate that it is in regiom or regionj. If a trajectory is in region
B, for variablex, then its discrete abstraction is unambiguously low (iadsd);
likewise if it is in regionBs, then it is clearly high. If the trajectory is in regid)
(resp. B), then itmaybe treated as highrdsp. low), but it is not required to do
so until the signal enters regi®y (resp. B). We say that a signal makes a rising
transition when it enters region 2 of its Brockett's annudinsl a falling transition
when it enters region 4. Because Brockett's annuli imposgmim rise and fall
times for signals, the number of rising and falling trasis is countable. Further-
more, this mapping connects the discrete specification amiihtious specification
in Section 3.4.1.

A Brockett's annulus also provides a method to specify irgigrials and calcu-
late the time derivative to construct a mathematical motlal@rcuit. For regions
1 and 3, the derivative is bounded by the outer ring. For regiand 4, extra infor-
mation of the current discrete region is required to digtisly positive or negative
derivatives as they share the same level signals. Theref@rerdinary differential
inclusion (ODI) model of the input signals is

d
a\/l = f(\/l ) <@(V,bﬁ)vs)? (313)

wheresis the index of the current discrete region. Equation 3.2Eaaation 3.13
give a formal model for a circuit and its environment.

3.5 Specification Examples

We applied our LTL and Brockett’s annulus based method to&tly specify prop-
erties of circuits in Section 3.2. In the following, we firgstribe how to define a
discrete specification for an arbiter, and how to translaie & continuous specifi-
cation. Then we present continuous specifications for atineuits.

69



Initially:

Vie{1,2}. —ri A g
Assume(environment controls; andr»):

Vie{1,2}. O>nZg) A O(-rnZ-g)A

u
O (gi=—ri)
Guarantee (arbiter controlgy; andgp):
Handshake:

Vie 1,2} O(-gZm) A OgZ-n)
Mutual Exclusion:

O-(g1 A g82)
Liveness:

Vi€ {1,2}. (O(n=g) A (O(-ri=—g))

Figure 3.18: Discrete Specification for an Arbiter

3.5.1 Arbiters

Figure 3.18 gives an LTL specification for a discrete arhiiging an assume-gua-
rantee approach [114] for separating the assumptions niexle ene clients, from
the requirements for the arbiter. The “assume” clause iescwhat the environ-
ment can do: it can only modifyy andr,, and it must do so in a way that satisfies
the formulas in the assume clause. Conversely, the “gusgactause describes
what the arbiter must do: it can only modify andg,, and it must do so in a way
that satisfies the formulas in the guarantee clause.

In English, the specification says that if the clients obsée four-phase hand-
shake protocol, then the arbiter will observe the protood @ensure that grants are
mutually exclusive. The “initially” section states thaitially, neither client is mak-
ing a request and the arbiter is issuing no grants. The “asssattion describes
the expected behavior of the clients. For exam;ﬁl]e(riggi) states that once a
client makes a request, it will continue to assert the requed the arbiter asserts
the corresponding grant. In other words, a client may ndtdavéw a pending re-
qguest. The specification uses the weak-unil, because the environment is not
responsible for issuing a grant. Likewise, the cIaHS(eﬂrigﬂgi) states that when
a client has withdrawn a request, it must wait until afterdahater has lowered the
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corresponding grant signal before the client can make anoéguest. This spec-
ification does not require clients to make requests. Thiglberate: the arbiter
should function correctly even if one or both of its clientsver make a request.
On the other hand, the clauﬁa(gighri) states that once a request is granted, the
request must be eventually withdrawn. Without this requeat, we would not be
able to require that all requests are eventually grantednaslient could hold the
grant forever.

The “guarantee” section describes the required behavidheofarbiter. The
clauseld (ﬂgigri) states that the arbiter may not issue a grant until after dne c
responding request has been made. Likem@égigﬁri) states that the arbiter
must continue to issue a grant until the environment withdrthe request. As in
the “assume” section, we use the weak until because theaibihot responsible
for ensuring that the clients eventually lower their regsie$he mutual exclusion
clause states that both grants cannot be issued at the saemdtie liveness prop-
erties state that all requests must eventually be grantelda grant must be lowered
following the lowering of the request. Due to metastahility physical arbiter can
guarantee both safety and liveness for contested requiégts 157]. We address
these issues in our specification of the continuous arbétew

To specify a continuous arbiter, we use a Brockett’s anniaigentify regions
of the state space/ x d¥ that correspond to true or false values of the atomic
propositions (such ag) from the discrete specification, and we modify the live-
ness conditions to use an almost-surely formulation faragibns with contested
requests. Of course, uncontested requests and releassguekts should receive
responses for all trajectories and not just a subset withgiidity 1.

To show that contested requests are granted (almost-sunayfollow the ap-
proach of [160]. Their approach introduced a concept cédlted insensitivity.” It
excludes clients which are feedback controllers and tlyetetp the arbiter in its
metastable region by exquisite design or unimaginableca@mce. This constraint
on the clients is expressed by requiring that the clientslmively insensitive to
variations of the two grant signals when waiting for a grdntreal circuits, “ac-
cidentally” designing clients that act as feedback cotgrslwould be extremely
far-fetched. We are much better off worrying about the apipnations used in
HspicEmodels and other more probable causes of failure. Thus,ricantinu-
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Initially:
Vi e {1,2}. By(r;) AB1(g)
Assume(environment controls; andry):
vie{1,2}. O(Bs(r)=Baa(g)) A O(Ba(r)=Baa(a)) A

0 (Ba(gi)=>Baa (1))
Guarantee (arbiter controlsy; andgp):
Handshake:

Vi€ {1,2}. O(B1(g)2Bo3(r)) A O(Ba(0)2Baa(ri))
Mutual Exclusion:

O=(B23(91) A B23(92))
Liveness:
Vie {1,2}. (Parameterst,,tf € R")

a-ins = (Oz(Bs(r)=B23(g))) ]
A (Ba(r) 2 (Baa() VBs(ra)) A (O(Ba(ri) -2'Ba(g)))

Figure 3.19: Continuous Specification for an Arbiter

ous specification, we assume tleainsensitivity holds and writer-ins to denote
this a-insensitivity assumption. On the other hand, a faulty giesiould produce
an arbiter with a “dead-zone” where the circuit could hand aaver resolve con-
tested grants. Thus, it is important to include the almastly liveness condition
to ensure the correctness of a proposed design.

Figure 3.19 shows our specification for the behavior of aiterkvith a con-
tinuous model. Here, we wrote i to denote 3-i, and thus .; denotes the “other”
request. For the most part, this is a direct translation efdiscrete specification
from Figure 3.13 to a continuous one using the Brockett'sursconstruction
to provide the required atomic propositions for the cordimiversion. The only
other change was that we rewrote the first clause of the Isgeoendition from the
discrete specification with two clauses. The first livendagse for the continuous
specification,

a-ins = (Dz(Ba(r)=B2a(g))).

says that if the clients satisfy tleeinsensitivity requirement described above, then
all requests are eventually granted except for those inef setjectoriesZ, where
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Initially:

B1(¢) ABs(2)
Assume(environment control®):
D P w1 (@)
Guarantee (toggle controls):
Switch:
Vie{1,3}
0 (BU@)ABA(Z=1) = BA@) ABi(2)A(Z=1)) A
0 (BaA@)AB(DA(Z =1) % Boa(9) ABijraai@AZ =1)) A
O (Baa(@) ABiis14i(A(Z =1) = Bs(@) ABsi(D A (Z =1)) A
0 (Ba(9) ABai( A (Z =1) = Ba(9) ABs (2 A (Z =1) A
0 (Ba(@) ABai(2) A (Z =1) = Bu(9) ABai(2 A (Z =) A
O (Bu(@) ABai(@A(Z =) Z Bi(@) ABsi(2) A (Z =4—1))

Brockett’'s Annulus:
OB p1)(2)

Figure 3.20: Specification for a Toggle Circuit

Z has zero probability. To verify this condition, we do not dda explicitly con-
struct the seZ, we simply have to prove that such a set exists. The secongectz#
the liveness section states that uncontested requestseatealy granted, and that
grants are always withdrawn after the corresponding redsi@gthdrawn. These
correspond directly to the discrete specification, andlsatythe continuous arbiter
should respond in a bounded timg ¢ for grant and withdrawn respectively) in
situations where metastability is avoidable.

3.5.2 The Yuan-Svensson Toggle

Figure 3.20 presents our specification for a toggle sucheasrik that was shown
in Figure 3.3. The “initially” section describes the inititate of the togglerp is

low andzis high. The “assume” section says that the input clpakust satisfy

a given Brockett’s annuluséy ;). The “guarantee” section describes the state
transition diagram as shown in Figure 3.4. This propertyisrsthe period of the
output signalz is twice that of the clock signap. It says that the output makes
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one low-to-high or high-to-low transition for each periofitiee clock input. For
example, ifz is low when @ is low, z must remain stable untip enters region
2 of a Brockett's annulus; them can transit to high value via regions2land
3, and the transition must be completed bef@rentering region 3; the value of
z holds during the falling transition of. The auxiliary variableZ records the
value ofz of the previous period. The auxiliary variable is implensshby neither
the environment nor the toggle. It is added by the specifinagind is implicitly
existentially quantified: if there exists a functiod,: R* — bool such that the
LTL formulas of the specification are satisfied, then the djpation is satisfied.
Because a signal specified by a Brockett's annulus can stiywasr high for an
arbitrary long time, we apply\g rather than= in the first, fourth, and sixth clauses.
The specification also requires that the output sigsaltisfies the same Brockett's
annulus%y py)-

3.5.3 Flip-Flops

Figure 3.21 shows a specification for a flip-flop circuit sushttze one that was
shown in Figure 3.6. It says that if the data indumheets its set-up and hold criteria,
then the output) updates its value after the clock-to-g delay. The “pararséte
section presents three parameters used in the specificBHEQP thoid andteixoq for
set-up time, hold time and clock-to-q delay time respebtividote that the set-up
and hold time could be negative in physical flip-flops, we dbrequiretserypand
thold to be positive parameters.

The “assume” section presents input specifications for khekap and data
input d. The “Brockett’s annuli” clause requires that baphand d satisfy given
Brockett's annuli. The “set-up & hold criteria” clause &sitthat the value of
is held steady for at leastet,ptime before the clock event and for at leggjq
time after the clock eventBz(¢) = Ujoy,,,B1,3(d) says that whem is in By, d
must remain irB; or Bz for the nexit,qq time units. This clause specifies the hold
requirement whetyo|q is positive. By 4(d) = U 0tsera dBl(qo) says that that ifl is
not stable g may not enteB; for the nextsetyptime units. This clause specifies the
set-up requirement fdgerup> 0. The set-up and hold requirements fQf,p, < 0
or/andtpgg < O can be specified similarly as shown in the “set-up & holdecidt’
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Parameters:
tsetup€ R, thoid € R, tokeg € R*.
Assume(environment controlg andd):
Brockett's Anulli:
OPBwvibiir) (@) A DB wzbztz)(d)
Set-up & Hold Criteria:
D( tsetupZ 0) A 82.4(d) = D [Ostsetup Bl(q))) A
O ((thotd > 0) AB2(®) = DjoggeBra(d)) A
D( tsetupS O) N BZ(Q’) = U [0,—tsetug B1 3(d)) A
O ((thotd < 0) AB2.4(d) = [0, t,5,q/B3(®))
Guarantee (flip-flop controlsq):
Stable Output:
Vie{1,3}
1( )A Bi(d) = (B1(¢) ABi(d) A (d' =1)) V (Bu() A =Bi(d))) A
d' =i L B1(@) A
Bs(p) = ¢ Otc|k2q]Bd’(q)) A
Bs(() A Ba (q) 2 Ba(@) ABgy(a)) A
Ba1(¢p) = Bi3(q))

Figure 3.21: Specification for a Flip-Flop
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section.

The “guarantee” section states thatithas not had a rising edge in the past
takeq time, theng has the same value thdthad the last timep enteredB,. To
record the value aofl in the past, we use an auxiliary variahlelike we did for the
toggle specification. The first clause of the “guaranteetises says that wheg
is in By andd in B, or Bg, eitherd’ will eventually record the value af or d transits
to other regions. Combined with the set-up requirematiteecords the value af
when g enteredB; the last time in the pastd’ = i)gBl(cp) says that the value of
d’ is held wheng is not inB;. The remainder of this section states thahust has
the same value witt’ after the clock-to-q delayBs(¢) = < Otereq) Bar (0) SAYs that
wheng is in Bz, g must update its value tf in the nextteioq time units. The last
two clauses say that the valuemis held steady before entersB, in the future.
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Parameters:

ecRT, \heR.

Definition: _
Vie{l,--,n}, S =X+Xnti; &= (—1)"(% —Xnpi).
. =1 ifi>1,
1ol=

4 otherwise
lead(x,y) = (Bi(X) ABic1(y)), Vi € {1,2,3,4}.
Guarantee:
Common Mode:
Vie{l,---,n}, |s—Wo| <€
Differential:
V,byt, Vie {1, ,n}, Oz (B (dh) A (Bra(d)=Boa(dh)))
(Vie{l,---,n—1}, Olead(d;,di+1)) A Olead(dy, —d1)
Non-harmonic:

[
O J,Ba (ck) (i,]).Ba(ch) A VK€ [j,n],Bs(d) ) v
O (vke[1,i],Bs(dk) A VKe(i,]),B2(dk) A VKe [j,n],Bi(dk)) V
O (ke [Li],Ba(d) A VKE (i, ]),Bs(d) A VK€ [},n],Ba(ch)) V
O (VKE [17|]782(dk) A Vke (|7 J)?Bl(dk) A Vke [j7n]7B4(dk) )

Figure 3.22: Specification for a Rambus Ring Oscillator

3.5.4 The Rambus Ring Oscillator

Figure 3.22 shows the specification for the Rambus ringlasailfrom Figure 3.10.
It says that any signal of the circuit oscillates as expeati¢iul all initial conditions.
For each differential pair of nodes andx,,;, we defines = X + Xn;j as its com-
mon mode component aml= (—1) (X — Xy;) as its differential component. The
common mode component is quite stalile,, close to a constant valléyq as
shown in the “common mode” section. The differential comgrurd; “almost-
surely” oscillates under all initial conditions as showrthe “differential” section.
We specify the oscillation behavior by the Brockett’s amsutonstructionj.e.,
all differential signals transit from region 1 to 4 in sequen Note that there is
no upper bound for the dwell time in regions 1 and 3 in the Betitk annulus
construction, so we use

Bl,3(di)g>32,4(di)
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to force the trajectory to leave stable regions within a lamehtime. However,
differential signals may not oscillate if the initial statean equilibrium point,
that is, currents of all transistors are zeros. Under thisuonistance, the circuit
is not stable and diverges to oscillation mode with smaltiudizances. We apply
the similar “almost-surely” version always operator to akenthat all equilibrium
points are in a negligible set. Furthermore, we specify tlationship between
adjacent variabled; andd; . ; by the “lead” function. We say the value df“leads”
the value ofd;,; because of the forward inverters of the stag&hend; is low,
it makesd; 1 low or start to fall; andd;, 1 cannot rise before; starts to rise. We
use theB;(di) AB14(di+1) clause to exclude the case tlat; is in Bo 3 whend, is
in B;. Similarly, we define the valid value @k, whend; is in other regions, as
shown in the “definition” section. Note that we usé; in the last “lead” function
because the signal is swapped at the end of the ring.

Whenn is large, harmonic behaviors can appear if the circuit iswelt de-
signed. Under this mode, the circuit may oscillate with aeflafrequency than
expected. For example, the circuit may oscillate with fexgry 3f wheref is the
designed frequency. We specify that there is only one tiiansphase in the ring
for the non-harmonic property. The first clause of the “nanafonic” specifica-
tion says that there is only one high-to-low or low-to-higanisition in the middle
of the ring . The first phasB;d states that all signals in the beginning of the ring
are low; the second phaskdy states that all signals in the middle of the ring are
falling from high to low; and the third phase states thatiglhals in the end of the
ring are high. The second clause describes a low-to-higtsitran in the middle
of the ring, similar to the first clause. Similarly, the lasbtclauses are for when
transitions occur in the beginning or in the end of the ring.

3.6 Implementation

The previous two sections described how circuits can be taddssing non-linear
ODEs and an extension of LTL with continuous time and valeespecifying cir-
cuit properties. This section describes how we convertdmiimear ODESs to linear

SWhenn = 2, d; andd, are symmetric and it is improper to say tiatleadsd,. Therefore, the
“lead” clause does not apply to two-stage Rambus ring @soits.
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differential inclusions, and how we incorporate input signthat are described by
Brockett’s annuli into our reachability computations. $adransformations make
the modeling and specification methods described earlidrisnchapter practical
for the reachability methods that will be described in ckagt

3.6.1 Linearization Methods

The nonlinear model frorn Equation 3,13 and Equation 3.2llyscannot be solved
efficiently by reachability analysis tools. Therefore, veenpute a linear differen-
tial inclusion (LDI) to over-approximate the ODE model fdfi@ent computation
as:

d
g € AVitbiEu (3.14)
%Vo € AV +boE U, (3.15)

whereV, refers to input voltaged/, refers to voltages of other ODE nodésjs the
linear coefficient for input signaldy is the constant termy; is the error term, and
Ao, bo, Uy are coefficients for ODE nodes. Because input signals arfigueby
Brockett’s annuli, the time derivativ§\4 only depends on its own voltage value
Vi. The time derivative of ODE node%%vo depends on voltages of all nodes.

We have developed two algorithms for computing Equatiod 8ot input sig-
nals specified by Brockett's annuli. The first algorithm fiadsear approximation
with minimizedL, norm error term based on the least squares method. Given an
input signalv specified byZy ;) (defined in Equation 3.12), and a range of value
[V, Vn], the algorithm constructs a linear approximatigras

minE = min [§"(Va — Vm)?dv
Va = AV +by (3.16)
_— %\/qz—(v—vq)z-l-g.—‘j\/ag—(v—voo)z
Vm = 5 .

This optimization problem can be solved by the least squaethod as

_[f\)l’“vzdv j;)l’“vdv]_ll ;)l’“\'/mvdv]

Vh Vh Vhy,
wvavo [yt dv v Vm Qv

Ay

3.17
b, (3.17)
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With this linear approximation, the error bound can be fobgdalculating error

@A However, the least squares method
\/m. L

minimizes thel, norm rather than the; norm. Therefore, the constant tebiis

terms of pointsy, vy, andve = vO—

adjusted at the end to balance the lower and upper error Bound
On the other hand, the second algorithm minimized.theorm based on linear
programming. The algorithm first conservatively approxiesahe annulus by two
polygonsp; and p,. Then it finds the best linear approximation by solving adine
program:
min u, St.
v € Av+bitu (3.18)
V. € [V, Vh, Pix, Pox;

wherepix (pox) denotes signal values of verticesmfpo).

Linear differential inclusions as shown in Equation 3.15@®DE nodes can be
computed by either the least squares based method or LP trethdd similarly.
From Equation 3.2, we can see that it suffices to linearizectineent function of
transistors to create a linear model. The linear approxoamatan be obtained by
solving a linear program similar 10 Equation 3.18 which mmiizes the error term
with conditions that the linear inclusion is valid for alligimpoints of our table-
based models as describec in Section 3.3.2. However, thissuBlly contains a
huge number of constraints, each of which corresponds tgodéeoint. Because
the LP approach is impractical for most problems, only tlestesquares method
was implemented. Similar with Equation 3.16, the leasiasgsl method finds the
best linear approximation according to thenorm of the error term and adjusts the
constant term at the end. This method can work with yattables and polynomial
tables.

Given aniys table as described in Section 3.3.2, our algorithm compatas
ear inclusion for a region specified by a user-provided linfgagram. The al-
gorithm first finds the bounding box of the region, collectsgaid points in the
box, and computes a linear fit using the least squares me@igdn the linear fit,
our algorithm then computes the error term by evaluatingetiner function over
all grid points. The time to compute the linear coefficiestEonstant by apply-
ing pre-computed sums of tabulated data. Evaluating tloe 88rm dominates the
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computation.

For polynomial tables, the current function is approxirdaby a quadratic
polynomial as described in Section 3.3.2. The least squae#isod is implemented
similar to the one forgstables. However, we have two improvements. First, we use
the linear program to trim hyper-cubes to reduce error aruore performance.
Second, noting quadratic polynomials are Lipschitz fuormi and the Lipschitz
constants can be computed efficiently, we over-estimatettug term using the
Lipschitz constant and under-estimate the error by evialgi#tie error function on
several sampled points. Therefore, the lower and upperdsoofthe error in each
hyper-cube can be efficiently computed. With the error bounadst hyper-cubes
can be pruned without evaluating the exact error. This m®oan be refined to
narrow down the error bound. Because the polynomial-iolatpn tables are on
a much coarser grid than the ray¢ data, the algorithm for polynomial tables is
more efficient than the one fogs tables.

3.6.2 Modeling Input Behaviors

In order to obtain conservative results, it is necessaryotopute circuit states
under all possible input transitions. As described in ®ac8.4.3, input signals can
be specified by Brockett’s annuli. However, regions 2 and droannulus admit
signals with the same ranges., they are indistinguishable without information of
time derivative of the signal. Therefore, reachability gutations of regions 2 and
4 must be separated.

As mentioned in Section 3.4.3, a Brockett's annulus has ifegiions that cor-
respond to logic low, rising, high and falling signals. doabus input trajectories
can be mapped to discrete sequences,iteration of low, rising, high and falling
stages. Therefore, transitions of one input signal can beefed by fourstates
denoted a8, B,, B3, B4. For a circuit with only one input signals, all possible cir-
cuit behaviors can be obtained by computing reachable megigthin these four
states. Reachability analysis is performed in each &atdth its initial regions.
In each computation step, forward reachable regions aredshiy the hyperplane
which is the boundary between the current s@tand the next statB;,; (e.g.,

v =0.2). These slices are accumulated, and the result is usee astthl region
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of stateB;,1. Note that there are minimum dwell time requirements in lowl a
high regions, trajectories cannot ledgB3) before the minimum timeg (ty).

- > T j

= o

\ = |

o Z o
'UQ:' """ T

]

5

~—T— ~—T—

Figure 3.23: Input Transitions without the Dwell Time Requirement: Each
signal has four regions: low, rise, high and fall, accordmthe Brock-
ett annulus specification. There aresfates for circuits with two input
signalsvy,Vv,. For each stat&_; j-, there are two possible transitions
to statedi 1 j~ andB_; j, 1. When a signa¥, leaves a stable region
(i.e., low or high), the conditiori; > T must be satisfied according to
the dwell time requirement. However, the condittpe» T is necessary
to check if signalv, can leave the stable region or not. This requires
to record the time of each trajectory spent in a stable staiehnis
generally impossible for reachability analysis.

