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Abstract

This project addresses the issue of automatic detection and tracking of man-made

objects in subsea environments with poor visibility and marine snow. Underwater

research and engineering is a quickly growing field and there are few computer

vision techniques that specifically address these challenges.

The proposed system involves minimizing noise and video artifacts, estimating

camera motion, detecting line segments and tracking targets. Overall, the system

performs well under the conditions in the test video and the equal error rate is ap-

proximately 16%. Tests show how parameters may be tuned to account for changes

in environmental conditions and to trade off the number of false negatives and false

positives. System performance is affected by many factors. Poorest performance

occurs under conditions of heavy marine show, low-contrast targets, and fast cam-

era motion. Performance also suffers if the background conditions in the image

change.

This research makes two contributions. First, we provide a survey of tech-

niques that address similar problems and evaluate their suitability for this appli-

cation, Second, we integrate existing techniques into a larger system. Techniques

include median filtering, Canny edge detection, Hough transforms, Lucas-Kanade

first-order optical flow and particle filtering. Where gaps exist between system

components, new methods are developed. Testing evaluates the effects of system

parameters and the conditions under which the system is effective.
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Chapter 1

Introduction

1.1 Motivation
The recent increase in underwater research and engineering has led to a greater

demand for scientific instruments that can operate under the harsh and challeng-

ing subsea conditions. The British Petroleum (BP) oil spill remediation, underwa-

ter logging, the Victoria Experimental Network Under the Sea (VENUS), and the

North-East Pacific Time-series Undersea Networked Experiments (NEPTUNE) are

a few prominent examples of recent projects in the underwater environment, all of

which would benefit from improved computer vision systems.

The BP oil spill in the Gulf of Mexico in April, 2010, brought international at-

tention to the difficulties of working underwater and the need for better understand-

ing and protection of subsea environments. Much of the work to stop the spilling

oil was performed by operators controlling Remotely Operated Vehicles (ROVS)

with specialized arms and manipulators. The operators relied heavily on video

feedback to control the vehicles.

Triton Logging is a BC-based company that specializes in logging underwater

forests that were created when hydro dams were built [Triton, 2010]. Triton es-

timates that there are 300 million trees world-wide in such reservoirs and claims

these trees can be harvested in a more economical and safe manner than traditional

logging. At the core of their operation is an ROV equipped with large graspers

and saw blades. An operator relies on eight video cameras and sonar data to lo-
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Figure 1.1: Seaeye Falcon. This inspection class ROV has a forward-
mounted camera and two lights.

cate trees, plan and execute cuts, and attach flotation bags to return the trees to the

surface.

The NEPTUNE and VENUS projects are large-scale ocean observatory networks

that will allow scientists to install monitoring equipment on the seafloor to provide

long-term, continuous data collection. Planned experiments include the monitor-

ing of hydrothermal systems, installation of a seismograph network, geophysical

imaging of gas hydrates, and investigation of the role of disturbance in benthic

ecosystems. These networks will provide great opportunities for many researchers

and will further drive demand for underwater scientific equipment, including video

cameras.

All of these projects involve work in areas too deep for human divers. ROVS and

Autonomous Underwater Vehicles (AUVS) are becoming increasingly common as

a means to explore these otherwise unreachable areas. As the name suggests, ROVS

are controlled by human operators who often rely on visual feedback from cameras

mounted on the vehicle. Figure 1.1 is an example of a small ROV used mainly to

inspect rather than to manipulate underwater objects. At the top of the image is

the cable or tether that provides the vehicle with power and communication. Some

ROVS are capable of simple automatic tasks like basic station-keeping or docking,
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but these capabilities remain open areas of research. AUVS operate without human

intervention and typically carry out pre-programmed tasks such as swimming a

grid pattern at a fixed depth. There are currently few, if any, commercially available

vehicles that can reliably make complex real-time decisions, largely because of the

poor quality of available data about the operating environment.

