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Abstract

The purpose of most images is to effectively convey information. Implicit in this

assumption is the fact that the recipient of that information is a human observer,

with a visual system responsible for converting raw sensory inputs into the perceived

appearance. The appearance of an image not only depends on the image itself, but

the conditions under which it is viewed as well as the response of human visual

system to those inputs. This thesis examines the scale-dependent nature of image

appearance, where the same stimulus can appear different when viewed at varying

scales, that arises from the mechanisms responsible for processing spatial vision in

the brain. In particular, this work investigates changes in the perception of blur

and contrast resulting from the image being represented by different portions of the

viewer’s visual system due to changes in image scale. These methods take inspiration

from the fundamental organization of spatial image perception into multiple paral-

lel channels for processing visual information and employ models of human spatial

vision to more accurately control the appearance of images under changing view-

ing conditions. The result is a series of methods for understanding the blur and

contrast present in images and manipulating the appearance of those qualities in a

perceptually-meaningful way.
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Preface

All publications, along with the relative contributions of the collaborating authors,

that have resulted from the research presented in this thesis are listed in the following.

Scale-Dependent Perception of Countershading M. Trentacoste, R. Mantiuk and

W. Heidrich.

This work is currently under submission [Trentacoste et al., b] and pre-

sented in Chapter . The author had the initial idea, implemented the software for

both the perceptual experiment and the algorithm, wrote the majority of the paper

and compiled the submission video. Dr. Mantiuk analyzed the results of percep-

tual experiment, contributed to the writing of the paper and provided insights in

discussions. Dr. Heidrich supervised the project, aided in writing the paper and

contributed to discussions.

Synthetic Depth-of-Field for Mobile Devices M. Trentacoste, R. Mantiuk, W.

Heidrich.

This work is currently awaiting resubmission [Trentacoste et al., c] and pre-

sented in Chapter . The author had the initial idea, implemented the software,

and wrote the paper. Dr. Mantiuk provided input in discussions. Dr. Heidrich

supervised the project, contributed ideas and aided in drafting the paper.

Blur-Aware Image Downsampling M. Trentacoste, R. Mantiuk, W. Heidrich.

The contents of this paper [Trentacoste et al., a] are split between chap-

ters, where the details of the blur estimation algorithm are included in Chapter 

while Chapter  presents the blur-aware downsizing operator. The author had the
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algorithm, wrote the majority of the paper, compiled the submission video and
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ceptual experiment, contributed to the writing of the paper and provided insights

in discussions. Dr. Heidrich supervised the project, contributed ideas and aided in

writing the paper.

Quality-Preserving Image Downsizing M. Trentacoste, R. Mantiuk, W. Heidrich.

This poster [Trentacoste et al., b] described an earlier version of the work

contained in Trentacoste et al. [a,c], and contained additional details on the

appearance of noise in downsampled images. The pertinent contributions are also

included in Chapter . The author had the initial idea, implemented the software,

created the poster and presented at the SIGGRAPH Student Research Competition.

Dr. Mantiuk contributed to discussion. Dr. Heidrich supervised and contributed

ideas.

Defocus Techniques for Camera Dynamic Range Expansion M. Trentacoste, C.

Lau, M. Rouf, R. Mantiuk, W. Heidrich.

The contents of this paper [Trentacoste et al., a] are included Chapter . Dr.

Heidrich had the initial concept for the project, aided in the writing of the paper,

supervised the project and contributed ideas. Cheryl Lau implemented portions

of the software, provided input into the evaluation and during discussions. The

author implemented the majority of the software, conducted the evaluation, drafted

most the paper, and presented the at Electronic Imaging . Dr. Mantiuk and

Mushêqur Rouf provided input in discussions.

Portions of this thesis were conducted under Perception of image characteristics and dif-

ferences, Ethics Certiêcate Number H- of the UBC Research Ethics Board.
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Chapter 

Introduction

. Perceived Appearance

Consider the scenario of a professional photographer documenting a scene of inter-

est: the subject could be candid portraits in low light, fast-moving sports or a macro

shot of an insect. In any case, there is the chance of some undesired blur degrading

the image, so the photographer diligently reviews the images on the viewênder to

ensure the necessary parts are in focus. After inspecting the captured images and

ênding them to be satisfactory, the photographer wraps up and heads back to their

studio.

However, when the photographer views the images at full-size on their com-

puter, they appear blurry, despite the smaller versions having appeared sharp. Most

digital camera users have encountered this phenomenon on one or more occasions,

where the viewênder on the camera does not accurately represent the full-size im-

age captured. When shown at a small size, the image often appears sharper than its

larger-scale counterpart. The pixel content of the image did not change, but the im-

age somehow looks different. While the image itself has remained unaltered, some

change in how the image was viewed caused it to be understood differently.

Any discussion about image understanding includes assumptions about the per-

ceptual makeup of the viewer, in this case the visual system of a human observer.

One of the most powerful features of the human visual system () is its ability

to operate effectively across a vast array of conditions, adapting to provide not only
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meaningful but consistent results. This property can easily be seen by our ability to

read this page in both direct sunlight and a dimly lit room while maintaining a nearly

constant appearance of the page across such a signiêcant change.

The goal of visual perception is to provide a meaningful representation of the

scene being observed. Due to various biological limitations, the neural channels in

our visual system are not capable of conveying the vast range spanned by the physical

quantities of that scene. To overcome these limitations and provide a representation

of the scene that we recognize, the  must continually adapt to changing condi-

tions. This adaptation relies upon representing how the image appears in a manner

not based on the underlying physical amount of light received by the eye, but a more

general set of perceived quantities.

The combination of these perceptual quantities describe the visual appearance of

the scene, as understood by the viewer. The adaptation process inherent in percep-

tion preserves the visual appearance of the text on this page, allowing it to be equally

readable in direct sun or dim lighting. We deêne the visual appearance of a stimulus

as:

Visual appearance The supra-threshold perception of a stimulus produced by a

viewer’s visual system deêned in terms of perceptual units like brightness and

colorfulness.

Speciêcally, we distinguish the visual appearance of a stimulus from the mea-

surements of the underlying physical object being observed. Some aspects of visual

appearance, such as perceived contrast, directly relate an underlying property (phys-

ical contrast), while other aspects, such as colorfulness, are more abstract. We refer

to the collection of physical properties of an object as the physical appearance, to dis-

tinguish between the physical stimuli and the perceived phenomenon.

The concept of visual appearance, and by extension image appearance, is a com-

plex issue. Terms like color and brightness are simultaneously universal and elusive,

intuitively understood by everyone, yet hard to deêne rigorously. The  per-

forms exceeding well at the task of providing a consistent visual appearance of our

surroundings and we generally go about our lives with the intuitive notion that ob-

jects appear the same regardless of how we happen to be viewing them. However,

there are numerous examples in everyday life where this assumption does not hold:
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• Car headlights, barely noticeable during the day, are nearly blinding at night.

• Scenes appear more colorful and of higher contrast on a sunny day.

• Different color matte boards cause artwork to take on different appearances.

None of these examples can be explained by physical measurements of the subject

matter alone. In all of these cases, we consider the visual appearance of the object

of interest to have changed, while the underlying physical representation of that

object has generally remained constant. Sometimes that change is consistent with

our notions of the world, such as the examples of the car headlights. Sometimes we

tend not to even consider the change, such as with scenes appearing more colorful

on a sunny day. In both cases, the visual appearance of the scene changed, and we

understood the change and accounted for it.

In other cases, the change in visual appearance can be unexpected and even

confusing, as is the case with the appearance of the artwork and the apparent change

in sharpness of the photographs described at the beginning. In all cases, the visual

appearance changed, but in these two examples the appearance changed in a way

that we did not expect and our understanding of the phenomena changed with it.

Even after a lifetime of experience, the mind has not completely learned to account

for all the nuances of the perceptual mechanisms it relies on to experience the world.

Consider the example of the matted artwork. Part of the reason the change

in the appearance is so unexpected is that none of the physical properties of the

artwork itself changed. If there is a change in the physical properties of an object,

we intuitively understand that we will perceive it differently. In this case, a change

in one part of the scene (the matte) caused another part of the scene (the artwork) to

change in appearance. This particular scenario brings us to an important realization:

The perception of a stimulus does not occur in isolation and the visual appearance

of any given subject depends on more than just the inherent properties of the object

being observed.

The relationship implies that extrinsic factors, beyond the pixel content of the

image, affect its perception. The êelds of perception and color science have have

conducted considerable amounts of research into quantifying and correcting these





changes in appearance. The increases of colorfulness and contrast of a scene on a

sunny day are respectively known as the Stevens effect and the Hunt effect, while the

artwork changing in appearance as a result of the matte is know as the Bartleson-

Breneman effect [see Fairchild, ].

. Scale-Dependence

In terms of extrinsic factors, the êeld of color science is mostly concerned with

the perception of global properties, such as image-wide contrast and luminance.

More complete models [Fairchild and Johnson, ], that address the complexities

in image appearance can account for some additional factors but still fall short of

capturing the full complexity of visual perception. None of the current models of

image appearance account for what the photographer observed with regards to the

sharpness of the images.

This thesis investigates how the scale at which an image is viewed can alter the

perception of sharpness and contrast features in that image and how understanding

image appearance can improve image processing algorithms. Any change to the

geometry of a given viewing condition, such as the size of the displayed image or

the distance from the viewer, will cause a proportional change in the size of the image

projected on the retina of the observer. As a result, the physical relation between the

viewer and the image can determine the scale at which image features are perceived.

Evidence from both psychophysical studies [Blakemore et al., ] and neu-

rological recordings [Hubel and Wiesel, ] suggests that the visual system con-

tains mechanisms that only respond to a narrow range of spatial frequencies. That

the threshold of human contrast sensitivity changes as a function of spatial fre-

quency [Blakemore et al., ] further supports this hypothesis. Changes in the

physical relation of image and viewer can change the visual channel to which a

given feature is mapped. As a result, differences in how individual channels repre-

sent visual information can cause perceived properties like sharpness and contrast to

change in appearance when the image projected onto the retina is altered.

The size of the image formed on the retina is affected by aspects of the display-

viewer relationship that include: the physical size of the display, the distance between

the viewer and the display, and the pixel dimensions of the displayed image. Often
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changes in image appearance are a result of a change in more than one of these

aspects. Walking three times closer to a monitor and switching from a screen in a

movie theater to an iPhone result in considerable changes in the size of the image

projected on the retina. Knowing how large the display will be and how far away

the viewer will be is crucial to conveying the right appearance of that image.

The dimensions (in pixels) at which an image is displayed are even more im-

portant to consider, since they change even more frequently. Very few cameras re-

maining on the market, including mobile devices, capture an image at low enough

resolution to show on a p HDTV display without resizing. As a result, image

downsampling has become synonymous with image display.

. Manipulating Image Appearance

The purpose of most images is to effectively convey information to a human ob-

server. However, most computer graphics research focuses on producing the images

that are either the most physically correct or mathematically optimal. Physical cor-

rectness and mathematical optimality do not necessarily capture the complex rela-

tions required for an image to best communicate information.

Involving elements of human visual perception in the development of image

processing algorithms can ensure that the result can appear the same as the origi-

nal and be understood correctly. The vast majority of images are produced to be

viewed, interpreted and understood by human observers. Given that humans do not

directly perceive the underlying physical representation of an image, but some anal-

ogous representation of appearance, it follows that most image processing algorithms

could produce better results if they focused on producing the image with the desired

appearance instead of optimizing another metric.

In most cases, the appearance of an image matches the physical representation

closely enough that conventional appearance-naïve image processing methods can

produce acceptable results. However, a perceptually-focused approach is crucial in

the examples above where the perceived appearance of an image deviates signiêcantly

from its physical appearance. In these cases, appearance-aware algorithms can better

account for the complex nonlinearities of visual perception and more accurately

produce the desired interpretation.
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In our work, we begin by quantifying the change in appearance that a viewer

observes when the image is altered, building models of how that image is perceived

under different conditions. We then use those models to develop image processing

algorithms that incorporate perceptual considerations and produce results that may

not be the most optimal with respect to simple mathematical metrics, but instead

are the most visually appropriate. The result is a series of methods that êrst produce

a perceived image according to some desired criteria and then solve for the physical

image that best yields that result.

This approach parallels how color perception has informed color management

practices. The transformations between device color proêles not only account for

differences between display response or gamut, but for changes in image percep-

tion. Color management algorithms must account for changes in display intensity

or viewing environment altering the appearance of the image. Likewise, the meth-

ods we present address issues related to image perception across the vast size range

of current displays, covering everything from cinema screens to mobile devices.

. Novel Contributions

The algorithms all share the conceptual framework of computational image analysis/syn-

thesis. At the core of each approach is a method that analyzes an image and produces

an estimate of how some speciêc physical attribute changes across the image. The

estimate is recast in another (usually perceptually-motivated) representation. We

can preserve the perceived appearance when altering an image by solving for the

appearance-preserving modiêcations to restore the perception of the transformed

image. Alternatively we can alter the perceived appearance of an image by trans-

forming the image appearance then solving for the modiêcations to the underlying

image that will cause the desired change in appearance. Finally, given the original

image and these modiêcations, we synthesize the ênal result. Figure . depicts this

framework.

The main contribution of these methods are as follows:

Spatially-Variant Blur Estimation An efficient technique for robustly estimating

the amount of blur present at each pixel in an image.
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Figure .: Depiction of image analysis/synthesis framework shared by our contributions.
In each case, we analyze some quantity in the image, then synthesize a new result that either
preserves the appearance of that quantity or has a novel appearance.

Synthetic Depth-of-Field for Mobile Devices An image enhancement technique

to overcome the limitations of the optics in mobile devices and create a nar-

rower depth of êeld than can be physically captured.

Blur-Aware Image Downsampling A perceptually-based approach for preserving

the appearance of blur when downsizing images.

Scale-Dependent Perception of Countershading A model of visual appearance of

countershading in complex images and the conditions under which counter-

shading is considered objectionable.

Defocus Dynamic Range Expansion An investigation into increasing the effective

dynamic range of image sensors by optically blurring the captured image and

restoring it with deconvolution.

In the case of the Synthetic Depth-of-Field and Blur-Aware Downsampling algo-

rithms, we analyze the image to produce a spatially-variant estimate of the blur

present at each pixel. This estimate is transformed according to a model represent-

ing the desired change in image appearance to produce the blur present in the desired

image. In the case of Synthetic Depth-of-Field the model represents a change in the

aperture of the camera, while in the case of Blur-Aware Downsampling the model

represents the change in perceived blur. Finally, the resulting image is synthesized

from the original image and the result of the model.

With the Scale-Dependent Perception of Countershading paper, we conduct a per-

ceptual experiment to determine what countershading parameter combinations in-
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troduce halos and are thus considered objectionable. We demonstrate how this per-

ceptual model applies to a number of image processing algorithms that either intro-

duce or modify the appearance of countershading, including unsharp masking, tone

mapping and image resizing. Additionally, we present some novel applications of

our model including artifact-free countershading and viewer-adaptive displays.

In the case ofDefocus Dynamic Range Expansionwe investigated several techniques

for deconvolving an optically blurred image to synthesize a ênal sharp image with

a dynamic range that exceeded the physical limitations of the imaging sensor. The

deconvolution algorithms we employ implicitly generates an estimate of the blur

present at each pixel and synthesize the un-blurred result, concurrently adding any

expansion in dynamic range. The overall approach is similar to analysis/synthesis but

this method does not explicitly formulate the quantity being estimated.

. Thesis Organization

This thesis begins with an overview of visual perception, image appearance, blur and

contrast perception, and how these topics relate to the êeld of computer graphics.

Chapter  provides background on the makeup of the human visual system, the

mechanisms of spatial vision, blur and contrast perception, image appearance. We

begin with an overview of the vision concepts that form the foundation of our work,

and build upon that with a discussion of how blur and contrast are represented in

spatial vision. We continue with how these concepts related to image appearance,

discuss speciêc examples such as the Cornsweet illusion, and conclude with a survey

of existing attempts to model image appearance.

Chapter  covers existing research related to the design of optical systems and

image processing algorithms that relate to our work. This survey includes model of

blur formation in images, techniques for blur estimation and methods of restoring

and altering image appearance.

In the following four chapters, the focus shifts to the topics in computer graphics

related to our contributions. Chapter  presents the work of Synthetic Depth-of-Field

for Mobile Devices, a method of spatially-variant blur estimation that is efficient enough

for mobile devices yet robust enough to handle large amounts of noise. We use this

blur estimation method to create images with a shallower depth-of-êeld than can be
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captured by the camera optics.

Chapter  discusses how Blur-Aware Image Downsampling uses the same blur es-

timation method to preserve the appearance of blur in images when downsizing.

Replacing the model of lens optics with a perceptual model of blur appearance,

this method creates downsampled images that better resemble the appearance of the

original.

Chapter  explains how Scale-Dependent Perception of Countershading extends this

concept of preserving appearance to contrast perception. We present a model of

how the width and contrast of countershading proêles affect how they are perceived

and use this model to inëuence novel image processing methods.

Chapter  examines the feasibility of Defocus Dynamic Range Expansion, using

modiêed optics and deconvolution to improve the effective dynamic range of image

sensors. We take a blurry image captured by a lens with an aperture êlter and attempt

to recover a sharp image with a larger dynamic range than the original.

Finally, Chapter  concludes the thesis with a summary of all the material pre-

sented and discusses future directions of investigation.
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Chapter 

Visual Perception

This chapter presents elements of visual perception related to our work and discusses

the physiological basis and algorithmic work concerning how images are perceived.

These topics motivate our contributions detailed in Chapters  through .

To begin, Section . discusses the foundations of visual perception that relate

to image appearance. In addition to image appearance, we present details on spatial

vision and the band-limited nature of the channels involved in visual perception.

Sections . and . discuss the mechanisms in the  which mediate the per-

ception of blur and contrast, respectively. The sections discuss how the underlying

visual channels affect our perception of the phenomena, including sensitivity, and

discuss the subtle differences between sensitivity to a perceptual quality and the per-

ceived appearance of that quality.

Section . examines several higher-order visual phenomena arising from more

complex edge proêles. These proêles, along with spatial contrast perception explain

the appearance of contrast and blur in complex images.

Finally, Section . surveys image appearance models, computational attempts

at modeling elements of visual perception. These algorithms incorporate models of

how the  processes imagery, and attempt to produce a representation matching

our perception of image appearance.





. Foundations of Vision

.. Image appearance

As stated in the Introduction, we differentiate between the visual appearance of an

object, as perceived by a human observer, and the underlying physical properties of

that object. Visual perception includes complex properties like depth, occlusion and

disparity that must be integrated to make sense of the wide array of visual stimuli

present in the real world. In this thesis, we are primarily concerned with image

appearance, the perception of two dimensional renditions on displays, printed pages,

or other physical media.

Before attempting to inform the algorithms we construct to consider image ap-

pearance, we must êrst consider how the portions of an image can be perceived. In

this section, we provide several examples of how the perceived appearance can differ

from the underlying physical image. These examples provide context to the details

of the  we present in the remainder of this chapter.

Within a single image, regions with identical physical properties can be inter-

preted completely differently, depending on the surrounding context. Adeleson’s

now-famous checkerboard [Adelson, ], reproduced in Figure ., is one case

where similar portions of an image can be perceived in different ways. In this im-

age, the patches labeled A & B are the same intensity and will produce the same

luminance on the retina. However, the other squares around A & B deêne separate

contexts that alter the understanding, resulting in the luminance shared by A & B

is interpreted as two different brightnesses. Adelson [] demonstrates that sur-

rounding regions can have a larger effect on the perception of brightness than the

region itself and the conditions under which an image is viewed strongly determine

its appearance. However, once the context is changed by adding bars of the same

color to connect the two regions, it becomes obvious that they are in fact the same

intensity.

Likewise, the perception of the image also depends on the portion of the visual

system responsible for conveying its appearance. The visual channels along which

the  conveys information are not identical and do not reproduce the exact same

response. As a result the appearance of an image is in part determined by which
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Figure .: Adelson checkersquare illusion. Patches A & B have the same luminance, but
appear different brightnesses. Image copyright Edward Adelson.

pathways were responsible for transmitting it to the conscious mind.

The sensitivity of the  to a quality of the image appearance differs depending

on the conditions under which that image is perceived. We deêne sensitivity as

the ability to observe changes in a particular visual stimulus, deêned in terms of the

threshold that must be exceeded in order for the stimulus to be detectable. The more

sensitive the viewer, the lower the threshold and the more they are able to discern

changes in an image.

The hybrid images by Oliva et al. [], shown in Figure . are one particularly

surprising example of how changes in sensitivity can affect image appearance. Both

the large left and small right image are the same, however the content of the image has

speciêcally been designed to cause some details be visible at one scale while other

details be visible at another. The change in contrast sensitivity between different

visual channels causes the image to appear like Albert Einstein when viewed at a

large size but Marilyn Monroe when viewed at a small size or from far away.

The sensitivity of the  to an image attribute and the appearance of that at-

tribute are clearly related. However, the  is a complex nonlinear system with

various elements of the perceptual process continually adapting and compensating

for the performance of other elements. A difference in the sensitivity of the 

under two sets of conditions does not necessarily imply that the resulting images will

appear different. Likewise, a change in image appearance does not necessarily imply

that the sensitivity of the visual system has changed. We explore these relations in
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Figure .: Hybrid images of Oliva et al.. The image contains the high frequency content
of Albert Einstein and the low frequency content of Marylyn Monroe. One image or the other
is more apparent depending on which frequency content is closer to the sensitivity range of the
. Image copyright Aude Oliva.

depth after a brief overview of the related low-level aspects of visual perception.

.. Spatial Vision

Hybrid images provide another concrete example of how the difference between

visual channels representing an image in the  can cause changes in appearance.

This section discusses the structures of the visual system that give rise to these visual

channels. Spatial Vision by De Valois and De Valois [] provides detailed cover-

age of all levels of spatial vision. For a general discussion of the psychophysics and

neurology related to visual perception, refer to Vision Science by Palmer [] and

Principles of Neural Science by Kandel et al. [].
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The act of visual perception begins at the retina, where the photons correspond-

ing to the image are converted into neural impulses by photoreceptive rods and

cones. The signals produced by these photoreceptive cells are transmitted to retinal

ganglion cells, the next level of visual processing in the retina. The connections

between photoreceptors and retinal ganglion cells form a complex network, where

each photoreceptor sends, and each ganglion cell receives, information from multiple

of their respective counterparts. Each portion of the retina has several functionally

distinct subsets of ganglion cells conveying signals from the same photoreceptors in

parallel [Kandel et al., ]. Even at this very early stage in the visual pathway,

information from regions that extend beyond a single cell is being collected and

transmitted in neural impulses from individual units.

The ganglion cells combine signals from several photoreceptors in ways that

depend on precise spatial (and temporal) patterns [Kandel et al., ]. The sig-

nals from the ganglion cells travel along the visual pathway to the lateral geniculate

nucleus (), where the neurons connect to one of two kinds of cells, either mag-

nocellular (M-cells) or parvocellular (P-cells) [Palmer, ]. The receptive êelds of

M-cells correspond to larger regions of the retina and respond stronger to stimuli

of lower spatial frequencies. On the other hand, the receptive êelds of P-cells cor-

respond to smaller regions of the retina and respond stronger to stimuli of higher

spatial frequencies. While the exact spatial sensitivities of both M- and P-cells vary

and the two types overlap, it is apparent the  continues to partition ranges of

possible spatial frequencies in more discrete parallel pathways.

The neural signals produced by the M- and P-cells leave the  and continue on

to the visual cortex. Within the visual cortex, these signals are received by neurons

known as simple cells. Similar to the pattern of connections linking photoreceptors,

retinal ganglion cells and the cells of the , there are multiple sets of connections

between the M- and P-cells and the simple cells of the visual cortex operating in

parallel. Within the visual cortex, this pattern of interconnectedness continues as

larger and larger structures are linked together: Groups of simple cells are connected

to complex cells. Groups of interconnected complex cells form columns in the visual

cortex. Groups of interconnected columns form hypercolumns. Groups of adjacent

hypercolumns are connected to each other.