The method can be generalized to transitions of two (or msigg)alsvy, vo.
Assuming these two signals are independent, there?azel4 possible concurrent
transitions, which are denoted Bs; j- i, ] € {1,2,3,4}, wherei(j) is the region
of signalvy(v2). As shown in Figure 3.23, trajectores in a st{g can go to states
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Bi+1j, andB; j+1. Accordingly, reachable regions are sliced by two hypemgdato
compute initial regions for staté, 1 j, andB; j,1: one hyperplane is the boundary
between stat®; ; and stateBj 1 ; (e.9., \ = 0.2), and the other is for statd; |
andB;j j+1 (e.9., ¥ = 1.6). In case two signals are not independent, not all states
are reachable. For example, staBgg andB, 4 are forbidden for a flip-flop circuit
because of the timing constrains between the data inputhenclack signal.

However, transitions of two inputs are more complicatedmtensidering the
minimum dwell time requirement. We assume that the minimumeldtime is
T for regions 1 and 3 of two annuli, otherwise, we can Bets the minimum
value of them. Due to the minimum dwell time requirement, &ajectory in
stateB.1 1. must satisfy the constraitt > T before entering statB., ;~, where
t; is the time of signaly spent in the stable (low or high) regione., the time
of the trajectory spent in all stat& 1 .~.. Similarly, any trajectory cannot enter
B.12- until the second signal, has stayed in region 1 for at leabttime. As
illustrated in Figure 3.23, when trajectories enter sBatg; -, the conditiort, > T
may be satisfied or not. For trajectories where the condidaatisfied, they can
enter statd8_, ».. immediately or at any time; for trajectories where the ctodi
is not satisfied and will not be satisfied before enteringedBag 1-, they cannot
goto stateB_, - ; for other trajectories, they could go to stde,,. after the
time when the conditio, > T becomes to be true. This introduces a challenge
to reachability analysis. It is generally impossible toomecthe exact time of each
trajectory during reachability computattriTherefore, it requires infinite number
of reachability computation to obtain the accurate reselg., ¥ has stayed in
the low region for a time¢y < T whenv; leaves the low region. It is similar for
trajectories in stateB_13.,B.31- andB.33-.

We employ a conservative approximation technique to sdlieegroblem. It
first measures the maximum rising tirgy from the inner bound of the annulus
and then use$’ = T —tmaxas the dwell time requirement of the logic low region
When trajectories leavB_-1 1~ and enteB_; -, the new conditiort; > T’ must
be satisfied. At the same time, the conditigir T is also checked. Ifitis satisfied,

4A finite-bisimulation cannot be constructed even thoughait be done for timed automata. This
is because our linear ODIs models have much more complichteaimics than timed automata.
5T is usually much larger thaay for circuit signals.
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Figure 3.24: Input Transitions with the Dwell Time Requirement: We over-
approximate valid trajectories by relaxing the time regunent from
TtoT =T —tmax All trajectories are grouped by the condition
t;/2>T': solid arrows denote trajectories in which both signalsfat
the time requirement and dashed arrows denote trajectoriesich
only one signal satisfies the time requirement. With thisrexima-
tion technique, all possible trajectories are computediwit finite
number of reachability computations.
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trajectories are allowed to entBr ;> at any time. This is an over-approximation
becausd, > T may not be true. Otherwise, trajectories must sta@.ia 1. and

go toB.z1-. This is becaus& > T can not be satisfied when trajectories are in
stateB.1-. By applying this method, all reachable regions in st ;. are
over-approximated by two reachability computation. Thstfime is for the case
when botht; andt, are greater thait’, and the second one is for the case when
only one of two signals is greater than

The reachability computation phase is illustrated in FégBu24. The solid ar-
rows denote transitions of trajectories in the first casd, dashed arrows denote
transitions of trajectories in the second case. Whenevignalstransits from the
low (high) region to the rise (fall) region, the correspaorgltime requirement must
be satisfied, and trajectories are grouped into two setsétirtte requirement of
the other signal. For example, when trajectories le@ss-. to B, 1-, the con-
ditiont; > T’ must be satisfied. And forward reachable regions are pamitl into
two sets by the conditioty > T’. For the first set where the condition is satisfied,
reachability computations are performed in stddes . andB.,>.. Noting tra-
jectories can enteB.31- and then go tdB.3,. immediately because > T’ is
true. However, signal; must stay in the high region far’ time; therefore, dashed
arrows are used iB_3,-. For the second set where the condition is voilated, only
one reachability computation is performed in stéte 1. After leavingB.2 1,
trajectories must stay iB_3 1. because botly andt, are smaller thaf’. It is
similar for trajectories originated from statBs; 3. ,B.31- or B.33.. From this
analysis, we can see that there are totally 32 reachabditypeitations as shown in
Figure 3.24.

This approach can be extended to higher dimensions foritsraith more
than two inputs. To reduce over-approximation ertggx in the equation off’
can be replaced by smaller values suchnas/2. However, this requires to par-
tition regions 2 and 4 correspondingly, which increasesnilmber of states and
reachability computations.
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4

Reachability Analysis in COHO

CoHois a reachability analysis tool for computing reachableargof moderate-
dimensional, nonlinear hybrid systems. The reachabilgprithm is described in
Section 4.1. The representation and computation of contigsuccessors are pre-
sented in Section 4.2 and Section 4.3. Section 4.4 desdgbhriques to improve
computation time and reduce approximation error. Impldaten issues are dis-
cussed in Section 4.5. Finally, Section'4.6 summarizesi€€and compares our
approach with other related techniques.

4.1 Reachability Analysis

4.1.1 (CoHO Hybrid Automata

In order to analyze hybrid systems, we need a formal modeleszribe both
continuous dynamics and discrete transitionsoHO uses a general hybrid au-
tomaton to model hybrid systems. AoB0 hybrid automatonis a tupleM =
(Q,X,F,T,l,G,R,S) where

e Qs afinite set ofliscrete states

e X C R"is thecontinuous state spac&heren is the number of continuous
variables.S = Q x X is thestate spacef the system.

e |1 :Q — 2Xis acollection ofnvariants 1(q) is the condition that the continu-
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ous variables must satisfy when the automaton is in the gtdtee condition
is described by a system ofd®io inequalities,e.g., (X3 < 1)V (X3 + 2% >
10) (see Section 4.2.2).

e F:Q = (X = R U(X — 2f") is a set ofcontinuous dynamics=or each
stateq, the evolution of continuous variables is governed by therdanistic
or non-deterministic dynamids(q).

e T CQxQisasetofliscrete transitionsEach transition = (g, d') identifies
asource state @nd atarget state g

e G:Q — (2% — {0,1}) assigns each stategaard conditionfor specifying
the pre-condition of discrete transitions. Given the aurreachable region
x in a stateq, the conditionG(q)(x) determines if discrete transitions are
triggered or not.

e R: T — (2X — 2%)is a collection ofreset mapsFor each transitioh, R(t)
alters the continuous variables in the source gjatehich will be used in
the target statq.

e Sy C Q x X is theinitial region of the automaton. It consists of a set of
discrete state® C Q and a set of initial regions for these discrete states

N
Xo=Q — 2R
L t > tawen R
0<¢<02 02<¢<16
F t > tawen H

2<6<16 16<¢p<18

Figure 4.1: Hybrid Automaton for the Toggle Circuit

Figure 4.1 shows the hybrid automaton that we use when vegifthe tog-
gle circuit as described in Section 3.2.1 as an example.slfdar discrete states
L,R,H,F which correspond to Brockett’'s annulus regions.(low, rise, high, fall,
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respectively), and seven continuous variabfes {@,x,y,z xx yy,zz which cor-
respond to the circuit nodes as shown in Figure 3.3. For e&dhnete state, the
invariant labeled in Figure 4.1 constraint the range of tloekcvariablep. The
continuous dynamics are defined by ODEs extracted from ticaitas described
Section 3.3. There are four transitiorts; R), (R, H), (H,F), (F,L). For transitions
(R,H) and(F,L), the guard condition is simply the invariant conditions,, a tra-
jectory leaves statR or F once no longer satisfies the invariant. The other two
transitions,(L,R) and(H, F) can only occur after the minimum dwell time in state
L or H has elapsed as required by the Brockett's annulus consinucthe reset
map is set to be an identify function. The initial discretatstisR and the initial
value of continuous variables is estimated based on simntatvheng switches
from statel to stateR.

4.1.2 Reachability Algorithm

We now turn to analyze behaviors of a hybrid automatbnA trajectory of the
hybrid automaton is a functiost R* — Sthat specifies the evolution of the system
state according to time. A state bf can change in two waysliscrete evolution
where the system changes the discrete state@amighuous evolutiowhere contin-
uous variables change according to the dynamics.ré&ehable regiorof M is the
set of all trajectories it can generate. In this dissentatice usgeachable seto de-
note the system states at a specified tifiem an initial region, and useachable
tubeto denote the region that is reachable prior to or at tifn@m the initial region.
We only support forward reachability analysis. In prineigbackward reachability
can be implemented by negating the continuous dynamicd.[ti@vever, mod-
eling non-linear dynamics requires using over-approxiomst in the reachability
computation to ensure soundness when verifying safetyepties. The approx-
imations that we use makedtio only useful for forward analysis where circuit
dynamics tend to be well-damped.

Algorithm 1 shows the framework of our reachability anayalgorithm used
in CoHo. Given a hybrid automatoil and its initial regiorSy, it explores discrete
and continuous successors until no new reachable regiowfda the algorithm,
we use a seQ to record all reachable discrete states and &setrecord reach-
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Algorithm 1: Reachability Algorithm of Hybrid Systems inGHo.
Input: a CoHo hybrid automatotM = (Q, X, T,F,l,G,R,S),

G ={C,L}, So={Qo,Xo}
Output: reachable regions of the hybrid automaton

1 begin

2 Q= Qo;

3 while g = pop(Q)do

4 S = Xo(9),I(--+) =2;

5 while C(q) do

6 S+1 = post(S);

7 Si,i+1 = bloat(convexS, §1), [[X[|At);
8

9

if L (q) then
for each gate g of(q) do

10 | 1(g) = union(intersectS; j.1,gN1(a)),1(9));
11 end
12 end
13 end
14 for each transition &= (q,q,g) of T do
15 pushQ,d);
16 1(9) =R(t)(1(9));
17 Xo(d) = unionXo(d),1(9));
18 end
19 end
20 end

able regions in each stat®) is initialized by Qg (line 2) and updated by adding
unvisited states (lines 14,15,18) following discrete ¢iaions. For each statg S

is initialized by its initial regionX(q) (line 4). Forward reachable sets (line 6) and
reachable tubes (line 7) are computed iteratively from tiiteal region. The com-
putation of reachable sets is the most challenging taskhmiuitt be described in
Section 4.3 and Section 4.4. The algorithm depends stranghe method used
to represent continuous regions, and Section 4.2 predeatprojectagon repre-
sentation that is central todo. The reachable tube is approximated (line 7) by
a bloated convex hull of reachable sets as illustrated inreig.2. All reachable
regions of the hybrid automatdvi are computed once the algorithm terminates.
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Figure 4.2: Approximate a Reachable Tube Based on Reachable Sets

As described above, each statdas an associated initial regiofy(q). To
compute it efficiently (lines 14-18), we uséicesto record trajectories that cross
state boundaries. A slice is the intersection of a reachable and a hyperplane.
Each condition of invariant(q) defines such a hyperplane, which is also called a
gate of the state?. Slicing is performed in each computation step and the t®sul
are stored in a sdt (line 10). The accumulated result is applied to update the
initial region of successor states after the reset maps(lliéel7). With the concept
of slice, a transition is implemented as a tuple (q,q’,g) whereg is the gate
of source state (line 14). Accordingly, the guard conditioB(q) consists of a
continuous functiorC(q) and aslicing functionL (g). The continuous function
determines when to terminate the reachability computdtina 5) and the slicing
function decides when to compute and record slices (lin€8)8n each state. Take
the automaton as shown in Figure 4.1 as an example: tragstoan leave state
R at any time; therefore, reachability computation stopsmadiktrajectories leave
this state and slicing is performed in each computation. stdpwever, in state
H, the continuous function always returns true until a fixeiipis reached and
slicing is performed only after the minimum dwell time haaped.

89



N\

=y

N

Maximal
Reachable
Space

Xiy ‘

Figure 4.3: A Three-Dimensional “Projectagon”

4.2 Projectagons

Projectagonsare a data structure for representing high-dimensionaglhgalra by
their projections (projection polygongnto two-dimensionaplanes where these
projection polygons are not required to be convex. Conlgradull-dimensional
polyhedron can be obtained from its projections by backegting each projection
polygon into aprism and computing the intersection of these prisms as shown
in Figure 4.3. More formally, letS € R" be an-dimensional polyhedrap =
{u1,--- ,un} be an orthogonal basig, C {(ux,uy)|ux € B,uy € B,X #Y} be a

set of planes. If = (ux),Uy() € £is a plane, we writgy = proj(&,1) to denote

the projection ofS onto this plane:

proj(&,1) = {(Xx ), Xy())| (X1, -, %) € &}. 4.1)

1in the current implementation of @40, all gates of the guard condition are “exactly” on the
boundary of the invariant regions.
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We useld = {p|l € £} to denote the collection of all projections and wigtgsm( p; )
to denote the inverse projection pfback into the full-dimensional space:

prism(p) = {(x1,-- ;%) € R"[(xx(1), %y (1)) € P }- (4.2)

The projectagon of a polyhedrah with planesg is Sq (&) where:

S:(®) = () prism(proj(&, 1)) (4.3)
leg

In addition to thisgeometric representatione85) where a projectagon is repre-
sented by a collection of projection polygons, we also mte\aninequality rep-
resentation E(&) for projectagons in Section 4.2.2 where the convex hull of a
projectagon is over-approximated by a system of linearuaéties. Operations
on projectagons are implemented based on these two retatsas which will be
presented in Section 4.2.1 and Section 4.2.2. To convart fhe geometric rep-
resentation to a system of linear constraints, we comp@tedhvex hull of each
projection polygon as described in Section 4.2.1. To cdrivem a system of lin-
ear constraints back to projection polygons, we projectf¢lasible region of the
constraints onto the appropriate plane(s) describedila®ection 4.3.2.

Projectagons can represent non-convex polyhedra effigiertich is not sup-
ported by most other techniques discussed in Section H&Bever, projectagons
are not a canonical representation (see Appendix A). Fumihie, there are many
polyhedra (even convex ones) that cannot be representerbf@ciagons exactly.
For example, indentations on the surface of the full-dirferad polyhedron will be
filled; likewise, many perforated objects and knot-likeeattg can only be approx-
imated. However, an attractive feature of this approachatiays overestimates
the original polyhedron; in particular, it is straightfcavd to show that:

6 C S(6). (4.4)

The approximation error also depends on the set of pl&nesed. Generally speak-

ing, approximation error decreases when the number of piacecases, which lies

in the range of[J1, 201,
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The projectagon representation offers several advantagesther approaches.
First, projection polygons capture circuit designersuitite notion of how a cir-
cuit works. Typically, the behavior of each signal is detiered by a small number
of other signals. Pairing a node with each of its controllimagles naturally cap-
tures the causal behavior of the circuit. Because mostitsrbave limited fan-in
and fan-out, the number of such paits,, planes, is proportional to the number of
nodes in the circuit. Second, the geometric representagoncapture important
non-convexities of the reachable space and provides efficigplementations of
key operations including intersection and union. Theseaijmns are described
in Section 4.2.1. Furthermore, representing the convexdfia projectagon as a
system of linear inequalities allows us to use methods fiagal programming to
manipulate projectagons which are discussed in Sectiof.4Tais is particularly
useful for operations that work on one face of the projeatagpa time, and we
approximate the face by its convex hull even though the cetagirojectagon may
be non-convex. Finally, ignoring degeneracies, faces agbggtagon correspond
to edges of its projection polygons. Section 4.2.3 presantsfficient method to
enumerate all projectagon faces which is an important stefhé reachability al-
gorithm in/ Section 4.3.3.

4.2.1 Manipulating Projectagons via Geometry Computation

The geometric representation of projectagons only trasksdimensional pro-
jections rather than full-dimensional polyhedra. Theref@xponential time and
space operations on full-dimensional polyhedra can beladobecause the opera-
tions needed for reachability computations can be impleéetebased on polyno-
mial time operations on the two-dimensional projectionygohs. For example,
intersection and union of two projectagons can be compuged b

intersectior{S;, %) = () intersectior{pf, p?) (4.5)
leg

union(S;,S5) < (1) union(pf, pf). (4.6)
leg

Two other operations required byoB o are convex hull and projectagon simpli-
fication. GOHO's reachability computation tends to increase the numbereof
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tices of each projection polygon at each time-step. As desttrbelow, polygon
simplification introduces small over-approximations tefehe polygon degrees
manageable. Like intersection and union, both convex mdl@rojectagon sim-
plification can be computed on a per-projection-polygorisas indicated below:

convexhullSz) C () convexhul(p) 4.7
leg

simplify(Se,g) 2 () simplify(pr, €). (4.8)
leg

The intersection of a projectagon and a hyperplane can bleimgmted similarly.
However, the intersection of a projection polygon and theesponding projec-
tion of a hyperplane is a segment. To keep projectagonsciasger intersection
with hyperplanes, we use a projectagon to conservativedy approximate the
intersection, which will be described with details in Sent#.3.3.

There are efficient algorithms and well-developed toolsdolygon opera-
tions [171]. However, we found thatd®o requires robust implementations of
these operations for polygons with nearly parallel edges samilar difficulties.
To achieve this, we implemented a new geometry computatekgge based on
arbitrary precision rational (APRhumbers to provide robust implementations es-
pecially for ill-conditioned problems. For the union optoa, our algorithm first
computes all intersection points of two or more polygonsgishesweep-lineal-
gorithm 171, Chapter 7.2]. It then finds the union of theskygans by walking
from the lower-left-most point in the anti-clock wise ordard always selecting the
right most edge on each intersection point. An example igvales green arrows
in Figure 4.4(a). The algorithm for the intersection oparas similar except it
chooses the left most edge on each intersection pointtraliesl as yellow arrows
in Figure 4.4(a). To simplify a polygon, our algorithm finds @ver-approximated
polygon by either deleting a concave vertex or replacing t@nsecutive, con-
vex vertices with a single vertex of the polygon as shown iguFe 4.4(b) and
Figure 4.4(c) respectively.
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(b) Remove a concave vertex.

@@

(a) Union/Intersection of polygons (c) Replace two convex vertices with on

Figure 4.4: Polygon Operations

4.2.2 Manipulating Projectagons via Linear Programming

The geometric representation can represent non-convéngegccurately. How-
ever, it is not efficient for some operations, such aspifegect operation of non-
convex polyhedra, and the intersection of prisms. On therdtAndconvex projec-
tagonshave an inequality representation which represents aptetie by a linear
inequality. This representation has an attractive featseit corresponds to the
constraints of dinear programwhich makes it possible to manipulate convex pro-
jectagons using techniques from linear programming. Thezewe also employ
an inequality representation to describe the convex higsajectagons and obtain
efficient algorithms for several operations.

The convex hull of a projectagon, which can be approximatciently using
Equation 4.7, is described by a@0 constraint systerin the inequality represen-
tationEg(&). A COHO constraint system is a system of inequalities of the form:

Ec(&) =Px< g=({Rx < q|vx < convexhul{p)}, (4.9)
leg

where the matriXP, called a @HO matrix, has only one or two non-zero elements
in any row, because eacho®0 inequality corresponds to a polygon edge. Like-
wise, a ®HO equality is a linear equality constraint that involves oohe or two
variables. The special structure of the@o matrix is exploited to develop an
efficient LP solver in [208, 2.4].

The inequality representatida: (&) conservatively approximates the convex
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hull of the original polyhedron as
S C convexhul{&) C Eg(S). (4.10)

This representation is used to implement the bloating dpetay moving each
half-plane outward as

bloat(Se,Ad) C bloat(E¢(&),Ad) = Px< g+ Ad. (4.11)

It is also used to implement the project operator in Secti8r4 represent pro-
jectagon faces, compute bounding boxes of projectageinsThe intersection of
prisms represented by inequalities is trivial by the cogjiom of all CoHoO in-
equalities.

4.2.3 Projectagon Faces

Finding projectagon faces is an important operation becallcomputations are
performed on projectagon faces in Algorithm 4 of Section3l.Zortunately, pro-
jectagon faces correspond to edges of projection polygdrerefore, ife is a
projection edge on the plamhgits corresponding projectagon fatge,l) is

f(el) = prism(e)()Se(S). (4.12)

The prism corresponding to an edgeism(e) can be described by onec®o
equality and two ©HO inequalities. However, it is difficult to compute the inter-
section of a projectagon and these inequalities. We usendtpiality representa-
tion instead to compute a conservative result:

f(el) C prism(e)(|Ec(S (4.13)

The result is accurate for convex projectagons. Howevendo-convex pro-
jectagons, the approximation error can be very large. Toerewe developed
aninterval closuretechnique for finding a more accurate representation oeproj
tagon faces. The interval closure calculation is based tamval constraint prop-
agation. It interprets a non-convex polygon as constraihtontinuous variables
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and views each polygon edge as defining interval bounds étvib variables of

the projection. The algorithm then applies these intert@lsther polygons that
include one of these variables in their basis to obtain bswidther variables.
This process continues until no further tightening of thterival bounds is possible
or the progress is below a threshold. The algorithm is simfgist and signifi-

cantly reduces the approximation error when the projegtiolygons are highly
non-convex. The interval closure based projectagon faamede expressed as:

f(el) C prism(e)(|E¢(&)[ )intervalClosurée, S:(S)). (4.14)

4.3 Computing Continuous Successors

This section presents our algorithm for computing contirsusuccessors used in
Algorithm1. First, the method to move projectagon facewésd in time is shown
in Section 4.3.1. Second, advanced faces are projectedvaridimensional planes
to maintain the structure of projectagons, as describeceatié 4.3.2. Finally,
the algorithm for computing continuous successors is ptedein Algorithm 4 of
Section 4.3.3 and the feasibility problem of projectag@discussed.

