
Automating Meta-algorithmic
Analysis and Design

by

Christopher Warren Nell

B. Sc., University of Guelph, 2005

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

October 2011

c© Christopher Warren Nell, 2011

Abstract

Sophisticated empirical methods based upon automated experimental analysis techniques drive the

development of high-performance solvers for an increasing range of problems from industry and

academia. However, tools implementing these methods are often difficult to develop and to use.

This thesis describes work towards addressing this issue. First, we develop a formal description of

meta-algorithmic problems, and use it as the basis for a framework supporting the development and

application of a broad class of automated algorithm analysis and design techniques. Second, we

describe the High-performance Algorithm Laboratory (HAL), an extensible software implementa-

tion of this framework that provides developers and users of automated empirical techniques with

support for distributed execution, remote monitoring, data management, and statistical analysis of

results. We use HAL to construct a suite of interoperable tools that implement a variety of automated

empirical techniques, and demonstrate our approach by conducting a sequence of increasingly com-

plex analysis and design tasks on state-of-the-art solvers for Boolean satisfiability and mixed-integer

programming problems.

ii

Preface

HAL, the main contribution of this thesis, represents the development and eventual realization of an

idea proposed by Holger Hoos [33]. As the principal investigator of the HAL project, I performed

the majority of design, development, analysis, and expository work presented herein; in particular:

• I designed and developed the core HAL framework, including all APIs and implementations

for all experiment modelling, data management, and execution management components used

in this thesis; discussed in Chapter 4 and demonstrated in Chapters 5 and 6.

• I designed and implemented all HAL analysis procedures discussed in Chapter 3 and used in

Chapters 5 and 6. I also developed the ∗ZILLA and HYDRA-∗ plugins used in Chapter 6, and

contributed to the implementation of the GGA and PARAMILS plugins used in Chapter 5.

• I conducted and analysed all computational experiments presented in Chapters 5 and 6.

• I am the primary author of all documentation of the HAL framework, including this thesis

and its appendices, the work originally presented at LION-5 [63] on which Chapters 1–5 of

this thesis are based, and all supporting documentation associated with the HAL software

distribution available online at hal.cs.ubc.ca.

As HAL is intended as a foundation for ongoing, collaborative research efforts, I have also worked

with several excellent co-authors and collaborators throughout my research. This joint work has

contributed to many aspects of HAL:

• As a core contributor to the HAL project and co-author of our LION-5 paper, Chris Fawcett

led design and implementation of the HAL user interface, made significant contributions to

the GGA and PARAMILS plugins for algorithm configuration used in the case study, and

assisted in conducting preliminary experiments. Since then, he has continued to improve the

HAL user interface, and has taken an enhanced role in the development of data management

components for HAL. Chris is also an active end-user of HAL (see, e.g., [21, 79]), and has

provided valuable insight throughout the framework’s design and development.

iii

hal.cs.ubc.ca

• Chapter 4 includes discussion of a TORQUE execution manager that was implemented by

James Styles based on the Grid Engine execution manager I implemented. James continues

to be involved in the design and development of execution management components for HAL.

• Chapters 5 and 6 make use of the ROAR plugin for algorithm configuration in HAL that was

designed and implemented by Frank Hutter [44], in addition to the PARAMILS algorithm

configuration plugin that is based on his earlier work [39, 40]. Frank continues to lead a

group of researchers developing new meta-algorithmic procedures with HAL.

• Chapter 6 describes the design and implementation of the ∗ZILLA plugin for portfolio-based

algorithm selection and the HYDRA-∗ plugin for per-instance configuration. Both of these

plugins are based on previous implementations by Lin Xu et al. [84], and I consulted Lin

regularly when adapting them for the HAL framework and analysing their performance.

• All work presented in this thesis was performed under the supervision of Holger Hoos and

Kevin Leyton-Brown.

In the remainder of this thesis, I adopt the first person plural in recognition of these collaborators.

Finally, HAL and its plugins have been implemented using a variety of open-source libraries and

tools, most significantly including components from Oracle (oracle.com), Hyperic (hyperic.com),

The MathWorks (mathworks.com), Google (google.com), the Eclipse Foundation (eclipse.org), and

the Apache Foundation (apache.org). Specific components and their authorship and licensing de-

tails are listed more exhaustively in the HAL software distribution.

iv

oracle.com
hyperic.com
mathworks.com
google.com
eclipse.org
apache.org

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . v

List of Tables . ix

List of Figures . x

Acknowledgments . xi

1 Introduction . 1
1.1 Contributions . 3

1.2 Thesis Organization . 4

2 Background and Related Work . 5
2.1 Algorithm Analysis . 6

2.1.1 Empirical Analysis Techniques . 6

2.1.2 Analysis Tools . 8

2.2 Algorithm Design . 9

2.2.1 Direct Design Techniques . 9

2.2.2 Meta-algorithmic Design Techniques . 11

3 Meta-algorithmic Problems . 14
3.1 Fundamentals . 14

3.2 Meta-algorithmic Problems . 18

3.2.1 Meta-algorithmic Analysis Problems . 18

3.2.1.1 Single-Algorithm Analysis . 19

3.2.1.2 Pairwise Comparison . 21

v

3.2.1.3 k-way Comparison . 22

3.2.2 Meta-algorithmic Design Problems . 24

3.2.2.1 Algorithm Configuration . 24

3.2.2.2 Per-instance Portfolio-Based Selection 27

3.2.2.3 Per-instance Configuration . 29

4 The High-Performance Algorithm Laboratory . 31
4.1 Design Considerations . 31

4.1.1 Components for Experiment Modelling and Meta-algorithmic Logic 33

4.1.2 Execution and Data Management Infrastructure 34

4.2 The HAL 1.1 Software Environment . 36

4.2.1 Experiment Modelling Subsystem . 37

4.2.2 Execution and Data Management Subsystem 38

4.2.3 User Interface Subsystem . 40

5 Algorithm Analysis & Design with HAL . 41
5.1 Experimental Setup . 41

5.1.1 Analysis Procedures . 41

5.1.1.1 Single-Algorithm Analysis Procedure: SCD-Based Analysis . . 42

5.1.1.2 Pairwise Comparison Procedure: Comprehensive Pairwise Com-

parison . 42

5.1.1.3 k-way Comparison Procedure: Comprehensive k-way Comparison. 42

5.1.2 Algorithm Configuration Procedures . 43

5.1.2.1 Algorithm Configuration Procedure: PARAMILS 43

5.1.2.2 Algorithm Configuration Procedure: GGA 43

5.1.2.3 Algorithm Configuration Procedure: ROAR 44

5.2 Case Study: Choosing a MIP Solver . 44

5.2.1 Single-Algorithm Analysis . 44

5.2.2 Pairwise Comparison . 45

5.3 Case Study: Adapting a SAT Solver . 46

5.3.1 Single-Algorithm Analysis . 46

5.3.2 Pairwise Comparison . 47

5.3.3 Algorithm Configuration . 48

6 Developing Meta-algorithms with HAL . 51
6.1 Per-instance Portfolio-Based Selection with ∗ZILLA 51

6.1.1 The ∗ZILLA Selector Algorithm . 53

vi

6.1.2 The ∗ZILLA Design Procedure . 55

6.2 Per-instance Configuration with HYDRA-∗ . 58

6.2.1 The HYDRA-∗ Design Procedure . 58

6.2.2 Portfolio Candidate Filtering . 60

6.3 Performance Validation . 61

6.3.1 Experimental Setup . 63

6.3.2 Results . 65

7 Conclusions & Future Work . 70

Bibliography . 72

A HAL 1.1 User Reference . 79
A.1 Installation . 79

A.2 Running Experiments . 80

A.2.1 Instance Sets . 80

A.2.2 Algorithms . 81

A.3 Analysis Procedures . 82

A.3.1 SCD-Based Analysis . 83

A.3.2 Comprehensive Pairwise Comparison . 83

A.3.3 Comprehensive k-way Comparison . 83

A.4 Design Procedures . 84

A.4.1 PARAMILS . 84

A.4.2 GGA . 84

A.4.3 ROAR . 85

A.4.4 ∗ZILLA . 85

A.4.5 HYDRA-∗ . 85

B HAL 1.1 Developer Reference . 98
B.1 Tutorial: Developing Meta-algorithms with HAL 98

B.1.1 Implementation Basics . 99

B.1.1.1 The MetaAlgorithmImplementation constructor 101

B.1.1.2 MetaAlgorithmImplementation methods 103

B.1.1.3 The MetaAlgorithmRun constructor 105

B.1.1.4 MetaAlgorithmRun methods . 106

B.1.2 Testing . 108

B.1.2.1 Target Algorithms . 108

vii

B.1.2.2 Target ProblemInstances . 110

B.1.2.3 Environments . 111

B.1.2.4 Performance Metric . 111

B.1.2.5 Unit test . 111

B.1.3 Additional Outputs and Improvements . 113

B.1.3.1 Improving Parallelism with AlgorithmRunVisitors 113

B.1.3.2 Plots and Statistics . 115

B.1.3.3 Testing . 117

B.1.4 Plugin Distribution . 117

B.2 Execution Management . 118

B.2.1 HAL 1.1 Execution Pipeline . 119

B.2.1.1 Algorithm Transformations . 121

B.2.1.2 Limitations . 121

B.2.1.3 ExecutionManager Implementations 122

B.2.2 LocalExecutionManagers . 122

B.2.3 SSHExecutionManagers . 123

B.2.4 SGE- and TorqueClusterExecutionManagers 125

B.3 Data Management . 126

B.3.1 Data Manager Interfaces . 127

B.3.1.1 ReadOnlyDataManagers . 128

B.3.2 Experimental Data Management . 128

B.3.2.1 DecoratedExecutionManagers 129

B.3.2.2 Run Filters . 129

B.3.3 SQL Data Managers . 130

B.3.3.1 Database Schema . 131

B.3.3.2 Query Handlers and Beans . 131

B.3.3.3 SQLRunFilters . 131

viii

List of Tables

Table 5.1 Summary of case study results . 44

Table 6.1 Performance of ∗ZILLA and HYDRA-∗ designs 66

Table A.1 SCD-Based Analysis inputs/outputs . 87

Table A.2 Comprehensive Pairwise Comparison inputs/outputs 88

Table A.3 Comprehensive k-way Comparison inputs/outputs 90

Table A.4 ParamILS inputs/outputs . 92

Table A.5 GGA inputs/outputs . 93

Table A.6 ROAR inputs/outputs . 94

Table A.7 ∗ZILLA inputs/outputs . 95

Table A.8 HYDRA-∗ inputs/outputs . 97

Table B.1 Input/output semantics . 102

Table B.2 Performance metrics . 112

ix

List of Figures

Figure 4.1 Architectural overview of HAL . 37

Figure 5.1 Single-algorithm analyses of CPLEX and SPEAR 45

Figure 5.2 Pairwise comparison of CPLEX and Gurobi on MILP benchmark set 46

Figure 5.3 Pairwise comparisons of SPEAR designs on SWV test set 47

Figure 5.4 Comparison of PARAMILS, GGA, and ROAR designs on SWV test set 50

Figure 6.1 Pseudocode: ∗ZILLA selectors . 54

Figure 6.2 Pseudocode: ∗ZILLA design procedure . 56

Figure 6.3 Pseudocode: HYDRA-∗ design procedure . 59

Figure 6.4 Pseudocode: Independent-validation candidate filter 62

Figure 6.5 Pseudocode: Reused-run candidate filter . 62

Figure 6.6 Pseudocode: Reuse-maximizing candidate filter 63

Figure 6.7 Performance evolution of HYDRA designs . 67

Figure 6.8 Effect of overhead costs on ∗ZILLA selector algorithm performance 68

Figure 6.9 Performance correlation between HYDRA-∗ designs using ROAR vs. PARAMILS 69

Figure B.1 SCDs of test algorithms vs. seed . 118

Figure B.2 Class diagram: AlgorithmImplementations and AlgorithmRuns 134

Figure B.3 Class diagram: ParameterSpaces and ParameterSettings 135

Figure B.4 Class diagram: Domains . 136

Figure B.5 Class diagram: Environments . 137

Figure B.6 Class diagram: Algorithms . 138

Figure B.7 Class diagram: ProblemInstances . 138

Figure B.8 SQL schema . 139

x

Acknowledgments

I would first like to express my sincere thanks to Holger Hoos and Kevin Leyton-Brown, my super-

visors. Our many meetings, discussing issues ranging from abstract meta-algorithmic concepts to

specific user interface details, have helped me develop both research and project management skills.

I have no doubt that your feedback has made me a much better scientist than I was when I arrived

at UBC.

I also thank Chris Fawcett, co-author of our LION-5 paper, for the countless hours of work

he put into HAL, both before publication and in proactive use and testing afterwards. I would

similarly like to thank Frank Hutter for implementing ROAR and testing HAL, Lin Xu for assistance

in implementing and validating ∗ZILLA and HYDRA-∗, and all of the members of EARG for the

various ways you have (directly and indirectly) contributed to my work.

I would like to acknowledge NSERC for awarding me a CGS M fellowship, which has allowed

me to devote more time and energy to this research than would otherwise have been possible.

Finally, to my best friend, my partner, my wife, my Mai – without your unwavering support,

this work would have been impossible.

xi

Chapter 1

Introduction

Empirical techniques play a crucial role in the design, study, and application of high-performance

algorithms for computationally challenging problems. Indeed, state-of-the-art solvers for prominent

combinatorial problems, such as propositional satisfiability (SAT) and mixed integer programming

(MIP), rely heavily on heuristic mechanisms that have been developed and calibrated based on

extensive computational experimentation (see, e.g., [38, 33, 41]). Performance assessments of such

solvers are also based on empirical techniques, as are comparative analyses of competing solvers

(see, e.g., [15, 13, 35]).

Empirical methods tend to be used in an ad-hoc fashion, relying upon informal experimentation

rather than established best practices. For example, high-performance heuristic solvers are often

constructed iteratively, with a designer alternately modifying an existing algorithm and empirically

evaluating the algorithm on a set of benchmark problem instances. Designing an algorithm in this

way requires considerable expertise, as the number of possible modifications at each step is typically

large, and the cost of implementation and evaluation is significant. In order to control development

costs, even experts consider only a tiny subset of all possible designs, and often severely restrict the

scope of intermediate empirical analyses. These restrictions can lead to unnecessarily complicated

algorithms that do not make optimal use of their heuristic components, and whose performance

generalizes poorly beyond the limited set of benchmark instances used during development.

Leveraging recent increases in the availability of cheap computational resources, a variety of

techniques have been introduced to overcome these limitations in manual algorithm analysis and

design. Several such techniques focus on the automated application of empirical methods to exist-

ing algorithms, and have led to substantial improvements in the state of the art for solving many

challenging computational problems (see, e.g., [81, 11, 78]). Since these techniques operate upon

algorithms, we refer to them as meta-algorithmic techniques. Familiar meta-algorithmic analysis

1

techniques include the characterization of a single algorithm’s performance using a solution cost

distribution, and the comparison of several algorithms using statistical tests (see, e.g., [35: Ch. 4]).

Prominent meta-algorithmic design techniques include algorithm configuration (e.g., F-Race [7, 4],

PARAMILS [39, 40], GGA [2]), per-instance portfolio-based selection (e.g., SATZILLA [64, 81],

3S [59]), and per-instance configuration (e.g., HYDRA [83, 84], ISAC [52], CluPaTra [58]). Unfor-

tunately, despite the potential demonstrated in this growing body of literature, the empirical methods

used in practice often remain rather elementary. We believe that this is due to the fact that many

practitioners do not have sufficient knowledge of more sophisticated meta-algorithmic techniques,

and that automated implementations of these techniques are often difficult to use if publicly avail-

able at all. These limitations impose a significant barrier to the further development and wider

adoption of automated meta-algorithmic analysis and design techniques.

Many of the conceptual and practical obstacles facing developers and end users of automated

meta-algorithmic analysis and design techniques arise from challenges associated with their under-

lying empirical methods. By their nature, empirical methods rely on access to performance data,

and they often make assumptions (for example, distributional assumptions) about this data that may

or may not not hold in a given application scenario. Even once an appropriate method is selected,

coordinating the potentially thousands or even millions of individual algorithm runs required for

data collection is a significant undertaking; in our experience it is not rare for practitioners using

meta-algorithmic techniques to spend more time managing and troubleshooting computational ex-

periments than performing any other aspect of their work. These observations highlight two pressing

needs of the empirical algorithmics community:

1. the need for a unified conceptual framework to facilitate the design, comparison, and selection

of meta-algorithmic analysis and design techniques; and

2. the need for an intuitive, robust software platform to facilitate the implementation and opera-

tion of automated tools based on these techniques.

In this work, we aim to satisfy both of these needs. We first formalize a set of fundamental concepts

that are useful to model and critically assess meta-algorithmic techniques, and use them to describe,

relate, and compare a variety of established meta-algorithmic design and analysis techniques from

the literature. We then develop a software framework using a design informed by these key concepts

that supports the implementation and application of arbitrary automated meta-algorithmic analysis

and design tools. We use this framework to re-implement, generalize, and empirically evaluate

the same established techniques, thereby providing both a unified framework for the comparison,

selection, and operation of meta-algorithmic design and analysis techniques, and also a proven

platform for their continued development.

2

1.1 Contributions

The main contributions of this thesis arise from our development of HAL, the High-performance

Algorithm Laboratory – a computational environment for empirical algorithmics. HAL was con-

ceived to support the computer-aided design and empirical analysis of high-performance algorithms

by means of a wide range of ready-to-use, state-of-the-art meta-algorithmic analysis and design

procedures. HAL was also designed to facilitate the development, dissemination, and ultimately

wide adoption of novel analysis and design techniques. In describing the principles underlying our

design for HAL, we address the need for a conceptual framework for researching meta-algorithmics

techniques; HAL itself addresses the need for a software platform with which to develop automated

implementations of these techniques.

During the early stages of designing HAL, we realized that appropriately formalized notions

of meta-algorithmic procedures, and of the underlying problems solved by these procedures, were

necessary to meet our practical goals for the system. This formalization, presented in Chapter 3

and applied to the design of HAL in Chapter 4, promotes ease of use by inducing a set of common

fundamental components with which to describe, and ultimately implement and operate, all meta-

algorithmic analysis and design techniques. One benefit of this principled design is that it facilitates

the selection and application of multiple (or alternative) analysis or design procedures. For example,

configuration procedures like PARAMILS and GGA solve the same underlying problem, and with

HAL it is easy to conduct analogous experiments using both of them (see Chapter 5). Similarly,

this design simplifies the combination of various procedures (such as algorithm configuration and

per-instance portfolio-based selection to perform per-instance configuration; see Chapter 6), as well

as their sequential application (such as design followed by comparative performance analysis; see

Chapters 5 and 6). Finally, by adopting a design based on fundamental meta-algorithmic concepts,

we were able to implement HAL in an intuitive and extensible way.

HAL offers several practical features important for practitioners working in empirical algorith-

mics. First, to support large computational experiments, HAL uses a database to automatically

archive and manage data related to algorithms, benchmark instances, and experimental results. Sec-

ond, while HAL can be used on a standalone computer, it also supports distributed computation on

computer clusters. Third, it promotes reproducibility by allowing researchers to export experiment

designs, including all instances, solvers, and settings; another user can easily import the experiment

design into a new HAL installation and replicate the original experiment. All of these features were

exploited when conducting the large-scale experiments of Chapters 5 and 6.

HAL was also designed to facilitate the development and critical assessment of automated meta-

algorithmic procedures. To this end, HAL is realized as an extensible, open environment that offers

robust support for recurring tasks such as launching, monitoring, and analyzing individual algorithm

3

runs. This built-in support simplifies implementation and testing of meta-algorithmic procedures,

as demonstrated in Chapter 6, and has enabled us to provide a wide variety of ready-to-use meta-

algorithmic procedures. As discussed in Chapter 3, the current version of HAL includes automated

analysis procedures for characterizing single algorithms, for comparing two algorithms, and for

comparing multiple algorithms; it includes automated design procedures for performing algorithm

configuration, per-instance portfolio-based selection, and per-instance configuration. In short, HAL

allows developers to focus more on building useful and powerful meta-algorithmic procedures and

less on the infrastructure required to support them. We hope that this will help to bring about

methodological progress in empirical algorithmics, and specifically in the development of novel

meta-algorithmic procedures, incorporating contributions from a broad community of researchers

and practitioners.

1.2 Thesis Organization

In Chapter 2, we discuss the state of the art in empirical-performance-oriented algorithm analysis

and design, including both manual and automated techniques. In Chapter 3, we develop a formal de-

scription of the meta-algorithmic concepts that underly the design of HAL, and use this formalism

to describe and compare analysis procedures for single-algorithm analysis, pairwise comparison,

and k-way comparison, and design procedures for algorithm configuration, per-instance portfolio-

based selection, and per-instance configuration. In Chapter 4, we identify the technical functionality

(related to algorithm execution, data management, statistical analysis, and usability) that is required

to meet our design goals, and explain how our software implementation of the HAL framework

provides an extensible environment for empirical algorithmics research that satisfies these require-

ments. In Chapter 5 we conduct a sequence of algorithm analysis and design tasks on state-of-the-art

solvers for Boolean satisfiability and mixed-integer programming problems by using HAL’s auto-

mated meta-algorithmic procedures for analysis and algorithm configuration. In Chapter 6 we de-

scribe the development and testing of additional design procedures for per-instance portfolio-based

selection and per-instance configuration. Finally, we conclude with a summary of the capabilities

of the HAL framework in Chapter 7, as well as a discussion of ongoing HAL developments and

promising avenues for future research.

4

Chapter 2

Background and Related Work

Empirical algorithmics – the study of computer algorithms in terms of their practical performance

on real-world problems – is a dynamic area of computer science. Perhaps because they are fun-

damentally conceptual artifacts, algorithms have traditionally been studied theoretically, using the

tools of discrete mathematics and logic. However, as both computer systems and the algorithms

they execute have increased in complexity and sophistication, the inability of theoretical analysis

alone to explain and precisely predict algorithm behaviour has become increasingly apparent. For

example, there are many problems for which theory does not predict that efficient algorithms ex-

ist, but which nonetheless are regularly solved by modern algorithms. A diverse sample of such

problems and their algorithms is seen in the various DIMACS Implementation Challenges [19]

(including network flow and matching problems [47], shortest path problems [16], and NP-hard

problems like maximum clique, graph colouring, Boolean satisfiability, and the travelling sales-

man problem [49, 48]). By adopting statistical techniques of the kind long used in other sciences,

the empirical algorithmics community aims to augment our theoretical understanding and to drive

continued progress in algorithmics research.

There are two major facets of empirical algorithmics. The first deals with the empirical analysis

of computer algorithms, and is closely related to the other empirical sciences in that it is primar-

ily concerned with the characterization of complex systems through sound application of statistical

techniques. The second is concerned with algorithm design and implementation, and represents the

combination of these statistical techniques with ideas from computer science and software engineer-

ing. In this chapter, we discuss these two facets in turn, exploring both established methodologies

and automated applications thereof. We identify the need for a framework that unifies empirical

analysis and algorithm design, and proceed to develop and demonstrate our implementation of such

a framework in the remainder of this thesis.

5

2.1 Algorithm Analysis

Just as in other sciences, the primary role of empirical methods in algorithmics research is to charac-

terize observable phenomena – in this case, the behaviour of algorithms when executed by comput-

ers. There has been significant methodological progress in this analytic aspect of the field since the

seminal paper by Crowder et al. [15] proposed guidelines for reporting computational experiments,

such that many of its techniques are mature enough to be considered best practices and included

in textbooks (see, e.g., [13, 35]; in particular, the presentation of Hoos and Stützle informs much

of the following subsection). Despite this, these methods are not so universally adopted as to pre-

clude discussion here, especially as they sometimes differ from more familiar techniques due to the

peculiarities of computer algorithms as contrasted with the physical, biological, or social systems

studied in other empirical sciences.

2.1.1 Empirical Analysis Techniques

The most basic task in empirical algorithmics is to measure the performance of a single determinis-

tic algorithm solving a single problem instance. In principle this can be accomplished by observing

a single run of the algorithm to completion, but the resultant characterization depends entirely on the

performance metric used to quantify this observation. Using simple wall-clock runtime is problem-

atic, as the task-switched multitasking nature of modern operating systems can result in arbitrarily

long delays during execution. CPU time is often measured instead, but this too has limitations in

repeatability (for example, due to memory paging and CPU cache effects), comparability (due to its

inherent implementation dependence), and descriptive power. The use of representative operation

counts (i.e., run length) has been advocated to avoid these issues (see, e.g., [1]), but they in turn have

their own limitations (such as when assessing parallel algorithms with significant communication

bandwidth requirements). Finally, alternative measures of solution quality are often of interest; for

example, when assessing an optimization algorithm under a fixed computational resource budget,

or when measuring the error rate of a classification algorithm.

In more complex situations, informative empirical analyses typically require many algorithm

runs. When assessing randomized algorithms, otherwise identical runs with different random seeds

can be measured to construct an empirical estimation of the runtime distribution (RTD) that de-

scribes the effect of randomization on the algorithm’s runtime performance when solving the in-

stance. If the algorithm is an optimization algorithm, then multiple runs of some fixed duration can

be measured to estimate the solution quality distribution (SQD) that describes the effect of random-

ization on solution quality; or more ambitiously, for a variety of fixed durations1 to estimate the

1In practice, it is common for optimization algorithms to report solution quality over time (SQT) during the course of
execution, obviating the need to run for multiple fixed durations.

6

bivariate RTD that describes the effect of randomness on runtime and solution quality simultane-

ously. When assessing performance on multiple instances, a solution cost distribution (SCD) over

the instances can be estimated by estimating (bivariate) RTDs for the instances, and then computing

some appropriate statistic (e.g., the median) of each. Finally, when comparing multiple algorithms,

independent RTDs and SCDs can be estimated for each algorithm under consideration and then com-

pared. Most empirical algorithm analysis techniques involve the application of standard statistical

methods to one or more of these empirically-estimated performance-characterizing distributions.

An important characteristic of these distributions is that they are rarely Gaussian2, but instead

are often irregular and not infrequently heavy-tailed. This means that it can be important to adopt

robust summary statistics instead of, or at least in addition to, more familiar alternatives; for exam-

ple, it can be helpful to measure central tendency by the median instead of the mean, and disper-

sion by the interquartile range instead of the standard deviation. The frequent irregularity of these

distributions also motivates direct visualization, for example by inspecting plots of the respective

empirical cumulative distribution functions (CDFs), as a means of detecting interesting behavioural

characteristics like multimodality or pathological performance issues like stagnation.

Similar considerations factor into empirical best practices for the comparison of two or more

algorithms. Non-parametric statistical hypothesis tests are often more appropriate than their more

more familiar parametric counterparts, which typically make distributional assumptions that are

likely to be violated in empirical work. For example, using the Wilcoxon signed-rank test to quan-

tify the significance of observed performance differences between two algorithms does not require

the normality assumptions of a paired Student’s t-test; similarly, using the Spearman coefficient for

quantifying pairwise performance correlations does not require the normality assumptions of the re-

lated Pearson coefficient. Again due to the typically non-Gaussian nature of the underlying perfor-

mance distributions, comparative visualizations such as scatter plots and overlaid single-algorithm

distributional plots are valuable for discovering phenomena not captured by such tests.

All of these considerations must be taken into account when performing large-scale empirical

analyses. First, the performance metrics, summary statistics, statistical tests, and visualizations em-

ployed in any analysis must be appropriately chosen and their results carefully interpreted. Second,

the performance-characterizing distributions that these techniques operate upon must be accurately

estimated by conducting many individual algorithm runs, raising a variety of issues related to effi-

cient and robust use of computational resources. In order to effectively conduct large-scale empirical

analyses, these challenges are typically met through automation.

2In fact, RTDs are never Gaussian, because negative runtimes are impossible and CPU operations are discrete.
However, and more fundamentally, empirically-estimated performance-characterizing distributions tend not to be well-
approximated by Gaussian distributions.

7

2.1.2 Analysis Tools

As computational experiments have become larger and more complex, the tools used to conduct

them have become increasingly sophisticated. These tools typically fall into one of two categories:

they are either flexible, general-purpose numerical computing packages that provide programmatic

libraries of analysis functionality, or they are specialized experimental frameworks that support algo-

rithm performance data acquisition and analysis, often through interactive graphical user interfaces.

In our work, we developed a framework that, among other contributions, combines the advantages

of these two types of analysis tools.

Numerical computing packages such as R [68], MATLAB [60], and SciPy [51] provide libraries

of general-purpose statistical and mathematical routines that can be used to automate experimen-

tal analyses. Because they make relatively few assumptions about the data being analyzed and are

highly customizable, these packages are regularly employed by a large number of practitioners from

a variety of fields. This has at least three benefits; first, these packages tend to implement a wide

array of potentially useful routines; second, these routines tend to be implemented correctly and effi-

ciently; and third, it is possible to leverage these routines to build sophisticated tools. However, this

generality also means such systems do not provide complete, ready-to-use algorithm analysis pro-

cedures, and moreover that they do not provide any functionality to address the significant practical

challenges associated with collecting large quantities of algorithm performance data. Instead, users

must write (or adapt) custom data collection and analysis programs every time a new experiment

is conducted. This exposes practitioners to the ongoing risk of introducing experimental design or

implementation errors, and severely impedes third-party reproducibility of resultant computational

experiments.

There have been attempts to address these issues with general-purpose numerical computing

packages by designing experimental frameworks for empirical algorithmics in particular. Many such

frameworks are quite application-specific, supporting automated evaluation of algorithms that either

implement a particular interface or use specific software components. Examples of application-

specific frameworks include the JAMES II system for modelling and simulation of multi-agent sys-

tems [20], the UBCSAT environment for local-search SAT solvers [76], and the HyFlex framework

for hyper-heuristic algorithms [10] (see also Section 2.2). More implementation-agnostic frame-

works include the PAVER system [62], which performs automated performance analysis of arbitrary

optimization algorithms through a web-based interface, but requires that raw performance data be

collected by some separate, problem-dependent tool. On the other hand, ExpLab [32] provides tools

for reproducible experimental data collection, but only very basic analysis tools. The SatEx sys-

tem [71] used to conduct the SAT Competition (see, e.g., [72]) automates distributed performance

data collection and archiving, and also provides a web interface to analyse results (including sum-

8

mary statistics and diagnostic plots); unfortunately, SatEx is neither publicly available nor easily

applicable to problems other than SAT. EXACT [31] supports the specification, execution, and anal-

ysis of computer experiments for arbitrary problem domains, although its authors note it provides

only limited support for distributed computation and statistical analysis, and has no interactive user

interface. Inspired by such tools, EDACC [5] is an experiment management framework that simi-

larly supports distributed algorithm execution, centralized data storage, and interactive web-based

analysis tools, but in addition is publicly available and, in recent versions, is problem domain in-

dependent; of these frameworks, it is perhaps most closely related to our own work. Unlike the

framework we present in this thesis, however, neither EDACC nor any other experimental frame-

work of which we are aware has been designed to facilitate third-party development and application

of new automated empirical techniques.

2.2 Algorithm Design

Given a limited budget of human and computational resources, the algorithm developer is tasked

with identifying and implementing an efficient algorithm to solve a problem of interest from a vast

space of possible designs. An algorithm design technique is any strategy that assists developers to

identify and explore structured regions of design space that are likely to contain high-performance

designs. Devising effective algorithm design techniques is one of the central goals of computer

science; in this section, we describe and relate two classes of design techniques from the literature:

direct techniques (including most traditional design techniques), and meta-algorithmic techniques.

We identify the potential of meta-algorithmic techniques to advance the state of the art in high-

performance algorithm design for a wide variety of problem domains, and motivate the need for

a unified empirical algorithmics framework in order for this potential to be reached. The main

contribution of this thesis lies in the development of such a framework.

2.2.1 Direct Design Techniques

When the design space identified by an algorithm design technique is structured in terms of the

method by which individual problem instances are solved, we refer to that technique as a direct

design technique. Most techniques covered by introductory algorithmics texts (see, e.g., [14, 54]),

including those used to develop greedy, divide and conquer, and dynamic programming algorithms,

outline systematic methods for efficiently constructing solutions to problems that exhibit certain

properties; as such, they are canonical examples of direct techniques. The challenge for an algorithm

developer using these techniques is to identify which of them (if any) is appropriate for a problem

at hand, and then to formulate the problem in a way that is amenable to the chosen technique. Done

correctly, this usually leads to a principled algorithm that admits theoretical performance analysis.

9

For many practical problems, especially those known to be solvable in polynomial time, skilled

use of these techniques can yield complete, exact algorithms that are asymptotically efficient; well-

known examples include Prim’s greedy algorithm for finding minimum spanning trees in weighted

graphs [67] and Dijkstra’s related dynamic programming algorithm for computing single-source

shortest paths in non-negatively weighted graphs [18].

For more computationally challenging tasks (such as solving large instances of polynomial-

time solvable problems, or instances of problems not thought to be polynomial-time solvable), even

asymptotically optimal complete algorithms can prove too computationally expensive for practical

use. In some cases, acceptable approximation algorithms can be designed using similar methods,

but in many others this is not possible and alternative design techniques must be employed. If the

task at hand can be cast as a combinatorial optimization problem, heuristic search techniques can be

used instead. The field of metaheuristics3 is concerned with general-purpose heuristic techniques,

and notably includes forms of stochastic local search that have been used to design state-of-the-art

algorithms for a number of domains; for detailed coverage of metaheuristics and their successes, see

e.g., [65, 26, 35]. Many metaheuristic techniques are largely domain independent; problem-specific

details are usually encapsulated in a few easily abstracted components. Several software frameworks

exploit this conceptual separability by supplying implementations of metaheuristic control logic;

to use these frameworks, the algorithm developer is only required to configure this logic and to

implement the necessary problem-specific components (see, e.g., [17, 10]).

Unlike the algorithms that result from systematic design techniques, heuristic algorithms are

often difficult to analyse theoretically and rarely come with attractive asymptotic performance guar-

antees. Since theory is unable to effectively guide design space exploration, the associated design

process is usually much more dependent on implementation and empirical evaluation tasks (using,

e.g., the techniques discussed in Section 2.1). Some recent computer-aided direct design techniques

explicitly couple these design, implementation, and evaluation tasks by automating exploration of

the structured design spaces they provide. For example, program synthesis techniques generate both

an executable implementation and an associated correctness proof from a formal specification (e.g.,

via transformations of the specification, or application of a predefined program schema); synthesis

tools have been used for variety of applications (see, e.g., [74, 80]), although their focus has tended

more towards correctness than empirical performance. Other work proposes treating algorithm de-

sign itself as a combinatorial optimization problem and applying metaheuristic techniques (see, e.g.,

[12]); genetic programming is a notable example of this approach, in which a population of can-

didate algorithms is evolved from a developer-specified set of sub-algorithmic components (e.g.,

input values, constants, functions) in order to optimize an evaluation function that considers both

3A related field, hyper-heuristics, is concerned with heuristics for designing metaheuristic techniques (see, e.g., [9]).
In this discussion we consider hyper-heuristics to be a class of metaheuristics and do not discuss them separately.

10

correctness and performance (see, e.g., [66, 22]). These and other computer-aided design techniques

(including several of the meta-algorithmic techniques of Section 2.2.2) are discussed further in [33].

2.2.2 Meta-algorithmic Design Techniques

When the design space identified by an algorithm design technique involves the the use of existing

algorithms for the problem at hand, we refer to that technique as a meta-algorithmic design tech-

nique. Meta-algorithmic design techniques are not direct design techniques because they do not

directly address the method by which individual problem instances are solved; instead, they help

algorithm developers optimize overall empirical performance by building upon existing algorithms.

Meta-algorithmic design techniques are typically automated, making design decisions based on

empirical analyses of subsidiary algorithm performance, and their inherent problem independence

means that (unlike automated direct techniques) they can, at least in principle, be used to improve

the state of the art in any domain for which existing algorithms are available. In this way, meta-

algorithmic design techniques are complementary to more traditional direct design techniques.