There are many constraints when working underwater, particularly at signifi-

cant depths. These include high pressures, the absence of ambient light, extreme

temperatures, and high attenuation of light and communication signals. Underwa-

ter environments tend to be low-contrast with few distinctive features. In many

cases, poor visibility is due to high levels of turbidity and “marine snow” from par-

ticulate and planktonic organisms. For these reasons, many computer vision tech-

niques that were developed for surface-based applications cannot easily be adapted

for underwater use. Acoustic techniques such as sonar can provide additional data,

but these systems are more costly and complex than video and usually give lower

resolution. The availability of improved underwater vision systems would help to

drive innovation in these challenging and poorly understood environments.

1.2 Problem Description
This project addresses the issue of automatic detection and tracking of man-made

objects in underwater environments with poor visibility. This is demonstrated using

video captured by an ROV in Saanich Inlet, BC.

The ROV is an engineering research vehicle similar to that shown in Figure 1.1

that is used to locate, inspect and maintain man-made objects resting on the seafloor.

The objects in question include power and data cables, platforms and scientific in-

struments. Although the precise shapes of the objects are not known a priori, they

can be distinguished from their surroundings by their straight edges, relative rigid-

ity and lack of motion.

The ability to automatically track edges would help the ROV operator work

more easily and with less eye strain. Future extensions of such a system could

allow the ROV to perform automated tasks such as station keeping by maintaining

an object centered in the camera, or swimming along cables laid on the seafloor.
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1.3 System Description
The system consists of an estimate of optical flow, an edge detector, and multiple

particle filters to track a varying set of long, continuous straight lines that persist

over time. A prototype has been implemented as proof of concept; the system is

not currently optimized for computational speed but the design choices allow for

the possibility of a real-time implementation.

This section describes the major challenges addressed by this system: the sys-

tem must be robust to marine snow and poor visibility, account for camera motion,

extract low-intensity lines, and track edges.

1.3.1 Marine Snow

The term marine snow refers to underwater debris including sediment and plank-

tonic organisms (e.g., algae and krill). Marine snow creates high-contrast visual

clutter that interferes with the detection of lower-contrast objects of interest. Since

all lighting is provided by the vehicle itself, there is significant light reflection off

the particles, causing them to appear brighter than their surroundings.

As shown in Figure 1.2, there is variation in the shape, size, and severity of

marine snow. The motion of the snow is unpredictable and cannot be reliably used

to predict the camera motion. For example, in some cases, individual “snowflakes”

are freely swimming organisms moving independently, in others they are relatively

stationary in the environment and move only relative to the camera, and in others

they are caught in turbulent water from the vehicle’s thrusters.

The system minimizes the effects of snow by pre-processing each video frame

and by relying on techniques that are robust to noise. The system trades off cam-

era speed and severity of marine snow: in low-snow conditions, the camera may

move relatively quickly, but in heavy-snow conditions, the camera must move more

slowly in order to obtain good results.

1.3.2 Low Visibility

Light attenuates quickly under water. As a result, only bright objects very near

the camera can create large intensity gradients which quickly fade as the camera

moves away from the object, making it difficult to distinguish the object from the
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(a)

(b)

(c)

Figure 1.2: Object of interest under different levels of marine snow. (a) Mod-
erate marine snow. (b) The faint lines in the centre of the image are the
crossbars of the man-made object. The three other faint lines are fish.
The bright line at the right of the image is the tether of the ROV. (c)
Heavy marine snow with part of the vehicle visible along the bottom
edge of the image.
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(a) Raw Image
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Figure 1.3: Low Visibility (a) Rear bars appear faint due to high light at-
tenuation. (b) Histogram of the low contrast image shows that pixel
intensities fall mostly within one-fifth of the available dynamic range.

background. For example, the object in Figure 1.3 has bright, horizontal bars at

each end, separated by a distance of approximately 1.5 m. The bars close to the

camera are easily visible while those at the other end are difficult to see. The

histogram of intensities in Figure 1.3 shows the narrow range of pixel intensities

present in a sample image.

