
Bayesian Optimization for Adaptive MCMC

by

Nimalan Mahendran

B. Math, University of Waterloo, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

January 2011

c© Nimalan Mahendran, 2011



Abstract

A new randomized strategy for adaptive Markov chain Monte Carlo (MCMC) using

Bayesian optimization, called Bayesian-optimized MCMC, is proposed. This ap-

proach can handle non-differentiable objective functions and trades off exploration

and exploitation to reduce the number of function evaluations. Bayesian-optimized

MCMC is applied to the complex setting of sampling from constrained, discrete and

densely connected probabilistic graphical models where, for each variation of the

problem, one needs to adjust the parameters of the proposal mechanism automat-

ically to ensure efficient mixing of the Markov chains. It is found that Bayesian-

optimized MCMC is able to match or surpass manual tuning of the proposal mech-

anism by a domain expert.
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Chapter 1

Introduction

Anybody can twiddle a bunch of knobs.
— The Chemical Brothers

A common line of attack for solving problems in physics, statistics and ma-

chine learning is to draw samples from probability distributions π(·) that are only

known up to a normalizing constant. Markov chain Monte Carlo (MCMC) algo-

rithms are often the preferred method for accomplishing this sampling task, see

e.g. [5, 17]. Unfortunately, these algorithms typically have parameters that must

be tuned in each new situation to obtain reasonable mixing times. These parameters

are often tuned by a domain expert in a time-consuming and error-prone manual

process. Adaptive MCMC methods have been developed to automatically adjust the

parameters of MCMC algorithms.

Adaptive MCMC methods based on stochastic approximation have garnered the

most interest out of the various types of adaptive MCMC methods for two reasons.

Firstly, they can be shown to be theoretically valid, in the sense that although the

Markov chain is made inhomogenous by the dependence of the parameter updates

upon the history of the Markov chain, its ergodicity can be ensured [2, 3, 20].

Secondly, they have produced very impressive results in the case of the random

walk Metropolis algorithm [10, 24]. However, there are limitations to the stochastic

approximation approach. Some of the most successful samplers rely on knowing

either the optimal acceptance rate or the gradient of some objective function of

interest. Another disadvantage is that these stochastic approximation methods may
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require many iterations in some domains.

This work aims to overcome some of these limitations. It proposes the use of

Bayesian optimization [7] to tune the parameters of the Markov chain. The pro-

posed approach, Bayesian-optimized MCMC, has a few advantages over adaptive

methods based on stochastic approximation.

Bayesian optimization does not require that the objective function be differen-

tiable, enabling one to be much more flexible in the design of the adaptation mech-

anisms. The area under the auto-correlation function up to a specific lag is used

as the objective function in this work. This objective function has been suggested

previously in [3]. However, the computation of gradient estimates for this objec-

tive function is very involved and far from trivial [3]. This is believed to be one

of the main reasons that practitioners have not embraced this approach. Bayesian

optimization is shown here to easily optimize this objective function and to endow

the designer with greater freedom in the design of adaptive strategies.

Bayesian optimization also has the advantage that it is explicitly designed to

trade off exploration and exploitation and is implicitly designed to minimize the

number of evaluations of the objective function [7], which may be very expensive.

Another important property of Bayesian-optimized MCMC is that it uses a dis-

tribution over the parameter settings of the proposal distribution, with probabilities

estimated during the adaptation process, rather than a specific parameter setting.

It was found that these randomized policies mix faster than specific parameter set-

tings, for the models considered in this work.

Bayesian optimization has been used with MCMC in [15] with the intent to

approximate the posterior with a surrogate function to minimize the cost of hybrid

Monte Carlo evaluations. The intent in this work is instead to adapt the parameters

of the Markov chain to improve mixing.