The increasing interconnectedness at each stage of the visual system allows a
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Figure .: Neurological bases for visual channels. The connection patterns of photoreceptors
and ganglion cells, as well as the organization of the  are examples of how visual channels
are formed in the .

greater range of possible scales to be represented. A photoreceptor on the retina will

only respond to the light from a single point in the scene. On the other hand, a

complex simple cell could respond to a range of different region sizes, depending

on how large a group of photoreceptors are connected to it. Some cells will col-

lect responses from only a small region of retinal cells while some cells will collect

responses from a larger region. As a result, these cells respond to different-sized

features [De Valois and De Valois, ]. Features too small for a given region are

averaged out as the signals are summed together and features too large for that region

cannot be represented represented by the the underlying mechanisms.

This conêguration of multiple parallel connections gives rise to visual channels

present in the . Each channel acts as a band-pass êlter, carrying information about

a particular spatial frequency band (and orientation) [De Valois and De Valois, ].
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This interpretation is support by neurological measurements by Hubel and Wiesel

[] of cells in the V area of the visual cortex that selectively respond to different

spatial frequencies and orientations, as well as the existence of horizontal connec-

tions between hypercolumns in the visual cortex [Hubel and Wiesel, ]. Further

evidence is provided by psychophysical studies regarding selective adaptation of sub-

jects to spatial frequency. In the seminal experiments by Blakemore et al. [],

subjects shown gratings of a speciêc spatial frequency adapted to that frequency and

demonstrated a temporary reduction in sensitivity to that spatial frequency. All of

this evidence makes a compelling case for the existence of parallel channels of in-

formation processing in the . Figure . shows an image decomposed into a

Laplacian pyramid, a series of band-pass images. This representation is one possible

interpretation of what information is carried in separate visual channels and discussed

in Section ..

Figure .: Example of band-pass êlters. Each image of Kurt Vonnegut has been processed
by a different band-pass êlter and contains separate spatial frequency content.

These mechanisms have served as inspiration for a variety of image processing

techniques. The concept of local or band-limited contrast inherent in the parallel

visual channels representation has proven to be a powerful image processing tech-

nique. Gabor êlters [Feichtinger and Strohmer, ] best model the responses of

the simple cells in the visual cortex. While accurate representations of local spatial

contrast and orientation sensitivity, Gabor êlters are difficult to use computation-

ally and other representations are often employed. There are a number of sub-band

transforms that mimic properties of visual channels. The cortex transform by Wat-

son [] provides a simpler, yet reasonably accurate model of the ability of the 

to decompose visual stimuli into separate spatial frequencies and orientations. The

Gaussian and Laplacian pyramids [Gonzalez and Woods, ] are more common
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methods that ignore orientation yet retain segmentation of spatial frequencies.

.. Edges

Having presented evidence that the  transmits visual information via multiple

channels, we now address the exact nature of the information these channels con-

vey. As we have stated, these parallel channels begin with the connections between

the photoreceptors and the retinal ganglion cells. Retinal ganglion cells connect to

two separate sets of photoreceptors, an inner region surrounded by an outer region.

The pattern in which these cells are connected displays lateral inhibition [De Val-

ois and De Valois, ], where light falling on a given photoreceptor causes that

cell to excite a ganglion cell and simultaneously inhibit the signals sent to the same

ganglion cell by adjacent photoreceptors. The strength of impulses the cell sends

increases with the difference between light falling on the inner and outer regions.

The ganglion cells do not respond to changes in the absolute intensity of the light,

but to the contrast between adjacent regions of the retina.

This relationship is maintained at subsequent stages of the visual system. The

simple cells present in the visual cortex provide further evidence. While simple

cells combine the information received from the retinal ganglion cells in a variety of

conêgurations, all share the same three properties: they respond to a speciêc retinal

position, they contain discrete excitatory and inhibitory zones and have a speciêc axis

of orientation. Figure . contains several examples of the receptive êelds associated

with simple cells.

Figure .: Sample receptive êelds of simple cells. Each contains discrete excitatory and
inhibitory zones and have a speciêc axis of orientation.

In particular, all simple cells are tuned to respond to speciêc combinations of
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retinal ganglion cells that represent linear features. Since retinal cells respond pri-

marily to contrast, the simple cells respond almost exclusively to the boundaries of

an object. In other words, the simple cells in the visual cortex directly represent im-

age edges. The boundaries between image regions are explicitly coded in the visual

system and are a fundamental primitive of the . The importance of which was

best stated by David Hubel, neural physiologist [Palmer, ]:

Many people, including myself, still have trouble accepting the idea that the

interior of a form ... does not itself excite cells in our brain ... that our awareness

of the interior as black or white ... depends only on cells’ sensitivity to the borders.

The intellectual argument is that perception of an evenly lit interior depends on

the activation of the cells having êelds at the borders and on the absence of

activation of cells whose êelds are within the borders, since such activation would

indicate the interior is not even lit. So our perception of the interior as black,

white, gray or green has nothing to do with cells whose êelds are in the interior

– hard as that may be to swallow ... What happens at the borders is the only

information you need to know: the interior is boring.

Edges deêne regions of images and are the basis of our understanding of visual

stimuli. The full characterization of an edge includes orientation, curvature and

chromatic and other attributes. However, we focus on two speciêc properties: the

blur and the contrast of the edge, depicted in Figure .. We deêne the edge blur

as the extent over which a luminance change occurs and the edge contrast as the

magnitude of luminance change across the image region subtended by the edge.

The combination of magnitude (contrast) and extent (blur) of an edge is the

primary factor determining the appearance of that edge. The blur of that feature

determines which of the visual channels carry the information of a particular image

feature. Likewise, the strength at which any visual channel is activated is representa-

tive of the contrast of the associated portion of the image. In the next three sections

we will discuss the underlying properties of blur and contrast perception and how

they relate to image appearance, êrst individually then in combination.
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Figure .: Deênition of edge contrast. Contrast is the magnitude of a transition. Blur is
the spatial extent over which that transition occurs.

. Blur Perception

We examine the response of the visual system to changes in physical stimuli, starting

with the perception of blur. There are two aspects of the response of the  to

a stimulus: detection and discrimination. Detection (threshold effects) is the change

required for a given stimuli to be visible as distinct from the surround while the

discrimination (supra-threshold effects) is the difference at which two already-visible

stimuli will be considered distinct. Both threshold and supra-threshold responses

constitute an inverse relationship, where lower thresholds imply higher sensitivity to

visual phenomena.

Blur is the spatial extent over which a change in contrast occurs. For a given

magnitude change in contrast, the change of an edge with little blur will occur over

a small region while the change of an edge with a larger blur will change over a

larger region. In both cases, the total change in luminance is equal but the distance

over which the change occurs varies.

In terms of complex images, blur is the absence or suppression of êne details

in the image. Convolution with certain pointspread functions () results in the

attenuation of high frequency components of the image and the edges cannot contain

abrupt changes in contrast. This absence of high frequency information is apparent
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when an image is analyzed in the Fourier domain. Blur can also be interpreted as

the spatial frequency above which there is not signiêcant information:

F (ω)≈ 0, for ω > c (.)

establishing a rough cut-off frequency c for the content of the image. This repre-

sentation generalizes the effect of convolving an image by one of many individual

 kernels, such as a box êlter or Gaussian function and Figure . demonstrates the

change in cutoff frequency for several Gaussian blurs. The exact appearance of the

result can vary subtly, depending on exactly which frequencies are attenuated and

by how much, but the end result is the high frequency content of the image will be

attenuated.

c c c

Figure .: Examples of different blur êlter frequency cutoffs. The upper row contains
representative images while the lower row contains the respective plots of spatial frequency
content. The lower the cutoff c, the less high frequency information present in the image.

.. Blur Sensitivity

Much of the work quantifying human blur sensitivity has come from the optometry

community, related to deêciencies in the optics of the visual system, and myopia

(nearsightedness) in particular. Hamerly and Dvorak [], and more recently Wang

and Ciuffreda [b], report the  is capable of detecting a difference between a

sharp edge and a blurred edge width of  seconds of arc. Interestingly, both report
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discrimination between two blurred edges is more accurate than discriminating a

blurred edge from a sharp one, and the threshold for blur discrimination is roughly

half that of detection.

Both Hamerly and Dvorak and Wang and Ciuffreda tested blur discrimination

on a relatively narrow ranges of edge blurs, corresponding to the êrst few just-

noticable-differences () of blur. More recently, Chen et al. [] conducted

a similar study covering a signiêcantly wider range of blur radii covering Gaussian

edges with values of σ ranging from -.°. Chen et al. report a blur detection

threshold of σ =.° for a sharp edge, increasing to roughly twice the sensitivity

at σ =.°, then sharply decreasing in sensitivity past that. The shape of the blur

sensitivity plot is shown in Figure ..

Figure .: Blur discrimination threshold from Chen et al.. The sensitivity increases then
decreases sharply past a point. Image reproduced from Chen et al..

The sensitivity to blur depends on a number of different factors. Hamerly and

Dvorak found that blur sensitivity increased with contrast and subjects were able

to detect smaller changes when the stimulus was higher contrast. Both Wang and

Ciuffreda [a] and Wang et al. [a] studied how blur sensitivity changed with

regards to position on the retina, and found that the threshold of detection increases
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slightly for stimuli further from the fovea, corresponding to the decrease in pho-

toreceptor density. At each retinal position, the blur discrimination thresholds were

similar to each other, and they were approximately % of the blur detection thresh-

old magnitude. Wang et al. also found that blur detection sensitivity decreased

roughly twice as fast as blur discrimination. Wuerger et al. [] studied the dif-

ference in blur sensitivity for chromatic edges, including isoluminant red/green and

yellow/blue stimuli in addition to luminance. The thresholds for red/green stimuli

are similar to those of luminance stimuli, while thresholds for blue/yellow stimuli

were signiêcantly higher.

Ciuffreda et al. conducted research linking low-level aspects of blur sensitivity to

higher-order perceptual constructs. This work includes task-speciêc blur sensitiv-

ity [Ciuffreda et al., ], derived from experiments where subjects rank the point

at which blur was detectable, objectionable and signiêcantly degraded performance

on visual recognition tasks. The study served as the inspiration for the perceptual

experiment we conducted in Chapter . The authors also presented [Ciuffreda et al.,

] a conceptual model of blur perception unifying a number of these individual

êndings. Their work combines the measurements of detection and discrimination

thresholds for different retinal positions and constructs volumes in the visual êeld,

shown in Figure ., where two stimuli would be within a  of blur from each

other.

Much of the sensitivity to blur of the  is determined by neurological factors,

not the optics of the eye, suggesting that long-term differences in the visual stimuli a

subject is exposed to can affect their ability to resolve blur differences. In particular,

myopic (near-sighted) viewers and emmetropic viewers (not requiring correction)

should display different sensitivity and adaptation to the presence of blur, given that

one regularly experiences blurred stimuli while the other does not.

Cufflin et al. [] and Wang et al. [b] studied how the blur discrimination

thresholds change when subjects have adapted to out-of-focus stimuli. In their ex-

periments, subjects’ vision was blurred by -. diopters, and their visual acuity was

tested immediately after the blur was introduced, then after an adaptation period.

Initially, both myopes and emmetropes displayed a loss of visual acuity, but recov-

ered some of the acuity after the adaptation period. George and Rosenêeld []

noted that myopes displayed a larger increase in sensitivity after adaptation than em-
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Figure .: Conceptual model of blur perception of Ciuffreda et al. The thick solid line
represents the plane focus. The thin solid line represents the distance corresponding to blur
detection while the dashed lines correspond to  of blur discrimination. Image reproduced
from Ciuffreda et al..

metropes, possibly due to more exposure to blurred stimuli. However, while myopes

were more able to adapt to the presence of blur, even with corrected vision they could

not match the visual acuity of emmetropes [Rosenêeld et al., ]. Rosenêeld and

Abraham-Cohen [] noted that this improvement in visual acuity came without a

change in the optical refraction associated with accommodation of the eye, implying

changes in the neurological gains of different visual channels.

.. Blur Appearance

In addition to altering the sensitivity of viewers, adaptation to differently blurred

stimuli can also change the appearance of images. Webster et al., in a and ,

found that viewers adapted to the amplitude spectra of blurred and sharp images,

causing subsequently viewed natural images with a conventional 1/ f 2 frequency

distribution to appear altered. Webster et al. êrst showed subjects images that had

either been blurred or sharpened, giving them time to adapt. Normal images shown
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afterwards appeared too sharp or too blurry, respectively. Webster et al. also showed

that the same phenomenon existed for simultaneous contrast [see Fairchild, ,

chap. ], where a normal image surrounded by blurred images would seem too

sharp and vice versa, shown in Figure ..

Figure .: Simultaneous blur contrast. The center face is the same in both images, but the
surrounding faces affect its appearance. Images copyright Michael Webster.

In natural settings, defocus blur most often results from the current focal distance

of the observer, and there is strong relation between the amount of blur perceived

and the distance between the viewer and the object. Mather and Smith []

investigated how blur discrimination affected the ability of the  to determine

depth relationships in a scene and demonstrated blur variation alone is sufficient to

determine the apparent depth ordering. More recent work by Vishwanath and Blaser

[] agrees with Mather and Smith, additionally suggesting the blur is likely used

as a quantitative cue to distance consistent with the observer relationship between

retinal blur and distance, and not the result of a precise computation. Both authors

found that the ability of observers to discriminate different levels of blur was rather

poor, consistent with our own results. This lack of sensitivity limits the use of retinal

blur to a relatively coarse, qualitative depth cue.

Held et al. [] presented a probabilistic model of how viewers may use defo-

cus blur in conjunction with other pictorial cues to estimate the absolute distances

to objects in a scene. Their model suggests how the visual system might use a com-
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bination of blur pattern and relative depth cues to determine the apparent scale of

the content of images. Held et al. validated their model with a series of perceptual

experiments and found viewer’s estimates of model distance consistent with their

predictions. The authors also proposed an algorithm for introducing blur into an

image to achieve a novel perceived object scale, as seen in Figure ..

Figure .: Perceived object scale of Held et al.. Simulating different defocus patterns can
alter the perception of scale and distance of objects. Image copyright Robert Held.

The degree to which a given stimulus is blurred determines the visual channel

responsible for processing that stimulus. Differences between the responses of indi-

vidual visual channels affect the perception of that blur, resulting in changes in blur

sensitivity and appearance across the range of possible scales. Many other aspects of

image perception are tied to the underlying visual channel, including contrast. The

next section details how the contrast sensitivity and the appearance of contrast in

image features is determined by spatial scale.

. Spatial Contrast Perception

Contrast, in the most general sense, is the spatial variance in visual properties that

causes one element of an image to be distinguishable from the surrounding elements.

This thesis is primarily concerned with luminance contrast, how the intensity of light

changes between one region and another. Contrast is speciêed in terms of ratios
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between light and dark sides of an edge, removing any dependence on absolute

magnitude of the stimuli. Features with vastly different magnitudes can have the

same contrast as long as the relative difference remains the same:

CRatio =
Ymax

Ymin
. (.)

Other metrics of contrast have arisen from speciêc stimuli that have appeared re-

peatedly in literature. For simple sinusoid gratings with maximum and minimum

luminances, Ymax and Ymin, contrast is measured by Michelson contrast:

CMichelson =
Ymax −Ymin

Ymax +Ymin
. (.)

For tests concerning the contrast between a simple target and surrounding area con-

trast is measured by Weber contrast, and describes the increment or decrement ∆Y

from some base level of illumination Y . Weber contrast is deêned as the ratio of

change in luminance to base luminance:

CWeber =
∆Y
Y

. (.)

Both of these formulations are closely related and each can easily be expressed with

the terms of the other:

C ′
Michelson =

∆Y
2Y +∆Y

(.)

C ′
Weber =

Ymax −Ymin

Ymin
. (.)

However, these contrast measures are lacking. Neither measure can address the

fact that natural scenes contain a diverse range of spatial scales that vary across the

image. Contrast is a local phenomenon that changes across the image, where small-

scale changes in local contrast correspond to changes in surface texture and larger-

scale changes in local contrast correspond to geometry or illumination. A better

deênition of contrast would adapt to the changes in intensity present at different

scales in different regions of an image, similar to the visual channels present in the

.
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Pyramid approaches [Adelson et al., ] are one of the most common means of

processing images that accurately capture differences in scale. The simplest measure

of spatial contrast is the Laplacian pyramid [Burt and Adelson, ]. This represen-

tation decomposes an image into discrete frequency bands by computing differences

between Gaussian-êltered images. Each level of a Laplacian pyramid is deêned as the

difference between subsequent octaves of a Gaussian pyramid, with the êrst Lapla-

cian level comprised of the difference between the original image and the topmost

Gaussian level. There is an additional base level containing the remaining frequency

information. The Laplacian pyramid decomposes an image into n band-pass im-

ages bi and a single low-pass image l, resembling the local spatial processing and

band-limited nature of human vision:

I =
n−1

∑
i=0

bi + l. (.)

One shortcoming of the Laplacian pyramid is that it is based on differences in

luminance, as opposed to ratios of luminance. Peli [] proposed a similar ap-

proach, basing the measure of contrast on ratios of luminance. Peli constructs a

series of band-pass images of the ratio of luminance to a local average of the follow-

ing structure

I = l0 +
n−1

∑
i=1

ai li = l0 +
i−1

∑
j=i

a j, (.)

where ai is the band-pass êltered image, li is the local mean consisting of all frequen-

cies below that band, with l0 being the lowest band. The deênition of contrast is

then the ratio of the band-pass image to the local average:

CPeli =
ai

li
. (.)

Pyramid representations provide efficient approximations of the local band-limited

contrast processing of the . If these metrics are insufficient, more accurate mea-

sures of local contrast based on models of human contrast sensitivity should be em-

ployed.
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.. Contrast Sensitivity

One of the most fundamental issues related to contrast perception concerns contrast

sensitivity, or how large a luminance difference must be in order to be visible. Percep-

tual psychologists have dedicated considerable effort to measuring the dependence

of contrast threshold on spatial frequency and luminance. The contrast sensitivity

function (), shown in Figure ., quantiêes the ability of the HVS to detect

changes in relative intensity under a speciêc set of conditions. The full model of

contrast sensitivity depends on many factors, but the spatial frequency of a stimulus

plays one of the most signiêcant roles in determining the sensitivity of the  to

the details present.

The  displays a peak sensitivity between - c/deg with a sharp drop in sen-

sitivity for higher frequencies and gentler but still signiêcant decrease for lower fre-

quencies [De Valois and De Valois, ]. Reasons for reduced contrast of high

spatial frequencies due to the optical quality of the lens in the eye and the limited

density of photoreceptors in the retina, as well as reduced contrast for low spatial

frequencies due to the limited spatial extent over which low-level cortex cells can

merge visual input.

The shape of the  is directly visible from looking at frequency gratings like

Figure .. Combinations of spatial frequency and contrast that appear gray are

below the visibility threshold of the  while combinations that show the grating

are in the range of sensitivity. The similarity with blur perception is apparent, and

different visual channels do not exhibit exactly the same responses to stimuli of equal

contrast. The overall characteristic of the  is a composite of sensitivities of the

underlying visual channels and its shape describes the relative performance of those

channels. Individual channels are still responsible for the processing of visual stimuli,

but the  embodies summation of channel contrast sensitivity.

.. Contrast Appearance

The , however, only describes the behavior of the visual system to threshold con-

trasts. Most regularly encountered visual stimuli are supra-threshold and easily de-

tectable. There is no guarantee that the sensitivity of the  to contrast of a certain

spatial frequency is representative of how that contrast actually appears.
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Figure .: Grating demonstrating the contrast sensitivity of the human visual system. The
apparent reduction of contrast at high and low frequencies is a result of our visual system, not
the image.

Blakemore et al. [] studied the appearance of supra-threshold contrast and

reported the relative apparent contrast of sine waves at different contrasts and spatial

frequencies. Subjects adjusted the contrast of sinusoidal gratings of various spatial

frequencies to match the contrast of a  cpd grating. At threshold contrast, the

curves match the . As contrast increases, low frequencies appear less attenuated

up to a Michelson contrast of ., at which point they appear equal contrast to the

reference. Higher frequencies remain attenuated similar to the .

Georgeson and Sullivan [] were the êrst to note that high (and to a lesser ex-

tent low) spatial frequencies never appear as faint or as fuzzy as mid-spatial frequency

gratings. The phenomenon, known as contrast constancy, refers to the ability of the vi-

sual system to account for differences in contrast sensitivity between different spatial

frequencies. Instead of a stimulus at threshold contast appearing barely detectable, it

appears near full contrast. Cannon [] corroborated that two equal physical con-

trast stimuli have an equal perceived contrast, even if the respective thresholds are

quite different, implying the mechanisms mediating threshold detection and supra-
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threshold perception may be different. It is as if the visual system has an internal

model of the  it uses to partially invert the effects of contrast sensitivity on the

perceived result, as seen in Figure ..
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Figure .: Plot of contrast constancy. Even though the threshold (topmost line) increases for
high and low frequency, the appearance of contrast appears the same as that of middle frequencies
with lower threshold. Image reproduced from Georgeson and Sullivan.

Psychophysical studies have shown contrast constancy to hold under a wide range

of conditions. Subsequent studies by Peli et al. [; ] have shown that the

 is capable of preserving the appearance of contrast across a vast range of visual

conditions, reducing in effect only for dim or very high frequency targets. Tiippana

and Näsänen [], likewise, found that for high contrasts, matches were nearly

independent of stimulus spatial-frequency bandwidth up to about  octaves, even

though detection thresholds increased with bandwidth. Brady and Field [] de-

rived a model of contrast constancy that, in addition to explaining experimental

results, also predicts perceived contrast will be approximately constant across scale

for scenes whose spectra fall as /f, as is typical of natural scenes. In some cases, the

compensatory mechanisms can be overdriven and frequencies with a lower sensitiv-

ity can appear to have more contrast than higher-sensitivity stimuli, referred to as

contrast overconstancy by Georgeson [].

The perception of contrast in complex images depends on factors beyond the

amplitude of the spatial frequency components. While it is convenient to treat the
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visual system as a set of quasi-linear operations, numerous exceptions exist. Examples

like the contrast constancy phenomenon have demonstrated that the appearance of

stimuli is effectively decoupled from the sensitivity of the underlying visual channels

responding to a stimulus. The contrast between one region of an image and adjacent

regions can also affect the apparent contrast.

Apparent contrast is the relative brightness of visual stimuli, where brightness is

formally deêned as “the visual sensation according to which an area appears to emit

more or less light” [Poynton, ]. Brightness could be thought of as apparent lu-

minance, and much like the ratio between luminances determines physical contrasts,

the ratio between brightnesses determines apparent contrast.

The most commonly known example of these higher-level phenomena is the

shift in color appearance of a stimulus when the color of its background is changed,

known as simultaneous contrast. In the case of Figure ., identical gray patches

presented on different backgrounds appear distinct. Darker backgrounds cause the

grey patch to appear brighter, while lighter backgrounds cause the grey patch to

appear dimmer.

Figure .: Example of simultaneous contrast. The internal gray squares appear of different
brightness depending on the surrounding area.

. Edge Proêle Perception

The amplitudes of spatial frequencies that comprise a stimulus have an obvious effect

on the perceived blur and contrast. This fact is especially relevant in the context of

edges, which consist of all spatial frequencies. In particular, the edge forming the

boundary between regions can have signiêcant effects on the perception of those

regions. The change in intensity across that boundary, known as the luminance proêle,
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can substantially alter the appearance of both the edge and adjacent regions.

Figure .: Reduction in contrast of regions bounded by blurred edges demonstrated, by
Kim et al. []. The inside of (a) and (b) are the same color, but the blurred edges in (b)
reduce the perceived contrast. Kim et al. also present a method to correct for the loss of contrast,
demonstrated in (c). Images copyright Min Kim.

The previous section addressed how individual spatial frequencies are perceived,

and we now address how groups of spatial frequencies are perceived in the context of

edges. By deênition, blurred edges, with attenuated high spatial frequencies, appear

less well deêned than sharp edges. Likewise, contrast thresholds increase as the width

of a blurred edge increases [Shapley and Tolhurst, ], in accordance with the .

What is surprising, however, is blurred edges also appear to have less contrast than

step edges of equal Michelson contrast [O’Brien, ], the effects of which were

recently studied for complex images by Kim et al. [] and depicted in Figure ..

Edges proêles with ampliêed high frequencies, known as countershaded edges, are

more interesting still. The relative intensity of ampliêed spatial frequencies can alter

the perception of both sharpness and contrast of the edge. Countershading increases

local contrast by adding a high-pass image Hσ (Y ) to the original image

Y = Y +λHσ (Y ) = (1+λ )Y −λgσ ∗Y, (.)

where λ is the contrast of the countershading. The process is illustrated in Fig-

ure .. In some cases, the underlying edge may be attenuated, or omitted entirely,

and only the high-pass image used.