1.3.3 Motion Estimation

The ROV and camera move in a dynamic and unknown environment. In order to

accumulate evidence over time for the locations of edges, it is critical to describe

the optical flow between subsequent frames. Due to the marine snow and lack of

texture or reliable image features, flow estimation by feature tracking isn’t feasible.

As Figure 1.4 demonstrates, the ROV is capable of maneuvering quickly. The ob-

jects of interest are rigid, the motion of the marine snow is not necessarily related

to the camera motion, and lighting or lens artifacts remain stationary relative to the

camera.

The system estimates optical flow by assuming affine motion over short times-

pans. It treats visible portions of the vehicle and lighting and lens artifacts as back-

ground and disregards them for flow calculations. If background conditions change
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(a) Frame 65 (b) Frame 75

(c) Frame 85 (d) Frame 95

Figure 1.4: Camera motion in one second of video

significantly during an ROV mission, the system will falsely identify background

artifacts and target edges unless the ROV operator is able to reset the background

by recording two to three seconds of video with no target objects in view.

1.3.4 Edge Detection

Faint edges are difficult to distinguish from the background using only image in-

tensity in an individual frame. Often, the snow is of higher contrast than the edges

of interest. Figure 1.5 illustrates the difficulties of edge detection under such noisy

conditions. Better results can be obtained for a particular image by fine-tuning

the edge detector parameters, but a more robust solution is required for video with

changing conditions.

After minimizing marine snow and lighting artifacts, the system runs edge de-

tection and line extraction and further post-processes those results. Despite this,

the system is not able to extract all lines in all image frames. For this reason, the

system is not solely an edge detector, but also relies on object tracking.
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(a) Raw image (b) Edges

(c) Close-up of raw image (d) Close-Up of Edges superimposed on raw
image

Figure 1.5: Edge Detection (a) Noisy, low contrast image with region of in-
terest in blue box. (b) Close-up of the region of interest. The small
intensity gradients make it difficult to detect and localize the rear bars.
(c) Image after edge detection. (d) The edges of the rear bar are not
properly detected or localized.

1.3.5 Target Identification and Tracking

The edges are rigid and non-deformable but their appearance varies as the camera

moves. The apparent pose of the object can change, affecting the location, ori-

entation and length of the edge. Further, due to the poor visibility, edges quickly

become faint as they move farther from the camera, causing changes in intensity

gradient. This is demonstrated in Figure 1.2, where the same object is shown in

three different configurations.

The number and pose of target edges is unknown and varying. This results

in overlap and ambiguities. In order to track edges over multiple time steps, it

is necessary to match lines between consecutive frames, identify new edges, and
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Figure 1.6: Performance curves generated by varying the thresholds for de-
tection and tracking. For this dataset, the equal error rate is approxi-
mately 16% for both cases.

detect incorrect edges. To do this, we establish a method to compare two line seg-

ments quantitatively use a Sequential Monte Carlo (SMC) method as a probabilistic

framework to bring together evidence from motion estimation and edge detection.

1.4 Testing and Results
The system performance was evaluated by comparing the edges identified by the

system to ground truth. The test video is 50 seconds long and includes many dif-

ferent test conditions. There is variation in the level of marine snow, the velocity

of the camera, the distance between the camera and the targets, and the lighting

conditions.

Overall, the system performs well under the conditions in the test video. Fig-

ure 1.6 shows the performance curves that result from varying the thresholds for

detection and tracking, γdetect and γtrack, respectively. For this dataset the equal er-

ror rate is approximately 16% and the performance can be shifted along the curves

to reach a desired balance between false negatives and false positives. Lower false

negative rates are achieved by decreasing one or both of the thresholds.

Figure 1.7 shows how the results change for different conditions in the dataset.
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Figure 1.7: Performance over time for γdetect = 0.02 γtrack = 0.4. (a) The
false positive rate varies throughout the test sequence and has spikes
at the beginning and end where there is heavy marine snow and quick
camera motion. The tracker has more false positives than the detector.
(b) The false negative rate depends on the conditions in the video and
is lowest when the target edges are high-contrast. The tracker has fewer
false negatives than the detector.