It is conjectured here that Bayesian optimization for MCMC has convergence

properties similar to those of stochastic approximation for MCMC, given exist-

ing consistency results for Bayesian optimization [22, 23]. However, the type of

Bayesian optimization studied in this work relies on latent Gaussian processes de-

fined over the chain of samples. It becomes prohibitively expensive to invert the

covariance matrix induced by a Gaussian process for very large chains. Thus, for

practical reasons, a two-stage adaptation mechanism was adopted instead.
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Chapter 2

Adaptive MCMC

rain and snow differ
like statistical models -

adaptation helps

The Metropolis-Hastings (MH) algorithm is the key building block for most

MCMC methods [5]. It draws samples from a target distribution π(·) by propos-

ing a move from x(t) to y(t+1) according to a parameterized proposal distribution

qθ(y
(t+1)|x(t)) and either accepting it (x(t+1) = y(t+1)) with probability equal to

the acceptance ratio

α(x(t) → y(t+1)) = min

{
π(y(t+1))qθ(x

(t)|y(t+1))

π(x(t))qθ(y(t+1)|x(t))
, 1

}

or rejecting it (x(t+1) = x(t)) otherwise.

The parameters of the proposal, θ ∈ Θ ⊆ Rd, can have a large influence on

sampling performance. For example, the experiments in Section 4.2 consider con-

strained discrete probabilistic models, where changes to the connectivity patterns

among the random variables will require different parameter settings. An approach

that can adjust these parameters automatically for all possible connectivity patterns

is very desirable.

Several methods have been proposed to adapt MCMC algorithms. In the interest

of brevity, the reader is referred to the comprehensive reviews of [4, 6, 18]. One can
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adapt parameters other than those of the proposal distribution in certain situations,

but for the sake of simplicity, we focus here on adapting the proposal distribution.

One of the most successful adaptive MCMC algorithms was introduced in [10]

and several extensions were presented in [4]. This algorithm is restricted to the

adaptation of the multivariate random walk Metropolis algorithm with Gaussian

proposals. It is motivated by a theoretical result regarding the optimal covariance

matrix of a restrictive version of this sampler [9]. This adaptive algorithm belongs

to the family of stochastic approximation methods.

Some notation needs to be introduced to briefly describe stochastic approxima-

tion, but will be useful later, when the stochastic approximation method is replaced

with Bayesian optimization. Let Xi = {x(t)}it=1 denote the full set of samples up

to iteration i of the MH algorithm and Yi = {y(t)}it=1 be the corresponding set

of proposed samples. x(0) is the initial sample. Let g(θ) be the mean field of the

stochastic approximation that may only be observed noisily as G(θi,x
(0),Xi,Yi).

This mean field corresponds to the gradient of the objective function h(θ) being

optimized, that is g(θ) = ∇h(θ). Adaptive MCMC methods based on stochastic

approximation typically use the following Robbins-Monro update:

θi+1 = θi + γi+1G
(
θi,x

(0),Xi+1,Yi+1

)
, (2.1)

where γi+1 is the step-size. This recursive estimate converges almost surely to the

roots of g(θ) as i→∞ under suitable conditions.

This work is concerned with the adaptation of discrete models, where the opti-

mal acceptance rates are unknown and it is not clear what objective function should

be optimized to adjust the parameters of the proposal distribution. One possible

choice, stated in the introduction, is to use the area under the auto-correlation func-

tion up to a certain lag. This objective function intuitively seems to be suitable

for the adaptation task because it is used in practice to assess convergence, but its

gradient cannot be effciently estimated [3]. We introduce Bayesian optimization in

the following section to overcome this difficulty.
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Chapter 3

Bayesian Optimization for
Adaptive MCMC

noise, no gradients
and only a Markov chain -

ominous clouds form

The proposed adaptive strategy consists of an adaptation phase and a sampling

phase. Bayesian optimization is used to construct a randomized policy in the adap-

tation phase by performing the gradient-free optimization of a practitioner-supplied

objective function. A mixture of MCMC kernels, selected according to the learned

randomized policy, is used to explore the target distribution in the sampling phase.

These two phases and the specific objective function used in the experiments in

section 4.2 are discussed in more detail subsequently.

3.1 Auto-correlation-based objective function
The objective function used in the experiments in section 4.2 is based on the auto-

correlation r(l, θ) of the Markov chainX θ = {x(1)
θ ,x

(2)
θ , . . .} of samples generated

with parameters θ, defined as

r(l, θ) ,
1

δ2θ
E
[
(x

(t)
θ − x̄θ)

T (x
(t+l)
θ − x̄θ)

]
,
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where the expectation is taken with respect to the stationary distribution of the

Markov chain X θ, l is the auto-correlation time lag and x̄θ and δ2θ are the mean and

the variance of X θ, respectively. Faster mixing times are characterized by larger

values of the objective function h(θ) = 1− (lmax
−1)

∑lmax
l=1 |r(l, θ)|, where lmax is

the largest lag to be considered.