Depending on the parameters used, the result of countershading causes differ-

ent changes in the appearance of the image. The choice of a small σ increases
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Figure .: Demonstration of countershading process. A high-pass image modulated by λ
is added the underlying image. Image reproduced from Smith.

the acutance [Neycenssac, ], or apparent sharpness, of the image (Figure .),

which is the effect usually referred to as “unsharp masking” [Badamchizadeh and

Aghagolzadeh, ]. However, narrow proêles do not signiêcantly alter the per-

ception of contrast [Kingdom and Moulden, ]. The choice of a large σ increases

the contrast of the image (Figure .), which is usually referred to as countershading.

Increased Sharpness Normal Increased Contrast

Figure .: Comparison of perceived effect of countershading. Narrow proêles can increase
perceived sharpness while wide proêles can increase perceived contrast. Original image copyright
Greg Ward.

For both changes in sharpness and contrast appearance, the perception of coun-

tershaded edges again falls into two categories: threshold sensitivity and supra-threshold

appearance. The threshold, when equal-contrast countershaded edges and step edges

can be differentiated, and the supra-threshold appearance, the amount of contrast or

sharpness increase that a countershaded edge appears to possess, are determined by

countershading parameters σ and λ .

The studies on the Cornsweet illusion by Sullivan and Georgeson [], Camp-

bell et al. [; ] and Burr [] determined the contrast at which a coun-
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tershaded edge becomes distinguishable from a step edge of equivalent contrast, the

so called scalloping threshold. The thresholds apply only to larger σ-values because

the countershading is always distinguishable from a square wave at spatial frequencies

above  c/deg [Sullivan and Georgeson, ]. Thus narrow countershading that

increases apparent sharpness will always appear distinct from their step edge coun-

terparts.

Interestingly, research has almost exclusively focused on the perception of wider,

contrast-enhancing countershading proêles and Lin et al. [] conducted one of

the only studies regarding the perceived change in apparent sharpness of counter-

shaded edges. Subjects ranked the perceived quality of images for contrasts of dif-

ferent magnitudes and Lin et al. computed the most desirable and highest tolerated

contrast. Findings with Laplacian edge-enhancement êlters show that the baseline

preferred sharpness is about .× that of the local just-noticeable difference, and the

actual preferred sharpness is also dependent on the contrast increase in the surround-

ing areas.

On the other hand, a substantial body of perceptual literature exists on the effect

of countershading on perceived contrast. The best known and most dramatic exam-

ple is the Craik-O’Brien-Cornsweet illusion [Cornsweet, ; Craik, ; O’Brien,

], the name commonly given to a family of related illusions that induce an in-

crease in perceived brightness by introducing countershading. The family, often

referred to collectively as the Cornsweet illusion, results from a sufficiently-wide

countershading proêle. The illusion, shown in Figure ., causes the region on the

bright side of a countershaded edge to appears brighter and the region on the dark

side of the the edge to appears darker.

Tolhurst [] and Shapley and Tolhurst [] found that the threshold con-

trasts of countershaded edges were the same as that of step edges, provided the width

of the high-pass image was above a critical value of .°. Below the critical width,

sensitivity to Cornsweet edges became progressively lower than that of step edges.

Campbell et al. ;  and Sullivan and Georgeson [] found that the contrast

thresholds for the missing fundamental illusion, shown in Figure ., to be the same

as those for square waves provided the slope width was less than roughly . c/deg.

Differences between the êndings can be attributed to differing luminance proêles

used in their respective experiments.
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(a) Cornsweet Illusion (b) Similar contrast step edge

Figure .: Comparison of step and Cornsweet edges. Left: a Cornsweet edge. Right: a
standard edge. The regions on either side of the edges appear to have roughly the same bright-
ness, even though they are of the same brightness for the Cornsweet edge. Image reproduced
from Smith.

Seminal work by Dooley and Greenêeld [] resulted in the graph in Fig-

ure . that relates the apparent contrast of a Cornsweet proêle to the physical

contrast of its luminance proêle. The apparent contrast of the edge is shown to be a

function of the width of the edge proêle measured in angular degrees, and amplitude

measured in Michelson contrast. The strength of the illusion diminishes as the width

of the Cornsweet proêle decreases, and as amplitude increases, the apparent contrast

of the edge becomes nonlinear and eventually begins to decrease. The choice of a

larger σ or a smaller λ results in a larger relative increase in contrast.

The Cornsweet illusion is additive, as noted by Burr [], and a countershading

proêle can be added to an existing step edge to further increase the apparent contrast

of the edge. Dooley and Greenêeld [] noted that the strength of the Cornsweet

illusion decreases as the contrast of the existing step edge increased. Additionally,

the Cornsweet illusion is cumulative, and multiple Cornsweet proêles will result

in brightness that approximates a set of step edges, where each patch will appears

brighter than the previous.

Countershading is not limited to changes in perceived brightness; it has been ob-

served to be a property of several aspects of visual perception. Of particular interest

to image processing algorithms is the fact that the illusion is present in similar edge

proêles of color change [van den Brink and Kleemink, ; Ware and Cowan, ],
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Figure .: Examples of different physical edge proêles (left) and their perceived result
(right). Image reproduced from Kingdom and Moulden.

and can be created from changes in hue, saturation and chromaticity [Wachtler and

Wehrhahn, ]. Additionally, Anstis and Howard [] presented the existence

of the illusion with regards to stereoscopic depth, Loomis and Nakayama [] and

Walker and Powell [] described the relation of the effect to motion perception,

while Purves et al. [; ] provided some compelling examples of how the

effect relates to our perception of D scenes. Ihrke et al. [] performed a per-

ceptual evaluation of the work on D unsharp masking by Ritschel et al. [].

The authors tested the preferred value of their magnitude parameter λ for proêles

of several different widths, measured on object surfaces, opposed to image-space.

. Image Appearance Models

The perceptual basis of the Cornsweet illusion is the subject of ongoing debate and

there are competing theories on what aspect of visual processing mediates the illu-

sion. Dooley and Greenêeld [] suggest that the effect is due to the shape of the

 and based the fact that given the lack of sensitivity of the  to low frequencies,

a Cornsweet edge and a step edge have the same response. Another class of theories
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Figure .: Strength of the Cornsweet illusion as a function of width and contrast. As width
increases, so does the strength of the illusion. Increasing the contrast increases the strength of
the effect up to a point, then the illusion fails. Image reproduced from Georgeson and Sullivan.

attempts to explain the effect in terms of lightness constancy like Retinex [Land and

McCann, ], described below. A third interpretation suggests that the effect is

the result of local analysis of edge features and uses sets of êlters to detect and ex-

tract information about edges and uses that information to extrapolate global effects.

Davey et al. [] has reported that the illusion is consistent with the effects ob-

served from the “êlling in” mechanism of our vision perception, but that has been

disputed by Devinck [Devinck et al., ]. Kingdom and Moulden [] provide

a comprehensive comparison of all the competing theories.

Attempts to model perceptual processes extend beyond countershading and nu-

merous approaches have been proposed to model how the human visual system

understands blur and contrast. These methods share the goal of modifying an image

such that it approximates the  perception of brightness. One signiêcant class of

methods is known as lightness algorithms. The most commonly known version is

Retinex [Land and McCann, ], but a number of similar approaches exist [Blake,

; Horn, ]. Hurlbert [] provides a summary of methods and presents

several formal connections between their formulations.
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The key observation these methods make is that human perception of bright-

ness roughly corresponds to the reëectances of surfaces in the scene. However, the

observed image is the product of the reëectance and the illumination. Given this

observation, if one separates the contributions of reëectance and illumination from

the observed image and only considers the reëectance, they could have an estimate

of how the HVS perceives the brightness.

The original Retinex paper presented by Land and McCann was based on the

observation that changes in illumination correspond to smooth gradients that vary

slowly while changes in reëectance correspond to edges and are abrupt. This as-

sumption leads to the approach shared across many of the lightness algorithms: êrst

differentiate the image to recover change in luminance, then employ a threshold

operation to remove small changes that correspond to smooth gradients, and ênally

integrate to recover a modiêed image that approximates the surface reëectance.

Land’s original paper focused on D patches of uniform reëectance called Mon-

drians, shown in Figure .. The approach performs random walks between dif-

ferent patches of the D Mondrian, summing the thresholded differences along the

path to approximate the log of the ratio of surface reëectances at the beginning and

end of the path. This operation is repeated along numerous random paths to try and

ênd region of highest reëectance. The approach was effective at predicting the ap-

pearance of the Mondrian patches it was designed for, but did not accurately predict

more complex scenes.

To handle more complex inputs, a second version [Jobson et al., ; Land,

] of Retinex was proposed based on a center-surround formulation. This ver-

sion keeps the assumption that the illumination is smoothly varying, and concludes

that some spatially weighted average of the observed scene will approximate that illu-

mination. If the observed scene S is the product of the illumination I and reëection

r, the Retinex output is deêned as:

R = log
(

Ir
I r

)
(.)

R = log
(r

r

)
(.)
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Figure .: Example Mondrians of Land and McCann [].

as long as I ≈ I. Instead of randomly exploring patches of a Mondrian to try and

determine region of maximum reëectance, this version computes the normalization

constant from a Gaussian weighted average of a large surrounding neighborhood.

The scale of the Gaussian allows a tradeoff between amount of reduction of contrast

and global correspondence of lightness.

Despite additions by Jobson and Woodell []; Rahman [], no single

Retinex scale works for all images, or even different portions of a single image. Rah-

man et al. [a] proposed a multiple-scale version that alleviates some of the issues

of the center-surround formulation. Multi-scale Retinex is equivalent to the center-

surround form, but the output is a combination of a weighted average of several dif-

ferent scales of the single-scale version of Retinex. Numerous researchers [Barnard

and Funt, ; Funt et al., ; Rahman et al., b] have studied and improved

on the multi-scale version, but there are still issues. Many variants of the algorithm

attempt to solve for changes in luminance and color simultaneously and have trouble

separating side effects between the two. The photographic tonemapping operator

by Reinhard et al. [] is very similar to luminance multi-scale Retinex, but re-

moves several unnecessary steps and includes automatic selection of the proper scale
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for each pixel.

The êeld of color science has made signiêcant progress on mimicking how the

HVS converts physical values in perceptually-salient units. Perceptually uniform

color spaces like L∗ab space and luminance quantizations [Mantiuk et al., ]

make it possible to compare perceived differences in physical quantities of light.

Color appearance models like the CIECAM [CIE, ] are capable of exhibiting

the complex behavior of our visual system like simultaneous contrast. Image appear-

ance models extend this further to model the spatial and multi-band components of

image perception. The s-CIELAB [Zhang and Wandell, ], multi-scale adapta-

tion [Pattanaik et al., ] and iCAM [Fairchild and Johnson, ] models extend

color appearance models to incorporate some aspects of the HVS when viewing

complex images. Reinhard et al. [] provides a comprehensive overview of these

models.

While covering a multitude of dimensions of visual perception, these frameworks

are still incomplete. None of these models accurately capture the complex scale-

dependent relationships of blur and contrast perception we have observed. It is this

deêciency in the ability of existing models to represent the nuances of the  that

has motivated our contributions in Chapters  and .
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Chapter 

Related Work

The previous chapter detailed the signiêcance blur/contrast perception plays in im-

age understanding. Unsurprisingly, given this importance, the êelds of image pro-

cessing and computer graphics have investigated the manipulation of blur and con-

trast in images. This chapter surveys methods and computational approaches to

understanding and altering blur and contrast in complex images.

Section . covers computational photography, methods for extending camera

capabilities of image capture. In particular, we examine the ability of aperture êlter-

ing and deconvolution techniques for manipulating blur and contrast when capturing

images. Then Section . provides a summary of techniques for estimating the blur

and contrast present in images, with an emphasis on local multi-scale operators. This

coverage includes the estimation of blur and contrast, as well as how those operators

relate to edges and edge detection. Next, Section . describes methods for ma-

nipulating blur and contrast in images in spatially-variant manners, including blur

magniêcation and applications of countershading. Finally, Section . details other

applications that relate to the spatial perception of blur and contrast in natural images,

including resizing operators and the restoration of detail.
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. Computational Photography

.. Computational Image Capture

As digital sensors have become the de facto means of image capture, methods of

acquisition have evolved to leverage the processing capabilities inherent in this aug-

mented imaging pipeline. This new envisioning of photography extends beyond

the conventional constructs of a single lens focusing the scene onto a static sensor

plane. The paradigm of computational photography circumvents the limitations in-

herent to normal methods of image acquisition by including additional encoding

and decoding steps into the conventional imaging process. In this framework, the

acquisition setup, including optics, lighting and exposure, is altered to encode addi-

tional information in the captured image. The captured image is then decoded by

software to recover the conventional pixel values and use the encoded information

to synthesize a novel image.

Many of these computational techniques have addressed aspects of how the for-

mation of contrast and blur is dictated by the physics inherent to lens optics. To

overcome the limitations of focus in a conventional lens system Ng introduced the

plenoptic camera [Ng et al., ], based on the principles of Fourier-slice photog-

raphy [Ng, ]. This new camera design involved an array of microlenses over the

image sensor that encoded a series of images that could later be used to refocus the

image or change the aperture or viewpoint. Subsequent designs by Veeraraghavan

et al. [] and Lumsdaine and Georgiev [] have recast the problem in the

frequency domain to improve the utility of the original construction. All of these

techniques address the removal of defocus blur, and Levin et al. [] analyzed the

use of computational cameras for depth-of-êeld () extension.

The same principles apply equally to the temporal domain, and information can

be encoded in the shutter sequence to address motion blur. Raskar et al. [] used

a coded exposure pattern, opening and closing the shutter across a single exposure, to

better decode motion blur. Similarly, Levin et al. [] devised a parabolic camera

motion that represented motion blur in a velocity-independent manner, and Agrawal

et al. [] proposed a similar coded approach for video sequences.
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Figure .: Plenoptic camera of Ng et al. [] (left). The combination of microlenses and
processing allow the image to be refocused after capture Images copyright Ren Ng.

.. Coded Aperture Imaging

All of these techniques allow the photographer to exert considerable control over the

blur present in the image after it has been captured. Similar to how coded exposure

patterns address motion blur, coded aperture imaging allows for better removal of

defocus blur. Coded aperture imaging êrst appeared in the context of astronomical

x-ray and gamma ray imaging as a solution to constraints in feasible optical systems

for those telescopes. Compared to visible light, the high energy photons simply pass

through media without refracting, rendering conventional lenses useless. At êrst, the

standard practice was to use a pinhole aperture to produce a sharp resulting image,

but this approach blocks the majority of the energy from the source and has a very

poor signal-to-noise ratio ().

The êrst improvement over the pinhole aperture was the random aperture arrays

proposed by Dicke []. Instead of a single pinhole, they used a two-dimensional

array of randomly positioned pinholes, resulting in numerous shifted copies of the

image overlaid on top of each other, which they attempted to correct with a de-

coding step. This process signiêcantly improved the  of the imaging system,

increasing the amount of light captured by the number of pinholes in the array,

but did so at the cost of the resolving power. It is impossible to completely undo

the cumulative effects of the random array, and there was always some residual blur.

This method was improved upon by structured patterns such as URA [Fenimore and

Cannon, ] and MURA [Gottesman and Fenimore, ]. These patterns retain

the multiple aperture holes of the random array but are constructed in such a way

that the placement of the holes has a unique and complete means of decoding the
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signal. This design permits the complete restoration of the original image, and the

patterned array effectively acts as a single pinhole with the  of multiple apertures.

Source

Aperture

Detector

Figure .: Coded aperture pattern for x-ray imaging. Image reproduced from Gottesman
and Fenimore.

More recently, the principles of coded aperture imaging have been employed in

visible light photography. Levin et al. [] made use of aperture êlters to accu-

rately determine the amount of blur in order to refocus an image. Zhou and Nayar

[] analyzed which coded aperture patterns were best suited for deconvolution

of defocus blur, providing a comparison of the suitability of each at recovering the

original image. In related work, Cossairt et al. [] analyzed the depth invari-

ance of different coded aperture designs and proposed an improved diffuser-based

construction that still preserved image spatial frequencies.

.. Deconvolution

The coded aperture design in visible light optical systems differs from that of systems

for x-ray astronomy. Several of the underlying assumptions regarding the optical

setup no longer hold, and simple methods of restoring the original image cannot be

used. Instead, deconvolution is used to reverse the effects of the blur introduced by

the camera optics. In deconvolution, it is assumed that some desired image has been

distorted (blurred) by some known function, and the goal is to recover that original

image. Mathematically this relation is represented as:
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f = f0 ⊗ k+η , (.)

where the recorded image f is the result of convolving the original image f0 by

some pointspread function () k with additive noise η . Numerous solutions have

been proposed over the years, from frequency-space methods such as Wiener êl-

tering [Wiener, ] to iterative methods such as Richardson-Lucy deconvolu-

tion [Lucy, ; Richardson, ] and expectation-maximization.

It is exceedingly difficult to recover the original image at good quality. The

system of equations does not have an exact solution due to the presence of noise and

image information is suppressed by the frequency response of the êlter. Additionally,

the system is ill-posed, resulting in an inênite number of possible solutions. Results

often include ringing around edges, ampliêed noise and other artifacts. In the case

of coded aperture imaging, the  k is known and speciêcally chosen to aid in

conditioning the deconvolution. While this design reduces the size of the solution

space, it is still no easy task, and additional measures are required to guide the process

towards the correct solution.

New methods have incorporated natural image statistics into deconvolution algo-

rithms to better recover the original image. The power spectra of images of real

world scenes all roughly follow the same distribution. Individual images exhibit

variation, but the overall trend carries strongly across all natural images. A number

of recent papers have utilized deconvolution algorithms incorporating these assump-

tions to better recover the original image. Levin et al. [] used a combination

of coded aperture and enhanced deconvolution to recover depth and refocus im-

ages. More recently, Bando and Nishita [] presented a means of recovering the

original image from defocus blur without a coded aperture, while Yuan et al. []

proposed more advanced techniques for removing artifacts.

Most deconvolution methods assume the  that degraded the image is already

known and use it to invert the blur. Blind deconvolution methods, on the other

hand, such as those by Fergus et al. []; Lam and Goodman []; Shan et al.

[a] iteratively estimate the shape of the blur while restoring lost image details.

To do so, blind methods require additional information about the blur, and most

assume that the blur kernel is invariant across the entire image, as is the case with
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Figure .: Left: image degraded by motion blur ( shown in insert.) Right: deconvolu-
tion results of Yuan et al.. Images copyright Lu Yuan.

most camera shake.

Any blurring operation spreads the luminance incident on a single pixel over a

larger area, averaging the values of neighborhoods of pixels together and suppressing

high frequency variations. As adjacent pixels share more of the same light falling

upon then, the contrast between them is also reduced. Deconvolution is most com-

monly employed to restore image sharpness lost when degraded by blurring. Our

inquiry in Chapter  investigates the feasibility of using deconvolution methods to

restore the contrast lost by blurring.

. Blur Estimation and Manipulation

All deconvolution methods restore image detail lost to blurring and thus require an

accurate model of the  that degraded the image. Blind deconvolution methods

perform the additional step of estimating the shape of that blur kernel. Blur esti-

mation has proven to be of great utility for a number of applications besides the

restoration of lost image detail, including computer vision and image quality assess-

ment. This section surveys different techniques of estimating blur in images as well

as other applications made possible by blur estimates.

Blur is introduced into images by a number of different processes. Object shape,

illumination and capture method can all cause different kinds of blur to an image. We

focus our discussion on three kinds blurs resulting from the image capture process,

each with their own properties: motion blur, camera shake and defocus blur. Motion

blur is a linear blur caused by the subject moving in the frame and while it only
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applies to that object, tends not to vary spatially. Camera shake is caused by rotation

of the camera during the exposure and, depending on the particular rotation, may

closely resemble a motion blur or may be a much more complex shape. Camera

shake is often uniform, but may vary spatially depending on which axis the rotation

is around. Defocus blur is circular blur that depends on the distance of each point in

the scene from the focal plane, and each portion of the image is blurred by the scaled

shape of the aperture.

Motion blur Camera shake Defocus blur

Figure .: Examples of different kinds of motion blur.

These three types of blur motivate several approaches to blur estimation. In some

cases, like camera shake, the entire image shares the same blur . In cases of motion

blur, the blur shape varies across the image, but can be divided into large regions

sharing the same . When addressing defocus blur, estimation must consider each

pixel individually.

Individual algorithms may address one or more of these approaches, depending

on the circumstances responsible for introducing the blur into the image. However,

estimation techniques can be roughly divided into blur estimation, techniques that

estimate the uniform blur of a given region, and edge detection, techniques that

estimate the location (and blur) of edges in the image.

.. Blur Estimation

Blur estimation methods vary in terms of the amount of information they ascertain

about the blur. Some routines merely estimate the êne detail absent from the image.

Other routines attempt to characterize the parameters of blur, such as direction and
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magnitude of motion blur. The simplest algorithms perform a global analysis of the

blur characteristics, while more advanced methods analyze regions and attempt to

segment the image based on the kind of blur present, such as identifying a moving

car in front of a stationary background.

Any blur estimation procedure must contend with noise present in the image.

Both noise and image detail consist of high-frequencies, but the presence of high-

frequency information does not imply image detail and blur estimation routines must

ensure that high frequency information is not due to noise. Methods such as those

by Rooms et al. [] and Tong et al. [] decompose the image using a wavelet

transform to separate noise from the rest of the image content and only consider

high-frequency information that is consistent with lower-frequency information, as

is the case in sharp edges. More recently, Ilic et al. [] compute statistics based on

the average cone ratio of wavelet coefficients to improve noise performance further.

While resilient to noise, none of these methods estimate the shape of the blur present,

only the degree to which it has suppressed image detail.

If the shape of the blur is simple, in the case of motion blur, Fourier analysis

methods can be used to ascertain blur parameters from how the spatial frequencies

of the image deviate from that of natural images. Moghaddam and Jamzad []

observe that a linear motion blur is equivalent to a temporal box-êlter, resulting in

the spatial frequencies of the image being multiplied by a sinc êlter orthogonal to

the direction of the blur. Moghaddam and Jamzad use the Radon transform [Deans,

] to determine the orientation of the blur, then compute the distance between

the zeros of the sinc function to determine the length. However, this approach is

only valid for linear motion blurs with uniform velocity. Ji and Liu [] extended

the approach to robustly identify the blur kernel for a number of motion types and

accurately determine whether or not the motion is of uniform velocity.

Spatially-variant blur estimation schemes operate similar to conventional blur es-

timation, but have the additional challenge of trying to identify one or more regions

of the image degraded by the same blur. Liu et al. [] propose a blur classiêca-

tion framework for automatically detecting blurred regions and recognizing the blur

types for those regions without performing blur kernel estimation or image deblur-

ring. Chakrabarti et al. [] derive a local measure of the likelihood of a small

neighborhood having been blurred by a candidate blur kernel. The authors employ





Small blur Small blur Large blur Large blur

Figure .: Relationship between motion blur and spatial frequencies demonstrated by
Moghaddam and Jamzad []. The angle of the zeros in the Fourier transform corre-
sponds to the direction of blur and the spacing of zeros is inversely proportional to the length of
the blur.

this measure to simultaneously select a motion blur kernel and segment the region

that kernel affects for a given image. Dai and Wu [] devise a matte-based blur

estimation approach where the object and background are highlighted and the algo-

rithm derives the blur parameters based on the assumption that the blurred outline

of the object is a blending of it and the background.

Finally, researchers have estimated the motion blur between the sequential frames

of a video. In this case, the motion of the blur and the motion of the object between

frames will be coherent, and the additional frames provide more information for

robustly computing the parameters of the blur. Trussell and Fogel [] compare

the motion between portions of sequential images to segment the images into regions

of consistent blur and estimate the parameters of that blur, subsequently attempting

to restore the images of the video sequence. Ben-Ezra and Nayar [] combine

a high-speed but low-resolution video camera with a conventional video camera

to capture the  of the motion blur in higher precision. Like Trussell and Fogel,

Ben-Ezra and Nayar segment the image into different blur regions and attempt to

restore the original image.