4.3.1 Advancing Projectagon Faces

As shown in Algorithm 4 (line 13), an essential step of conmgutontinuous suc-
cessors is to advance projectagon faces according to epanlitynamics. A projec-
tagon face is represented by e&o constraint system as described in Section 4.2.3.
In this section, we consider the problem of computing an-apgroximation (S)

of the reachable set at timé&om an initial regionS, which is described by a@-0
constraint syster®x < g. Nonlinear dynamics are conservatively approximated by
a linear differential inclusion (LDI) of the form

X = AX+ b+, (4.15)

where theu term defines a uncertainty détfor which we use a hyper-rectangle.
These non-deterministic dynamics are approached witmdemum principle
from optimal control theory [197]. The key idea is to finatical value u € U
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for each face oS which moves its corresponding hyperplane furthest outwArd
face f; of Sis represented by an inequality from the&o constraint system as

Px< g, (4.16)

whereP is theit" row of CoHo matrix P andq; is theit" element of vecton.
Equation 4.16 also defines a halfspace wiiereP! is theoutward normalof the
corresponding hyperplane.

()

a b
Figure 4.5: Maximum Principle. a) the normai(t) is determined by the lin-

ear system; b) find critical value by linear programming @juredant
faces can reduce approximation error.

By integrating Equation 4...5, we have
t
o) = €x(0)+ (&M —NA b+ / At-9y(s)ds
0

We remark that all initial points satisfy thedBio constraint systenPx(0) < g;
therefore, we have

t
Re™.x() < G+R(I-e™Abs [ Re*ugds  (417)
0

As illustrated in Figure 4.5(a), we can see that the evalutibthe normal tof;
does not depend on the uncertainty termnand is only governed by the linear term
as

A(t) = e AP, (4.18)

To bound all trajectories with all possible values of theantainty termu, we
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maximize the integration in Equation 4,17 as
AT (Ox(t) < g +R(—e A bt maxog u oA (Su(e)ds  (4.19)

It is straightforward to compute + P(I — e A")A~b, and we now derive a bound
for the integral.

t
maxoq-u [ 1 (S)u(s)ds
t
= MaXogu /0 e "u(s)ds

t 00 —ASk
= ma)ﬁ:[07t]—>U/0 A’ <kZO( k!) )U(S)ds

it m (—AS)k
maX; oz u/ A’ u(s)ds
(A k; " )
t 0 —ASk
+ma>&[o.t]au/o A > ( k') )u(s)ds

k=m+1

(4.20)

IN

wherem is chosen to set the degree of the approximation of the mexgmonen-
tial. In practice,||At||, is small, andn =1 or m = 2 will produce a very small
overapproximation. Let

t m (—Ag)k
G = ma)&[ox]—w/o A kzo( k!) )U(S)ds
= (4.21)

t ® (—Agk
H o= maxpgo [0 3 )>u<s>ds
0

|
k=m+1 k!

For smallm, G can be computed exactly by considering one componentabfa
time. To boundH, observe

o pqk
max,:[o-u /otﬁT< > ( QS) )u(s)ds

k=m+-1
t m (—AskK
< magoq [ IS 2
015U | 2w

m At k
~ ) (e"“' -3 %) uj
PR

T
I

[lu(s)||ds (4.22)
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This provides an overapproximation of the solution to Eoued.19 providing the
bound we want for the most outward foward fagéf;). Thus, the forward reach-
able region is bounded by

&(S) < () ah). (4.23)
fieS
The actual implementation of@Ho0 is based on an earlier approximation that
we derived but that can be underapproximate. TlwiG code is based on the
assumption that the critical value does not change duriegithe step and ap-
proximating the forward regiok (S). With this assumption, the integral is under-
approximated slightly as:

t t
/ AT (tHu'(s)ds ~ max/ A’ (sjuds
0 ueU Jo

= [R(I—e™A L

Therefore, the forward reachable region is bounded byoa&@advanced con-
straint of the form:

~

PEx < ¢
E — A (4.24)
g q+P(I —E)A~b+|P(I —E)A 1y,

where the matrixE is a linear operator for moving a point at the end of a time
step back to the original point at the beginning of the tinepstWe ran some
experiments to quantify the effect of this under-approxiorafor the examples
described in Chapter 5. In all cases, any under-approximatiasvery small,
and we are convinced that the over-approximations in othds f GOHO ensure
that, in practice, the overall computation is an overapipnaxion as desired. Both
approximation methods have the advantage that they atedyeefficient because
only matrix operations rather than numerical integratiom iavolved during the
computation.

Finally, we add redundant faces to the initial regi®io reduce approximation
error. As illustrated in Figure 4.5(c), a vertgxdies on two faces; and f,, how-
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ever, the critical values; andu; of these two faces are not necessarily the same.
Therefore, the intersection poipt! of the two forward faces is not reachable from
the pointp. The redundant facé&; can trim unreachable regions and thus reduce
overapproximation error.

4.3.2 (CoHO Linear Program Solver and Projection Algorithm

CoHo makes extensive use of linear programs (LPs) which haverefoHo
constraint systems from Equation 4.9 ooio advanced constraint systems from
Equation 4.24. This section presents an overview of ouatipeogram solver and
projection algorithm based on my Master’s wark [208]. Theeér programs used
on CoHO can be written as

mxindT X, S.t.

(4.25)
P-E-X é q>

whereP - x < q is a CoHO constraint system whose feasible region is a convex
projectagond is the cost vector, anfl is an optimal backward time step operator
for LDl models. Because time steps are relatively sntalls well-conditioned,
and E~1 can be easily computed. We refer to a linear program in the fof
Equation 4.25 as a@Ho linear program

There are two main approaches for solving linear progranisrior point al-
gorithms[156, 164] and theSimplexalgorithm [80]. However, the inherent ill-
conditioning of interior point methods compounded the peobof badly condi-
tioned linear programs and prevented their successfuicapioin. On the other
hand, the Simplex algorithm is typically formulated to cggeron standard form
linear programs. Astandard fornlinear program has the forrn [165]:

min c'-x, st. Ax< b. (4.26)

To retain the special structure ob®0 matrices, we convert acHo LP to its dual
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form [165] as
myin —q'-y, s.t.
PT-y = Ede (427)
y > 0.

The CoHo dual LPis a standard form linear program. Therefore, it can be solve
by the Simplex algorithm. By thduality theorem[196, Chapter 5], the primal
and dual linear programs have the same optimal value anchaldbasis; thus, the
COHO LP can also be solved.

Simplex is a greedy algorithm. It repeatedly selects a sutifste columns
of PT called thebasis Let PJ, denoteP' restricted to a basig. Simplex solves
for y = P, -d and determines if the basis can be modified so as to improve the
cost. This step is calledivoting which replaces a column in the basis with a new
column to obtain a more favorable basis. Simplex pivots tluce the cost until
the optimal basis is found.

Algorithm 2: CoHo LP Solver (Ipsolve(P))

Input: LP(P,qg,d,E): a CoHO LP of the form: mird"x,st.PEx< q
Output: B: optimal basispt: optimal point,v: optimal value

1 begin

2 | A=—P";b=—E"Td; c=—q;
3 dLP = Ip_standard(A,b,c);

4 B = BigM(dLP);

5 repeat

6 Co=Ag' Cs;

7 j =argmings (¢ — Alicp < 0);
8 to=Ag'b; tj = Ag'Aj;

9 k=argmines {;

10 B =replaceB, kK, j);

11 until B =null ;
12 pt= E_lpglqg; v=dpt;
13 end

CoHouses a modified Simplex algorithm as shown in Algorithm 2 réticon-
verts @HO LPs to the dual forms (lines 2,3) and computes an initialildadasis
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based on th&ig M method196, Chapter 2.3] (line 4). It uses a standard pivoting
algorithm (lines 6-10). However, @10 computes the Simplex tableau from the
input data for each pivot which is different from most impkemtations where the
tabulea is updated based on its predecessor [80]. This matibifh avoids accumu-
lated error because only a vector of integers specifyindp#ses is passed through
each pivot. The algorithm is as efficient as the traditiongllementation based on
rank-1 updates of the tableau, becauseH@'s solver exploits the structure of the
CoHo matrix P to obtain a linear time algorithm for solving linear systeondines
6, 8 and 12. More details of the linear system solver are testin 208, 214].

To maintain the projectagon structure, advanced facesuafitm 4.24 need to
be projected onto two-dimensional planes to compute ptiojes for constructing
a new projectagon. Likewise, projectagons are re-prajettie@emove infeasible
regions which will be discussed in Section 4.3.3. Therefareimportant opera-
tion in CoHo is finding the projected polygorof a convex region described by
a CoHo constraint systerPx < g or CoHo advanced constraint systdEx < g
onto a plane defined by two orthogonal axgg/). We call this problem therojec-
tion problemand present an algorithm based on linear programming fgegtion
problems with @HO constraint systems and extend it to problems withHO
advanced constraint systems.

The idea behind our projection algorithm in Algorithm 3 isstilve GOHO LPs

max(Xcosf +ysinf)-x s.t.Px<q, (4.28)

XeRM

for all 8 from 0 to 2rand use the optimal points to construct the projected polygo

It is unnecessary and impossible to solve Equation 4.28venygpossible value of

0. Instead, ©HO only solves one LP for each edge of the projected polygon,

where the optimal directioRcos6 + ysin@ is also the normal vector of the edge.
The normal vector of a polygon edge is computed based on tirmaldasis

of the CoHO LP in Equation 4.28. Our Simplex based solver works on itd dua

problem:

min g-y s.t.PTy=Xcos@ +ysinf .y > 0. (4.29)
yeR+™M

When the solver finds a solution to Equation 4.29, it also fialoptimal basis
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2% and an optimal poinpt = P&;T(Xcose +Yysin8) whose elements are all non-
negative. By increasing the value 6fto some critical value, the basig will no
longer be optimal for the optimization directid@tos + ysin@. The critical value

of 8 is the oneb,ex (line 11) at whichpt acquires a negative element, and the
corresponding direction is orthogonal to the polygon edhge is from the current
optimal vertex to the new optimum. Each successive valu®az#n be determined
by a single linear system solve in linear time. Similarlye thormal vector of
the edge from the previous optimal vertex to the current @rebe computed by
decreasing the value éfto Byey (line 10) as shown in Figure 4.6(a).

\. 0+

'91 7‘(‘?1,'

N\ € 1s too large

‘971 ext

Figure 4.6: Projection Algorithm:a) finding Bhext and Byrey from the optimal
basis;b) both blue vertices are optimal for the normal vectoran edge
is skipped wherz is too large.

However, using the normal of a polygon edge as the optimattion may not
find the expected optimal basis, because several projectagtices may corre-
spond to the same projection polygon vertex as illustratdeigure 4.6(b). There-
fore, we increase the value 8fby a small amoung (line 5) to force the LP solver
to find the correct optimal basis and optimal point. Howetldg may skip some
edges and produce under-approximated results as showgurer.6(c). We de-
tect this scenario by comparing the valueéand Bye,. If there is no edge has
been skipped in the stefyrey must equal td. Otherwise, the mean value 6fand
Bprev is Used as the new optimization direction (line 12) to repleacomputation.

The algorithm is generalized to projection problems withH® advanced con-
straint systems for projecting a time advanced projectdgyda- x < g. Although
the feasible region of a @Ho advanced constraint system is not a projectagon
in the standard coordinat€, it can be represented as a projectagon of the form
P.x < g in the new coordinat&~1%. Therefore, the problem is converted to
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projectP-x < g on to a subspace with basis vectgrs'x, andE ~1y (lines 2,3,16).
The algebraic and geometric explanations of this coorditransformation can be
found in [208].

Algorithm 3: CoHo LP Projection Algorithm (IpprojectPEx< q,X,Y))
Input: CoHo advanced constraintEx< q
Input: projection plan€X,y)
Output: p: projection ontoX,y) plane

1 begin
2 X=E-x y=E~y,
3 | V=9—1d X= 7 V=
4 for 6 =0,0 <2mrdo
5 Bopt = 0 + €,
6 repeat
7 d = Xcog Bopt) +Ysin(Bopt); Ip = Ip_standardg, g, d);
8 [B, pt,v] = Ip_solve(Ip);
9 (=P n=Ps"y,
10 Bprev = MaXc (1. (@rgg Min(¢; cosd + n;sind = 0A 8 < Bopy));
1 Bhext = MiNic (1, (argg min(Z; cosd + n;sind = 0A 8 > Bopy));
12 eopt _ 9+92prev;
13 until 6 = Bprev ;
14 0 = Bhexi; p = p + project(pt,X,y);
15 end
16 p = convexhul(p); p=E!p;
17 end

As we can see, the correctness of the LP solver depends @ttcpivots and
the projection algorithm relies on correct computatiorfgt, and 6nex. However,
numerical error of floating point arithmetic may result iniacorrect pivot and fail
to find an optimal solution in the Simplex algorithm, espkgitor ill-conditioned
CoHo LPs. Thereforearbitrary precision rational (APRarithmetic is applied in
the LP solver and the projection algorithm to makeH® robust. If APR methods
were applied to all of ©HO's computations, the resulting implementation would
be very slow. As described in Section 4.4.401 uses interval-based methods
where their accuracy is sufficient and resorts to APR onlyrwiecessary.
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4.3.3 Computing Forward Reachable Sets

Algorithm 4 shows the procedure of computing a forward reath set in ©Ho.
Because the system dynamics are bounded, trajectorieatiawous and can-
not cross. Therefore, trajectories starting on projeciggoes provide bounds for
trajectories starting in the interior. Accordingly, th@aitithm first finds all pro-
jectagon faces using the interval closure approximatic8enction 4.2.3 (line 4).
Then it calculates a linear differential inclusion (LDI) de for each face and
computes a step sizit (lines 5-7,10). To ensure soundness, it uses a conserva-
tive strategy to compute the model and step size based onstraiom that any
point in the projectagon can move by at most a user-providstrtteAd along
any axis-parallel direction. It bloats each face outward\ty(line 5) and approxi-
mates the system dynamics by a LDl in the bloated face (linB&3ed on the LDI
model, it computes the maximum derivative in the bloatee facsolving two sets
(Vi € {1,---,n}) of linear programs (line 7) as

min / maxx;, s.t.

< Ax+Db
>.< < Ax+b+u (4.30)
—X < —(Ax+b—u)
Px < q,

which can be solved by the LP solver in Section 4.3.2. The sitapis calculated
by computing the maximal valu&t = mgf").q' (line 10) which guarantees that the
reachable tube is bounded by the bloated face during thpgGiat|.

Given LDI models and a step size, projectagon faces are adddoy using
Equation 4.24 (line 13). To maintain the structure of prtggons, all advanced
faces are projected onto two-dimensional planes using thidnad described in
Section 4.3.2. However, each advanced face must be projeate all planes of
the original projectagon (line 15). Intuitively, this isdaise the projectagon can
rotate during this step and any face can become an extepwfdaany plane. Fi-
nally, a new projectagon for the forward reachable set isttooted by computing
the union of all projected polygons on the same plane andlgjimg the result to
reduce space complexity (lines 19-22).

During the computation above, projection polygons are adsip indepen-

105



Algorithm 4 : Algorithm for Computing Forward Reachable Set

Input: Sg: current reachable set represented by a projectagon
Input: Ad: maximum moving distance allowed
Output: Sgt: the forward reachable set after time stip

1 begin

2 for each projection mlo

3 for each edge €o

4 fe = prisme) NEg, fe = feNintervalClosurée, Se ) if fe # 0;
5 2 = bloat( fe, Ad);

6 mode} = modelcreatd f2);

7 X|e = | p_solve f2, mode});

8 end

9 end

10 At = mineess ﬁ(\jﬂe;

11 for each projection mlo

12 for each edge €o

13 & = I p_forward( fe, node, At);
14 for each plane E £ do

15 | poly, = Ip_project(f&*,%.%);
16 end

17 end

18 end

19 for each plane k £ do

20 pft = poly_unions, (poly );

21 pit = poly_simplify(pf);

22 end

22 | S = (e prism(p); ER = Mo prismiconvexhullpf))
24 repeat

25 for each plane k £ do

26 poly} = Ip_project(EA %, ¥i);
27 p| = poly.intersectp, 1, polyl);
28 p| = poly_simplify(p);

29 end
30 §* = Nice prism(p}); EM = M prism(convexhul(p} ));
31 untll |[EAY, —EM|| <¢;
32 $t EAt EIAtl;
33 end
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dently for each plane. Therefore, it is possible that theesirdeasible regions

of one projection to other projectionge., the prism from this region does not
intersect with other prisms of other polygons. The infelasiegions of the new

projectagon may lead to incomplete boundaries in the neptwhen working on

an infeasible face. To solve the problem, all projectionygohs must be clipped
to make them feasible to each othar. Section A.1 shows tleaprthblem of de-

termining whether a projectagon constructed from a set afagamvex polygons

is non-empty is NP-complete. Thus, we accept that a praetigarithm must be

based on heuristics and/or approximations.

We relax the problem of removing infeasible regions as atiga projectagon
such that each of its projections is feasible to the inetuatipresentation of the
projectagonj.e., convex hulls of other projections. The algorithm is basedhen
projection algorithm in Section 4.3.2. As shown in line 23Ad§orithm 4, the
inequality representation of the new projectagon is caostd from the convex
hulls of projection polygons. This representation canudel non-tight or redun-
dant constraints from infeasible edges. To obtain a canbnépresentation, we
project the @HO constraint system onto all planes (line 26) and construava n
set of inequalities from the projected polygons. It is easstiow that all these pro-
jected polygons are feasible to each other. Thereforentkesiection of an original
projection and its corresponding updated projected palytine 27) is still feasi-
ble to the new inequality representation. This algorithipsch projectagon and
makes it feasible to its inequality representation.

The inequality representation must be refined because theséttion makes
a projectagon polygon smaller but also changes its conviéx e convex hulls
of intersected polygons are computed and the inequalityesgmtation is recon-
structed at the end of each step (line 30). This procedusp@ated until all convex
hulls are fixed. However, it may take infinite number of stepsdnverge to the
stable projectag@a To solve the problem, we stop the computation after a eertai
number of iterations or the progress is smaller than a totdgftine 31). We do
not update the inequality representation in the last siep @32). Therefore, the
inequality representation at the end is an over-approximatther than an exact

2An example is provided in Section A.2.
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representation of the convex hull of the projectagon.

This method has been applied in Algorithm 4 to make the baynctamplete.
It ensures that projections of any new projectagon areligas its inequality rep-
resentation. As show in line 4, we use Equation 4.14 to olatdighter approxima-
tion of a projectagon face if the face is feasible; otherywse use: Equation 4.13
to approximate the projectagon face to ensure the appréximis not empty. To
control space complexity, intersected polygons are atspldied (line 28). How-
ever, only concave vertices can be removed because replaainconvex vertices
with one can enlarge the convex hull and make it infeasibteaédnequality repre-
sentation.

Noting that we can add arbitraryd®io constraint systems to the inequality
representation during the projecting step (line 26), tlgorthm is extended to
compute the intersection of a projectagon andoa G constraint system. Actually,
the intersection of a projectagon and a hyper-plane redjuirdlgorithm 1 is over-
approximated by the intersection of the projectagon andoatétl hyper-plane.
This is because the intersection of a projectagon and hylpee is not a full-
dimensional projectagon. By bloating the hyperplane dlghve avoid the need
to handle special cases for objects that are not full-dioea§ and this makes the
implementation much simpler.

4.4 Improvements

The algorithm described above is numerically stable; hawethe reachability
computation can be very expensive especially for high-dsimmal systems. Fur-
thermore, the over-approximated result may be too largetiéya correct system
successfully. To improve performance and accuracy, skemevaalgorithms have
been developed as shown in Algorithm' 5. Section 4.4.1 ptesemethod which
projects advanced faces onto one plane to reduce projemtionand improve per-
formance (line 7). Section 4.4.2 proposes a guess-verdyesfy for increasing the
step size and reducing error (lines 2-17). More techniqagsduce model error
are discussed in Section 4.4.3 (lines 9-12,18-21). To ingpperformance, hybrid
computation is applied as described in Section 4.4.4 ancbajppate algorithms
are applied as shown in Section 4 4.5 (line 11).
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Algorithm 5: Improved Algorithm for Computing Forward Reachable Set

Input: Se: current reachable set represented by a projectagon
Input: Ad, At: bloat amount and step size of the previous step
Output: Sﬁ‘: the forward reachable set after time st&p

1 begin
2 repeat
3 updateAd andAt;
4 for each projection mo
5 for each edge €o
6 fe = prisme) NEg NintervalC(e,Se) || prism(e) NEg;
7 fo = (bloat(fe,Ad) NEg) || heightertfe,Ad);
8 models = modelcreatgbloat( fe,Ad));
9 for each model me modelg do
10 & = Ip_forward( fe, me, At);
11 polys(i) = | p_projA( &, Xo,Vp);
12 end
13 polye = poly.intersect polys);
14 Ad’ = max ph_bloatAm{ fe, polye),Ad’);
15 end
16 end
17 until Ad’ < Ad;
18 repeat
19 Ad = Ad”;
20 repeat lines 8 14;
21 until ||Ad—Ad'|| <¢;
22 for each plane k £ do
23 | p™ = poly_simplify(poly_union.s, (poly));
24 end
25 | S =ce prism(pR); EQ = Mce prism(convexhullp));
26 repeat
27 for each plane E £ do
28 poly = Ip_project(EX,,%,¥);
29 p| = poly_simplify(poly.intersect p| 2, poly}));
30 end
21 = Mice prism(p}); EX = M prism(convexhulip)));
32 | untl [|EA, —EX| <e;
1 | K =FHES=EYy;
34 end
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4.4.1 Reducing Projection Error

In Algorithm 4, each advanced face must be projected ontplaties in order to
ensure soundness. This approach is very expensive with [aajection error.
Projecting an advanced face back to the plane for the otigolge is usually much
more accurate than projecting onto other planes. This iausecthe face has much
tighter constraints of variable$ and,, i.e., an edge, than other variables, and
the linear differential inclusion model has a smaller etesm for these two vari-
ables. Although the value off andY, variables can be affected by other variables
as the face may rotate during a step, the correlation is lysuaich smaller espe-
cially when the step size is very small. Therefore, it iscatiive to only project an
advanced face back onto its own plane.

« « o« |
[} \> [ ]

Ad

a b c

Figure 4.7: Projectagon Faces to be Advanced: a) Extreme trajectony &0
face which does not correspond to an edge of the plane; b} Biea
face inward; c) Increase the height of the face.