This figure also shows the contribution of the tracker compared to detection alone.

The tracker decreases false negatives at the expense of increasing false positives.

The system performance is affected by many factors and the poorest performance

occurs under conditions of heavy marine show, low-contrast targets, and fast cam-

era motion. Performance also suffers if the background conditions in the image

change.

1.5 Contributions
The first contribution of this thesis is an overview of existing methods related to

this work and an evaluation of their suitability for underwater applications with

significant levels of marine snow. Techniques such as de-hazing and rain removal

often rely on prior knowledge that is not available in this application or assumptions

that do not hold in an underwater environment. Much work on underwater image

processing requires better visibility and less marine snow. On the other hand, SMC
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methods create a framework to incorporate uncertain and noisy observations.

The second contribution is the overall system design. Existing techniques are

evaluated and adapted for use in the larger system. Where gaps exist between sys-

tem components, new methods are developed. This includes determining how to

assign uncertainty to edge location, and how to compare results from the particle

filter to results from an edge detector. Testing and verification of the system in-

cludes an explanation of how parameters can be tuned by an ROV operator, and

limitations on the conditions under which this system is effective.

1.6 Thesis Outline
Chapter two provides a survey of related work and their suitability for this applica-

tion. Chapter three describes the proposed system. Chapter four discusses testing

methodology and provides results. Chapter five states conclusions and suggests

future work. Code and raw data are available online [Gamroth, 2010].
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Chapter 2

Background

One of the main challenges of this project is that many computer vision techniques

rely on assumptions that do not hold in an underwater environment with significant

marine snow. To address this challenge, a wide range of techniques were consid-

ered and their limitations were explored. This chapter summarizes these techniques

and provides an evaluation of their suitability for this task. Pseudocode is provided

wherever a particular implementation of a general method is discussed.

2.1 Atmospheric Conditions
Atmospheric conditions such as snow, rain, and haze are common sources of poor

image quality. Much work has been done to remove their effects using appropriate

models of the scene or the atmosphere. Many of the assumptions required for these

models do not hold in an underwater environment with no ambient lighting.

One of the difficulties of removing the effects of bad weather is that the effects

increase exponentially with the distance from the camera and can therefore not be

removed by simple linear or space-invariant techniques [Narasimhan and Nayar,

2003]. However, this also means that bad weather can serve as a means for captur-

ing scene structure. Two or more images of the same scene under different weather

conditions can be used to estimate depth and recover scene contrast [Narasimhan

and Nayar, 2002]. While this approach could prove valuable for a static camera

underwater, it is not suitable for a camera on a moving vehicle. As well, the pos-
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sibility of scene structure being encoded by bad weather relies on the atmosphere

being homogeneous haze rather than marine snow.

A related technique is the use of physics-based methods for improving con-

trast in colour images [Tan and Oakley, 2001, Oakley and Satherley, 1998]. These

methods require prior knowledge of the distance from the camera to the objects,

and an estimate of atmospheric conditions such as scattering coefficient and sky

radiance.

Another interesting approach to minimizing atmospheric effects is haze re-

moval from a single image without any depth information by relying on the “dark

channel” prior [He et al., 2009]. This approach is based on the observation that in

most haze-free outdoor scenes, a majority regions have some pixels (called dark

pixels) that have very low intensity in at least one colour (rgb) channel. This trend

occurs because many natural scenes contain shadows or saturated colours. In hazy

images, then, the dark pixels have the intensity of air light.

The effects of rain and snow are globally predictable in the frequency domain

[Barnum and Narasimhan, 2009]. When falling rain or snow appears as bright

streaks in an image, it can be modelled as blurred Gaussians and a frequency model

can be created [Barnum et al., 2007]. That model can be used as a snow detector in

still images and videos. This techniques assumes that the streaks caused by snow

or rain occur in predictable directions and the approximate shape of the streak is

constant; neither of these assumptions hold in the underwater environment.