.. Edge Detection

Blur estimation routines consider all the information present in a given region to

characterize an estimate of the blur for that region. Edge detection methods, on

the other hand, focus on using purely local information to determine the sparse set

positions representing edges present in the image.
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The most straightforward deênition of an edge is any location with a rapid in-

tensity variation. Mathematically, this construction lends to deêning edges in terms

of the gradient of pixel intensities:

J(x) = ∇I(x) =
(

∂ I
∂x

,
∂ I
∂y

)
(x), (.)

where J indicates the direction of steepest ascent, perpendicular to the edge direc-

tion, and the magnitude of J denotes the contrast of the edge.

While it is convenient to deêne edges as locations of perfectly sharp intensity

change, a cursory inspection of natural images reveals that the majority of edges

present are not perfectly sharp transitions in luminance. Various phenomena, in-

cluding focal blur inherent in camera optics, penumbral blur of shadows, or shading

variations of smooth objects, all lead to the luminance variation of an edge extending

beyond a single pixel. As a result, all edge detectors must consider a range of po-

tential widths of edge transitions. Additionally, operators must isolate the edge at a

given location within the transition that corresponds to the maxima of edge strength

(gradient magnitude).

The Canny edge detector [Canny, ] is one of the earliest and still best-

performing edge detection algorithms. At its heart the Canny edge detector consists

of the following stages, also depicted in Figure .:

. A smoothing êlter to reduce the degree to which noise and high frequencies

affect the subsequent estimation of image gradients.

. A gradient magnitude operator to estimate the strength of edge contrast at

each pixel in the image.

. A suppression of non-maximum gradient values to determine the precise lo-

cation of edges.

. A linking operation to chain individual pixels into edges.

This high-level structure of the algorithm has served as a template for a host of

later approaches. Subsequent algorithms have reêned the method, including differ-

ential geometry and variational geometry formulations [Lindeberg, ], but the
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(a) Original (b) Smoothed

(c) Gradient magnitude (d) Non-maxima suppression

Figure .: Steps of Canny edge detector. The original image (a) is êrst low-pass êltered to
remove noise (b). The gradient magnitude (c) is then computed, followed by the suppression
of non-maxima values (d). Images copyright Wikipedia user Simpsons contributor.

original Canny algorithm remains one of the most-utilized methods of edge detec-

tion.

Any choice of smoothing operator used in edge detection requires the selec-

tion of a spatial scale σ . If only the detection of sharp edges is desired, the choice

of σ can be determined from the noise characteristics of the image [Canny, ;

Elder and Zucker, ]. Alternatively, a more principled approach employs a scale-

space [Koenderink, ; Witkin, ] to reliably detect edges at a variety of scales.

Objects in real-world scenes can appear in images at a large range of scales, owing

both to the multitude of object sizes and the array of viewing conditions under which

the object is observed. The  has developed much of the spatial vision adapta-

tions detailed in Chapter  to account for this change in object size and scale-space
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frameworks provide an analogous ability to computer vision algorithms.

Scale-space methods represent images as a family of smoothed images depending

on some spatial parameter, and have the advantage that for a chosen spatial scale σ ,

features smaller than
√

σ will be suppressed. The scale-space function is deêned as:

Nn(x;σ) = σα I(x)⊗ ∂ nG(x;σ)

∂ nx
, (.)

where the image I is convolved by a nth-derivative Gaussian of width σ , and normal-

ization term α such that the function peaks at scale of the desired feature [Lindeberg,

]. Furthermore, in comparison to partial representations like Gaussian or Lapla-

cian pyramids, complex image features can be recognized by either local maxima,

minima, or zero crossings at respective locations across scales. Scale-space methods

also have the additional beneêt of recovering a spatially-variant estimate of the blur

present in an image in the process of adapting the scale according to image content.

Position (x)

Sc
al

e 
(t

)

Figure .: Conceptualization of a Gaussian scale-space. In this êgure, a D signal is
depicted at different levels of the scale-space, t. As the scale increases, more of the high-frequency
content is êltered out. Image reproduced from Perona and Malik.

The scale-space framework has proven invaluable for adapting detection and

recognition tasks to the different scales at which objects appear in natural images.
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Detection algorithms for edges, ridges, corners and blobs have been extended by

use of scale-spaces to automatically adapt to changing sizes of objects in images.

Additionally, this conceptualization provides a hierarchical organization of image

features, attaching smaller-scale features to the larger-scale features in which they

reside. We have found two particular methods to be of utility in our work: the min-

imum reliable scale computation of Elder and Zucker [] and the blur estimation

method of Samadani et al. [], which we describe below in more detail. This

survey of edge detection methods is far from complete and we direct the reader to

comprehensive overview of Basu [].

.. Elder and Zucker Minimum Reliable Scale

The minimum reliable scale () of Elder and Zucker [] acts as a precursor

to their scale-space edge detection operator.  compares the gradient magni-

tude to the noise level and determines the scale at which edge detection should occur

to ensure accuracy. The operator takes advantage of the fact that for any given pixel

the portion of the gradient due to noise is independent of adjacent pixels, while the

portion of the gradient due to a blurred edge is related to surrounding pixels. This

difference in structure implies the portion of the gradient due to noise will decrease

faster than the portion due to the edge when the image is blurred, and the signal

detection properties will improve when blurring more.

Elder and Zucker use a partial scale-space representation, operating at scales cor-

responding to powers of two, and estimate the minimum scale they can accurately

recover the gradient. Their method proceeds as follows: êrst use local scale control

to estimate the gradient and its orientation at each pixel, then use local scale con-

trol to estimate the second derivative along the gradient direction at each pixel, and

localize edges using the second derivative. This information allows them to reliably

estimate the location, intensity, and extent of edges in real images with noise and

other artifacts.

Elder and Zucker demonstrate that for a Gaussian edge G of amplitude A, offset

B and width σb captured by a sensor with white noise n(x,y) of variance v2
n:

G(σ ,x) =
(

A
2

)(
erf

(
x√
2σb

)
+1

)
+B+n(x,y) (.)
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they can determine a value for a given blur scale s above which they can be conêdent

of the estimated gradients, and deêne that critical value as:

c(s) =
1.1vn

s2 , (.)

where the factor 1.1 is determined by their assumptions of the estimation reliability;

please see the original paper for more details. Combining this formulation with

their edge deênition, one can solve for the blur scale ŝ at which the gradient can be

reliably detected:

ŝ2 =
vn

A

(
5.4+

√
28.9+15.2(Aσb/vn)

2
)

pixels2. (.)

In practice, when estimating the blur of an edge, the amplitude A is also un-

known. Elder and Zucker approximate the  by computing gradient mag-

nitude estimates at a series of scales and selecting the smallest scale at which the

gradient magnitude exceeds the magnitude of the noise present:

ŝ(x,y) = inf{s : rs (x,y)> c(s)} . (.)

The result is a map of how much each region of a noisy image must be blurred

by to allow for accurate estimation of the blur in that region.

Figure .: Example of Elder and Zucker minimum reliable scale. Left: original image.
Right: map of minimum reliable scale required to accurately estimate gradient. Dark regions
correspond to smaller scales while light regions correspond to larger scales. Images copyright
James Elder.
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.. Samadani et al. Blur Estimation

The blur estimation method of Samadani et al. [] produces a spatially-varying

map of the blur present at each pixel in the image at the resolution of the thumbnail.

The algorithm êrst generates a standard thumbnail, ts, and produces a scale-space of

thumbnails blurred by different amounts. Image features are computed for the high

resolution original as well as for each of the thumbnail images in the scale-space.

The amount of blur is determined by the level of the scale-space with feature values

most similar to those of the original image features.

These features are computed as the maximum absolute difference between a

pixel and its eight neighbors. In the case of the original image, the feature values

are downsampled using a maximum êlter to produce a thumbnail resolution range

map, ro. The levels of the thumbnail scale-space lσ j are created by convolving the

standard thumbnail with a set of Gaussian kernels of standard deviations σ j,

lσ j = g(σ j)⊗ ts (.)

where lσ0 is the unblurred, original thumbnail. For each of these images lσ j , a low

resolution range map rσ j is generated.

The estimate of the blur present in an image is represented by the blur map m.

Each pixel i of the blur map is determined as

m(i) = min
j

{
j | rσ j(i)≤ γ ro(i)

}
, (.)

where γ is a user-speciêed parameter that controls which rσ j most closely matches ro

and in turn adjusts the amount of blur added. An example of the blur map is shown

in Figure .. The ênal image is synthesized by selecting the pixel from lσ j that

corresponds to m(i). However, the result does not correspond to the σ of the blur

in pixels. Our method in Section . calibrates the method to provide an absolute

measure of the estimated blur.

.. Blur Magniêcation

In the context of image processing, blur is mostly considered undesirable and most

uses of estimated blur focus on the deconvolution methods described previously to
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Blur estimation

0px blur 15px blur

Figure .: Input image (left) and the associated blur map (right). Note that while the curb
is the same distance as the wooden boards, it is estimated as blurrier due to the lack of detail
in that area. The blur map is visible only in color.

restore lost image details. However, appropriately-applied blur can be used to great

artistic effect, including separating foreground from background and conveying sense

of motion. In these circumstances it is advantageous to magnify the blur present in

an image. Examples include preserving the appearance of blur that would otherwise

be lost to some other image processing operation and introducing blur that could not

be captured, in the case of small apertures. We detail two uses related to our work:

the preservation of the appearance of blur to generate representative thumbnails and

magniêcation of blur to simulate a wider aperture than used to capture the image.

Due to the limited display resolution and computational expense of displaying

many images, lower-resolution thumbnails are regularly viewed in place of full-sized

originals on the viewênder of a digital cameras or in photo management software

like iPhoto. However, thumbnail images are not always representative of their high-
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resolution counterparts. In particular, the sparser pixel sampling of thumbnails makes

it is impossible to differentiate between sharp and slightly blurred edges. Downsam-

pled images often appear sharper than their respective originals and it is common to

encounter sharp and blurred versions of an image that result in identical thumbnails.

Samadani et al. [] utilize their spatially-variant estimate of image blur to rein-

troduce blur into thumbnails lost during the downsampling process. Their approach

assumes the thumbnail will be sufficiently small that all blur present in the original

image will be removed. Samadani et al. then estimate the blur present in the orig-

inal image, and reintroduce that blur into the thumbnail. The downsampled image

is used to generate a scale-space of increasing amounts of blur. The blur estimated

from the full-size image is then used to select the level of the scale-space that best

represents the original image blur and produce a thumbnail better representing the

blur present in the original.

Depending on the desired application, the defocus blur resulting from the choice

of aperture in the lens either enhances or detracts from the image. A wide aperture

with large defocus blur is considered desirable for portraits, where it can separate the

subject from the background. Conversely, the same would be considered undesirable

for photographing a landscape and a narrow aperture with minimal blur would be

more appropriate. In both cases, the photographer wants as much control of the

 as possible. However, a large aperture is not feasible in all cases, such as having

to choose a small aperture for excessively bright conditions or using a device with

a small sensor like a mobile device. In both examples, the limited aperture size

prevents the capture of images with narrow .

While Samadani et al. [] focus on magnifying blur for low-resolution thumb-

nails, Bae and Durand [] address the high-quality magniêcation of defocus blur

in full-resolution images. Building upon the edge detection of Elder and Zucker

[], Bae and Durand obtain an accurate estimate of the scale of blur present at

the location of each edge in the image. This estimate is propagated to non-edge

pixels using an image colorization scheme [Levin et al., ]. Once they have ob-

tained a full-image map of the amount of blur present, Bae and Durand then use a

model of defocus blur resulting from camera optics to solve for the amount of blur

to introduce to the image associated with the desired wider aperture. Finally, they

synthesize the resulting image with the narrower .
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Figure .: Example of Samadani et al. [] blur magniêcation. The blur in the input
image (top) is not visible in the conventional thumbnail (bottom left). The thumbnail created
by Samadani et al. (bottom right) retains the appearance of blur. Images copyright Ramin
Samadani.

The methods of Samadani et al. [] and Bae and Durand [] are not with-

out limitations. The method of Bae and Durand [] is computationally very

expensive and thus not suitable for many applications, such as a digital viewênders.

In both cases, the amount of blur is increased by a single scale factor, speciêed by

the user. As our experiment in Section . shows, the perception of blur is more

complex than this relationship. Neither method can ensure that the appearance of

blur will remain constant if the image is resized, motivating our approach.

. Countershading Operations

In terms of both the estimation and manipulation of image blur, the most versatile

methods are those that are able to operate on individual pixels using purely local
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Original Estimated blur Narrowed 

Figure .: Example of input image (left), estimated blur map (center) and Bae and
Durand [] blur magniêcation (right). Images copyright Soomin Bae.

neighborhood information. This feature is a necessity for complex spatially-variant

operations like  magniêcation. The most powerful contrast manipulation tech-

niques operate in a similar fashion, modifying each pixel based on local information

of its respective neighborhood.

In terms of the estimation of contrast, two of the methods already presented

are capable of determining spatially-variant estimates. Local, band-limited contrast

measures (Section .) inherently represent image contrasts in a local sense. Likewise,

edge detection methods that rely on scale-spaces (Section .) recover both the width

and contrast at pixels corresponding to edge locations. The latter is a sparse set of

pixels but since edges, by deênition, are changes in contrast and the representation

provides complete coverage of local changes in image contrast.

Local contrast enhancement is a powerful image processing technique, funda-

mental to many aspects of computer graphics such as image editing and tonemapping

of high dynamic range () images. The same basic techniques can be applied to

improve the recognition of objects in a scene, to aid in identifying brightness of re-

gions or to accentuate speciêc image details. In many cases, images with enhanced

contrast appear more aesthetically pleasing [Calabria and Fairchild, a,b].

As presented in Section ., one of the most common approaches to enhancing

local contrast in images is countershading, where the local edge contrast is increased

by adding gradients to either side of the edges. This approach is common across

numerous classes of algorithms. Many of these algorithms, whether explicitly or

implicitly, resemble the effect of the unsharp masking operator (). Unsharp

masking increases local contrast by adding a high-pass image Hσ (Y ) to the original
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image

Y = Y +λHσ (Y ) (.)

where λ is the contrast of the countershading and the high-pass image Hσ (Y ) is

produced by subtracting a Gaussian blurred image gσ ∗Y from the original image

Y . Most commonly, σ and λ are determined by the user and do not vary across the

image. This simple technique has proven to be incredibly versatile and, depending

on the choice of blur employed in the high-pass êlter, can produce a variety of

effects.

The choice of a small σ increases the accutance [Neycenssac, ], or apparent

sharpness, of the image, which is the effect usually referred to as “unsharp mask-

ing” [Badamchizadeh and Aghagolzadeh, ]. The choice of a large σ increases

the contrast of the image, which is usually referred to as countershading. In this text,

we refer to the technique as unsharp masking and the effect of local contrast en-

hancement it produces as countershading, regardless of the choice of σ . Figure .

presents a comparison of different countershading proêles.

.. Manipulating Sharpness

The addition of narrow countershading proêles resulting from a small σ will in-

crease the apparent sharpness of the edge. Increasing the apparent sharpness, known

as accutance, by the introduction of countershading differs from the deconvolu-

tion techniques of Section ... Deconvolution techniques, in particular those that

employ natural image statistics, restore frequency content absent from the image.

Narrow countershading proêles, on the other hand, only increase the contrast of the

edge, but do not restore lost image details. However, due to the relation between

blur and sharpness inherent in the , higher contrast edges appear sharper than

low contrast edges, and the observer’s impression is that the detail of the image has

increased. The strength of the effect on perceived sharpness can appear to hold even

more than the increase in perceived contrast.

However, this increase in sharpness can also introduce artifacts and unsharp mask-

ing is known to excessively amplify the contrast of small features, especially noise.

Neycenssac [] noted that unsharp masking introduces contrast through two sep-
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arate mechanisms: the addition of countershading proêles around edges and the am-

pliêcation of existing image features. Lindeberg [a] notes that convolution with

a Gaussian of width σ will remove all the features smaller than
√

σ . Thus any feature

smaller than
√

σ , including noise, will be present in the high-pass image Hσ (Y ) at

their original contrast. When the high-pass image is added to the original image,

only features larger than
√

σ receive countershading proêles, while features smaller

than
√

σ are ampliêed. In the process of increasing edge contrasts the  pref-

erentially ampliêes high frequency details in the image. The noise predominantly

consists of frequencies smaller than
√

σ , for even very small σ , and as such will be

magniêed by unsharp masking more than other features.

Original image Blurred Resulting high-pass

Figure .: Ampliêcation of details in high-pass image. Noise present in the original image
is removed when the image is blurred in the process of creating the high-pass image. The absence
of high-frequency detail in the blurred image causes the noise to be present in the high-pass
image and reintroduced during countershading.

Given the effectiveness of unsharp masking for increasing the apparent detail in

images, image processing researchers have dedicated substantial effort to determining

optimal parameters to enhance contrast while avoiding unwanted ampliêcation of

noise. The most successful approaches have adapted the parameters to local image

content. The visual channels in the  are not completely independent of each

other and frequency content at one scale can affect the perception of details at another

scale. As a result of this attribute, known as contrast masking, the visual system is less

sensitive to noise in regions around edges [De Valois and De Valois, ].

Adaptive unsharp masking operators adjust their parameters to local gradient

magnitude, increasing the strength of countershading near edges where it will in-

crease accutance, and decreasing it further away where it will increase the appearance

of noise. Polesel et al. [], Ramponi et al. [] and Kim and Allebach []
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have all proposed methods of adaptively determining the optimal countershading

contrast, λ . Likewise Wang et al. [] and Nowak and Baraniuk [] developed

techniques adaptively determining the scale σ . Badamchizadeh and Aghagolzadeh

[] evaluated a selection of unsharp masking techniques comparing their perfor-

mance at contrast improvement and noise ampliêcation. However, most of this work

attempts to address the issue of artifacts resulting from noise ampliêcation, and not

the artifacts caused by objectionable magnitude of countershading (haloes), which is

the focus of Chapter .

.. Manipulating Contrast

While the choice of a small unsharp masking σ parameter will increase the perceived

sharpness of an image, the choice of a large σ parameter will increase the local

contrast of the image. For a given choice of λ , both parameter choices result in

an equal increase in contrast at the location of the edge, but the narrower proêle

is perceived as a change in detail and the wider proêle is perceived as a change in

contrast. Sufficiently wide unsharp masking proêles can even induce the Cornsweet

illusion (Section .), where the entirety of adjacent regions change in appearance.

In many cases, increasing the perceived contrast of an image increases viewers’

preference [Calabria and Fairchild, a,b] and image processing algorithms have

used countershading to increase the aesthetic quality of the image. Additionally,

local contrast enhancement can be applied to improve the recognition of objects in

a scene, increasing the contrast between them and the surrounding areas [Luft et al.,

].

Countershading is frequently employed in local tonemapping operators, although

not always intentionally. The operator by Chiu et al. [] explicitly computed a

high-pass image with a large σ to reduce global contrast while retaining edge con-

trast. However, while reducing the dynamic range this naïve approach introduced

signiêcant haloes. More recent operators like Durand and Dorsey [] and Fattal

et al. [] can also introduce countershading proêles, though they do not view

them as a beneêt. In general, countershading in local tonemapping is considered

synonymous with halo artifacts or “gradient reversals”. On the other hand, we view

the particular combination of contrast and scale of the countershading, rather than

the presence of any proêles, to be responsible for the loss of image quality.
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Figure .: Many tonemapping operators employ countershading to reduce the contrast of
a  image (left) to make details more visible (right). Images copyright Kevin McCoy
Wikipedia contributor Darxus.

Most related to our work is that of Krawczyk et al. [] on restoring luminance

contrast lost during tonemapping. They propose an automated method that intro-

duces countershading to a low dynamic range () tonemapped image to match the

contrast of a reference  image. In an attempt to avoid introducing objectionable

artifacts, they propose a perceptual model of just-detectable countershading based on

the model of Dooley and Greenêeld []. However, such a model relates to the

detection of countershading proêles, not whether the countershading is considered

objectionable, and is overly conservative. Additionally, the method of Krawczyk

et al. is meant to reproduce contrast of an  image rather than enhance contrast

without an  reference. We discuss their model in more detail in Section ..

Countershading has been used in several other capacities to restore lost contrast

and enhance scene understanding. Smith et al. have used countershading to re-

store color saturation lost during tonemapping [] and while converting from

color to greyscale []. Similarly, Luft et al. [] and Ritschel et al. []

added countershading based on depth values to improve the recognition of objects

in scenes. Finally, work by Akyüz and Reinhard [] used the Cornsweet illu-

sion as a means of evaluating the perception of contrast alterations introduced by

tone-mapping operators.
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(a) Original (b) Countershading proêles

(c) Restored contrast (d) Countershading detection

Figure .: Restoration of lost contrast by Krawczyk et al. []. A tone mapped image
(a) doesn’t always reproduce the appearance of contrast of its  counterpart. Krawczyk et al.
introduce countershading proêles (b) to produce a higher contrast result (c) that more closely
matches the original, using a model of human perception (d) to avoid the countershading being
deemed objectionable. Images copyright Gregorz Krawczyk.

. Related Applications

Finally, our investigations on image resizing and the creation of representative images

relate to a selection of other topics in image processing and computer graphics. These

subjects include image upsampling, seam carving, visualization of large images and

noise estimation.

In the context of image resizing, Fattal [], Kopf et al. [] and Shan et al.

[b] developed techniques for intelligently upsampling images. These methods use

assumptions about the image statistics to invent additional information based on ex-

isting details to provide a more natural rendition than resampling with a reconstruction-

êlter. Fattal [] deêne a edge-frame continuity modulus to impose a certain set of

statistics on the edges in the upsampled image, retaining sharpness where appropri-

ate. Kopf et al. [] use existing high-resolution images to aid in the upsampling
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of the result of a computation performed at lower resolution. Lastly, Shan et al.

[b] extended the concept of upsampling to extend across multiple images and

handle video sequences.

Upsampling input Upsampling result

Figure .: Intelligent upsampling tries to hallucinate more realistic image details than a
reconstruction êlter. Images copyright Raanan Fattal.

Seam carving methods, such as the one by Avidan and Shamir [], resize

images by inserting or removing pixels in the least important regions of the image,

preserving the overall structure. A number of additional methods have been pre-

sented, including extensions to video [Krähenbühl et al., ; Pritch et al., ].

Seam-carving mostly focuses on adjusting aspect ratios and is combined [Rubin-

stein et al., ] with regular downsampling operations for extreme changes in

resolution. Rubinstein et al. [] provides a comprehensive overview of existing

methods, and conducts both perceptual and objective analyses of each, comparing

their performance.

Image resampling is not the only means of generating smaller versions of the

image and depending on the intended task, a different representation of the content

present in the image may be preferable. These algorithms produce smaller versions

of an image that are not derived from a straight resizing of the original. Suh et al.

[] and Santella et al. [] have proposed automatic cropping methods for

selecting the most salient region of image to highlight in a thumbnail. Berkner and

Erol [] present a method of creating thumbnails of pages of documents that are

more recognizable than simple downsampled versions of the page. They focus on
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Seam carving input Scaled image Retargeted result

Figure .: Image retargeting tries to change the aspect ratio of the image without scaling
by removing the least salient portions of the image. Images copyright Wikipedia contributor
Newton.

preserving the shape and position of blocks of text, as well as giving added emphasis

to the position and content of images.

Lastly, resizing operations can remove additional features besides the blur present

in the full-resolution original. When resizing, the full-size image is low-pass êltered

to avoid introducing aliasing into the thumbnail. However, this operation will re-

move any noise present in the large image and the thumbnails for a pair of low-noise

and high-noise images of the same scene will be identical. If the resizing operation

wants to preserve the appearance of noise in the original, it will need to accurately es-

timate the quantity present. Any adaptive denoising technique includes some means

of estimating the noise level of an image region, and wavelet denoising techniques

by Donoho et al. [] and Simoncelli and Adelson [] are a common example.

Other approaches attempt to characterize the noise as a function of the camera’s re-

sponse, such as methods by Liu et al. [] and Shin et al. []. These techniques

have applications beyond denoising and resizing. Adjusting the smoothing step of

edge detection to the level of noise present is one such example.
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Chapter 

Synthetic Depth-of-Field for

Mobile Devices

The depth-of-êeld () present in a photograph can signiêcantly alter how that

image is perceived. Skillful photographers can use a shallow depth-of-êeld to great

effect and dramatically emphasize the subject matter of the photograph. Cell phones

and similar mobile devices are rapidly becoming the primary camera for many users,

and the optical packages of these devices cannot produce a narrow depth-of-êeld.