However, this method does not consider all possible trajixs as illustrated
in Figure 4.7(a). To ensure soundness, there are two apgm®ags shown in
Figure 4.7(b) and Figure 4.7(3) The first approach bloats a face inward by a
distanceAd which captures all boundaries that can lead to extreme goinpro-
jected polygons, because any point in the projectagon ¢anawve more tha\d
distance along any direction. The second approach ingdhsdeight of the face
by Ad to block any extreme trajectory from other faces becausextieme trajec-
tory must cross the heightened face. The bloated face ohtegigd face are used
to create linear differential models and to be advanced @l etep. Both meth-

3The correctness of our approach is proved in Appendix B.
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ods significantly improve the performance. The second igaenhas relatively
smaller error than the first one because the bloated facegesléhe region oK
andY; variables directly whereas the heightened face only isg®&he range of
other variables that have smaller impactgrandy;.

4.4.2 Guess-Verify Strategy

Choosing a good pair of step si2¢ and bloat amounf\d is important to obtain
good performance and small error. If the bloat amount is toalls CoHO will
take very small time steps resulting in long execution timwed reachable regions
that are overly conservative because of the error from thggtion phase. Con-
versely, if the bloat amount is too large, then the non-liitgarror (theu term
in Equation 4.15), will be large, causing another kind of raapproximation and
small time steps. In Algorithim 4, the step size is computéaguhel,, norm of the
derivatives. Therefore, it is usually very pessimistic amgch smaller than what
would actually be safe for the given bloat amount. When a fe@slvanced, the
successor of the face at the end of a time step of Algorithnmehdfes well inside
the bloated face.

Noting the fact that the pair of step size and bloat amounvalid as long as
the advanced face lies inside the bloat region used to cteateDl modef. A
guess-verifystrategy was developed which tries to guess a pair of stef\siand
bloat amountAd based on the data from previous steps. At the end of each step,
the method checks that the estimated bloat is sufficienhfestimated step size.
If not, it updates the bloat amount and/or step size and tepea computation. In
addition to enabling larger time steps, the guess-veriBtatyy speeds up the com-
putation of each step by eliminating the step-size calmrgihase of Algorithm 4
(lines 7,10).

The verify step is based on computing tieal bloat amoundd’ and comparing
it with the estimated bloat amouat. The basic operation of computing a forward
reachable set is to move forward a face that correspondsnujecpon edges and

4Soundness requires that the reachable tube from the famegtiout the time stefd, At] must
remain in the bloated region. In order to obtain a simple engntation, we only consider reachable
sets at time 0 andkt for efficiency in the implementation. There is a potentiabaumdness if a
trajectory goes outside the bloat region and re-enterslta by the end of the time step.However,
this happens rarely because the step size is generallyrithgar inclusion dynamics are linear.
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project back the advanced face onto its own plane, resuttiagorojected polygon
p. To check if the assumption that every point can move alorygaais direction

by at mostAd, the maximum moving distances aloKgandY, must be computed
based on the edgeand the projected polygop. This is computed by solving a

linear program.
minAd’, s.t.

Px < b-+|P|-Ad (4.31)
Ax < b,

wherePx < g is the GHO constraint system that describes the face,Aaxd b is
the constraint from the convex polyggn By assuming each point on the face can
move by at mosfAd’ along each axis direction, the region reachable duringrine t
step[0,At] is bounded byPx < b+ |P|-Ad’. Therefore, solving this linear program
finds the minimum bloating amount that ensures the polyg@contained in the
bloated face.

4.4.3 Reducing Model Error

A large fraction of the approximation error of the reachipitomputation is from
the linearization error during generating linear diffa@rahninclusion modelsij.e.,
the u term in Equation 4.15. Although the guess-verify strategguces the ac-
cumulated error by decreasing the number of steps, bloatssks for heightened
faces make the error term larger. In the current researchye devised, imple-
mented, and evaluated several techniques to reduce theitodegof the over-
approximations used byd@Ho.

In Algorithm 4, all variables are bloated equally. Howevara dynamic sys-
tem, it is common that some variables change much fasterdtiers. For ex-
ample, in digital circuits, a few signals will be in traneiti at any given time and
the others will be relatively stable. This results in exeasbloating for the stable
signals. To achieve an acceptable step size, the bloatdoctianging signals must
be relatively large. When the same bloat is used for all st the bloat for slow
changing signals is excessive, leading to much larger &rors in the differential
inclusion than necessary. Likewise, when a signal is clmandfiis generally either
clearly rising or clearly falling. Thus, a large bloat is pmieeded in one direction,
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allowing the total bloat for these variables to be reduceddmsrly a factor of two.
We implementedasymmetric and anisotropic bloatingAsymmetric bloating al-
lows the positive and negative bloats for a variable to beeigint. Thus, bloating
can adapt to the direction in which a signal is making a tteowsi Anisotropic
bloating allows each variable to have its own bloat amourtiusT bloating can
adapt according to which variables are changing and whierstable. This ap-
proach allowed a significant increaged.,4x) in the typical step size. As an added
benefit, the smaller total bloat reduced the error termserdifierential inclusion,
allowing CoHo to compute tighter bounds on the reachable regions.

At the end of each step, raal bloat amountAd’, which is the smallest valid
bloat for the step size, can be calculated as used in the -geafg strategy. It
is smaller than the bloat amouft hence it can be used to refine models. These
refined models also make it easier to guess an accurate bhoaina for the next
step and consequently reduce the number of guesses.

Another approach to obtain more accurate models is torustple modelsit
the same time. The intersection of several linear difféadimclusions provides a
tighter bound of the non-linear dynamics. As a result, eack fnust be advanced
and projected several times. The intersection of projeptdggons from different
models is used to generate a more accurate forward reachetbl®f course, this
method also increases the total running time. It is appgaspecially for circuit
verification because it can prevent non-physical behaviérar example, if the
drain voltage is greater than the source voltage, the duofddMOS transistor is
always positive, but negative current may be introducethduhe modeling phase.
An extra constant differential inclusion can be added tmiglate projectagon re-
gions corresponding to these non-physical, negative ©tsre

4.4.4 Hybrid Computation

To make the algorithm robust, we applied APR numbers in thesdlRer as de-
scribed in Section 4.3.2. We also use APR in the geometriqotations and the
projection function. Although all rational numbers are mdad to floating point
numbers at the end of each step, it is still very expensivestoAPR numbers for
all computations. In practice, APR numbers are only necgdeaill-conditioned
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problems which happen rarely. Wybrid computatiorstrategy is used to solve this
problem by applying both interval computation and APR anigtic. Most com-
putations are performed using interval arithmetic whicmpates upper and lower
bounds of the result and detects ill-conditioned problelfnthe interval computa-
tion fails, the APR package is used to recomputed an exastiaol This hybrid
computation method improves the performance significaftijor to using APR,
CoHo runs would often fail due to ill-conditioned computatioasd these errors
occurred in many places in theo®o code. The hybrid interval/APR approach
provided a simple implementation that has eliminated thersars from HoO.
Therefore, it has been applied to the LP solver, and the gegrpackage. The
projection function is implemented entirely with APR as mafstime are spent on
solving LPs.

The method was generalized to support floating point numlogesval num-
bers and APR numbers. The Simplex algorithm with floatingypoumbers can
solve most of the LPs and find the exact optimal basis. To sppatie compu-
tation, the LP solver uses ordinary double-precision arétic for each pivot. It
then verifies that each pivot succeeded in reducing the oastibn first by using
interval arithmetic, and in the infrequent event that thigsf CoHO uses APR. If
the pivot failed to reduce the cost, it repeats the pivot stigjp interval arithmetic
or APR. Likewise, at the end of the algorithm, it tests theroptity of the solu-
tion by verifying that it is feasible in both the primal andadllLPs, again using
interval arithmetic first and APR if the result from the int&k calculation is incon-
clusive. In this way, we obtain the certainty of APR while foeming nearly all
calculations using ordinary, double-precision arithmefihe most efficient algo-
rithm can often be obtained by the strategy which uses flgatoint numbers for
ordinary computation, uses interval numbers to validagerésult and uses APR
for ill-condition problems. Of course, other combinatiarigloating point, interval
and APR numbers can also be applied.

4.4.5 Approximation Algorithms

Even with the hybrid computation method, solving LPs andgmting advanced
faces is still one of the most expensive computations@mG. To improve perfor-
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mance further, we developed more efficient algorithms topmam approximated
results.

Noting that most of the LPs to solve occur in the projectiagoathm, the LP
solver is improved by taking advantage of the special pt@spf these LPs. As
shown in Section 4.3.2, whehin Equation 4.28 and Equation 4,29 is increased to
force a pivot to the next edge of a projected polygon, thedstahform LP becomes
infeasible. Traditional formulations of Simplex assumeasible basis; thus, the
original algorithm restarted the LP solver to establistsitgitity for each edge of
the projection of each face. However, only a single pivoeguired to re-establish
feasibility in the absence of degeneracies. According/modified our LP solver
to try each column oP' to determine if its introduction into the optimal basis of
the previous LP achieves optimality. This requires a sitigkar-system solve for
each column tried which can be performeddn) time due to the special struc-
ture of CoHO's LPs. We found that this optimization works for about 80%tud
projection polygon edges which resulted in a significantrompment in perfor-
mance. The rather high failure rate is because the prismsenintersection forms
the projectagon are orthogonal to each other, leading tgteehrate of degeneracy
than for typical LPs. A more efficient method was also devetbi find the initial
feasible basis for the Simplex algorithm. It tries to find swaints with only one
non-zero coefficient for each variable, which is easy to fiadla constraints of
CoHo LPs have only one or two non-zero coefficients, and constradeasible
basis from these candidates.

The projection of an advanced face at the end of a time stepaanclusters
of very closely spaced vertices separated by much larges. gagese clusters arise
from near degeneracies in th@go LPs. To avoid a rapid growth in the number of
vertices in the projection polygon,d®o performs a simplification step where the
projection polygon is replaced by an enclosing polygon oéléen degree. Con-
sequently, every vertex but one in a cluster will be discarolethe simplification
process, but the projection algorithm expended a signifieamount of compu-
tation time to determine these vertices. In the new implgateam as shown in
Algorithm 6, we avoid this extra work by enforcing a lower Inouon the change
of 0 at each step of the projection algorithm as shown in Algorith The approx-
imate algorithm skips over vertices if the normals of thessmtive polygon edges
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Figure 4.8: Approximated Projection Algorithm. The red polygon is an
under-approximation and the blue polygon is an over-appration of
the projection.

are nearly parallel. Thus, the polygon obtained from thésesl/ projection algo-
rithm could be an under-approximati@ng.,the red polygon in Figure 4.8, which
would violate the soundness requirement faHD. Conversely, we can use each
vertex from the projection algorithm to define a half plan&] aonstruct the poly-
gon defined by the intersection of these half-planes. Thdtieg polygon is an
over-approximation, illustrated as the blue polygon inuf&g4.8. @HO computes
both polygons. If their areas differ by more than a preset#wice, ©HOreverts to
computing the exact projection polygon. Otherwise it ueever-approximation.

4.5 Implementation

The CoHo tool is implemented in MTLAB and AvA with a layered architecture
as shown in Figure 4.9. It consists of four layers. The topiapnverts circuit ver-
ification problems into reachability analysis problems esadibed in Chapter 3. It
constructs one or more hybrid automata based on the citcudtsre described in
MspPICEand extracts circuit dynamics in order to compute LDI modélse sec-
ond layer,.e.,the Hybrid Automatgpackage, implements the reachability analysis
algorithm described in Section 4.1. The projectagon repragion described in
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Algorithm 6 : Approximated Projection Algorithm(lprojA(PEX<q,X,¥))

N
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Input: CoHo advanced constraint®Ex< q
Input: projection plan€X,y)

Input: error toleranca

Output: p: projection ontoX,y) plane

begin

X=E~x y=E~1y,

y=9- 1 X= & ¥=

for 6 =0,0 <2mrdo
d =Xcog ) +ysin(0); Ip = Ip_standardg, g, d);
[B, pt,v] = Ip_solve(Ip);
P = pi + project(pt,X,y);
planes= planest planecreatg6,v);
Bopt = 0 + £(T); d = Xcog Bopt) + Ysin(Bopt); Ip =
Ip_standard®, g, d);
(B, pt,v] = Ip_solve(Ip);
p = P+ project(pt,Xy);
(=P n=P5"y;
Bprev = MaXc (1. (@rgg Min(¢; cos + i sin = 0A 8 < Bopy));
Bhext = MiNic (1, (@rgy min(Z; cosd + n;sind = 0A 6 > Bup));
if Bprev > O then
\ planes= planest planecreate Bprey, v);
end
0 = Bhexs

end

pr = convexhul(p); py, = planeintersectplanes;

if HEAP_HCAP) < 7 then

‘ p=E""'py;
else
| p=Ip_project(PEx< q,X,y);
end
end
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Figure 4.9: Architecture of ®HO

Section 4.2 is implemented in the third layer. Artegrator package is also im-
plemented in this layer to compute forward reachable ptagams as described
in Section 4.3 and Section 4.4. The bottom layer providegfasctions includ-
ing a CoHO LP solver, projection algorithms and a geometric engineHG has
two main components: a component writtemMAB and a component written in
JavAa. The MATLAB part provides the interface for higher layers and also imple
ments simple functions which do not require exact solutibhe JhvA part pro-
vides robust LP solvers, projection functions and geometmputation functions
based on th&lumberandMatrix packages. The MrLAB and AvA components
communicate through a pair of pipes created by a simple Cranag The layer
based architecture has the benefit that it is very easy teeimght new algorithms
to replace old ones without affecting other layers. For gxaminstead of ourava
based LP solver, commercial LP solveegy.,CPLEX [5], can also be adopted eas-
ily. The separation of MTLAB and AvA components also provides a convenient
place to create a log-file that allowso@0 runs to be restarted from just before an
error. This has been especially helpful for debuggirmH®© when implementing
new algorithms.

For complex hybrid systems, reachability computation isallg very expen-
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sive and the approximation error is large. Therefore, itricial to achieve a
good trade-off between performance and accuracy in ordsud¢cessfully ver-
ify a system. @HO offers several implementations of every function, optiediz
for performance or precision. First, it supports two kindisepresentation meth-
ods: non-convex projectagoand convex projectagan The general projectagon
representation has the smallest representation errociapdor nonlinear sys-
tems. However, the convex projectagon method is much fastause many op-
erations can be implement more efficiently, such as the urfi@onvex polygons.
Therefore, it is often used in the first time of reachabilipmputation to obtain
an estimated result quickly. The approximation error isallguacceptable, oth-
erwise, the computation is refined using the non-convexeptagons. Second,
CoHo supports three methods for finding a bloat amount and steppsiiz: fixed
bloat amountfixed time stepandguess-verify The first and second options use
a user provided bloat amount or step size to compute a vadja sire or bloat
amount, and the guess-verify method is described in Sedt®g. Third, it sup-
ports several methods for finding projectagon faces whiehuaed to build LDI
models and to be advancedogo can either advance each face and project back
onto all planes represented in Section 4.2.3, or advancddudaces or height-
ened face and project onto its own plane only as describecdtidh 4.4.1. In
addition to these methods, it also supports a much fastknigee which creates
only one LDI model for a projectagon and advances the whalgpragon rather
than working on each face. However, this method has largamoajmation error
and does not work for non-convex projectagons. Anotheoap$ to advance each
projectagon face and only project back onto its own planes Titethod can gen-
erate the most accurate result. Although it is not sound éorty it works well
in practice because approximation errors from other stpsh as modeling and
projecting steps, make the result conservative enoughntiairoall possible trajec-
tories. Finally, there are some other parameters proviledritrol the computation
precision, such as tolerance values used for simplifyinglygon or computing an
approximated projected polygon. These options make itilpless use different
strategies in states of a hybrid automaton. For example aneptimize for run-
ning time in states where the system converges quickly atichize for accuracy
otherwise. Furthermore, it makeso@0 more robust by switching to another set
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of options and repeating the computation when an error cegian is found in a
step.

4.6 Summary and Discussion

We have devised techniques for reachability analysis ofitlydystems and imple-
mented them in the @HO tool. It supports moderate-dimensional systems based
on the projectagon representation which reduces the nuofild@nensions by pro-
jecting high-dimensional polyhedra onto two-dimensigplahes. It also supports
nonlinear systems by approximating continuous dynamicdint®ar differential
inclusions. The ©Ho tool is robust and has been used to verify properties of sev-
eral circuits as will be described in the next chapter. Tharmaprovements that
we developed to provide this robustness were the use of ainatidn of interval
arithmetic and arbitrary precision rational arithmetimtighout the linear program
solver and geometric engine. We also developed new tecbsitguremove infea-
sible regions from projection polygons, which is necesdarythe robustness of
the implementation. Reachable sets computed by@€are accurate for several
reasons. First, non-convexpolyhedra can be representpdofgctagons directly,
and all faces can be computed accurately by the intervali@ddechnique. Second,
all computations are performed on projectagon faces rétieevhole projectagon.
Therefore, small approximation error is achieved durirgrttodeling and project-
ing steps. Furthermore, several techniques have beernogedeto reduce model-
ing error including model refinement, multiple models, amliass-verify strategy.
CoHo s also efficient because it employs many techniques inatubybrid com-
putation, guess-verify, and an approximated LP solver dkagethe projection
function. GoHo also supports trade-offs between performance and accaraty
handles exceptions automatically.

There are several related techniques and tools, incluoling [4€], CHECK-
MATE [4C], and PHAWER [70]. Compared with other representation techniques,
the projectagon representation is more accurate becasiggpibrts non-convex re-
gions and works on individual faces. Similarly, orthogopalyhedra [33] works
on each face in the face lifting technique and representscoovex regions by
the union of fixed-grid hyper-rectangles. It can be vieweat thtervals or hyper-
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rectangles are the results of projecting polyhedra ontodamensional lines and
projectagons are the results of projecting polyhedra amtedimensional planes.
The projecting idea can be generalized to three or higheemkional subspaces.
It might be helpful to represent circuit states more prégibecause the dynamics
of one circuit node usually depends on more than two vasabléowever, ma-
nipulating moderate-dimensional, non-convex polyhedmauch more expensive,
therefore, this technique has not been studied. Hybridizadtrategy has been
widely used to solve nonlinear dynamics. We adopted thiscgmh and optimized
it to reduce approximation errors by computing LDl modelsdach face. This
on-the-fly approach is more accurate but also more expetigvecomputing only
one model for a fixed-grid region as used in other toelg,,b/DT [24]. The LDI
model is much more precise than the constant differentc@ili&on model used in
many tools, including LEMA [148] and PHAER [7C]. On the other hand, solving
constant differential inclusion is much easier. Furtheemave found it is helpful
to use both linear DI models and constant DI models to reducéeting error.
APR numbers are also used in PHER[7(] for exact computation. However, we
have not found that the hybrid computation technique isiaggh PHAVER or
other similar tools.

There are some research directions to improeeiG. First, the normal of each
advanced face can be estimated based on the maximum peintiSkection 4.3.1.
It can help to simplify the new projectagon at the end of edep.sAs a result,
the number of projectagon faces is roughly constant. A ain@pproach is used
by template polyhedra [1831] in order to control the space @erity. However,
the template is fixed in the template polyhedra represemtathereas it is updated
automatically in the projectagon representation. Funtioee, parallel computa-
tion is a promising technique to speedupi® significantly as there are many
parallelisms in the projectagon based computation.
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Examples

With methods described in Chapter 3 and Chapter 4, we catraohsathemati-
cal models for circuits and compute reachable regions ubieagool GHO. This
chapter applies these techniques to the circuits presenteekction 3.2 to demon-
strate correctness and effectiveness of our methods aisl tdée first present a
general framework for defining verification problems, cotmpyreachable regions
and checking properties in Section 5.1. Then we show expeattimhexamples with
greater details and verification results in the followingtgms.

5.1 \Verification of AMS Circuits

To formally verify a property of a given circuit, we proposdramework which
consists of three steps.

1. Simulate the circuit and the property
2. Compute reachable regions of the circuit
3. Check the property based on the result of reachabilitlysisa

The remainder of this section describes each step.

5.1.1 Simulation and Verification

Generally, we simulate the circuit to be verified before rating verification.
This has several advantages. First, simulation can findoabverrors with less
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effort and computation than formal verification. Secone, shmulation result can
be used to approximate the initial condition of formal vedfion. For example,
we use simulation traces to estimate Brockett’s annuliriput signals of a circuit
such that its outputs satisfy properties of interest. Duthe process of verifying
the circuit, we often compare simulation traces and redehagions to find the
most critical computation steps such that we can obtain d g@ale-off between
performance and approximation error during reachabiliiglysis.

We have developed a MLAB package, MPICE to describe the netlist of
a circuit and simulate the circuit. While the simulation egpdas an order-of-
magnitude slower than a dedicated simulator such sBitE MsPICE gives the
user much greater flexibility and access to the numericalpeoations of the sim-
ulation. This allows, for example, inputs to be generatedaaslom trajectories
that satisfy their given Brockett's annuli. With this framwark, we use the same
models (see Section 3.3.2) for simulation and verificatibhis makes it possible
to compare the results of $#i1CEand GHO, where the simulation result is an
under-approximation of possible circuit states and thetralale region computed
by CoHois an over-approximation. This guides us when choosing lvimiethods
to use to reduce the over-approximations computed by@ Furthermore, when
developing new reachability techniques im0, the comparison with simulation
results is helpful for identifying and correcting errorgtie algorithms or their im-
plementations. However, the integrator ofSRICE requires that the functions to
be integrated be continuous. To make the models in Sect®g 8ontinuous, we
smooth out interpolated values by a weighted cosine windkmw.example, letp,
01, - . . be a set of continuous functions wherés the one foi — 1 <x<i+1, the
interpolated functiorf (x) is

Q

f0) & in(X— X)) (<= X)) +winx— [¥D)gg (= X))

Wm(X) = 3+ %(9cogmx) — cog3mX)).
This 3-term cosine window method maké&) aC? function becaus%d%w(l) =
0,Vk € [0, 3]. Higher orders of smoothness can be obtained by applying@ cmr
sine terms in the cosine window function.
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5.1.2 Reachability Computations

Reachability computations are often quite sl@ag.,it may take several days to
complete the computation for a 6-dimensional system. Toereit is crucial to
partition the reachability computation into several plsased perform the compu-
tations in parallel. To make the computation in each phasepandent of the other
phases, we apply amssume-guarantestrategy. For each phase, wssumehat
the circuit state is bounded by a regiBnand compute forward reachable regions
from R;. At the end, weshowthat all assumptions are correct based on reachable
regions computed in all phases to establish an invariantsially, we partition
the reachability computation based on input transitionshasvn in Section 3.6.2.
As described in Section 3.6.2, the reachability computatio a circuit with one
input can be partitioned into two phases which correspondeaising and falling
stages of the input signal. For a circuit with two inputs, teachability computa-
tion as shown in Figure 3.24 is usually partitioned into fphases: the first phase
starts from the statB.1 1. and ends in the stat.3 3. ; the second phase is from
the stateB.1 3. to the stateB.3 1~ ; the third phase is from the staBe 3 1. to the
stateB.1 3-; and the last phase is from the st&es 3. to the stateB.11-. This
strategy enables us to complete the verification, debug tdemand address is-
sues of over approximation in a reasonably timely mannealsti makes it easier
to find phases with large approximation errors and conselyueptimize CoHO
for accuracy to avoid false-negatives. Similarly, we cagesbup reachability com-
putation for phases in which circuit states converge quickl

We can further partition one state of the hybrid automat@dus CoHo into
several states bslicing signals. For example, instead of computing the reachable
region for a signak in the region of|0, 1] in one state, we can slice the signal by
the face wherex = 0.5 and then solve reachability problems for states whése
in the range 0f0,0.5] and[0.5,1.0]. The slicing strategy avoids computing LDI
models (see Equation 4.15) for large regions and thus recaeroximation error.
It could also improve the performance of reachability cotapan which depends
on the size of the initial region. By increasing the numbestates of the hybrid
automaton used in @Ho, slicing enables more parallelism. However, it also intro-
duces extra computation and approximatiew. intersection of reachable regions
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and slicing faces. From the experimental results, we fotigla good choice to
slice a signal in 0.2 volt intervals for several designs ir8arim, 1.8 volt CMOS
process.