There are several other methods for rain detection and removal, including

[Starik and Werman, 2003] and [Zhang et al., 2006]. One interesting approach

to rain detection in videos is based on a model of the photometric and dynamic

properties of rain [Garg and Nayar, 2003]. Candidate rain pixels are identified us-

ing photometric constraints: rain causes a temporary and linear increase in pixel

intensity. It is assumed that the raindrops are imaged as streaks in an unknown but

consistent direction. Dynamic constraints require that rain pixels have spatiotem-

poral correlations along the direction of the streaks. Rain is detected by selecting

pixels in each frame that meet these constraints. This approach could be used in

underwater environments where the motion of the snow is somehow constrained,

such as with a stationary camera and a steady current that dictates the flow of ma-

rine snow.
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Figure 2.1: Relationship between the size, sI and displacement dI of an object
I and the effect of temporal median filtering. Small objects are filtered
out and larger objects are retained. (image from [Hase et al., 1999])

Finally, a temporal median filter can be used to remove snow from video [Hase

et al., 1999]. This assumes that the snow is relatively small and fast-moving com-

pared to the objects of interest in the video. Any objects that occupy a given pixel

for less than half the duration of the median filter will be removed. Consider an

object A of size sA that moves dA pixels in t seconds. The object will be removed

by a filter of size t unless the condition 2sA ≥ dA is met.

Figure 2.1 illustrates the effect of temporal median filtering. Object B is small

and fast-moving relative to the filter width t and will be removed. Object A is

relatively large and slow-moving and will not be removed; it will be shown at the

correct size at an average location. An object with size and velocity between that

of A and B would be partially removed and would appear smaller than the true

object. This technique is well-suited for removing marine snow.

2.1.1 Optical Snow

Optical snow is “a generalization of optical flow in which the assumption of local

spatial continuity of the motion field is abandoned” [Langer and Mann, 2003]. It

does not assume a continuous motion field and, unlike layered motion, it does not

require smoothness in layers; optical snow allows for discontinuities in motion at
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any point in the image. Optical snow describes many natural situations, including

the fall of snowflakes and camera motion in highly cluttered scenes.

Given prior knowledge of an appropriate motion model, optical snow can be

used to measure properties of the scene or camera motion. The case of parallel

optical snow describes the lateral motion of a camera or snow falling. Methods

are available for measuring the direction and range of speed of the snow [Langer

and Mann, 2003]. Similarly, the translation and roll of a camera can be estimated

by modelling motion parallax [Mann and Langer, 2004]. However, the problem of

model selection for a particular application is poorly understood.

The marine snow in this application is well described as optical snow since it is

possible for each “snowflake” to move independently of the background and other

snowflakes. However, a reasonable model is not available to describe the motion

of the optical snow.

2.2 Motion Estimation
Lucas and Kanade proposed a technique for image registration that considers the

spatial intensity gradients of two images and uses Newton-Raphson iteration to

find the disparity vector (transform), h, that minimizes the difference between the

images [Lucas and Kanade, 1981].

This algorithm was implemented and extended to calculate a global first-order

flow model relating two images [Young, 2010]. The flow model has six parameters

which describe an affine transformation: x translation vx0 , y translation vy0 , dilation

d, rotation r, skew along primary axis s1, and skew along secondary axis s2. If a

pixel at image location (x,y) is represented by the vector (vx,vy), then the first-

order flow model is given by Equation 2.1.

[
vx vy

]
=
[
x y 1

]d + s1 s2 + r

s2− r d− s1

vx0 vy0

 (2.1)

This equation describes a spatially continuous transformation from one image

to another and allows features in one image to be mapped to the corresponding

location in the other image. Since it is a global parameterization, it provides flow
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(a) Initial image (b) Transformed image (c) Flow field

Figure 2.2: Affine Flow. (a) Square (b) Rhombus created by transforming
the square using the following parameters: d = 0,r = π/16,s1 = 0,s2 =
0.1,vx0 = 0,vy0 = 0. (c) Affine flow field: circles denote the pixels for
which the flow is shown and lines denote the magnitude and direction
of the flow. The advantage of global parameterization is that flow is
calculated for featureless regions.

estimates for textureless regions of the image; this is an advantage for underwater

scenes with sparse features. Optical flow estimation is illustrated in Figure 2.2.