Algorithm configuration is a particularly well-studied meta-algorithmic design technique that

has contributed to the state of the art for several problem domains. Given a parameterized algo-

rithm for some problem of interest, algorithm configuration techniques explore the design space

defined by its parameters to identify high-performance designs optimized for a particular set of

problem instances. A variety of domain-independent automated algorithm configuration tools have

been described in the literature. For example, F-Race [7] implements a racing procedure that uses

statistical tests to identify high-performance designs from the space of possible parameter configu-

rations; it has had a variety of successful applications, including to the travelling salesman, vehicle

routing, scheduling, and course timetabling problems (see, e.g., [4, 8]). Other tools use local search

to explore the design space: PARAMILS [39, 40] uses an iterated local search, whereas GGA [2]

uses a genetic algorithm. Both of these have been applied (either directly or as part of a per-

instance configuration procedure; see below) to state-of-the-art algorithms for boolean satisfiability

(SAT) [39, 38, 2, 83] and mixed-integer programming (MIP) [41, 84, 52] problems, in some cases

leading to order-of-magnitude performance improvements. In addition, PARAMILS has been suc-

cessfully applied to state-of-the-art algorithms for timetabling [11] and planning [21] problems, and

has also been used to repeatedly advance the state of the art in local search for SAT by configuring

novel algorithms designed expressly for automatic configuration [53, 77, 78]. Finally, recent work

in algorithm configuration has focused on learning performance-predictive models to guide the de-

sign space search; SMBO [44] is an example of this approach that has also been demonstrated on

SAT and MIP problems. The procedures underlying all of these automated approaches are described

further in Chapter 3.2.2.1.

11

Another class of meta-algorithmics design techniques is based on the idea that performance

can be improved by using a set of algorithms rather than a single algorithm, provided that the

per-instance performance of individual algorithms in the set is sufficiently uncorrelated; such a

set is called an algorithm portfolio in analogy with investment portfolios from finance. One well-

known portfolio technique is based on solving the algorithm selection problem [69]. Per-instance

portfolio-based algorithm selection techniques explore the design space of algorithms that select

and execute one algorithm4 from an algorithm portfolio on a per-instance basis (see, e.g., [56, 30]).

Solvers designed using a portfolio-based selection approach have dominated recent SAT Compe-

titions (SATZILLA [81]; 3S [59, 46]). Despite these high-profile successes, we are not aware of a

publicly-available, domain-independent tool for automatically constructing per-instance portfolio-

based selection algorithms other than the generalization of SATZILLA that we present in Chapter 6

of this thesis.

Closely related to per-instance portfolio-based algorithm selection techniques are sequential

and parallel portfolio techniques. Parallel portfolio techniques concern the space of algorithms that

run several (or even all) portfolio components, either sequentially or in parallel, until the problem

instance is solved. Recent work has considered both static portfolios (see, e.g., [36, 27]) and dy-

namic, or per-instance, portfolios (see, e.g., [23, 75]). Of these, static portfolio strategies have had

notable practical success, winning recent planning competitions (PbP [25], a round-robin sequen-

tial approach) and performing surprisingly well in the most recent SAT Competition (ppfolio

in [46]; both sequential and parallel variants won multiple medals). Dynamic portfolios have yet to

make a significant practical impact in solver design; we suspect this is at least partially due to the

unavailability of associated automated design tools.

Algorithm configuration and portfolio-based techniques have complementary strengths: config-

uration is especially well-suited to instance sets that are homogeneous (in the sense that all problem

instances are of comparable difficulty for the designs under consideration), whereas portfolio tech-

niques are ideal for more heterogeneous domains. Several recent lines of work have combined these

approaches to implement per-instance configuration techniques. HYDRA [83, 84] iteratively uses

an algorithm configuration procedure to obtain new designs for addition to a per-instance portfolio-

based selector, in each iteration optimizing performance on the full training instance set according

to a metric that reflects net contribution to the existing portfolio. In existing implementations of HY-

DRA, choices for algorithm configuration and portfolio-based selector design procedures were fixed

to PARAMILS and SATZILLA respectively. ISAC [52] (using GGA for configuration) and CluPa-

Tra [58] (using PARAMILS) take a different approach: the training set is clustered into relatively

homogeneous partitions, each of which is then used to obtain a design via algorithm configura-

4In the interest of robustness, practical implementations of portfolio-based selection techniques like SATZILLA may
sometimes execute multiple algorithms; see Chapter 6 for details.

12

tion and to perform subsequent selection between these designs. All three approaches have shown

clear advantages over algorithm configuration alone. However, as was the case for portfolio-based

selection, the generalization of HYDRA we develop in Chapter 6 is the only automated domain-

independent per-instance configuration tool of which we are aware that is presently available for

public use.

Due to their many high-profile successes, we expect interest in meta-algorithmic design tech-

niques to continue to grow, and that resultant applications will continue to advance the state of the

art in a diverse range of problem domains. More ambitiously, we predict that meta-algorithmic

design techniques will ultimately become an indispensable part of every algorithm developer’s

repertoire. At the same time, we currently observe an unfortunate paucity of publicly-available,

domain-independent, easy-to-use tools for the automated application of many of these techniques.

Since such automated tools must ultimately rely on subsidiary empirical analyses, their develop-

ment and use is subject to the same challenges that arise when performing any large-scale empirical

analysis – in particular, conceptual challenges related to the selection and use of appropriate statis-

tical techniques, and logistical challenges related to the management of large numbers of algorithm

runs. Based on our experience, we believe these challenges are a significant factor in the limited

availability of automated meta-algorithmic design tools. However, we also observe that any system

that supports the automation of one empirical technique should, in principle, be able to support

many others. From these observations, we arrive at the major goal of this work: to build HAL, a

unified framework for the development and application of automated empirical analysis and meta-

algorithmic design techniques.

13

Chapter 3

Meta-algorithmic Problems

The ideas of meta-algorithmic analysis and design problems and procedures are central to the work

presented in this thesis. However, they are concepts which have not to our knowledge been explicitly

studied in a general sense in the literature. In this chapter we formally introduce and develop these

ideas, and use them to provide a conceptual framework that we use to frame the algorithm analysis

and design techniques of Chapter 2. We ultimately use the concepts developed here to inform the

design of both the HAL framework and of the various meta-algorithmic procedures it supports.

Before discussing meta-algorithmic problems and procedures in detail, we draw a parallel with

the idea of design patterns from software engineering (see, e.g., [24]). Design patterns identify

commonly-encountered software engineering problems, and describe specific proven solutions to

them. Similarly, meta-algorithmic problems reflect challenges that arise in algorithm development,

and meta-algorithmic procedures constitute specific solutions to these challenges. However, just

as choosing between related design patterns for a specific application relies on understanding the

benefits and drawbacks of each, so too does selecting and applying an appropriate meta-algorithmic

procedure. By presenting meta-algorithmic work from the literature in terms of a conceptually

unified framework (Section 3.2), and ultimately by providing a software environment in which the

associated procedures can be directly compared, we hope to contribute to such an understanding.

3.1 Fundamentals

We begin by defining a computational problem as a specification of a relationship between a set of problem

possible inputs Ip and a corresponding set of possible of outputs Op. An instance of problem p is instance

any element x ∈ Ip, and each instance x is associated with one or more solutions y ∈ Op. Thus, solution

we can represent a problem p by a function p : Ip → 2Op (where 2X is the power set of X), or

equivalently, as the set of all instance-solution pairs Lp = {(x,y) | x ∈ Ip∧y ∈ p(x)} ⊆ Ip×Op; in

14

this thesis we adopt the former. Without loss of generality, we assume that both x and y are vectors

(whose types are determined by the associated problem); in the following we specify such a vector

by enclosing its elements in angle brackets.

In order to define a specific problem p, we formally describe a general instance of that problem,

as well as its corresponding solution(s). We leave Ip implicitly defined as the set of all possible

instances, and Op as the set of all possible solutions. For example, SAT— the Boolean satisfiability

problem — can be defined as:

Instance: 〈V, ψ〉, where:

V is a finite set of variables

ψ is a Boolean formula containing variables from V

Solution: 〈s〉, where:

s =

{
true if there exists some K : V →{true, false} such that ψ = true under K

false otherwise

Thus, x = 〈{a,b}, (¬a∨b)∧ (a∨b)〉 is a SAT instance with a unique solution: SAT(x) = {〈true〉}.

Three useful concepts for discussing problems are instance compatibility, solution compatibil-

ity, and reducibility. Intuitively, a problem p is instance-compatible with another problem q if any

instance of q can be translated into an instance of p, solution-compatible with q if any solution of

q can be translated into a solution of p, and reducible to q if the ability to solve q provides the

ability to solve p. More formally, given two sets C ⊆ X and D ⊆ X , C is reducible to D (written

C ≤ D) via reduction function f if there exists some f : X → X such that x ∈ C⇔ f (x) ∈ D; the

computational complexity of the reduction is simply the complexity of f . Using this definition, we

say p is instance-compatible with q if Iq ≤ Ip and solution-compatible with q if Oq ≤ Op. compatible

If p and q are both decision problems (i.e., Op =Oq = {true, false}), p is mapping reducible to q mapping
reducible(written p≤m q) if Ip≤ Iq; in this case, instance-compatibility is equivalent to mapping reducibility.1

In more general cases, another form of reducibility is useful. Defining an oracle for problem q as oracle

a function Ωq : Iq→ Oq that satisfies ∀x ∈ Iq, Ωq(x) ∈ q(x) and that can be queried at no cost, we

say that p is Turing reducible to q (written p ≤T q) if there exists some deterministic procedure Turing
reduciblethat computes T q

p : Ip → Op by querying Ωq. Turing reducibility is a generalization of mapping

reducibility; any reduction p ≤m q can be implemented by a procedure that converts the input p-

instance into a q-instance via the reduction function and solves it with a single oracle query (i.e.,

T q
p : x 7→ Ωq ◦ f (x)). We thus extend the concept of mapping reducibility to arbitrary solution-

compatible problems by allowing a final solution conversion step using a second reduction function
1 We note that most definitions of mapping (or many-to-one) reducibility for decision problems are stated in terms of

formal languages, not instance sets (see, e.g., [73, 14]). Our definition is compatible with these under the assumption that
problem instances are represented by words in an appropriate formal language.

15

g (i.e., p≤m q if there exists some T q
p : x 7→ g◦Ωq ◦ f (x) that solves p). In the language of mapping

reducibility, we say p≤m q if Ip ≤ Iq via f , Oq ≤ Op via g, and (g(y) ∈ p(x))⇔ (y ∈ q◦ f (x)).

For example, consider the model-finding variant of SAT, SATMF:

Instance: 〈V, ψ〉, where:

V is a finite set of variables

ψ is a Boolean formula containing variables from V

Solution: 〈M〉, where:

M =

{
any Mψ : V →{true, false} such that ψ = true under Mψ if such an Mψ exists

M0 (some indicator that no such Mψ exists) otherwise

While SATMF 6≤m SAT,2 we can easily see that SAT≤m SATMF; for example, via:
f : x 7→ x

g : y 7→

〈false〉 if y = 〈M0〉
〈true〉 if y = 〈M〉 and M ∈ OSATMF

〈G0〉 (some invalid input indicator) otherwise3

Returning to the previous example instance x, there are two model-finding solutions; i.e., SATMF(x)=
{y1,y2}, where y1 = 〈(a = true, b = true)〉 and y2 = 〈(a = false, b = true)〉.

It is often useful to consider restricted classes of instances of a particular problem. For exam-

ple, SAT instances derived from industrial problems are quite different from randomly-generated

instances, and as such they are frequently studied separately. An instance distribution for problem

p describes such a restricted class of instances, and is formally defined by a probability mass func-

tion4 D : Ip → [0,1], where ∑
x∈Ip

D(x) = 1. However, in practice it is somewhat rare to work with

instance distributions directly; instead, one typically encounters representative benchmark instance

sets. An instance set is any set S ⊆ Ip, where it is assumed that SD was constructed by sampling instance
setfrom Ip according to some underlying distribution D of interest.

An algorithm is a well-defined computational procedure that implements some function a : algorithm

Ia → Oa, where we again assume without loss of generality that inputs u ∈ Ia and outputs v ∈ Oa

are vectors. Executable algorithm implementations typically require inputs u to include a problem

instance in some encoding format, and may require additional elements such as a random seed

or a CPU time budget; they typically produce outputs v = a(u) that include a solution to the input

2One can show more generally that SATMF ≤T SAT, although we do not provide the oracle Turing machine here.
3The third case is a technicality; it is required because g : X → X must be defined over some X ⊇ OSAT ∪OSATMF . In

order for (g(y) ∈ p(x))⇔ (y ∈ q◦ f (x)) to be true, g cannot map elements y 6∈ OSATMF to OSAT ; for example, g(〈true〉)
must be defined, but can be neither 〈true〉 nor 〈false〉.

4In the case of continuous Ip, an instance distribution is instead defined by a probability density function, which

satisfies
∫

x∈Ip

D(x) dx = 1

16

instance in some format, as well as other elements including measures of progress during execution.

Intuitively, then, we say that an algorithm solves a problem if any instance of that problem can

be encoded into its inputs, and a solution to that instance can be decoded from its outputs upon

execution. More formally, algorithm a solves problem p (equivalently, a is a p-solver) if p ≤m pa,

where pa : Ia→P(Oa) is defined by pa : u 7→ {a(u)}, and where the asymptotic complexity of a

is (weakly) greater than that of the reduction (i.e., it is meaningful to say that a, and not a reduction

function, solves p).

Importantly, this definition allows algorithms to require inputs other than those directly asso-

ciated with the problems they solve. We distinguish three types of algorithm input: the problem

instance to be solved, algorithm-specific parameters that control the logic employed to solve the parameter

instance, and any other settings that might be required for operation (e.g., a random seed or a CPU setting

time budget). We refer to algorithms that have parameters as parameterized, and to the rest as pa-

rameterless. Any parameterized algorithm can be made parameterless by fixing values for all of

its parameters. Thus, a parameterized algorithm defines a structured space of parameterless algo-

rithms; we henceforth use a to denote a single parameterless algorithm, and A to denote a space of

parameterless algorithms.

When an algorithm a is executed on input u by a computer system C, the resulting algorithm algorithm
runrun r = 〈a, u, C〉 has a variety of observable properties. A performance evaluator δ : R→ R
evaluator

quantifies the observable properties of a single run; here, the domain R indicates the set of all pos-

sible algorithm runs. An aggregator µ : Rk → R summarizes a collection of quantifications; in aggregator

particular, those produced by a performance evaluator. Common performance evaluators include

CPU time δ τ(r = 〈a,u,C〉) ≡ (CPU time taken to execute a on u using C) and solution quality

δ p(r = 〈a,u,C〉) ≡ (value of element of a(u) corresponding to solution quality under problem p);

common aggregators include statistics like the mean, median, min, and max functions. Finally, a

performance metric combines a performance evaluator with one or more aggregators. Many perfor- performance
metricmance metrics used in the literature use a single aggregator for all purposes; for example, median

CPU time combines δ τ and the median, average solution quality combines δ p and the mean, and

penalized average runtime (PAR-k) combines δ τ
k,κ(r)≡ (k ·κ if δ τ(r)≥ κ else δ τ(r)) and the mean PAR-k

(where k is a penalty factor for runs longer than some maximum CPU time κ; see, e.g., [40]). While

these pre-defined performance metrics are often convenient, formally it is necessary to explicitly

specify evaluators and aggregators separately in applications where multiple “levels” of aggrega-

tion are required (for example, to indicate aggregation of multiple runs of a randomized algorithm

for each of a number of instances using the median, and again across all instances using the mean).

Some problems are of interest primarily in the context of designing algorithms to solve more

broadly relevant problems; we refer to such problems as features. Any problem q that is instance- feature

17

compatible with a given problem p can be considered a p-instance feature; we refer to the q-solution

to instance x as the value of feature q on x, and to a q-solver as a feature extractor for q. In practice, feature
extractorlow-cost features q that admit extractors of lower asymptotic complexity than any known algorithm

for the associated problem p are the most useful; in this work, all features are understood to be

low-cost. Low-cost features are critical, for example, to algorithms that rely on predictive models;

in such applications, the semantics of individual features are irrelevant, so long as access to their

values improves prediction quality. Useful low-cost SAT features have included measures of the

number of clauses, of the number of variables, and of the progress of established SAT solvers when

run for a fixed CPU time or run length [81].

3.2 Meta-algorithmic Problems

We can now introduce the meta-algorithmic concepts underlying the remainder of the work pre-

sented in this thesis. A meta-algorithmic problem is a problem whose instances contain one or

more algorithms; we refer to these algorithms as target algorithms, and to the problems target algo- target
algorithmrithms solve as target problems. A meta-algorithmic analysis problem is a meta-algorithmic prob-

lem whose solutions include a statement about target algorithm performance; a meta-algorithmic

design problem is a meta-algorithmic problem whose solutions include at least one algorithm. Both

meta-algorithmic analysis and design problem instances typically include a performance metric and

a target problem instance set, and for some problems include target problem feature extractors in

addition to other target algorithm(s). Finally, a meta-algorithm, or meta-algorithmic procedure, is meta-
algorithman algorithm that solves some meta-algorithmic problem. We refer to a meta-algorithm that solves

an analysis problem as a meta-algorithmic analysis procedure, and one that solves a design problem

as a meta-algorithmic design procedure.

In the remainder of this chapter, we present a taxonomy of meta-algorithmic analysis and design

problems for which automated procedures exist, using a format inspired by similar taxonomies of

software engineering design patterns (see, e.g., [24]). For each problem discussed, we introduce the

context in which it commonly arises, and provide a formal definition in terms of a general instance
and corresponding solution. We then describe and compare automated procedures for solving the

problem, and finally identify related problems that are applicable in similar contexts.

3.2.1 Meta-algorithmic Analysis Problems

We initially defined an analysis problem as a meta-algorithmic problem whose solutions include a

statement about target algorithm performance. Recalling that algorithm performance is defined in

terms of a performance metric (consisting of an evaluator and one or more aggregators) and at least

18

one problem instance, and assuming that any performance statement can be broken into quantitative

components (represented by one or more scalars) and qualitative components (represented by one

or more visualizations), we introduce the generic meta-algorithmic analysis problem PA0 :

Instance: 〈A, SD , δ , M〉, where:

A is a set of parameterless target algorithms

SD is a set of target problem instances drawn from some distribution D

δ is a performance evaluator

M is a set of aggregators

Solution: 〈Q, V 〉, where:

Q is a set of quantifications of the performance of A on D in terms of δ and M

V is a set of visualizations of the performance of A on D in terms of δ and M

A meta-algorithmic analysis problem is then any problem PA such that PA0 is both instance- and

solution-compatible with PA. Analysis problems are ubiquitous, albeit not always solved by fully

automated procedures. Here, we identify the meta-algorithmic analysis problems and procedures

corresponding to the methodological best practices outlined in Chapter 2.1.

3.2.1.1 Single-Algorithm Analysis

Context: Consider the task of evaluating a single algorithm on a benchmark instance distribution

(represented by an instance set or, in the degenerate case, a single instance); or equivalently, of

attempting to characterize an instance distribution in terms of its difficulty for a specific target

algorithm. This fundamental task arises in nearly every application of empirical algorithmics,

and corresponds to the single-algorithm analysis problem:

Instance: 〈a, SD , δ , µ1, µ2〉, where:

a is a parameterless target algorithm

SD is a set of target problem instances drawn from some distribution D

δ is a performance evaluator

µ1 is an aggregator for multiple runs on single instances x ∈ S

µ2 is a vector of aggregators for runs across multiple instances S′ ⊆ S

Solution: 〈q, v〉, where:

q is a vector of quantifications of the performance of a on D in terms of δ , µ1, and µ2

v is a vector of visualizations of the performance of a on D in terms of δ , µ1, and µ2

Procedures: As single-algorithm analysis is a fundamental empirical task, a variety of distinct

19

manual procedures have been used to solve it in the literature. However, several best practices

have emerged (as discussed in Chapter 2.1).

Where a is a deterministic algorithm, best practices suggest computing an empirical SCD

over the instance set by performing one run per instance in SD and evaluating each run using

δ . The solution is then comprised of q, containing values of the aggregators in µ2 for this

empirical SCD; and v, containing a visualization (e.g., an empirical CDF) of the SCD.

Where a is a randomized algorithm, best practices dictate collecting empirical RTDs by per-

forming multiple runs per instance in SD and evaluating each run according to δ , and then

aggregating across runs for each instance according to µ1 to yield an empirical SCD. The

solution is composed of statistics (from the aggregators in µ2) and visualizations of this SCD

as before, as well as those of the individual RTDs.

The SCD-based Analysis plugin for HAL implements both of these cases; see Chapter 5 or

Appendix A for more details. Most experimental frameworks (including those discussed in

Section 2.1.2) also provide automated single-algorithm analysis procedures, and often facil-

itate batch application of these procedures to multiple algorithms. More advanced single-

algorithm analysis procedures might also report confidence intervals for some or all of the

computed statistics (such a procedure is currently under development for HAL), or corre-

late instance feature values with observed performance (see also the related scaling analysis

problem below).

Related Problems: When the goal is not to characterize the performance of a single algorithm in

isolation, but to understand performance differences between several algorithms, procedures

solving the pairwise comparison problem (Section 3.2.1.2) or k-way comparison problem

(Section 3.2.1.3) can be more principled, more computationally efficient, and more conclusive

than conducting multiple single-algorithm analyzes and manually comparing the results.

When the goal is to analyze not a single parameterless algorithm a, but a single parameterized

algorithm A , single-algorithm analysis is insufficient. If the size of A is relatively small, a

k-way comparison between the parameterless algorithms it contains may be sufficient; oth-

erwise, alternative analysis techniques are required. One option is to use per-instance algo-

rithm configuration (Section 3.2.2.3) to reduce the number of parameterless algorithms to be

analyzed to a sufficiently small number that k-way comparison becomes computationally fea-

sible. However, this yields an incomplete analysis at best; we expect that recent progress in

the model-based algorithm configuration literature (see, e.g., [37, 42]) will ultimately lead to

procedures that attempt to more directly solve the parameter response analysis problem: the

task of quantifying the effect of changes in parameter values on empirical performance.

20

When the goal is not to characterize the performance of a on D , but on some related distri-

bution D ′, the problem at hand is a generalized scaling analysis problem. The task of extrap-

olating algorithm performance on relatively small instances to characterize performance on

larger instances is the canonical example of a scaling analysis problem, and might be solved

by a meta-algorithm that learns a predictive model for algorithm performance based on in-

stance features. Potentially useful work has been conducted in the context of per-instance

portfolio-based selection (Section 3.2.2.2), but we are not aware of any automated procedures

that apply this work to explicitly solve any scaling analysis problem.

3.2.1.2 Pairwise Comparison

Context: Consider the task of comparing two algorithms on an instance distribution. This task

arises most commonly when assessing the effect of a design modification on algorithm per-

formance, but also arises more generally with faced with exactly two competing algorithms

for a problem of interest. In such cases, the goal is to characterize the performance differences

between these two algorithms, rather than to simply provide an independent performance

analysis of each. This task corresponds to the pairwise comparison problem:

Instance: 〈a1, a2, SD , δ , µ1, µ2〉, where:

a1 and a2 are parameterless target algorithms

SD is a set of target problem instances drawn from some distribution D

δ is a performance evaluator

µ1 is an aggregator for multiple runs on single instances x ∈ SD

µ2 is a vector of aggregators for runs across multiple instances S′ ⊆ SD

Solution: 〈q, v〉, where:

q is a vector of statistics comparing a1 to a2 on D in terms of δ , µ1, and µ2

v is a vector of visualizations comparing a1 to a2 on D in terms of δ , µ1, and µ2

Procedures: As with single-algorithm analysis, a variety of manual procedures for comparing algo-

rithms have been used in the literature, and again several best practices have been established.

Many pairwise comparison procedures require performing single-algorithm analyzes to char-

acterize the two target algorithms, and then conducting statistical tests to determine the sig-

nificance of any performance differences revealed by these analyzes. Usually, one ques-

tion answered by these tests is whether either of the algorithms consistently outperforms the

other; for this purpose, the non-parametric Wilcoxon signed-rank test is often an appropriate

choice. Other questions may include determining whether the algorithms exhibit identical

21

performance (via, e.g., the Kolmogorov-Smirnov test), or to what degree their inter-instance

performance is correlated (via, e.g., Spearman’s correlation coefficient).

Additional visualizations are also appropriate when comparing two algorithms. While distri-

butional plots for each of the algorithms can be overlaid to facilitate comparison, one useful

visualization is often a scatter plot with which the algorithms’ performance on each instance

can be directly compared. In particular, these plots allow the user to quickly determine which

instances are easier for which algorithm, and can indicate the existence of potentially inter-

esting clusters of instances exhibiting similar performance characteristics.

The Comprehensive Pairwise Comparison plugin for HAL builds on SCD-based Analysis in

order to perform pairwise performance comparison; see Chapter 5 or Appendix A for more

details.

Related Problems: Single algorithm analysis (Section 3.2.1.1) is applicable when only one target

algorithm is of interest, and k-way comparison (Section 3.2.1.3) is a generalization of pairwise

comparison appropriate when several target algorithms are to be compared.

When the goal is not to characterize the performance of two algorithms, but rather to ef-

ficiently identify the best-performing algorithm, meta-algorithmic design problems such as

algorithm configuration or per-instance configuration are more relevant; see Section 3.2.2 for

more details.

3.2.1.3 k-way Comparison

Context: Consider the task of comparing a number of competing algorithms on a set of benchmark

instances. This task arises most prominently when comparing a number of candidate solvers

for a problem of interest (or example, when conducting a solver performance competition),

but can also arise when evaluating a number of design changes during the algorithm design

process. Since the goal is to characterize the performance differences between these algo-

rithms rather than to summarize the performance of each, this corresponds to a generalization

of pairwise comparison called the k-way comparison problem:

Instance: 〈a, SD , δ , µ1, µ2〉, where:

a is a k-dimensional vector of parameterless target algorithms

SD is a set of target problem instances drawn from some distribution D

δ is a performance evaluator

µ1 is an aggregator for multiple runs on single instances x ∈ SD

µ2 is a vector of aggregators for runs across multiple instances S′ ⊆ SD

22

Solution: 〈q, v〉, where:

q is a vector of statistics comparing a1 to a2 on D in terms of δ , µ1, and µ2

v is a vector of visualizations comparing a1 to a2 on D in terms of δ , µ1, and µ2

Procedures: Procedures solving the k-way comparison problem are often direct generalizations of

procedures for pairwise performance comparison. However, since the number of potential

pairwise analyzes increases quadratically with k, it is common to first determine whether

any of the k algorithms outperform the others in a statistically significant way (via, e.g., the

Friedman test). If so, pairwise post-hoc analyzes can be conducted to characterize other

algorithms with respect to the best. The Comprehensive k-way Comparison plugin for HAL

generalizes the Comprehensive Pairwise Performance plugin in this way; see Chapter 5 or

Appendix A for more details.

Designing effective visualizations for k-way comparisons can be challenging; for example,

overlaid single-algorithm distributional plots (such as individual SCDs) become increasingly

difficult to interpret as k grows. Box-and-whisker plots can be useful for comparing the

performance of many algorithms, visually indicating outlier instances in addition to quartile

summary statistics. However, unlike distributional plots, they do not reveal other interesting

characteristics, such as multimodality.

When |S|× k is large, it can become infeasible to perform an exhaustive k-way comparison;

in particular, it can become infeasible to collect runtime data for each algorithm on each

instance under a realistic computational resource budget. While methods to maximize per-

formance estimate quality subject to computational resource constraints have been described

in the algorithm configuration literature (see, e.g., [42]), we are not aware of any automated

procedures that apply such methods to solving the k-way comparison problem directly.

Perhaps because of its relationship to solver competitions, k-way comparison is arguably a

commonly-automated analysis problem. However, many systems used for this task are only

partially automated, typically performing single-algorithm analyzes for each of the k algo-

rithms, but stopping short of automatically conducting comparative analysis. Instead, they

allow the user to manually conduct statistical tests and generate comparative visualizations

based on the single algorithm analyzes; this allows for greater flexibility when performing

exploratory analysis at the expense of increased susceptibility to experimental design errors

and limited utility in multi-phase automated experiments. For this reason, we do not regard

such systems as constituting automated k-way comparison procedures, but rather see them as

experimental frameworks that facilitate the use of automated single-algorithm analysis pro-

cedures.

23

Related Problems: Single-algorithm analysis (Section 3.2.1.1) is applicable when k = 1, and pair-

wise comparison (Section 3.2.1.2) when k = 2. When k is very large, k-way comparison can

become prohibitively expensive. If these k algorithms can be meaningfully combined into

a single parameterized algorithm A , parameter response analysis may be applicable; unfor-

tunately, as discussed in the context of single-algorithm analysis, automated procedures for

performing parameter response analysis are not yet available.

When the goal is not to characterize the performance of a number of algorithms, but rather

to efficiently identify a single high-performing algorithm, meta-algorithmic design problems

such as algorithm configuration or per-instance configuration are more relevant; see Sec-

tion 3.2.2 for more details.

3.2.2 Meta-algorithmic Design Problems

We introduced a design problem as any meta-algorithmic problem whose solutions include at least

one algorithm. We now formally define the generic meta-algorithmic design problem, PD0 :

Instance: 〈A, SD , δ , M〉, where:

A is a set of parameterless target algorithms

SD is a set of target problem instances drawn from some distribution D

δ is a performance evaluator

M is a set of aggregators

Solution: 〈a′〉, where:

a′ is a parameterless algorithm that optimizes performance on D according to δ and M

In other words, a meta-algorithmic design problem is any problem PD such that PD0 is both instance-

and solution-compatible with PD. Here, we discuss the practical strengths and limitations of the

prominent automated meta-algorithmic design procedures referenced in Chapter 2.2.2, and formally

define the problems that they solve.

3.2.2.1 Algorithm Configuration

Context: When designing an algorithm for a problem of interest, the designer is often faced with

decisions for which the optimal choice is unclear. Such decisions commonly include numeri-

cal values for implementation-specific constants, and categorical choices such as heuristics to

use at various stages of algorithm execution. In order to avoid poor performance, the designer

can defer these decisions by exposing parameters that allow them to be made or changed after

24

the implementation is otherwise complete. The algorithm configuration problem is the prob-

lem of setting such parameters in order to optimize performance on an instance distribution:

Instance: 〈A , SD , δ , µ1, µ2〉, where:

A is a parameterized target algorithm

SD is a set of target problem instances drawn from some distribution D5

δ is a performance evaluator

µ1 is an aggregator for multiple runs on single instances x ∈ SD

µ2 is an aggregator for runs across multiple instances S′ ⊆ SD

Solution: 〈a′〉, where:

a′ is a parameterless algorithm for the target problem corresponding to an instantiation of A ’s

parameters to values that optimize aggregate performance on D according to δ , µ1, and µ2.

Procedures: Many automated algorithm configuration procedures have been presented in the lit-

erature. For the most part these procedures can be classified as either model free (wherein

algorithm configuration is treated as a combinatorial optimization problem and solved with

heuristic techniques) or model based (wherein a predictive model of algorithm performance

as a function of instance features is learned and exploited to optimize parameter settings). Of

these, model-free techniques have enjoyed significant early success, and model-based proce-

dures are yielding increasingly promising results.

F-Race [7] is a model-free algorithm configuration procedure that is quite closely related to

k-way comparison. In F-Race, competing parameter configurations are first analyzed on a

single instance from SD , and a Friedman test is used to eliminate any statistically signifi-

cantly outperformed designs. The remaining configurations are analyzed on an additional

instance from SD , and the process is repeated until a single parameter configuration remains.

Although the initial implementation of F-Race was largely limited to configuring algorithms

with relatively few, numerical-valued parameters, subsequent improvements have substan-

tially addressed both of these limitations (see, e.g., [4, 8]), although it remains unclear how

these most recent versions of F-Race handle very large configuration spaces of the kind that

have been optimized by the other configuration procedures described here.

ParamILS [39, 40] is a model-free configuration procedure based on an iterated local search

over parameter space. Its most commonly-used variant, FocusedILS, aggressively limits com-

putational resource usage by capping algorithm runs based on the performance of the best

incumbent design at any particular point during its sequential search process. It also ex-

5While model based algorithm configuration procedures can benefit from the availability of feature values for these
instances, they are not strictly required by the general algorithm configuration problem.

25

ploits knowledge of parameter conditionality (i.e., parameters that only take effect if other

parameters take a certain values) to improve performance when many conditional parameters

corresponding to parameterized heuristics are present; currently-available implementations of

ParamILS support conditionality in the form of a single logical conjunction (i.e., of the form

p0 | p1 ∈ D1 ∧ . . .∧ pk ∈ Dk, for parameters pi and domains Di). ParamILS supports large,

discrete parameter spaces (for example, we use it to configure a space containing 4.75 ·1045

distinct configurations in Chapter 6); continuous-valued parameters must be discretized be-

fore it can be used. The ParamILS plugin for HAL implements the FocusedILS variant of

ParamILS; see Chapter 5 or Appendix A for more details.

GGA [2] is a model-free configuration procedure based on a genetic algorithm. Like ParamILS,

it is not limited to small parameter spaces; unlike ParamILS, it is able to configure both

discrete- and continuous valued parameters directly. The implementation of GGA provided

to us by its authors is able to exploit a limited form of parameter conditionality (in particular,

of the form p0 | p1 ∈ D1, for parameters pi and domains Di) and is inherently parallelized,

requiring at least 8 simultaneous processes to operate to potential (personal communication,

January 2010). GGA has been adapted into a plugin for HAL (see Chapter 5 for more de-

tails); unfortunately, due to licensing restrictions, no implementations of GGA are publicly

available (including the HAL plugin).

SMBO [44] is a sequential model-based optimization framework that builds upon earlier work

applying black-box function optimization techniques to the algorithm configuration prob-

lem (see, e.g., [50, 6, 43]). It has been used to implement two algorithm configuration proce-

dures to date. ROAR is effectively a model-free implementation (it uses a constant, uniform

model) that exploits a run-capping intensification strategy similar to that used by FocusedILS,

and supports large numbers of real-valued and discrete parameters and complex parameter

conditionality structures (in particular, disjunctions of conjunctions of the form supported by

ParamILS). SMAC, which uses a response surface model to predict the performance of differ-

ent parameter configurations, similarly supports both real-valued and categorical parameters,

and in current development versions also supports aggressive run capping and conditional pa-

rameters. SMAC benefits from the availability of feature values for instances in SD , but it can

also build its models based only on parameter values. The authors of SMBO have developed a

HAL plugin for ROAR (see Chapter 5 or Appendix A), and are presently nearing completion

of a corresponding plugin for SMAC.

Related Problems: Algorithm configuration is closely related to k-way comparison (and even more

closely related to parameter response analysis; see Section 3.2.1.3) in that both problems in-

volve analysing the performance of multiple algorithm designs. A key distinction is that the

26

focus of k-way comparison is on providing reliable comparative performance characteriza-

tions of all target algorithms, whereas the focus of algorithm configuration is on identifying a

single, top-performing design. In practice this means that while k-way comparison procedures

must distribute computational resources approximately equally between all target algorithms

and problem instances, algorithm configuration procedures are able to more aggressively fo-

cus on “promising” algorithm designs and “discriminative” problem instances.

Algorithm configuration is also related to per-instance configuration (Section 3.2.2.3). Algo-

rithm configuration works best on relatively homogeneous instance distributions; per-instance

configuration improves performance for heterogeneous distributions. However, per-instance

algorithm configuration requires instance feature data, whereas algorithm configuration does

not. Current per-instance configuration procedures are also significantly (i.e., an order of

magnitude) more computationally expensive than non-per-instance configuration procedures.