5.1.3 Checking Properties

Based on the reachable regions computed above, we can dugekties of inter-
est. For example, we can compute the Brockett's annulus direm signal based
on the reachable region and its ODE model as shown in EquatirFinding an
invariant set of the reachable region is very helpful to sisafety properties and
liveness properties. In the current implementation, mospgrties specified by
the logic in Section 3.4 are checked by manually inspectiegréachable regions
computed by ©Ho. We will talk about details for each verification examplehie t
following sections.

By default, we use circuit models for the TSMC 1.8V 180nm bGIKOS
process. For a circuit, the Brockett’s annulus for eachtiggnalss is specified
by %(0,0.15,1.6520,15¢102¢101e-9) - HOwever, when computing the linear differential
inclusion model as described in Section 3.6.1, we incrdaseaximum low value
from 0.15V to 0.2V and lower the minimum high value from 1.6&5V1.6V to
ensure the derivative is strictly positive in region 2 andat&e in region 4. For
example, we compute a linearized model in Brockett re@oifior 0 < s< 0.2 as
if Von were 0.2V, and use the original Brockett's annulus f& € s < 1.6 which
ensures that GHO sees a clearly positive value fein regionBs,. It is similar for
regionsB; andB4. This method over-approximates the input and is thus sound.

It is possible that ©HO is unable to verify that the outputs of some circuits
satisfy a desired Brockett’s annulus due toH®'s approximation error. Buffer-
ing the output with an inverter provide a very simple modeheut changing the
circuit behavior. An inverter functions as a Brockett’s alus transformer. The
inverter can take a slow input transition and turn it into stéa output transition,
because of the inverter's gain. Conversely, it can take w fest input transition
and produce a slower output transition because the inveaeia maximum slew
rate. The filtering effect removes reachable regions thati&computed due to
approximation errors. This trick usually does not increimenumber of dimen-
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Figure 5.1: Verified Toggle Circuit

sions of the reachability computations, because the degsitigmn strategy can be
applied to partition the circuit and perform two separatechability computations
for the original circuit and the inverter.

5.2 The Yuan-Svensson Toggle

Figure 5.1 shows the toggle circuit that we verified. Traosssare labeled with
their shape factors and the capacitor ondluaitput represents a load equivalent to
the gate capacitance of transistors with a total shaperfatt®6; this is the load
that the toggle places on its clock input. We use this loacetdythat the output
of one toggle can drive the clock input of another to impleh#ripple counter.
The verification that we present resembles an earlier vatiifia result by Green-
street [83]. There are several significant differences betwour approach and the
earlier work. Most significantly, Greenstreet ignored iint¢ nodes,.e., xx, yy,
andzz, and reduced the system further to three dimensions by aiaugriables.
We include these internal nodes in our model, which resulésseven-dimensional
state space. Second, we model the drain-source curreltts whhsistors based on
tabulated data obtained from HSPICE as described in Se@i®f, and thus our
results are based on the BSIM-3 models implemented byi&E for the TSMC
180nm process. In contrast, [83] used a simple, first-oldeg-channel MOSFET
model that neglected leakage currents and other importapegies of transis-
tors in a deep-submicron technology. Using a realistic rhfmteed us to address
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Figure 5.2: Behavior of a Toggle

other real-world issues, most notable of which was the lgakaurrents of the
transistors. Thus, we added “keepers” to noxleg and z (illustrated by “k” in
Figure 5.1). While such practicalities can seem like a mdsedrom a formal veri-
fication perspective, they show that our approach is sotidlynected to the issues
that challenge circuit designers for deep submicron pseesLike @HO, [83]
used projection polygons to represent reachable regiomseltr, these polygons
were restricted to have axis-parallel edges. In contrastse projectagons to rep-
resent reachable regions and the algorithms from Chaptette more efficient
and more accurate for reachability analysis. We also vadrifiat the output signal
satisfies the same Brockett's annulus specification as weéousgecify the input
clock, ¢.

We specify the behavior of the toggle circuit using the safebperties given in
Figure 3.20. We use @Ho to find an invariant subset & such that all trajecto-
ries in this set have a period twice that of the clock signaisTotion can be visu-
alized using a Poincaré section [166] as illustrated iufad.2. Letp be the con-
tinuous signal corresponding b, and letc be some constant with, < ¢ < Vy;.
Consider the intersection of the invariant set with the- ¢ hyperplane. These
intersections form a Poincaré map [166]. We verify thaséhmtersections form
four disjoint regions (two for rising crossingc, and two falling crossings), and all
trajectories must visit these four regions in the same ortlleus, thep = ¢ plane
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partitions the invariant set of the continuous model intorfdisjoint regions that
map to the four discrete states of the discrete model.

5.2.1 The Reachability Computation

Our specification for the toggle requires it to have an iramtriset that has twice
the period of the input clockgp. Accordingly, our reachability calculation is carried
out for two periods ofp. Applying the assume-guarantee strategy, we break each
of these periods into two phases: one for the rising tramwsitif ¢ and the time that

@ is high; and the other for the falling transition and the lomd. We estimate a
bounding hyper-rectangle for the end of each phase baséwrk@mulation results.
With these estimates, we divide the task of verifying thegtednto four separate
proof obligations where each obligation is of the form:

Assumethat the circuit state is in hyper-rectanyjet the end of phase
i

Showthat the circuit state will be in hyper-rectangde 1 at the end of
phasd + 1.

Let

r@toggle = %(0.0.15,1.65.2.0.2e10.3e10.1e79)a (5'2)

and set the Brockett's annulus of the clock signal4ggge. We start each phase
with the projectagon for the starting hyper-rectangle amig the bounding hyper-
rectangle of the projectagon for the reachable region aetitkof each phase as
shown in Table 5.1. Table 5.1 also lists the projection pohgthat we used for
each phase. These were chosen with two considerationd, Wé<hose projec-
tions that correspond to logical dependencies betweergaimasignals. Thus, in
the first phase whemchanges, we includevs. zzandz vs. x (because the falling
edge ofzenables a rising edge &f. Second, we included at least one polygon for
each variable to bound the resulting projectagon in all disians.

The linear model forb has large errors if the interval f@r is too large. Thus,
we “sliced” the space into regions corresponding tb ¥lt wide intervals forg.
It is simple to show that the circuit model has an invariamit il node voltages
are between 0 volts (i.e. ground) and 1.8 volts /&) and thatxx > x, yy <y

128



6T

Start and end hyper-rectangle for each phase

Phase | ¢ X y z XX yy zz

1, start| 0.2 | [0.000,0.100 | [1.700,1.800 | [1.700,1.800 | [0.000,1.0] | [0.000,0.100 | [0.000,0.100
1,end | 1.6 | [0.000,0.002 | [1.790,1.800 | [0.000,0.014 | [1.7881.8] | [0.000,0.004 | [0.000,0.001
2, start| 1.6 | [0.000,0.100 | [1.700,1.800 | [0.000,0.100 | [1.700,1.8] | [0.000,0.100 | [0.000,0.10Q
2,end | 0.2 | [1.7951.800 | [1.7581.800 | [0.000,0.043 | [1.7951.8] | [1.1521.736 | [0.000,0.003
3, start| 0.2 | [1.750.1.800 | [1.750,1.800 | [0.000,0.050 | [1.750,1.8] | [0.800,1.800 | [0.000,0.040
3,end | 1.6 | [0.000,0.001 | [0.000,0.005 | [1.7031.800 | [1.7851.8] | [0.000,0.002 | [0.843 1.74
4, start| 1.6 | [0.000,0.100 | [0.000,0.100 | [1.700,1.800 | [1.700,1.8] | [0.000,0.100 | [0.800,1.800
4,end | 0.2 | [0.000,0.100 | [1.700,1.800 | [1.700,1.800 | [0.000,1.0] | [0.000,0.100 | [0.000,0.100

Projection polygons for each phase

Phase| Polygons

1 X VS.XX, XVS.Z, ZVS.ZZ ZVS.XX, QVS.Y, @ VS.yy

2 X VS.XX, XVS.Y, X VS.YY, Y VS.VYY, ¢ VS.Z (VS.ZZ

3 X VS.XX, XVS.Y, XVS.VY, YVS.VY, YVS.Z YVS.ZZ ZVS.ZZ ZVS.Z ZVS.XX, Q VS.Z
4 XVS.XX, Y VS.VY, Y VS.Z Y VS.ZZ ZVS.ZZ (VS.Z

Table 5.1: Reachability Summary of Toggle Verification




andzz< z. We added these extra invariants toi to tighten the bounds @40
computes. Phase 3 was the most challenging phase to verityisiphaseg goes
from low-to-high, and all three of, y, andz change their values, in the ordgl,
— z1 — x /. The greatest challenge arose becausan start its rising transition
while y is still falling. As seen in Table 5.1, we used ten projectslygons
for this phase instead of the six that were used in the othasgshto improve
accuracy. We found that onae was high {.e., greater than 1.6 volts), it was
helpful to slice the value of. We used 0.1 volt wide slices fgras it fell from 1.3
volts to 0.1 volts. We slicedin the same manner but found that it was unnecessary
to slicex. Furthermore, the transistor model from Section 3.3 cauyme large
error bounds that include currents that flow against thend@source voltage.
These non-physical behaviours allowed by the model caused@o fail to verify
the toggle. We solved the negative current problem by additr@nsistor model
that simply determines the minimum and maximum drain-tars® currenti(e., a
constant differential inclusion) for the region around therent face. While this
model has a large error-term, it never predicts a currenh®fwrong sign. The
two models produce two different over approximations ofréechable region. At
the end of each time step, we compute the intersection ofstbgtojectagons to
obtain a tighter bound on the reachable space than eithee.aMore details are
described in [210, 211].

However, we found that the values of all nodeg, andzresulted in large inter-
vals during the reachability computation of the togglewitravithout the “keepers”
as shown in Figure 5.1. This is caused by leakage currentarafistors. For ex-
ample, when the input clocl is low, x is low andy is high, nodez is floating
because both its upper P-channel and lower N-channel starsiare not conduct-
ing. The leakage currents of these N-channel and P-charmamsligtors allow the
value ofZto be a tiny value of arbitrary sign. Becaupean be low for an arbitrar-
ily long time, CoHo correctly finds that the possible values fativerge to include
any value between the power supply voltage and ground. aligd shows that
leakage currents must be considered in deep sub-microgndesven for “simple”
circuits such as the toggle circuit. Therefore, we addedIsteeper” circuits to
nodesx,y andz during the verification.
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Figure 5.3: The Invariant Set of Toggle Circuit

With these techniques, we computed the reachable regioeséh phase. The
reachable region is six-dimensional and its projectioant andz space is shown
in Figure 5.3. Table 5.1 also lists the ending hyper-redtainf all phases. Note
that the starting hyper-rectangle for each phase contaénsriding hyper-rectangle
of the previous phase, and the starting hyper-rectanglgtase 1 contains the
ending hyper-rectangle for phase 4. Thus, we have estatliah invariant set.
Furthermore, the hyper-rectangles for the four phasesaireipe disjoint. Thus,
this invariant set has a period of two with respect to thelcloput .

5.2.2 Verifying the Output Brockett's Annulus

Thus far, we have ignored tlegoutput of the toggle in our analysis — we simply
included a load orz equal to the gate capacitance of transistors that dyivé/e
verified the operation of the inverter separately. To do sofivgt constructed the
Brockett’s annulus for the output.

131



At each time step of the verification described above, werneted the reach-
able combinations afandZ. We note thatis negative monotonic imand positive
monotonic inzz Thus, the extremal values ofvs z occur on the boundary of the
Z Vvs. zzprojection. For each edge of tlzevs. zz projection, @HO computes the
linearized circuit model and uses this model to find the reblghcombinations of
zandZ From these, we construct a Brockett's annulus that isfeatiby z andZ
Figure 5.4 shows the resultidoes not satisfies the same Brockett's annulus as we
used to specifyp.

We then perform a separate reachability analysis for thpububverter. The
input to this circuit is modeled by the Brockett's annulus foas computed by
CoHo above. We then use @Ho to compute the reachable space #aand q,
and use the method above to compute the reachable regigrvéog as described
above forzandz. Figure 5.5 shows the resutfclearly satisfies the constraints that
we used forp. Thus, these toggles can be composed to form an arbitrarifye|
ripple-counter as desired.

5.3 A Flip-Flop Circuit

Figure 5.6 gives the latch circuit that we have verified. Sistors as well as in-
verters are labeled with their shape factors. The capacitasutputq represents
a load equivalent to the load of inpdt Therefore, we can usgas the input of
another latch circuit to compose a master-slave flip-flophasva in Figure 3.5.
We use a large inverter (8:4) to generate ¢ghsignal.

Unlike the toggle circuit, the latch circuit has two inputbe clock signalkp
and the data inpul. To model input transitions of two inputs, we employ the
method presented in Section 3.6.2. The input specificagqgoires thatl must be
stable wherp is falling. Therefore, stateB.42. andB_44- are removed from
the reachability computation. Noting that the reachabdgores also depend on the
initial states of internal nodes, two reachability prob$awith the same input signal
and clock are solved for each of the two different latch stat€herefore, there
are six independent phases to compute the reachable raggors the assume-
guarantee strategy:

1: FromB_.11~ t0B.33- with i1 = low.
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x 10"

Figure 5.4: Brockett's Annulus ofz. The blue polygons show the computed
Brockett’s annulus of signa The black lines show the polygonal ap-
proximation of the Brockett’s annulus gf

x 10"
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Figure 5.5: Brockett’s Annulus ofj
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Figure 5.6: Verified Latch Circuit

2: FromB. 11~ to B.33- with i; = high.
3: FromB.1 3. to B.31> With i1 = low.
4: FromB_.j 3~ to B3 1~ with i; = high.
5: FromB_.3 1> to B.1 3> With i1 = low.
6: FromB_33- to B.1 1> With i1 = high.

Table 5.2 lists the projection polygons used for reachgbdomputation. It
also provides the initial region of each phase. After the patation of all phases,
we combine the results to check our initial estimations. éx@mple, to check the
initial region of phase 1, we compute the union of the endiygeln-rectangles of
phases 3 and 6 becadusés low in these two phases. It is similar for other phases.

Figure 5.7 shows the value gfwith respect to the Brockett's annulus of clock
@. This plot shows tha is clearly low or high wherp is in region 1. This proves
that if inputd is stable when clocl is falling, then outpuf is also stable when
@ is clearly low. Furthermore, it shows that the minimum dieratimet, andty
can be as low as.P7ns based on the reachable regions. Therefore, the highest
frequency is about 1.3GHz considering the rising/fallimget as defined by the
input specification.

We also verified several properties of the flip-flop circuishewn ir Figure 3.6.
Based on the properties of the latch circuit, it is obvioust the outpul of the
master latch of the flip-flop is stable whenis rising. That is, the inpugj of the
slave latch does not change wheiis rising. Therefore, we can conclude that the
outputq of the slave latch is stable whemis low by applying the property of the
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Estimate initial hyper-rectangle and result for each phase

Phase (0] d [0 i1 o] i

1, assumeg [0.000,0.200 | [0.0000.200 | [1.700.1.800 | [0.000,0.10Q | [1.700,1.800 | [0.000,0.100
1, result | [0.000,0.200 | [0.0000.200 | [1.7991.800 | [0.000,0.002 | [1.799,1.800 | [0.000,0.001]
2, assume [0.000,0.20F | [0.000,0.200 | [1.700,1.800 | [1.700,1.800 | [0.0000.100 | [1.700,1.80Q
2, result | [0.000,0.20F | [0.000,0.200 | [1.7991.800 | [1.7911.800 | [0.0000.001 | [1.7961.80Q
3, assume [0.000,0.200 | [1.600,1.800 | [1.700,1.800 | [0.0000.100 | [1.700,1.800 | [0.0000.100
3, result | [0.000,0.200 | [1.600,1.800 | [1.7991.800 | [0.0000.003 | [1.7991.800 | [0.000 0.00]]
4, assume [0.000,0.200 | [1.600,1.800 | [1.700,1.800 | [1.7001.80F | [0.000,0.100 | [1.700,1.800
4, result | [0.000,0.200 | [1.600,1.800 | [1.7991.800 | [1.7931.80F | [0.000,0.001] | [1.796 1.800
5, assume [1.600,1.800 | [0.000,0.20F | [0.000,0.10F | [0.000,0.300 | [1.700.1.800 | [0.0000.100Q
5, result | [1.600,1.800 | [0.000,0.20F | [0.000,0.001 | [0.000,0.25¢ | [1.7981.800 | [0.000 0.001]
6, assume [1.600,1.80F | [1.600,1.80F | [0.000,0.100 | [1.500,1.800 | [0.0000.100 | [1.700,1.800Q
6, result | [1.600,1.800 | [1.600,1.80F | [0.000,0.001 | [1.5361.800 | [0.0000.001 | [1.7991.800Q

Projection polygons for each phase

dvs.i1, QVS.i1, QVS.i1, i1 VS.i2, QVS.is, QVS.is, QVS.Q, i1 VS.T, T VS.io

Table 5.2: Reachability Summary of Latch Verification
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Figure 5.7: The Output Specification of Latch Circuit. This plot showk al
reachable sets computed bygo. Reachable sets are projected onto
variablesg, andd. Results from different reachability computations
are shown in different colors.

latch circuit again. It is proved that the outpgiof the flip-flop circuit is stable
when the clockyp is high. In fact,gq usually becomes stable before the next rising
edge ofg as shown in Figure 5.8. As measured, the delay from the timrenwh
starts to fall to the time wheq s stable is about 2Qis which is an upper bound
of the clock-to-qdelay of the flip flop.

5.4 An Arbiter Circuit

Figure 5.9 shows the arbiter circuit that we have verified.rskan and McMil-
lan [133] studied a similar arbiter circuit from [183] as ithenain example in
proposing a way to verify digital circuits modeled by diffatial equations. Their
arbiter is the nMOS counterpart of our CMOS design illusidain Figure 5.9.
They formulated the verification problem in terms of langeiagntainment. To
model the continuous behavior of the circuit, they divided possible values for
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Figure 5.8: The Output Specification of Flip-Flop

Figure 5.9: Verified Arbiter Circuit

each continuous state variable into 10 to 20 intervals, ampcited the set of
reachable hyper-rectangles using such a grid. Althougtotiaénumber of possi-
ble hyper-rectangles is large, Kurshan and McMillan usedSE&N to construct
the reachable space, and the next hyper-rectangle reliationly computed for
reachable hyper-rectangles. Unlike our Brockett's ammalyproach for specifying
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signal transitions, Kurshan and McMillan model the inpussnaaking instanta-
neous transitions. These transitions were allowed atrarpitimes that satisfied
the handshake protocol. More details of our approach asepted in [212, 21.3].

5.4.1 Reachability Computation

Rising transitions of the request signals for the two cBergn occur concurrently.
These requests can start at different times and have diffése-times. Verifying
correct operation of the arbiter requires accounting foakldwed transitions of
the inputs, including overlapping ones. We applied the wakih Section 3.6.2 to
model all input transitions. We excluded the stte 4. noting that there must be
a failure of the arbiter or its clients if both requests ailérfg at the same time —
this would imply that either the arbiter had violated the valtexclusion require-
ment or that at least one client had violated the handshakeqml. By exploiting
the symmetry of the arbiter and its clients, we solve only mrachability prob-
lem to compute reachable regions of staes;. andB.j;.. In order to reduce
approximation error, we partitioned the rise and fall regiof the Brockett's an-
nulus into seven subregions by employing the slicing tepimifrom Section 5.1.
This results in 136 states to perform the complete readhabdmputation for the
arbiter.

Following the guidance in Section 5.1.2, we divided the ¥&fchability prob-
lems into three phases using the assume-guarantee stfiateg8ection 5.1

l FI’0m B<1.l> tO B<3.3>
2: FromB.31- toB31-.
3: FromB.33. toB.11>.

5.4.2 Stiffness

We encounteredtiffnessproblems when verifying the arbiter circuit. A system
of ordinary differential equations; = f(x) is said to bestiff if the Jacobian off

is an ill-conditioned matrix. That iS|Amax/Amin|| IS large whereAmax (Amin) is
the largest (smallest) magnitude eigenvalue of the Jacahbiatrix Jacs (x). For
circuits, stiffness occurs when nodes have vastly diffetene-constants. This
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occurs in the arbiter where nodesandz have much smaller capacitances than
the other nodes in the circuit.