Algorithm 1 describes the particular implementation.

Algorithm 1: Affine Flow [Young, 2010]
input : intensity images I1, I2
output: flow parameters, f = [vx0 ,vy0 ,d,r,s1,s2]

smooth images I1 and I2 by convolving with a Gaussian;1

calculate spatial intensity gradients Gx and Gy by 2.2;2

calculate temporal intensity gradient Gt by 2.3;3

solve for the flow, f , in 2.4 by Gaussian elimination;4

Gx = (I1 + I2)∗ [0.25,0,−0.25] (2.2)

Gy = (I1 + I2)∗ [0.25,0,−0.25]′

Gt = I1− I2 (2.3)
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A f =−Gt (2.4)

Where A is defined as follows:

xGx = x∗Gx

yGx = y∗Gx

yGy = y∗Gy

xGy = x∗Gy

A = [Gx,Gy,xGx + yGy ,xGy− yGx ,xGx− yGy ,yGx + xGy ]

2.3 Underwater Video
Many techniques have been developed specifically for underwater images or videos

but they often require the input images be in a high-contrast, high-visibility envi-

ronment with little marine snow [Rzhanov et al., 2000], [Salvi et al., 2008]. In

these cases, pre-processing is usually limited to contrast enhancement.

A commercially available system called Lyyn enhances images by performing

histogram equalization on each colour channel individually and then recombining

the colour channels [Lyyn, 2010, Holm and Holm, 2008]. Another enhancement

strategy uses a multi-step process to increase contrast in local image patches [Salvi

et al., 2008]. In this strategy, the first step is to normalize the brightness using a

homomorphic filter; this also reduces intensity gradients due to non-uniform light-

ing. Then, Contrast Limited Adaptive Histogram Equalization (CLAHE) followed

by bilinear interpolation is used to enhance local contrast [Pizer et al., 1987]. Fi-

nally, adaptive noise-removal filtering is performed to minimize noise, particularly

in areas with small intensity gradients. Both of the above methods perform poorly

in the presence of marine snow.

One system was developed specifically for detection and tracking of low-contrast

translucent targets in a marine environment, despite the presence of marine snow.

Background subtraction is performed to minimize lighting and lens effects. This
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is done for the red, green, and blue channels separately by subtracting the time-

average pixel intensity [Walther et al., 2004]. Once the background has been sub-

tracted, every fifth frame is analyzed using oriented filter responses in a pyramid us-

ing steerable filters at four orientations [Simoncelli and Freeman, 1995]. A saliency

detector tuned to respond to oriented edges then extracts the areas of interest.

We implemented this system but it was not successful for the videos under con-

sideration. The poor performance is probably because the saliency detectors were

not discriminative enough for our application. Also, the system was developed for

use in shallow water with the sky acting as a diffuse light source; these lighting

conditions could have resulted in lower-contrast marine snow and more easily vis-

ible targets relative to the conditions in our videos. This could not be confirmed

since the raw video from the original work was not available.

2.4 Background Subtraction
Marine snow can be considered “background” in the sense that it is clutter that pre-

vents the easy identification of “foreground” targets. Many background subtraction

algorithms require a stationary camera or the ability to train on the background.

One approach that allows a moving camera in an unknown environment relies

instead on building a real-time model of the background by tracking the trajecto-

ries of salient features. Then, other objects with similar trajectories are labelled as

background [Sheikh et al., 2009]. This assumes that the foreground can be differ-

entiated from the background by a difference in motion.

Dynamic textures are spatiotemporal image patches that have regular but non-

repeating characteristics, such as smoke, foliage, and waves [Doretto et al., 2003].