3.2.2.2 Per-instance Portfolio-Based Selection

Context: Consider the situation where multiple algorithms are available for a problem of interest,

and none of them dominates any of the others for an instance distribution under consideration

(in other words, each algorithm is state-of-the-art on some instances of interest). While a

user could elect to use only the algorithm that performs best overall, this is clearly not an

optimal strategy. The per-instance portfolio-based selection problem is the task of designing

an algorithm that selects the best of these for any given problem instance; framed as a meta-

algorithmic design problem, it is defined as:

Instance: 〈A, SD , F, X , δ , µ〉, where:

A is a set of parameterless target algorithms

SD is a set of target problem instances drawn from some distribution D

F is a set of target problem instance features

X is a set of feature extractors collectively able to extract values for all f ∈ F

δ is a performance evaluator

µ is an aggregator for multiple runs on single instances x ∈ SD

Solution: 〈a′〉, where:

a′ is a parameterless algorithm for the target problem that accepts any input instance x drawn

from D and executes one a ∈ A that optimizes performance on x according to δ and µ

Procedures: SATZILLA [64, 81] is a prominent application of algorithm design using per-instance

portfolio-based selection. The originally-published version of SATZILLA learns a regression-

based performance prediction model for each of the portfolio components (target algorithms

27

a∈ A) based on values for features in F . When run on a new instance, the SATZILLA selector

extracts feature values for that instance, predicts runtimes for each of the portfolio compo-

nents, and executes the one with the lowest predicted runtime. Subsequent developments (in

application to both SAT and MIP, as MIPZILLA [84]) improved performance through use of

alternative classification-based selection models. In Chapter 6 we generalize and completely

automate the procedure used to design SATZILLA, making it applicable to any problem do-

main for which training instances and feature extractors are available.

3S [59] is another successful application of algorithm selection techniques to designing SAT

solvers. When building 3S, its designers first evaluated a number of portfolio components

on a set of training instances for which features were available. When 3S is run on a new

instance, it extracts instance features and identifies the k training instances most similar to the

new instance in terms of these features. It then selects the portfolio component with the best

performance aggregated over those k instances. While an automated design tool capable of

building 3S-like selection designs is not publicly available, the procedure itself is simple and

in principle applicable to arbitrary problem domains.

Related Problems: Closely related to per-instance portfolio-based selection is the parallel portfo-

lio scheduling problem, which does not involve instance features and which requires solutions

where a′ executes multiple algorithms from a in parallel and returns the first solution found,

allocating computational resources to optimize aggregate performance on D according to δ ,

µ , and some µ2 for aggregation over multiple instances. For stochastic target algorithms with

highly variable performance, parallel portfolio designs can outperform per-instance portfolio-

based selection design: through parallelization of target algorithm runs, they increase the

chance an algorithm run will “get lucky” and perform well. On the other hand, they risk

being outperformed by a per-instance portfolio-based selector that chooses (only) the best

algorithm. Unfortunately, no general-purpose automated procedures for the parallel portfolio

scheduling problem are currently available.

The per-instance parallel portfolio scheduling problem goes a step further, combining port-

folio-based selection and parallel portfolio scheduling to yield an a′ that, for each input in-

stance x (assumed drawn from D), executes multiple algorithms from A in parallel and returns

the first solution found, allocating computational resources to optimize the performance on x
according to δ and µ . Per-instance parallel portfolio scheduling is strictly more powerful than

either portfolio based selection or parallel portfolio scheduling in that either can be recovered

as a special case; however, just as no automated parallel portfolio scheduling procedures are

available, neither are any for its per-instance variant.

Finally, since it is straightforward to convert a set of parameterless algorithms into a param-

28

eterized algorithm with a single categorical parameter, per-instance portfolio-based selection

can be seen as a special case of per-instance configuration (Section 3.2.2.3). In fact, all current

per-instance configuration procedures ultimately return per-instance portfolio-based selection

designs.

3.2.2.3 Per-instance Configuration

Context: Consider the case of a heterogeneous problem domain for which a single, highly param-

eterized solver is available. Algorithm configuration may not yield a strong design due to

the heterogeneity of the domain, and since only one algorithm is available, it is not possible

to use portfolio approaches directly. The per-instance configuration problem is a generaliza-

tion of per-instance portfolio-based selection that is concerned with determining the optimal

parameter configuration for an algorithm on a per-instance basis:

Instance: 〈A , SD , F, X , δ , µ〉, where:

A is a parameterized target algorithm

SD is a set of target problem instances drawn from some distribution D

F is a set of target problem instance features

X is a set of feature extractors collectively able to extract values for all f ∈ F

δ is a performance evaluator

µ is an aggregator for multiple runs on single instances x ∈ SD

Solution: 〈a′〉, where:

a′ is a parameterless algorithm for the target problem that accepts any input instance x drawn

from D , and executes one a? corresponding to an instantiation of A ’s parameters to values

that optimize performance on x according to δ and µ

Procedures: All current per-instance configuration procedures operate by combining algorithm

configuration procedures with per-instance portfolio-based selection procedures. Thus, they

all eventually choose from a restricted set of configurations, so may ultimately be unable to

produce the true optimal configuration when run on a new instance. However, especially for

heterogeneous domains containing locally-homogeneous instance clusters, they can and do

perform quite well in practice.

HYDRA [83, 84] is a per-instance configuration procedure that, in its initial implementa-

tion, iteratively used PARAMILS to design new parameterless algorithms for addition to a

SATZILLA selection portfolio. In each iteration, HYDRA uses PARAMILS to find a design

a+ corresponding to an instantiation of the parameters of A that optimizes mean-aggregated

29

performance on SD according to a dynamic evaluator that lower-bounds the CPU time of

a hypothetical portfolio using target algorithms from the previous iteration’s portfolio plus

a+. In this way, the HYDRA procedure is able to achieve robust performance without any

a priori knowledge about the instance distribution other than a suspicion of heterogeneity.

In Chapter 6 we generalize the HYDRA procedure, parameterizing the choice of configura-

tion and portfolio-based selection procedure, removing domain dependence, supporting addi-

tional performance metrics, and ultimately producing the first completely automated general-

purpose per-instance algorithm configuration procedure.

ISAC [52] takes a different approach, first clustering training instances SD into k partitions

S1, . . . ,Sk based on domain-specific instance features, and then configuring A to optimize

performance on each of these partitions and obtain a vector of parameterless algorithms for

portfolio-based selection. When faced with a new instance, ISAC assigns the instance to

an existing cluster based on extracted features, and then selects the associated configuration.

CluPaTra [58] is similar to ISAC in that it operates by clustering problem instances, but un-

like ISAC it operates on a novel class of features based on algorithm search trajectories that

make it somewhat more domain-independent. Disadvantages of these approaches compared

to HYDRA stem from the explicit clustering of instances according to feature values, and in

particular include the assumed existence of a distance metric that accurately relates feature

values to algorithm performance; this cannot be easily provided in a domain-independent way,

and indeed, it is easy to construct examples with “noise” features that undermine such a met-

ric. Finally, neither ISAC nor CluPaTra have publicly-available implementations, preventing

third-party use.

Related Problems: Since it is straightforward to convert a set of parameterless algorithms into a

parameterized algorithm with a single categorical parameter, per-instance configuration can

be seen as a generalization of per-instance portfolio-based selection (Section 3.2.2.2). How-

ever, specialized per-instance portfolio-based selection procedures can be expected to outper-

form more general per-instance configuration procedures in cases where both are applicable

— for example, selection procedures can feasibly evaluate each of the portfolio candidates,

whereas per-instance configuration procedures cannot. As such, if there are only a limited

number of parameterless algorithms of interest, per-instance portfolio-based algorithm selec-

tion remains the most appropriate meta-algorithmic design problem to solve.

If the instance distribution is relatively homogeneous in terms of performance as a function

of parameter configuration, algorithm configuration (Section 3.2.2.1) is likely to yield com-

parable results to per-instance configuration at a fraction of the computational cost.

30

Chapter 4

The High-Performance Algorithm
Laboratory

In the preceding chapters we have argued that a unified framework for meta-algorithmic analysis

and design procedures is needed, and have presented a formal conceptualization of meta-algorithmic

concepts that models the components and functionality necessary in such a framework, as well as

the procedures it might support. In this chapter we more explicitly discuss the specific goals of

our framework, the High-performance Algorithm Laboratory (HAL), and describe the high-level

design choices that enable us to meet these goals. We then provide an overview of our current

software implementation of the HAL framework in terms of its major architectural components.

More detailed low-level documentation of the framework can be found in Appendix B.

4.1 Design Considerations

When designing HAL, we identified five broad functional requirements against which to judge our

success. The first of these is that the design of HAL must be consistent and intuitive, and there-

fore easy to use. End users should be able to conduct useful meta-algorithmic experiments with

a reasonable understanding of the procedures to be used, but almost no understanding of the sys-

tem’s implementation details. Moreover, the process for conducting an experiment should primarily

depend on the meta-algorithmic problem being solved, not the idiosyncrasies of the specific proce-

dure used to solve it. Just as importantly, meta-algorithmic developers should be able to implement

new automated procedures for HAL using techniques similar to those they would otherwise have

adopted, and should be able to exploit HAL’s infrastructural features as transparently as possible.

In short, any cognitive overhead associated with using HAL must be outweighed by the practical

benefits provided by the framework.

31

Second, it is important that HAL promote best practices for reproducible research. This means

that HAL should come with carefully designed procedures for solving the most common meta-

algorithmic problems. It also means that these procedures should leverage robust, well-tested im-

plementations of critical statistical procedures and visualizations, for example including statistical

tests and machine learning models. Finally, it means that HAL should make it easy for experi-

menters and interested third parties to reproduce and thereby verify the results of all experiments

conducted using the framework.

Third, it is important that HAL be broadly applicable while remaining specialized to meta-

algorithmic work. In particular, this means that HAL and its meta-algorithmic procedures must

be target problem independent, but that this independence does not impose undue restrictions on

which meta-algorithmic problems can be supported, nor require that common meta-algorithmic

concepts be reimplemented at each use. For example, meta-algorithmic problems such as per-

instance portfolio-based selection should be supported in HAL by procedures that can assume the

existence of instance features, but do not assume any associated domain-specific semantics. This

requirement should ultimately help HAL reach the widest possible audience.

Fourth, it is important that HAL support large-scale empirical work, and that it make large ex-

periments (almost) as easy to conduct as small ones. In particular, the system must provide infras-

tructural features for efficiently executing experiments in distributed computational environments

as well as on single machines, and for managing the data associated with hundreds of large experi-

ments. As argued in earlier chapters, the “user pain” associated with managing large computational

experiments is a major factor in the desire for a unified empirical algorithmics framework, so it is

critical that this pain be addressed by HAL.

Fifth, it is important that HAL be extensible. This means that third-party developers should

be able to add new meta-algorithmic procedures to HAL, and that these procedures should be able

to take advantage of all of HAL’s infrastructural features. Moreover, it means that infrastructural

features should themselves be extensible, and any new infrastructure support should (wherever pos-

sible) be automatically leveraged by existing meta-algorithmic procedures. This requirement an-

ticipates application in operational environments that were not explicitly considered during initial

framework design, and is critical for ensuring that HAL remains relevant as new empirical methods

and supporting computational technologies are developed.

In an effort to meet all five of these design requirements, we have adopted a modular design that

cleanly separates components for experiment modelling and meta-algorithmic logic from execution

and data management infrastructure. Design considerations for each of these aspects of the system

are discussed in turn in the following subsections.

32

4.1.1 Components for Experiment Modelling and Meta-algorithmic Logic

We designed HAL to align with the conceptual formalization of Chapter 3, thereby providing a uni-

fied environment for the empirical analysis and design of high-performance algorithms via general

meta-algorithmic techniques. In particular, this alignment strongly influenced the way that experi-

ments are represented in terms of standardized meta-algorithmic components. Under the HAL ap-

plication programming interface (API), a user models an experiment by declaring a meta-algorithm,

an associated meta-problem instance, and any necessary settings, and later executes it by passing

this model to the execution infrastructure.

This approach to experiment modelling leads directly to several desirable characteristics of HAL

that contribute to meeting four of our design goals. First and most importantly, it means that HAL

is able to use consistent and intuitive components to model any meta-algorithmic application sce-

nario that our conceptual framework can model; and that it facilitates the use (and, indeed, imple-

mentation) of different meta-algorithmic procedures that solve the same meta-algorithmic problem.

Second, it makes it easy to support packaging and distribution of complete experiments (including

algorithms, instances, and other experiment settings) for independent verification, for example to

accompany a publication: since all experiments are represented by standardized components, they

can be explicitly serialized and deserialized using standard object serialization techniques. Third, it

enables HAL to automatically archive experimental data in an application-agnostic way (by simply

archiving the serialized components), and to serve as a central repository for components like target

algorithms and instance distributions. Finally, it ensures that HAL can work with arbitrary target

problems and algorithms, and arbitrary meta-algorithmic design and analysis techniques, because

all of the framework’s functionality is implemented in terms of fully-generic components. This

also simplifies the construction of complex experiments consisting of sequences of distinct design

and analysis phases, because the algorithmic outputs of any design procedure are guaranteed to be

compatible (in a low-level implementation sense) with procedures for solving applicable analysis

problems.

To meet our extensibility goals and to support a wide range of meta-algorithmic design and

analysis procedures, HAL allows developers to contribute self-contained plugin modules relating

to specific meta-algorithmic problems and their associated procedures. A plugin might provide a

new procedure for a relatively well-studied problem, such as algorithm configuration. Alternately,

it might address new problems, such as scaling analysis or parameter response analysis, and provide

procedures for solving them drawing on concepts such as solution cost and quality distributions or

response surface models. In the long run, the value of HAL to end users will largely derive from

the availability of a library of plugins corresponding to cutting-edge meta-algorithmic procedures.

Thus, HAL is an open platform, and we encourage members of the community to contribute new

33

procedures.

To facilitate this collaborative approach, HAL is designed to ensure that the features offered to

end users are mirrored by benefits to developers. Perhaps most importantly, the separation of exper-

iment design from runtime infrastructure means that the execution and data management features of

HAL are automatically provided to all meta-algorithmic procedures that implement the HAL API;

these infrastructural features are discussed in the next subsection. Since the HAL API standardizes

all fundamental meta-algorithmic components required when building a meta-algorithm (for exam-

ple, target algorithms, parameter settings/spaces, problem instances, and features), it streamlines the

development process for new meta-algorithmic procedures. Adoption of this API also simplifies the

design of hybrid or higher-order procedures. For example, all existing per-instance configuration

procedures work by solving algorithm configuration and per-instance portfolio-based selection sub-

problems (see, e.g., [83, 52, 58]); as demonstrated in Chapter 6, implementation using HAL allows

the underlying configuration and selection sub-procedures to be easily replaced or interchanged.

Finally, as our group continues to use the HAL API, we have begun to implement additional

functionality useful for developing increasingly sophisticated design and analysis procedures. While

this remains an active line of development, we ultimately expect to assemble libraries that include

standardized components for empirical analysis (e.g., hypothesis testing and data visualization; see

Appendix B for an explicit example), machine learning (e.g., feature extraction and regression/clas-

sification), and design space exploration (e.g., local search and continuous optimization), adapted

specifically for the instance and runtime data common in algorithm analysis and design scenarios

and using proven techniques from the literature. We hope that the availability of libraries such as

these will contribute to the correctness of the meta-algorithmic procedures available in HAL, as well

as further streamline the task of implementing them.

4.1.2 Execution and Data Management Infrastructure

While the formalization of meta-algorithmic concepts presented in Chapter 3 led fairly directly

to a principled design for the experiment modelling components of HAL, additional requirements

analysis was required to design the execution and data management infrastructure. In particular,

achieving a balance between extensibility and ease-of-use was a significant challenge.

Software frameworks typically adopt an inversion of control in which developers implement

components specified by an API that are then invoked by control logic built into the framework

itself (see, e.g., [70]). This control inversion promotes highly decoupled software systems; the

developer needs to know only a few details of the framework’s implementation in order to exploit

the functionality it provides. This development paradigm can be contrasted with the more familiar

style of procedural programming using a software library, in which the developer assembles custom

34

control logic using carefully-selected library components; in this case, the developer must fully

understand how to combine library components in order to achieve the desired behaviour.

In order to support independent extensibility of both meta-algorithmic procedures and execu-

tion and data management infrastructure components, it is critical that meta-algorithms in HAL

make very few assumptions about the infrastructure they operate upon. This means that it is not

feasible to have meta-algorithm developers instantiate execution and data management components

directly. As such, in early prototypes of HAL we employed a standard control inversion strategy,

separating instantiation of execution and data management components from the meta-algorithm’s

implementation, and having the framework query standardized meta-algorithm API methods when-

ever resources were available to execute new target algorithm runs.

However, we soon found that yielding control to the framework was too limiting when imple-

menting automated procedures for multiple meta-algorithmic problems. For example, the logic for

a highly parallelizable procedure for single-algorithm analysis is quite different from that of a serial

design procedure such as PARAMILS, which in turn is different from a hybrid procedure such as

HYDRA (see Chapter 3 for descriptions of these procedures); our attempts to implement all three

while constrained to a framework-determined control flow led to complex designs that we found

highly unintuitive. Instead, we ultimately settled on an intermediate design that combines the loose

dependency coupling of a traditional framework with support for intuitive and flexible procedural

meta-algorithmic logic.

Meta-algorithms in HAL execute algorithms using a special runner object provided by the

framework at runtime. From the perspective of the meta-algorithm developer, the runner is quite

simple: it provides a method that takes a run specification as input, and produces a handle to the

corresponding algorithm run as output. Thus, meta-algorithms can simply use this runner whenever

a target algorithm (feature extractor, etc.) needs to be executed, and otherwise they are coded much

as they would be in the absence of HAL.

In fact, the runner object is rather more complex than one might expect from its simple inter-

face. Depending on the framework’s configuration, the runner can fulfil run requests in a variety of

execution environments, for example on the local machine or on a compute cluster. These environ-

ments can impose different constraints on execution; for example, a single-core machine might be

restricted to one target algorithm run at a time, while a compute cluster of multi-core nodes might

be optimized for batches of parallel runs. As a result of these varying constraints, although the

runner always returns a handle to a run immediately, the run itself only starts when the execution

environment has sufficient free resources to begin computation. In this way, the runner enforces a

weak coupling between the procedural logic of the meta-algorithm and the inverted control of the

execution environment.

35

Since algorithm runs are not necessarily started when the runner returns, and since they in gen-

eral take time to complete once started, a mechanism for status update notification is required to

coordinate large numbers of parallel target runs. In HAL, custom visitor code can be registered to

execute whenever some event occurs; events include status updates (for example, from unstarted to

started, or started to finished) and output production (for example, output of a new candidate design).

This event-driven design allows highly parallel meta-algorithms to be implemented without requir-

ing the developer to explicitly write complex multithreaded code. It also provides the mechanism

by which HAL’s data management components automatically archive experimental results.

Data management infrastructure in HAL is also abstracted via the runner object. Whenever

a run request is made, the runner queries the appropriate data manager to determine whether a

suitable run has already been completed; if so, a handle to that run is returned rather than executing

a new run. Otherwise, the run is executed as before, but data management visitors are registered

to update the data manager with the run’s current status and outputs whenever the corresponding

events occur. In this way, all runs performed by a meta-algorithm (and indeed, the meta-algorithm

run itself) are automatically archived without any explicit configuration required from the meta-

algorithm developer, and regardless of the execution environment being used.

4.2 The HAL 1.1 Software Environment

The remainder of this chapter introduces HAL 1.1, our implementation of HAL’s core functional-

ity. We implemented HAL 1.1 in Java, because the language is platform independent and widely

used, its object orientation is appropriate for our modular design goals, it offers relatively high

performance, and it boasts APIs for interfacing with a wide range of established third-party tools.

Much of HAL’s functionality is implemented through the use of such third-party APIs; where avail-

able, HAL 1.1 interfaces with R for statistical computing (otherwise, internal statistical routines are

used), and with Gnuplot for data visualization. It similarly uses MySQL for data management where

available (otherwise, an embedded SQLite database is used), and either Grid Engine or TORQUE

for cluster computing. HAL 1.1 has been developed under Linux and Mac OS X, and supports

most POSIX-compliant operating systems; the web-based UI can provide client access from any

platform.

HAL 1.1 provides robust infrastructure for experiment modelling and execution management,

and has been used to implement automated procedures for solving each of the meta-algorithmic

problems defined in Chapter 3; these procedures are further described in Chapters 5 and 6, and in

Appendix A. In the following subsections, we provide an overview of HAL 1.1’s core architecture

in terms of the three major subsystems anticipated in Section 4.1 and illustrated in Figure 4.1:

the experiment modelling subsystem, the execution and data management subsystem, and the user

36

Experiment Modelling Execution & Data Mgmt.

Problem

Algorithm
Distribution

Meta
Instance

Performance
Metric

Environment

Runner

Space

Param'less
Algorithm

Algorithm

Instance
Distribution Instance

Execution
Manager

Data
Manager

Setting

Param'ized
Algorithm

Imple-
mentation Tag Feature

Local Exec.
Manager

SQL Data
Manager

Domain
External
Alg. Impl.

Meta-Alg.
Implem.

Web
Server

SSH Exec.
Manager

Cluster Exec.
Manager

User Interface

Feature
Extractor

Algorithm
Run Request

Algorithm
Run

Object
Servlet

Status
Servlet

Figure 4.1: Schematic architectural overview of HAL. Dashed arrows indicate composition;
solid arrows, inheritance. Key components are shaded. Note the distinct subsystems,
with interactions between them (double arrows) typically moderated by Algorithm-
Runs/Requests. For clarity, some components and relationships are not indicated; more
complete class diagrams are available in Appendix B.

interface subsystem.

4.2.1 Experiment Modelling Subsystem

As discussed in Section 4.1.1, the components of the experiment modelling subsystem largely corre-

spond to the fundamental algorithmic concepts defined in Chapter 4. This subsystem includes most

of the classes exposed to meta-algorithm developers using the HAL API, including those that are

extensible via plugins.

We will consider the running example of a user conducting an experiment with HAL 1.1, which

allows us to describe the classes in each subsystem. The user’s first step is to select a meta-

algorithmic Problem to solve. (We indicate Java classes by capitalizing and italicizing their names.)

Once a problem is selected, the user must select or import an InstanceDistribution containing tar-

get ProblemInstances of interest. HAL 1.1 currently supports finite instance lists, but has been

designed to allow other kinds of instance distributions, such as instance generators. A Problem-

Instance provides access to problem-specific instance data, as well as to Feature values and arbitrary

user-defined tag Strings. In particular, an ExternalProblemInstance for a target problem includes a

reference to the underlying instance file; a MetaProblemInstance contains target Algorithms, a target

InstanceDistribution, a PerformanceMetric, and where applicable (e.g., for per-instance portfolio-

37

based selection), Features and corresponding FeatureExtractors.

The next step in experiment specification is to choose one or more target algorithms. In HAL

1.1, the Algorithm class encodes a description of the inputs and outputs of a particular Algorithm-

Implementation. Two Algorithm subclasses exist: a ParameterizedAlgorithm includes configurable

parameters in its input space, whereas a ParameterlessAlgorithm does not. Input parameters and

output values are described by named Domains contained in ParameterSpaces; HAL 1.1 supports a

variety of Domains including Boolean-, integer-, and real-valued NumericalDomains, and arbitrary

CategoricalDomains. For a user-provided target algorithm, an ExternalAlgorithmImplementation

specifies how the underlying executable is invoked and how its outputs should be interpreted; for

meta-algorithms, a MetaAlgorithmImplementation implements all relevant meta-algorithmic logic.

Some meta-algorithmic procedures require Features and FeatureExtractors. A Feature sim-

ply defines a name and a Domain of possible values; a FeatureExtractor is nothing more than an

AlgorithmImplementation that has outputs corresponding to named Features. Any Algorithm can be

used to create a WrappedFeatureExtractor, provided its output ParameterSpace defines Domains

that are compatible with those of the associated Features.

The final component needed to model a meta-algorithmic experiment is a performance metric.

A PerformanceMetric in HAL 1.1 is capable of performing two basic actions: first, it can evalu-

ate an AlgorithmRun with an Evaluator to produce a single real value; second, it can aggregate a

collection of such values (for example, over problem instances, or over separate runs of a random-

ized algorithm) with an Aggregator into a single final score. HAL 1.1 includes implementations for

commonly-used performance metrics including median, average, penalized average runtime (PAR),

and average solution quality; it is straightforward to add others as required.

4.2.2 Execution and Data Management Subsystem

The execution and data management subsystem implements functionality for conducting experi-

ments specified by the user (including all meta-algorithm and target algorithm runs); in HAL 1.1,

it supports execution on the local system (i.e., the system executing the parent meta-algorithm; see

below), on a remote system, or on a compute cluster. It also implements functionality for catalogu-

ing individual resources (such as target algorithms or instance distributions) and for archiving and

retrieving the results of runs from a database.

Before execution, an Algorithm must be associated with a compatible ProblemInstance as well

as with ParameterSettings mapping any other input variables to specific values. More precisely, an

AlgorithmRunRequest is composed of an AlgorithmImplementation indicating the algorithm to run,

ParameterSettings and a ProblemInstance specifying all inputs, and a ParameterSpace specifying

the outputs to be recorded. This AlgorithmRunRequest is ultimately fulfilled by the execution and

38

data management subsystem to yield an AlgorithmRun.

Once our user has completely specified an experiment, he must define the environment in which

execution is to occur. An Environment in HAL 1.1 is defined by ExecutionManagers, which are

responsible for starting and monitoring computation, and a DataManager, which is responsible

for performing archival functions; access to an Environment is provided to meta-algorithms via a

Runner. When an AlgorithmRunRequest is passed to a Runner, the associated Environment queries

the DataManager to see if a satisfying AlgorithmRun has already been completed. If so, it is fetched

and returned; if not, the request is passed to an ExecutionManager for computation. In either case,

results are returned as an AlgorithmRun object which allows monitoring of the run’s elapsed CPU

time, status, and output value trajectories in real time during execution and after completion. It also

provides functionality for early termination of runs and uses this to enforce any requested CPU time

or run length limits.

HAL 1.1 includes four ExecutionManager implementations. The LocalExecutionManager per-

forms runs using the same machine that runs the current instance of HAL 1.1, and the SSHExecution-

Manager performs runs on remote machines using a secure shell connection. Two ClusterExe-

cutionManager implementations, SGEClusterExecutionManager and TorqueClusterExecutionMan-

ager, distribute algorithm runs across nodes of compute clusters managed by Grid Engine and

TORQUE respectively. An Environment can be configured to use different ExecutionManagers in

different situations. For example, for analysis of an algorithm on target problems that require a long

time to solve, the user might specify an Environment in which the parent meta-algorithm is exe-

cuted on a specific remote host, and target algorithm runs are distributed on a cluster. Alternatively,

when target algorithm runs are relatively short, the user might specify an Environment in which all

execution happens locally.

HAL 1.1 includes two DataManager implementations. By default, a subclass employing an em-

bedded SQLite database is used. However, due to limitations of SQLite in concurrent applications,

a MySQL-backed implementation is also provided and is recommended for all but the most simple

tasks. These SQLDataManagers use a common SQL schema based on the same set of fundamental

meta-algorithmic concepts to store not only experimental results, but also information sufficient to

reconstruct all HAL objects used in the context of a computational experiment. We note that exter-

nal problem instances and algorithms are not directly stored in the database, but instead at recorded

locations on the file system, along with integrity-verifying checksums. This eliminates the need to

copy potentially large data files for every run, but presently assumes that all compute nodes have

access to a shared file system, or at least that all file dependencies are present at the same location

in each machine’s local file system.

39

4.2.3 User Interface Subsystem

The user interface subsystem provides a remotely-accessible web interface to HAL 1.1, via an in-

tegrated WebServer. Many classes have associated ObjectServlets in the WebServer, which provide

interface elements for their instantiation and modification. The ObjectServlets corresponding to

Problems are used to design and execute experiments; the servlet for a given Problem automatically

makes available all applicable meta-algorithmic procedures. Additional ObjectServlets allow the

user to specify and examine objects such as Algorithms, InstanceDistributions, ParameterSettings,

and Environments. A StatusServlet allows the user to monitor the progress and outputs of experi-

ments both during and after execution, by inspecting the associated AlgorithmRun objects. Finally,

the interface allows the user to browse and maintain all objects previously defined in HAL, as well

as to export these objects for subsequent import into a separate HAL database (e.g., for independent

validation of results).

40

Chapter 5

Algorithm Analysis & Design with HAL

We now demonstrate HAL in action. Specifically, we walk through two case studies that illustrate

application scenarios that might arise for a typical user. In this way, we also present several of the

meta-algorithmic procedures that are currently available for HAL. The results of these case studies

are summarized in Table 5.1 and in the following figures (generated by the respective procedures in

HAL). Exported experiment designs are available online [63] to facilitate independent validation of

our findings.

5.1 Experimental Setup

All case studies were conducted using a late beta version of HAL 1.0 and its plugins. Algorithm

runs were executed on a Grid Engine cluster of 55 identical dual-processor Intel Xeon 3.2GHz nodes

with 2MB cache and 4GB RAM running openSUSE Linux 11.1. Reported runtimes indicate total

CPU time used, as measured by HAL. Data management was performed using a MySQL database

running on a dedicated server.

The case studies of this chapter involves two analysis plugins for HAL, which provide pro-

cedures for the single-algorithm analysis and pairwise comparison problems. They also involve

three design plugins for HAL, each of which provides a procedure for the algorithm configuration

problem. We briefly describe each of these procedures below; Appendix A contains more detailed

descriptions of these and other meta-algorithmic procedures available for HAL.

5.1.1 Analysis Procedures

Meta-algorithmic analysis procedures for HAL require as input a meta-problem instance containing

some number of parameterless target algorithms that depends on the problem being solved, as well

41

as a set of benchmark instances and a performance metric. They also accept optional procedure-

specific settings (notably including a random seed, a maximum number of runs per target instance, a

maximum CPU time per target run, a maximum number of total target runs, and a maximum overall

CPU time budget).

5.1.1.1 Single-Algorithm Analysis Procedure: SCD-Based Analysis

This comprehensive approach to single-algorithm analysis operates on a single parameterless target

algorithm. It collects runtime data for this target algorithm on the provided instance distribution (in

parallel, if supported by the execution environment used) until all required runs have been completed

or the CPU time budget has been exhausted. Runs are evaluated using the provided performance

metric, and the median performance on each instance is computed and used to construct an empirical

SCD (see Chapter 2). Summary statistics are then computed for this SCD, and a plot of its empirical

CDF is produced. Finally, the aggregation defined by the supplied metric is computed over the SCD

in order to yield a single performance score to the algorithm in question.

5.1.1.2 Pairwise Comparison Procedure: Comprehensive Pairwise Comparison

The Comprehensive Pairwise Comparison procedure takes essentially the same input as the SCD-

based Analysis procedure, except that it requires two parameterless target algorithms instead of one.

In addition to performing an SCD-based analysis of each of the two given algorithms and overlaying

the resultant SCD plots, the procedure generates a scatter plot illustrating paired performance across

the benchmark set, and performs Wilcoxon signed-rank and Spearman rank correlation tests. The

Wilcoxon signed-rank test determines whether the median of the paired performance differences

between the two algorithms across the instance set is significantly different from zero; if so, the

procedure identifies the better-performing algorithm. The Spearman rank correlation test determines

whether a significant monotonic performance correlation exists between the two algorithms.

5.1.1.3 k-way Comparison Procedure: Comprehensive k-way Comparison.

Note: the k-way Comparison Procedure was not available when the experiments of this chapter

were conducted. However, for completeness it is described here. For an example of its use, see

Chapter 6.

This procedure has similar inputs to the Pairwise Comparison Procedure, which it generalizes from

two to k parameterless target algorithms. The procedure performs SCD-Based Analysis for each of

the k provided algorithms. It then performs a Friedman test to determine whether any of the k algo-

rithms consistently performs better or worse than the others; if so, it performs post-hoc Wilcoxon

42

signed-rank tests between the best-performing algorithm and the remaining algorithms, and identi-

fies all algorithms that do not exhibit statistically significantly worse performance. It also produces

an overlay of the individual algorithm SCDs.

5.1.2 Algorithm Configuration Procedures

Algorithm configuration procedures for HAL require as input a single parameterized algorithm,

a training problem instance set, and a performance metric; they also accept optional procedure-

specific settings including per-target-run and overall CPU time budgets, and a random seed. They

output a single parameterless algorithm corresponding to the best configuration found, an estimate

of the quality of that design according to the user-provided performance metric and based on the runs

performed during configuration, and various other procedure-specific diagnostic outputs; outputs

are updated as the run progresses.

5.1.2.1 Algorithm Configuration Procedure: PARAMILS

HAL supports the FOCUSEDILS variant of the local-search-based PARAMILS configurator [40].

The plugin augments the original Ruby implementation of PARAMILS with an adapter class that

integrates with the HAL framework. Unlike the other configurator plugins, PARAMILS requires

sets of discrete values for all target algorithm parameters; therefore, the adaptor class uniformly1

discretizes any continuous parameter domains (the granularity of this discretization is one of the

optional inputs to the procedure).

5.1.2.2 Algorithm Configuration Procedure: GGA

HAL supports a plugin that interfaces with the original binary implementation of GGA [2]. Many

of its optional settings control parameters of the genetic algorithm it uses to explore the space

of parameter configurations. Per the recommendations of GGA’s authors, the procedure always

executes 8 simultaneous target algorithm runs on the local machine, and disallows performance

metrics other than PAR-1 (personal communication, January 2010). Unfortunately, sources for this

procedure are not available, and because of copyright restrictions we are unable to further distribute

the executable supplied to us by its authors.

1If the user indicates that a continuous parameter domain should be explored on a logarithmic or exponential scale,
the discretization is uniform in the corresponding transformed space.

43

Training Set Test Set
Algorithm q25 q50 q75 mean stddev q25 q50 q75 mean stddev

CPLEX 26.87 109.93 360.59 9349.1 24148.9
GUROBI 13.45 71.87 244.81 1728.8 9746.0

SPEAR default 0.13 0.80 10.78 6.78 10.62
SPEAR modified 0.19 0.89 4.35 3.40 6.31
SPEAR PARAMILS 0.22 0.80 2.63 1.72 2.54 0.19 0.80 2.21 1.56 2.22
SPEAR GGA 0.22 0.90 1.96 2.00 3.36 0.16 0.90 1.72 1.72 3.39
SPEAR ROAR 0.22 0.92 2.70 1.91 2.59 0.19 0.91 2.41 1.82 2.98

Table 5.1: Summary of case study results. Reported statistics are in terms of PAR-1 for SPEAR

and PAR-10 for MIP solvers; units are CPU seconds. Only the best design in terms of
training set performance is reported for each configuration procedure.

5.1.2.3 Algorithm Configuration Procedure: ROAR

HAL supports the Random Online Aggressive Racing (ROAR) procedure, a simple yet powerful

model-free implementation of the general Sequential Model-Based Optimization (SMBO) frame-

work [44]. The ROAR plugin was implemented entirely in Java using the HAL API.

5.2 Case Study: Choosing a MIP Solver

In this case study, a user wants to choose between two commercial mixed-integer program (MIP)

solvers, IBM ILOG CPLEX 12.1 [45] and Gurobi 3.01 [29], using the 55-instance mixed integer

linear programming (MILP) benchmark suite constructed by Hans Mittelmann for the purpose of

evaluating MIP solvers [61]. For all experiments the user sets a per-target-run cutoff of κ =2 CPU

hours, and uses penalized average runtime (PAR-10) as the performance metric (PAR-k counts

unsuccessful runs at k times the cutoff; see Chapter 3). As the per-run cutoff is relatively long,

he uses a HAL execution environment configured to distribute target runs across cluster nodes.