The stiffness problems make it difficult ford&io to find a good choice of the
time step size in the reachability computation. As desdripeChapter 4, ©HO
has two principle causes of over approximation. First,ghgmlan over approxima-
tion when producing a linear differential inclusion for awkinear ODE as shown
in Equation 4.15. Second, over approximations are intredwehen projecting the
reachable region for a face back down to the basis for thegtion polygon. For
the arbiter, if @HO chooses a large time step (suitable for the nodes otherzthan
andz), then the linearization errors fay andz will be large, creating large over
approximations for the voltages of these nodes. As the wtgiflowing through
the n-channel devices driving andx, are quite sensitive tg andz, this leads
to large over approximations fo andx,. Conversely, if @HO uses times steps
that are small enough to obtain tight boundsZpandz,, the accumulated projec-
tion and simplification errors will be large for the other Bsd Thus, the goals of
minimizing the approximation errors due to linearizing thedel and minimizing
the errors arising from projection and polygon simplifioatiare in tension with
each other. For any choice of time step size, we found tleaicproduced false-
negatives (failure to verify a correct circuit).

Circuit simulators such as HSPICE handle stiffness by usimglicit integra-
tion algorithms. However, we are unaware of any formulattban implicit algo-
rithm that is compatible with a forward reachability comgtigin such as used in
CoHo. As other reachability tools use similar methods, we expeat they will
have similar problems if they attempt to verify common CM@Signs. This con-
jecture is supported by the absence of published resultf®iforal verification of
stiff systems. We implemented two methods to solve thenst#§ problem. The
first solution was to follow the example of typical designansl treat nodez, and
2 as if they had no capacitance. The other solution was basedavange of
variables and constraining the reachability computatiidh an externally verified
invariant. More details are presented in the remainderisfsiction.
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Simplified Model

We first used a simplified model of the arbiter circuit to coetplthe reachability
computation. This method side-stepped the problems &ieti$ by treating nodes
7y andz as if they had no capacitance. With this assumption, thegelbn these
nodes is always exactly the value that balances the curflemiing through the
upper and lower n-channel transistors of each NAND gate.s;Ttue created a
model for a nMOS tetrode with source connected to groun@ésgainnected to
andx,, and drain connected t, and another such tetrode for the two pull-down
transistors for,. This simplification reduced the ODE model from six dimensio
down to four and eliminated the stiffness issues. This aptiomis reasonable as
the internal nodeg; andz have much smaller capacitances than other nodes of
the circuit. In fact, many designers would instinctivelydge the contributions of
these tiny capacitors. However, the verification is incatgl For example, we
note that with optical proximity rules, the spacing betweeries-connected tran-
sistors is growing relative to other circuit dimensionsg$ab-100nm processes. If
the capacitances of these nodes are ignored, it is impegsibietermine when they
have become large enough to cause a circuit failure. Therefoe implemented
another solution to include internal nodes in our model.

Changing Variables and External Invariants

In order to reduce approximation error, we employed two rigpes. First, we
replaced variableg, andz, by two new variables which converge to zero rapidly.
Second, we applied an externally verified invariant to aastreachable regions.
The remainder of this section presents our modifications @el@s reachability
computation that allow it to compute tight overapproxiroas.

When either transistor connected to nagé conductingz; tends to converge
very quickly to a small neighborhood near its equilibriuntueg however, the pre-
cise value of the equilibrium varies widely according to tladues ofrq, x; and
xo. For any choice of values for the voltagesref x; andx,, there is a unique
voltage forz; such thatz; = 0. This is because the current fromto z; through
the upper transistor is determined by the voltages of negdes andz; and is neg-
ative monotonic in the voltage of node. Likewise, the current frora; to ground
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through the lower transistor is determined by the voltagesodesz; andr; and

is positive monotonic in the voltage of nodg These properties hold for any re-
alistic transistor model. Thus, given values for the vaggn nodes;, x; andxy,
there is a unique voltage for node such that these two currents are equal. This
is the voltage at whiclk; = 0, and we call this voltage thequilibrium voltageand
denote it byg; (r1,Xs, %2). We definegy(ra, X2, %1) in the analogous manner.

We replacez; and z, in the circuit's ODE withu; = z3 — qs(r1,x1,%2) and
U = 2o — Oo(r2, X2, X1 ) respectively. Whenever a transistor drivings conducting,

u; tends rapidly to zero, and it is much easier to showthabnverges to zero than
to show thatz; converges to a moving target. Likewise ferandz,. This change
of variables formalizes the designer’s intuition that tapacitance of nodes and
2 “usually won't matter.” The chain rule yields:

= z- (g—?;rﬁ oy + g—ggxz) : (5.3)
Although z; is not a state variable of the modified ODE, it can be recootscl
by noting thatz; = u; + q1(r1,x1,X%2), and therg; can be determined based on the
values forry, X1, zz andx. In our implementation, we use a four-dimensional
table, indexed by the values uf, r1, X; andx, to compute values fax; ‘and u.
This table accounts for all four transistors of the NAND gzt produces; and
the capacitance on nodesandz. By includingx; in the table, we eliminate the
need to reconstruc; or calculateq;. By directly computingu; andx;, we avoid
reconstructingy with large error bound intervals that would then propagatté
other quantities. The same construction applies for coimgup andxo.

With the change of variables described aboveHO still encountered a prob-
lem at the rising edge af;. If ry is low andr; is high, thenx, will be low, and
both transistors connected to nodewill be in cut-off. In this case, the equilib-
rium voltage forz; is determined by balancing the small leakage currents of the
two transistors. Thusy; can have a large value whenis low. Following a rising
edge ofrq, u; should go quickly to zero. However,dBio's over approximations
from whenr, was low led it to a region from which it could not establishsthon-
traction. In fact, the range fan, blew up to cover the entire interval from 0¥y,
and led to continuous states that violated the specificéitoon Figure 3.19.
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We solved this problem by manually establishing a simplariant. The intu-
ition behind this invariant is that based on the leakageeniisrfor our implemen-
tation in the TSMC 180nm, 1.8V CMOS process, we can deterihiaenodez;
eventually settles to 1.45V if; = 0 andx, = Vg, and this is an upper bound for
z. By symmetry the same bound appliesztofrom which we postulated the in-
variants—1.45< u; < 1.45V and 0< z < 1.45V. ltis straightforward to establish
this invariant by computing the values of, Uy, 1, andz, on the boundary faces
of this region to show that trajectories on these faces flavamd. We constrained
the projectagons computed byo80 to satisfy these simple, externally verified
invariants.

5.4.3 Results

Using the methods described aboveH® computed an invariant region for the ar-
biter. This set allows us to establish the correct operaifdhe arbiter as described
below.

Safety Properties

Mutual Exclusion:

Figure 5.10 shows the verification of mutual exclusion. Ra)tof the figure
shows all reachable states; cleaglyandg, are never both high. In fact, the region
where they both reach values near 0.5V only occurs when ar¢ gy falling and
the other is rising as the arbiter transfers a grant that daetaeleased and the
other has requested. Figure 5.10.b shows the reachable &pag andg, when
falling transitions of the grant signals are excluded. Hhisws that the separation
of grants is very distinct.

Handshake Protocol:

In a similar fashion, projecting the reachable space ontostgnalsg; andry
as shown in Figure 5.11 demonstrates thaentersB, only whenr is in Bs.
Likewise g; entersB; whenr; € [0.0,0.22]. Whenr; € [0.2,1.6], r; < 0, thus
r; € B4. This shows thag; starts to fall only when the discrete abstractiorr pf
is a logically low signal. Thus, the grants both rise andifaticcordance with the
handshake protocol.
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b. g1 vs. go (excludingBy).

Figure 5.10: Verification of Arbiter: Mutual Exclusion. The left plot st
all reachable sets projected onto varialdesand g, where the blue
regions are reachable sets computed ko0 and the red regions are
computed by circuit symmetry. The right plot shows reachapace
for g; andg, when falling transitions of the grant signals are excluded.

grant

o

0.2 0.4 0.6 0.8 1 1.2
request

g1VsS.rp

14 . 18

Figure 5.11: Verification of Arbiter: Handshake Protocol. The blue payg

show the reachable sets projected onto variagleandr,, and the
arrows illustrate the handshake protocol.
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Figure 5.12: Verification of Arbiter: Brockett's Annuli

Brockett's Annuli:

Figure 5.12 shows the derivatives of theg andg signals versus their voltages.
The grant signalg; satisfies a Brockett's annulus, but it is less restrictiantthe
one that we used for the request signals. In contrast, theedienivative of signal
X1 has a much different shape. The lobe in the lower right shbvgrtetastable
behavioursx; can start to fall, and then return to its nominal high value ifvins
the contest. The contrast between the plotsdoandg; shows the effectiveness
of the metastability filter as a Brockett's annulus transfer. The output inverters
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that produceg; andg, further improve the transitions to produce the plot shown
in part ¢ where the reachable space computed by Coho is taditzy the blue
polygons, and the pink ellipses show the Brockett’'s annuked for the request
signals. With this output buffering, the output signalssgatthe original input
annulus.

Liveness Properties

Initialization:

We used ©HO to compute the reachable space wheandr, were both low (i.e.
in regionB;) starting from a state wherg, X, g1 andg, could be anywhere in
[0,1.8]. CoHO establishes that within 200ps, andx, enter[1.6V,1.8V] (i.e. Bg),
andg; andg, enter[0.0V,0.2V] (i.e. By). Thus, the arbiter can be initialized simply
by not asserting any requests for a short time — no additiasat signal is needed.
Uncontested Requests:

We consider the reachable space with the additional raetrichatr, remains
within regionBs (i.e. a logically low value). ©HO shows that; is asserted within
343 ps ofr; rising (i.e. entering3,). This shows that the arbiter is guaranteed to
respond to uncontested requests within a bounded amountaf t

Contested Requests:

If r1 andr, are asserted at nearly the same time, the arbiter may exridbéstable
behavior and may remain in a metastable state for an ailyitt@ng period of time.
CoHo can show that metastability can only occur in the hyperaregie where:

rHeBs Xi € [0.55, 1.3] g1 €B;

(5.4)
rheBs X € [0.55, 1.3] o € Bs.

Outside of this region, the dot product of the derivativetoeavith the final sta-

ble state of granting client 1 or granting client 2 is unamabigs. ' Section 5.4.4
explores liveness under metastable conditions in greateild

Reset:

CoHo shows that if client has a grant and lowers its request signal then the arbiter
lowers the grant for clienitwithin 270 ps. This shows that the arbiter satisfies the
liveness requirement for withdrawing grants.
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Fairness:
If client i wins a grant while the other client is making a request andegiently
clienti drops its request, then Coho shows that the other clientveca grant
within 420 ps. This shows that the other client receives atrapne grant while the
current client has a pending request; therefore, this girafiiter is fair.

Using CoHo, we have verified all properties of the arbiter from the shbessi
tion given in Figure 3.19 except for the clause

a-ins = (Oz(Bs(r)=B23(g))).

This property concerns the behaviour of the arbiter unddaast@ble conditions,
and we describe our technique for verifying this propertthiennext section.

5.4.4 Metastability and Liveness

Metastable behavior in digital circuits has been studiadestChaney and Molnar's
original paper on synchronizer failures [38]. Hurtado [[L2dalyzed metastability
from a dynamical systems perspective. Seitz [183] gave @ imiroduction to
metastability issues, and Marino [154] provided a fairlyngehensive treatment.

When both requests are asserted concurrently, the arlatgenter a metastable
condition that can persist for an arbitrarily long time. §hit is not possible to
prove that all behaviours when both requests are simultetgasserted will even-
tually lead to granting a client. On the other hand, with gprty designed arbiter,
the probability of no grant being issued when both requestsaaserted should
decrease exponentially with time. This implies that thebphility of a liveness
failure should go to zero as the settling time goes to infinlityhe arbiter works
for all situations except for some set with a probability swea of zero, then we
say that the circuit workslmost surely{169, Chapter 2.6]. Our approach is to
use HO to bound the reachable space when both requests are assgitst
of this space can be shown to quickly resolve to granting dieatoor the other.
For a small region near the metastable point, such progessshe demonstrated,
and we use the method from [160] to show that this metastagieom is exited
with probability one. The remainder of this section dessithese steps in greater
detail.
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Figure 5.13: Reachable Regions Whenandr, are High

To verify liveness when both requests are asserted, we §ies€oHO to com-
pute the reachable state after both requests are asseripare 5.13 shows the
outcome of this analysis. The square markeddicates the initial region fox;
andx, whenry andr, are both in regiorB;. CoHoO then determines the reach-
able space for all low-to-high transitions f andr, allowed by their Brockett's
rings. After bothr; andr, have been in regioBs for a while, GOHO shows that
the state is in the union of the regions labeled?, — 1, — 2, and M. Region
1 is wherex; has gone low, and gramgh will be asserted. GHO shows that all
trajectories in region— 1 converge to regiord in bounded time and thus lead to
asserting grand;. Likewise, from region® and— 2 lead to asserting,. Region
M contains the metastable point. Because trajectories ost#ifde manifold for
the metastable point remain in regibhindefinitely, GoHO cannot verify that all
such trajectories eventually lead to issuing a grant.

We now show that the arbiter is live in the almost-sure seWgefirst make a
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change of variables. Let
W = X1— X, wh = X1 + Xo. (55)

We will write M, to denote the regioM in (w—,w") coordinates. As shown
in [160], almost-all trajectories diverge from regidh if we can find constants
c,d > 0 such that for all point$w; ,w; ) and(w; , w3 ) with wy < ws,

(W —wy) <cw, —wp)) = W, —W; > d(w, —wj)
(W >wWi)A((wg —wi)=c(wy, —wp)) = W3 —Ww) <—d(w, —wj) (5.6)
(W3 <Wi)A((Wh —w)=c(wy —wp)) = Wy —W) < —d(wy —w;).

Basically, this condition ensures that if at some tirgetwo trajectories differ
only by theirw~ components, then they must exponentially diverge; thisiress
that one of them must leave regibh. This implies that the set of trajectories that
remain inM indefinitely must have a Lesbesgue measure of zero, whidthsytiee
desired almost-surely result.

We now present a simple test that ensures that the condftimmsEquation 5.6
hold. For any pointv € My, let J(w) be the Jacobian operator for the ODE model
projected onto théw,w*) space:

ow— oW
Iw) = [g& %] (5.7)
ow— owt
Now, define:
1
o= (madawL2lPwD) (5.8)

hy = max—[J(w)(2,1)|/I(w)(2,2).
weM
The conditions of Equation £.6 are satisfied if
(H>0) A (h>hy), (5.9)

wherey, h; andh, are defined as in Equation 5.8. This is straightforward tavsho
by integration along the line segment from pofmt ,w;") to point (w; , w3 ) from
Equation 5.5. We applied these tests to show that trajestavill leave regiorm
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Figure 5.14: Verified Two-Stage Rambus Ring Oscillator. It consists of fo
ward inverters (labeled alwd) and cross-couple inverters (labeled as

cc). The ratio of cross-couple inverter size and forward itefesize is
denoted as.

almost-surely.

In summary, we have verified both safety and liveness prigigedf the ar-
biter circuit. We also showed that the metastability filtensction as a Brockett's
annulus transformer. During the verification, we found thallenging stiffness
problem and proposed two solutions. We applied a methoddbaselynamical
systems theory to prove that the arbiter circuit satisfeebviéness properties in the
almost-surely sense, which cannot be demonstrated byabgithanalysis alone.

5.5 The Rambus Ring Oscillator

Figure 5.14 shows the two-stage ring oscillator that wefieeti The circuit was
proposed by researchers at Rambus [129] as a verificatidierntpa, and they noted
that some implementations of the circuit had failed in risddricated chips. There-
fore, they posed the problem of showing that the oscillatarts from all initial
conditions for a particular choice of transistor sizes.haiigh [83] establishes a
condition to ensure that the oscillator is free from lock-iinere is still the possibil-
ity that the circuit could oscillate at a harmonic of the imded frequency, display
chaotic behavior, or have some other steady-state behattier than the intended
oscillation. We solved these problems for the two-stage IRRenoscillator shown
in Figure 5.14. In the circuit, all inverters have the sanm sind signal nodes
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are denoted a%;, X, X3,X4. With the circuit states computed byo®0, we have
shown that the two stage oscillator with any possible ihg@ndition oscillates in
the specified mode with probability one.

5.5.1 Static Analysis and Reachability Computation

Our verification proceeds in three main phases:

1. The oscillator shown in Figure 5.14 is a differential desinodesX; andXs
form a “differential pair” and likewise for nodes, andX4. The first phase
of the verification shows that each of these differentiatgpaan be treated
as a single signal. This symmetry reduction of the stateespaaplifies the
subsequent analysis.

2. Any oscillator must have at least one equilibrium poinsirlg the methods
from [8&], we can show that any such equilibrium points arstainle; how-
ever, we note that any trajectory that starts on the stablafaba for such
an equilibrium point will lead to a non-oscillating behawioln other words,
for anyoscillator circuit, there must exist an infinite set of iaitconditions
for which the circuit will fail to oscillate. Fortunatelyhis failure set can
have a lower dimensionality that the full state space. Ttingssecond phase
of the verification shows that this occurs with probabiligra

3. The first two phases show that most initial conditions lead fairly small
subset of the full phase space. In the final phase, we divielegimaining
space into small regions, and use existing reachabilithatkst to show that
the oscillator starts up properly from each such region.

The remainder of this section describes the dynamical sysissues associated
with each of these phases. Section 5.5.2 describes ourcetiofi method based
on these observations.

We model the oscillator circuit from Figure 5,14 using norear ordinary dif-
ferential equations (ODES) obtained by standard, modifeethhanalysis methods
as described in Section 3.3. This gives us an equation obtine f

x = f(x), (5.10)



wherex is a vector of node voltages. Létbe the dimensionality of. We assume
that f is C? which guarantees that Equation 5.10 has a unique solutioarfyp
initial state,x(0).

Differential Behaviour

NodesX; and Xz in the oscillator from Figure 5.4 form a “differential paand
likewise for nodes{; andX,. Letx; denote the voltage on nodé. Thedifferential
componenbf the differential pair is¢ — X3, and thecommon modeomponent is
X1+ X3. When the oscillator is operating properly, the common muataponents

are roughly constant and the oscillation is manifested éndifferential compo-
nents. LeV," be the nominal value for the common mode components. We show
that for a relatively smaWeyy, if |x1+x3—VO+| > Verr, then%(xl+x3) and(x1 +X3)

have opposite signs. This shows that that the common modpawnt forx; and

X3 converges to withie,; of the nominal value. Likewise foX, andX,4 by circuit
symmetry.

Equilibrium Points and Their Manifolds

If the circuit is an oscillator, then the dynamical systemaatided by Equation 5.10
must have a periodic attractor. This is a periodic orbRfrsuch that any trajectory
that starts in some open neighbourhood of this orbit mushasytically converge
to the orbit. For any periodic attractor, there must be an@ated equilibrium-
point [121, Chapter 13], i.e. a poirgp for which f(xep) = 0. If this equilibrium
point is an attractor, then its basin of attraction is a seintifal conditions for
which the circuit will not oscillate. Otherwise, the eqgbiium point may be a
saddle point, in which case it has an associated stable atdnifhis manifold
is a set of points that form a surface with a dimensionalitd such that trajec-
tories starting anywhere on this manifold convergede In this case, the set of
initial conditions that lead toep has zero volume in the full-dimensional space,
and the probability of starting at one of these points is zdvtore technically,
the failure set associated with this equilibrium poinhegligible (with respect to
the Lesbegue measure) and trajectories diverge from tighin@irhood okep, al-
most surelyj169, Chapter 2.6]. We use the terminologiynost surelyto indicate
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something that has probability one, aalchost allto indicate the entire state space
minus a negligible set.

This dynamical systems perspective provides a criticatagion about oscil-
lators: every oscillator circuit has a set of initial conditions fathich it fails to os-
cillate. Direct application of continuous state-space model chasdleeg. [69, 97])
to the oscillator start-up problem will identify regions &re trajectories might stay
forever (or the reachability computation used was unsauBgcause we cannot
show that the set of failure states is empty, we must settlehfowing that it is neg-
ligible. This is sufficient in practice, as designers arewotried about a design
that fails with probability zero. To perform this verificati, we need reachability-
modulo-measure-theory. We describe such a method below.

To verify the oscillator, we extend the technique describe&ection 5.4.4.
The basic idea is straightforward. bet be an equilibrium point of Equation 5.10,
f(Xeq) =0. Lety;...yx andz1...7Zq be orthonormal vectors and IBtbe a simple
region. If there is some constanpt,> 0, such that for every poinb, in B,

Yi‘a—yi(b) > u, Viel.. .k

511
z-9-(b) > —p, Vjek+1..d, (5.11)

then it can be proved [150] that almost all trajectorie8ileaveB. The intuition
is that trajectories that start from points that differ omytheir y; x components
must diverge from each other.

Reachability Computation

The verification problem that we consider is to show that a Resming oscillator
with a particular choice of transistor sizes will oscillateits fundamental mode
from nearly all initial conditions. We do this by first showjimlifferential opera-
tion and then showing that almost all trajectories divergenfthe stable manifold
of the unstable equilibrium point. These first two phaseswstimt trajectories
from almost all initial conditions lead to a relatively sinpart of the state space.
Furthermore, this small part of the state space has the commooe components
of both differential signal pairs withiWg, of V0+. This allows us to rewrite the
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differential equation model from Equation 5.10 as a diffitiad inclusion [105]:
u € F(u), (5.12)

whereu is the vector[x; — X3, X2 — X4]. By using an inclusionf accounts for
all values of the common mode componentsvgﬁ +Verr. Reducing the four-
dimensional state space of the original problem to a twoedsional space makes
the exploration of trajectories from all remaining stamditions straightforward.

By showing that all such trajectories lead to an oscillatiothe fundamental
mode, we solve the first part of the challenge problem fron€@]1%e show that
for a particular choice of transistor sizes, the circuitl\wilrt oscillation from al-
most all initial conditions. Extending the approach to Harile second part of the
challenge is straightforward. To ensure sound verificataihof the steps of the
verification use over approximations of the circuit modek ¥dn use these uncer-
tainty terms to model a range of size ratios between the fahaad cross-coupled
inverters. Thus, we will show that the oscillator starts upperly for any ratio of
transistor sizes in a relatively wide interval.

5.5.2 Implementation

As with the previous examples, our verification is for a desigthe TSMC 18{
1.8V CMOS process.