3.1.1 Empirical estimation of h(θ)

r(l, θ) cannot be evaluated analytically and must be approximated by the estimator

r̂(l,X θ), defined as

r̂(l,X θ) , 1

(L− l)δ2θ

L−l∑
t=1

(x
(t)
θ − x̄θ)

T (x
(t+l)
θ − x̄θ),

where X θ = {x(1)
θ , . . . ,x

(L)
θ } is a sequence of L samples generated with param-

eters θ and x̄θ and δ2θ are now the sample mean and variance of X θ, respectively.

h(θ) must in turn be estimated by â(X θ) = 1− (lmax
−1)

∑lmax
l=1 |r̂(l,X θ)|, where

lmax here is L− 1.

The auto-correlation estimator r̂(l,X θ) and hence â(X θ) may be inaccurate

because X θ is likely to contain outliers or changepoints, since L is often too small

for the MCMC chain to reach its stationary regime. A more robust objective function

estimator can be obtained by averaging â(·) over successively larger intervals of

the last samples in X θ. Therefore, the objective function estimator actually used

is ĥ(X θ) , 1
L−lmin+1

∑L
i=lmin

â(Ei), where Ei is the last i states in X θ (the states’

energies in Section 4) and lmin is the smallest interval length to consider. Note that

EL corresponds to X θ, the entire sequence associated with θ.

3.2 Adaptation phase
The noisy observation zi , ĥ(X θi) can be obtained by running the Markov chain

for L steps with the parameters θi. Bayesian optimization in the adaptive MCMC

setting then proposes a new candidate θi+1 by constructing a model of the objective

function using the entire history of noisy observations and a prior distribution over

functions. Gaussian processes are used here as the prior distribution.
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The predictive distribution of the Gaussian process is obtained using these

noisy observations. An expected utility function, also known as the acquisition

function, is derived in terms of the sufficient statistics of this predictive distribu-

tion. The acquistion function is then optimized to select the next parameter value

θi+1. The overall procedure is shown in Algorithm 1. The reader is referred to

[7, 14] for in-depth reviews of Bayesian optimization.

Algorithm 1 Adaptive MCMC with Bayesian Optimization

1: for i = 1, 2, . . . , I do
2: Run Markov chain for L steps with parameters θi.
3: Use the drawn samples to obtain a noisy evaluation of the objective function:

zi = h(θi) + ε.
4: Augment the data D1:i = {D1:i−1, (θi, zi)}.
5: Update the GP’s sufficient statistics.
6: Find θi+1 by optimizing the acquisition function:

θi+1 = arg maxθ u(θ|D1:i).
7: end for

The objective function h(·) is assumed to be distributed according to a Gaus-

sian process with mean function m(·) and covariance function k(·, ·):

h(·) ∼ GP (m(·), k(·, ·)).

A zero mean function m(·) = 0 and an anisotropic Gaussian covariance k(θj , θk)

that is essentially the popular Automatic Relevance Determination (ARD) kernel

[16] are adopted:

k(θj , θk) = exp

(
−1

2
(θj − θk)T diag(ψ)−2(θj − θk)

)
,

where ψ ∈ Rd is a vector of hyper-parameters corresponding to the length-scales

of each dimension of θ. The Gaussian process is a surrogate model for the true

objective function, which typically involves intractable expectations with respect

to the invariant distribution and the MCMC transition kernels. Noisy Gaussian mea-

7



surements are assumed, since this objective function can only be sampled:

zi = h(θi) + ε, ε ∼ N (0, σ2η),

see for example [8].

Let z1:i ∼ N (0,K) be the i noisy observations of the objective function ob-

tained from previous iterations. (Note that the Markov chain is run for L steps

for each discrete iteration i. The extra index to indicate this fact has been made

implicit to improve readability.) z1:i and hi+1 are jointly multivariate Gaussian:[
z1:i

hi+1

]
∼ N

(
0,

[
K + σ2ηI kT

k k(θ, θ)

])
,

where

K =


k(θ1, θ1) . . . k(θ1, θi)

...
. . .