5.2.1 Single-Algorithm Analysis

CPLEX is the most prominent mixed-integer programming solver. In this experiment, the user is

interested in characterizing its out-of-the-box performance on a set of realistic problem instances,

and in particular is curious whether there is evidence to suggest that better performance might

be obtained by choosing an alternative solver. To answer these questions, the user measures the

performance of CPLEX on the MILP instance set using HAL’s SCD-Based Analysis procedure; as

CPLEX is deterministic, it is run only once per instance. The resulting summary statistics are shown

in Table 5.1; from the table, we see that the mean (PAR-10) performance score is substantially higher

than the median score. This suggests that CPLEX failed to solve several difficult outlier instances

and was therefore penalized by the PAR-10 evaluator; indeed, the corresponding SCD in the left

44

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000 100000

P(
rt

<
x)

time (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

P(
rt

<
x)

time (s)

Figure 5.1: Single-algorithm analysis of CPLEX on the MILP benchmark set (left; units are
PAR-10 in CPU seconds), and SPEAR on the SWV test set (right; units are PAR-1 in CPU
seconds). Vertical grey lines indicate the 10th,25th,50th,75th, and 90th percentiles of the
respective SCD; the vertical black line indicates the mean. Since SPEAR is randomized,
the main (red) trace indicates the SCD obtained by aggregating over 20 independent runs
on each instance using the median; the secondary (blue) traces indicate aggregation using
the 25th and 75th quartiles.

pane of Figure 5.1 clearly shows that CPLEX timed out on a number of the benchmark instances.

5.2.2 Pairwise Comparison

Having demonstrated room for improvement over CPLEX, the user decides to investigate Gurobi,

a relatively recent commercial MIP solver. In this experiment, the user is interested in determin-

ing whether Gurobi consistently outperforms CPLEX on the MILP instance set, and in particular

whether it is able to solve more instances in the allotted time. He uses the Comprehensive Pair-

wise Comparison procedure for this task; HAL is able to automatically and transparently reuse the

CPLEX runtime data collected in Section 5.2.1 for this follow-up experiment. Statistics of the per-

formance of the two solvers are shown in Table 5.1. As can be seen from Figure 5.2, which presents

the combined SCD plot and the performance correlation plot, Gurobi outperformed CPLEX on most

instances; in particular, it successfully solved all of the instances that CPLEX could not, although

for several other instances CPLEX remained the fastest solver, including one that Gurobi was unable

to solve. The Wilcoxon signed-rank test indicates that the observed pairwise performance differ-

ence in favour of Gurobi is significant at α = 0.05 (p = 0.024). These results are consistent with

Mittelmann’s independent observations using the MILP benchmark set [61]. Finally, a Spearman

coefficient of ρ = 0.86 reflects the strong correlation seen in the scatter plot.

45

Figure 5.2: Pairwise comparison of CPLEX and Gurobi on the MILP benchmark set. In the
SCD, median runtimes are indicated by vertical lines.

5.3 Case Study: Adapting a SAT Solver

In this case study, a user aims to adapt a stochastic tree search solver for SAT, version 1.2.1

of SPEAR [3], to achieve strong performance on the 302-instance industrial software verification

(SWV) benchmark training and test sets used by Hutter et al. [38]. The user sets a per-target-run cut-

off of 30 CPU seconds and evaluates performance by mean runtime (PAR-1). Due to this relatively

short per-run cutoff and the serial nature of many of HAL’s algorithm configuration procedures, he

configures a HAL execution environment to perform all target runs for a given experiment on the

same cluster node that the corresponding configuration procedure is run on, rather than distributing

them independently across the cluster.

5.3.1 Single-Algorithm Analysis

SPEAR was originally optimized for solving SAT instances from several applications, but was later

prominently used for software verification in particular (see, e.g., [38, 3]). In this phase of the case

study, the user assesses the original, manually optimized version of SPEAR on the SWV test set

in order to establish a performance baseline for future optimization. The summary statistics from

an SCD-based analysis (performing 20 runs per instance, as SPEAR is randomized, and using the

median of these to construct an empirical SCD) are shown in Table 5.1 and the SCD in the right pane

of Figure 5.1. The main observation to draw from these results is that mean (PAR-1) performance

was substantially – over eight times – higher than the median performance. From the SCD we see

that this is largely due to instances that the default configuration could not solve in the allotted time.

46

Figure 5.3: Pairwise comparisons of SPEAR designs on SWV test set. Top row, original
vs. intuitively modified design; bottom row, original vs. best configured design (from
PARAMILS). As SPEAR is randomized, per-instance performance is measured by the
median CPU time of 20 independent runs.

5.3.2 Pairwise Comparison

When adapting an algorithm to a new class of benchmark instances, algorithm designers often apply

intuition to making important design choices; these choices are often realized by setting parameters

of the algorithm to certain values. For example, Hutter et al. [38] provide an intuitive explanation

of the strong performance of one particular configuration of SPEAR in solving software verification

instances:

SWV instances prefer an activity-based heuristic that resolves ties by picking the vari-

able with a larger product of occurrences [. . .] The SWV instances favored very ag-

gressive restarts (first after only 50 conflicts) [. . .] A simple phase selection heuristic

47

(always assign FALSE first) seems to work well for SWV [. . .] SWV instances prefer

no randomness [. . .]

In an attempt to improve the performance of SPEAR on the instances that the default configuration

was unable to solve, our user follows this qualitative description to manually obtain a new parameter

configuration; specifically, the following parameters were changed:

• “sp-var-dec-heur” was changed from 0 to 6

• “sp-first-restart” was changed from 100 to 50

• “sp-phase-dec-heur” was changed from 5 to 0

• “sp-rand-phase-dec-freq” and “sp-rand-var-dec-freq” were changed from 10−3 to 10−6

The user compares this modified configuration against the default on the SWV test set using the

Comprehensive Pairwise Comparison procedure (again using the median of 20 runs per instance).

Results are shown in Figure 5.3 and Table 5.1. As hoped, the modified configuration solved most

(but not quite all) of the test instances, and ultimately achieved better performance than the default

in terms of PAR-1. As clearly seen from the SCDs and from the scatter plot, this was accomplished

by sacrificing performance on easy instances for gains on hard instances; as a result, median per-

formance was slightly worse than with the default configuration. The Wilcoxon signed-rank test

indicates that the median paired performance difference over the full benchmark set is not sig-

nificantly different from zero at α = 0.05 (p = 0.35). Inter-instance correlation between the two

configurations is strong, with a Spearman coefficient of ρ = 0.97.

5.3.3 Algorithm Configuration

In Section 5.3.2, the user observed that SPEAR’s performance can be improved by manually mod-

ifying its parameters. Seeking further performance gains, he turns to automatic algorithm configu-

ration. Because configuration procedures are easily interchangeable in HAL, our user runs all three

of them. He performs 10 independent runs of each configuration procedure on the SWV training

set, and sets a time budget of 3 CPU days for each run.

The user validates the performance of each of the 40 final designs on the training set using

the SCD-based Analysis procedure procedure2, taking the median of 20 runs per instance. He

then compares the design with the best training performance (in terms of PAR-1) found by each

of the procedures against the default configuration using the Comprehensive Pairwise Comparison

2At the time these experiments were conducted, no k-way comparison procedure was available in HAL; otherwise it
would have been used here.

48

procedure on the test set, again performing 20 runs per instance. Results are shown in Figure 5.3

and Table 5.1. The best design found by each configurator was substantially better than both the

default and the intuitively-modified configuration in terms of PAR-1, with PARAMILS producing

slightly better results than GGA, and with GGA in turn slightly better than ROAR. Indeed, as seen

in the scatter plot, the PARAMILS design successfully solved all test instances in the allotted time,

and managed to do so without affecting median performance. In all cases, pairwise performance

differences with respect to the default are significant at α = 0.05 according to the Wilcoxon signed

rank test (p = {7.8,0.002,9.7}×10−3 for PARAMILS, GGA, and ROAR respectively).

Finally, the user compares the best designs found by each of the three configuration procedures

against each other using the Comprehensive Pairwise Comparison procedure, in order to better un-

derstand their relative strengths and weaknesses (we note that these experiments are not sufficient

to make broader performance claims regarding the three configuration procedures in general). The

plots resulting from these experiments are shown in Figure 5.4. Comparing the PARAMILS and

GGA configurations, we see that the GGA configuration is better on all but the hardest instances;

indeed, the Wilcoxon signed rank test indicates that GGA outperforms PARAMILS on a statistically

significant majority of the instances at α = 0.05 (p = 4.3×10−18), despite the fact that it performs

worse in terms of the chosen performance metric (PAR-1). Comparing ROAR and GGA yields sim-

ilar conclusions – GGA statistically significantly outperforms ROAR according to the Wilcoxon test

(p = 2.0×10−23), and this time also in terms of PAR-1. Finally, comparing PARAMILS and ROAR

shows that the corresponding configurations are similar, with a slight but significant performance

advantage for PARAMILS according to the Wilcoxon test (p = 0.0238). Overall, these results high-

light the importance of carefully choosing a performance metric, and of careful interpretation of the

results of statistical tests.

49

Figure 5.4: Comparison of PARAMILS, GGA, and ROAR designs for SPEAR on the SWV test set. As SPEAR is randomized,
per-instance performance is measured by the median CPU time of 20 independent runs

50

Chapter 6

Developing Meta-algorithms with HAL

Having examined the use of existing HAL implementations of meta-algorithmic procedures for

solving a variety of practical design and analysis problems in Chapter 5, we now consider the

development of additional automated meta-algorithmic procedures with the HAL API. This chapter

describes the design, implementation, and validation of two closely related procedures: the ∗ZILLA

portfolio-based selection procedure, and the HYDRA-∗ per-instance configuration procedure; both

are based on techniques used in the most recently published version of HYDRA [84] (there called

HYDRA-MIP). In doing so, our goal is not to rigorously evaluate or improve the meta-algorithmic

logic of the procedures being implemented, but rather to illustrate benefits of adopting the HAL API:

in particular, abstraction of data collection and storage infrastructure, and incorporation of existing

meta-algorithmic procedures as components of a larger design. These implementations constitute

the first fully-automated, domain-independent procedures of which we are aware for solving either

of the corresponding meta-algorithmic design problems.

In the interest of clarity and conciseness, we retain a degree of abstraction in this chapter. In par-

ticular, we describe the design of the ∗ZILLA and HYDRA-∗ procedures using the meta-algorithmic

concepts and HAL components discussed in Chapters 3 and 4, but we do not exhaustively present

all implementation details. A more explicit tutorial for meta-algorithm developers can be found in

Appendix B, and sources for these and other plugins are available online [63].

6.1 Per-instance Portfolio-Based Selection with ∗ZILLA

In this section, we describe our adaptation of the MATLAB model-building code used by SATZILLA

(or more accurately, by MIPZILLA) for operation in the HAL 1.1 framework. We use the HAL API

to abstract domain dependencies and automate data collection from the core SATZILLA imple-

mentation, yielding the ∗ZILLA portfolio-based selection procedure. This demonstrates how the

51

HAL API can be used to extend the functionality of existing non-Java code; in the next section, we

describe the development of a meta-algorithm in pure Java using other HAL procedures as compo-

nents.

Although it includes optimizations to improve real-world performance and robustness, at its

core ∗ZILLA is a straightforward application of machine learning techniques to the algorithm selec-

tion problem. The authors of SATZILLA discuss their multi-step process for solving the algorithm

selection problem [81, 82]; these steps also describe ∗ZILLA:

1. Identify a set of target problem instances of interest.

2. Identify a set of target algorithms suspected to perform well on some target instances.

3. Identify a set of low-cost target problem instance features that are related to target algorithm

performance, and associated extractors.

4. Run all feature extractors and target algorithms on each problem instance, evaluating each

according to some performance metric.

5. Identify a list of one or more target algorithms to use as pre-solvers (step 10 below).

6. Identify a single target algorithm to use as a backup solver (steps 11, 12, and 14 below).

7. Learn a predictive model that identifies instances for which feature extraction is prohibitively

costly, based on values for minimal-cost features and feature extractor performance data.

8. Learn a predictive model that ranks target algorithms for subsequent selection, based on in-

stance features and target algorithm performance data.

9. Identify a subset of the target algorithms to include in the final algorithm portfolio.

In order to solve a new problem instance:

10. Run each pre-solver for a short duration, stopping if the instance is solved.

11. Extract minimal-cost features, and use them to query the feature extraction cost model. If

feature extraction is predicted to be costly, run the backup solver; otherwise, continue.

12. Extract instance feature values. In case of failure, run the backup solver; otherwise, continue.

13. Query the selection model using these feature values to rank portfolio candidates.

14. Run the top-ranked target algorithm on the instance. If it fails, continue with the next-best-

ranked candidate; if all candidates fail, run the backup solver.

52

In summary, given a per-instance portfolio-based selection instance (steps 1–3; see also Chap-

ter 3.2.2.2), ∗ZILLA learns predictive models from algorithm performance data on a training in-

stance set (steps 4–9), and then uses these models to perform algorithm selection in response to new

problem instances (steps 10–14). Correspondingly, its implementation in HAL can be understood in

terms of two related but distinct algorithms: a per-instance portfolio-based selection design proce-

dure that implements the learning phase, and the output selector algorithm that uses learned models

to solve the target problem. In the remainder of this section, we describe each of these algorithms

as implemented in HAL.

6.1.1 The ∗ZILLA Selector Algorithm

Note: the discussion of this subsection refers to several predetermined components—in particular,

a set of minimal-cost features, a binary classification model, a backup solver, a list of pre-solvers

with associated time budgets, and a selection model. These components are provided to the ∗ZILLA

selector algorithm as parameters during instantiation; as such, specific choices for each are made

by the ∗ZILLA design procedure described in Section 6.1.2 and are further discussed there.

The ∗ZILLA selector performs algorithm selection based on values for a variety of instance

features. While extracting these features for a particular instance is ideally much less costly than

solving it with any portfolio candidate, in practice there can be instances for which this is not true,

and for which it is better not to perform selection at all. In order to improve empirical performance

in these cases, the selector algorithms produced by ∗ZILLA follow a three-stage design. In the first

stage, values for minimal-cost features—features that can be extracted at effectively zero cost, as

indicated by the user—are extracted from the input problem instance, and used to query a binary

classification model that predicts whether it is better to revert to a fixed backup solver than to

perform full selection. If so, the selector simply runs the backup solver and returns its result;

otherwise, it proceeds to the second stage in which algorithms from a list of pre-solvers are run

in sequence on the input instance for short durations, in order to quickly solve easy instances. If

the instance remains unsolved after all pre-solvers have been run, the third stage involves extracting

values for more costly features and using them to query a selection model that returns a ranking of

portfolio components for the instance. These components are then run sequentially in ranked order

until the one of them solves the instance or time runs out, at which point the output of the last run

is returned; this means that lower-ranked algorithms are only run if all higher-ranked algorithms

terminate unexpectedly. Pseudocode for this design is provided in Figure 6.1.

While the ∗ZILLA selector algorithm is not a meta-algorithm (it solves the target problem, which

is typically not a meta-algorithmic problem), it nonetheless resembles a meta-algorithm in that it

involves the execution of subsidiary algorithm runs: one or more feature extractors, and one or

53

Constructor: list of parameterless target algorithms a;
list of target problem features q;
list of feature extractors f, that collectively extract values for all q ∈ q;
indicator function λ that defines a sublist q′ of minimal-cost features from q;
binary classification model Mcls : R|q′|→{true, false};
selection model Msel : R|q|→ [1, |a|]m ⊂ Nm for some m;
backup solver index ibk ∈ [1, |a|]⊂ N;
pre-solver indices and runtimes S = ((s1, t1), . . . ,(sn, tn)) ∈ ([1, |a|]×R)n ⊂ (N×R)n

for some n
Input: target problem instance x;

CPU time budget κ

Output: target problem solution y

let c = 〈ibk〉;
1 let v′ ∈ R|q′| = values for all q ∈ q′ (i.e., where λ = 1) in order, extracted using f;

if Mcls(v′) = false then
for i = 1, . . . , |S| do

2 let y = asi(x|min(ti,κ− consumed CPU time));
if y is a solution to x then

return y;

3 let v ∈ R|q| = values for all q ∈ q on x in order; extracted using f;
4 c = Msel(v)+ c;

for c = c1, . . . ,c|c| do
5 let y = ac(x|κ− consumed CPU time);

if y is a solution to x or time is up then
return y;

return y;

Figure 6.1: Pseudocode for ∗ZILLA portfolio-based selectors, implemented by the Portfo-
lioBasedSelector class. Note that lines 1-5 involve execution of subsidiary algorithm
runs; here we use a(x|κ) to indicate a run of algorithm a on instance x with CPU time
budget κ . We also use u+v to indicate concatenation of lists u and v.

more target algorithms. As such, implementation using the HAL API allows us to easily lever-

age built-in support for execution and data management. Doing so provides a number of benefits;

for example, if feature values have already been extracted for an instance, they will be transpar-

ently retrieved from the database rather than re-extracted to conserve wall-clock time (but the CPU

time consumption recorded by HAL will still reflect feature extraction time, ensuring consistently

reproducible results). Similarly, target algorithm runs performed by the selector algorithm are auto-

matically archived and reused whenever possible. In general, HAL can also transparently distribute

subsidiary algorithm runs across compute clusters; however, the ∗ZILLA selector algorithm does

54

not exploit HAL’s distributed execution support because all of its subsidiary runs are performed

sequentially.

6.1.2 The ∗ZILLA Design Procedure

The ∗ZILLA design procedure (approximately) solves the per-instance portfolio-based selection

problem by constructing and returning a single selector algorithm that optimizes performance on a

given instance distribution. As mentioned in Section 6.1.1 and seen in Figure 6.1, a number of com-

ponents are required to instantiate a ∗ZILLA selector algorithm; indeed, some of these components

are taken directly from the per-instance portfolio-based selection instance (i.e., the candidate algo-

rithms, instance features, and feature extractors; see also Chapter 3.2.2.2). By describing how the

remaining components are determined (i.e., the minimal-cost features, binary classification model,

selection model, backup solver, and pre-solvers), we complete our overview of the ∗ZILLA design

procedure.

∗ZILLA operates by building predictive models that associate empirical performance with in-

stance feature values. Thus, the first task of the ∗ZILLA design procedure is to extract feature values

for all problem instances, and to evaluate the performance of all portfolio component algorithms on

all instances. These steps correspond to lines 1-5 of the pseudocode in Figure 6.2, and are typically

the most computationally intensive stage of the design procedure. Both of these tasks involve per-

forming subsidiary algorithm runs in parallel, and using the HAL API means result archiving/reuse

and distributed execution functionality is exploited without any extra implementation effort. In

HAL, users can manually identify minimal-cost feature extractors (for example, extractors that read

instance meta-data from the instance file header); the features extracted by minimal-cost extractors

are used to by ∗ZILLA to define a minimal-cost feature indicator δ—the first outstanding component

required to construct a selector algorithm.

Recalling from Section 6.1.1 that pre-solvers are ultimately only ever run on problem instances

that the binary classification model predicts should be solved by the full selection pipeline, that

the backup solver is only run on instances that pre-solvers are not run on (except in the case of

unexpected errors), and that the selection model is only queried on instances that are not solved

by a pre-solver, it is clear that all remaining components are interdependent and should be opti-

mized simultaneously. To this end, ∗ZILLA first identifies a set of candidate–pre-solver pairings

and associated runtimes — specifically, it treats every permutation of two of the top three port-

folio components as a candidate pre-solver pairing, and considers four discrete run durations per

pre-solver for each permutation (this strategy is inherited from MIPHYDRA [83]). For each pair-

ing, ∗ZILLA learns binary classification and selection models (detailed in the next paragraph), and

chooses the backup solver that optimizes performance on instances not otherwise solved by a pre-

55

Constructor: B : (RT,FT,FV,λ ,ps) 7→ (Mcls,Msel,b,q);
where RT ∈ R|X|×|a| contains target algorithm algorithm performance data;
FT ∈ R|X|×|f| contains feature extractor performance data;
FV ∈ R|X|×|q| contains instance feature values;
λ ∈ {0,1}|q| indicates elements of q that define a list q′ of minimal-cost features;
ps ∈ ([1, |a|]×R)2 is a list of (pre-solver index, runtime) pairs; and
Mcls : R|q′|→{true, false} is a classification model;
Msel : R|q|→ [1, |a|]m is a selection model;
b ∈ [1, |a|] is a backup solver index;
q ∈ R is the overall quality of the pre-solver combination

Input: set of parameterless target algorithms A;
set of target problem instances X ;
set of target problem features Q;
set of feature extractors F , that collectively extract values for all q ∈ Q;
evaluator δ ;
target algorithm CPU time budget κa;
feature extraction CPU time budget κf

Output: parameterless portfolio-based selector for the target problem a′

define a = vector of elements of A in some fixed order;
define X = vector of elements of X in some fixed order;
define q = vector of elements of Q in some fixed order;
define f = vector of elements of F in some fixed order;

1 run each feature extractor f ∈ f on each instance x ∈ X with CPU time limit κf;
2 let Ea ∈ R|X|×|a| contain the evaluations of δ for runs of each a ∈ a on each x ∈ X;
3 run each target algorithm a ∈ a on each instance x ∈ X with CPU time limit κa;
4 let Ef ∈ R|X|×|f| contain the evaluations of δ for runs of each f ∈ f on each x ∈ X;
5 let F ∈ R|X|×|q| contain values for each feature q ∈ q as extracted by runs of f on each x ∈ X;

6 let λ ∈ {0,1}|q| indicate those qi ∈ q extracted at minimal cost;
7 choose some S ∈ argmax

S′∈([1,|a|]×R)2
B(Ea,Ef,F,λ ,S′); where the argmax is evaluated with respect

to overall quality of the pre-solver combination;
8 let b = B(Ea,Ef,F,λ ,S);

return new Port f olioBasedSelector(a,q, f,λ ,b1,b2,b3,S);

Figure 6.2: Pseudocode for the ∗ZILLA portfolio-based selection design procedure, imple-
mented by the MatlabPortfolioBasedSelectorBuilder class (dependence on MATLAB oc-
curs via B). Additional inputs and outputs associated with B are not indicated here, but
are listed in Appendix A.
Operations at lines 1, 3, 7, and 8 are implemented via subsidiary algorithm runs. In
practice, the argmax at line 7 is approximate—not every S′ ∈ ([1, |a|]×R)2 is tested (see
Section 6.1.2).

56

solver or through the selection pipeline. Overall selector performance for each pre-solver candidate

pairing is estimated using (10-fold, by default) cross-validation, and the components associated with

the top-performing pairing are used to construct the final selector algorithm that is returned as the

solution to the portfolio-based selection problem instance.

The ∗ZILLA procedure implemented for HAL 1.1 performs model building, backup solver se-

lection, and cross-validation by calling the MATLAB model-building code used by MIPZILLA [84].

As such, it supports a number of selector model classes, most notably including the linear regression

models used in earlier versions of SATZILLA [64, 81] and the more robust cost-sensitive decision

forest models added for MIPZILLA [84]; for more details, we refer the reader to the cited publica-

tions. In order to abstract this cross-language dependency from the Java implementation of ∗ZILLA,

we confined all model-building functionality to a standalone model-building algorithm (indicated

by B in Figure 6.2); ∗ZILLA simply runs this algorithm as it would a feature extractor or target

algorithm. This approach has two benefits: first, it allows the potentially costly pre-solver selec-

tion task to be trivially distributed across compute clusters using existing HAL functionality for

distributed algorithm execution; and second, the MATLAB dependency can eventually be removed

through drop-in replacement of the model building algorithm.

We end our discussion of ∗ZILLA by noting a consideration that is important when using its

current implementation. Some of the design choices made in the ∗ZILLA selector algorithm only

make sense for certain classes of performance metrics. In particular, the use of pre-solvers implicitly

assumes that the performance metric under optimization is positively correlated with runtime, and

the MATLAB model builder further assumes that it is distributive over addition (meaning that the

evaluation of runs a and b grouped together equals the sum of their independent evaluations, but

admitting an overall maximum evaluation value in order to support PAR-1 and 10). The original

SATZILLA and MIPZILLA implementations were designed for optimizing time-like performance

metrics (see e.g., Chapter 5) for which these assumptions hold; however, they fail for many solution

quality metrics. To see this, observe that the solution quality of a failed run immediately followed

by a successful run would intuitively equal the solution quality of the successful run alone, but the

solution quality of the failed run alone would usually be assigned a nonzero value. The situation of

a failed run followed by a successful one occurs whenever a pre-solver fails to solve an instance that

is then solved through selection. As a result, care must be taken when using ∗ZILLA to optimize

solution quality; e.g., by disabling pre-solver selection and by ensuring that ∗ZILLA measures the

solution quality of feature extractor runs as zero.

57

6.2 Per-instance Configuration with HYDRA-∗
Having completed our discussion of ∗ZILLA, we turn to the design of HYDRA-∗. As discussed

in Chapter 3.2.2.3, HYDRA [83, 84] approximately solves the per-instance configuration problem

by combining algorithm configuration and per-instance portfolio-based selection procedures. Until

now, all versions of HYDRA have used PARAMILS [38, 40] for configuration and SATZILLA [64,

81] for selection. However, several configuration procedures are available in HAL, so one of our

goals for this HYDRA-∗ design is to achieve independence from any specific choice of configuration

or portfolio-based selection sub-procedure, in addition to achieving target problem independence.

In doing so we remain faithful to the original meta-algorithmic design of HYDRA, but employ

object-oriented design techniques that allow variants of the procedure to be easily implemented and

investigated.

6.2.1 The HYDRA-∗ Design Procedure

The characteristic of HYDRA that distinguishes it from other per-instance configuration procedures

discussed in Chapter 3.2.2.3 is its use of a dynamic performance metric to iteratively add compo-

nents to a portfolio for algorithm selection. The dynamic metric depends on a static user-provided

metric; when evaluating an algorithm run on instance x, it returns the lesser of the static metric’s

evaluation of that run, and the static metric’s evaluation of the current portfolio performance on x.

In this way, candidates for addition to the portfolio are not penalized for being outperformed by

an existing portfolio component on some instances, so long as they can improve the portfolio for

others. This metric is discussed in more detail by the authors of HYDRA [83, 84].

While in principle a procedure like HYDRA-∗ could be implemented by combining an algorithm

configuration procedure, a per-instance portfolio-based selection procedure, and a dynamic perfor-

mance metric, in practice such an implementation would end up wasting significant computational

resources during configuration. Since an arbitrarily chosen configuration procedure would not be

aware of the semantics of a given dynamic performance metric, it could end up performing runs for

much longer than necessary, only to have the metric return the same evaluation as if the run been

terminated earlier. For this reason, in HYDRA-∗ we implement a dynamic target algorithm that is

able to terminate its own runs if it is established that they are outperformed by the the current portfo-

lio, and outputs the appropriate dynamic evaluation on completion. We then configure this dynamic

target algorithm using a performance evaluator that simply obtains its evaluations from that output.

This procedure is specified more precisely in the pseudocode of Figure 6.3; in line 1, the function

call w(A ,gi) obtains a dynamic target algorithm from the user-provided parameterized algorithm

A and the portfolio performance in iteration i (represented by the function gi).

58

Constructor: algorithm configuration design procedure aac;
portfolio-based selection design procedure apbs;
single-algorithm analysis procedure asaa;
portfolio candidate filter apc f ;

Input: parameterized target algorithm A ;
set of target problem instances X ;
set of target problem features Q;
set of feature extractors F , that collectively extract values for all q ∈ Q;
performance evaluator δ ;
aggregator µ;
number of iterations nit ;
number of parallel configuration runs nac;
number of portfolio components per iteration ncpi

Output: parameterless portfolio-based selector for the target problem a′

define g0 : x ∈ X 7→ ∞; the initial portfolio performance map;
define w : 〈A ,g : X → R〉 7→ algorithm that, for input x, runs r = A (x) and outputs
min(δ (r),g(x));
define δ ′ : dynamic algorithm run r 7→ output of r corresponding to performance evaluation;

let X0 := X ;
let A0 := /0;
for i = 1, . . . ,nit do

1 let Ai = w(A ,gi−1);
2 let C = {aac(Ai,Xi−1,δ

′,µ,µ) for nac different random seeds};
let gpc f : x ∈ X 7→ 0 if i = 1 else gi−1;

3 Ai = Ai−1∪apc f (C,X ,δ ,µ,gpc f ,ncpi);

4 let oi = apbs(Ai,X ,Q,F,δ ,µ);
5 let yi = asaa(oi,X ,δ ,µ,µ);

define gi : x 7→ evaluation of oi on x according to the original evaluator δ ;
let Xi = {x | x ∈ X , and x is solved by selection and not, e.g., a pre-solver};

return onit

Figure 6.3: Pseudocode for the HYDRA-∗ per-instance configuration procedure, implemented
by the GenericHydraBuilder class. Additional inputs and outputs are listed in Ap-
pendix A.

59

Currently available algorithm configuration procedures only approximately solve the algorithm

configuration problem, and most exhibit a large degree of variability in output design performance

across independent runs. To mitigate the risk of a single “unlucky” configuration run adversely

affecting final design quality, HYDRA-∗ performs nac > 1 independent configuration runs in each

iteration (see line 2 of Figure 6.3). The designs produced by each of these independent runs are then

filtered to choose the new portfolio components (line 3); procedures for performing this filtering are

discussed in Section 6.2.2.

Once the updated set of portfolio components is determined, a procedure for the per-instance

portfolio-based selection problem is used to build a selector (note that this selector is constructed

using the original target algorithm, performance metric, and instance set, not the dynamic versions

used for configuration). This selector algorithm is analyzed and the portfolio performance measure-

ments used for constructing the dynamic target algorithm are updated. Finally, an instance set is

assembled for the next iteration of configuration, omitting any instances that are easy for the current

portfolio in order to bias the configuration procedure toward designs that are likely to result in im-

provement. Since algorithm configuration, portfolio-based selection, and single-algorithm analysis

tasks are delegated to existing procedures, only portfolio candidate filtering components remain to

be described.

The reader may notice that the pseudocode of Figure 6.3 appears to waste computational effort,

because feature extraction and target algorithm performance assessment is implicitly performed

from scratch in each iteration during portfolio-based selection. This is indeed an accurate depiction

of our HYDRA-∗ implementation for HAL. However, thanks to the automatic run reuse provided

by the HAL framework, this conceptually simple design does not actually result in significant in-

efficiencies; target algorithm and feature extractor runs are simply retrieved from the database if

they have been performed before. This automatic run reuse also benefits HYDRA-∗ in that runs

performed by independent configuration jobs are also reused, potentially saving significant effort

(e.g., when there is a particularly strong default configuration and a large training instance set).

6.2.2 Portfolio Candidate Filtering

Portfolio candidate filtering is the task of identifying a subset of algorithms with the highest potential

to improve an algorithm portfolio from a list of candidates. This filtering is necessary because the

cost of solving the portfolio-based selection problem typically increases at least linearly (depending

on the model used) with the number of candidates under consideration. We note that portfolio

candidate filtering can formally be considered a meta-algorithmic analysis problem in its own right

(albeit of narrow interest), and is related to the k-way Comparison problem.

In the first version of HYDRA, one portfolio component was added per iteration [83]. In order to

60

choose this component, the designs of all nac configuration runs were analyzed on the full training

instance set (under the same per-run CPU time budget used during configuration), and the design

that provided the greatest aggregate performance improvement over the current portfolio according

to the user-provided performance metric was returned.

When developing HYDRA-MIP [84], the authors identified a practical problem with this ap-

proach. Since algorithm configuration can take a long time to complete (commonly several days),

and since the optimal portfolio might have several components, selecting only a single component

per iteration can result in prohibitively long HYDRA runs. Observing that different configuration

runs on the same instance set can yield designs that are optimized for different instance subsets, they

proposed adding multiple portfolio components per iteration. Since doing so implies an increased

data collection cost during subsequent portfolio-based selection with MIPZILLA (typically the per-

run cutoff used in configuration is much lower than that used in portfolio-based selection), they

offset this cost by changing the candidate filtering procedure to analyze designs based only on the

runs that were performed during configuration. They refer to this modified procedure as HYDRAM,k,

where M indicates the model used by the MIPZILLA (LR for linear regression, DF for cost-sensitive

decision forests) and k indicates the number of components added per iteration.

We implemented both of these filtering strategies, as well as some intuitive generalizations

enabled by the centralized data management offered by HAL. The independent validation candidate

filter of Figure 6.4 implements the strategy used by HYDRAM,1, but is generalized to work for

arbitrary k≥ 1; we note that, as usual, this filter will automatically reuse run data during independent

validation when possible. The reused-run candidate filter of Figure 6.5 implements the strategy

used in HYDRAM,k>1, and in particular only reuses runs that were performed by the configuration

run that produced the design under consideration. Finally, the reuse-maximizing candidate filter of

Figure 6.6 can be seen as an intermediate alternative to the other two filters; it does not perform

new validation runs, but instead explicitly queries the HAL data manager to reuse relevant run

data regardless of the context in which it was originally acquired (for example, runs performed by

unrelated configuration runs).

6.3 Performance Validation

Although a number of functional tests were used during development of the ∗ZILLA and HYDRA-∗
procedures to ensure their behaviour was consistent with the discussed designs, it is nonetheless

important to validate their performance on realistic, large-scale design tasks. Since both of our

procedures are based on the published version of HYDRA-MIP, we validated them by independently

replicating experiments reported in that publication [84].

61

Input: set of algorithm configuration runs C;
performance evaluator δ ;
aggregator µ;
set of problem instances X ;
portfolio performance map g : X → R;
number of designs to return n

Output: set of parameterless algorithms A

define u : a 7→ µ (〈max(δ (new run of a(x))−g(x),0) | x ∈ X〉);
let A′ = a set containing the final design of each configuration run c ∈ C;
let A = /0;
while |A|< n and |A′|> 0 do

choose some a∗ ∈ argmin
a∈A′

(u(a));

A = A∪{a∗};
A′ = A′−{a∗};

return A

Figure 6.4: Pseudocode for the HYDRA-∗ independent-validation candidate filter, imple-
mented by the IndependentValidationIncumbentSelector class. Here we adopt a “vector-
builder” notation analogous to standard set-builder notation.

Input: set of algorithm configuration runs C;
performance evaluator δ ;
aggregator µ;
set of problem instances X ;
portfolio performance g : X → R;
number of designs to return n

Output: set of parameterless algorithms A

define α : c ∈C 7→ the final design of configuration run c;
define β : c ∈C 7→ the set X ′ ⊆ X on which c performed a full-length run of α(c);
define γ : (r,x) ∈ R×X 7→ the full-length run of α(c) on x performed by c;
define u : c ∈C 7→ µ (〈max(δ (γ(c,x))−g(x),0) | x ∈ β (c)〉);
let A = /0;
while |A|< n and |C|> 0 do

choose some c∗ ∈ argmin
c∈C

(u(r));

A = A∪{α(r∗)};
C =C−{c∗};

return A

Figure 6.5: Pseudocode for the HYDRA-∗ reused-run candidate filter, implemented by the
SameTuningRunArchivedRunIncumbentSelector class. Here we adopt a “vector-builder”
notation analogous to standard set-builder notation.

62

Constructor: data manager d
Input: set of algorithm configuration runs C;

performance evaluator δ ;
aggregator µ;
set of problem instances X ;
portfolio performance g : X → R;
number of designs to return n

Output: set of parameterless algorithms A

define β : a 7→ the set X ′ ⊆ X of instances on which a full-length run of a exists in d;
define γ : (a,x ∈ X) 7→ a full-length run of a(x) from d;
define u : a 7→ µ (〈max(δ (γ(a,x))−g(x),0) | x ∈ β (a)〉);
let A′ = a set containing the final design of each configuration run c ∈ C;
let A = /0;
while |A|< n and |A′|> 0 do

choose some a∗ ∈ argmin
a∈A′

(u(a));

A = A∪{a∗};
A′ = A′−{a∗};

return A

Figure 6.6: Pseudocode for the HYDRA-∗ reuse-maximizing candidate filter, implemented by
the ReuseMaximizingArchivedRunIncumbentSelector class. Here we adopt a “vector-
builder” notation analogous to standard set-builder notation.