Differential Operation

This verification phase starts by changing the coordinaséesy to one based on
the differential and common mode representation of sigridien, a static analysis
of the trajectory flows allows most of the common-mode subspa be eliminated
from further consideration.
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Let u be the circuit state in “differential” coordinates:

u = M1x
1 010
v2| 0 1 01 (5.13)
M = —
2 | -1 010
0 -1 0 1

We assume each of nod¥sg, X,, X3 andX4 can independently have initial voltages
anywhere in0, 1.8]V. Thus, the differential components; anduy, are initially in
+0.9v/2, and the common mode componemgsanduy, are initially in[0,1.8v/2].
To establish differential operation, we divide the rangeaéh of theu vari-
ables inton intervals, creatingi* cubes. We construct a grap@, = (V,E) to
represent the reachability relationship between thesescubetv; j  , be a vertex
corresponding to thég" interval foruy, the j!" interval foru, and so on. There is an
edge fromvtowif f allows a flow out of the cube far directly into the cube for
w, and there is a self-loop farif each component of is zero somewhere v The
key idea is that if vertexs has no incoming edges, then any trajectory that starts in
the corresponding cube will eventually leave that cube,remilajectories will ever
enter the cube. Such a cube can be eliminated from furtheidemation. Thus, we
only need to consider cubes whose vertices are memberslebcyihese vertices
can be identified ifO(V + E) = O(n*) time. With a direct implementation of this
computation, constructinG dominates the entire time for verifying the oscillator.
To obtain a more efficient computation, we first note that the ¢ to establish
differential operation. It is sufficient to project the veés ofV onto the common-
mode components of the differential signals and show thagt mertices can be
eliminated from further consideration. L&t = (V',E") wherev, , corresponds to
the kM interval ofus and the/t" interval ofu. There is an edge iE' from Vin
to \/kzj2 iff there is an edge i from Vi j k, ¢, 10 Vi j k¢, for somei andj. Clearly,
G’ overapproximates reachability. Thus, if a vertex3fhas no incoming edges,
then all of the corresponding vertices@must have no incoming edges as well.
Computing the edges B’ requires examining all of the edges®fbut subsequent
operations on the grapgh’ are much faster than those Gn

154



To reduce the time required to find edgeskgfwe start with a small value
of n and thus a coarse grid. Many large blocks can be eliminated @& even
with a coarse grid. We then doubite(i.e. divide each vertex o6’ into four)
and recompute reachability using the finer grid for findingesdinE as well. In
practice this adaptive gridding approach eliminates tdagpkickly while achieving
enough precision to allow the rest of the verification to pextwithout difficulties.

Negligible Failure Set

As described in Section 5.5.1, we can eliminate cubes frathdu consideration
if we can find a constant > 0 and orthonormal vectoss, y», z; andz such that
for every pointx in the cube,

S
g

Yigp () > W,

Vorge () > K, (5.14)
790 < W '
zz-g—zfz(x) < —U.

We note thatf (x) = 0 whenx; = xp = X3 = X4 = v with v nearVyq/2. LetXeq
denote this point. The stable manifold for this attractdhésplane defined bix; =
X3) A\ (X2 = X4). The Jacobian matrix fof atxeq has two eigenvalues with positive
real parts (divergent trajectories), and two with negatead parts (convergence in
a subspace). The corresponding eigenvectors are the colohih as defined in
Equation 5.13. This suggests choosinglandz vectors as:

1 0

_ vl 0 v 1
yl—T 1 7y2_7 07

0 -1

1 0

0 1

2 2
)@Z% 1 y4:§ 0
0 1
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While we chose thg andz vectors based on the manual analysis of the dynamics
of the oscillator sketched above, we believe that this m®ceuld be automated.
Equilibrium points can be found by standard root-finding moels, and the eigen-
values and eigenvectors can be computed using standardinahli@ear algebra
routines.

Having chosery andz vectors, we now check each remaining cube in the state
space to determine if it satisfies the conditions of Equaide!. This requires
computing bounds on the partial derivativesfof The convexity (and concavity)
of transistor currents with respect to node voltages alltvesrange of possible
partial derivatives of transistor currents with respechade voltages to be deter-
mined from the end-points of the intervals for these volsadgy our simplification
of using constant capacitancefsis a linear function of transistor drain-to-source
currents. Thus, we can combine the intervals for the patéglatives of transistor
currents to obtain over-approximations of the intervatpfartial derivatives of .

Atthe end of this phase, the number of cubes to consider édirlal reachabil-
ity analysis has been reduced to a small fraction of themalgiMore importantly,
cubes that contain or are near the unstable equilibriumt pdithe oscillator have
been safely eliminated. This allows a reachability comiatiefrom the remaining
cubes to complete the verification.

Proper Oscillation

Noting that the common mode voltagesandu, are restricted to a small region
as shown in Figure 5.15, we eliminate these two variableeplacing the differ-
ential equation model for the circuit with a differentiatinsion. This reduces the
state space from four dimensions to two which enables «fticeachability com-
putation. Figure 5.16 shows the region that remains to biiadr We divide this
region into its inner and outer boundaries, and a colleaibfspokes” as shown
in Figure 5.17. The computation has three parts:

1. Starting from each “spoke”, show that all trajectoriesmtitg at that spoke
eventually cross the next spoke.

1The details of our method for establishing the inequalitiem Equation 5.14 are described in
[209]
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2. Show that all trajectories starting from the inner or obtundary eventually
cross the next spoke.

3. Starting from one spoke, compute the reachable set timtiinverges to a
limit set.

The first two show that all trajectories converge to the sattmacior. This means
that all initial conditions lead to a unique mode of oscitiat The final step tight-
ens the bound on this unique mode.

5.5.3 Results

As described earlier, our verification is for designs in tH&MIC 0.18u process.
All transistors in the designs that we considered have gatgths of 018u. For
all inverters, we use pMOS devices that are twice as wide@asthOS devices.
All forward inverters have transistors of the same size, likagvise for the cross-
coupled inverters. In the following,denotes the ratio of the cross-coupled inverter
size to the forward inverter size. This section first preseng¢ verification of an
oscillator withr = 1. Then, the oscillator is verified for&®/5<r < 2.0.

The verification routines were implemented using MatlahwiioHo used for
the final reachability computation. All times were obtaimedning on a dual Xeon
E5520 (quad core) 2.27GHz machine with 32GB of memory; hewedhe com-
putations described here are all performed using a singée co

Verification with Equal-Size Inverters

The first phase of the verification establishes differerdjaration. Initially, the
computation partitions the space for each ofuheariables into 8 regions, creating
a total of = 4096 cubes to explore. After eliminating cubes that havennom-
ing or self-circulating flows, the remaining cubes are suldéid and rechecked un-
til there are 64 intervals for each variable. Figure 5.15ghthe remaining cubes
projected onto the common-mode variableésandu, at the end of this phase.
With 8 intervals per region, there are 752 cubes under ceraion (18% of
the total space). With each subdivision, the number of cubesining increases
by a factor of roughly 4.6, and thus the volume of the spaceeundnsideration
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Figure 5.15: Common-Mode ConvergenceVgq/+/2. The first phase of ver-
ification shows that the common mode components are rougily c
stant. It eliminates cubes that have no incoming or setfutaiting
flows. This plot shows the remaining cubes projected onto the
common-mode variablas andus.

drops by about a factor of roughly 0.29. With 64 intervals qggjion, 74676 cubes
remain (0.45% of the total space). The decrease in the volsisteady, suggesting
that further reductions would be possible with more iteradi However, the time
per iteration increases with the number of cubes under deration, and the time
for this phase dominates the total verification time. Thasyérifying this circuit,

there is no incentive to further refine the region boundirgabmmon-mode signal.

The second phase of the verification eliminates the unstipldibrium and
cubes near this equilibrium’s stable manifold. It startthviihe 74676 cubes from
the previous phase and performs the computation stepslukxsan Section 5.5.2.
Figure 5.16 shows the remaining cubes projected onto tFerelittial variablesy;
andu, at the end of this phase. This phase eliminates roughly h#ieaemaining
cubes, leaving 38384 cubes for analysis by the final phase.

The final phase starts with the 38384 cubes from the secorgephas de-
scribed in Section 5.5.2, we divide these cubes into 16 wedyéed by “spokes”
in theu; x U, projection. For each such wedge, it is sufficient to show #figta-
jectories starting on the boundary of the wedge lead to pamside the next wedge
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Figure 5.16: Eliminating the Unstable Equilibrium. The second phaseieli
nates the unstable equilibrium and cubes near the stabléallarm his
plot shows the remaining cubes projected onto the diffeakemari-
ablesu; andus,.

in the clockwise direction. This is shown with three readlitghcomputations per
wedge:

1. Show that all trajectories starting from cubes on theifepdpoke (counter-
clockwise boundary of the wedge) cross the trailing spokekevise bound-
ary) in the interior of the wedge. These spokes are drawn igemia in

Figure 5.17.

2. Show that all trajectories starting from cubes on theritwo@indary cross the
trailing spoke. These cubes are drawn in green in Figure. 5.17

3. Show that all trajectories starting from cubes on therduendary cross the
trailing spoke. These cubes are also drawn in green in Figde

With 16 wedges, we perform 48 reachability computation rukisthis point, the
oscillator is verified.

We also ran a longer reachability computation starting feospoke and com-
pleting two complete cycles of the oscillation. The secogpde starts from a
smaller region that the first and establishes tighter boand$e limit cycle. The
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Figure 5.17: Computing the Invariant Set. The third phase computes reach
able regions starting from all remaining cubes. It projesdtscubes
onto the two-dimensional plane by differential variablegndu,. The
up, Uy plane is partitioned by 16 spokes (magenta lines). All ttaje
ries starting from the inner or outer boundary (green cuaesyshown
to cross the next spoke. The dotted polygons show the relechats
from a spoke and the blue polygons show the final invarianbfstite
oscillator.

blue polygons in Figure 5.17 indicate this limit cycle. Tkenaining width of the
limit cycle is mainly due to approximating the four-dimemsal differential equa-
tion with a differential inclusion.

Verification for a Range of Inverter Sizes

Each phase of our verification method uses conservativeap@oximations to
guarantee soundness of the results. These approximatiakss itrstraightforward

to modelr as being in an interval rather than having a precise valueh is
change, we verified that the oscillator starts up propertyaioy value B75 <

r <2. Forr < 0.875, the second phase of the verification fails to show that th
oscillator escapes from the region near the stable equitibrFor Q72 < r < 0.9,
DC-equilibrium analysis along the lines described in [88)\8s that the oscillator
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Table 5.3: Verification Times (seconds)

r phase 1l phase?2 phase3 Total verified?
[0.7,0.9] 1122 464 — 1586 NO
[0.85,0.9] 705 237 — 942 NO

[0.875,0.9] 652 209 659 1520 YES
[0.9,1.1] 724 257 468 1449 YES
[1.1,1.3] 533 171 382 1086 YES
[1.3,1.5] 429 132 402 963 YES
[1.5,1.7] 378 112 512 1002 YES
[1.7,1.9] 335 99 624 1058 YES
[1.9,2.0] 308 91 688 1087 YES
[2.0,2.1] 308 91 1150 1549 NO
[2.1,2.3] 293 80 3879 4252 NO

has three unstable equilibria. We conjecture that the sbgbase is failing because
it cannot distinguish the stable manifolds for the multiptpuilibrium points. The
DC analysis method shows that the oscillator is susceptideck-up forr < 0.72.
Forr > 2, the third phase of the verification fails to show that ttjees leave the
“corners” of theu; x up, space. These correspond to lock-up of the cross-coupled
inverters. The DC analysis method shows that these lockaipssbecome stable
forr > 2.25. The gap between the reachability computation and theriaysis is
presumably due to conservative approximations used irethehability method.

Table 5.3 shows the run times for each phase of the verifitaliogeneral, the
time for the first phase decreases with larger valuesheicause the stronger cross-
coupled inverters eliminate the common-mode componetso$ignals faster. For
the same reason, the number of cubes at the end of phase astecweith larger
values ofr resulting in less time for phase 2. If the second phase shdaituee,
we don't run phase 3. Generally, the run-time for phase timaeases with larger
r because the oscillator period increases, and it takes dobability computation
more steps to show that trajectories exit regions whererbgsecoupled inverters
are close to locking up. For the smallest values,dhe oscillator converges to its
limit set more slowly, and we ran the reachability compuotationger to establish
a small limit set.
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6

Conclusion and Future Work

This dissertation has addressed formal verification ofanahd mixed signal cir-
cuits. Our approach is based on translating verificatiolpras to reachability
analysis problems by modeling circuit dynamics as ODEs aatif/ing ana-
log properties based on Brockett's annuli and a LTL-basegit lith continuous
time and values (see Chapter 3). Reachable circuit statesoanputed by GHO,
which is a reachability analysis platform for nonlinear, damte-dimensional hy-
brid systems. ©HO employs projectagons to represent and manipulate moderate
dimensional, non-convex objects and bounds the solutiomoofinear ODEs by
approximating ODEs by differential inclusions (see Chag)e The correctness
and efficiency of our solution have been demonstrated byubeess of verifying
several synchronous, asynchronous, and analog circagésdkapter 5). Our work
has extended the application of formal methods to practicalog circuits and also
motivates many future research topics.

6.1 Contributions

We proposed a reachability based solution to circuit veiion. It represents cir-
cuit states by moderate-dimensional regions and complitescait states using
CoHo. CoHois a sound, efficient and robust reachability analysis toohbnlin-
ear, moderate-dimensional systems. Our approach hassstudbeverified several
real circuits.
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We employed a MNA (modified nodal analysis) based techniqueddel a
circuit by a system of nonlinear ODEs. The drain-to-sounegemnt functions for
transistors are obtained bysiHICE simulations. This simple and general method
can generate accurate models for any process and any déleateveloped a poly-
nomial model which applies quadratic polynomials to apprate current func-
tions in order to support larger devices with more terminaie also developed
a cosine-window interpolation method to ensure the smasthiof these models,
and so enable us to use the same model for both simulationeaifitation.

To formally specify analog properties, we introduced sempttensions to LTL
to support dense time and continuous variables. We alsmlinted probability into
the logic to express nondeterministic properties such aastability behaviours.
We applied the Brockett's annulus construction to specifgimaily of signals and
map between continuous trajectories and discrete belsavior

With the mathematical model and specification method, wédiegbpeachabil-
ity analysis to compute forward reachable regions froniahstates. We developed
new algorithms to provide robust and efficient manipulatibthe projectagon data
structure originally proposed in [86] to represent and malaite high-dimensional,
non-convex regions. A projectagon maintains two strustuthe geometric rep-
resentation which projects a high-dimensional object aww-dimensional sub-
spaces, and the inequality representation which appfieatiinequalities to bound
the convex hull of the object. The geometric representatoluces the number of
dimensions of the object and implements operations on digiensional objects
based on efficient polygon operations, such as unions aesattions of two pro-
jectagons. On the other hand, the inequality representatim implement some
operations more efficiently based on linear programminganéw interval clo-
sure operation; these operations are used to find boundsriales and project
high-dimensional faces onto the projection planes of tiogeptagon.

We developed an efficient and robust algorithm to computesticeessor of a
projectagon with dynamics described by ODEs based on tlositdog from 87].
Our implementation advances projectagon faces rathertliga@ntire projectagon
because trajectories starting on these faces establisidbdar trajectories start-
ing anywhere in the projectagon. We made several improventerthe algorithm
from [87]. First, we use the maximum principle to bound dolo$ of linear dif-
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ferential inclusions; this ensures the soundness of owiorer Second, we devel-
oped a completely new algorithm for projecting advancedgamto the projection
planes; thereby solving many of the robustness issues ofeitson from [87].
This algorithm is based on linear programming and requixestesolution of lin-
ear programs. We implemented an exact linear program selkeh uses arbi-
trary precision rational numbers to guarantee the optirkitien and employs
an efficient O(n)-time) linear system solver to improve performance. Thihe,
early version of ©Ho from [87] would fail in the presence of “infeasible vertites
which arose when over approximations in projecting a facelyced a vertex in a
projection polygon that fails to satisfy the constraintplied by other projections.
We solved this problem of infeasible vertices by iteragivgimming projection
polygons produced by the projection algorithm.

We developed several algorithms to improve performanceeshace approxi-
mation errors. The multiple-model and asymmetric bloatirethods reduce mod-
eling error and exclude non-physical trajectories. Thesguerify strategy de-
creases the number of steps by adaptively guessing a laadidrstep size. We de-
veloped approximate algorithms for our LP solver and ptaacoperation which
improved performance significantly. We developed a hybriglementation of the
LP solver that combines floating-point interval arithmetia arbitrary-precision-
rational (APR) computations. The LP solver performs mositoftomputation
using floating point arithmetic, but can detect when criticaind-off errors occur.
In the latter case, the computation is repeated with APRmstic. In practice,
this provides the speed of hardware-supported floatingt pmmimputations with
the robustness and soundness of APR.

With the techniques and algorithms described above, weeim@hted ©HO,

a sound, robust, efficient and accurate reachability aisatp®l for nonlinear,
moderate-dimensional hybrid systems. Furthermore, weldpgd a framework
to verify analog and mixed signal circuits using continuousdels. First, we pro-
vided a standard, easy-to-use interface for the tool. Withihterface, reachability
computation for a circuit can be formally described by a ityautomaton. We also
provided a technique to model input transitions for cirewith multiple input sig-
nals. The method models all possible trajectories usingta fimmber of automata
states for either independent or related input signals.
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We applied our methods to verify synchronous, asynchroamdsanalog cir-
cuits. We found an invariant set for a toggle circuit and fiedi that its output and
input satisfy the same specification, thus a ripple courdgarbe constructed using
this toggle circuit. We verified that the output of a flip-flapotiit satisfies a Brock-
ett’'s annulus if its input specification is satisfied. We atssasured the clock-to-q
delay and the maximum frequency of the flip-flop. We verifiethimafety and live-
ness properties of an asynchronous arbiter circuit. Howevehallenging stiffness
problem was encountered during the reachability compmrtatiVe presented two
techniques that can addressed the stiffness problem., wiessimplified the cir-
cuit by a model-reduction technique proposed in [83] thahieltes nodes with
small capacitancés Our second technique involved a change of variables of the
ODEs in a way that made the stiffness more manageable aldhgntrioducing a
simple invariant to reduce approximation error. This ifsalr was established by
static analysis techniques. We also developed a method loesdynamical sys-
tem theory to show the probability of staying in the metastabgion is zero. The
Rambus ring oscillator is a real circuit from industry. Wertdmned static analysis
and reachability computation to show that the circuit alsvagcillates as expected
from all initial conditions except for a set of measure zefte success of these
verifications demonstrated the robustness and efficacy oélgorithms and the
CoHo'tool.

From these verification experiences, we learned sevesairies First, it is pos-
sible and necessary to apply circuit-level models to formesifications. We could
not find the potential flaw of the toggle circuit caused by bagk currents if we
only used digital models. Second, stiffness is a problemidachability analysis.
We believe that stiffness will arise in many circuit veritiom problems because it
is common for nodes to have capacitances and associateddimtants that differ
by several orders of magnitude. Although stiffness has lfe@mughly addressed
in the context of numerical integration and simulation[4tfe difficulties caused
by stiffness for reachability computations do not appednaee been previously
studied. Furthermore, we found that formal verificatiorhtéques can be made
more powerful by combining static analysis with reachapitinalysis. For ex-

1in [82], the reduction technique was motivated by a need doige the dimensionality of the
state space rather than our use of the reduction to avoidgmstof stiffness.
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ample, metastable behaviours cannot be analyzed solelgdmhability analysis.
Finally, the application of interval computation and APRwhers are essential for
the robustness of @Ho.

In summary, we have developed methods for systematicallyefitg circuits
based on non-linear models in a way that captures the pher@uofestate-of-the-
art device models and is suitable for formal verification. Yéwe an extension
of LTL for specifying circuit properties. We have made numes improvements
to CoHo, introduced new analysis techniques, and proven the segsdrf these
techniques. We have demonstrated the efficacy of theseitgasnby verifying
significant properties of real circuits from the literatudnese results demonstrate
the feasibility of formally verifying digital and analogrcuit behaviors using pro-
jectagon based reachability analysis.

6.2 Future Research

While our research has demonstrated that properties aktieatircuits can be
formally verified, this work also raises many questions arativates many fu-

ture research topics. To fully realize the potential of falrmethods for analog
models, we expect to make improvements to the reachabibyoas pioneered in
CoHoincluding supporting a wider range of device models, usigltel compu-

tation to speed-up the verification, and working on formacsfication techniques
that in turn should help to automate many aspects of the eatiidn process. To
verify larger circuits and a wider range of properties, wéebve that reachabil-
ity techniques should be complemented by other methodadimg small-signal

analysis, static analysis, and parameterized verificafidre reachability analysis
techniques that we have developed could also be applied tdearange of prob-
lems including control theory, biological systems, andrig/Bystems as well. We
describe each of these in greater detail below.

6.2.1 AMS Verification

To verify an AMS circuit, designers and verifiers need an esgive specification
language that will allow them to communicate the essentiapgrties of the cir-
cuit. Specifications formalize the correct circuit behaviand provide a uniform

166



interface for CAD tools such that they can be compared ograted with other

tools. Unambiguous specifications are also a key prerdgui design re-use. It
is attractive to extend the specification method in thisithesinclude properties
that are commonly used by designers to describe analogtsiguch as gain, fre-
guency, and bandwidth. A key challenge here is that theseaugally described
as frequency-domain properties, whereas formal verifinatbols have generally
focused on time-domain based analysis. What are sound semfon frequency-

domain properties when the underlying circuit models arelirear?

With clearly defined specifications, we should be able toraate much of the
verification process for analog circuits. Currently, weahmost of the properties
to be verified by manually inspecting the reachable regiamputed by ©Ho.

If we have specifications with clear, mathematical integdfens, then it should
be possible to automatically generate the reachabilitplpros that ©@Ho or an-
other tool must solve, and then check the results usingviateomputation and
linear programming techniques. Standard specificatiomslao helpful to tightly
integrate simulation and verification. In particular, wailcbuse optimal control
methods to try to construct counter-example trajectoties torrespond to veri-
fication failures. Conversely, if such a trajectory cannetfund, we could use
the “gap” between the simulation trajectories and the cdetbueachable space
to guide where additional computational effort should beested to reduce the
over-approximations of the reachability computation.

Our verification examples described in Chapter 5 show thatlinear reach-
ability computations, static invariant computations, a&nckall-signal linear anal-
ysis can be used as complementary techniques to build acetiofi framework
that is much more powerful that the sum of its parts. For exantpols such as
Hy SAT [116] and HsOLVER [177] can be used to derive static constraints on the
feasible regions of non-linear dynamical systems thatcctheén be used by tools
such as ©Ho to compute tighter bound on the dynamically reachable spate
envision producing a “satisfiability modulo non-linear dymics” that could be ap-
plied to AMS circuits and other hybrid systems. Furthermahe integration of
these algorithms enable users to obtain a good trade-affdeet performance and
accuracy during the verification. For example, reachgbii@mputation by ©HO
can solve nonlinear dynamics accurately but the computasicexpensive. On
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the other hand, static analysis byrBAT or HSOLVER offers greater efficiency.
We tried this idea in the verification of the Rambus oscilland arbiter circuits.
However, there remain many opportunities to further irdegthese approaches.