The size of the optical package that can be constructed in such a conêned area

prevents the lens from producing a large defocus.

. Introduction

The limited space available for cameras in mobile devices places constraints on the

design of the lens and the optics of which it is comprised. One effect of this conêned

space is the the lens is unable to achieve a signiêcant defocus blur, preventing the

camera from capturing images with a narrow . It is very difficult to overcome

this constraint with the physical construction of the lens, and instead we propose a

method of producing a narrower  synthetically. Our method builds on exist-

ing approaches to robustly determine a spatially-variant estimate of the defocus blur

present in a captured image when signiêcant noise is present, shown in Figure ..

We then modify that estimate to produce the blur associated with an image of a
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Figure .: A comparison of the original image (left), estimated blur map (center), and our
synthetic depth-of-êeld algorithm (right). The depth-of-êeld is sufficiently wide in the original
image to make determining the card most in focus difficult, while the depth-of-êeld in our result
is narrow enough to make it obvious that the third photograph is in focus.

narrower  and use that new blur to synthesize an image with the desired amount

of defocus blur. The result, also shown in Figure ., is a means of producing a

narrower  than could physically be captured suitable for mobile devices, in terms

of both computational efficiency and robustness to the noise present in captured

images.

Since the constraints on the  cannot be easily solved with a replacement

optical design, we propose to narrow the depth-of-êeld by synthetically magnify-

ing the defocus blur. While methods for magnifying the blur present in an image

already exist, they are either too computationally expensive to be realized in a mo-

bile device [Bae and Durand, ], or are sensitive to the noise levels common in

cellphone cameras and produce low-quality results [Samadani et al., ].

Drawing on existing methods, we propose an efficient and robust algorithm for

estimating the blur present in an image. Given a noisy image, we êrst compute how

much we must reduce the variance of the noise at each pixel location to accurately

estimate the blur present. We estimate the blur at a number of different scales and

choose the most reliable estimate given the noise present. We then use that blur

estimate to synthesize a new image with magniêed defocus blur, simulating a reduced

 for devices with aperture-limited optical packages.

. Blur Estimation

To create an image with the desired , our algorithm êrst determines a spatially-

variant estimate of the blur present in the original image, then modiêes that blur
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estimate to correspond to a narrower depth-of-êeld, and ênally synthesizes the re-

sulting image. As a starting point for our estimation method we use the algorithm

by Samadani et al. [], detailed in Section .., because of its simplicity and

computational efficiency. Figure . provides a ëowchart of the operation of the

algorithm.

Image

Image 
features

Thumbnail

ts
Thumbnail 

scale-space
Thumbnail 

scale-space
Range

scale-space
rσ

Range map

ro

Thumbnail 
scale-space
Thumbnail 

scale-space
Thumbnail 

scale-space
lσ

Blur map

Figure .: Flowchart of Samadani et al. blur estimation. Features from the full-size
image are compared to corresponding features from the thumbnail scale-space to determine the
appropriate blur for each pixel.

While Samadani et al.’s blur estimation provides a means of controlling the rel-

ative increase in the amount of blur in the resulting thumbnail, it does not provide

an absolute measure of the blur present in the large image. In order to amplify the

defocus blur, we need to know the scale of the blur present in the original image.

To do so, we extend their local image features to a general relationship between the

width of a blurred edge and the corresponding derivatives at different resolutions,

which we can use to recover the scale of the original image blur.

In the case of a D Gaussian blurred edge of normalized contrast, the edge

proêle is the integral of the Gaussian function. The derivatives of this proêle follow

the Gaussian function, with the peak lying at the center point of the edge. For a

Gaussian proêle with standard deviation σ to have a contrast of 1, the derivative of

the edge cross-section will be:

g(σ ,x) =
1√

2πσ 2
e−

x2

2σ2 . (.)

This scaling factor establishes a relationship between the width of the Gaussian proêle

and the scale of its derivatives. If the width of the edge proêle changes by a factor
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k, the derivatives must change by a factor of 1/k to retain the same contrast.

The range map operator in Samadani et al. approximates the gradient magnitude.

For an edge with blur σo, the corresponding range map will equal a Gaussian distri-

bution at the edge location with an amplitude of 1/
√

2πσ 2
o . After downsampling

that image to obtain ro, the value at the edge location is still equal to 1/
√

2πσ 2
o .

Due to downsampling, the effective width of that edge in the thumbnail lσ0 will

differ by the downsample factor d. The pixel corresponding to the edge location in

the thumbnail range map rσ0 will be

1√
2π

(σo
d

)2
(.)

due to the relationship between the width and scale of a Gaussian mentioned above.

Additionally, that σo/d will be further altered by the Gaussian êltering that generates

the scale-space images lσ j . Using the convolution formula for Gaussian functions:

g(n1,σ1)⊗g(n2,σ2) = g
(

n1 +n2,
√

σ 2
1 +σ2

2

)
, (.)

the width of the edge in thumbnail scale-space image lσ j will thus be√(σo

d

)2
+σ 2

j . (.)

We construct the scale-space from a series of blurs with a uniform spacing of

β , which implies σ j = β j. This way, the choice of β along with the maximum

j determines the range and quantization of the scale-space. The end result is two

different values for corresponding pixels of the two range maps:

ro =
1√

2πσ 2
o

vs. rσ j =
1√

2π
[(σo

d

)2
+(β j)2

] . (.)

Figure . depicts the relationship between ro and the scale-space rσ j for an edge

of increasing blur.

For the algorithm to select the correct value for the blur map m(i), the two

values of Equation . must be equal. In complex images, adjacent image features
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Figure .: Demonstration of calibrating blur estimation. Top: image of a step edge with
blur increasing from 0 . . .10 along the x-axis. Bottom: range map values along dotted line
for the original image ro(red), and the downsampled scale-space rσ j (blue). Note that the
intersection between ro and rσ j (black dots) happens at x = j.

alter the derivative values at this edge location and a direct solution would mis-

estimate σo. Our approach determines σo based on the correspondence between

the range map and the levels of the scale-space. Adjacent features alter the gradient

magnitude in both range maps in the same fashion, and the correspondence between

them is preserved. Additionally, image features smaller than
√

σ are suppressed on

the scale-space level with a Gaussian blur of σ , eliminating some of overlapping

features [Lindeberg, b].

To determine the value of the blur map m(i), Samadani et al. employ the user-
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speciêed parameter γ to bias the selection of values for m(i) towards more or less

blurred levels of rσ j . Noting that the relation between the two range maps depends

on the downsample factor, we instead determine the value of γ that correctly scales

the range map of the original image and the range maps of the downsampled scale-

space. We solve the following equation between ro and rσ j

γ
1√

2πσ 2
o
=

1√
2π

[(σo
d

)2
+(β j)2

] (.)

for the value of γ that ensures the index of the blur map selected with Equation .

is equal to the width of the blur in the original large image, m(i) = j if σo = j.

Canceling terms and solving for γ yields:

γ =
1√( 1

d

)2
+β 2

. (.)

The result is a value of γ automatically chosen for a given downsample factor

and scale-space resolution. In our method, we use  levels of blur ( j = 1, . . . ,25)
and a value of β = 0.4. The resulting values for downsamples of , , and  are

γd=2 = 1.55, γd=4 = 2.11 and γd=10 = 2.48.

. Noise-Robust Estimation

However, the resulting estimate is highly susceptible to any noise present in the

original image. Consider an image that contains a blurred edge and some amount

of noise. The larger the blur of the edge, the smaller the corresponding gradient

magnitudes will be, until the gradient magnitude, and resulting blur estimate, is

determined more by noise present than the edge. This situation can occur for even

small amounts of noise, and when it does the estimated blur is biased towards low

blur scales or is mis-estimated as perfectly sharp, as seen in Figure ..

As a result, Samadani et al. alone cannot accurately estimate the blur in im-

ages captured with mobile devices due to the noise levels present. To address this

shortcoming, we can determine the  of Elder and Zucker [], described

in Section .., at which we can accurately estimate the blur. The  of an

image region corresponds to the largest amount of blur that can be reliably detected





5 10 15 20 25
actual blur (pixels)

5

10

15

20

25

e
st

im
a
te

d
 b

lu
r 

(p
ix

e
ls

)

σ=0.0

σ=0.5

σ=1.0

σ=2.0

Figure .: Comparison between actual edge blur (σ = 0) and the blur estimated by
Samadani et al. for various noise levels σ . As the noise level increases, the estimated blur is
biased towards smaller scales, eventually estimating the entire image is sharp.

in that image region. This scale is dependent on the , and hence the image in-

tensities in that region. Elder and Zucker prove that for a given edge proêle and

noise intensity, the image can be blurred by some amount to sufficiently reduce the

noise to allow accurate estimation of the blur.

Combining the methods by Samadani et al. and Elder and Zucker, we can pro-

duce a robust estimate of the blur in noisy images as follows, and shown in Figure .:

. For each scale s of the set of minimum reliable scales, convolve the original

image by a Gaussian of scale s to produce a blurred copy Is(x,y).

. For each Is(x,y), obtain the estimated blur map ms(x,y) using Samadani et al.,

as described in Section ..

. For each scale s, compute the gradient magnitude rs(x,y) of the corresponding

blurred image Is(x,y).

. Compare all the gradient magnitudes rs(x,y) to determine the appropriate

scale at which to estimate the blur ŝ(x,y) for each pixel.
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. Select the appropriate ms(x,y) for each pixel according to the scale map ŝ(x,y)

to produce the ênal blur estimate m(x,y).

I

MRScale

blur g(1)

blur g(2)

blur g(n)

blur est.

blur est.

blur est.

σ̂

m1(i)

m2(i)

mn(i)

combine m(i)...
...

Figure .: Flowchart overview of our combined minimum reliable scale and blur estimation.
The gradient magnitude rs(x,y) and blur estimate ms(x,y) are computed at scale s. Then the
gradient magnitudes rs(x,y) are compared to produce the minimum reliable scale map ŝ(x,y),
which is used to select the appropriate blur estimate ms(x,y) for each pixel to produce the ênal
blur estimate m(x,y). This process is repeated for each minimum reliable scale level being
considered.

The blur estimate corresponding to each blurred copy Is(x,y) includes the amount

of blur that was added to the image to ensure a reliable estimation. We use the

convolution formula of Gaussians from Equation . to determine the blur present

in the original image before creating the ênal blur estimate m(x,y). Once the reliable

blur estimate has been obtained, we modify the ênal blur estimate to represent the

narrower . Finally, we use the modiêed blur map to synthesize the desired image.

. Efficient Estimation

While conceptually simple, the approach outlined in the previous section is inef-

êcient. Compared to the method of the previous section, our optimized method

exploits redundancies in the intermediate results of computing each stage of the

method. Both the  computation and the blur estimation corresponding to

each scale constructs a scale-space [Lindeberg, c] of Gaussian-blurred images

used in the computation of their respective ênal results. We optimize two portions
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of the method: results shared between a given  level and the blur estimation

associated with that level — rs(x,y) vs. ms(x,y) — and results shared between the

blur estimations associated with different scales — ms1(x,y) vs. ms2(x,y).

First, we consider the results shared between the computation of a given mini-

mum reliable scale level and the blur estimation associated with that level. To deter-

mine the ênal map of the minimum reliable scale ŝ(x,y) and blur estimate m(x,y)

for a given image I, two outputs from each scale s of the  computation

are required: the gradient magnitude map rs(x,y) and estimated blur map ms(x,y)

corresponding to that scale.

Both the  computation and the blur estimation require the gradient mag-

nitude rs(x,y) corresponding to that scale. Additionally, the blur estimation requires

the original image I convolved by a Gaussian of radius s, g(s). We êrst blur I by

g(s) to obtain the blurred image Is(x,y). We then compute rs(x,y) from the partial

differences of Is(x,y). Once the input to the blur estimation Is(x,y) and gradient

magnitude rs(x,y) have been computed, the blur estimation proceeds as normal.

Our method is shown in the top half of Figure ..

On the other hand, the naïve formulation computes each step in different ways,

as shown in the bottom half of Figure .. The  computes the gradient

magnitude from the result of convolving the image with steerable Gaussian basis

êlters gx(s), gy(s). To compute the same quantity for the blur estimation, the image

has to êrst be blurred by a Gaussian g(s), then partial differences are computed to

determine the gradient magnitude. Our method computes  less convolutions of

the full-size I per scale s.

Second, we consider the results shared between the blur estimations associated

with different scales. For each scale s, the image blurred by that scale Is(x,y) is passed

to the corresponding instance of blur estimation. In the construction of each of the

blur estimation scale-spaces, that input Is(x,y) is further blurred by range of values

σ j = 0 . . . j, resulting in a ênal blur of

Is,σ j = I ⊗g
(√

s2 +σ 2
j

)
, (.)

by Equation .. A resulting blur of
√

s2 +σ 2
j will occur in the blur estimations

of multiple scales. We compute all the possible combinations of
√

s2 +σ 2
j , round
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Figure .: Comparison of our formulation and the original formulation for computing
rs(x,y) and ms(x,y). Both  and the blur estimation share rs(x,y), but compute it
in different ways. We rearrange the terms to share the computation between both portions with
minimal extra computation.

each to the nearest integer, and only compute the ênal blur once and use it in all

blur estimations that require that value. At worst, this is O(
√

s2 +σ2
j ) convolutions,

opposed to (s× j) convolutions.

Finally, there are several minor additional optimizations. All of the Gaussian blurs

are computed using the recursive implementation by Young and van Vliet [].

We compute all the gradient magnitude maps rs(x,y) using the partial differences,

compared with the maximum difference between a pixel and the  neighbors of

Samadani et al., reducing the number of memory reads by a factor of 4×.

While neither of these optimizations seems like much on its own, they add up

to a notable difference in required computation. Consider the speciêcs of an Apple

iPhone , with a resolution of  megapixels. We use  scales in the minimum reliable

scale computation: s∈ .5,1,2,4,8,16,32, while we use a blur estimation scale-space

with a maximum of : σ j = 0 . . .30.

As with the naïve implementation, all of the rs(x,y) are combined to form the

minimum reliable scale map ŝ(x,y). In turn, that map is used to select the appropriate
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operation our method naïve
full-size image blurs  
blur-estimation scale-space blurs  
full-size gradient magnitude diffs  
downsampled gradient magnitude diffs  

Table .: Comparison of the number of operations for different steps in the full blur estima-
tion operation, speciêcally the number of Gaussian blurs and pixel differences that happen at
the original resolution and the downsampled resolution used in Samadani et al.

blur estimate ms(x,y) for each pixel of the ênal blur estimate m(x,y). Lastly, as noted

in Section ., the estimated blur is computed on a downsampled image, and we

resize the ênal blur estimate m(x,y) to the size of the original image.

. Blur Synthesis

Given an accurate estimate of the blur present in an image, we need to synthesize

the ênal image with the desired narrower . To do so, we scale the estimated blur

map to represent the target  md(x,y), and compute the amount of additional blur

ma(x,y) we must introduce at each pixel to achieve that amount of blur. Finally, we

produce the image with that additional blur to obtain the desired .

In optical terms, the estimated blur map m(x,y) approximates the radius of the

circle of confusion due to defocus blur at each point. Decreasing the  of the

image corresponds to linearly scaling all values of the blur map by a value greater

than 1 to increase the circle of confusion. To adjust the  to be equal to an f-

number different from that of the physical aperture, we use the relationship between

the diameter of the circle of confusion c and f-number N:

c =
|S−D|

S
· f 2

N(D− f )
(.)

where D is the focus distance, S is the distance of a point in the scene, and f is

the focal length of the lens. We are interested in the proportional increase between

the circles of confusion of the desired f-number Nd and original f-number No. The

increase b applied is equal to the ratio of cd and co, canceling terms, we can discard

all distances, and this quantity is equal to the ratio of the f-numbers:
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b =
cd

co
=

No

Nd
. (.)

So the desired blur is given as md(x,y) = bm(x,y).

Even though the m(x,y) approximates the blur at each pixel in the image, that

blur does not necessarily represent the defocus or depth. If an image region is a ëat

color, we cannot determine whether that is a detailed region that is out of focus or

it is in focus but lacks any detail. If a point in the scene is out-of-focus we know

that the corresponding pixel will be estimated as blurred, but if a pixel is estimated

as blurred we cannot assume the corresponding point in the scene is out of focus.

One implication of this ambiguity is that the estimated blur of adjacent pixels

can differ signiêcantly. While synthesizing the ênal image, the difference in amount

of additional blur those pixels receive will be even larger, due to the scaling b applied

to the blur map. This inconsistency between adjacent blurs implies the differences

the respective neighborhoods can introduce contrast inversions in the ênal image, as

seen in Figure ..

Uncorrected blur map Original image Corrected blur map

Figure .: Example of the contrast inversion resulting from synthesizing the ênal image
with an uncorrected blur map. The uncorrected blur map can have vastly different blurs adjacent
to each other, causing contrast inversions where the blur amount changes, like the eyes, while
the corrected blur map does not. Original image copyright Flickr user hpj.

One means of addressing this issue is to solve a sparse linear system [Levin et al.,

] like Bae and Durand [] to propagate the estimated blurs until they are

consistent. While this approach successfully avoids any artifacts for a large range of

desired , it is too computationally expensive for our targeted application. In-
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stead, we enforce the simple condition that no pixel in the desired blur md(x,y) may

differ from its neighbors by more than some quantity. For each σ = 0 . . .max(md)

in the range of desired blurs, we compute the distance transform for the set of pixels

with a desired blur of σ . Each pixel in the modiêed map m′
d is the minimum of all

the distance values the corresponding to that pixel. The result of this operation is

shown in Figure ..

Figure .: False-color image comparing the desired blur map md (left) and the modiêed
version m′

d (right). The large estimated blurs on the character’s face and chest are reduced to be
consistent with nearby smaller values. Original image copyright Flickr user hpj.

We use that new blur m′
d(x,y) and the blur present m(x,y) to compute the ad-

ditional blur required ma(x,y) at each pixel with Equation .. To produce the ênal

image, we construct a Gaussian scale-space corresponding to the range of additional

blurs σa = 0 . . .max(ma) For each level, we blur the original image I by the corre-

sponding amount of additional σa, then linearly blend those blurred images together

to approximate non-integer values of ma.

The Gaussian model differs from the geometric model for defocus blur. How-

ever, it has been argued that Gaussian blur better accounts for artifacts in actual

cameras, and it has been used widely in computer vision [Pentland, ; Subbarao,

]. While more accurate spatially-variant blur synthesis is possible, such as Popkin

et al. [], we haven’t noticed any artifacts requiring such methods.
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. Evaluation

Most of the parameters of our algorithm can be determined from the properties of

the imaging system of the mobile device. We use the Apple iPhone GS as the

example for our evaluation, the speciêcations of which are in Table ..

Resolution  x 
Aperture f/2.8

Focal length .mm
Sensor size .mm (diag)

Table .: Speciêcations of the Apple iPhone GS camera.

Even though the iPhone GS lens has an aperture of f/2.8, the defocus blur

produced by that aperture is the same as an f/28 aperture for the equivalent focal

length on a mm camera. Given that circle of confusion, the maximum defocus

blur that can be achieved is a disc êlter with radius of  px, by Equation ..

For the blur estimation, we use a downsample factor of 4× and a scale-space

with levels corresponding to Gaussian scales ( j = 0 . . .15) and a value of β = 0.4.

For the minimum reliable scale computation, we estimate the noise present in the

image using the method by Ibenthal [].

We synthesize the ênal image with 2× the circle of confusion found in the

original image. This increase in circle of confusion equates to an aperture of f/1.4
( f/14 in mm terms), and results in a maximum of additional blur of σ = 25.

Artifacts begin to become apparent beyond this scale, and narrower  would

require better blur synthesis methods such as those used by Bae and Durand [].

Figure . contains results of our method.

While our method can produce reasonable results in many cases, it has several

limitations. In order to synthesize a narrower depth-of-êeld, there has to be a range

of defocus blurs detectable in the image. Unless the foreground is very close to

the camera, the amount of defocus blur will be not be sufficiently large for our

algorithm to distinguish between blurred and sharp edges. In this case, magnifying

the estimated blur will have little effect on the .

Additionally, our method can accurately estimate the blur of edges when noise is

present, but it has difficulty with textured regions. Depending on the estimated noise
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Original image Estimated blur map Narrower- result

Figure .: A selection of images produced with our method, comparing the conventional
thumbnail (left), estimated blur map (center), and our synthetic depth-of-êeld algorithm (right).
In all images, the desired blur md(x,y) was determined by doubling the estimated blur.

level, our method cannot easily distinguish between êne texture detail and noise, as

seen in Figure .. Signiêcant noise present in the image causes many textured

regions to be estimated as blurry and all detail is blurred out when synthesizing the

ênal image. This confusion between noise and texture would be avoided in the

future by using an analytic noise model for the given camera at the speciêc exposure

and gain levels used to capture the image.
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Figure .: Our blur estimation method cannot distinguish between noise and texture detail,
and regions with êne texture detail will result in a blurry estimate. The texture in the foam
(left) is indistinguishable from the noise in the beer, and both are blurred in the synthesized
image (right).

Neither our method nor Samadani et al. can accurately detect motion blur

or camera shake. Our method estimates the blur in proportion to the maximum

gradient magnitude. Large gradient magnitudes correspond to small blurs, while

small gradient magnitudes correspond to large blurs. Both motion blur and camera

shake result in a linear blur, which still has large gradient magnitudes orthogonal to

the blur direction, and such image regions are estimated as sharp.

. Conclusion

In this chapter we have combined the blur estimation of Samadani et al. with the ro-

bustness of Elder and Zucker’s minimum reliable scale to produce an efficient means

of estimating spatially-variant blur in noisy images. We have shown that refactoring

the implementation of the method can reduce the amount of computations neces-

sary, especially in terms of the number of Gaussian blurs required.

The optical design of cameras included in mobile devices makes it impossible

to physically capture a narrow . Using our estimate of the blur present in the
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image, we synthesize a new image with narrower  than the camera could actually

capture. While our method has limitations in terms of how accurately it can estimate

blur, and how much it can enhance the blur it does ênd, it is capable of producing

compelling results.





Chapter 

Blur-Aware Image Downsizing

Synthesizing a narrower  is not the only application of blur magniêcation. The

spatially-variant blur estimation of the previous chapter can be used with other mod-

els than camera optics. Resizing to a lower resolution can alter the appearance of

an image. In particular, downsampling an image causes blurred regions to appear

sharper. It is useful at times to create a downsampled version of the image that gives

the same impression as the original, such as for digital camera viewênders. To un-

derstand the effect of blur on image appearance at different image sizes, we conduct

a perceptual study examining how much blur must be present in a downsampled

image to be perceived the same as the original. We ênd a complex, but mostly

image-independent relationship between matching blur levels in images at different

resolutions. We incorporate this model in a new appearance-preserving downsam-

pling algorithm, which alters blur magnitude locally to create a smaller image that

gives the best reproduction of the original image appearance.

. Introduction

One pervasive trend in imaging hardware is the ever increasing pixel count of image

sensors. Today even inexpensive cameras far outperform common display technolo-

gies in terms of image resolution. For example, very few cameras remaining on

the market, including mobile devices, capture an image at low enough resolution

to show on a p high-deênition television () display without resizing. In

an extreme case, the preview screen on one Nikon professional digital single-lens
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reëex () can only display 1.5% the pixels captured by the sensor. The cellphone

camera owner and the K cinematographer face the same problem of getting an

accurate depiction of the image when they can’t see all the pixels.

While high resolution images are needed for a number of applications such as

on-camera previewing, print output or cropping, the image is often previewed on a

display of lower resolution. As a result, image downsampling has become a regular

operation when viewing images. Conventional image downsampling methods do

not accurately represent the appearance of the original image, and lowering the

resolution of an image alters the perceived appearance. In particular, downsampling

can cause blurred regions to look sharp and the resulting image often appears higher

quality than its full-size counterpart. While the higher quality images can be desirable

for purposes such as web publishing, the change is problematic in cases where the

downsampled version is to be used to make decisions about the quality of the full-

scale image, for example in digital view ênders.