6.3.1 Experimental Setup

The HYDRA-MIP paper [84] presents the results of a large number of computationally expensive

experiments optimizing CPLEX on a variety of mixed-integer programming benchmark sets, requir-

ing nearly 7.5 CPU years in total to complete. In order to validate our implementations at somewhat

lower computational cost, we use just one of these sets, CL∪REG. From that paper:

CL∪REG is a mixture of two homogeneous subset[s], CL and REG. CL instances come

from computational sustainability; they are based on real data used for the construction

of a wildlife corridor for endangered grizzly bears in the Northern Rockies [28] and en-

coded as mixed integer linear programming (MILP) problems. We randomly selected

1000 CL instances from the set used in [41], 500 for training and 500 for testing. REG

instances are MILP-encoded instances of the winner-determination problem in combi-

natorial auctions. We generated 500 training and 500 test instances using the regions

generator from the Combinatorial Auction Test Suite [55], with the number of bids se-

lected uniformly at random from between 750 and 1250, and a fixed bids/goods ratio

of 3.91 (following [57]).

63

We chose CL∪REG primarily because it appears from the results published in [84] that HYDRA-

MIP was consistently close to convergence on this set: test performance for both tested HYDRA

versions—HydraDF,1 and HydraDF,4 —remained similar and essentially stable after 3 of 5 iter-

ations (although HydraDF,4 did improve somewhat in iteration 5), which intuitively suggests they

had identified strong portfolio components for each of the two homogeneous subsets by that point.

This consistent convergence is important to our validation, as not much can be concluded from

two runs producing designs with different performance characteristics, but which are not yet near

convergence.

Our experimental setup follows the HYDRA-MIP paper [84] as closely as possible. We used

CPLEX 12.1 (see also Chapter 5) with the parameter configuration space obtained from the authors

of the HYDRA-MIP paper as our parameterized target algorithm; this space contains 4.75 · 1045

distinct configurations. Similarly, we used a MIP feature extractor and associated features obtained

from its authors.1 Because the performance of HydraDF,1 and HydraDF,4 designs were reported

to be very similar after three iterations, we elected to focus on the HYDRA-∗ variant corresponding

to HydraDF,4 that uses our reused-run portfolio candidate filter, and we limited our experiments

to three iterations. In each HYDRA-∗ iteration, 25 independent algorithm configuration runs were

performed in parallel; each of these configuration runs optimized the PAR-10 performance met-

ric using a per-run cutoff of 300 CPU seconds and an overall time limit of 2 CPU days. To test

the ability of HYDRA-∗ to work with arbitrary algorithm configuration procedures, we performed

analogous experiments using both PARAMILS and ROAR (see also Chapter 5.1.2)2; since no alter-

native to ∗ZILLA is available, we were not able to test the ability of HYDRA-∗ to work with arbitrary

portfolio-based selection procedures. ∗ZILLA was configured to use a per-run cutoff of 3 600 CPU

seconds when evaluating portfolio candidates, and to use decision forests consisting of 99 MATLAB

R2010a cost-sensitive decision trees in order to learn classification and selection models.

To independently validate our ∗ZILLA implementation, and to provide a context for evaluation

of HYDRA-∗ results, we constructed a ∗ZILLA selector from the same three CPLEX configurations

that were used to build the original MIPZILLA selector (namely, the default configuration, and the

configurations independently optimized for CL and REG from [41]). We then compared this ∗ZILLA

selector to the designs produced after each HYDRA-∗ iteration3 using HAL’s Comprehensive k-way

1After completion of these experiments, we were informed that the feature extractor we were provided differs from
the one used in the HYDRA-MIP experiments of [84] in that it extracts 9 additional features, for 148 instead of 139 in
total. However, in light of our discovery of perfect instance-subset predictive features for both feature extractors (see
Section 6.3.2), we elected not to spend the CPU time required to repeat our experiments with the more restricted feature
extractor.

2We note that ROAR was not modified for use with HYDRA-∗, and we used the the version of PARAMILS from the
HYDRA-MIP paper. [84]

3The original HYDRA-MIP and MIPZILLA designs could not be included in the k-way comparisons because exe-
cutable implementations of these designs are not available.

64

Comparison plugin (see Chapter 5.1.1.3). To investigate performance differences arising from the

choice of PARAMILS versus ROAR, we used the Comprehensive Pairwise Comparison plugin (see

Chapter 5.1.1) to further compare the final designs from the corresponding HYDRA-∗ runs. All

analyses used the same 3 600 CPU second per-run cutoff that was also used during ∗ZILLA runs.

All experiments were conducted with a late beta version of HAL 1.1 and its plugins; experiment

designs are available as a HAL export on our website [63]. Algorithm runs were executed on a Grid

Engine cluster of 55 identical dual-processor Intel Xeon 3.2GHz nodes with 2MB cache and 4GB

RAM running openSUSE Linux 11.1. Except where otherwise noted, reported runtimes indicate

total CPU time used, as measured by HAL. Data management was performed using a MySQL

database running on a dedicated server.

6.3.2 Results

In total, our experiments required just over 1.5 CPU years to complete. Our HYDRA-∗ experiments

required 277 CPU days with PARAMILS (160 for PARAMILS, 117 for ∗ZILLA), and 271 CPU

days using ROAR (151 for ROAR, 120 for ∗ZILLA). Our standalone ∗ZILLA experiment required

12 CPU days, and our analysis experiments required 8 CPU days (4 each for the training and test

sets). However, thanks to HAL’s automatic run reuse, overall CPU usage was approximately 120

CPU days lower than indicated by these figures. For instance, the training set analyses consumed

negligible CPU time, as runs for all selections were reused from previous ∗ZILLA runs. Also, since

the feature extractors and portfolio components executed by ∗ZILLA in iteration i of a HYDRA-

∗ run are reused in iterations j > i, the reported ∗ZILLA runtime for a j-iteration HYDRA-∗ run

overstates actual CPU usage by a factor linear in j. Using the notation of Figure 6.3, CPU usage by

feature extractors is c f ≈∑
f∈f

∑
x∈X

(CPU time of f on x), and by components is ca(j) ∝ ∑
a∈a j

∑
x∈X

(CPU

time of a on x); whereas reported times are c′f ≈ j · c f and c′a(j) ∝ ∑
i≤ j

ca(i) ≈ 1
2(j + 1) · ca(j)

respectively. For our HYDRA-∗ experiments, where j = 3 and c f � ca(3), reported ∗ZILLA times

are thus approximately double actual CPU usage. Finally, minor CPU time savings arise from

incidental run reuse during parallel configuration, mostly during exploration near the default CPLEX

configuration.

The results of our validation experiments are summarized in Table 6.1. Because the results

reported in [84] only consider the cost of target algorithm and feature extractor execution (and

not overheads due, for example, to loading and querying models), but HAL’s performance metrics

account for all consumers of CPU time, we report scores both including and neglecting overheads

to facilitate comparison. Inspecting these results, we see that the qualitative behaviour observed

in the HYDRA-MIP paper holds for our implementations as well—namely, that the ∗ZILLA design

65

Train Test
Procedure PAR1 PAR10 Solved PAR1 PAR10 Solved

∗ZILLA oracle - 33 - 33 100% - 33 - 33 100%
MIPZILLA oracle (from [84]) - 33 - 33 100% - 33 - 33 100%

∗ZILLA DF 43 41 75 74 99.9% 39 37 39 37 100%
MIPZILLADF (from [84]) - 39 - 39 100% - 39 - 39 100%

HYDRA-∗ DF,4 w/PARAMILS 60 49 60 49 100% 65 54 65 54 100%
HYDRA-∗ DF,4 w/ROAR 62 53 62 53 100% 60 52 60 52 100%
HYDRA-MIPDF,4 (from [84]) - 55 - 55 100% - 61 - 61 100%

Table 6.1: Performance of ∗ZILLA and HYDRA-∗ designs on the CL∪REG MIP benchmark
set. All HYDRA results are reported for designs after 3 iterations. PAR1 and PAR10 scores
are listed in CPU seconds; the first entry indicates real-world performance as measured by
HAL (including all overhead costs), and the second indicates feature extraction and target
algorithm runtimes only (for comparison with the results of [84]).

consistently outperformed the best HYDRA-∗ designs (indeed, the k-way comparison’s Friedman

test and post-hoc Wilcoxon tests identified the ∗ZILLA design as the unambiguous best, with p ≈
0.0×1016). Also as expected, all ∗ZILLA and HYDRA-∗ designs were significantly outperformed by

the corresponding hypothetical oracle. We also see that oracle performance was identical for ∗ZILLA

and MIPZILLA, despite the fact that all performance data was independently collected, strongly

suggesting that the basic data collection mechanisms in HAL are accurate and that the MATLAB

random forest models are used correctly. Finally, we see that in nearly all other cases (except for the

∗ZILLA selector on the training set, where our design failed to solve one instance and was penalized

by the PAR-10 metric), designs produced by HAL implementations slightly outperformed those

produced by the corresponding non-HAL procedures; we speculate that this apparent trend was

largely due to chance, as it is well known that the designs produced by independent runs of both

PARAMILS and ROAR are highly variable in terms of quality. Overall, these results support the

hypothesis that our ∗ZILLA and HYDRA-∗ procedures for HAL are correct.

It is informative to investigate the evolution of HYDRA-∗ designs as the iteration count in-

creases. Figure 6.7 displays this progress in terms of test set performance (neglecting overhead costs

to enable comparison with HYDRA-MIP data from [84]). In the left pane, PAR10 performance is

displayed at each iteration and compared with the per-iteration performance reported for HYDRA-

MIP; from this plot, it is again clear that the performance of both HYDRA-∗ designs is consistent

with that of HYDRA-MIPDF,4, and that the performance of the ∗ZILLA design is consistent with

that of MIPZILLA. It is also evident that no improvements occurred for either HYDRA-∗ run after

the second iteration. In the right pane, a scatter plot comparing the performance of HYDRA-∗ using

ROAR after the first and second iterations shows that the second iteration significantly improves

performance for almost all REG instances without affecting performance on CL instances (which

66

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

PA
R

10
 (C

PU
 s

)

iteration

Hydra-* ParamILS
Hydra-* ROAR

Hydra-MIP DF4; from [84]
MIPzilla; from [84]

*zilla
oracle

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

H
yd

ra
-*

 R
O

AR
 it

er
at

io
n

2
(P

AR
1;

 C
PU

 s
)

Hydra-* ROAR iteration 1 (PAR1; CPU s)

CL
REG

Figure 6.7: Performance evolution of HYDRA designs for CPLEX on the CL∪REG test set.
Plots reflect feature extraction and target algorithm runtimes but exclude overheads (e.g.,
due to model loading and inference). (Left) PAR-10 performance as a function of HY-
DRA iteration; data for HYDRA-MIP and MIPZILLA is taken from [84]. (Right) Per-
instance performance of HYDRA-∗with ROAR after 1 and 2 iterations; PAR-1 (or equiv-
alently PAR10, as no instances timed out) in CPU seconds.

are still solved by first-iteration configurations). On closer analysis, we discovered that instance

subset membership for CL∪REG can be determined perfectly using the values of certain extracted

features, which explains the ability of ∗ZILLA to leverage the second-iteration HYDRA-∗ configura-

tions so accurately. The fact that no further improvement was observed in the third iteration shows

that the first-iteration configurations being selected for CL instances were already quite strong.

Unfortunately, the performance illustrated in Figure 6.7 does not accurately reflect real-world

performance, because overhead costs are neglected. The overlaid SCDs produced by HAL’s Com-

prehensive k-Way Comparison procedure on the algorithm designs is illustrated in the left pane of

Figure 6.8, and include all overhead costs; for comparison, analogous SCDs neglecting overheads

are presented in the right pane. These plots show that overhead costs increase with the number

of portfolio components (and thus, iteration), and are significant—on the order of 10 seconds (or

approximately one third of mean oracle performance) for third-iteration designs. On further inves-

tigation, it became clear that these overheads are dominated by the cost of loading decision forest

models into MATLAB; since the number of portfolio candidates increases after each iteration, so

does the cost of model loading. However, unlike feature extraction, model loading costs are not

yet considered during the ∗ZILLA model building process. In the future we hope this issue can be

67

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

Pr
(s

ol
ve

d)

time (CPU s)

*zilla
Hydra-* PILS it#1
Hydra-* PILS it#2

Hydra-* ROAR it#1
Hydra-* ROAR it#2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

Pr
(s

ol
ve

d)

time (CPU s)

*zilla
Hydra-* PILS it#1
Hydra-* PILS it#2

Hydra-* ROAR it#1
Hydra-* ROAR it#2

Figure 6.8: Effect of overhead costs on ∗ZILLA selector algorithm performance for CPLEX on
the CL∪REG test set. The left pane includes overheads (e.g., model loading and infer-
ence); the right pane only reflects feature extraction and target algorithm execution. In
these plots, ∗ZILLA refers to the MIPZILLA-like selector constructed using configura-
tions from [41].

handled automatically, but in the meantime, users of ∗ZILLA are advised take this cost into consid-

eration when deciding between selector model classes (for example, parametric models like linear

regression have negligible loading costs), setting associated model parameters (such as the number

of trees in a decision forest), and choosing portfolio components.

Finally, we also see that the final HYDRA-∗ design using ROAR outperforms the final design us-

ing PARAMILS in terms of PAR-10 on the test set, despite slightly worse training performance. The

Wilcoxon signed-rank test performed during pairwise comparison similarly indicates that the ROAR

design statistically significantly outperforms the PARAMILS design at α = 0.05 (p = 1.6×10−26);

however, it also indicates that ROAR outperforms PARAMILS on the training set (p = 1.9×10−10).

This discrepancy in training set performance arises from the fact that the Wilcoxon test considers

the median paired performance difference, not PAR-10 (i.e., mean) performance. The correlation

plots of Figure 6.9 show that the ROAR design performs better than the PARAMILS design on easier

instances but slightly worse on harder instances (this is also visible, but less obvious, in the overlaid

SCDs of Figure 6.8), and that the training set has slightly more hard instances than the test set. This

is a good example of why statistical tests should be used with care.

Despite the performance differences observed between HYDRA-∗with PARAMILS versus ROAR

on the runs conducted for this specific per-instance configuration problem instance, we cannot draw

68

 10

 100

 1000

 10 100 1000

H
yd

ra
-D

F4
 R

O
AR

 a
lg

or
ith

m
 2

Hydra-DF4 PILS algorithm 2

 10

 100

 1000

 10 100 1000

H
yd

ra
-D

F4
 R

O
AR

 a
lg

or
ith

m
 2

Hydra-DF4 PILS algorithm 2

Figure 6.9: Performance correlation between designs found by HYDRA-∗ using ROAR ver-
sus using PARAMILS, for CPLEX on the CL∪REG training (left) and test (right) sets.
Units are PAR-10 (CPU s), including overheads (e.g., model loading and inference). A
Spearman coefficient of ρ = 0.97 (both plots) reflects the correlation seen here.

the conclusion that ROAR is a better choice overall; indeed we suspect (but cannot confirm) that the

differences are simply due to chance—since HYDRA-∗ is randomized, it is possible that PARAM-

ILS might outperform ROAR in another independent HYDRA-∗ run; similarly, it is quite possi-

ble that PARAMILS might outperform ROAR on a different per-instance configuration problem

instance. To be able to make a more conclusive claim, one would need to perform a pairwise perfor-

mance comparison not between the two final HYDRA-∗ designs, but between the two randomized

HYDRA-∗ design procedure variants themselves, using a benchmark set of per-instance configu-

ration problem instances. While in principle HAL supports conducting such an experiment in its

current version, in practice the computational cost of doing so with realistic target algorithms like

CPLEX is prohibitive (recall that evaluating performance on this single per-instance configuration

problem instance just once for each variant took 1.5 CPU years).

69

Chapter 7

Conclusions & Future Work

This thesis has attempted to address several technical challenges commonly encountered when

working with sophisticated empirical methods for analysis and design of high-performance solvers

for hard computational problems. To this end we introduced HAL, a versatile and extensible envi-

ronment for empirical algorithmics. It is built upon a novel conceptual framework that formalizes

notions of meta-algorithmic problems and procedures, and provides a unified basis for studying a

wide variety of empirical design and analysis techniques. HAL facilitates the automated applica-

tion of empirical techniques involving computationally intensive analysis and design tasks, and it

supports the development and critical assessment of novel empirical analysis and design procedures.

The current implementation of our framework, HAL 1.1, can be used to analyze and design

algorithms for arbitrary target problems. HAL 1.1 can execute experiments on local machines, re-

mote machines, or distributed across compute clusters; it offers fine-grained experiment monitoring

and control before, during, and after execution; and it automatically archives and efficiently reuses

experimental data. HAL 1.1 also provides a versatile API for developing and deploying new meta-

algorithmic analysis and design procedures. This API was used to develop plugins that together

provide eight state-of-the-art procedures for solving three performance analysis problems (single-

algorithm analysis; pairwise comparison; k-way comparison) and three algorithm design problems

(algorithm configuration with PARAMILS, GGA, and ROAR; per-instance portfolio-based selec-

tion with ∗ZILLA; per-instance configuration with HYDRA-∗). We demonstrated all eight proce-

dures in experiments involving prominent solvers for SAT (SPEAR [3]) and MIP (GUROBI [29]

and CPLEX [45]), and illustrated the process of building upon existing procedures to develop more

complex ones by describing how our HYDRA-∗ procedure for per-instance configuration integrates

subsidiary procedures for algorithm configuration and per-instance portfolio-based selection.

We believe that automated meta-algorithmic design techniques have tremendous potential to

70

influence algorithm design in the future, and we hope the community finds our work useful as one of

the first efforts to collectively describe and support these techniques. In the months since HAL was

initially released, we have indeed seen promising results: three independent publications involving

researchers from our group have used HAL to conduct automated design experiments [44, 79, 21],

and in this thesis we use it to provide the first fully-automated, domain-independent procedures for

per-instance portfolio-based selection and per-instance configuration, two high-profile computer-

aided design techniques.

Our group continues to actively develop, extend, and employ the HAL framework. Several new

meta-algorithmic procedures are under development, including advanced procedures for model-

based algorithm configuration and for bootstrapped single-algorithm analysis. As we gain experi-

ence developing these procedures with HAL, we continue to refine the HAL API, making it more

powerful and more intuitive to use. We have also begun to develop useful general-purpose tools for

meta-algorithmic developers, including components for building predictive models that are useful,

for example, to simulate surrogate target algorithms that promise to greatly improve the efficiency

with which meta-algorithmic procedures themselves can be evaluated. We are also actively im-

proving core infrastructure performance and functionality, for example optimizing data manager

query efficiency and adding support for algorithm execution in a wider variety of common high-

performance computing environments. Finally, we continue to focus on streamlining the end-user

experience through improvements to HAL’s documentation and web interface.

As HAL continues to improve and to support successful applications, and as meta-algorithmic

analysis and design techniques themselves gain traction, we anticipate a demand for tighter inte-

gration between HAL and the integrated development environments used to implement the target

algorithms upon which it operates. This integration would facilitate application of automated meta-

algorithmic techniques from the very beginning of the algorithm design process (instead of after

initial implementation, as in the experiments of this thesis), and could support computer-aided al-

gorithm design techniques wherein algorithms are explicitly designed for optimization by meta-

algorithmic tools (see, e.g., [33, 53, 34, 78]). Ultimately, we hope that HAL will help to inspire

many more researchers to adopt state-of-the-art computer-aided design methods and empirical best

practices in their own work.

71

Bibliography

[1] R. K. Ahuja and J. B. Orlin. Use of representative operation counts in computational testing
of algorithms. Informs Journal on Computing, 8(3):318–330, 1996. → pages 6

[2] C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for the
automatic configuration of algorithms. In Proceedings of the 15th International Conference
on Principles and Practice of Constraint Programming, pages 142–157. Springer Verlag,
2009. → pages 2, 11, 26, 43, 84

[3] D. Babić. Exploiting Structure for Scalable Software Verification. PhD thesis, Department of
Computer Science, University of British Columbia, Vancouver, Canada, 2008. → pages 46,
70

[4] P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for the F-race algorithm:
Sampling design and iterative refinement. In Proceedings of the 4th International Workshop
on Hybrid Metaheuristics, pages 108–122. Springer Verlag, 2007. → pages 2, 11, 25

[5] A. Balint, D. Gall, G. Kapler, R. Retz, D. Diepold, and S. Gerber. EDACC: An advanced
platform for the experiment design, administration, and analysis of empirical algorithms. In
Proceedings of the 5th International Conference on Learning and Intelligent Optimization (to
appear). Springer Verlag, 2011. URL http://sourceforge.net/projects/edacc. → pages 9

[6] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. Sequential parameter optimization. In
IEEE Congress on Evolutionary Computation, pages 773–780. IEEE, 2005. → pages 26

[7] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 11–18. Morgan Kaufmann Publishers Inc., 2002. → pages 2, 11, 25

[8] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stutzle. F-race and iterated F-race: An
overview. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors,
Empirical Methods for the Analysis of Optimization Algorithms, chapter 13, pages 311–336.
Springer, 2010. → pages 11, 25

[9] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-heuristics: an
emerging direction in modern search technology. In Handbook of Metaheuristics, pages
457–474. Kluwer Academic Publishers, 2003. → pages 10

72

http://sourceforge.net/projects/edacc

[10] E. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa, S. Petrovic, and J. Vazquez-Rodriguez.
HyFlex: A flexible framework for the design and analysis of hyper-heuristics. In Proceedings
of the 4th Multidisciplinary International Scheduling Conference: Theory and Applications,
pages 790–797, 2009. → pages 8, 10

[11] M. Chiarandini, C. Fawcett, and H. H. Hoos. A modular multiphase heuristic solver for post
enrollment course timetabling (extended abstract). In Proceedings of the 7th International
Conference on the Practice and Theory of Automated Timetabling, 2008. → pages 1, 11

[12] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell,
S. Mancoridis, K. Rees, M. Roper, and M. Shepperd. Reformulating software engineering as
a search problem. In IEEE Proceedings - Software, volume 150, pages 161–175, 2003. →
pages 10

[13] P. R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, 1995. → pages 1, 6

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2nd edition, 2001. → pages 9, 15

[15] H. Crowder, R. S. Dembo, and J. M. Mulvey. On reporting computational experiments with
mathematical software. ACM Transactions on Mathematical Software, 5:193–203, 1979. →
pages 1, 6

[16] C. Demetrescu, A. Goldberg, and D. Johnson, editors. Data Depth: Shortest Path
Computations: Ninth DIMACS Challenge, 2009. AMS. → pages 5

[17] L. Di Gaspero and A. Schaerf. EasyLocal++: An object-oriented framework for the flexible
design of local-search algorithms. Software - Practice and Experience, 33:733–765, 2003. →
pages 10

[18] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959. → pages 10

[19] DIMACS – Center for Discrete Mathematics & Theoretical Computer Science. DIMACS
implementation challenges, 2011. URL http://http://dimacs.rutgers.edu/Challenges. → pages
5

[20] R. Ewald and A. M. Uhrmacher. Automating the runtime performance evaluation of
simulation algorithms. In Proceedings of the 2009 Winter Simulation Conference, WSC ’09,
pages 1079–1091, 2009. → pages 8

[21] C. Fawcett, M. Helmert, and H. H. Hoos. FD-Autotune: Domain-specific configuration using
Fast Downward. In Proceedings of the 3rd Workshop on Planning and Learning, Co-located
with ICAPS 2011, 2011. → pages iii, 11, 71

[22] A. Fukunaga. Automated discovery of composite SAT variable selection heuristics. In
Proceedings of the National Conference on Artificial Intelligence, pages 641–648. AAAI
Press, 2002. → pages 11

73

http://http://dimacs.rutgers.edu/Challenges

[23] M. Gagliolo and J. Schmidhuber. Dynamic algorithm portfolios. In Ninth International
Symposium on Artificial Intelligence and Mathematics, 2006. → pages 12

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995. → pages 14, 18

[25] A. Gerevini, A. Saetti, and M. Vallati. An automatically configurable portfolio-based planner
with macro-actions: PbP. In Proceedings of the 19th International Conference on Automated
Planning and Scheduling, pages 191–199. AAAI Press, 2009. → pages 12

[26] F. Glover and G. Kochenberger, editors. Handbook of Metaheuristics. Kluwer Academic
Publishers, Jan. 2003. → pages 10

[27] C. P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence, 126(1-2):43–62,
2001. → pages 12

[28] C. P. Gomes, W. J. V. Hoeve, and A. Sabharwal. Connections in networks: A hybrid
approach. In Proceedings of the 5th International Conference on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming, pages
303–307. Springer Verlag, 2008. → pages 63

[29] Z. Gu, E. Rothberg, R. Bixby, et al. Gurobi Optimizer 3.01. Gurobi Optimization, 2010.
URL http://www.gurobi.com. → pages 44, 70

[30] A. Guerri and M. Milano. Learning techniques for automatic algorithm portfolio selection. In
Proceedings of the 16th European Conference on Artificial Intelligence, pages 475–479. IOS
Press, 2004. → pages 12

[31] W. E. Hart, J. W. Berry, R. T. Heaphy, and C. A. Phillips. EXACT: The experimental
algorithmics computational toolkit. In Proceedings of the 2007 Workshop on Experimental
Computer Science. ACM, 2007. → pages 9

[32] S. Hert, T. Polzin, L. Kettner, and G. Schäfer. ExpLab: A tool set for computational
experiments. Technical Report MPI-I-2002-1-004, Max-Planck-Institut für Informatik, 2002.
URL http://explab.sourceforge.net/. → pages 8

[33] H. H. Hoos. Computer-aided design of high-performance algorithms. Technical Report
TR-2008-16, University of British Columbia, Computer Science, 2008. → pages iii, 1, 11, 71

[34] H. H. Hoos. Programming by optimisation. Technical Report TR-2010-14, University of
British Columbia, Computer Science, 2010. → pages 71

[35] H. H. Hoos and T. Stützle. Stochastic Local Search—Foundations and Applications. Morgan
Kaufmann Publishers, USA, 2004. URL http://www.sls-book.net. → pages 1, 2, 6, 10, 83

[36] B. A. Huberman, R. M. Lukose, and T. Hogg. An economics approach to hard computational
problems. Science, 265:51–54, 1997. → pages 12

74

http://www.gurobi.com
http://explab.sourceforge.net/
http://www.sls-book.net

[37] F. Hutter. Automating the Configuration of Algorithms for Solving Hard Computational
Problems. PhD thesis, Department of Computer Science, University of British Columbia,
Vancouver, Canada, 2009. → pages 20

[38] F. Hutter, D. Babić, H. H. Hoos, and A. Hu. Boosting verification by automatic tuning of
decision procedures. In Proceedings of 7th International Conference on Formal Methods in
Computer-Aided Design, pages 27–34. IEEE Computer Society, 2007. → pages 1, 11, 46, 47,
58

[39] F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration based on local
search. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pages
1152–1157. AAAI Press, 2007. → pages iv, 2, 11, 25, 84

[40] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306, 2009. →
pages iv, 2, 11, 17, 25, 43, 58, 84

[41] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Automated configuration of mixed integer
programming solvers. In Proceedings of the 7th International Conference on Integration of
Artificial Intelligence and Operations Research Techniques in Constraint Programming,
pages 186–202. Springer Verlag, 2010. → pages 1, 11, 63, 64, 68

[42] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Tradeoffs in the empirical evaluation of
competing algorithm designs. Annals of Mathematics and Artificial Intelligence, Special
Issue on Learning and Intelligent Optimization, pages 1–25, 2010. → pages 20, 23

[43] F. Hutter, H. H. Hoos, K. Leyton-Brown, and K. Murphy. Time-bounded sequential
parameter optimization. In Proceedings of the 4th International Conference on Learning and
Intelligent Optimization, pages 281–298. Springer Verlag, 2010. → pages 26

[44] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Proceedings of the 5th International Conference on
Learning and Intelligent Optimization (to appear). Springer Verlag, 2011. → pages iv, 11,
26, 44, 71, 85

[45] International Business Machines Corp. IBM ILOG CPLEX Optimizer 12.1, 2009. URL
http://www.ibm.com/software/integration/optimization/cplex-optimizer. → pages 44, 70

[46] M. Järvisalo, D. Le Berre, and O. Roussel. SAT Competition 2011, 2002. URL
http://www.satcompetition.org/2011. → pages 12

[47] D. Johnson and C. McGeoch, editors. Network Flows and Matching: First DIMACS
Implementation Challenge, 1993. AMS. → pages 5

[48] D. Johnson and L. McGeoch. Experimental analysis of heuristics for the stsp. In The
Traveling Salesman Problem and its Variations, pages 369–443. Kluwer Academic
Publishers, 2002. → pages 5

75

http://www.ibm.com/software/integration/optimization/cplex-optimizer
http://www.satcompetition.org/2011

[49] D. Johnson and M. Trick, editors. Cliques, Coloring and Satisfiability: Second DIMACS
Implementation Challenge, 1996. AMS. → pages 5

[50] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black
box functions. Journal of Global Optimization, 13:455–492, 1998. → pages 26

[51] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,
2001–. URL http://www.scipy.org. → pages 8

[52] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. ISAC – instance-specific algorithm
configuration. In Proceedings of the 19th European Conference on Artificial Intelligence,
pages 751–756. IOS Press, 2010. → pages 2, 11, 12, 30, 34

[53] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown. SATenstein: Automatically
building local search SAT solvers from components. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence, pages 517–524. Morgan Kaufmann Publishers
Inc., 2009. → pages 11, 71

[54] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co.,
Inc., 2005. → pages 9

[55] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for
combinatorial auction algorithms. In Proceedings of the 2nd ACM Conference on Electronic
Commerce, pages 66–76. ACM, 2000. → pages 63

[56] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and Y. Shoham. A portfolio
approach to algorithm selection. In Proceedings of the 9th International Conference on
Principles and Practice of Constraint Programming, pages 899–903. Springer Verlag, 2003.
→ pages 12

[57] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Empirical hardness models: Methodology
and a case study on combinatorial auctions. Journal of the ACM, 56(4):1–52, 2009. → pages
63

[58] Lindawati, H. C. Lau, and D. Lo. Instance-based parameter tuning via search trajectory
similarity clustering. In Proceedings of the 5th International Conference on Learning and
Intelligent Optimization (to appear). Springer Verlag, 2011. → pages 2, 12, 30, 34

[59] Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann. Non-model-based algorithm
portfolios for SAT (extended abstract). In Proceedings of the 14th International Conference
on Theory and Applications of Satisfiability Testing, pages 369–370. Springer Verlag, 2011.
→ pages 2, 12, 28

[60] MathWorks, Ltd. MATLAB, 2011. URL http://www.matlab.com. → pages 8

[61] H. D. Mittelmann. Decision tree for optimization software, 2010. URL
http://plato.asu.edu/guide.html. → pages 44, 45

76

http://www.scipy.org
http://www.matlab.com
http://plato.asu.edu/guide.html

[62] H. D. Mittelmann and A. Pruessner. A server for automated performance analysis of
benchmarking data. Optimization Methods and Software, 21(1):105–120, 2006. → pages 8

[63] C. Nell, C. Fawcett, H. H. Hoos, and K. Leyton-Brown. HAL: A framework for the
automated analysis and design of high-performance algorithms. In Proceedings of the 5th
International Conference on Learning and Intelligent Optimization (to appear). Springer
Verlag, 2011. URL http://hal.cs.ubc.ca. → pages iii, 41, 51, 65

[64] E. Nudelman, K. Leyton-Brown, A. Devkar, Y. Shoham, and H. H. Hoos. Understanding
random SAT: Beyond the clauses-to-variables ratio. In Proceedings of the 10th International
Conference on Principles and Practice of Constraint Programming, pages 438–452, 2004. →
pages 2, 27, 57, 58, 85

[65] I. H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations
Research, 63:511–623, 1996. → pages 10

[66] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic programming. Published
via http://lulu.com, 2008. URL http://www.gp-field-guide.org.uk. (With contributions by J. R.
Koza). → pages 11

[67] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36:1389–1401, 1957. → pages 10

[68] R Development Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, 2011. URL http://www.r-project.org. → pages 8

[69] J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976. →
pages 12

[70] D. Riehle and T. Gross. Role model based framework design and integration. In Proceedings
of the 13th ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 117–133. ACM, 1998. → pages 34

[71] L. Simon and P. Chatalic. SatEx: A web-based framework for SAT experimentation. In
Electronic Notes in Discrete Mathematics, page 3. Elsevier Science Publishers, 2001. →
pages 8

[72] L. Simon, D. L. Berre, and E. A. Hirsch. The SAT 2002 Competition, 2002. URL
http://www.satcompetition.org. → pages 8

[73] M. Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 1st
edition, 1996. → pages 15

[74] D. R. Smith. KIDS: A semiautomatic program development system. IEEE Transactions on
Software Engineering, 16:1024–1043, 1990. → pages 10

[75] M. J. Streeter and S. F. Smith. New techniques for algorithm portfolio design. In Proceedings
of the 24th Conference on Uncertainty in Artificial Intelligence, pages 519–527. AUAI Press,
2008. → pages 12

77

http://hal.cs.ubc.ca
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.r-project.org
http://www.satcompetition.org

[76] D. A. D. Tompkins and H. H. Hoos. UBCSAT: An implementation and experimentation
environment for SLS algorithms for SAT and MAX-SAT. In SAT, pages 306–320. Springer
Verlag, 2004. → pages 8

[77] D. A. D. Tompkins and H. H. Hoos. Dynamic scoring functions with variable expressions:
New SLS methods for solving SAT. In Proceedings of the 13th International Conference on
Theory and Applications of Satisfiability Testing, pages 278–292. Springer Verlag, 2010. →
pages 11

[78] D. A. D. Tompkins, A. Balint, and H. H. Hoos. Captain Jack: New variable selection
heuristics in local search for SAT. In Proceedings of the 14th International Conference on
Theory and Applications of Satisfiability Testing, pages 302–316. Springer Verlag, 2011. →
pages 1, 11, 71

[79] M. Vallati, C. Fawcett, A. E. Gerevini, H. H.Hoos, and A. Saetti. Generating fast
domain-optimized planners by automatically conguring a generic parameterised planner. In
Proceedings of the 3rd Workshop on Planning and Learning, Co-located with ICAPS 2011,
2011. → pages iii, 71

[80] S. Westfold and D. Smith. Synthesis of efficient constraint-satisfaction programs. The
Knowledge Engineering Review, 16(1):69–84, 2001. → pages 10

[81] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, 2008. → pages 1,
2, 12, 18, 27, 52, 57, 58, 85

[82] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla2009: an automatic algorithm
portfolio for SAT. Solver description, SAT competition 2009, 2009. → pages 52

[83] L. Xu, H. H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring algorithms for
portfolio-based selection. In Proceedings of the 24th AAAI Conference on Artificial
Intelligence, pages 201–216. AAAI Press, 2010. → pages 2, 11, 12, 29, 34, 55, 58, 60, 85

[84] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Hydra-MIP: Automated algorithm
configuration and selection for mixed integer programming. In Proceedings of the 18th
RCRA International Workshop on Experimental Evaluation of Algorithms for Solving
Problems with Combinatorial Explosion, 2011. → pages iv, 2, 11, 12, 28, 29, 51, 57, 58, 61,
63, 64, 65, 66, 67, 85

78

Appendix A

HAL 1.1 User Reference

This reference is designed to help new users come up to speed with HAL 1.1 as quickly as possible,

and to act as a reference for the many meta-algorithmic procedures it contains. Updated versions of

this guide will be maintained at http://hal.cs.ubc.ca.

A.1 Installation

Basic installation

• download the full zip package from http://hal.cs.ubc.ca.

• extract the zip to a working directory

• double click the hal <version>.jar file, or type java -jar hal <version>.jar

from the command line to start the web server

• navigate to http://<machine address>:8080/hal to see the web UI

Note that the default port of 8080 can be changed by adding the command-line argument -p

<port> when starting HAL, or by editing the hal.json file (below).

Suggested next steps:

• download the sample experiment package; import it using the HAL web interface, and try

analysing the provided sample algorithm (note the algorithm requires Linux) to ensure the

installation is working

• try defining your own algorithm and instance set, and analysing it

79

http://hal.cs.ubc.ca
http://hal.cs.ubc.ca

• try using other plugins

Setting HAL options

After the first start of HAL, a file called hal.json will be created. Basic settings can be modified

by editing this file.

RECOMMENDED: if you have access to a MySQL server, use it instead of the default SQLite

database. SQLite will likely cause errors if you attempt to run an experiment where more than one

process accesses the same database simultaneously, and can cause issues with automatic refreshing

in the GUI.