Most analog circuits are examples of a small numb€r20) of basic types of
cells, such as A/D (D/A) converters, amplifiers, oscillai@nd phase-comparators.
Therefore, it may be practical to develppint verificationtools and specification
techniques for the most commonly used types of analog coemgerand structures.
For example, oscillators, with two or three typical strueg) are a good starting
point.

A promising approach for verifying large AMS circuits is ke advantage of
common circuit structures. It is common to have multiplegetaor a large num-
ber of identical elements in an analog circuit. For examialdder structures that
implement a unary encoding of a control value are common ahognand mixed
signal designs. The PLL design from [205] constructs theacigrs that set the
resonant frequency by using hundreds of replicas of the stimeture to ensure
monotonic response to the feedback and control paths ungew&iations. Pa-
rameterized verificatiofs a promising technique to verify large circuits with such
structure. It has the potential to simplify the circuit mbdad make it practical to
verify analog circuits with hundreds of nodes.

Another promising approach to verifying AMS circuits is toply small sig-
nal analysis techniques to characterize (nearly) linehaters at the intended
operating point and use reachability analysis to show lamgde convergence to
this linear behavior. Although the semiconductor devicdslgt highly non-linear
large-signal behaviors, nearly all analog circuits aréghesl to operate with nearly
linear transfer functions when viewed from the appropradmain [131]. In fact,
designers usually describe the behavior of their circuitterms of these linear,
small-signal responses. However, analog designs can li@hwnforeseen combi-
nations of large-signal, non-linear behaviors preventcihauit from reaching the
intended operating point. Such failures can occur at stadf during mode transi-
tions. Reachability analysis can be applied to identifplst@perating regions and
show that a circuit has the intended global convergenceepties. One example of
this approach is the Rambus ring-oscillator described @bBer the Rambus ring-
oscillator, we noted that convergence can only be shakwrost surely We expect
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that this will be the case for most analog circuits. Thus, tagjics for future re-

search include developing systematic ways of showing aksurely convergence
for a wide range of analog circuits, and developing modéi:cdon techniques —
such as showing differential operation of the oscillatohat will make the reach-
ability computations tractable for realistic circuits.

Designers frequently employ digital circuits to tune owt thon-idealities of
analog circuits, such as PVT variations. This motivatesgrdting digital for-
mal verification with circuit-level verification. Techniga such as assume-guaran-
tee [114] could be applied to first check individual analod digital blocks and
then prove properties of the whole circuit.

6.2.2 Improve Performance of ®HO

CoHo is quite slow,e.g.,it may take several days to complete the reachability
computation for an analog circuit with more than six nodesudtly speaking,
CoHo has three main performance bottlenecks: 1) determiningetier terms
for linear differential inclusions, 2) projecting feashlegions of linear constraint
systems onto projection planes, and 3) computing boundsode moltages for
device model evaluations. For example, approximately 30%tal runtime is
spent on computing the bounding box of a projectagon (betk 3). Each of
these tasks offers abundant parallelism, thus the perfizenean be improved by
parallel computation, such as GPGPUs and multi-threadagt@amming described
below.

CoHo has computations that are highly-data parallel, such aprttdem of
finding worst-case errors for linear differential inclusso(bottleneck 1). These
computations are natural candidates for GPGPUs (genemabeel GPUs). A GPU
usually has hundreds of simple processors which are sjzeciafor compute-
intensive applications. Therefore, it can process dataHpacomputation more
efficiently than a CPU with high frequency. In the past, ekpig the parallelism
offered by GPUs was complicated because a programmer néed#@dw the ar-
chitecture and programming details of the particular GPat they were using.
Many GPUs now provide a general programming interfacg,,the CUDA [6]
programming model supported by many Nvidia GPUs.
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CoHo could also take advantage of multi-threaded programmitige JOHO
implementation is partitioned into two components: them/as process imple-
ments the basic reachability algorithms and tReaJprocess implements compu-
tationally intensive geometric and linear programmingrafiens. The MTLAB
process can generate a large number of independent profieaikof the projec-
tagon faces and put these problems into a pool. These prelitetnde projecting
full-dimensional polyhedra onto two-dimensional planest{leneck 2), comput-
ing the bounding box of a projectagon (bottleneck 3), andhahility computa-
tions on projectagon faces. Asynchronously, tReanJprocess can create multiple
threads and assign an idle thread to each problem. As thentu@oHo only uses
one process, this approach can speed up computations cagitiifi without vastly
modifying the current implementation.

Currently, the computation of node voltage bounds (batitkr) is done with
by solving linear programs using CPLEX [5]. For this arramgat, the paral-
lelism is limited by the number of CPLEX licenses availabldternatively, we
could solve these linear programs using ocaral methods. While ouraVa code
is not as fast as CPLEX, we can increase the throughput byi-thedtaded pro-
gramming as described above. At today’s prices, processbesare sufficiently
less expensive than CPLEX licenses that the parailel &pproach is more cost-
effective. This gap will almost certainly continue to widér the foreseeable
future.

In addition to these three bottlenecksp@o has many other operations where
task and data level parallelism is readily available. Fanegle, reachability com-
putations in many automata states can be performed indepiyndwWe believe that
CoHo and verification problems are excellent candidates forljghmmputation.

The computation in GHo could also be improved by developing more efficient
algorithms. For example, the bounding box of a projectagamuirently computed
by linear programming. It could also be obtained by applytimg interval closure
method (seec Section 4.2.3) on projection polygons. Anvatdree [45, Chapter
14.3] is an efficient data structure to implement the algatit The new algorithm
could be implemented in theva process and thus be parallelized. As another ex-
ample, the current implementation generates a compleyg@olfor the projection
of each time-advanced face. Most edges of this polygon asadied when com-
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puting the union of these “face polygons” to produce a pit@ecpolygon and in
the simplification operations. It may be possible to modify projection operation
to only compute the edges that will be used by the next tirap-st

6.2.3 Hybrid Systems and Others

Our reachability analysis algorithms and tools can be agdpi other hybrid sys-
tems or biological systems that are modeled by ODEs. Unli&dittonal sim-
ulation methods, the formal approach accounts for all sydiehaviors and can
thereby guarantee correctness. This is important for garitical systems, such
as public transport systems. For example, the airplanéicollproblem has been
studied in [195] and a helicopter control system has beeatiextin [71]. As GHO
supports moderate-dimensional, nonlinear systems angutes accurate results,
we believe our methods can be applied to these and more a@tgalisystems.
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A

Geometrical Properties of
Projectagons

In the dissertation, we focused on the application of ptagans in reachability
analysis as described in Section 4.2. However, there arg mtaresting geomet-
rical problems of projectagons. We summarize them in thieagdix.

A.1 Non-Emptiness Problem is NP-Complete

Problem Non-Emptiness ProblemGiven ad-dimensional projectagoR repre-
sented byn® projection polygons, is the feasible region of the projgotaempty

or not? The feasible region is the set of points whose piiojestlie in all pro-
jection polygons. We assume each projectagon polygaorresponds to a two-
dimensional plane and has; vertices. We use = zi”il n; to denote the total
number of polygon vertices ¢&1. The coordinates of vertices are rational numbers
where both numerators and denominators can be represgnstdnostk bits.

We first show that the feasible region of a projectagon is moptg iff the
projectagon contains at lease one point whose coordinege'sraall” numbers.

Lemma A.1.1 If a d-dimensional projectagoR is feasible and the coordinates of
all vertices are rational numbers using at most k bits, it gtain at least one
feasible point which can be represented bint)-bit rational numbers.
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Let us definedt(a) as the minimum number of bits required to represent a value
a, i.e., bt(a) = [log(a)|. From the definition, it is easy to see:

n

bt(i;Vi) < iem%}(bt(vi))ﬁog(n) (A1)
bt(ﬁw) < _ibt(w) (A2)

If the feasible region oP is non-empty, the region is a high-dimensional poly-
hedron, and all polyhedron vertices are intersections péhyplanes. As described
in Section 4.2, each hyper-plane corresponds to one polgdga. Therefore, co-
ordinates of a polyhedra vertices are the solution of a tisgatem:i.e., Ax= b,
whereA is a COHO matrix.

It is obviously that all numbers oA and b can be represented WY(k)-bit
numbers. This is because each constraint of the linearrsysteresponds to one
polygon edge and values &f andb; are computed from twk-bit vertices. Using
the least common multiple of denominators of all rationambers ofA andb,
the linear systems can be translated to an equivalent iniegar systemix = b.
By Equation A.2, the least common multiple uses at nm(siz)k bits, thus, all
integers ofA andb can be represented I)(d2k) bits.

By Cramer's rule [206, Chapter 1.8], the solution of the dinsystemAx = b
can be expressed as

oo detAd) L
X = det(A) i=1---d, (A.3)

wheredet(A) denotes the determinant of matdxandA; is the matrix formed by
replacing thé'" column of A by the column vectob. The determinate of matrik
is defined as

~

det(A) = Egjsgr(a)J_ilALo—i : (A.4)

IThere are at mostd?non-zero elements in thed®io matrix. Therefore, all integers @ andb
are at mosO(dk) bits.
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whereo is a permutation of the s, 2, - - - d} andS; is the set of all permutations.
By Equation A.2, the produq‘q?:lAm in Equation A.4 is at mogD(d3k) bits
large because because all numbeAaindb uses at mosD(d?k) bits. Similarly,
by Equation A.1 the value afet(A), which is the sum ofl! number of products,
are at mosO(dk+dlog(d)) = O(d3k) bits. Therefore, the solutionare rational
numbers whose numerators and denominators uses atfuw$t) bits. ||

Theorem A.1.2 The non-emptiness problem of projectagons is NP-complete.

Proof We shall next show that the non-emptiness problem is in Nbhbowmg that
it has polynomial certifications and it is NP-hard by consting a polynomial-time
reduction from the 3-SAT problem.

—The non-emptiness problem is in NP.

From Lemma A.1.1, the non-emptiness of a projectagon canobed by
checking all points whose coordinates uses at n@ist’k) bits. Given such a
point pt, we show there is a polynomial time certification. By the dé&éin of
projectagons, the poirt is insideP iff the two-dimensional projection gft onto
each projection plane is contained by the correspondingegtion polygon ofP.
It is well known that the algorithm that checks if a two-dins@mal point inside
a polygon has time complexit®(n;) [171, Chapter 2.2.1] wheng is the num-
ber of polygon vertices. Becaug® uses at mos©(dk)-bit, the total running
time T of the containment testing procedure on all projection gdais at most
T =57,(0(n) - O(d®k)) = O(nd®k). Because the size ¢ is |P| = o(nk), we
haveT = o(|P|*). Therefore, the certification can be verified in polynomialet
thus the non-emptiness problem is in NP.

<= The non-emptiness problem is NP-hard.

Given a 3-SAT problens with n variablesx,...,x, andm clauses, a corre-
sponding projectagoR can be constructed within a polynomial time as follows:

1. Create a variabl¥; j for alli, j € {1,...,n},i < .

2. Create a projection plane for each pair of variatdgs X« wherei < j <
k<Iforalli,j,kl e {1,...,n}. On each plane, place 16 squares with unit
length as shown in Figure A.1. Each cell denotes one poszdsignment to
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Projection Polygons

> X

<,
00 01 10 11 if 00 01 10 11

w

0 1 2 3 4 Xz',j 0

connect isolated regions break cycle
Vi, g, k1€ {1,.n}i<j <k <l

P~ >~
1.0
0.8

0 1 2 3 4 Xi,j 17
Vi,je{l,..n},i<j

Figure A.1: Reduction from a 3SAT Problem to a Non-Emptiness Problem
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variablesx, X;j, X, X« in the 3-SAT problen®. All cells are labeled as feasible
at the beginning.

3. For each clause @ with three variables, find all planes that contains these
variables (at most — 3 planes) and remove all cells correspond to the unsat-
isfiable states of the clause from all these planes.

4. Construct a simple polygon that contains all feasiblésdeft at the end of
previous steps. Feasible regions resulted from above stgontain sepa-
rated regions as shown in the top-left figure of Figure A.Joopk as shown
in the top-right figure of Figure A!1. Simple polygons can batcacted by
either connecting isolated regions by thin bridges witlgtrA (A <« 1) or
breaking cycles by removing thin ditches as shown in Figutke A

5. Add the projectagon planes and projection polygons assimothe bottom
figures of Figure A.1.

The projectagon hag) + 2= O(n?) variables andj}) + (5) +1 = O(n*) pro-
jection planes. Obviously, step 1 co§¥$n?) time, step 2 cost®(n*) time. The
running time of step 3 is at mo&(m- n*) when all projection planes are checked
for all clause. Step 4 is completed@{n?) time because each polygon can be con-
structed in constant tirde Step 5 cost©(n?) time. Therefore, the transformation
is polynomial-time O(|S|4).

We now claim that the projectagd®, as constructed above, has non-empty
feasible region iffSis satisfiable. For suppose tHahas a satisfiable assignment
to variablesxy, ..., X,, and the satisfiable assignment corresponds to a feasible re
gion for all variablesx; ;. On each projection plane, the square corresponds to the
projection of the feasible region are not removed in step Berdfore,P is not
empty at the end because it must contain a part of the feasipien (boundaries
are trimmed bw in step 4).

For theif part, suppose thd& has a non-empty feasible region; then the fea-
sible region must contains at least one cell that correspémén assignment to
variablesxy, ..., x,. Projection polygons constructed in step 5 requires aibhtdas

2Step 4 can be pre-computed as there are oHiypassible results.
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Xi.j must be away from integer variables by at leasT his eliminates “false” fea-
sible regions caused by bridges in step 4. Therefore, thgrasent corresponds
to the feasible region satisfi&s

Therefore, a procedure for transforming a 3-SAT problem mo@-emptiness
problem have been presented. The construction of the nqtigass problem can
be carried out in polynomial time. The non-emptiness pmobig also in NP as
proved above; hence it is NP-complete. |

Corollary A.1.3 Projectagon is not a canonical representation method.

Apparently, there are more than one projectagon to représerempty region.

A.2 Removing Infeasible Regions

As described in Section 4.3.3, the infeasible region of geptagon must be re-
moved in each step of @HO's reachability analysis. We presented an algorithm to
over-approximate the feasible projectagon as describédgorithm 4 (lines 23-
32). In each iteration of the algorithm, each projectionygoh is clipped accord-
ing to the constraints from convex hulls of other projectmolygons. However,
this procedure might take infinite number of iterations. Wespnt an example
here.

The example is 3-dimensional with three projection plangsy), (y,z) and
(x,2). As shown in Figure A.2 (Step 0), three projection polygores a

xy) = [ ©0 (105 (1) (0505) |
(2 = | (00) (105 (0.1) (0505) |
x2 = [(020) (1,05 (021) (0505) |

From the(x, z) projection polygon, the range of the valuexafan be computed eas-
ily as [0.2,1]. Therefore, projection polygons on plar(@sy) and(y, z) are clipped
according to our algorithm in Algorithm 4. Figure A.2 (Stepshows the trimmed
projection polygons (blue color polygons). At the end, thtues ofx,y andz are
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Step 0: Initial projectagon

1,0.95) (0.23,0.95)%+(0.28,0.95)

9,0.55)
N os} 0.5,0.5)
79,0.45)
'1,0'0%)
X : y : >Z

Step 1: Trimmed projectagon after the first iteration

(0.115,0.943) (0.235,0.908(0.292,0.943)
55) oo

0 Q.8

0.115) o
(0.115,0.0575) (0.235,0.05#5)(0.292,0.0575)

R Y nysnsn‘nln!l o :

Step 2: Trimmed projectagon after the second iteration

0.118,0.941) (0.235,0.995(0.294,0.941)
0.882) ol

0.118,0118) o
0.118,0.0588) (0.235,0.0568

e e Y nysnsn‘nln!l e

Stepeo: Final feasible projectagon

Figure A.2: A 3-D Example of Removing Infeasible Regions
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narrowed down td0.23 1], [0.1,0.9] and|[0.05,0.95], respectively. Similarly, pro-
jection polygons are clipped in the second iteration as shioviFigure A.2 (green
color polygons in Step 2). At each iteration, the valueg,gfandz are narrowed
down to smaller intervals. However, the progress of eagh lsezomes smaller
and smaller. In each iteration, the valuexohrinks from[a, 1] to [4532,1] and
converges td5, 1] in the limit. Similarly, the values of andz converge td4, 13|
and[l%, i—s’], respectively. The red color polygons in Figure A.2 (Stgshows the

feasible projectagon. Therefore, approximation algor&lare applied in GHO.

A.3 Minimum Projectagons

Definition Minimum ProjectagonsGiven a high-dimensional regidr, its mini-
mum projectagon is a projectagon with minimum projectiofygons whose fea-
sible region contains R.e., the projectagon does not contd®if any part of any
projection polygon is removed. If the feasible region isakaR, we call the
projectagortight; otherwise, we call ihon-tight

Problem Unique Minimum Projectagon ProblenGiven a regiorR, is the mini-
mum projectagon unique?

We believe the minimum projectagon is unique. However, waatdave a proof
of the uniqueness problem now. We believe the minimum ptagemn can be ob-
tained by clipping infeasible regions.

Corollary A.3.1 If the minimum projectagon is unique, the minimum projectag
is a canonical representation.

Problem Feasibility Problem Given a projectagon, make it feasible to its geome-
try representation,e., projection polygons are feasible to each other.

We presented an algorithm to make a projectagon feasibles toequality rep-
resentation in Section 4.3.3. The algorithm may take infintimber of itera-
tions to obtain the exact result as shown in Section A.2. &foee, approximation
techniques are applied in theo®@0 implementation as shown in Algorithm 4 (in
Section 4.3.3). However, it is still an open problem to makeagectagon feasible
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to its geometry representation. In fact, the non-emptipesslem is NP-complete
as proved in Section A.1. Therefore, we believe approxinaichniques must be
applied in any implementation. A possible approach is tdifgam a non-convex
projectagon into convex pieces, make each convex proj@ctéasible, and com-
pute the union of feasible convex pieces.

Problem Closure Problem|f P is a minimum projectagon, isonvexP) a mini-
mum and tight result? IP; andP, are two minimum projectagons, is the intersec-
tion intersecfP;,P2) a minimum and tight result? How about the union?

Apparently, the union of two minimum projectagons is naith@nimum or tight
as the union operation returns over-approximated restsbelieve the results of
intersection and convex hull operations are minimum arfut.tigjowever, they are
also open problems.
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B

Soundness of ©@HO Algorithms

This appendix proves the soundness of two algorithms predem Section 4.4.1.
These algorithms project an advanced face onto one condspprojection plane
to reduce projection errors. To ensure soundness, theddmeadvanced are either
bloated inward byf, in the first approach or enlarged on all other directiondiby
in the second approach.

As described in Section 4.3.3, all trajectories from therenir projectagon
move by at mosAd on each direction in the time sté@ At]. With this assumption,
if the value of fy is no less than&d as shown in Figure B.1(a), the soundness of
the first approach can be proved easily. Because all pointsmnjectagon face
can move inward by at mo#fd, the advanced face on timfl# must be outside
the blue face as shown in Figure B.1. Similarly, all trajeiete that may reach
points outside the blue face must has distance smaller&tdrom the blue face.
Therefore, all such trajectories are included in the blaaéfillustrated as red re-
gions in Figure B.1(b). Hence, the first approach guararatepproximations are
conservative.

In the second approach, the height of face is increasefy by2Ad + h(2Ad),
whereh(2Ad) is computed by the interval closure algorithm as shown infad. 2.
Figure B.1(b) provides an example for the computatiori,ofWe first bloat a face
corresponds to an edganward by 2\d, then apply the interval closure algorithm
described in Section 4.2.3 to find the height of the bloate®.faThe height is
increased further by/Ras extra guards like we used in the first approach.
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Ad
Ad
i = 2Ad + h(2Ad)
a b

Figure B.1: Computation offy, and fp.

HyperRectangle IntervalClosure(Edge e, ProjectionPolygon p, Real Ad) {
/* eis an edge of polygomp.
Ad is the bloat amount for the current time step.
Return the hyper-rectangle of interval closure bounds
for efor the current time step.
*/
Letr be the oriented rectangle that contains all points within
distance 2d of e by the/. metric.
Let g be the intersection arandp.
Let b be the bounding box af.
Let hg be the hyper-rectangle obtained by interval closure
starting withb and using all of the other projection polygons.
Let f,, = bloat(hg, 2Ad). return(fp,).

Figure B.2: Computing Height of Faces to be Advanced.
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To establish the soundness of the interval closure methwd ffigure B.2,
we consider a projectagon, and assume that one of the poojgdtnes has the
basis(x,y). We show that all points reachable from the projectagon leyetid
of the timestep are contained in tliey) projection polygon at the end of the
timestep. Letp be an arbitrary point of the projection polygon at the beiign
of the timestep. Ifp is further than 2 from the boundary of thé¢x,y) projection
polygon at the beginning of the timestep, then any pointirelle fromp at the end
of the timestep will be inside the time advanced polygonalise trajectories from
p can move by at mogid units outward and points on the boundary of projection
polygon can move by at moAd units inward during the timestep.

Otherwise, lee be an edge of théx,y) projection polygon that is within dis-
tance 2d of p. By construction, the bloated face contains Accordingly, the
constructed face to be advanced has feasible regions tiesicelsy 2\ in all of the
other dimensions beyond the nearby (i.e. withdx) points of projectagon. These
extensions create a “parapet” to ensure that trajectaves faces for other projec-
tion polygons cannot “escape” this polygon. In particuthg face may shrink by
at mostAd along any dimension (illustrated as blue regions in Figud{®), and
any point can only reach other points that are within distdxet(by the/.,) metric
of itself. Thus, to reach a point outside of they) polygon, a trajectory fronp
would have to touch the feasible region for one of the facesnarfrom the(x,y)
polygon. This means that points reachable frpare also reachable from the face
that it touched, and therefore project to points on(thg) plane that are inside the
time advanced projection polygon.

The values off, and f,, to ensure soundness are generally much larger than
necessary. In the implementation ob@0o, parameters are provided to users for
obtaining trade-offs between approximation errors anah@oass in theory. From
our experiences)d is a reasonable value for both and fp.
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