...

k(θi, θ1) . . . k(θi, θi)


and

k = [k(θ, θ1) . . . k(θ, θi)]
T .

These assumptions about the form of the prior distribution and observation model

are standard and less restrictive than they might first appear. The main assumption

is that the objective function is smooth.

The predictive distribution for any value θ follows from the Sherman-Morrison-

Woodbury formula, where D1:i = (θ1:i, z1:i):

p(hi+1|D1:i, θ) = N (µi(θ), σ
2
i (θ))

µi(θ) = kT (K + σ2η I)−1z1:i

σ2i (θ) = k(θ, θ)− kT (K + σ2η I)−1k

The next query point θi+1 is chosen to maximize an acquisition function, u(θ|D1:i),

that trades-off exploration (where σ2i (θ) is large) and exploitation (where µi(θ) is

8



high). Expected Improvement (EI) over the best candidate was adopted as this ac-

quisition function and it was optimized using the DIRECT algorithm, following

[7, 21]. This optimization step is fairly fast and efficient. The reader is referred to

[7] for details.

3.3 Sampling phase
The adaptation phase results in a Gaussian process on the I noisy observations

of the performance criterion z1:I , taken at the corresponding locations in param-

eter space θ1:I . A discrete stochastic policy p(θ|z1:I), defined over the parameter

space Θ and proportional to this Gaussian process, is constructed using the simple

Sampling-Importance Resampling (SIR) approach [13, 19] given in Algorithm 2.

The mean function is exponentiated and used as the unnormalized target distribu-

tion, since the Gaussian process can take on negative values. The generation of the

candidate points might require optimization in large-dimensional spaces, but Latin

hypercubes [25] suffice for the MCMC algorithms dealt with in this work. There are

Algorithm 2 SIR-based policy construction

1: Generate a set of candidate points θ̃1:N , {θ̃1, . . . , θ̃N}, using either Latin
hypercubes or optimization methods.

2: Obtain the weights w̃i = exp(µ(θ̃i)) for i = 1 : N by evaluating the Gaussian
process mean function at each point in θ̃1:N and exponentiating it.

3: Normalize the weights: wi = w̃i∑N
j=1 w̃j

.

4: Resample, with replacement, M samples {θi|i = 1, . . . ,M} from the
weighted discrete measure {(θ̃i, wi)|i = 1, . . . , N}.

several ways to proceed in the sampling phase once this normalized discrete mea-

sure proportional to the Gaussian process has been obtained. Here, it was choosen

to run the Markov chain with parameter settings drawn at each step from this dis-

crete stochastic policy, or equivalently, a mixture of M MCMC transition kernels is

adopted, where each kernel uses one of the M parameters obtained in the SIR step

in Algorithm 2. The distribution of the samples generated in the sampling phase

will approach the target distribution π(·) as the number of iterations tends to ∞,

provided that the kernels in this finite mixture are ergodic.

9



One should not erroneously draw the conclusion that running an unadapted

chain for more iterations would give similar performance to running an adapted

chain. The unadapted chain can mix extremely slowly for poor choices of the

parameters, making the extra computation involved in the adaptation and sampling

phases of an adapted chain worthwhile.

10



Chapter 4

Application to Constrained
Discrete State-space Distributions

squishy human or
metallic automaton?

cold machine conquers

The Intracluster Move (IM) sampler, an MH algorithm, was recently proposed

to generate samples from the notoriously-hard constrained Boltzmann machines in

[11]. This sampler has two parameters, one continuous and the other discrete, that

the authors state to be difficult to tune in some settings. The proposed Bayesian-

optimized MCMC method was applied to this problem.

4.1 The IM sampler
Boltzmann machines are described in [1]. Let xi ∈ {0, 1} denote the i-th random

variable in x ∈ S, where S is the state space. The Boltzmann distribution is

π(x) ,
1

Z(β)
e−βE(x), (4.1)

11



where

Z(β) ,
∑
x∈S

e−βE(x)

is the normalizing constant, β is a temperature parameter and

E(x) , −
∑
i,j

xiJijxj −
∑
i

bixi

is the energy function, where J and b are coupling parameters that are assumed to

be known.