To do so, install the MySQL plugin (see below), and then edit the hal.json file; change:

"database":"jdbc:sqlite:hal.db"

to something like:

"database":"jdbc:mysql://<user>@<mysql.server.url>:<port>/hal db"

We also recommend different HAL users maintain different HAL databases; you may even find

it useful to maintain separate databases for separate “sets” of experiments. Import/export function-

ality can be used to quickly populate a database with required instances, algorithms, etc.

Plugin installation

To install a new meta-algorithmic procedure in HAL, simply place the corresponding .jar file

into the plugins folder; no additional configuration is required. To upgrade a plugin, replace the

existing plugin with the newer one. You must also delete the correspondingly-named subfolder in

the pluginlib folder, if it exists.

Note that HAL must not be running when plugins are installed or upgraded.

A.2 Running Experiments

The HAL web user interface is designed to be intuitive; thus, in this section we provide guidance for

some of the subtleties of the system, but do not provide step-by-step usage instructions. Information

about the various settings for each of the meta-algorithmic procedures supported in HAL can be

found in Section A.3 and A.4.

A.2.1 Instance Sets

To specify an instance set, use the Create New InstanceDistribution wizard. Notes for use:

80

• distribution name must be unique

• tags are used to associate problem instances with compatible algorithms (see below), but are

otherwise completely up to the user

• an instance is exportable if it is completely-defined by a single file

• the file path must be valid on the system running HAL, not the system running the web

browser

• the expression for matching files is a regular expression, not a command-line-style wildcard

expression. For example, “.*” matches all files, not “*”.

A.2.2 Algorithms

To add a new algorithm for use in HAL, use the ”Define a new algorithm” wizard. Notes for use:

1. Algorithm specification:

• The name+version combination must be unique in the database.

• Supported instance tag sets are used to restrict which algorithms can be run on particular

instances. A tag set such as {cnf, 3sat} marks the algorithm as compatible with any

instance with both “cnf” and “3sat” tags. An algorithm can have multiple instance tag

sets; at least one of them must be satisfied by an instance in order for it to be considered

compatible. If no tags are specified, the HAL will assume the algorithm is compatible

with all instances.

• Advanced properties: deterministic: straightforward; note that if your algorithm has a

seed as an input, mark it as not deterministic, and explicitly identify the seed parameter

(below).

• Advanced properties: exportable: An algorithm is exportable if and only if HAL can

compress the entire directory tree rooted at the executable file, extract it on a different

machine, and the algorithm will work on that second machine.

• Advanced properties: cutoff-independence: Set this to true if the algorithm’s behaviour

will not change if cutoff inputs are changed but all other inputs remain the same. HAL

uses this property to decide whether it can infer cutoffs or completions from previously-

performed runs.

• Executable: should be the first command to run the algorithm; if the algorithm is an

interpreted script this might be python or ruby. Note that this path must exist on the

81

system running HAL, not the system running the browser that is interfacing with HAL

(if the two differ). A utility is provided to upload resources to the server system from

the UI.

• Command-line argument string: see example in the UI. Note that all input variables

(specified like $name$ in the command string) will need to be further defined in later

steps. (NOTE: HAL does not currently support generating input files for target algo-

rithms.)

• Algorithm output specification. Format is the same as the command-line argument spec-

ification; and as in that case, all identified output variables will require further specifi-

cation. HAL will use this string to parse outputs from the standard output and error

streams of the algorithm during execution.

2. Identifying configurable parameters:

• A configurable parameter is a parameter whose value may be tuned by a configurator to

optimize performance; all “other” settings will be left unchanged.

3. Specifying input domains:

• For every input parameter marked as configurable, the domain of valid values must be

specified. For other inputs, the “semantic default” can be used, or the domain can be

specified manually.

• Conditionalities between parameters can be specified, where conditionality refers to

”activation” of parameters. For example, parameter X can be marked as active only if

parameter Y takes some particular value. Note that HAL does not support domains that

change depending on the values of other parameters (for example, x is in the domain [1,

value of y]).

• Prohibited configurations are similarly specified.

A.3 Analysis Procedures

In this section we briefly describe the meta-algorithmic procedures available as plugins for HAL

1.1, itemize the parameters, settings, and outputs of each (as visible in the user interface), and note

any other important implementation-specific considerations.

82

A.3.1 SCD-Based Analysis

This comprehensive approach to single-algorithm analysis takes as input a single-algorithm analysis

instance (containing a single target algorithm, a set of benchmark instances, and a performance

metric) and additional settings including a maximum number of runs per target instance, a maximum

CPU time per target run, a maximum number of total target runs, and a maximum aggregate runtime

budget. It collects runtime data for the target algorithm on the instance distribution (in parallel, when

specified) until a stopping criterion is satisfied. Summary statistics are computed over the instance

distribution, and a solution cost distribution plot (see, e.g., Ch. 4 of [35]) is produced to illustrate

(median) performance across all target runs on each instance.

Inputs/outputs of the SCD-Based Analysis procedure are listed in Table A.1.

A.3.2 Comprehensive Pairwise Comparison

The Comprehensive Pairwise Comparison procedure performs SCD-Based Analysis on two given

algorithms, generates a scatter plot illustrating paired performance across the given instance set, and

performs Wilcoxon signed-rank and Spearman rank correlation tests. The Wilcoxon signed-rank test

determines whether the median of the paired performance differences between the two algorithms

across the instance set is significantly different from zero; if so, it identifies the better-performing

algorithm. The Spearman rank correlation test determines whether a significant monotonic perfor-

mance correlation exists between them. Both tests are non-parametric, and so appropriate for the

non-Gaussian performance data frequently encountered in empirical algorithmics.

Inputs/outputs of the Comprehensive Pairwise Comparison procedure are listed in Table A.2.

A.3.3 Comprehensive k-way Comparison

The Comprehensive k-way Comparison procedure performs SCD-Based Analysis for each of the

k provided algorithms. It performs a Friedman test to determine whether any of the k algorithms

significantly outperforms any of the others; if so, it performs Comprehensive Pairwise Comparison

between the best-performing angorithm and the remaining algorithms, and identifies all algorithms

that do not exhibit statistically significantly worse performance.

Inputs/outputs of the Comprehensive k-way Comparison procedure are listed in Table A.3.

83

A.4 Design Procedures

A.4.1 PARAMILS

ParamILS [39, 40] is a model-free configuration procedure based on an iterated local search over the

space of possible parameter configurations. Its most commonly-used variant, FocusedILS, aggres-

sively limits computational resource usage by capping algorithm runs based on the performance of

the best incumbent design at any particular point during its sequential search process. It also exploits

knowledge of parameter conditionality (i.e., parameters that only take effect if another parameter

takes a certain value) to improve performance when many conditional parameters corresponding to

parameterized heuristics are present. ParamILS is not limited to small parameter spaces, but any

continuous-valued parameters must be discretized before it can be used. The ParamILS plugin for

HAL implements the FocusedILS variant of ParamILS.

The ParamILS plugin is built on top of version 2.3.5 of the Ruby implementation of ParamILS.

As such, it requires a Ruby interpreter be installed to be used. ParamILS may not support all

custom performance metrics, but works with all metrics included with HAL by default. In particular,

ParamILS only supports metrics with mean or median aggregators, and capping is only supported

for PAR1 and PAR10 CPU time evaluators.

Inputs/outputs of the ParamILS procedure are listed in Table A.4.

A.4.2 GGA

GGA [2] is a model-free configuration procedure based on a genetic algorithm. Like ParamILS, it

is not limited to small parameter spaces; unlike ParamILS, it is able to configure both discrete- and

continuous valued parameters directly. It is also able to exploit a relatively limited form of parameter

conditionality. The author-provided compiled implementation of GGA is highly parallelized, and is

used as the basis for the HAL plugin.

The GGA plugin inherits several limitations from the binary it is based upon. In particular, it

can only be used on 32-bit Linux platforms, and it also requires a Ruby interpreter to be installed.

It will always attempt to run 8 target algorithms in parallel. Finally, it only supports the PAR1

performance metric.

Inputs/outputs of the GGA procedure are listed in Table A.5.

84

A.4.3 ROAR

ROAR is a simple, model-free implementation of the SMBO framework [44] that exploits an ag-

gressive run-capping intensification strategy similar to that used by FocusedILS, and supports large

numbers of both real-valued and discrete parameters, and complex parameter conditionality struc-

tures. ROAR is implemented purely in Java.

Inputs/outputs of the ROAR procedure are listed in Table A.6.

A.4.4 ∗ZILLA

SATZILLA [64, 81] is arguably the most successful application of solving the portfolio-based se-

lection problem for algorithm design. In its original application to SAT, SATZILLA was designed

by learning a performance prediction model for each of the portfolio components (target algorithms

a∈ a) based on a set of SAT features. When SATZILLA is run on a new instance, it extracts features

for that instance, predicts runtimes for each of the portfolio solvers, and executes the one with the

lowest predicted runtime. Subsequent developments have focused on improved performance in real-

world applications (e.g., by avoiding the cost of feature extraction for particularly easy instances,

and by improving robustness to unstable target algorithms), alternative selection models (based on

both classification and regression), and applications to other domains (mixed-integer programming).

In Chapter 6 we generalize and completely automate the design procedure used to build SATZILLA,

making it available for arbitrary problem domains.

The ∗ZILLA procedure is based on the original MATLAB SATZILLA implementation, so it re-

quires an appropriate version of MATLAB or the MATLAB MCR be installed. The default build of

the ∗ZILLA plugin uses MATLAB 7.10 (R2010a) for Linux, as this is the license that was available

to us during development. While the ∗ZILLA plugin is not distributed with the MCR, we are able to

provide it upon request.

∗ZILLA currently only supports performance metric evaluators that are distributive over addi-

tion; i.e. score(run A then run B) = score(run A) + score(run B). This is true of time-like evaluators,

but is only true of solution quality evaluators if the solution quality of a feature extractor is zero or a

failed run is zero. Also, its support for pre-solver selection should usually be disabled for use with

solution quality metrics.

Inputs/outputs of the ∗ZILLA procedure are listed in Table A.7.

A.4.5 HYDRA-∗

HYDRA [83, 84] is a per-instance configuration procedure that, in its initial implementation, itera-

tively used PARAMILS to design new parameterless algorithms for addition to a SATZILLA selec-

85

tion portfolio. HYDRA adds one or more solvers per iteration to its vector of portfolio candidates a
by configuring parameterized algorithm A to optimize performance on instance set S according to

a dynamic performance metric that estimates net contribution to the current portfolio. In this way,

the Hydra procedure is able to achieve robust performance without any a priori knowledge about

the instance distribution other than a suspicion of heterogeneity. The HYDRA-∗ plugin for HAL is a

pure Java implementation of HYDRA that can work with arbitrary procedures for algorithm config-

uration and portfolio-based selection in order to automatically solve the per-instance configuration

problem in a domain-independent manner.

Inputs/outputs of the HYDRA-∗ procedure are listed in Table A.8.

86

Table A.1: Inputs/outputs of the SCD-Based Analysis procedure for HAL 1.1. The bold description text is displayed in the UI.

domain default description

Parameters – none –

Scenario Settings
MAX CPUTIME [0,∞)⊂ R 10300 Run time limit (CPU s) for the entire experiment
SEED [1,231−1]⊂ N 1 Seed used to initialize random number generator
maxParallelRuns [0,263−1]⊂ N 100 Maximum runs to launch in parallel (number of simultaneous target algorithm runs); subject to

parallelization support in the environment used.
MAX RUNLENGTH [0,263−1]⊂ N 1018 The maximum total number of target algorithm runs
combineIdenticalInstances [true, false] true Whether or not to collapse instances with identical hash. Some benchmark sets may inadver-

tently contain duplicate instances. If this setting is set to true, then HAL will only analyse the
algorithm for each unique instance; otherwise, it will analyse for each listed instance which may
skew results.

minOutputInterval [0,∞)⊂ R 60 The minimum logged output interval (s) at which intermediate outputs will be updated in the
database. Final outputs will always be written to the database regardless of this setting.

Other Settings
MAX SUBRUN RUNLENGTH [1,263−1]⊂ N 1018 Subrun runlength limit (steps), used to cap target algorithm runs
MAX SUBRUN CPUTIME [0,∞)⊂ R 60 Subrun time limit (CPU s), used to cap target algorithm runs
RUNS PER INSTANCE [1,263−1]⊂ N 1 Subruns per instance, for analysing randomized algorithms. Note that this is ignored if the target

algorithm is deterministic.

Outputs
SCD Plot Solution cost distribution of performance according to the chosen metric
SOLUTION QUALITY R Solution quality per provided metric across per-instance performance scores
MEAN R Mean performance across per-instance performance scores
STDDEV R Performance standard deviation across per-instance performance scores
Q90 R 90th performance percentile across per-instance performance scores
Q75 R 75th performance percentile across the per-instance performance scores
Q50 R Median performance across per-instance performance scores
Q25 R 25th performance percentile across the per-instance performance scores
Q10 R 10th performance percentile across the per-instance performance scores
RUNLENGTH [0,263−1]⊂ N number of target algorithm runs completed

87

Table A.2: Inputs/outputs of the Comprehensive Pairwise Comparison procedure for HAL 1.1. The bold description text is dis-
played in the UI.

domain default description

Parameters – none –

Scenario Settings
MAX CPUTIME [0,∞)⊂ R 10300 Run time limit (CPU s) for the entire experiment
SEED [1,231−1]⊂ N 1 Seed used to initialize random number generator
maxParallelRuns [0,263−1]⊂ N 100 Maximum runs to launch in parallel (number of simultaneous target algorithm runs); subject to

parallelization support in the environment used.
MAX RUNLENGTH [0,263−1]⊂ N 1018 The maximum total number of target algorithm runs
combineIdenticalInstances [true, false] true Whether or not to collapse instances with identical hash. Some benchmark sets may inadver-

tently contain duplicate instances. If this setting is set to true, then HAL will only analyse the
algorithm for each unique instance; otherwise, it will analyse for each listed instance which may
skew results.

minOutputInterval [0,∞)⊂ R 60 The minimum logged output interval (s) at which intermediate outputs will be updated in the
database. Final outputs will always be written to the database regardless of this setting.

Other Settings
MAX SUBRUN RUNLENGTH [1,263−1]⊂ N 1018 Subrun runlength limit (steps), used to cap target algorithm runs
MAX SUBRUN CPUTIME [0,∞)⊂ R 60 Subrun time limit (CPU s), used to cap target algorithm runs
RUNS PER INSTANCE [1,263−1]⊂ N 1 Subruns per instance, for analysing randomized algorithms. Note that this is ignored if the target

algorithm is deterministic.

Outputs
SCD OVERLAY Plot Solution cost distributions of performance according to the chosen metric; algorithms overlaid
SCATTER Plot Correlation plot of performance according to the chosen metric for the two algorithms
WILCOXON WINNER ParameterlessAlgorithm Target algorithm indicated by Wilcoxon test as having higher performance
WILCOXON W [0,263−1]⊂ N Wilcoxon signed-rank test W statistic
WILCOXON P [0,1]⊂ R p-value indicating statistical significance of Wilcoxon W
SPEARMAN RHO [−1,1]⊂ R ρ; Spearman correlation statistic
SPEARMAN P [0,1]⊂ R p-value indicating statistical significance of Spearman ρ

SCD 1 Plot Alg. 1 solution cost distribution of performance according to the chosen metric
SOLUTION QUALITY 1 R Alg. 1 solution quality per provided metric across per-instance performance scores
MEAN 1 R Alg. 1 mean performance across per-instance performance scores
STDDEV 1 R Alg. 1 performance standard deviation across per-instance performance scores

(continued on next page. . .)

88

Table A.2 – continued

Q90 1 R Alg. 1 90th performance percentile across per-instance performance scores
Q75 1 R Alg. 1 75th performance percentile across the per-instance performance scores
Q50 1 R Alg. 1 median performance across per-instance performance scores
Q25 1 R Alg. 1 25th performance percentile across the per-instance performance scores
Q10 1 R Alg. 1 10th performance percentile across the per-instance performance scores
SCD 2 Plot Alg. 2 solution cost distribution of performance according to the chosen metric
SOLUTION QUALITY 2 R Alg. 2 solution quality per provided metric across per-instance performance scores
MEAN 1 R Alg. 2 mean performance across per-instance performance scores
STDDEV 2 R Alg. 2 performance standard deviation across per-instance performance scores
Q90 2 R Alg. 2 90th performance percentile across per-instance performance scores
Q75 2 R Alg. 2 75th performance percentile across the per-instance performance scores
Q50 2 R Alg. 2 median performance across per-instance performance scores
Q25 2 R Alg. 2 25th performance percentile across the per-instance performance scores
Q10 2 R Alg. 2 10th performance percentile across the per-instance performance scores
RUNLENGTH [0,263−1]⊂ N number of target algorithm runs completed

89

Table A.3: Inputs/outputs of the Comprehensive k-way Comparison procedure for HAL 1.1. The bold description text is displayed
in the UI.

domain default description

Parameters – none –

Scenario Settings
MAX CPUTIME [0,∞)⊂ R 10300 Run time limit (CPU s) for the entire experiment
SEED [1,231−1]⊂ N 1 Seed used to initialize random number generator
SIGNIFICANCE [0,1]⊂ R 0.05 Significance level α used to interpret the Friedman and Wilcoxon tests
maxParallelRuns [0,263−1]⊂ N 100 Maximum runs to launch in parallel (number of simultaneous target algorithm runs); subject to

parallelization support in the environment used.
MAX RUNLENGTH [0,263−1]⊂ N 1018 The maximum total number of target algorithm runs
combineIdenticalInstances [true, false] true Whether or not to collapse instances with identical hash. Some benchmark sets may inadver-

tently contain duplicate instances. If this setting is set to true, then HAL will only analyse the
algorithm for each unique instance; otherwise, it will analyse for each listed instance which may
skew results.

minOutputInterval [0,∞)⊂ R 60 The minimum logged output interval (s) at which intermediate outputs will be updated in the
database. Final outputs will always be written to the database regardless of this setting.

Other Settings
MAX SUBRUN RUNLENGTH [1,263−1]⊂ N 1018 Subrun runlength limit (steps), used to cap target algorithm runs
MAX SUBRUN CPUTIME [0,∞)⊂ R 60 Subrun time limit (CPU s), used to cap target algorithm runs
RUNS PER INSTANCE [1,263−1]⊂ N 1 Subruns per instance, for analysing randomized algorithms. Note that this is ignored if the target

algorithm is deterministic.

Outputs
SCD OVERLAY Plot Solution cost distributions of performance according to the chosen metric; algorithms overlaid
FRIEDMAN Q [0,263−1]⊂ N Friedman test Q statistic
FRIEDMAN P [0,1]⊂ R p-value indicating statistical significance of Friedman Q
WILCOXON WINNERS ParameterlessAlgorithmm; m≤ k Target algorithms having performance indistinguishable from the best, per Wilcoxon test
WILCOXON WS [0,263−1]⊂ N Per-algorithm Wilcoxon signed-rank test W statistics
WILCOXON PS [0,1]⊂ R p-values indicating statistical significance of Wilcoxon W s
SOLUTION QUALITIES Rk Per-algorithm solution quality per provided metrics across per-instance performance scores
MEANS Rk Per-algorithm mean performances across per-instance performance scores
STDDEVS Rk Per-algorithm performance standard deviations across per-instance performance scores
Q90S Rk Per-algorithm 90th performance percentiles across per-instance performance scores

(continued on next page. . .)

90

Table A.3 – continued

Q75S Rk Per-algorithm 75th performance percentiles across the per-instance performance scores
Q50S Rk Per-algorithm median performances across per-instance performance scores
Q25S Rk Per-algorithm 25th performance percentiles across the per-instance performance scores
Q10S Rk Per-algorithm 10th performance percentiles across the per-instance performance scores
RUNLENGTHS [0,263−1]k ⊂ Nk number of runs completed for each target algorithm

91

Table A.4: Inputs/outputs of the ParamILS procedure for HAL 1.1. The bold description text is displayed in the UI.

domain default description

Parameters – none –

Scenario Settings
domainDiscretizationFactor [0,263−1]⊂ N 5 Number of discrete values to discretize each continuous domain into. Note that large discrete

valued domains are not re-discretized.
MAX CPUTIME [0,∞)⊂ R 86400 Run time limit (CPU s) for the entire experiment
SEED [1,231−1]⊂ N 1 Seed used to initialize random number generator
domainDiscretizationFactor [0,263−1]⊂ N 5 Number of discrete values to discretize each continuous domain into. Note that large discrete

valued domains are not re-discretized.
maxEvalsPerConfig [0,263−1]⊂ N 2000 The maximum number of runs per candidate configuration
MAX RUNLENGTH [0,263−1]⊂ N 1018 The maximum total number of target algorithm runs
resampleInstances [true, false] true Whether to resample instances (with replacement) when constructing an ordered list of (instance,

seed) pairs for training. If false, order will follow iteration order of provided InstanceDistribution
trainingSetSize [0,263−1]⊂ N 2000 The number of distinct (instance, seed) pairs to use as a training set for configuration
stopOnTies [true, false] true Whether to discard candidate parameter settings that initially tie the current incumbent in terms of

performance, or to continue investigating on further instances. Note that parameter settings that
are initially outperformed by the incumbent are always discarded. Useful for parameter spaces
with many plateaus.

Other Settings
MAX SUBRUN RUNLENGTH [1,263−1]⊂ N 1018 Subrun runlength limit (steps), used to cap target algorithm runs
MAX SUBRUN CPUTIME [0,∞)⊂ R 60 Subrun time limit (CPU s), used to cap target algorithm runs

Outputs
DESIGN ParameterlessAlgorithm The algorithm design found by the design procedure
SOLUTION QUALITY R Estimated solution quality of the output design on the training set
incumbentRuns [0,∞)⊂ R number of runs used to estimate output design’s performance
incumbentTime [0,∞)⊂ R total CPU time spent running the output design
incumbentCutoff [0,∞)⊂ R runtime cutoff associated with the output design

92

Table A.5: Inputs/outputs of the GGA procedure for HAL 1.1. The bold description text is displayed in the UI.

domain default description

Parameters
numRunsStart [1,231−1]⊂ N 5 number of target algorithm runs per individual at generation 0
populationSize [1,231−1]⊂ N 100 number of candidate parameter configurations in the population
numGenerations [1,231−1]⊂ N 100 number of iterations to run the genetic algorithm for
numRunsEnd [1,231−1]⊂ N 0 number of target algorithm runs per individual at last generation; 0 is automatic

Scenario Settings
MAX CPUTIME [0,∞)⊂ R 86400 Run time limit (CPU s) for the entire experiment
SEED [1,231−1]⊂ N 0 Seed used to initialize random number generator
resampleInstances [true, false] true Whether to resample instances (with replacement) when constructing an ordered list of (instance,

seed) pairs for training. If false, order will follow iteration order of provided InstanceDistribution
trainingSetSize [0,263−1]⊂ N 2000 The number of distinct (instance, seed) pairs to use as a training set for configuration

Other Settings
MAX SUBRUN CPUTIME [0,∞)⊂ R 60 Subrun time limit (CPU s), used to cap target algorithm runs

Outputs
DESIGN ParameterlessAlgorithm The algorithm design found by the design procedure
SOLUTION QUALITY R Estimated performance (per provided metric) of the output design on the training set
RUNLENGTH [0,∞)⊂ R total number of target algorithm runs conducted
incumbentTime [0,∞)⊂ R total CPU time spent running the output design

93

Table A.6: Inputs/outputs of the ROAR procedure for HAL 1.1. The bold description text is displayed in the UI.

domain default description

Parameters – none –

Scenario Settings
MAX CPUTIME [0,∞)⊂ R 86400 Run time limit (CPU s) for the entire experiment
SEED [1,231−1]⊂ N 0 Seed used to initialize random number generator

Other Settings
MAX SUBRUN CPUTIME [0,∞)⊂ R 60 Subrun time limit (CPU s), used to cap target algorithm runs

Outputs
DESIGN ParameterlessAlgorithm The algorithm design found by the design procedure
SOLUTION QUALITY R Estimated performance (per provided metric) of the output design on the training set

94

Table A.7: Inputs/outputs of the ∗ZILLA procedure for HAL 1.1

domain default description

Parameters – none –

Scenario Settings
MAX CPUTIME [0,∞)⊂ R 10300 Run time limit (CPU s) for the entire experiment
SEED [1,231−1]⊂ N 1 Seed used to initialize random number generator
NumCrossValidation [0,263−1]⊂ N 10 The number of cross-validation runs to use when training the selector model
MaxPreTime [0,1]⊂ R 0.1 The maximum fraction of the total runtime budget to consider running presolvers

before performing selection
MaxFeatureTime [0,1]⊂ R 0.1 The maximum fraction of the total runtime budget to spend extracting features

before reverting to the backup solver
minTargetRuntime [0,∞)⊂ R 0.005 All target runs with evaluation lower than this get this score
DoPresolverSelection [true, false] false Whether or not to do investigate running presolvers before performing selection.

This can improve performance of the design but is compute-intensive (true is
over 100× slower than false), and is not appropriate for many solution quality
metrics.

PredictLogRuntime [true, false] true Whether to predict log performance instead of performance; true is appropriate
for runtime in most situations.

maxParallelRuns [0,263−1]⊂ N 100 Maximum runs to launch in parallel (number of simultaneous target algorithm
runs)

Predictor String “LinearRegression” Chooses the type of model used to perform selection. Options are “Linear-
Regression”, “DecisionTree”, and “DecisionForest”

Cost String “RAW” Transformation to use on raw performance scores, for decision trees/forests only.
Options include “RAW”, “UNIFORM”, “SQRT”

NumTrees [0,263−1]⊂ N 99 Number of trees for decision forests
VariablesPerDecison [0,263−1]⊂ N 0 number of features to consider in each tree, for random forests only. 0 is auto.
MaxModelSize [1,263−1]⊂ N 20 Maximum model size for linear regression model.
DoQuadraticExpansion [true, false] true Whether or not to do quadratic expansion of features in linear regression
LinearModelSize [1,263−1]⊂ N 30 Default linear regression model size.

Other Settings
MAX SUBRUN CPUTIME [0,∞)⊂ R 60 Subrun time limit (CPU s), used to cap target algorithm runs

Outputs
DESIGN ParameterlessAlgorithm The algorithm design found by the design procedure

(continued on next page. . .)

95

Table A.7 – continued

SOLUTION QUALITY R Estimated performance (per provided metric) of the output design on the training
set

oracleQuality R Estimated performance (per provided metric) of the best possible selector on the
training set

predictedInstanceSelections N|S| Index of the algorithm that would be selected for each of the training instances,
or null if it would be solved by a presolver/backup solver.

predictedInstanceEvaluations Evaluation|S| The predicted evaluation for each of the training instances, if the selector was
run on it

componentQuality R|a| Estimated performance (per provided metric) of each of the portfolio compo-
nents

featureCost R Estimated performance cost of extracting features on the training instance distri-
bution, per provided metric.

96

Table A.8: Inputs/outputs of the HYDRA-∗ procedure for HAL 1.1

domain default description

Parameters – none –

Scenario Settings
MAX CPUTIME [0,∞)⊂ R 10300 Run time limit (CPU s) for the entire experiment
SEED [1,231−1]⊂ N 1 Seed used to initialize random number generator
maxIterations [0,263−1]⊂ N 5 The maximum number of iterations to run
tuningRunsPerIteration [0,263−1]⊂ N 5 The maximum number of iterations to run
solversPerIteration [0,263−1]⊂ N 5 The maximum number of iterations to run
maxTunerCPUTime [0,∞)⊂ R 10300 Run time limit (CPU s) for each algorithm configuration run
maxTuningSolverCPUTime [0,∞)⊂ R 10300 Run time limit (CPU s) for solvers during each algorithm configuration run
maxPBSSolverCPUTime [0,∞)⊂ R 10300 Run time limit (CPU s) for solvers during each selector builder run
includeDefault [true, false] true Whether or not to include the default configuration as a portfolio candidate
configurationProcedure Con f guratorImplementation The algorithm configuration procedure to use.
selectorBuildingProcedure Port f olioBasedSelectorBuilder The portfolio-based selection procedure to use.

Other Settings – none –

Outputs
DESIGN ParameterlessAlgorithm The algorithm design found by the design procedure
SOLUTION QUALITY R Estimated performance (per provided metric) of the output design on the training set
oracleQuality R Estimated performance (per provided metric) of the best possible selector on the training set
componentQuality R|a| Estimated performance (per provided metric) of each of the portfolio components
featureCost R Estimated performance cost of extracting features on the training instance distribution, per pro-

vided metric.
RUNLENGTH [0,∞)⊂ R total number of iterations completed

97

Appendix B

HAL 1.1 Developer Reference

This reference is designed to serve as a technical resource for developers working with the HAL

API. It is not intended as detailed low-level documentation of the kind one might expect from

Javadocs; nor is it intended to provide a complete high-level overview of the system (for that, see

Chapter 4.2). Instead, we explicitly highlight the interfaces (and where important, concrete imple-

mentations) that a developer will typically interact with when performing common tasks using the

HAL 1.1 API. In doing so, we aim to demonstrate in a practical manner how the major subsystems

of HAL are implemented and used.

We first refer the reader to Chapter 4.2 of the main text; in particular, Figure 4.1 illustrates the

composition of HAL’s major subsystems. We then suggest reviewing the sections of this appendix

in the order they appear. The documentation presented here focuses on interactions between com-

ponents of the Experiment Modelling subsystem (Chapter 4.2.1), and of the Execution and Data

Management subsystem (Chapter 4.2.2), as implemented in HAL 1.1. Diagrams were generated

from HAL 1.1 source; all examples are included in the HAL 1.1 source distribution.

B.1 Tutorial: Developing Meta-algorithms with HAL

Perhaps the most common development task undertaken in HAL is the implementation of a new

meta-algorithmic procedure. While Chapter 6 describes the HAL plugin for HYDRA-∗, many fun-

damental tasks in its implementation are delegated to component meta-algorithms for configuration

and portfolio-based selection. Rather than describing the HYDRA-∗ implementation in detail here,

we instead investigate a simple single-algorithm analysis meta-algorithm that provides a more ex-

plicit example of fundamental HAL tasks and programmatic idioms. The concepts explored in this

example apply to all of the meta-algorithmic plugins provided for HAL 1.1, and we encourage

the interested reader to view the source codes for one or more of these after working through this

98

tutorial.

The tutorial is divided into three subsections. First, we design and implement a simple algorithm

analysis procedure; second, we verify this procedure by writing automated unit tests; and third, we

improve our procedure’s parallel performance and extend its functionality. When working though

the first subsection, the reader will develop familiarity with the fundamental components of HAL’s

experiment modelling subsystem as they apply to meta-algorithms. Target algorithms and problem

instances are explored in the second subsection, as is the relationship between meta-algorithms

and execution and data management components. Advanced usage of these HAL components is

discussed in the third subsection.

The goal of this tutorial is to construct a single-algorithm analysis meta-algorithm that investi-

gates whether a randomized target algorithm’s performance on an instance distribution is indepen-

dent of the seed it is provided. In terms of the single-algorithm analysis problem it solves, we seek

to implement:

Inputs: 〈a, I, m〉, where:

a is a parameterless randomized target algorithm

I is a set of target problem instances

m is a performance metric

Outputs: 〈s, t〉, where:

s is a two-dimensional vector of scalars where s0 and s1 are the test statistic and p-value re-

spectively of a Friedman test assessing whether the empirical solution cost distribution of a

on I according to m is drawn from the same underlying distribution regardless of random seed

t is a one-dimensional vector of plots where t0 is an overlay of empirical solution cost distri-

butions for a on I according to m using different seeds

B.1.1 Implementation Basics

In keeping with a first-example tutorial, we begin by implementing a very simple meta-algorithm

that returns a performance metric’s evaluation of a target algorithm run on a set of problem instances.

In particular, our initial procedure will (implicitly) implement the following output specification:

Outputs: 〈s, t〉, where:

s is a one-dimensional vector; s0 is the performance of a on I according to m

t is an empty vector of plots

In Section B.1.3 we modify this implementation to achieve our original goal.

99

Recall from Section 4.2 that meta-algorithmic procedures correspond to MetaAlgorithmImplementations,

which in turn are (abstract) subclasses of AlgorithmImplementations; this relationship is illustrated

in Figure B.2. In HAL, a MetaAlgorithmImplementation describes the inputs and outputs of a

meta-algorithmic procedure, and acts as a factory for instantiating MetaAlgorithmRun objects that

actually execute the procedure on individual MetaProblemInstances.

We begin by creating a new MetaAlgorithmImplementation subclass called ExampleMetaAlgorithm-

Implementation. For reasons discussed in Section B.1.1.1, we also implement the ImmutableJson-

Serializable interface. We finally create an enclosed MetaAlgorithmRun subclass called Example-

MetaAlgorithmRun. Doing this using Eclipse yields the following stub code, which we proceed to

flesh out.� �
public class ExampleMetaAlgorithmImplementation extends

MetaAlgorithmImplementation implements

ImmutableJsonSerializable {

@Override

public Set<Set<String>> getRequiredTags() {

// TODO Auto-generated method stub

return null;

}

@Override

public JSONObject buildSpec() {

// TODO Auto-generated method stub

return null;

}

@Override

public MetaAlgorithmRun getRun(AlgorithmRunRequest request,

SubrunRunner runner, ReadOnlyDataManager datamanager,

Statistics stats) {

// TODO Auto-generated method stub

return null;

}

private class ExampleMetaAlgorithmRun extends MetaAlgorithmRun {

@Override

public double getFractionCompleted() {

// TODO Auto-generated method stub

return 0;

}

@Override

protected void start() {

// TODO Auto-generated method stub

}

}

}� �
100

B.1.1.1 The MetaAlgorithmImplementation constructor

Our ExampleMetaAlgorithmImplementation requires a constructor, which in turn must call a super-
class constructor with several arguments:

Type Name

String name
String version
Map〈String, Object〉 properties
ParameterSpace defaultConfigurationSpace
ParameterSpace defaultScenarioSpace
ParameterSpace defaultOutputSpace
ParameterSpace supportedOptionSpace

We use the class name and version 1.0.0 to identify our procedure, and define a map that specifies

values for the properties introduced in Appendix A: our meta-algorithm is not deterministic, is

exportable, and is cutoff-agnostic. Keys for these and other semantics are defined in the Semantics

class. In code:� �
private static final String NAME = ExampleMetaAlgorithmImplementation.class.getSimpleName

();

private static final String VERSION = "1.0.0";

private static final Map<String, Object> PROPERTIES = Collections.unmodifiableMap(Misc.

asMap(

Semantics.DETERMINISTIC, (Object) false,

Semantics.EXPORTABLE, true,

Semantics.CUTOFF_AGNOSTIC, true

));� �
We proceed to specify the four ParameterSpaces that collectively describe input and output

domains for our meta-algorithm. ParameterSpaces in HAL 1.1 are immutable, so we use a mutable

ParameterSpaceBuilder. ParameterSpaces, ParameterSpaceBuilders, and Domains are illustrated

in Figure B.3, and the various Domains supported in HAL 1.1 are illustrated in Figure B.4.

Some of the inputs and outputs of our meta-algorithm correspond to well-defined semantics

that are important to identify. Global semantics and associated default domains are identified using

fields in the Semantics class; additional problem-specific semantics may also be defined in corre-

sponding Problem classes. For example, HAL needs to know which input corresponds to a CPU

time limit; this semantic is associated with Semantics.MAX CPUTIME, and its default domain can

be obtained with Semantics.getDomain(Semantics.MAX CPUTIME). Standardized HAL semantics

are summarized in Table B.1.