Instead of physics-based modelling to classify or generate these video segments,

dynamic textures use an appearance-based model. The model parameters are learned

from training video sequences. Once a dynamic texture model has been learned,

it can be used for motion segmentation [Fazekas et al., 2009] or background sub-

traction [Mahadevan and Vasconcelos, 2008]. This model has been successfully

applied to dynamic scenes with a moving camera. However, the model does rely

on the ability to learn an appropriate model of the background dynamic texture.

This might be possible for some underwater scenarios but not for the videos in
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question where the marine snow lacks regularity.

2.5 Edge Detection
Edge detection and line extraction are standard techniques in computer vision. In

this context, edges are defined as a binary property of each pixel whereas lines

(or line segments) are vectors in the image plane. Often, an edge detector is used

to create a binary image which then becomes input to a line extraction algorithm.

Well-known methods for edge detection and line extraction are the Canny edge

detector and Hough transform, respectively.

The Canny edge detector uses the following three criteria: good detection, good

localization, and one response to a single edge [Canny, 1986]. Additionally, the

detector should work well in noisy images. This method is described by Algorithm

2.

Algorithm 2: Canny Edge Detection
input : intensity image I
output: binary edge image

smooth image I by convolving with a Gaussian;1

calculate the strength and orientation of the intensity gradient at each pixel2

by convolving with the first derivative of a 1D Gaussian in the x and y
directions;
perform non-maximum suppression;3

perform hysteresis thresholding;4

The Hough Transform is a generic method for feature extraction and there are

many variations and extensions including its use for extracting lines in images

[Hough, 1962, Duda and Hart, 1972]. A line of infinite length is described by the

shortest vector that connects the origin to any point on the line. The parameters of

the line are the magnitude, ρ , and angle, θ of the vector. Algorithm 3 shows how

a histogram with (ρ,θ) bins can be created to identify line segments in the image.

Figure 2.3 shows the process of extracting line segments from an image.

The Hough transform is sensitive to noise and often returns false positives.

The implementation in Algorithm 3 is prone to generating multiple overlapping

line segments at slightly different orientations rather than one longer line. While
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Algorithm 3: Hough Transform for Line Extraction
input : binary edge image I,
output: lines

Perform Hough Transform;1

create a 2D histogram with bins for (ρ,θ) to describe all possible lines;2

for each edge pixel in I do3

for θ ∈Θ do4

calculate the value of ρ;5

increment the value of the corresponding histogram bin;6

end7

end8

Identify the peaks in the parameter space;9

select all histogram bins above a threshold;10

iteratively select local maxima and suppress the neighbouring bins;11

Find the endpoints of the line segments;12

extract line segments in I associated with the peaks of the Hough Transform;13

merge line segments that correspond to the same (ρ,θ) if they are separated14

by a gap smaller than a specified length;
retain lines longer than a minimum threshold;15

parameter tuning can improve this, post-processing to merge overlapping line seg-

ments is a more robust solution.

An alternative to identifying lines in x-y images and tracking those lines over

time is to study the x-y-t image volume. In this way, the energy (temporal edges)

can be identified directly [Adelson and Bergen, 1985]. Recursive filtering and

edge closing can be used to iteratively improve initial edge detections [Monga

et al., 1989]. Medical imaging techniques search for edges in x-y-z in a similar

fashion. However, for all of these methods, best results are obtained for high-

contrast images when much is known a priori about the structure of the objects

being imaged.

2.6 Sequential Monte Carlo Methods
This section reviews the basic particle filter described by [Doucet et al., 2001,

Bengio, 1999]. A particle filter is a Sequential Monte Carlo (SMC) method that

20



(a) Original image (b) Edges (c) Extracted Lines over-
laid on original image

Figure 2.3: Line extraction. (a) Object with strong gradients at edges. (b)
Result of Canny edge detection. (c) Line segments extracted from edge
detection using Hough transform and post-processing

provides a probabilistic framework for capturing the uncertainty inherent in many

practical settings. As the name suggests, it is a simulation-based technique that

uses a weighted set of particles (samples from a target distribution) to estimate a

model of the system. The basic concept is that, at every iteration, the particles

are evaluated against the most recent observations; particles that are a good match

for the data are highly weighted and are propagated while those that are a poor

match are given low weights and are extinguished. This process of re-weighting

and re-sampling may continue indefinitely.