Let Sn(c) be the subset of the states that are at exactly Hamming distance n

away from a reference state c. The distribution πn,c(x) is the restriction of π(x) to

Sn(c). πn,c(x) has

Zn(β, c) ,
∑

x∈Sn(c)

e−βE(x)

as its normalizing constant and is defined as

πn,c(x) ,

{
1

Zn(β,c)
e−βE(x) if x ∈ Sn(c)

0 otherwise
(4.2)

The rest of this work makes c implicit and uses the simplified notation Sn, πn(x)

and Zn(β). These constraints on the states arise in statistical physics and in regu-

larized statistical models [11].

The IM sampler proposes a new state y(t+1) ∈ Sn from an original state

x(t) ∈ Sn using self-avoiding walks (SAWs) and has parameters θ = (k, γ), where

k ∈ L , {1, 2, . . . , kmax} is the length of each SAW and γ ∈ G , [0, γmax] is the

energy-biasing parameter. k determines the size, in terms of the number of bits

flipped, of the moves through Sn. γ controls the degree to which higher energy

states are favored.
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4.2 Experimental setup
The experiments compare the performance of four different sampling methods on

three different models. Five trials were conducted for each combination of sam-

pling method and model.

4.2.1 Sampling methods

The sampling methods are all instances of the IM sampler that differ in the manner

that γ and k are picked:

Kawasaki sampler transitions from state to state within Sn by uniformly sam-

pling a bit to flip to produce a state in Sn+1 or Sn−1 and then uniformly

sampling a bit to flip to return to Sn [12]. This is equivalent to running the

IM sampler with γ fixed to 0 and k fixed to 1.

IMExpert is the IM sampler manually tuned by a domain expert [11], with γ fixed

to γexpert and k drawn uniformly from L.

IMUnif is a completely naive approach that draws γ uniformly from G and k

uniformly from L.

IMBayesOpt is Bayesian-optimized MCMC applied to the IM sampler withL sam-

ples generated for each of the I adaptations of the parameters. Adaptation is

restricted to parameters in L × G.

The parameter setsL and G that were chosen for each model are shown in Table

4.1, where “Others” refers to IMUnif and IMBayesOpt. These two samplers have

the same parameter sets because IMUnif is a baseline algorithm used to ensure that

Bayesian-optimized IM performs better than a naive strategy. The parameter sets

for IMUnif and IMBayesOpt were selected such that L is a much larger superset

of the SAW lengths used for IMExpert and G is the contiguous interval from 0 to

2γexpert. The parameter sets for IMExpert come from [11]. The Kawasaki sampler

does not have any parameters.
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Table 4.1: Algorithm parameters for each model. IMExpert parameters are
from [11]

Model Algorithm L G

2DGrid IMExpert {90} {0.44}
2DGrid Others {1, . . . , 300} [0, 0.88]

3DCube IMExpert {1, . . . , 25} {0.8}
3DCube Others {1, . . . , 50} [0, 1.6]

RBM IMExpert {1, . . . , 20} {0.8}
RBM Others {1, . . . , 50} [0, 1.6]

Bayesian-optimized MCMC parameters

IMBayesOpt has a number of additional parameters, and thus it may seem that the

parameters of the sampler have simply been substituted with those of Bayesian-

optimized MCMC. However, although the values of these parameters were picked

by hand, they were either set to be the same across all models or differed across

models, but were set using the same simple underlying rule. The sampler parame-

ters would have had to be tuned for every individual model, whereas the Bayesian-

optimized MCMC parameters were simply fixed to sensible default values and

then used across all models. The Bayesian-optimized MCMC parameter settings

are conjectured to work across a wide variety of statistical models, but verifying

this claim is outside the scope of this work.

The following parameters of IMBayesOpt were the same for each model: the

number of Baysian optimization steps, I , was set to 100, the number of samples

used to estimate the objective function, L, was set to 100, the variance of the noisy

Gaussian measurements, σ2η , was set to 0.1 and the minimum lag considered, lmin,

was set to 25. lmax was fixed to L− 1, by definition.

The remaining parameters were set differently for each model, but using the

same underlying rule. The ARD kernel hyper-parameters ψ were set to 0.1φ, where

φ is the length of the intervals [minL,maxL] and [minG,maxG]. The candi-

date points θ̃1:N in algorithm 2 were generated by taking the cross-product of 100

evenly-spaced points within G with the elements of L, so that the candidate points

are arranged in a grid. This resulted in N = 30000, N = 5000 and N = 5000

14



Table 4.2: Model parameters from [11]. n refers to the Hamming distance
from states in Sn to the reference state c with the column indicating the
number of bits that are set to 1 out of the total number of bits. β−1 is the
temperature of the model.