As our meta-algorithm has no configurable parameters, the first space is empty. We allow users

to specify a random seed, a maximum CPU time, and a maximum number of target runs; these

101

Context Symbol Dflt. Domain Semantics

scenario MAX CPUTIME R+ run time limit (CPU seconds)
MAX RUNLENGTH Z+ run length limit (steps)
SEED [1,232−1]⊂ Z random seed
P LEVEL [0,1]⊂ R target significance level (α)

output CPUTIME R+ total run time (CPU seconds)
RUNLENGTH Z+ total run length (steps)
TIMEOUT {true, false} terminated due to run time/length limit
P VALUE [0,1]⊂ R observed significance level
SOLUTION QUALITY R solution quality; lower is better
DESIGN Algorithm design produced by design procedure

instance INSTANCE FILE File file containing target problem instance

algorithm DETERMINISTIC {true, false} deterministic
properties EXPORTABLE {true, false} can be zipped and used on new hosts

CUTOFF AGNOSTIC {true, false} short runs are inferable from long runs

meta- MAX SUBRUN CPUTIME R+ target run time limit
instance MAX SUBRUN RUNLENGTH Z+ target run length limit
options RUNS PER INSTANCE Z+ independent runs of randomized targets

Table B.1: Pre-defined input and output semantics in HAL 1.1. ‘Context’ refers to the Space
the semantic is associated with.

settings correspond to the second space. We specify our procedure’s sole output (the metric evalua-

tion) in the third space, and assign it solution quality semantics. Finally, the fourth space indicates

options embedded in a meta-problem instance that our meta-algorithm can accept; we indicate the

ability to interpret maximum per-target-run CPU time and run length limits, as well as a maximum

number of runs per-target-instance. Again, in Java code:� �
private static final ParameterSpace SCN_SPACE, CFG_SPACE, OUT_SPACE, SUPP_OPT_SPACE;

static {

ParameterSpaceBuilder psb = new ParameterSpaceBuilder();

// set up default configuration space -- no configurable params

CFG_SPACE = psb.build();

// set up default scenario space

psb.put(Semantics.SEED, new IntegerDomain(0, null));

psb.put(Semantics.MAX_CPUTIME, Semantics.getDomain(Semantics.MAX_CPUTIME));

psb.put("maxTargetRuns", Semantics.getDomain(Semantics.MAX_RUNLENGTH));

psb.addAlias(Semantics.MAX_RUNLENGTH, "maxTargetRuns");

SCN_SPACE = psb.build();

// set up default output space -- only output is metric value

psb.clear();

psb.put("metricScore", Semantics.getDomain(Semantics.SOLUTION_QUALITY));

psb.addAlias(Semantics.SOLUTION_QUALITY, "metricScore");

OUT_SPACE = psb.build();

102

// set up supported instance options

psb.clear() ;

psb.put(Semantics.MAX_SUBRUN_CPUTIME, Semantics.getDomain(Semantics.MAX_CPUTIME));

psb.put(Semantics.MAX_SUBRUN_RUNLENGTH, Semantics.getDomain(Semantics.MAX_RUNLENGTH));

psb.put(Semantics.RUNS_PER_INSTANCE, Semantics.getDomain(Semantics.RUNS_PER_INSTANCE));

SUPP_OPT_SPACE = psb.build();

}� �
Finally, we define a simple nullary constructor:� �
public MetricEvaluatingMetaAlgorithmImplementation() {

super(NAME, VERSION, PROPERTIES, CFG_SPACE,

SCN_SPACE, OUT_SPACE, SUPP_OPT_SPACE);

}� �
B.1.1.2 MetaAlgorithmImplementation methods

Having completed the constructor, we must implement the remaining methods defined in the Meta-

AlgorithmImplementation class. In particular, three instance methods remain unimplemented by

superclasses — getRequiredTags(), buildSpec(), and getRun(· · ·) — and by HAL 1.1 convention all

JsonSerializable objects must implement the static deserialization method fromSpec(String).

AlgorithmImplementation.getRequiredTags() is used by the framework to infer what kinds of

instances an algorithm can accept. The Set〈Set〈String〉〉 it returns indicates compatibility with

any instance exhibiting all of the tags from at least one of the contained Set〈String〉 objects. We

require an input MetaProblemInstance that contains target instances and a performance metric; these

are available from any InstanceMetricMetaProblemInstance. Further, we require a single target

algorithm. Tags indicating these and other requirements can be found in the MetaProblemInstance

class and its subclasses; Java code for indicating these requirements is:� �
private static final Set<Set<String>> TAGS = Misc.asSet(

Misc.asSet(InstanceMetricMetaProblemInstance.TAG,

MetaProblemInstance.getNumAlgsTag(1)));

public Set<Set<String>> getRequiredTags() {

return TAGS;

}� �
JsonSerializable.toSpec() and fromSpec(String) are used to serialize and deserialize instances of

nearly all HAL 1.1 objects, for example when archiving runs to a database. This serialized form is

also used to generate a hash that is used in many equality comparisons. Fortunately, our MetaAlgo-

rithmImplementation is in effect an immutable singleton, in that it is stateless and all instances are

identical; we have indicated this to HAL by implementing the ImmutableJsonSerializable interface.

This immutability simplifies serialization and deserialization.

103

The required buildSpec() method is used by a JsonSerializable.JsonHelper object in the su-

perclass to construct an appropriate serialization for toSpec(). An implementation of buildSpec()

follows; since our constructor is nullary, the only information to be serialized is the version of our

procedure:� �
public JSONObject buildSpec() {

JSONObject out = super.buildSpec();

out.put("version", getVersion());

return out;

}� �
Similarly, our static deserialization method needs only to verify the version string, and then use

the nullary constructor. We adopt a versioning scheme of the form ma jorVersion.minorVersion.revision,

and establish a compatibility contract between revisions of the same minor version:� �
private static final Pattern p = Pattern.compile("ˆ[ˆ\\s.]+[.][ˆ\\s.]+");

private static boolean isSameMinorVersion(String v1, String v2) {

Matcher m1 = p.matcher(v1), m2 = p.matcher(v2);

return m1.find() && m2.find() && m1.group().equals(m2.group());

}

public static MetricEvaluatingMetaAlgorithmImplementation fromSpec(String spec) {

JSONObject o = JsonHelper.readSpecStub(MetricEvaluatingMetaAlgorithmImplementation.class

, spec);

String jsonVersion = o.optString("version");

if (isSameMinorVersion(VERSION, jsonVersion)) {

return new MetricEvaluatingMetaAlgorithmImplementation();

}

throw new UnsupportedOperationException("Incompatible version; current procedure is " +

MetricEvaluatingMetaAlgorithmImplementation.VERSION +

" but specification was " + jsonVersion);

}� �
An important point to note is that HAL 1.1 uses the JSON serialized form of primitive objects –

including MetaAlgorithmImplementations – to generate strong hash codes used to accelerate iden-

tity checking. Since the hash is based on the syntax of the serialization string, and not the semantics

of the string, care must be taken to ensure that all keys and values in the JSON object are consis-

tently ordered. In particular, this means that objects from an unordered collection (like a set or a

map) should be sorted according to some repeatable criteria before serialization to ensure consistent

behaviour.

Finally, we consider MetaAlgorithmImplementation.getRun(· · ·). This factory method is used

by HAL to obtain a MetaAlgorithmRun instance that executes the procedure on specific inputs, and

is trivial assuming we have completed implementing the ExampleMetaAlgorithmRun class:� �
public MetaAlgorithmRun getRun(AlgorithmRunRequest request, SubrunRunner runner,

Statistics stats) {

104

return new ExampleMetaAlgorithmRun(request, runner, stats);

}� �
B.1.1.3 The MetaAlgorithmRun constructor

Once again, we need a constructor that in turn calls a superclass constructor. In addition, the con-

structor should ensure fail-fast behaviour for incompatible inputs; this means unpacking inputs from

the provided InstanceMetricMetaProblemInstance and the specific ParameterSettings correspond-

ing to the ParameterSpaces we defined earlier. This straightforward process is shown in Java code

below. Note that our constructor does not perform further computation; actual execution should not

begin until the start() method is called.� �
private final ParameterlessAlgorithm target;

private final InstanceDistribution instances;

private final Random rng;

private final long maxSubrunLength, maxRuns, runsPerInst;

private final double maxSubrunTime, maxTime;

private final PerformanceMetric<AlgorithmRun> metric;

private final SubrunRunner runner;

public ExampleMetaAlgorithmRun(AlgorithmRunRequest request, SubrunRunner runner) {

super(request, runner);

// object used to request target runs

this.runner = runner;

// unpack target algorithm and instances

InstanceMetricMetaProblemInstance inst = (InstanceMetricMetaProblemInstance) request.

getProblemInstance();

target = inst.getAlgorithms().get(0);

instances = inst.getInstanceDistribution();

metric = inst.getMetric();

// a random number generator based on the requested seed

Number n = (Number) request.getScenarioValue(Semantics.SEED);

long seed = n == null ? (Long) SCN_SPACE.get(Semantics.SEED).getDefaultValue() : n.

longValue();

rng = Global.getRandom(seed);

// read runtime & length limits

n = (Number) request.getScenarioValue(Semantics.MAX_CPUTIME);

maxTime = n == null ? (Double) SCN_SPACE.get(Semantics.MAX_CPUTIME).getDefaultValue() :

n.doubleValue();

n = (Number) inst.getOption(Semantics.MAX_SUBRUN_CPUTIME);

maxSubrunTime = n == null ? (Double) SUPP_OPT_SPACE.get(Semantics.MAX_SUBRUN_CPUTIME).

getDefaultValue() : n.doubleValue();

n = (Number) inst.getOption(Semantics.MAX_SUBRUN_RUNLENGTH);

maxSubrunLength = n == null ? (Long) SUPP_OPT_SPACE.get(Semantics.MAX_SUBRUN_RUNLENGTH).

105

getDefaultValue() : n.longValue();

n = (Number) inst.getOption(Semantics.RUNS_PER_INSTANCE);

runsPerInst = n == null ? (Long) SUPP_OPT_SPACE.get(Semantics.RUNS_PER_INSTANCE).

getDefaultValue() : n.longValue();

n = (Number) request.getScenarioValue(Semantics.MAX_RUNLENGTH);

maxRuns = Math.min(instances.size() * runsPerInst,

n == null ? (Long) SCN_SPACE.get(Semantics.MAX_RUNLENGTH).getDefaultValue() : n.

longValue();

}� �
B.1.1.4 MetaAlgorithmRun methods

Of the two methods to be defined, getFractionCompleted() is shorter, so we deal with it first. HAL

uses this method to gauge the progress of an algorithm run. Since our procedure has (1) a fixed

runtime limit, and (2) a fixed maximum number of total runs, it is easy to estimate this progress. In

the following code, we assume the volatile runsDone field will be updated as execution progresses,

and we use the superclass method getTotalCpuTime() to obtain the cumulative time spent running

our meta-algorithm and its target runs.� �
private volatile int runsDone = 0;

public double getFractionCompleted() {

double timeFrac = super.getTotalCpuTime() / maxTime;

double runsFrac = 1.0 * runsDone / maxRuns;

return Math.max(timeFrac, runsFrac);

}� �
More interesting is the start() method, as it is here that we finally implement the logic of our

procedure. As a first implementation, we will serially run the target algorithm on each of the target

instances, repeating multiple times per instance in the case of a stochastic target algorithm. We will

then use the provided metric to evaluate the runs, and report the result as an output. As the method

is relatively long, we interleave its implementation with more detailed explanations.

First, we mark the procedure as started using a superclass method and standardized status values

from the RunStatus class, and set the target algorithm’s cutoffs as specified in the meta-algorithm’s

inputs:� �
protected void start() {

super.setStatus(RunStatus.RUNNING);

// set target algorithm cutoffs

if (target.hasScenarioVariable(Semantics.MAX_CPUTIME)) {

target.setScenarioValue(Semantics.MAX_CPUTIME, maxSubrunTime);

}

if (target.hasScenarioVariable(Semantics.MAX_RUNLENGTH)) {

target.setScenarioValue(Semantics.MAX_RUNLENGTH, maxSubrunLength);

}� �
106

Next, we begin to iterate over instances and seeds, remaining sensitive to alternative termina-

tion conditions; namely, performing the maximum number of target runs or receiving an external

termination request. Note that if our procedure exceeds its CPU time budget, HAL will automati-

cally request it to terminate by causing getTerminationStatus() to return a non-null value and then

interrupting the thread executing this method. We must ensure our code is responsive to such a

termination request.� �
Map<Object, Map<ProblemInstance, Double>> scores = new HashMap<Object, Map<

ProblemInstance, Double>>();

OUTERLOOP: for (int i=0; i<runsPerInst; i++) {

Object seed = ((SampleableDomain<?>)target.getScenarioDomain(Semantics.SEED)).

getSample(rng);

target.setScenarioValue(Semantics.SEED, seed);

for (ProblemInstance instance: instances) {

// be sensitive to termination conditions

if (super.getTerminationStatus() != null || runsDone>= maxRuns) {

break OUTERLOOP;

}� �
We proceed to configure the target algorithm to solve the next instance, and generate an im-

mutable AlgorithmRunRequest that captures its current inputs. Since we are executing runs serially,

we disable distributed execution for the request. We then use the SubrunRunner that was passed by

HAL into the constructor to get an AlgorithmRun satisfying the request, and start the retrieved run

in a new thread (drawn from a shared thread pool; using this pool both saves overhead from thread

creation and also automatically logs any exceptions in the running thread). We wait for the run and

any registered visitors to complete before proceeding (more on visitors in Section B.1.3).� �
target.setProblemInstance(instance);

AlgorithmRunRequest req = target.getAlgorithmRunRequest();

req.setDistributedExecutionOK(false);

AlgorithmRun run = runner.fetchRun(req);

Global.getThreadPool().execute(run);

while (!run.visitorsFinished()) {

try {

run.waitForVisitors();

} catch (InterruptedException e) {

if (super.getTerminationStatus() != null) {

run.terminate();

}

}

}� �
We use provided the metric to evaluate the completed run, and record the result for future re-

porting. Finally, we increment the run counter and end the loop.� �
Double score = metric.evaluate(run);

if (!scores.containsKey(seed)) {

107

scores.put(seed, new HashMap<ProblemInstance, Double>());

}

scores.get(seed).put(instance, score);

runsDone++;

}

}� �
Finally, with all target runs completed, we use the metric to aggregate scores; first across inde-

pendent runs of each instance, and again across the various instances. We use a superclass method

to report this final scalar as an output of our procedure, and mark the meta-algorithm run as fin-

ished with the appropriate status. This completes both the method and our initial meta-algorithm

implementation.� �
Map<String, Object> outputs = new HashMap<String, Object>();

List<Double> aggregatedScores = new LinkedList<Double>();

for (Map<ProblemInstance, Double> insScores: scores.values()) {

aggregatedScores.add(metric.aggregate(insScores()));

}

outputs.put("metricScore", metric.aggregate(aggregatedScores));

super.updateOutput(outputs);

double status = (super.getTerminationStatus() != null) ? super.getTerminationStatus() :

RunStatus.FINISHED;

super.setStatus(status);

}� �
B.1.2 Testing

Before deploying our procedure, we must verify that it operates as expected. We achieve this by

writing a corresponding unit test suite, in class ExampleMetaAlgorithmImplementationTest. Specif-

ically, we test our meta-algorithm when analyzing a target algorithm on an instance set for which

behaviour is predictable. To do this, we must set up an execution environment and a meta-problem

instance.

B.1.2.1 Target Algorithms

For the purposes of this example, we write a target algorithm in our test class which simply reports

a runtime in seconds as a randomized function of instance file size b in bytes, via f (b) = 0.001b+X

where X ∼N (µ = 0,σ = 0.1):� �
public static final double SIGMA = 0.1;

public static void main(String[] args) {

if (args.length != 3) {

System.err.println("usage: java " + ExampleMetaAlgorithmImplementationTest.class.

getCanonicalName() + " <instance file> <seed> <maxTime>");

108

System.exit(-1);

}

File f = new File(args[0]);

if (!f.canRead() || !f.isFile()) {

System.err.println(f + " is not a readable regular file");

System.exit(-2);

}

long seed = Long.valueOf(args[1]);

double maxtime = Double.valueOf(args[2]);

double time = Math.max(0, Math.min(0.001*f.length() + SIGMA*new Random(seed).

nextGaussian(), maxtime));

System.out.println("Reporting " + time + " s");

}� �
To use our test algorithm as an external, black-box target algorithm in HAL 1.1, we first need to

instantiate a corresponding ExternalAlgorithmImplementation object, and then instantiate an Algo-

rithm object using that implementation. Algorithms in HAL 1.1 are illustrated in Figure B.6.
The ExternalAlgorithmImplementation constructor has several arguments, some of which are

familiar from discussion of MetaAlgorithmImplementations:

Type Name

File executable
File workingDirectory
String name
String version
Set〈Set〈String〉〉 requiredTags
ParameterSpace instanceSpace
Map〈String,List〈String〉〉 inputFormat
Map〈String,List〈String〉〉 outputFormat
Map〈String, Object〉 properties

The instanceSpace is a parameter space that identifies any instance features required as input to

the external algorithm. The input- and outputFormat maps describe invocation and output syntax

for the algorithm , and the properties map is also as before. We specify that our algorithm requires

external problem instances (so that it can measure file sizes), and specify inputs and outputs as

required by the main(·) method implemented above:� �
private static ParameterlessAlgorithm getAlgorithm() {

File exe = new File("java"), workingDir = new File("bin/");

String name = "unitTestImpl", version = "1.0.0";

Set<Set<String>> requiredTags = Misc.asSet(Misc.asSet(ExternalProblemInstance.TAG));

ParameterSpaceBuilder psb = new ParameterSpaceBuilder();

psb.put(Semantics.INSTANCE_FILE, Semantics.getDomain(Semantics.INSTANCE_FILE));

ParameterSpace instSpace = psb.build();

String cmdString = ExampleMetaAlgorithmImplementationTest.class.getCanonicalName() + " $

" +

109

Semantics.INSTANCE_FILE + "$ $" + Semantics.SEED + "$ $" + Semantics.MAX_CPUTIME + "

$";

String outFmt = "Reporting $time$ s";

Map<String, List<String>> inputFormat = Misc.asMap(Semantics.CALLSTRING, Arrays.asList(

cmdString));

Map<String, List<String>> outputFormat = Misc.asMap(Semantics.STDOUT, Arrays.asList(

outFmt));

Map<String, Object> properties = Misc.asMap(

Semantics.EXPORTABLE, (Object)false,

Semantics.DETERMINISTIC, false,

Semantics.CUTOFF_AGNOSTIC, true);

AlgorithmImplementation imp = new ExternalAlgorithmImplementation(

exe, workingDir, name, version, requiredTags,

instSpace, inputFormat, outputFormat, properties);� �
We then create a ParameterlessAlgorithm using this implementation. To do so, we need to

define one ParameterSpace for the algorithm’s settings (random seed and CPU time budget), and

another for its outputs.1 These are separate from the implementation to allow different spaces be

used with the same algorithm. We also name the ParameterlessAlgorithm. In Java:� �
psb.clear();

psb.put(Semantics.MAX_CPUTIME, Semantics.getDomain(Semantics.MAX_CPUTIME));

psb.put(Semantics.SEED, Semantics.getDomain(Semantics.SEED));

ParameterSpace scnSpace = psb.build();

psb.clear();

psb.put("time", new RealDomain(0., null));

psb.setSemanticParameter(Semantics.CPUTIME, "time");

ParameterSpace outSpace = psb.build();

return new ParameterlessAlgorithm("unitTestAlg", imp, scnSpace, outSpace);

}� �
B.1.2.2 Target ProblemInstances

We also require a set of target instances to run our test instance on. InstanceDistribution and

ProblemInstances in HAL 1.1 are illustrated in Figure B.7. We create an InstanceList of dummy

FileProblemInstances, choosing file sizes to achieve an expected mean reported runtime of 0.75s:� �
private static InstanceList getInstances() throws Exception {

List<ProblemInstance> il = new LinkedList<ProblemInstance>();

for (int i=0; i<10; i++) {

File inst = File.createTempFile("test", "inst");

inst.deleteOnExit();

byte[] data = new byte[500+(i+1)*50];

Arrays.fill(data, (byte)1);

FileUtils.writeByteArrayToFile(inst, data);

1Were we defining a ParameterizedAlgorithm, we would need one more ParameterSpace describing the configurable
parameters.

110

il.add(new FileProblemInstance(inst));

}

return new InstanceList("test instances", il);

}� �
B.1.2.3 Environments

We also need to specify the environment in which our test should take place. Environments in

HAL 1.1 are compositions of ExecutionManagers and DataManagers, as illustrated in Figure B.5.

We configure an environment that archives data to a temporary SQLite database, and that executes

algorithm runs on the local machine. We also specify that up to 2 target algorithm runs may be

executed in parallel.� �
private static Environment getEnvironment() throws Exception {

// archive to a temporary SQLite database

File dbfile = File.createTempFile(ExampleMetaAlgorithmImplementationTest.class.

getCanonicalName(), ".db");

dbfile.deleteOnExit();

FullAccessDataManager dm = DataManagerFactory.getDataManager(URI.create("jdbc:sqlite:"+

dbfile.getPath()));

// an execution manager which does runs on the local machine, and which echos all output

LocalExecutionManager localEx = new LocalExecutionManager(OutputHandlingOption.ECHO,

OutputHandlingOption.ECHO);

return new Environment("example environment", localEx, dm, Preference.

MAX_SIMULT_TARGET_RUNS, 2);

}� �
B.1.2.4 Performance Metric

We also must decide on a performance metric for our meta-algorithm to use. We could write an

arbitrary new implementation of the PerformanceMetric class and use it instead. However, several

commonly-used metrics are provided in the PerformanceMetric class, including those listed in Ta-

ble B.2. For our unit test, we will use ReportedPAR1 which evaluates runs based on the reported

runtime, and aggregates across runs using the mean.

B.1.2.5 Unit test

We now have all we need to complete a unit test. We first construct an InstanceMetricMetaProblem-

Instance that contains our test algorithm and instances, the PerformanceMetric.ReportedPAR1 met-

ric, and appropriate options (n = 4 runs per instance, 1.5s per-run cutoff). Next, we instantiate our

ExampleMetaAlgorithmImplementation, construct the default ParameterizedAlgorithm using it, and

run it under the environment we configured. When the run completes, we verify that its reported

111

Field Evaluation Aggregation
Base Case Exceptional Case

ASQ SOLUTION QUALITY SOLUTION QUALITY or null mean
PAR1 measured CPU time MAX CPUTIME mean
ReportedPAR1 CPUTIME MAX CPUTIME mean
MaxPAR1 max(measured CPU time, CPUTIME) MAX CPUTIME mean
PAR10 measured CPU time 10 ×MAX CPUTIME mean
ReportedPAR10 CPUTIME 10 ×MAX CPUTIME mean
MaxPAR10 max(measured CPU time, CPUTIME) 10 ×MAX CPUTIME mean
MEDR measured CPU time MAX CPUTIME median
ReportedMEDR CPUTIME MAX CPUTIME median
MaxMEDR max(measured CPU time, CPUTIME) MAX CPUTIME median

Table B.2: Summary of metrics defined in PerformanceMetric class. Evaluation semantics
refer to those listed in Table B.1. Run timeouts and crashes are considered exceptional
cases.

solution quality (i.e., the mean reported runtime) is within 2σµ = 2σ/n1/2 of the expected value

of 0.75s (corresponding to an α ≈ 0.05 confidence level). Additional assertions verify that the

expected number of target runs were executed, and that the run’s final status is correct.� �
@Test

public void TestRunsSimpleAlgorithmLocalExecution() throws Exception {

// setup meta-instance

int n = 4;

ParameterlessAlgorithm alg = getAlgorithm();

InstanceList instances = getInstances();

ParameterlessAlgorithmList alglist = new ParameterlessAlgorithmList(alg);

ParameterSettingBuilder psb = new ParameterSettingBuilder();

psb(Semantics.MAX_SUBRUN_CPUTIME, 1.5);

psb(Semantics.RUNS_PER_INSTANCE, n);

InstanceMetricMetaProblemInstance metaInst = new InstanceMetricMetaProblemInstance(

alglist, instances, PerformanceMetric.ReportedPAR1, "test metainst", psb());

// run meta-algorithm on instance

ExampleMetaAlgorithmImplementation metaimpl = new ExampleMetaAlgorithmImplementation();

Algorithm metaAlg = metaimpl.getDefaultParameterizedAlgorithm();

metaAlg.setProblemInstance(metaInst);

metaAlg.setScenarioValue(Semantics.MAX_CPUTIME, 75.0);

Environment env = getEnvironment();

AlgorithmRun r = env.fetchRun(metaAlg.getAlgorithmRunRequest());

r.run();

r.waitForVisitors();

// verify results

assertEquals(0.75, (Double)r.getLastOutputValueOnly(Semantics.SOLUTION_QUALITY), 2*SIGMA

/Math.sqrt(n));

assertEquals(n*10, r.getSubrunCount());

assertTrue(RunStatus.finishedWithoutError(r.getStatus()));

}� �
112

B.1.3 Additional Outputs and Improvements

Although we have tested our simple meta-algorithm and demonstrated it is working correctly, it is

not particularly efficient and does not yet fulfill our stated design goals. In this subsection we will

resolve both of these issues by parallelizing our implementation and by adding plot and statistical

test outputs.

B.1.3.1 Improving Parallelism with AlgorithmRunVisitors

One problem with our initial implementation is that it provides a serial solution to an inherently par-

allel task. We can remove this limitation in several ways, but perhaps the most interesting involves

AlgorithmRunVisitors: runnable objects that are registered with AlgorithmRuns to execute on cer-

tain events; i.e., whenever the algorithm produces output, changes status, or completes. By starting

many runs in parallel and registering completion visitors to score them, we improve the efficiency

of our implementation.

We begin by promoting the scores map from the start() method to a final field of the Example-

MetaAlgorithmRun class, which will be used shortly when overriding the getOutputSnapshot()

method. We also add a new volatile double field called myVisitorTime, and set it to 0.0. We then add

the following code defining a completion visitor to the start() method before the target algorithm

execution loop:� �
final List<AlgorithmRun> runs = new LinkedList<AlgorithmRun>();

final ExampleMetaAlgorithmRun thisrun = this;

AlgorithmRunVisitor visitor = new AlgorithmRunVisitor() {

public void visit(AlgorithmRun run) {

synchronized(scores) {

try {

Double score = metric.evaluate(run);

Object seed = run.getAlgorithmRunRequest().getScenarioValue(Semantics.SEED);

ProblemInstance instance = run.getProblemInstance();

if (!scores.containsKey(seed)) {

scores.put(seed, new HashMap<ProblemInstance,Double>());

}

scores.get(seed).put(instance, score);

} finally {

runs.remove(run);

runsDone++;

scores.notifyAll();

thisrun.myVisitorTime += this.getRunTime();

}

}

}

};� �
113

Next, we modify the main execution loop to register the completion visitor on each run before

it is started, and to start multiple runs in parallel. Note, however, that we still limit the total number

of parallel runs, as otherwise we risk hitting system thread limits. By adding an additional setting

to the ExampleMetaAlgorithmImplementation, this limit can be user-specified.� �
OUTERLOOP: for (int i=0; i<runsPerInst; i++) {

Object seed = ((SampleableDomain<?>)target.getScenarioDomain(Semantics.SEED)).getSample(

rng);

target.setScenarioValue(Semantics.SEED, seed);

for (ProblemInstance instance: instances) {

// wait for a free run slot

synchronized(scores) {

while (runs.size() >= maxParallelRuns && super.getTerminationStatus() == null) {

try {

scores.wait();

} catch (InterruptedException e) {}

}

}

if (super.getTerminationStatus() != null) {

break OUTERLOOP;

}

target.setProblemInstance(instance);

AlgorithmRunRequest req = target.getAlgorithmRunRequest();

req.setDistributedExecutionOK(true);

AlgorithmRun run = runner.fetchRun(req);

run.registerCompletionVisitor(visitor);

synchronized(scores) {

runs.add(run);

}

Global.getThreadPool().execute(run);

}

}� �
We must add code to wait until all target runs finish before producing output:� �
synchronized(scores) {

while (runs.size() > 0) {

if (super.getTerminationStatus() != null) {

runner.terminate(RunStatus.TERMINATED);

}

try {

scores.wait();

} catch (InterruptedException ignored) {}

}

}

super.updateOutput(getOutputSnapshot());� �
Note that this code calls a method named getOutputSnapshot() in order to produce outputs. This

method is also used by HAL to obtain on-demand output updates during run execution. The im-

114

plementation inherited from MetaAlgorithmRun simply returns the most recently-produced outputs;

we override it with:� �
public Map<String, Object> getOutputSnapshot() {

Map<String, Object> out = new HashMap<String, Object>();

List<Double> aggregatedScores = new LinkedList<Double>();

synchronized(scores) {

for (Map<ProblemInstance, Double> insScore: scores.values()) {

aggregatedScores.add(metric.aggregate(insScore.values()));

}

}

out.put("metricScore", metric.aggregate(aggregatedScores));

return out;

}� �
Finally, we must make a change to how runtime for our meta-algorithm is computed. By default,

HAL measures the runtime of a meta-algorithm (excluding target runs) as the time taken by the

thread executing its start() method, and counts time taken by visitors as miscellaneous overhead.

However, our completion visitor is a core part of the algorithm, not an overhead. Thus, we use the

myVisitorTime field to correct this runtime accounting, by overriding two superclass methods:� �
public double measureCpuTime() {

return super.measureCpuTime() + myVisitorTime;

}

public double measureVisitorCpuTime() {

return super.measureVisitorCpuTime() - myVisitorTime;

}� �
This completes the changes needed to allow parallel execution of target runs performed by

our meta-algorithm, and to allow real-time result output monitoring. Our unit test shows that the

implementation remains valid, and completes more quickly in terms of wall-clock time.

B.1.3.2 Plots and Statistics

While our initial meta-algorithm is correct and (now) fairly efficient, it does not produce the desired

output. We now show how to include plots and statistical test results in the meta-algorithm’s output.

In particular, we output an overlay of solution cost distributions for each of the random seeds used,

and report the results of a Friedman test run on the collected data, paired by seeds.

We first add the new outputs to the ParameterSpace in the ExampleMetaProblemImplementation:� �
psb.clear();

psb.put("metricScore", Semantics.getDomain(Semantics.SOLUTION_QUALITY));

psb.addAlias(Semantics.SOLUTION_QUALITY, "metricScore");

psb.put("SCD", new ObjectClassDomain(Plot.class));

psb.put("Friedman Q", new RealDomain(0., null));

115

psb.put("Friedman p", new RealDomain(0., 1.));

OUT_SPACE = psb.build();� �
We next deal with producing the overlaid SCD plots. There are many useful utility methods

in the Plot class for building common plots. We first construct a Plot object, and then add layers

to it, where each layer is a solution cost distribution over runs with a single seed. The modified

getOutputSnapshot() method is:� �
public Map<String, Object> getOutputSnapshot() {

Map<String, Object> out = new HashMap<String, Object>();

List<Double> aggregatedScores = new LinkedList<Double>();

Plot p = new Plot();

p.setKey(false);

synchronized(scores) {

for (Map<ProblemInstance, Double> instanceScores: scores.values()) {

Collection<Double> vals = instanceScores.values();

p.addLayer(Plot.makeCDF(vals, true), null, null, null, Plot.HISTOGRAM, Plot.ANY,

null);

aggregatedScores.add(metric.aggregate(vals));

}

}

out.put("metricScore", metric.aggregate(aggregatedScores));

out.put("SCD", p);

return out;

}� �
To perform the statistical tests, we can use the Statistics object passed into the ExampleMeta-

AlgorithmRun constructor. We first create a volatile double field named extraCpuTime, and then

again modify the getOutputSnapshot() method. This time, we collect data blocks for each seed that

has been run on every instance, and run the Friedman test on this blocked data. Since the test may

be computed outside of the JVM (e.g., in R), we also record any external CPU usage.� �
public Map<String, Object> getOutputSnapshot() {

Map<String, Object> out = new HashMap<String, Object>();

List<Double> aggregatedScores = new LinkedList<Double>();

Plot p = new Plot();

p.setKey(false);

List<List<Double>> data = new LinkedList<List<Double>>();

synchronized(scores) {

for (Map<ProblemInstance, Double> instScores: scores.values()) {

List<Double> vals = new ArrayList<Double>(instScores.values());

if (vals.size() == instances.size()) data.add(vals);

p.addLayer(Plot.makeCDF(vals, true),null,null,null,Plot.HISTOGRAM,Plot.ANY, null);

aggregatedScores.add(metric.aggregate(vals));

}

}

out.put("metricScore", metric.aggregate(aggregatedScores));

out.put("SCD", p);

116

if (data.size() > 1) {

System.out.println(data);

TestResult result = stats.friedmanTest(data);

out.put("Friedman Q", result.getStatistic());

out.put("Friedman p", result.getP());

extraCpuTime += result.getExternalComputeTime();

}

return out;

}� �
Finally, we must include the extra time taken in computing the Friedman test to the time reported

for our meta-algorithm run:� �
public double measureCpuTime() {

return super.measureCpuTime() + myVisitorTime + extraCpuTime;

}� �
B.1.3.3 Testing

This completes our meta-algorithm, including all originally-desired functionality. However, we

need to verify that the plots and test work as expected. If we consider our test target algorithm,

we see that the random noise is determined exclusively by the provided seed, and is independent

of the problem instance. As such, we expect that the Friedman test to reject the null hypothesis at

α = 0.01 confidence, and to see clear dominance in the overlaid SCD. We modify our unit test to

display the plot using Gnuplot, and to verify the expected test result:� �
Plotter plotter = new GnuplotPlotter();

plotter.display((Plot)r.getLastOutputValueOnly("SCD"));

assertEquals(0.0, (Double)r.getLastOutputValueOnly("Friedman p"), 0.01);� �
All tests pass as expected (p≈ 1E−6), and the resultant overlaid SCD is shown in Figure B.1

(left). Note that if we change our test algorithm slightly to add an instance-dependency to the noise

(as below), the Friedman test no longer rejects at α = 0.01 (p≈ 0.2) and the SCD plot looks much

more random, as in Figure B.1 (right). As this behaviour is expected, it provides evidence that our

implementation is correct.� �
long seed = Long.valueOf(args[1])*f.length();� �
B.1.4 Plugin Distribution

To share our new meta-algorithm as a plugin, we must export it as a self-contained JAR. In addition

to the ExampleMetaAlgorithmImplementation.class, this JAR must contain the file

117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1

Pr
(s

co
re

 <
 x

)

score

SCDs for different random seeds

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1

Pr
(s

co
re

 <
 x

)

score

SCDs for different random seeds

Figure B.1: SCDs showing performance across test instance distribution for two algorithms,
and several random seeds. Clearly for the target algorithm on the left, expected perfor-
mance is not independent of the seed.

/plugin.json that identifies the packaged objects HAL should import. This file contains the

output of toSpec() in a JSON array:� �
[{"classname": "ca.ubc.cs.beta.hal.samples.ExampleMetaAlgorithmImplementation", "version":

"1.0.0"}]� �
Making the plugin available for use in the HAL UI requires explicitly editing servlet code for

the corresponding specification and monitoring schemes in the HAL 1.1 core; it is not presently

possible to include this additional UI code in the plugin itself. Support for more modular UI code is

planned for HAL 1.2.

B.2 Execution Management

As a meta-algorithmic framework, algorithm execution is the fundamental task performed by HAL.

However, the details of actually executing an algorithm are complex, depending on the specifics of

the algorithm to be executed and (especially) on the particular computing environment to be used.

As such, one of the most important abstractions in HAL is the ExecutionManager interface, and the

design or refinement of special-purpose ExecutionManager implementations is anticipated to be a

relatively common task in HAL framework development (as opposed to meta-algorithm develop-

ment). This section provides a more detailed overview of ExecutionManagers and their role in the

HAL execution pipeline; as well as specifics of the three concrete implementations provided in HAL

118

1.1. Unlike the previous section, the following is intended to be a useful guide for understanding

the existing execution components, rather than a tutorial for implementing new ones. As such, no

code samples are provided; we instead refer the reader to the sources for the discussed components.

We also point out that meta-algorithm developers never interact directly with the classes dis-

cussed here. Instead, meta-algorithms are provided a SubrunRunner instance at runtime that moder-

ates interaction with the underlying execution management infrastructure. However, it is important

for meta-algorithm developers to at least be familiar with the execution pipeline, if not the details

of the components that implement it.