In this chapter, we aim to develop an image downsampling operator that pre-

serves the appearance of blurriness in the lower resolution image. This is a potentially

complex task — the human visual system’s ability to differentiate blurs is dependent

on spatial frequency, and edges blurred by different amounts may be perceived as dif-

ferent at one scale but equal at another. Additionally, there is potential for content-

dependent blur perception where the same amount of blur is perceived differently,

depending on the type(s) of object(s) shown.

We approach this problem by conducting a perceptual study to understand the

relationship between the amount of blur present in an image, and the perception of

blur at different image sizes. Our study determines how much blur must be present

in a downsampled image to have the same appearance as the original. We ênd a

complex and mostly image-independent relationship between matching blur levels

in images at different resolutions. The relationship can be explained by a linear

model when the blur magnitude is analyzed in terms of spatial frequency.

Using the results of this study, we develop a new image resizing operator that

ampliêes the blur present in the image while downsampling to ensure it is perceived

the same as the original. While our algorithm is compatible with any combination of

methods for producing a spatially-variant estimate of image blur and spatially-variant

image êltering, we employ the blur estimation scheme presented in Chapter . The
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result is a fully-automatic method for downsampling images while preserving the

appearance of blur, the performance of which we verify with another user study.

. Experiment Design

The basic premise of our work is that the blur in an image is perceived differently

when that image is downsampled. In order to create a downsampled image that

preserves the appearance of the original image, we must quantify that change in

perception. The experiment was intended to measure the amount of blur that needs

to be present in a thumbnail image in order to match the appearance of blur in a full-

size version of the same image. This relationship was measured in a blur-matching

experiment.

Observers were presented a full-size image, as well as two thumbnail images.

They were asked to adjust the amount of blur in both thumbnail images such that

the êrst thumbnail was just noticeably blurrier than the full-size image, and the

second thumbnail was just noticeably sharper. An example stimulus is shown in

Figure .. We found that this ‘bracketing’ procedure resulted in more accurate

measurements than direct matching and was necessary due to the relatively wide

range of blur parameters that result in approximately equal appearance. Such varia-

tion of the method of adjustment was used before to measure a just noticeable blur

in the context of the depth of focus of the eye [Yi et al., ] and the brightness of

the glare illusion [Yoshida et al., ]. The matching blur amount was computed

as the mean of the ‘less-’ and ‘more-blurry’ measurements.

An alternative experiment design that would produce more accurate results, is

the -alternative-forced-choice procedure, in which the observers are asked to select

a blurrier/sharper image when presented the original and downsampled version and

the amount of blur is randomly added or removed from the smaller image. Such a

procedure, although more accurate, consumes much more time (is on average –

longer) and thus is not effective with a larger group of observers. The objective of

our study was to gather data for an ‘average’ observer, thus it was more important to

collect a larger number of measurements for a larger population, rather than fewer

but more accurate measurements.
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Figure .: Screen capture of the stimuli used in the experiment. Subjects adjust the blur in
the small images on the right to match the blur in the large image on the left.

Viewing conditions. The images were presented on a ” Dell WFPc display

with × resolution. The experiment was run in a dimmed room with no

visible display glare. The viewing distance was m, resulting in a pixel Nyquist

frequency of  cycles per visual degree.

Image selection. A pilot study was run to observe how the blur estimates differ be-

tween images, and in order to identify a possibly small set of images that would still

reëect image-dependent effects. For the pilot experiment we selected  images

containing people, faces, animals, man-made objects, indoor and outdoor scenes.

The pilot experiment was run with  blur-levels and only  observers. The results

were averaged for each test condition (blur level × downsampling level) to form a

vector value. Then, the Euclidean distance was computed between vectors for each

pair of images, to build a difference matrix. The difference data was then projected

onto a D space using multi-dimensional scaling [Kruskal and Wish, ] in order

to produce the plot in Figure .. The plot reëects image-dependent differences

in blur perception for the same blur parameters. To maximize diversity in image

content, we selected êve images which were located far apart on the plot and thus

were likely to be the most different in terms of produced results.
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Figure .: The result of multi-dimensional scaling on the differences between per-image
results collected in a pilot study. The pilot study was intended to identify the representative
images that had the highest potential to reveal any image-dependencies in the study. The
images selected for use in the main study are shown at the bottom.

Stimuli. For both the pilot study and the full experiment, differently blurred ver-

sions of images were generated by introducing synthetic blur to full-size images with

no noticeable blur in them. Since we could not control where in the image users

were looking to make their judgements, we introduced uniform blur to completely

in-focus images to avoid any ambiguities in response. For this purpose we used a

Gaussian kernel of a speciêed standard deviation ς (in this chapter, we use ς to de-

note standard deviations of blur kernels expressed in visual degrees, and σ for blur

kernels expressed in pixels). Thumbnail images were produced by the same process,

except that the convolution of a full-size image was followed by nearest-neighbor
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resampling. We chose a nearest neighbor êlter for this step in order to not distort

the experiments by introducing additional low-pass êltering. However, as a result,

some amount of aliasing was present for small blur kernels under large downsampling

factors (also see Section .). The reported ς -values are given in visual degrees to

make them display-independent. The êve selected images were shown at  blur

levels, ranging from  do . visual degrees, and at three downsampling factors: ,

, and .

Observers.  observers ( male and  female) participated in the study. They

were paid and unaware of the purpose of the experiment. The observer age varied

from  to  with the average . All observers had normal or corrected-to-normal

vision.

Experimental procedure. Given a reference image with blur ς r, the observers were

asked to adjust the matching blur to be just noticeably stronger in one and just no-

ticeably weaker in the other thumbnail image. Each observer repeated the measure-

ment for each condition three times, but each observer was assigned a random subset

of  out of  conditions to reduce workload ( =  downsampling factors × 

blur levels ×  images). In total over , measurements were collected. The ex-

periment was preceded with a training session during which no data were recorded,

followed by three main sessions with voluntary breaks between them. The breaks

were scheduled so that each session lasted less than  minutes.

. Experiment Results

The results of the experiment, averaged over the êve selected images and for each

image separately, are shown in Figure .. The results are very consistent regardless

of the image content, but averaging across all images is necessary to reduce variability

in the data. Because both ς values are reported with respect to the blur in the full-

size image, the y = x line (dashed black line in the plot) is equivalent to retaining

the blur of the original image. For all data points the matching blur is larger than

the blur in the original images (points above the dashed black line). This is because

images look sharper after downsampling and they need to be additionally blurred to
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match the appearance of full-size images.

Figure .: The results of the blur matching experiments, plotted separately for averaged data
ς m (top-left) and for each individual image. The continuous lines are the expected magnitudes
of matching blurs found by computing the average between two measurements for ‘more blurry’
and ‘less blurry’. The error bars represent a % conêdence interval. The edges of the shaded
region correspond to the mean measurement for ‘more blurry’ and ‘less blurry’.

The experimental curves also level off at higher downsampling levels and for

larger blur amounts. This effect is easy to explain after inspecting actual images, in

which the amount of blur is so large that it sufficiently conveys the appearance of

the full-size image and no additional blurring is needed.

It is important to note that the reported values also include the blurring necessary

to remove aliasing artifacts. As mentioned in the previous section, we used a simple

nearest-neighbor êlter to resample the blurred high-resolution images so that the

results are not confounded with an anti-aliasing êlter. If the blur was not sufficient

to prevent aliasing in the downsampled image, the result appeared sharper than the

original. We observed that when no blur was present in the large image, subjects

adjusted the amount of blur in the thumbnail to a value close to the optimal low pass

êlter for the given downsampling factor.
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. Model for Matching Blur Appearance

In this section we introduce a model that can predict our experimental results. The

plot curves in Figure . suggest a non-linear relation for matching blur in original

and downsampled images. However, we show that the averaged measured data ς m

is well explained by the combination of an anti-aliasing êlter ς d and a model S ,

which is linear in spatial frequencies (measured in cycles per visual degree):

ς̂ m =
√

ς 2
d +S 2. (.)

The ς̂ m is the model prediction of the experimental blur-matching data for an

average observer. The term ς d approximates the effect of an ideal anti-aliasing êlter.

The standard deviation ς d of the Gaussian êlter that provides a least-squares êt of

the sinc êlter is

ς d = d
√

3log2
π·p

, (.)

where d is the downsampling factor, while p is a conversion factor that maps from

image units (pixels) to visual degrees, which is equal to the number of pixels per

visual degree. In our experiments, we had subjects sit further away from the screen

than usual, to prevent limitations in screen resolution from affecting the results. As

a result, p = 60 for our experimental data.

To motivate our choice of model, we remove the anti-aliasing component ς d

from the experimental data and plot it in terms of spatial frequency 1/ς in Fig-

ure .. The plot shows the experimental data expressed as the S component of

Equation .. All data points are now well aligned and mostly in linear relation, ex-

cept several measurements at high frequencies and for the 2× downsampling factor.

We attribute these inaccuracies to the measurement error, which is magniêed in this

plot because of the f = 1/ς transform. The plot demonstrates that the remaining

term S can be modeled as a set of straight lines when expressed in terms of spatial

frequencies. Moreover, the lines cross at approximately the same point. The model

that provides the best least-squares êt of the experimental data in terms of ς -values

is
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S (ς r,d) =
1

2−0.893log2(d)+0.197( 1
ς r
−1.64)+1.89

, (.)

where d is the downsample amount and ς r is the amount of the reference blur in

the original image.
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Figure .: Average matching blur data (Figure . êrst panel), with the anti-aliasing
component ς d removed, replotted as the roll-off frequency. The matching blur follows straight
lines, except for the small blur amounts (high frequency roll-off), where aliasing dominates.
The two lowest value ς r points were omitted from the plot as the values were excessively large
due to the 1/ς transform.

Figure . plots the combined blur model ς̂ m as compared to the results from

our experiments. The êgure shows that the êtting error is quite acceptable, even for

low-ς (high-frequency) points, which did not follow the linear relation in Figure ..

When comparing plots, note that the large frequency values correspond to small ς -

values. While a higher-order function could provide a better êt, our experimental

data do not provide enough evidence to justify such a step. Moreover, we believe

that a linear model in terms of spatial frequency is more plausible than a higher-order

function.

Note that the combined model of matching blur ς̂ m is the absolute amount

of blur that needs to be present in the full-size image before downsampling and is
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Figure .: Blur model ς̂ m (dashed lines) compared with the experiment results ς m (contin-
uous lines and error bars).

expressed in units of visual degrees. In Section . we explain how to compute the

amount of blur that needs to be added to a downsampled image.

. Perceptually Accurate Blur Synthesis

The goal of our algorithm is to use the results of our experiment to automatically

produce a downsampled image that preserves the appearance of the original blur. We

êrst compute a spatially-varying estimate of the amount of blur present in the full-size

image. Given that estimate, we use the results of our study to determine how much

additional blur is needed for the speciêed downsample. Finally, we synthesize a new

downsampled image with the amount of blur required to preserve the appearance of

the image.

Our overall approach can work with any method that provides a spatially variant

estimate of image blur. We considered the method by Elder and Zucker [],

but it only produces estimates at edge locations and requires the work of Bae and

Durand [] to provide a robust estimate of the blur at all pixels. While the

approach produces high-quality results, it operates at the resolution of the original

image and is computationally intensive. Instead, we rely on the algorithm presented





in Section . because of its simplicity and computational efficiency, which is a result

of performing most work at the resolution of the downsampled image. The method

provides blur estimates at each pixel location in terms of the Gaussian kernel σ
before synthesizing the ênal image using our model of perceived blur. To synthesize

the ênal image, we employ the same process as Section ., replacing the model of

camera optics with the perceptual model derived in Section ..

While our method recovers a blur map for the image, it is worth noting that this

blur map does not necessarily represent the defocus or depth of pixels. It can better

be understood as a map of relative gradient magnitude per image region. While

rapidly changing derivatives correspond to sharp regions, there is an ambiguity with

slowly changing derivatives. If an image region is a ëat color, we cannot determine

whether that is a detailed region that is out of focus or it is in focus but lacks any

detail. Both situations are equivalent from the viewpoint of this algorithm.

With an accurate estimate of the blur present at each pixel of the large image,

we use our model from Section . to compute the amount of blur desired in the

downsampled image. To produce the appearance-matching image, we reduce its

resolution by downsampling it by a factor of d using the standard technique with an

antialiasing êlter. Because the anti-aliasing is now accounted for, we use the aliasing-

free component of the model S (ς r,d) from Equation ., rather than the complete

model ς̂ m. Given the existing blur in the full-size image σo, the amount of blur that

needs to be added to a downsampled image is expressed as

σa =

√(
S (σo·p−1,d)·p

d

)2

−σ2
o . (.)

The downsampling factor d reduces the blur amount as we work on a lower-

resolution downsampled image. The conversion factor p, which is equal to the

number of pixels per one visual degree, converts visual degrees used in the model

to pixels used in the blur estimation. For a computer monitor seen from a typical

distance, p is approximately 30 pix/deg.

To produce the ênal image, for each level of the scale-space σ j we blur the

downsampled image by the corresponding amount of additional σa, then linearly

blend sequential pairs of those blurred images together to approximate non-integer

values of σa. While more accurate spatially-variant blur synthesis is possible, such as
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Conventional downsample Our method

Cropped region of original image

Figure .: Comparison of conventional downsample and our method. The bottom row
contains cropped portions of the image at the original resolution (see pink boxes in conventional
thumbnail). Note the blur present in the eye of the robot sculpture and cardboard box is visible
in our result, but appears sharp in the conventional thumbnail.

Popkin et al. [], we haven’t noticed any artifacts requiring such methods.

. Evaluation

In this section, we provide results of our method and compare our approach to that

of Samadani et al. []. We encourage the reader to look at the electronic versions

of the images, which represent the êne details better than prints.

Figures . and . compares the results of our algorithm to those of a conven-

tional downsampling method of low-pass êltering the image followed by nearest-

neighbor sampling. In both the example of the robot sculpture and the art supplies,

objects that appear in focus (such as the head of the robot or cardboard box) in the

conventionally-downsampled image are in fact blurry, as can be seen in the zoomed

portions. Our method accurately detects this blur and preserves the appearance in

the downsampled image.
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Conventional downsample Our method

Cropped region of original image

Figure .: Comparison of conventional downsample and our method. The bottom row
contains cropped portions of the image at the original resolution (see pink boxes in conventional
thumbnail).

Figure . demonstrates the effectiveness of our algorithm at preserving the ap-

pearance of blur in images across multiple downsample factors. In this image, the

original images are downsampled by a factor of  and , and the smaller versions

retain the same impression of the depth of êeld.

Figure . compares the results of our method to those of the original method

of Samadani et al. []. If the value of γ is manually chosen for the image, their

method can approximate our own. However, if the value of γ is incorrectly cho-

sen, their method will either introduce too much blur and remove detail from the

branches in the upper left or not introduce enough blur and retain all the details in

the ëowers. Even with a correctly chosen value of γ their method can only linearly

scale the amount of blur, and cannot model the more complex relationship between

existing blur and desired blur observed in the user study.

Additionally, we conducted a second user study to verify the effectiveness of

our method. Previously, Samadani et al. [] performed a preference study to





2x normal

2x blur-aware

original

original2x normal4x blur-aware4x normal

2x blur-aware 4x blur-aware4x normal

Figure .: Comparison of appearance of blur at multiple downsample levels. All of our
results retain roughly the same amount of blur as the original while the conventionally down-
sampled appear to get progressively sharper.

determine whether subjects felt their method was more representative of the original

image than a conventional thumbnail. This study showed that users did prefer the

method of Samadani et al. over standard thumbnails. We instead chose to conduct

a task-based survey to determine the extent to which our method improves users’

ability to make accurate comparisons of how objects in a scene are blurred.

In this -alternative-forced-choice study, we photographed a series of objects

with increasing amounts of defocus blur. Thumbnail versions of these images were

created using both our algorithm and the conventional downsample process to down-

sample by a factor of . Subjects were shown pairs of images with different amounts

of defocus blur and asked to specify in which of the thumbnails the object appeared

sharper. Figure . contains an example stimuli. A total of  observers partici-

pated in the study, performing a total of  trials for each of the downsampling

algorithms.

Overall, subjects correctly identiêed the sharper object % of the time when

viewing conventional thumbnails, while they correctly identiêed the sharper object

% of the time when viewing the results of our method.

Our method outperforms conventional downsampling when the blur is small

enough that the object will appear sharp in a standard thumbnail and blurred in

our result. However, both methods exhibit similar performance if the blur is small

enough for the object to appear sharp at the original resolution, and thus in both

thumbnail versions. Likewise, the performance of the two methods will be the same

if the blur is large enough that the object will appear blurred in both thumbnails.
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Conventional downsample Our result

Samadani, γ = .5 Samadani, γ = 4

Cropped region of original

Figure .: Comparison of naive downsampling and our method (top row) to Samadani
et al. with too little blur (γ = .5) and too much blur (γ = 4) from incorrect choices of γ. The
bottom row contains a cropped region of the original image (see pink boxes) for comparison.
Original image copyright Ramin Samadani.
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Figure .: A screenshot of the veriêcation study containing a pair of thumbnails with
different amounts of defocus blur. Subjects had to choose which image contained the object more
in focus.

We used a uniform distribution of blur amounts, so our experiment covers all three

of these cases.

. Conclusion

In this chapter, we have presented a perceptually-based model of how the perception

of blur in an image changes as the size of that image is reduced. This model is based

on a linear relationship between the perceived blur magnitude and the blur present

in the image, when analyzed in terms of spatial frequency.

We have used that model to create a new image-resizing operator that preserves

the perception of blur in images as they are downsampled, ensuring that the new

image appears the same as the original. To do so, we modiêed an existing blur

estimation algorithm by Samadani et al. [] to provide estimates of the original

image in absolute units.

More generally, any form of downsampling involves discarding information present

in the image. The convention in graphics and image processing is to attempt to

produce the highest quality result, which usually involves throwing away higher fre-

quency detail to avoid any aliasing artifacts. Due to the disparity between sensor

resolution and display resolution, users often view images and make image assess-

ments based on lower-resolution versions that might not represent their full-size

counterparts. We have proposed an approach that considers how the image is per-

ceived, and preserves that appearance rather than producing a higher-quality but less
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representative result.
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Chapter 

Scale-Dependent Perception of

Countershading

The previous chapter discussed how the perception of image blur changes with the

size at which the image is presented. This chapter investigates similar changes in the

appearance of edge proêles of different scales. Countershading is a double-edged

sword: while correctly chosen parameters for a given viewing condition can signiê-

cantly improve the image sharpness or trick the human visual system into perceiving

a higher contrast than physically present in an image, wrong parameters, or different

viewing conditions can result in objectionable halo artifacts.

In this chapter we analyze the circumstances under which countershading turns

from image enhancement to artifact for a range of parameter settings and viewing

conditions. Our experimental results can be modeled as a function of the width of

the countershading proêle. We employ this empirical function in a range of appli-

cations such as image resizing, view dependent tone mapping, and countershading

analysis in photographs and works of êne art.

. Introduction

Local contrast enhancement is a powerful image processing technique, fundamental

to many aspects of computer graphics such as image editing and tonemapping of

HDR images. The same basic techniques can be applied to improve the recognition
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of objects in a scene, to aid in identifying brightness of regions or to accentuate

speciêc image details. In many cases, images with enhanced contrast appear more

aesthetically pleasing.

One of the most common approaches to enhancing local contrast in images

is countershading, where the local edge contrast is increased by adding gradients

to either side of the edges. This approach is common across numerous classes of

algorithms. Many of these algorithms, either explicitly or implicitly, resemble the

effect of the unsharp masking (UM) operator.

This simple technique has proven to be incredibly versatile and, depending on the

choice of blur employed in the high-pass êlter, can produce a variety of effects. Un-

sharp masking with a narrow high-pass êlter can increase the acutance, also known

as apparent sharpness, of the image, making êne details easier to identify. On the

other hand, unsharp masking with a wide high-pass êlter can increase the contrast

of the regions adjacent to the edge, altering the overall impression of contrast in the

image. Sufficiently wide unsharp masking proêles can even induce the Cornsweet

illusion, where the entirety of adjacent regions change in appearance. However,

unsharp masking can also introduce objectionable countershading around an edge,

frequently referred to as haloes. In these cases, the contrast enhancement detracts

from the image, providing neither improved understanding nor aesthetic quality.

We desire a better understanding of what causes local contrast enhancement to

be considered objectionable. Our inquiry begins from the simple observation that

the same basic operation of unsharp masking, and countershading in general, can

lead to multiple, disagreeing interpretations of its effect on the image. In some cases

countershading is interpreted as an enhancement, while in others it is interpreted as

an artifact. We investigate the acceptable contrast for different width countershading

proêles and conduct a perceptual study to determine the amount of countershading

that can be introduced at different scales without it becoming objectionable.

We discover an “uncanny valley” of countershading proêles, where certain width

proêles are considered unacceptable even if only slightly visible, separating adjacent

regions of both wider and narrower countershading proêles with considerably higher

levels of tolerated contrast. Figure . illustrates how the regions of indistinguishable

and objectionable countershading vary with the width of the countershading proêle

and its amplitude. The important observation is that countershading that is indistin-
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Figure .: The square-wave enhanced by a countershading proêles. The regions of in-
distinguishable (from a step edge) and objectionable countershading are marked with dotted
and dashed lines of different color. The higher magnitude of countershading produces higher
contrast edges. But if it is too high, the result appears objectionable. The marked regions are
approximate and for illustration and actual regions will depend on the angular resolution of the
êgure.

guishable from a plain edge provides only very limited contrast enhancement; thus

the region below objectionable countershading needs to be used to achieve good

quality results. We ênd that these regions correspond to the various semantic de-

scriptions of the images resulting from different unsharp masking parameters. The

“valley” consists of proêles considered haloes, while narrower proêles were perceived

to sharpen image features and wider proêles were perceived to enhance contrast.

The remainder of the chapter is organized as follows. In the next section, we

discuss unsharp masking and various applications of countershading in graphics and

image processing. Section . describes the design of the perceptual experiment
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we conducted, while Section . discusses its results. In Section ., we relate our

measurements to other studies on the perception of countershading proêles. Finally,

we demonstrate the applicability of our results and the understanding they afford

with a number of applications, including size-aware image resizing, control of tone-

mapping parameters, artifact-free unsharp masking, detection of countershading in

images, and a viewer-adaptive display.

. Experiment Design

In our perceptual experiment, we target the most general case of countershading

operations: determining the magnitude at which the countershading proêle of a

given width becomes objectionable. In designing our study, we take inspiration

from work by Ciuffreda et al. [] on determining the level of “bothersome blur.”

While parameters of σ and λ responsible for the shape of the countershading proêle

smoothly vary over the space of possible values, a semantic shift from “enhancement”

to “artifact” occurs along a boundary within that space. Our goal is to determine

the boundary between the region of enhancements and the region of artifacts within

the parameter space of the unsharp masking operator. Our study does not attempt to

determine any of the other aspects of local contrast perception such as local contrast

appearance, detection thresholds of countershading, or user preference.

View setup. The images were presented on a ” NEC LCDWUXi display

with × resolution with a black level of .45 cd/m2 and a peak intensity of

213 cd/m2. The experiment was run in a darkened room with no visible display

glare. The viewing distance was 1 m, resulting in a pixel Nyquist frequency of 

cycles per visual degree.

Stimuli. The study consisted of six images, three test patterns of a single step edge

of various contrasts, and three complex scenes, as shown in Figure .. The contrast

of images of complex scenes was linearly scaled down to retain headroom for the

countershading without saturating pixels. The process of adding countershading

enhancement to an image is illustrated in Figure .. Given a linear luminance image,

the countershading is applied in the logarithmic domain to produce the proêles with
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Edge - high (0.59) Edge - med (0.32) Edge - low (0.041)

Palm beach (0.68) Coast (0.61) Building (0.39)

Figure .: Images used in the perceptual experiment:  edges of different contrast and 
images of complex scenes. The semi-transparent red-green color mask is the edge template. The
numbers in parenthesis denote the Michelson contrast of the edge.

the most symmetric appearance of lightness. To produce a high pass image for the

enhancement, a Gaussian-êltered image is subtracted from an original. However,

the enhancement is computed based on an edge-template, as opposed to using the

original image. The template image contains the edges to be enhanced with smooth

regions in between, and can be produced by an edge-preserving êlter such as that of

Farbman et al. []. Using an edge-template ensures a constant increase in contrast

along the edge and, more importantly, avoids the ampliêcation of high frequency

detail noted by Neycenssac [] which could distract subjects from evaluating the

appearance of the countershading proêles. Ten countershading proêle widths were

used in the trials, ranging from . to . visual degrees, equivalent to .5−256 px

at 1 m viewing distance, increasing by factors of two.