Model β−1 Size n

2DGrid 2.27 60× 60 1800 of 3600
3DCube 1.0 9× 9× 9 364 of 729
RBM 1.0 v = 784, h = 500 428 of 1284

candidate points for the 2DGrid, 3DCube and restricted Boltzmann machine (RBM)

models, respectively. M , the sizes of the generated randomized policies for each

model, were fixed to N . The average number of unique parameter settings in

the randomized policies constructed by IMBayesOpt for the 2DGrid, 3DCube and

RBM models, averaged over five trials, were 8486, 1682 and 2200 respectively.

4.2.2 Models

The three models studied in [11] are considered. The model parameters are given

in Table 4.2. Note that n refers to the Hamming distance from states in Sn to the

reference state c and that β−1 is the temperature of the model. The reference state

c was the ground state, where none of the bits are 1.

Ferromagnetic 2D grid Ising model

The ferromagnetic 2D grid Ising model consists of nodes arranged in a planar

rectangular grid with edges between the nodes on one boundary to the nodes on

the other boundary for each dimension (i.e. periodic boundaries), also known as

a toroidal grid. Hence, each node has exactly four neighbours. The interaction

weights, Jij , are all 1 and the biases, bi, are all 0.

Frustrated 3D cube Ising model

The frustrated 3D cube Ising model consists of nodes arranged in a topology that is

the three-dimensional analogue of the two-dimensional grid, with periodic bound-

aries. Hence, each node has exactly six neighbours. The interaction weights, Jij ,
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are uniformly sampled from {−1, 1} and the biases, bi, are all 0.

Restricted Boltzmann machine (RBM)

The RBM has a bipartite graph structure, with h hidden nodes in one partition and v

visible nodes in the other. The interaction weights Jij and biases bi are exactly the

same as in [11] and correspond to local Gabor-like filters that capture regularities

in perceptual inputs.

4.2.3 Details of sampler run lengths

Each sampler was run five times with 9 × 104 steps for each run. IMBayesOpt

had an additional 104 steps for an adaptation phase consisting of 100 adaptations

of 100 samples each. IMBayesOpt was not penalized for the computational over-

head involved in these additional steps because it is seen as being far cheaper than

having the IM sampler parameters tuned manually. All of the algorithms have a

burn-in phase consisting of the first 104 samples generated in the corresponding

sampling phase. The burn-in phase was not included in the computation of the

auto-correlation functions in Figures 4.1, 4.4 and 4.7. IMBayesOpt begins its sam-

pling phase in the same starting state as all of the other samplers, even though it

would most likely be in a low energy state at the end of its adaptation phase, to

ensure fairness.

4.3 Results and discussion

4.3.1 Ferromagnetic 2D grid Ising model

IMExpert and IMBayesOpt have very similar mean auto-corrrelation functions, as

indicated in Figure 4.1. Figure 4.2 shows that IMUnif suffers from long strings of

consecutive proposal rejections. This is evident from the many intervals where the

sampled state energy does not change.

Figure 4.3 suggests that γ is much more important to the performance of the

IM sampler than the SAW lengths for this model, especially at large SAW lengths.

One of the highest peaks in the Gaussian process mean function corresponds to the

parameters chosen by [11] (γ = 0.44, k = 90).
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Figure 4.1: Mean and standard deviation of the auto-correlation function of
the energies of the sampled states drawn from the 2D grid Ising model
by each of the four sampling methods, taken over five trials.

4.3.2 Frustrated 3D cube Ising model

Figures 4.4 and 4.5 show that IMUnif now performs far worse than the IMExpert

and IMBayesOpt, implying that the extremely rugged energy landscape of the 3D

cube Ising model makes manual tuning a non-trivial and necessary process. IM-

BayesOpt performs similarly to IMExpert, but is automatically tuned.