B.2.1 HAL 1.1 Execution Pipeline

ExecutionManagers, along with a DataManager instance (discussed in the next section) and a

Statistics instance (used to perform statistical tests), are used to construct an execution Environ-

ment in HAL, as illustrated in Figure B.5. An Environment instance captures the overall structure

of an execution environment, and is responsible for initial handling of AlgorithmRunRequests.

The primary task of the Environment is to delegate AlgorithmRunRequests to appropriate Exe-

cutionManagers, which in turn initiate AlgorithmRuns. An Environment selects the ExecutionMan-

ager to use for each request according to its position in the tree of execution traversed during a

meta-algorithmic experiment:

• parent meta-algorithm runs correspond to top-level experiments specified by the user, each

of which defines the root of a separate execution tree

• target algorithm runs correspond to leaves of an execution tree

• target meta-algorithm runs correspond to internal nodes of an execution tree

This makes it possible, e.g., to define an environment in which a HYDRA-∗ run is submitted to a

compute cluster, its configurator runs are again distributed across the cluster, but target algorithms

are executed on the same host as the corresponding configurator run rather than being distributed a

third time.

Secondary responsibilities of the Environment object include:

• limiting the maximum number of concurrent target algorithm runs

• specifying a minimum runtime cutoff for runs to be reused from the data manager

• configuring how output trajectories should be logged

• restricting execution hosts (regular expression on hostname or MAC address)

119

These options are set using keys from the Environment.Preference enumeration.

Finally, the environment provides remote access via RPC to information about currently-active

runs (including completion progress and CPU time consumed) and relays remote run termination

requests; the RPC interface is defined in EnvironmentRequestInterface. The UI uses RPC to display

live run progress; as a result, all execution hosts must be directly reachable over TCP/IP from the

UI server.

The ExecutionManager interface itself is conceptually quite simple, and can be viewed as an

AlgorithmRun factory. It defines two related methods: f etchRun(· · ·) and queueRun(· · ·). Both

of these methods fulfill a provided AlgorithmRunRequest; the difference is that whereas f etchRun

returns an AlgorithmRun object that can be used to initiate and interact with the corresponding

run, queueRun returns only a data manager ID that can be used to retrieve an AlgorithmRun later as

required. This means that queueRun is a low-overhead option suitable for use when launching quan-

tities of loosely-coupled algorithm runs, and that f etchRun is appropriate when tighter integration

is required.

The AlgorithmRun object returned by an ExecutionManager implements a more complex inter-

face, as illustrated in Figure B.2 and discussed earlier in the context of MetaAlgorithmImplementations.

For InternalAlgorithmImplementations such as these, the ExecutionManager will typically re-use

the corresponding InternalAlgorithmRun object (possibly via a wrapper); for ExternalAlgorithm-

Implementations corresponding to external target algorithms, it will typically return an instance of

a proprietary ExternalAlgorithmRun subclass. In all cases, the AlgorithmRun object has five key

responsibilities. It is responsible for:

Execution: initiating eventual execution of an underlying algorithm

Termination: allowing termination of the algorithm run once executing, as well as any sub-runs

that may also be executing

CPU time: measuring total CPU time consumed during execution, and for automatic termination

of the run if this time exceeds a specified budget.2

Outputs: providing access to the status and sequenced outputs of that algorithm run, in the format

specified by the associated output ParameterSpace

An additional responsibility is that of ensuring all registered AlgorithmRunVisitors are executed

when the corresponding events (output production, status change, completion) occur. However, as

2In practice, a run is terminated if it exceeds ExecutionManager.MULT T IME BUFFER× request.getScenario-
Value(Semantics.MAX CPUT IME)+ExecutionManager.ADD T IME BUFFER CPU seconds; by default these buffer
constants are set to 4/3 and 1s respectively.

120

this functionality is entirely implemented in the abstract class, and is not overridden by any concrete

implementations, we do not focus on it further.

B.2.1.1 Algorithm Transformations

An important concept directly affecting ExecutionManagers is that of algorithm transformations.

A TransformedAlgorithm is used to provide a view of a ParameterizedAlgorithm with properties

that differ according to some invertible function of the properties of the underlying algorithm. In

particular, transformations are used in HAL to alter the effective parameter space presented to con-

figuration meta-algorithms; for example discretizing continuous spaces, or normalizing or applying

logarithmic transformations to continuous spaces. When dealing with a TransformedAlgorithmRun-

Request, an ExecutionManager must execute the underlying untransformed request, but return an

AlgorithmRun that refers to the original transformed request. The AbstractTransformSupporting-

ExecutionManager class provides this functionality, and is extended by all HAL 1.1 execution man-

agers.

B.2.1.2 Limitations

In order to avoid problems deploying their meta-algorithms to end-users with novel execution en-

vironments, HAL meta-algorithm developers should understand the limitations of HAL execution,

and in particular should not make incorrect behavioural assumptions about AlgorithmRuns.

First, it is incorrect to assume that an algorithm run will start immediately, or almost imme-

diately, upon request. In fact, the AlgorithmRun does not begin to execute until its run() method

is called; this is done to allow time for visitors to be registered on the run before any triggering

events occur. Even after run() is called, the request may be queued for arbitrarily long by the Envi-

ronment (depending on its configuration), and the ExecutionManager may involve it being queued

for still longer once released by the Environment. Similarly, it is incorrect to assume that parallel

algorithm run requests will be executed in the order requested, as some cluster queueing systems do

not provide this guarantee.

Second, it is incorrect to assume a specific AlgorithmRun subclass will be returned. Even if

the ExecutionManager classes are known, the returned object may be wrapped (for example, if the

Environment queues the run instead of starting it immediately) or may be retrieved from a database

instead of being executed directly. As such, the WrappedAlgorithmRun and DatabaseAlgorithmRun

interfaces are important ones to be aware of.

Finally, it is incorrect to assume that CPU time measurements made during the progress of a run

are exact; in some environments (such as some clusters) high-resolution progress monitoring is not

121

available, so mid-run measurements are in general lower bounds at best. One side effect of this is

that HAL’s automatic termination of target runs may not always occur as quickly as expected. The

relative sequence of outputs is accurate, however, as is the post-completion CPU time measurement.

B.2.1.3 ExecutionManager Implementations

In the following subsections, we discuss the specific ExecutionManager implementations provided

in HAL 1.1: LocalExecutionManager, SSHExecutionManager, and two cluster execution managers,

SGEClusterExecutionManager and TorqueClusterExecutionManager. In particular, we describe

each implementation in terms of how the external runs it produces fulfill the stated responsibilities

of an AlgorithmRun, and also in terms of how internal runs are executed.

B.2.2 LocalExecutionManagers

The LocalExecutionManager is the most fundamental execution manager in HAL 1.1. First, we

describe the LocalExternalAlgorithmRuns it produces:

Execution: The command string used to execute an external algorithm is assembled from the pro-

vided input format string and the parameter and setting values from the request. This string

is then tokenized and the Java ProcessBuilder class is used to execute the run on the local

machine.

Termination: The Java Process object returned by the ProcessBuilder is retained and could in prin-

ciple be used to terminate runs. However, this method does not support termination signals

(such as SIGTERM and SIGKILL), which we may need in some cases (for example, when

processes become unresponsive). Thus, the Sigar 3 library which provides such support is

used to terminate algorithm runs.

CPU time: Sigar is also used to accurately measure an algorithm run’s CPU time during execution.

For measurement of final CPU time, the POSIX time command is used (for Windows, an

analogous binary called timerun.exe is provided and used).

Outputs: Outputs of the executing algorithm are parsed from the Java Process using a parser thread

to consume and parse each of the standard output and standard error streams. User-provided

output format strings are converted into regular expressions that are used to perform this

parsing. Depending on OutputHandlingOption values provided to the ExecutionManager

constructor, raw output values may also be echoed to the console as they are read, or recorded

for later inspection.
3http://www.hyperic.com/products/sigar

122

http://www.hyperic.com/products/sigar

InternalAlgorithmImplementations can be run by the LocalExecutionManager in two ways: ei-

ther in the same JVM that is currently running HAL, or in a new JVM dedicated to the run. Of

these, the former is trivial – the InternalAlgorithmRun returned by the implementation’s getRun(· · ·)
method is returned directly. The latter is less trivial. First, the LocalExecutionManager fetches a

subsidiary external algorithm run (calling a main method in Hal.java) that, when launched, starts

a new instance of HAL that in turn loads the original run request and runs the internal algorithm

in its local JVM. The LocalExecutionManager then constructs an UpdatableWrappedDatabase-

AlgorithmRun that wraps this subsidiary external run. A status change visitor is registered on the

subsidiary algorithm run that replaces the ”core” of the wrapped run with a DatabaseAlgorithm-

Run providing access to the InternalAlgorithmRun executing in the second JVM, as soon as the

subsidiary run is started. Finally, it returns the wrapped algorithm run.

The main reason for this method of launching an internal run in a new process is so that the

external algorithm run does not start until the caller actually executes the run() method of the re-

turned wrapped run; if we ran the subsidiary algorithm directly and only returned the subsequent

database run, the run would start before the AlgorithmRun returns. This is problematic, as it means

visitors subsequently registered on the returned run could miss important events. The idea of com-

bining updatable wrapped algorithm runs with algorithm run visitors in order to support multi-stage

execution processes is used in all other execution managers.

The LocalExecutionManager also supports a third run class called NonHALAlgorithmRun, which

was used to enable support for GGA via its closed-source binary implementation. We do not rec-

ommend that this class be used for other purposes and do not further document it here.

B.2.3 SSHExecutionManagers

The SSHExecutionManager is the perhaps the least directly-used execution manager in HAL 1.1.

It is primarily intended to support the implementation of cluster-based execution managers (see

below). While it can also be used to run arbitrary algorithms, its described limitations regarding

termination and CPU time measurement lead us to discourage such usage.

An SSHExecutionManager instance is associated with a single SSH host. This host is specified

by a URI of the form:

ssh://[user[:password]@]ssh.server.name/path/to/hal.jar

If no username or password are provided, the SSH execution manager will attempt to log in using

the current user’s name and local RSA or DSA SSH key. The path to HAL should point to a

HAL installation that is isomorphic to the calling HAL installation in the sense that valid relative

paths to instances and algorithm binaries on one host remain valid on the other. As this is most

commonly achieved when both machines mount the same shared file system, we refer to this as a

123

shared filesystem requirement. Both hosts must also be able to connect to the same data manager (a

shared data manager requirement).

Many helper commands needed on the remote machine (such as time, cd, ls, etc.) can be

specified via the SSHExecutionManager constructor; default values should work on any POSIX

host and can be found in SSHExecutionManager.DFLT CMDS. In addition, arbitrary initialization

commands can be specified which will be run before the target execution call is made. The SSH

session is assumed to use a BASH shell; other shells may work but are not recommended.

SSHExternalAlgorithmRuns are quite similar to LocalExternalAlgorithmRuns:

Execution: A command string is generated using the same methods used by the LocalExecution-

Manager. Further commands are added to obtain the hostname, MAC addresses, start time,

and exit codes for the host that ultimately runs the job. This set of commands is executed on

the remote host using the JSch library. 4. No instance or algorithm files are uploaded before

execution; this is the main reason for the shared filesystem requirement.

Termination: JSch supports sending of signals over SSH and this is used for terminating runs;

unfortunately, many common OpenSSH sshd server implementations ignore signals, so as a

backup HAL simply closes the connection running the request. On most platforms this forces

associated processes to exit, terminating the run. Note that this has the unfortunate side

effect of immediately terminating target algorithm runs for which the controlling connection

is unintentionally closed.

CPU time: Incremental runtime measurement during execution is not supported by SSHExternal-

AlgorithmRuns; as a result, enforcing of runtime limits is not possible. By default, the POSIX

time command is used for measurement of final CPU time, as in the LocalExecutionMan-

ager.

Outputs: Outputs of the executing algorithm are parsed from the standard output and standard

error streams from the SSH connection via the same parsing threads used by the LocalExecu-

tionManager.

InternalAlgorithmImplementations are run by the SSHExecutionManager in exactly the same

way as separate-JVM internal algorithms are run by the LocalExecutionManager, except that the

subsidiary algorithm is launched over SSH as a SSHExternalAlgorithmRun instead of locally as a

LocalExternalAlgorithmRun.

4http://www.jcraft.com/jsch

124

http://www.jcraft.com/jsch

B.2.4 SGE- and TorqueClusterExecutionManagers

The two cluster execution managers available for HAL 1.1 (SGEClusterExecutionManager and

TorqueClusterExecutionManager) are commonly used when running large-scale experiments. As

their names suggest, the SGE manager requires access to a Sun (or Oracle) Grid Engine managed

compute cluster 5, and the Torque manager requires access to a TORQUE-managed cluster 6.

Unlike the execution managers described previously, cluster execution managers require a sub-

sidiary execution manager to be specified as a constructor argument. This subsidiary execution

manager is used to run Algorithms corresponding to the common qsub, qstat, and qdel cluster

management commands. Specific syntax can be modified by providing alternative Algorithm ob-

jects to the constructors; defaults are available in the corresponding DFLT QSUB, DFLT QSTAT,

and DFLT QDEL static fields. Of course, in order to work properly the subsidiary execution man-

ager must execute these commands on a valid cluster submit host; a common choice is an SSHExe-

cutionManager pointing to the head node.

Cluster execution managers have both a shared filesystem requirement (in this case, the file

system must actually be shared, not just isomorphic) and a shared data manager requirement. They

also similarly require helper commands valid on the compute nodes, and allow these commands to

be specified via the constructor. Initialization commands are also supported. Cluster submission

scripts are assumed to be executed using a BASH shell.

ClusterExternalAlgorithmRuns are somewhat more complex than their local and SSH counter-

parts:7

Execution: A command string is generated using the same methods used by the SSHExecution-

Manager. This command string is written into a script file that located in a cluster/

subdirectory. Finally, an Algorithm corresponding to the appropriate qsub command for the

cluster is launched via the subsidiary execution manager to queue the script. No instance

or algorithm files are uploaded before execution; this is one of two reasons for the shared

filesystem requirement.

Much like InternalAlgorithmRuns launched by previous execution managers, ExternalAlgorithm-

Runs returned by cluster execution managers are actually UpdatableWrappedAlgorithmRuns.

At first, the algorithm wraps the submission algorithm run; once submission is completed, a

5 http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
6http://www.clusterresources.com/products/torque-resource-manager.php
7Note that in the most recent versions of HAL, the Environment redirects fetchRun calls on cluster execution managers

to queueRun calls, and returns corresponding DatabaseAlgorithmRuns instead of ClusterExternalAlgorithmRuns. This
(hopefully temporary) workaround ensures a dedicated HAL process monitors every cluster job, and was necessary to
improve robustness in scenarios with many simultaneous cluster-distributed target algorithm runs.

125

http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.clusterresources.com/products/torque-resource-manager.php

completion visitor changes updates the wrapped run to delegate to a different ClusterExternal-

AlgorithmRun instance.

Termination: Runs are terminated by running another Algorithm with the subsidiary execution

manager, this time corresponding to the qdel command.

CPU time: Incremental runtime measurement during execution is performed using a third Algo-

rithm, corresponding to the qstat command. This command often only has a CPU time

resolution of 30-60s, so measured runtimes are lower bounds and enforcement of runtime

limits can be off by up to this amount. By default, the POSIX time command is used for

measurement of final CPU time, as in the LocalExecutionManager.

Outputs: Raw outputs of the executing algorithm are read from cluster-generated standard output

and standard error logs in the cluster/ subdirectory. These logs are streamed into the

same parsing threads used by the other execution managers. The assumption that these log

files are readable from the requesting machine is the second reason for the shared filesystem

requirement.

InternalAlgorithmImplementations are run by the cluster execution managers in a similar way

to internal algorithms run by the SSHExecutionManager. The main difference is that two updates to

the wrapped run occur instead of one: first, an update from the cluster submission run to a subsidiary

run that launches the new HAL instance (analogous to the update performed for ClusterExternal-

AlgorithmRuns); and later, an update from the subsidiary run to a database algorithm run (analogous

to the update performed for SSH InternalAlgorithmRuns).

B.3 Data Management

Data management is central to the HAL framework. In addition to storing all experimental data,

much of the inter-process and inter-machine communication necessary for operation in distributed

environments is accomplished through the DataManager interfaces. Moreover, much of this func-

tionality is provided to developers and end-users in a transparent manner. As a result of the wide

variety of data types stored and functionality provided, the data management interfaces are some

of the most complex components of the HAL framework (the class diagram of Figure B.5 does not

show nearly all methods), and as a result of their central role they are important to understand when

developing core HAL components. As such, while we do not expect many users will have need to

develop entirely new data manager implementations, we nonetheless provide an overview of their

high-level functionality and in particular detail the SQL-based implementation that underlies both

of the data managers included in HAL 1.1.

126

B.3.1 Data Manager Interfaces

All data managers must implement the FullAccessDataManager interface. This interface defines a

large number of methods, but many can be classified as one of four types related to archiving of

HAL primitives:

add— methods insert new HAL primitives into the data manager; e.g., addImplementation(Algo-

rithmImplementation), addInstance(ProblemInstance), addEnvironment(Environment)

get—[Keys] methods list primitives in the data manager in terms of their human-readable keys;

e.g., getImplementationNameVersions(), getInstanceHashes(), getEnvironmentNames()

get— methods retrieve HAL primitives from the data manager given a key; e.g., getImplemen-

tation(name, version), getInstance(hash), getEnvironment(name)

delete— methods remove HAL primitives from the data manager given a key; e.g., deleteImple-

mentation(name, version), deleteInstance(hash), deleteEnvironment(name)

Most HAL primitives additionally support user-specified textual descriptions; there are also data

manager methods for working with these descriptions:

set—Description methods annotate a HAL primitive from the data manager given a key; e.g.,

setImplementationDescription(name, version, description), setInstanceDescription(hash, de-

scription), setEnvironmentDescription(name, description)

get—Description methods get the description of a primitive from the data manager given a key;

e.g., getImplementationDescription(name, version), getInstanceDescription(hash), getEnvi-

ronmentDescription(name)

A third category of methods facilitates the use of tags to identify compatibility between, for example,

problem instances and algorithm implementations:

tag— methods associate tags with a HAL primitive; e.g., tagInstance(hash, tag), tagDistribu-

tion(name, tag)

get—Tags methods retrieve the set of tags associated with a HAL primitive; e.g., getInstance-

Tags(hash), getDistributionTags(name)

delete—Tag methods disassociate a tag and a HAL primitive; e.g., deleteInstanceTag(hash, tag),

deleteDistributionTag(name, tag)

127

get—RequiredTags methods return the set of tag sets that define the problem instance compatibil-

ity of a primitive; e.g., getFeatureRequiredTags(name), getImplementationRequiredTags(name,

version)

getCompatible—[Keys] methods list primitives in the data manager that are compatible with a

set of tag sets, in terms of their human-readable keys; e.g., getCompatibleFeatureNames(tag-

Sets), getCompatibleImplementationNameVersions(tagSets)

In addition to storing HAL primitives, data managers are responsible for archiving log output

produced by arbitrary infrastructure code. HAL 1.1 uses Java’s built-in logging package, so this

means that data managers must provide a factory method called getLogHandler() that returns a

LogHandler object; the Environment will register this handler with the logging framework.

Most remaining data manager methods are directly related to algorithm execution. Some cor-

respond to AlgorithmRun methods and are fairly intuitive; e.g., getRunStatus(runId), getMeasured-

CpuTimeFromSource(runId), and terminate(runId, status).8 Other, more interesting methods are

discussed further in Section B.3.2; in particular, methods for obtaining AlgorithmRun objects cor-

responding to existing runs, and the decorate(ExecutionManager) method used to augment Execu-

tionManagers with automatic result archiving and run reuse functionality.

B.3.1.1 ReadOnlyDataManagers

The FullAccessDataManager interface is actually a super-interface of the more restricted Read-

OnlyDataManager interface. All get— methods are defined in the read-only interface, and add—

and delete— methods in the full-access interface. The read-only interface is used to safely provide

meta-algorithms with access to the data currently available in HAL. A wrapper class defined in

ReadOnlyDataManager is used to prevent meta-algorithm developers from simply up-casting the

provided ReadOnlyDataManager instance back to a FullAccessDataManager.

B.3.2 Experimental Data Management

While the storage of HAL primitives such as target algorithms and problem instances is an important

role for a data manager, another major responsibility is the automation of archiving and re-use

(where appropriate) of experimental data, in the form of AlgorithmRuns. To this end, data managers

“decorate” arbitrary ExecutionManagers with additional functionality, and support a flexible query

method for retrieving archived DatabaseAlgorithmRuns according to arbitrary criteria.

8Both terminate and get—FromSource methods use an RPC connection to the executing environment to communicate
with remote runs; this is planned to change as RPC usage is phased out.

128

B.3.2.1 DecoratedExecutionManagers

The decorate(ExecutionManager) method is called during the construction of a HAL Environment

to add data management functionality to existing ExecutionManager implementations. This method

returns a new DecoratedExecutionManager object that has the following responsibilities:

• to ensure all HAL primitives in a run request are stored in the data manager

• to check whether incoming run requests can be fulfilled using the results of previous runs;

and if so, to return a DatabaseAlgorithmRun that does so. The criteria run r must satisfy to

be reused for request q are:

1. q corresponds to an algorithm implementation for which the “cutoff-agnostic” property

is false

2. The CPU time cutoff for q is greater than the minimum required for run re-use in the

current Environment (see Appendix B.2.1)

3. q and r share the same implementation, instance, and configuration

4. q and r have compatible settings (e.g., the CPU time cutoff of q is the same or lower

than the CPU time of r)

5. r either completed successfully or ended due to timeout

6. r was executed on a valid host for the current Environment

• to delegate launching of new runs to the decorated ExecutionManager

• to track and record the outputs and status of returned runs in real time; typically accomplished

by registering AlgorithmRunVisitors for output production and status change on returned runs

B.3.2.2 Run Filters

In addition to implicitly querying a data manager for past runs through the use of a Decorated-

ExecutionManager, it is often useful to explicitly query for all previous runs that satisfy certain

criteria. HAL supports such queries in a data manager-independent way through the getRun(Fil-

ter〈DataBaseAlgorithmRun〉 . . .) method.

The Filter〈T〉 interface defines a single method, contains(T), that returns a boolean indicating

acceptance or rejection of a single instance of type T. Callers can query with arbitrary acceptance

criteria by implementing appropriate filters; for example, the following code will return all runs that

took 1.0±0.01 CPU seconds (excluding HAL overhead), and will work for any data manager:

129

� �
List<AlgorithmRun> runs = dataManager.getRuns(

new Filter<DatabaseAlgorithmRun>() {

public boolean contains(DatabaseAlgorithmRun r) {

return Math.abs(r.getMeasuredCpuTimeIfStarted() - 1.0) <= 0.01;

}

});� �
Note that this query is very expensive in practice, as its evaluation requires the data manager

to check every run ever executed against the filter. For specific data manager implementations,

more efficient Filter subclasses can be used to significantly improve query efficiency; an equivalent

example is given in Section B.3.3.3.

Also note the use of DataBaseAlgorithmRun.getMeasuresCpuTimeIfStarted() instead of Algo-

rithmRun.getMeasuresCpuTime(). The reason this method is used is that until the run() method of

any AlgorithmRun is called, 0s of CPU time will be reported. Since the filter acts on runs before

they are returned (and thus, before the run() method can be called), this alternative method is used

to “peek” at the eventual value. Similar methods exist for overhead and total CPU time, and for run

status.

B.3.3 SQL Data Managers

The previous subsection described data manager interfaces and behavioural contracts that apply to

all possible HAL data managers, regardless of the storage paradigm ultimately used. One could

imagine various data manager implementations backed by SQL databases (such as MySQL9 or

SQLite 10), key-value stores (such as HBase 11 or memcached 12), or even a carefully managed

custom directory structure. However, in practice both data manager implementations available for

HAL 1.1 are backed by SQL databases (MySQL and SQLite), and both extend the AbstractSQL-

DataManager class that we discuss here.

As its name suggests, the AbstractSQLDataManager class provides infrastructure to implement

a FullAccessDataManAger backed by a SQL database. Apache DBCP 13 is used to implement

performance-enhancing connection pooling functionality, and queries are handled with Apache

DBUtils. 14 Nearly all data manager functionality is implemented in this abstract class; the con-

crete MySQL and SQLite implementations simply connect to their respective data sources, and

override a few queries where proprietary syntax allows for more efficient evaluation.

9http://www.mysql.com
10http://www.sqlite.org
11http://hbase.apache.org
12http://memcached.org
13http://commons.apache.org/dbcp
14http://commons.apache.org/dbutils

130

http://www.mysql.com
http://www.sqlite.org
http://hbase.apache.org
http://memcached.org
http://commons.apache.org/dbcp
http://commons.apache.org/dbutils

B.3.3.1 Database Schema

The AbstractSQLDataManager class defines the SQL schema illustrated in Figure B.8. It is able

to automatically instantiate this schema when pointed to an empty database, so it is easy for users

to maintain separate databases (e.g., for different projects). There are tables in the database corre-

sponding to the discussed HAL primitives, as well as tables storing information about the relation-

ships between them.

B.3.3.2 Query Handlers and Beans

Rather than work with Java’s somewhat cumbersome JDBC database infrastructure directly, Ab-

stractSQLDataManager uses the Apache DBUtils library. This requires that for each HAL primitive

represented in the SQL schema, a corresponding Java bean class be provided to act as a temporary

container for all related column values. Specialized ResultSetHandler classes are then used to con-

vert raw JDBC ResultSet data into special purpose beans (or lists of beans), or to update the database

with the data contained in a bean. Each of these beans also has a create() method that is able to in-

stantiate the corresponding HAL primitive from these column values. As such, details of both HAL

primitive instantiation and low-level JDBC functionality is abstracted away in the AbstractSQL-

DataManager class, considerably streamlining its implementation.

Most of the methods identified in Section B.3.1 are implemented in AbstractSQLDataManager

via at least two methods: a private method that implements the SQL queries and related logic given

a database connection, and a public method that initiates a database connection, calls the private

method, closes the connection, and returns results. This factorization allows use of several such

methods without repeatedly opening and closing database connections. However, it also leads to

the rather large total number of methods defined in AbstractSQLDataManager.

B.3.3.3 SQLRunFilters

Recall from Section B.3.2.2 that naive use of the getRuns(· · ·) method is apt to be extremely slow.

In order to exploit knowledge of the common SQL schema to speed up common run queries, a

Filter〈DatabaseAlgorithmRun〉 subclass called SQLRunFilter is provided. This subclass allows im-

plementors to restrict the runs returned by a getRun(· · ·) call by adding WHERE clauses to the SQL

query used to generate the initial list of DatabaseAlgorithmRuns that is then further filtered. The

shared SELECT clause of this query is in SQLRunFilter.SELECT CLAUSE, and reads:� �
SELECT R.id AS runId, R.status AS originalStatus,

R.measuredCpuTime AS originalMeasuredTime,

R.overheadCpuTime AS originalOverheadTime,

R.startTime AS startTime, R.finishTime AS finishTime,

131

Q.id AS id, Q.parentId AS parentId, Q.parentCpuTime AS parentCpuTime,

Q.measuredCpuTime AS measuredCpuTime, Q.overheadCpuTime AS overheadCpuTime,

Q.requestTime AS requestTime, Q.status AS status,

A.name AS implementationName, A.version AS implementationVersion,

I.hash AS instanceHash,

C.hash AS configurationHash,

coalesce(S2.hash, S1.hash) AS scenarioHash,

O.hash AS outputSpaceHash,

E.name AS environmentName,

H.name AS hostName,

V.rpc AS rpcAddress,

L.runId AS nonHalId,

N.name AS name,

D.description AS description,

max(P.sequence) as lastSequence

FROM Run AS R

INNER JOIN Implementation AS A ON R.implementationId = A.id

INNER JOIN Instance AS I ON R.instanceId = I.id

INNER JOIN Setting AS S1 ON R.scenarioId = S1.id

INNER JOIN Setting AS C ON R.configurationId = C.id

INNER JOIN Space AS O ON R.outputSpaceId = O.id

LEFT OUTER JOIN Request AS Q ON Q.runId = R.id

LEFT OUTER JOIN Setting AS S2 ON Q.scenarioId = S2.id

LEFT OUTER JOIN Environment AS E ON Q.environmentId = E.id

LEFT OUTER JOIN RequestHasName AS N ON N.requestId = Q.id

LEFT OUTER JOIN Host AS H ON R.hostId = H.id

LEFT OUTER JOIN ActiveRun AS V ON R.id = V.runId

LEFT OUTER JOIN NonHALRun AS L ON L.runId = R.id

LEFT OUTER JOIN RequestHasDescription AS D ON D.id = Q.id

LEFT OUTER JOIN RunProducedOutput AS P ON P.runId = R.id� �
The WHERE clauses defined by a SQLRunFilter are accessed via the getPredicate() method,

which returns a SQLRunFilter.Predicate object. An example that more efficiently implements the

example of Section B.3.2.2 might be:� �
List<AlgorithmRun> runs = dataManager.getRuns(

new SQLRunFilter() {

private static final Predicate p = new Predicate();

static {

p.setWhere("coalesce(Q.measuredCpuTime, R.measuredCpuTime) <= 1.01 AND coalesce(Q.

measuredCpuTime, R.measuredCpuTime) >= 0.99");

}

public Predicate getPredicate() {

return p;

}

public boolean contains(DatabaseAlgorithmRun r) {

return Math.abs(r.getMeasuredCpuTimeIfStarted() - 1.0) <= 0.01;

}

});� �
132

Note that since this filter implements Filter〈DatabaseAlgorithmRun〉, it can also be used with non-

SQL data managers (though its additional efficiency would presumably be lost). Finally, note that

SQLRunFilters sufficient to construct most common queries are included in HAL 1.1.

133

Figure B.2: Class diagram illustrating AlgorithmImplementations and AlgorithmRuns.

134

Figure B.3: Class diagram illustrating ParameterSpaces and ParameterSettings. A Parameter-
Space is map between String parameter names and Domains of valid values; a
ParameterSetting maps between names and specific Object values. As both are im-
mutable, they are constructed using associated builder objects.

135

Figure B.4: Class diagram illustrating parameter Domains in HAL 1.1. Note in particular the added functionality associated with
SampleableDomain, NumericalDomain, and DiscreteDomain sub-interfaces. Also note the CompositeDomains, used to im-
plement union, intersection, and difference operations.

136

Figure B.5: Class diagram illustrating Environments in HAL 1.1. Note that an Environment is constructed with a FullAccessData-
Manager and several ExecutionManagers.

137

Figure B.6: Class diagram illustrating Algorithms in HAL 1.1.

Figure B.7: Class diagram illustrating ProblemInstances in HAL 1.1.

138

Figure B.8: Table schema used by SQL data managers (continued next page...)

Column Annotation Key

i indexed
N not null
P primary key
F foreign key
U unique
A auto-increment

139

Figure B.8: Table schema used by SQL data managers. (continued)

Column Annotation Key

i indexed
N not null
P primary key
F foreign key
U unique
A auto-increment

140

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 Contributions
	1.2 Thesis Organization

	2 Background and Related Work
	2.1 Algorithm Analysis
	2.1.1 Empirical Analysis Techniques
	2.1.2 Analysis Tools

	2.2 Algorithm Design
	2.2.1 Direct Design Techniques
	2.2.2 Meta-algorithmic Design Techniques

	3 Meta-algorithmic Problems
	3.1 Fundamentals
	3.2 Meta-algorithmic Problems
	3.2.1 Meta-algorithmic Analysis Problems
	3.2.1.1 Single-Algorithm Analysis
	3.2.1.2 Pairwise Comparison
	3.2.1.3 k-way Comparison

	3.2.2 Meta-algorithmic Design Problems
	3.2.2.1 Algorithm Configuration
	3.2.2.2 Per-instance Portfolio-Based Selection
	3.2.2.3 Per-instance Configuration

	4 The High-Performance Algorithm Laboratory
	4.1 Design Considerations
	4.1.1 Components for Experiment Modelling and Meta-algorithmic Logic
	4.1.2 Execution and Data Management Infrastructure

	4.2 The HAL 1.1 Software Environment
	4.2.1 Experiment Modelling Subsystem
	4.2.2 Execution and Data Management Subsystem
	4.2.3 User Interface Subsystem

	5 Algorithm Analysis & Design with HAL
	5.1 Experimental Setup
	5.1.1 Analysis Procedures
	5.1.1.1 Single-Algorithm Analysis Procedure: SCD-Based Analysis
	5.1.1.2 Pairwise Comparison Procedure: Comprehensive Pairwise Comparison
	5.1.1.3 k-way Comparison Procedure: Comprehensive k-way Comparison.

	5.1.2 Algorithm Configuration Procedures
	5.1.2.1 Algorithm Configuration Procedure: ParamILS
	5.1.2.2 Algorithm Configuration Procedure: GGA
	5.1.2.3 Algorithm Configuration Procedure: ROAR

	5.2 Case Study: Choosing a MIP Solver
	5.2.1 Single-Algorithm Analysis
	5.2.2 Pairwise Comparison

	5.3 Case Study: Adapting a SAT Solver
	5.3.1 Single-Algorithm Analysis
	5.3.2 Pairwise Comparison
	5.3.3 Algorithm Configuration

	6 Developing Meta-algorithms with HAL
	6.1 Per-instance Portfolio-Based Selection with zilla
	6.1.1 The zilla Selector Algorithm
	6.1.2 The zilla Design Procedure

	6.2 Per-instance Configuration with Hydra-
	6.2.1 The Hydra- Design Procedure
	6.2.2 Portfolio Candidate Filtering

	6.3 Performance Validation
	6.3.1 Experimental Setup
	6.3.2 Results

	7 Conclusions & Future Work
	Bibliography
	A HAL 1.1 User Reference
	A.1 Installation
	A.2 Running Experiments
	A.2.1 Instance Sets
	A.2.2 Algorithms

	A.3 Analysis Procedures
	A.3.1 SCD-Based Analysis
	A.3.2 Comprehensive Pairwise Comparison
	A.3.3 Comprehensive k-way Comparison

	A.4 Design Procedures
	A.4.1 ParamILS
	A.4.2 GGA
	A.4.3 ROAR
	A.4.4 zilla
	A.4.5 Hydra-

	B HAL 1.1 Developer Reference
	B.1 Tutorial: Developing Meta-algorithms with HAL
	B.1.1 Implementation Basics
	B.1.1.1 The MetaAlgorithmImplementation constructor
	B.1.1.2 MetaAlgorithmImplementation methods
	B.1.1.3 The MetaAlgorithmRun constructor
	B.1.1.4 MetaAlgorithmRun methods

	B.1.2 Testing
	B.1.2.1 Target Algorithms
	B.1.2.2 Target ProblemInstances
	B.1.2.3 Environments
	B.1.2.4 Performance Metric
	B.1.2.5 Unit test

	B.1.3 Additional Outputs and Improvements
	B.1.3.1 Improving Parallelism with AlgorithmRunVisitors
	B.1.3.2 Plots and Statistics
	B.1.3.3 Testing

	B.1.4 Plugin Distribution

	B.2 Execution Management
	B.2.1 HAL 1.1 Execution Pipeline
	B.2.1.1 Algorithm Transformations
	B.2.1.2 Limitations
	B.2.1.3 ExecutionManager Implementations

	B.2.2 LocalExecutionManagers
	B.2.3 SSHExecutionManagers
	B.2.4 SGE- and TorqueClusterExecutionManagers

	B.3 Data Management
	B.3.1 Data Manager Interfaces
	B.3.1.1 ReadOnlyDataManagers

	B.3.2 Experimental Data Management
	B.3.2.1 DecoratedExecutionManagers
	B.3.2.2 Run Filters

	B.3.3 SQL Data Managers
	B.3.3.1 Database Schema
	B.3.3.2 Query Handlers and Beans
	B.3.3.3 SQLRunFilters