Observers.  observers ( male and  female) participated in the study. They were

paid and unaware of the purpose of the experiment. The observer age varied from

 to  with the average . All observers had normal or corrected-to-normal

vision.
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Figure .: Generation of the countershading enhancement in an image. An edge template
is used to precisely mark selected edges in the experiment, but is normally generated with an
edge-preserving êlter.

Procedure. After being presented an image with a countershading proêle of width

σ , the observers were asked to adjust the magnitude λ of the countershading to the

maximum level not considered an artifact. Both “artifact” and “objectionable” are

subjective terms, and we relied on a no-reference measure of the artifacts, where

if the subject saw the image without knowing the original, they would say that it

contained undesirable countershading. Each observer repeated the measurement for

each of the  conditions ( images ×  proêle widths) twice, for a total of 

trials each. In total over  measurements were collected. The experiment was

preceded with a training session to familiarize participants with the task. No data

were recorded during the training phase, which was followed by three main sessions

with voluntary breaks between them. The breaks were scheduled so that each session

lasted less than  minutes.

Screening and outlier removal. Because of the subjective nature of the experiment, er-

roneous and inconsistent measurements are likely to be found in the data. To remove
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erroneous measurements, we êrstly screened the participants using the procedure

recommended for magnitude estimation experiments ITU-R-BT.- [, Sec.

..], then we eliminated those measurements for which the intra-observer standard

deviation exceeded two times the mean standard deviation of all the measurements.

The screening eliminated the data of two participants and the outlier removal re-

moved % of the measurements.

. Experimental Results

To illustrate individual variations, the data for individual observers is shown in Fig-

ure .. The main inter-observer variation is visible as the vertical shift of curves

on the plot, suggesting that different individuals have different notions of ‘just-

objectionable’ countershading. The data becomes more consistent once the dif-

ferences in the mean values are compensated, as shown on the right of Figure ..

For the remaining considerations we use the data averaged over all observers. But

the strong inter-observer variation indicates that the ‘objectionable’ level is subjec-

tive and the algorithms may choose to include a user-deêned scaling parameter for

our mean-observer data.

Figure . shows the results averaged over all observers.The most salient feature

of all plots is the U-shaped characteristic, indicating a reduced tolerance to the halo

effect for the medium proêle widths, with the trough around . visual degrees.

One of the most interesting observations is the difference in the characteristic

between an isolated-edge and complex images, which is shown as the difference

between the plots in Figures .a and .b. At large countershading widths a larger

magnitude of enhancement was selected for a complex image than for an isolated

edge. This could be due to visual masking, which was present in complex images,

but not in the case of isolated edges. The difference between the two plots suggests

that the measurements for simpliêed stimuli do not generalize to complex images.

The results for individual images are better aligned if the countershading proêle

is generated irrespectively of the contrast of the underlying edge. The λ -values

on the plots represent the magnitude of the countershading generated from an edge

template (refer to Figure .) with a êxed log10-contrast of , rather than the contrast

of an edge. This observation suggests that proêles of the same magnitude should be
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used regardless of the contrast of the underlying edge.

The remaining variation between images can be explained by the small effect of

the underlying edge contrast. The effect is mostly visible for complex images and

narrow countershading proêles. The data, however, is not sufficiently accurate to

model this effect. Moreover, the effect disappears for large σ-values, which are the

most relevant for an effective contrast enhancement.

For convenience of use, we êt a polynomial function with a linear segment to the

values averaged across all complex images. The λ -values for the just-objectionable

countershading can be found from:

λ =

{
−.249ς 3 − .233ς 2 + .377ς + .674 if ς ≤ .418

.048ς + .752 if ς > .418
(.)

where ς = log10(σ). The model-êt is shown as a black continuous line in Fig-

ure .b.
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Figure .: Left: Results for individual participants for the Palm beach image. Right:
The same results but after outlier removal and compensating for the mean λ -value between the
participants. Standard error of the mean is plotted for a single participant for better clarity (in
orange).
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(a) Edges
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(b) Complex images
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(c) Comparison with Krawczyk et al. []

Figure .: The results averaged over all participants, (a) for isolated edges, and (b) for
for complex images. The black line in (b) represents our model êt. (c) Our just-objectionable
measurements (edges) compared to the just-distinguishable thresholds from Krawczyk et al.
[] (lines with no markers). log10 scale was used for λ in this plot for better visualization.

. Discussion and Relation to Other Studies

The perceived effects of countershading and local contrast enhancement are well-

studied. Work includes studies related to the sensitivity of the human visual system

to local contrast enhancement, as well as the amount preferred by subjects under

various conditions. We review a selection of key work and discuss its relation to our

own êndings.
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The studies on the Cornsweet illusion by Sullivan and Georgeson [], Camp-

bell et al. [, ] and Burr [] determined the contrast at which a counter-

shaded edge becomes distinguishable from a step edge of equivalent contrast, the so

called scalloping threshold. The horizontal magenta lines in Figures .a-.c show

the approximated values of the scalloping threshold, after Kingdom and Moulden

[]. The thresholds apply only to larger σ-values because the countershading is al-

ways distinguishable from a square wave at spatial frequencies above  c/deg [Sullivan

and Georgeson, ], which approximately corresponds to σ < 1 for our Gaussian-

based proêles. Very low scalloping thresholds clearly show that the countershading

is likely to be noticeable for most practical cases; and thus the just-objectionable

threshold is more relevant for contrast enhancement applications. For a more com-

plete discussion of scalloping, see Kingdom and Moulden [] for a comprehensive

review.

Lin et al. [] studied the perceptual impact of edge sharpness. In their study,

they processed images using an unsharp masking êlter with a êxed σ = 1.4 px at

edge locations only to avoid noise ampliêcation. This width equates to .04 spa-

tial degrees in their viewing setup, roughly corresponding to the third of our tested

widths. The êlter was applied to all edges in the image, and the amount of coun-

tershading introduced was proportional to the underlying edge contrast. Subjects

ranked the perceived quality of images for contrasts of different magnitudes and Lin

et al. computed the most desirable and highest tolerated contrast. Without knowing

the contrast of the original image edges, we cannot compute the equivalent λ to

plot a direct comparison.

Based on the theoretical model of countershading perception by Dooley and

Greenêeld [], Krawczyk et al. [] proposed a visual model of just-detectable

countershading, which was used to adaptively introduce countershading in images.

The main assumption behind their algorithm is that the countershading becomes

objectionable as soon as the proêles become visible. The comparison of our data

with the scalloping thresholds in Figures .a and .b demonstrates that it is not

the case. We reproduced their model and computed its predictions for the isolated

edges from our experiment, assuming the t.v.i. value equal to % and no masking.

The model predictions, plotted in Figure .c, show little correlation with our ex-

periment results and seem to be too conservative even for the scalloping threshold
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reported in the literature.

Ihrke et al. [] performed a perceptual evaluation of the work on D unsharp

masking by Ritschel et al. []. The authors tested the preferred value of their

magnitude parameter λ for proêles of several different widths, measured on object

surfaces, opposed to image-space. Interestingly, they did not ênd their results varied

with the width of the countershading proêles. However, they only tested images

of complex scenes with a narrow set of proêles (corresponding to the trough of the

valley we ênd). Additionally, the depth-dependency of their algorithm means that

proêles of varying widths were added to their scenes, making it hard to ascertain the

magnitude level associated with a single countershading width. Their largest σ was

the only width large enough to cause the Cornsweet illusion. Similar to Lin et al.,

it is difficult for us to plot a direct comparison to our êndings because λ and σ vary

across the image.

. Applications

We have implemented a number of simple applications of our model of objectionable

countershading for use in adjusting image scale and contrast, HDR tone mapping,

artifact-free unsharp masking, and countershading proêle analysis. In the rest of this

section, we brieëy describe these methods and their results. The purpose of these

examples is to demonstrate the breadth of topics for which our measurements are

relevant. Any of these tools could be made more sophisticated, but are sufficient to

demonstrate the associated approach.

As noted in Section ., the perception of countershading proêles strongly de-

pends on the spatial frequency at which they appear. All the images assume viewing

of this thesis as printed on letter-size paper ( .”×” / .×. cm) page viewed

from a distance of ” (. cm). When evaluating the images, please ensure you are

viewing under similar conditions. Additionally, some of the effects are subtle and

we suggest looking at the electronic copy of the document.

.. Avoiding Haloes When Resizing

As shown in the Section ., increasing the magnitude of a countershading proêle

can not only boost the perceived edge contrast, but also move the appearance into
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the objectionable region. Similarly, operations that change the width of the proêle

can cause the same issue.

a

d

b

c

Figure .: Downsizing an image (a) transforms a .° countershading proêle to a smaller
one, where the threshold of objectionable magnitude is signiêcantly reduced, causing objection-
able haloes. These artifacts can be remedied by adjusting the magnitude of the countershading
(b) to correspond to the new angular size of the proêles or adjusting the width of the coun-
tershading (c) to compensate for the downsample factor, or some combination thereof. Neither
image in this simple case appears exactly the same as the full-size, but they do not include
objectionable artifacts. The same issue occurs in the opposite case, when a sharpened image is
enlarged (d).

Resizing an image with acceptable countershaded edges can cause the proêles

around those edges to move from the acceptable to objectionable region, as shown

in Figure .. Figure .a shows an edge with .° countershading proêles near

the just-acceptable contrast. Shrinking that image by a factor of × causes those

proêles to move into the objectionable region and appear as haloes. In order to regain

acceptable proêles, the current combination of proêle contrast and width must be

projected back outside the objectionable region. Fig .b and .c show the result
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of projecting along only the contrast axis or only the width axis, respectively. The

resulting contrast appearance depends on the projection, where primarily adjusting

contrast reduces the overall image contrast enhancement, while primarily adjusting

width approximates a global contrast adjustment. Algorithms can choose how to

adjust those parameters based on desired image appearance.

The same issue also must be considered when enlarging images. Contrasts ac-

ceptable for very narrow proêles will become objectionable as they are widened, as

shown in Figure .d. While less frequent, this scenario can occur if a user is ad-

justing the contrast of a sharpening êlter in a preview of less than 100% of the full

image size.

.. Local Tonemapping Operators

The same consideration to the scale of countershading from the observer’s perspec-

tive can be applied to other operations. Local tonemapping is frequently associated

with introducing objectionable haloes. In some cases, poor algorithm performance,

regardless of parameters, is responsible for the artifacts. In others, it may be a mis-

match between the scale for which the image was produced and the scale at which

it is being displayed.

We use theOffice image from Durand and Dorsey [], which is × px

in size. Their algorithm calls for the σs of the bilateral êlter to be 2% of the image

size, in this case 26 px. Viewing the image -to- pixels on a ” × display

from a distance of ”, σs is equivalent to .°. We observe the artifacts to be

acceptably low under these conditions. However, resizing that image to êt within

the margins of this document at our ” viewing distance, the same σs is equivalent

to .°, a spatial frequency at which we are considerably more sensitive to haloes.

The contrast of the countershading proêles depends on the interaction of several

algorithm parameters and is difficult to specify. On the other hand, the width of the

proêles only depends on the choice σs in the bilateral êlter, so we project back out

of the objectionable region along the proêle width axis.

After êxing the σs to be equivalent to .° ( px in this case) the haloes are

below the objectionable threshold for the image in this thesis, as can be seen in Fig-

ure .. We have not entirely removed the haloes from the image, as can be seen

when viewing the image from a large distance. We have simply ensured the proêle





(a)

(b)

Figure .: A comparison between (a) the σs speciêed in Durand and Dorsey [] and (b)
our σs chosen for the size of the image in this document. The contrast of the countershading has
not changed, the proêles have been sufficiently widened so the contrast is no longer objectionable.
Office image copyright Fredo Durand.

contrasts are below the objectionable threshold for the given viewing conditions.

This approach provides an alternative to that of Farbman et al. [] when consid-

ering situations involving small displays or requiring computational efficiency, such

as mobile devices.
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.. Artifact-Free Unsharp Masking

We can also use the insight from our experimental procedure to develop improved

unsharp masking that does not introduce artifacts. Neycenssac [] noted that un-

sharp masking introduces contrast through  separate mechanisms: the addition of

countershading proêles around edges and the ampliêcation of existing image features.

An ideal countershading operator should introduce acceptable magnitudes of coun-

tershading at edges without introducing other artifacts. While the results derived

from our experiment provide a model of acceptable countershading magnitudes, we

still must address the ampliêcation of image features.

A naïve unsharp masking operation ampliêes small features, especially noise, as

visible in Figure .c. Lindeberg [a] notes that convolution with a Gaussian of

width σ will remove all the features smaller than
√

σ , so those features, including

noise, will be present in the high-pass image Hσ (Y ) at their original contrast. When

the high-pass image is added to the original image, only features larger than
√

σ
receive countershading proêles, while features smaller than

√
σ are ampliêed. To

achieve effective countershading, rather than detail ampliêcation, it is necessary to

suppress unwanted details in the high-pass image.

Many attempts have been made to adaptively scale the unsharp masking param-

eters λ and σ based on local image content to avoid the unwanted features present

in Hσ (Y ) from being introduced into the ênal image. Taking inspiration from the

edge templates employed our experiment, we consider a different approach: if small

features are ampliêed rather than countershaded, they should not be present in the

high-pass image. That way the unsharp masking operator does not need to remove

them after the fact.

We replace the conventional high-pass image Hσ (Y ), based on the difference

between the image and a Gaussian-blurred copy gσ

Hσ (Y ) = Y −gσ ∗Y (.)

with a modiêed version H ′
σ (Y ) based on a template function Tσ that removes fea-

tures smaller than the
√

σ from the image while retaining high-frequency edges:

H ′
σ (Y ) = Tσ (Y )−gσ ∗Tσ (Y ). (.)
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a: original Y b: template Tσ (Y )

c: naïve high-pass Hσ (Y ) d: template high-pass H ′
σ (Y )

e: naïve countershade f: template countershade

Figure .: Comparison of the original image Y with the result of the  êlter Tσ (Y ) for
the generated high-pass image and countershaded result. The naïve high-pass image retains the
noise of the original and ampliêes it in the result, while the template version does not. In this
case the countershading magnitude has been chosen to make the difference between operators
easily visible.

Edge-preserving smoothing êlters, especially the  framework of Farbman

et al. [], provide a very good approximation of Tσ . In the case of Farbman

et al., the parameters must be calibrated such that the frequency response of the

êlter corresponds to that of gσ used by H . The frequency response of a Gaussian

êlter of width σ is another Gaussian of width 1/σ :

Gσ (ω) = e
− ω2

2/σ2 (.)
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From Farbman et al., the frequency response of  for a region without signif-

icant edges is

Fγ ,α(ω) =
1

1+ γω2
(
|∂ℓ|α + ε

)−1 , (.)

where γ controls the spatial extent of the function, α is the edge-stopping parameter,

∂ℓ is the average partial difference of the log-luminance of the input image and ε is

a small term to avoid division by zero. We choose Farbman et al.’s value of α = 1.2

and an average pixel difference of .04 to approximate the gradient magnitude of ëat

regions of images in the range [0,1] and solve the γ that minimizes the least-squares

difference between Gσ and Fγ . For σ = 1, the equivalent value of γ1 = 0.027,

given our choice of parameters. From Farbman et al., values equivalent to other σ
are determined by γσ = σ 2γ1.

The corresponding  êlter Fλ will remove features smaller than
√

σ while pre-

serving edges, the desired behavior of our template function Tσ . Figure . compares

conventional unsharp masking to the template image approach, which successfully

removes small details from the high-pass image. Finally, we use our model from

Section . to ensure the added countershading is acceptable.

This operator can be viewed as the complement to using the  êlter for multi-

scale tone manipulation. Because  does not smooth across edges, the differences

in contrast between scales only occur in smoothly-changing regions and  tone

manipulation predominantly adjusts the contrast of regions without sharp edges.

Conversely, our operator predominantly adjusts the contrast of regions around sharp

edges.

.. Countershading Analysis

Many images already contain countershading, including some works of êne art such

as Seurat’s Le Bec du Hoc, shown in Figure .. In fact, countershading originated

in the êne arts, where artists overcame the limitations of the medium and gave im-

ages the appearance of higher contrast than they could otherwise convey. When

this painting is seen at a different visual resolution, for example when reproduced

on a web-page, the appearance of countershading may be very different from the
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Figure .: Comparison of Seurat’s original Le Bec du Hoc (left) with our adjusted
version (right). We performed a multi-scale decomposition of the painting (left) and estimated
the countershading proêles on each side of the edges separated the land, sea, and sky portions
(bottom), then demonstrate the difference by synthesizing the new image (right) with those
proêles removed.

artist’s intent. However, it is possible to compensate for the difference in viewing

conditions by analyzing the countershading present and then reintroducing adjusted

countershading proêles.

To accomplish this task we use an extreme case of image abstraction followed

by an analysis-by-synthesis estimation of the countershading proêles. We observe that

if a single iteration of an edge-preserving êlter removes texture details, multiple it-

erations remove any low-amplitude intensity changes, including the countershading

proêles. We employ the  framework of Farbman et al. [], using the iter-

ative version of their algorithm to obtain a texture-free layer Ds, and then repeat

several more iterations to obtain a countershading-free layer Dt . The layer Dt con-

sists of nearly uniform regions of color separated by sharp edges like the template
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images described earlier. We then segment the template image and solve for the

Gaussian centered at each edge position that best approximates the countershading

present: Dt −Ds. Estimation is performed independently for each side of the edge

to account for asymmetries in the proêles. The result is an approximation of proêle

width and magnitude at each edge location, shown in Figure . (right). Given this

representation, we are able to remove existing countershading and synthesize a new

set of proêles for the desired conditions. This approach not only provides a better

means to reproduce artwork containing countershading, but also may afford a deeper

insight into how it is used artistically.

.. Viewer-Adaptive Display

The underlying theme of these applications is that the perception of countershading

strongly depends on the width of the proêle from the point of the viewer. Algo-

rithms can easily account for the dimensions and resolution of the display, but fail

to account for the fact that the perceived proêle width also depends on the dis-

tance between observer and display. We created a setup with a viewer-adaptive

display, which determines the distance of a viewer from the screen using head-

tracking, and then adjusts countershading proêles accordingly (details in video at

http://matttrent.com/research/thesis). The goal is to maximize contrast enhancement

without causing haloes to appear, especially at larger viewing distances (refer to Fig-

ure .). We can achieve the adjustment in two different ways: either by keeping

the width of the proêles constant on the screen and adjusting the magnitude of the

distortion, or by changing the width of the proêles on the screen so that their an-

gular size from the viewer point stays the same. We found the êrst approach to

be less disruptive to image content while the second to provide stronger contrast

enhancement.

. Conclusion

In this study we measured conditions under which countershading proêles are per-

ceived as objectionable. We found a strong effect of the width and magnitude of the

proêle and a much weaker effect of the underlying image content. Unlike previous

studies on the detection of countershading proêles (Sullivan and Georgeson [Sul-


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livan and Georgeson, ], and Krawczyk et al. [Krawczyk et al., ]) or their

matching contrast (Dooley and Greenêeld [Dooley and Greenêeld, ]), the focus

of our work is the aesthetics of countershading. In particular, the perceived qual-

ity is strongly affected by changes in proêle width, including those resulting from

changes in viewing conditions such as distance. Image downsampling also affects

proêle width and may easily convert acceptable proêles into objectionable ones,

implying this observation is very relevant to a large group of image enhancement

algorithms. It is our suspicion that a number of algorithms said to introduce haloes

may in fact produce acceptable results, but suffer from the disparity in size between

authors’ monitors and their printed reproductions.

We have shown several applications where our model, combined with edge-

preserving smoothing, can be used to improve upon existing countershading ap-

proaches, as well as enable some new possibilities. Improvements to existing methods

include more accurate resizing of countershading proêles, halo-free local tonemap-

ping, and a new unsharp masking operator that avoids issues of noise ampliêcation.

We also present a means of estimating and modifying countershading in existing

images, including êne art.
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Chapter 

Defocus Techniques for Camera

Dynamic Range Expansion

Chapters  and  presented perceptual models relating the appearance of blur and

contrast. In this chapter, we investigate the use of optical blur to capture a greater

contrast range with conventional sensors.

Defocus imaging techniques, involving the capture and reconstruction of pur-

posely out-of-focus images, have recently become feasible due to advances in de-

convolution methods. This chapter evaluates the feasibility of defocus imaging as

a means of increasing the effective dynamic range of conventional image sensors.

Blurring operations spread the energy of each pixel over the surrounding neighbor-

hood; bright regions transfer energy to nearby dark regions, reducing dynamic range.

However, there is a trade-off between image quality and dynamic range inherent in

all conventional sensors.

The approach involves optically blurring the captured image by turning the lens

out of focus, modifying that blurred image with a êlter inserted into the optical

path, then recovering the desired image by deconvolution. We analyze the prop-

erties of the setup to determine whether any combination can produce a dynamic

range reduction with acceptable image quality. Our analysis considers both prop-

erties of the êlter to measure local contrast reduction, as well as the distribution of

image intensity at different scales as a measure of global contrast reduction. Our re-

sults show that while combining state-of-the-art aperture êlters and deconvolution
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methods can reduce the dynamic range of the defocused image, providing higher

image quality than previous methods, rarely does the loss in image êdelity justify the

improvements in dynamic range.

. Introduction

The fact that the range of luminances found in the real world greatly exceeds the

capabilities of imaging sensors is a fundamental problem encountered during the ac-

quisition of digital images. Real world scenes contain values brighter and darker

than the range that can be captured at any one time by conventional image sen-

sors, and as a result, over-exposed and under-exposed pixels commonly occur in

photographs. Conventional image sensors cannot match the dynamic range of the

scene, and can only capture a subset of the luminances present. Although special-

ized high dynamic range image sensors can capture the range of luminances found

in most real world scenes, they suffer from lower signal-to-noise ratios (SNR) or

slower read-out speeds [Yang et al., ].

Photographers have contended with this problem since the advent of photogra-

phy, and the most common solution is the concept of exposure to control the amount

of light that falls on the sensor. While controlling the amount of light reaching the

sensor by adjusting the aperture and the exposure time, photographers are able to

select which subset of the scene luminances they wish to capture without undesir-

ably over- or under-exposing the image. However, adjusting the exposure does not

improve the limited dynamic range that can be acquired. The subset of luminances

that can be accurately captured can be thought of as a slice through the entire range

of luminances found in the scene. Adjusting the exposure can move the slice up

and down the range of scene luminances, and pixels with luminances above the top

of the slice are recorded as white, while pixels with luminances below the bottom

of the slice are recorded as black. A correctly chosen exposure can minimize the

number of over- and under-exposed pixels, resulting in a properly exposed image,

but it is the dynamic range of the sensor that controls the width of the slice. The

fact remains that if the dynamic range of the scene exceeds that of the sensor, some

pixels will not be recorded accurately.

Most existing techniques capture multiple slices of the luminance range and com-
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bine them into a single image representing a wider slice, and all of these methods

require some tradeoff to extend the width of the slice. Multi-exposure high dy-

namic range reconstruction [Debevec and Malik, ; Robertson et al., ] takes

a sequence of slices distributed in time, trading off temporal resolution for a larger

dynamic range. Similarly, placing an array of different neutral density êlters onto the

sensor [Nayar and Mitsunaga, ] can trade spatial resolution for a wider slice of

the dynamic range. The best option is to develop new sensor technology [Acosta-

Seraêni et al., ; IMS Chips, ; Yang et al., ] that is directly capable of

capturing a wider slice of the dynamic range, but these sensors are still some way off

from commercial availability and currently suffer from resolution and quality issues.

. Overview

The majority of the existing methods attempt to expand the dynamic range of the

sensor to match a êxed range of real scene luminances incident upon the sensor. We

investigate the opposite, reducing the dynamic range of the scene to better êt in the

limited range of the sensor.

The method we investigate attempts this reduction in a two-part, combined

optical and software approach. First, we optically blur the image to reduce the

dynamic range of the scene incident on sensor. Then we restore the original image

detail and dynamic range in software. Blurring is a convolution operation, where

the energy that would fall on a single photosite of the sensor is spread over a local

neighborhood, and reciprocally, that photosite receives some amount of energy from

its neighborhood. This exchange reduces the difference between the pixel and its

neighbors, thus producing an image with less local contrast.