The Gaussian process mean function in Figure 4.6 suggests that SAW lengths

should not be longer than k = 25, as found in [11]. Both IMExpert and IM-

BayesOpt are essentially following the same strategy and performing well, while

the performance of IMUnif confirms that tuning is important for the 3D cube Ising

model.
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Figure 4.2: Sampled states’ energies from the start of the sampling phase for
the 2D grid Ising model, from the first trial.

4.3.3 Restricted Boltzmann machine (RBM)

The rapid dropoff experienced by IMExpert in [11] is exaggerated by the inclusion

of the burn-in phase. Figure 4.7 shows a much more modest dropoff when the

burn-in phase is left out of the auto-correlation function computation. However,

it still corroborates the claim in [11] that IMExpert performs far better than the

Kawasaki sampler.

Figures 4.7 and 4.8 both show that IMExpert does not perform much better

than IMUnif. The variance of IMExpert’s auto-correlation function is also much

higher than any of the other methods. IMBayesOpt performs significantly better

than any of the other methods, including manual tuning by a domain expert.

The Gaussian process mean function in Figure 4.9 suggests that SAW lengths

greater than 20 can be used and are at least as effective as shorter ones, whereas [11]

only picks SAW lengths between 1 and 20. This discrepancy is an instance where

18



Figure 4.3: The mean function of the Gaussian processes over Θ, learned by
IMBayesOpt for the 2D grid Ising model. An average over the five trials
is shown.

Bayesian-optimized MCMC has found a better strategy for selecting parameters

than a domain expert.
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Figure 4.4: Mean and standard deviation of the auto-correlation function of
the energies of the sampled states drawn from the 3D cube Ising model
by each of the four sampling methods, taken over five trials.
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Figure 4.5: Sampled states’ energies from the start of the sampling phase for
the 3D cube Ising model, from the first trial.
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Figure 4.6: The mean function of the Gaussian processes over Θ, learned by
IMBayesOpt for the 3D cube Ising model. An average over the five
trials is shown.
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Figure 4.7: Mean and standard deviation of the auto-correlation function of
the energies of the sampled states drawn from the RBM by each of the
four sampling methods, taken over five trials.

23



0 500 1000 1500 2000 2500 3000 3500 4000
Steps

6000

5500

5000

4500

4000

3500

3000

2500

E
n
e
rg

y

IMBayesOpt
IMExpert
IMUnif
KawasakiSampler

Figure 4.8: Sampled states’ energies from the start of the sampling phase for
the RBM, from the first trial.
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Figure 4.9: The mean function of the Gaussian processes over Θ, learned by
IMBayesOpt for the RBM. An average over the five trials is shown.
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Chapter 5

Conclusion

Experiments were conducted to assess Bayesian optimization for adaptive MCMC.

These experiments show that the manual tuning done in [11] significantly improves

the performance of the IM sampler for the 2D grid Ising model and the 3D cube

Ising model, but Bayesian-optimized MCMC is able to realize the same gains with-

out any human intervention and surpasses the human expert for the RBM model.

The Gaussian measurement noise model assumes that the noise is unbiased

and has a constant variance σ2η throughout the parameter space. The noisy mea-

surements of h(θ) are dependent on the initial samples drawn with θ; elements of

the parameter space with very slow mixing rates may have biased or high-variance

noise, and hence break this assumption. Bayesian-optimized MCMC may not end

up learning an appropriate stochastic policy, as the underlying Gaussian process

may be a very poor model of the true objective function. This necessitates an addi-

tional assumption that the mixing rate is uniform throughout the parameter space,

but this is an assumption that is also needed in stochastic approximation, which

will not converge if the gradient estimates are biased or have high variance. The

variance of the measurement error model could be estimated, at additional expense,

by performing multiple runs with the same parameters, but this has been left for

future work.

Parametric bandit algorithms could be used in Bayesian optimization, instead

of Gaussian processes, to make it practical to adapt infinitely often, but the inter-

esting challenge of showing convergence for a single adapted chain would arise.
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Bayesian optimization is a general method for adapting the parameters of any

MCMC algorithm. It has some advantages over stochastic approximation, as indi-

cated and demonstrated in this paper. However, it presently only applies to param-

eter spaces of up to fifty dimensions. It should not be seen as a replacement for

stochastic approximation, but rather as a complementary technique. In particular,

Bayesian optimization should be adopted when the objective is non-differentiable

or too expensive to evaluate.
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