The underlying assumption of this approach is that the most extreme luminance

values are sufficiently spatially distributed such that the local contrast reduction from

convolution will reduce the number of pixels outside the sensor’s dynamic range. A

good candidate for this method would be small point sources, such as streetlights at

night, while a bad candidate would be large bright areas, such as daytime sky viewed

through a window.

We analyze, both in terms of possible dynamic range reduction and resulting

image quality, the properties of the optical-digital system composed of a blurred im-
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age obtained by an aperture êlter inserted into the optical path then restored by a

deconvolution method. The results are quantiêed to determine whether any com-

bination can produce a meaningful reduction of dynamic range required to capture

by a sensor while maintaining acceptable image quality.

. Physical Setup

While the optical system in a camera lens is complex, the entire collection of lenses

can be approximated as a pair of thick lenses with the aperture in between them.

This pair of lenses focuses a bundle of rays coming from points in the scene to points

on the sensor, while the size and shape of the aperture controls which rays in the

bundle reach the sensor.

The optical system focuses the image by directing all the rays in a bundle that

originate from a point on the focal plane in the scene to converge to the same point

on the imaging sensor. If a point lies in front of or behind the focal plane, the

bundle of rays do not converge to a point on the sensor. Instead, the sensor plane

will intersect the cone of light exiting the rear lens element, resulting in a circular

pattern projected on the sensor. The amount of defocus determines the radius of the

blur circle, and points further from the focal plane are proportionally further from

focusing on the sensor and are more blurred since they intersect a bigger slice of the

cone.

As shown in Figure ., the aperture sits in the middle of the imaginary pair of

optical elements we treat as the lens. Light rays pass directly through it. The circular

blur pattern normally observed in out-of-focus images results from the circle shape

of the aperture in a normal lens. With a different aperture shape, if a point is out of

focus, the sensor still intersects with the cone of out of focus rays, but the aperture

shape has blocked some rays traveling through it and the shape of the blur matches

that pattern of the aperture.

. Coded Aperture

As mentioned in the previous section, defocus blur convolves the image of the scene

by aperture shape. Thus, the Fourier transform of the captured image has the fre-

quency characteristics multiplied with the Fourier transform of the aperture shape.
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Figure .: Placement of aperture êlter in optical setup.

The goal of inserting an aperture êlter into the optical system is to produce a blur

pattern that has good frequency preservation properties.

Convolution is equivalent to multiplying the Fourier transform of the scene

image by the aperture optical transfer function (OTF), the frequency space repre-

sentation of the aperture shape. Therefore, in a noise-free case, deconvolution can

be viewed as dividing the Fourier transform of the scene image by the aperture OTF.

Zeros and very small values in Fourier transform of the êlter result in division by

zero and excessive error in the deconvolved image; these values are responsible for

many of the artifacts observed.

The question of “what constitutes a good coded aperture pattern?” involves a

number of criteria. We take this inquiry to speciêcally consider the aperture pattern

that yields the highest quality reconstruction of the original image with the least

number of artifacts. As mentioned above, the zeros in the frequency response of the

êlter prevent information from the scene being captured by the camera.

The ideal coded aperture pattern has a frequency spectrum with as few near-

zero values as possible, with the locations of the existing near-zero values located as

far away from the low frequency bins and each other as possible. Additionally, that

property must hold for a number of different scales of the êlter, as points at different

depths in the scene will be blurred by different amounts.

There are several practical issues beyond these theoretical considerations. Suffi-
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ciently small holes in the aperture pattern will cause the light passing through them

to diffract, causing ringing artifacts in the captured image. Another desired property

is that the aperture pattern transmits as much light as possible. Given these consid-

erations, we will now analyze several coded aperture patterns (shown in Figure .)

and discuss their relative merits:

Standard Gaussian Veeraraghavan Zhou Levin

Figure .: Aperture êlters evaluated.

Standard (circular) aperture: The circular aperture found in conventional lenses cor-

responds to a êrst-order Bessel function in frequency space. The Bessel function

resembles a dampened cos function, with near-zero values around the numerous

zero-crossings of the function. This function causes very poor results with conven-

tional deconvolution algorithms but can be made to yield acceptable results with a

better deconvolution algorithm utilizing natural image statistics. However, as far as

coded aperture patterns go, the standard aperture is very poor, and the only advan-

tage is that it has the highest light transmission of any pattern.

Circular Gaussian: The Gaussian function has two compelling reasons for its use:

the value of the function never reaches zero and the Fourier transform of a Gaussian

function is another Gaussian. However, there are two equally signiêcant caveats.

First, while the Gaussian doesn’t ever reach zero, it quickly reaches the noise ëoor

of the camera. For the Fourier transform of a Gaussian function to be sufficiently

broadband, the aperture pattern is nearly a pinhole. Second, while the Gaussian

function has inênite extent, the actual êlter shape would be a truncated Gaussian,

the Gaussian multiplied by a box êlter. The result would have the same zero-crossing

issues as the standard aperture.
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Veeraraghavan et al. [] started with a Modiêed Uniformly Redundant Array

() pattern, then improved it with an optimization function. They employed

gradient decent to select the binary pattern that best êts the difference in conêgura-

tion between conventional cameras and x-ray telescopes. Modeling such differences

as the linear convolution that occurs in the optical systems of conventional cameras,

they iteratively searched for the binary pattern with the greatest minimum value of

the êlter frequency response.

Zhou and Nayar [] improve upon the work of Veeraraghavan et al. and for-

mulate a deênition of the quality of the aperture êlter based directly on the quality

of the deconvolved image as opposed to the properties of the êlter power spectrum

alone. They assume that the camera will be used to capture natural images, and they

make use of the 1/ f relation of frequencies in natural images to further enhance

their êlter choice. Additionally, they note that the amount of noise present in the

captured image signiêcantly affects the quality of the deconvolution, and they use a

genetic algorithm to search for the optimal coded aperture for a series of different

noise levels. Both this work and Veeraraghavan et al. assume that the radius of the

blur is determined by another method.

Levin et al. [] conducted similar work but optimized a êlter for a different set

of criteria. In their work, they wanted to accurately determine the amount of de-

focus present at every pixel and use that to recover the depth. Opposed to the

work of Veeraraghavan et al. and Zhou and Nayar, who either directly or indi-

rectly optimized êlter patterns with a minimal number of near-zero values, Levin

et al. constructed a êlter such that there was the maximum possible difference in

the position of the zero-crossing in the frequency spectrum for different êlter radii.

This allowed them accurately recover the amount of blur at every pixel by looking

at the missing information, which they were able to êll in with their deconvolution

algorithm.
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. Deconvolution

Deconvolution is used to restore the blurred image recorded by the sensor to its

original sharpness and dynamic range. As discussed in Section ., more recent de-

convolution routines based on natural image statistics have made signiêcant progress

towards restoring the sharpness of blurred images.

While the use of a coded aperture êlter improves the spatial frequency properties

of the captured image, the fact remains that the deconvolution problem is ill-posed.

The blurred image could be the result of any one of an inênite number of images

that produce the same result when convolved by the chosen êlter. However, none

of those images will be exactly the same as the perfect (not blurred) photograph of

a real world scene.

Real world scenes all share some very speciêc properties that can be used to guide

the result of the deconvolution towards a physically-plausible result. Speciêcally,

natural images tend to consist of large areas of nearly-constant values with sharp

divisions between them. Described in a more formal way, the derivatives of natural

images have a heavy-tailed distribution with a narrower peak and longer tail than

a Gaussian function. This distribution implies that most pixels have values close to

zero, but some small number of pixels, especially those lying next to edges, have

signiêcantly larger values.

Both Bando and Nishita [] and Levin et al. [] have presented deconvo-

lution algorithms that make use of these natural image statistics. They solve a system

of equations that includes a weighting term that corresponds to the prior assumption

of a natural-image distribution. Bando and Nishita modify the WaveGSM [Bioucas-

Dias, ] algorithm to operate in gradient space and perform expectation max-

imization on the resulting non-linear system of equations using the second-order

stationary iterative method. Levin et al. [] approach the problem as ênding the

maximum likelihood explanation, employing iteratively reweighted least-squares to

solve for the non-linear sparse prior term.

. Evaluation

Our goal is to determine whether any combination of aperture êlter and decon-

volution algorithm can produce a meaningful increase in effective dynamic range
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while maintaining acceptable image quality. Speciêcally, we compare êlters by Veer-

araghavan et al. [], Zhou and Nayar [], and Levin et al. [] in addition to

the Gaussian and standard aperture. We evaluate deconvolution methods by Bando

and Nishita [] and Levin et al. [] in addition to classical Wiener êlter-

ing [Wiener, ] and Richardson-Lucy [Lucy, ; Richardson, ] methods.

In our evaluation, we measure the reduction in contrast between the blurred im-

age and the original image as opposed to the expansion in contrast between the result

of the deconvolution and the blurred image. Errors in images produced by decon-

volution often appear as ringing artifacts around contrast edges, artiêcially increasing

the contrast in those regions. This approach avoids mistaking those artifacts with

meaningful increases in dynamic range. The quality of the deconvolution algorithm

is still determined as the difference between the original image and the reconstructed

image.

The structure of the image has an impact on the effectiveness of the algorithm. If

the size of a bright or dark image feature exceeds the given êlter diameter, there will

be no reduction in dynamic range since energy is only exchanged between pixels

within the local neighborhood. Concerning dynamic range reduction, our analysis

considers both properties of the êlter used as a measure of local contrast reduction as

well as the distribution of intensity values in the image at different scales as a measure

of global contrast reduction.

Our primary interest was validating the proof of concept, and we conduct our

evaluation using synthetic results instead of real optical systems. This approach in-

troduces less complexity in quantifying the performance of the method while still

determining if the upper bound of the performance is of sufficient quality.

We present two of the images we used to evaluate the performance in this pro-

posal, Atrium Morning and Atrium Night, shown in Figure .. This pair was chosen

to demonstrate how the performance of the system depends on the spatial distribu-

tion of luminance values in the image. While Atrium Night has a larger dynamic

range than that of Atrium Morning, its extreme values are located in small bright light

sources in contrast to the broad skylights in Atrium Morning.

Table . shows the radii of êlters used in the evaluation and the change in dy-

namic range of the image as a result of being blurred by a standard aperture disc êlter

of different radii. The night image results in a larger reduction in dynamic range
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Atrium Morning Atrium Night

Figure .: Sample images used in evaluation. Images copyright Frederic Drago.

since the point light sources distribute energy over neighborhoods of signiêcantly

dimmer values. The tables and plots included in this section all reference the dif-

ferences in dynamic range in terms of the photographic concept of exposure value

(EV) stops. In photography, a change of 1 stop or 1 EV represents a unit change on

the log2 scale, where 1 EV = log2(L1)− log2(L2).

We evaluated the quality of the images reconstructed by the deconvolution algo-

rithms in terms of peak signal-to-noise ratio () [Thomos et al., ]. Typical

values for the PSNR in lossy image and video compression are between 30 and

50 dB, where higher is better [Thomos et al., ; Xiangjun and Jianfei, ].

However, the images used in this evaluation have a larger dynamic range than that

of conventional 8-bit images. From evaluating the quality of the results we have

chosen 35 dB to be the lower bound on acceptable image quality for deconvolved

images. These images have visible artifacts, but all of the features are still clearly

visible. Similarly, we have chosen a dynamic range reduction of 2 stops to be the

minimum acceptable reduction in dynamic range.

Our evaluation proceeded as follows. First, each image was convolved by each

of the aperture êlters at a number of different radii. The minimum and maximum
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Radius Atrium Morning Atrium Night

min max reduction min max reduction
Original . . . .

 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .

 . . . . . .
 . . . . . .
 . . . . . .

Table .: Amount of reduction in dynamic range as a function of radius of a standard
aperture (disc) êlter in pixels. The minimum and maximum values are the result of convolving
the original image with a disc êlter of the speciêed size, showing how much of the dynamic range
reduction was from reducing the intensity of highlight regions versus increasing the intensity of
shadow regions. All units are in terms of powers of two, referred to as exposure value (EV)
stops.

values of the original image and the blurred image were compared to compute the

amount of dynamic range reduction for that size êlter. Next, different amounts of

Gaussian noise were added to simulate the random nature of the image acquisition

process for different sensor sizes. Then, all of the combinations of êlter, radius and

noise were deconvolved by each of the deconvolution algorithms. Finally, all results

were compared to the original image to compute the PSNR. Figures . and .

summarize our results across the combinations of aperture êlter and deconvolution

method for images without any noise added, while Figures . and . summarize

our results for images with Gaussian noise σ = 1 added.

The deconvolution algorithm by Levin et al. [] was able to produce accept-

able results for images with small bright areas, such as Atrium Night, when paired

with one of the êlters by Levin et al. [], Veeraraghavan et al. [], or Zhou

and Nayar []. However, it was only able to do so at noise levels below those
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Figure .: Comparison of all four deconvolution algorithms on the Atrium test scenes
without any noise added. All results were computed using the aperture êlter proposed by Zhou
and Nayar []. Values above and to the right of the green bars pass our acceptance criteria.
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Figure .: Comparison of all aperture êlters on the Atrium test scenes without any noise
added. All results were computed using the deconvolution algorithm proposed by Levin et al.
[] Values above and to the right of the green bars pass our acceptance criteria.

found in existing cameras.

Additionally, the Levin et al. [] method performed worse than Richardson-

Lucy for images with a few bright points like Atrium Night at realistic noise levels.

While it is able to reconstruct very êne details, the method of Levin et al. []

tends to introduce high frequency ringing. The amount of ringing associated with

a given feature is insigniêcant relative to its overall magnitude, but if that feature

is bright enough, the ringing will destroy detail in the dark regions of the image.
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Figure .: Comparison of all four deconvolution algorithms on the Atrium test scenes with
additive Gaussian noise of σ = 1. All results were computed using the aperture êlter proposed
by Zhou and Nayar []. Values above and to the right of the green bars pass our acceptance
criteria.
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Figure .: Comparison of all aperture êlters on the Atrium test scenes with additive Gaus-
sian noise of σ = 1. All results were computed using the deconvolution algorithm proposed by
Levin et al. [] Values above and to the right of the green bars pass our acceptance criteria.

Increasing the smoothing parameter of the algorithm might have produced less noise

in the dark regions but would not have recovered any additional detail.

The deconvolution algorithm by Bando and Nishita [] performed worse

than expected, given its success on conventional 8-bit images. This could be caused

by the selection of its normalization parameters, which we have not been able to

optimize for the given images. However, in all tests on conventional (-bit) images,
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it performed at best equal with that of Levin et al. [], and we are conêdent that

it could not do signiêcantly better here.

The êlters by Levin et al. [], Veeraraghavan et al. [] and Zhou and Na-

yar [] outperformed the other êlters for images with low noise levels. As the

amount of noise increased, the difference between the capability of all the differ-

ent êlters decreased, and eventually all the êlters had the same performance as the

conventional aperture. This conêrms the observation of Zhou and Nayar []

that the optimized aperture êlters they designed became simpler and more like the

conventional aperture as the noise level increased.

Overall, the results show that no current combination of aperture êlter and de-

convolution algorithm can deliver an acceptable combination of dynamic range re-

duction and image quality for images with large bright areas like Atrium Morning

at any noise level, while the desired performance was only possible for images with

small bright areas with unrealistically low amounts of noise. Additionally, the quality

of the ênal result depended more on the deconvolution method than on the choice

of aperture êlter for realistic noise levels.

. Conclusions

None of the possible combinations of aperture êlter and deconvolution algorithm

were able to consistently reduce the dynamic range of the captured image with-

out excessively degrading image quality. The combination of algorithm and êlter

that did work did so under very controlled conditions. Without advances to either

aperture êltering or image reconstruction, the approach is not applicable to general

circumstances.

The efficiency of this defocus imaging approach is scene-dependent. The method

is good for small over-exposed regions that are just above the maximum photosite

capacity of a sensor but performs worse on large overexposed areas or in recover-

ing exceedingly bright regions. The more complex deconvolution algorithms per-

formed better than traditional methods but at signiêcant computational cost. These

algorithms took on the order of several minutes to produce results for megapixel

images. The marginal improvement in dynamic range at acceptable image quality

does not justify the amount of computation required by the method.
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We could also consider different means of evaluating image quality. High PSNR

is rarely the goal of deconvolution. Images may look acceptable, or even better,

if they are sharper despite the fact that the PSNR score would be lower than a

different version. We could obtain a more accurate estimate of the image quality

using different metrics or subjective user preference means of evaluation.

Subsequent collaborative work [Rouf et al., ] took a novel view of 

capture inspired by this combination blurring-deconvolution approach. In this work,

we êrst optically encode both the  reëectance portion of the scene and highlight

information into the image captured with a conventional image sensor. This step

is achieved using a cross-screen or “star” êlter. Second, we decode, in software,

both the low dynamic range image and the highlight information. Lastly, these two

portions can be combined to form an image of a higher dynamic range than the

regular sensor dynamic range.
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Chapter 

Discussion and Conclusions

This dissertation has presented several methods for manipulating the perception of

blur and contrast in images. These methods take inspiration from the fundamental

organization of spatial image perception into multiple parallel channels for processing

visual information and conveying image appearance. In addition to taking inspiration

from, some of the methods employ models of human spatial vision to more accurately

control the appearance of images under changing viewing conditions.

. Beneêts and Limitations

Beyond the individual contributions of each chapter, there are several other ben-

eêts. The êrst beneêt of the work presented in this dissertation is the conceptual

framework of understanding scale-dependent effects of image perception. We have

demonstrated that the parallel spatial frequency channels present in every viewer’s

visual system affect the perceived appearance of displayed images. The resolution of

the image on the retina, not in terms of pixels but of angular resolution, determines

the mapping of spatial frequency information in the image to speciêc visual channels.

With this understanding, we are able to identify which elements of image display

affect the mapping from spatial frequencies to visual channels, the physical arrange-

ment of viewer and display in particular. It is this relationship, along with models

of image appearance based on those spatial frequency channels that allow us to pre-

dict how an image is perceived and how that perception will change depending on

changes in viewing conditions.
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We have used this model to create new methods of manipulating blur and contrast

in images. Accurate estimates of spatially-variant image blur allow us to synthesize

images with defocus patterns prohibited by the constraints of lens optics design.

When coupled with a model of perceived image blur, the same estimation routine

allows us to preserve the appearance of images when downsampling.

A similar perceptual model of whether countershading is perceived as acceptable

or objectionable has provided us new insights into the use of unsharp masking and

similar image processing operations. Our work has also suggested novel ways of

introducing countershading that avoid the ampliêcation of high frequency details that

plagued previous approaches. Finally, we have provided some initial attempts at the

scale-aware display of images with monitors that present images not only calibrated

to the size and resolution of the display, but to changes in the physical distance to

the viewer.

The contributions presented in this work are not without limitation. Several of

the methods presented rely on accurate estimation of image features when altering

image appearance. Regardless of the quality of the image appearance models, if the

estimation falters, the result will contain artifacts.

The method of blur estimation presented is still not entirely robust to noise. It can

confuse noise with êne texture detail. Our means of estimating the noise level in the

image could be improved and more complex approaches would distinguish between

noise and texture detail based on statistics of image regions. Currently, we just

compare gradient magnitude of regions. Patched-based methods that estimate local

histograms could better distinguish between random noise and êne image structures.

Additionally, our method can only estimate the amount of defocus blur. Motion blur

and camera shake do not alter the gradient magnitude in an analogous way and still

appear sharp to the estimation algorithm. Extending our model of blur would allow

us to enhance the appearance of more than defocus blur effects.

There is even more work regarding the estimation of countershading proêles.

Our example of Seurat’s Le Bec du Hoc was only a proof of concept and can not easily

be extended to automatically handle arbitrary images. While the sharp transition of

a countershading proêle is easy to measure in images, the slow-changing gradients

are much harder to accurately estimate. The close proximity of step edge and low-

magnitude gradients defy existing multi-scale estimation techniques such as Elder and
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Zucker [] and more robust means of estimating very small gradients in images

need to be developed.

Providing correct-appearing images to the viewer is another challenge. The

scale at which the image appears on the viewer’s retina is in part determined by the

physical relationship between the viewer and the display. Display-speciêc attributes

such as dimension and resolution can be known in advance and precomputed. The

distance of the viewer continually changes and the display must adapt to the change in

distance. Our scale-aware display provides a proof of concept capable of adapting the

image content to the viewer’s distance, but only for a single viewer. However, basing

the approach on head-tracking technology is not suitable for everyday use. Better

methods of tracking multiple viewers and providing them with speciêcally-tailored

images are necessary for truly scale-aware image display. Some new technology,

whether lightêeld display or something else is necessary to enable this possibility.

. Future Work

There are a number of potential avenues of further investigation. Each individual

contribution suggests next possible steps, as well as some other directions that draw

on lessons from the body of work as a whole.

On the topic of blur estimation, future work includes improving the algorithm’s

ability to differentiate between textured and noisy regions and preserve êne details.

In the context of mobile devices, information is available from additional types of

sensors and it may be possible to use the accelerometer found in many devices to

more accurately estimate blur resulting from camera shake.

Future work in image resizing includes extending the concept of preserving the

perceived appearance to other image attributes. From an image-quality perspec-

tive, accurately preserving the appearance of noise when downsampling can be as

important as blur.

We would like to conduct a more comprehensive study of the perception of

countershading, including more images and larger variation of the underlying edge

contrast. The existing models of perceived contrast resulting from the Cornsweet

illusion would enable us to accurately determine the new combinations of λ and σ
to preserve the perceived edge contrast while still avoiding haloes.
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The investigation of Camera Dynamic Range Expansion did not yield positive

results, in part due to the quality of deconvolution algorithms used, which are not

well-tuned for high dynamic range images. The human visual system is sensitive

to relative change and can detect small changes in dark regions. However, decon-

volution algorithms are linear and minimize absolute error without accounting for

how salient that error is to the ênal observer. An interesting line of research would

be attempting to devise a deconvolution algorithm that gives preference to relative

error and correctly weights the importance of dark regions.

Additionally, while we treat the visual channels in the brain as independent, we

know this in not the case. Lateral inhibition, found between adjacent photoreceptors

in the retina, applies equally to adjacent spatial frequency channels in the  at large.

The presence of strong contrast at one frequency inhibits the response of nearby

visual channels and can even amplify the response of more distant ones. We want

to extend our models of the perception of blur, contrast and other image attributes

to incorporate models of spatial perception accurate enough to capture these subtle

effects.

Finally, the main theme of this dissertation is centered on the observation that

the same image can appear different depending on the scale at which it is viewed.

The êeld of color science has developed models capable of accounting for changes in

color perception under different conditions. Similarly, we envision the development

of an overarching pipeline that employs accurate models of human spatial vision to

account for all changes in image appearance resulting from the diverse scales at which

that image can be displayed.

. Conclusions

Over the last decade, the paradigm of computational photography has made great

strides increasing the capabilities of image capture. All of these approaches have

involved some change in the physical setup to visually encode more information with

a change in the processing of that image to recover that information and produce

the desired result. The next decade will see a similar increase in the computational

abilities available for image display and it is worth considering what principles would

best guide the development of future display algorithms.
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At the heart of the issue, we are fundamentally asking ourselves “What are the

reasons to display, or even produce images?” Imaging is synonymous with commu-

nication. In the end, images are produced to communicate some notion or concept,

no matter how abstract, with the viewer. The implicit assumption is we are commu-

nicating with a human observer possessing a human visual system that will process

visual stimuli and the resulting perceived qualities will form their interpretation.

Computational photography constructs novel physical setups to encode infor-

mation and designs matching algorithms to decode that information. Likewise, the

emerging êeld of computational display must recognize since the  is responsible

for decoding all information received by the viewer, the means of image display ca-

pable of conveying the most information will be matched to its respective decoder,

the viewer’s visual system. Accurate and communicative display of images must rely

on knowledge of human perception, for the act of perception is the only means of

receiving information available to viewers.

The conventional imaging pipeline includes the capture, manipulation and dis-

play of image content. In the future, we foresee the development of a new imaging

pipeline that extends beyond the production of photons by the monitor. This new

pipeline will recognize that any displayed image is viewed under some speciêc con-

ditions by the visual system of an observer which responds to both the image and the

conditions. Any communicated information will result from that speciêc response

of the visual system to those stimuli. By considering the perceived appearance of

images we can develop an image understanding pipeline as the basis of more effective

visual communication.
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