Particle filters can be used in many practical settings that require estimating

unknown quantities (unobserved states) given incomplete observations. For exam-

ple, a particle filter is appropriate when the exact location and pose of an object is

uncertain due to atmospheric conditions, clutter, measurement noise, incomplete

modelling, etc. A particle filter can be used to leverage prior knowledge about the

object and gather evidence over time to create a probabilistic description of the

object’s true location and pose.

Several alternatives to the particle filter have historically been used. A Kalman

filter can be used for data that are modelled by a linear Gaussian state-space model,

where an exact analytical expression is available to calculate the posterior distri-

bution. A Hidden Markov Model (HMM) filter can be used for partially observed

data that are modelled by a finite state-space. In order to maintain mathematical

tractability, these filters impose certain constraints on the data. However, prac-
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tical problems often violate these constraints as they are often high-dimensional,

nonlinear or non-Gaussian. In these cases, particle filters provide an alternative

technique.

The following notation will be used throughout this thesis:

unobserved state {xt ; t ∈ N},xt ∈X

unobserved state up to time t {x0:t}, {x0, ...,xt}
initial distribution p(x0)

transition distribution p(xt |xt−1) for t ≥ 1
observations {yt ; t ∈ N∗}, t ∈ Y

observations up to time t {y0:t}, {y0, ...,yt}
marginal distribution p(yt |xt) for t ≥ 1
posterior distribution p(x0:t |y1:t)

The unobserved states are modelled as a Markov process. The observations are

conditionally independent given the unobserved states and the marginal distribu-

tion. The goal of the particle filter is to recursively estimate the posterior distribu-

tion at each timestep. The marginal distribution or other function of interest can

then be computed. Often, a Bayesian model is used to relate the prior distribution

to the likelihood of the observations to generate a posterior belief. Bayes’ Theorem

in given in Equation 2.5.

p(x0:t |y1:t) =
p(y1:t |x0:t)p(x0:t)∫

p(y1:t |x0:t)(x0:t)dx0:t
= p(xt |y1:t)

p(yt |xt)p(xt)∫
p(yt |xt)(xt)dxt

(2.5)

Figure 2.4 illustrates one iteration of a particle filter used to estimate a 1D sig-

nal. This example begins at time t− 1 with N unweighted particles providing an

estimate, x̂(i)t−1, of the signal. The particles have only one parameter: location along

the horizontal axis. Each particle is assigned an importance weight, w̃(i)
t−1, propor-

tional to the signal strength at that location. New particles are created in two steps.

First, the resampling step generates a set of unweighted particles whose locations

are determined by the importance weights. Next, the prediction step introduces

variation into the set of unweighted particles. One iteration is complete and the N

particles now provide the updated estimate x̂(i)t . When the signal is observed again

at time t, the particles are again re-weighted and the cycle continues. The details
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Figure 2.4: Iterative resampling of particle filter (image from [Doucet et al.,
2001]). Unweighted (yellow) particles are an estimate of the 1D sig-
nal. Weighted (blue) particle reflect the signal strength at the particle
location. Resampling iteratively moves particles towards peaks in the
signal.

of this process are given in Algorithm 4.

The resampling step eliminates particles with low weights and multiplies those

with high weights. This step requires as input the particle weights and returns as

output a selection of particles such that weighted average of the initial particles is

equal to the unweighted average of the selected particles. In this way, resampling

is generic to all applications and does not require any domain knowledge. Several

resampling schemes have been proposed, including residual resampling, minimum

variance resampling, and multinomial resampling. The choice between these three

options does not significantly affect performance.
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The particle filter has many advantages, including its simplicity and ease of

implementation. It is attractive for real-time applications as it is recursive without

the need to recompute past samples or store prior observations, and it does not de-

generate as t increases. Further, since each step in the process is modular and each

particle can be computed independently of other particles (except for normaliza-

tion), this technique is well-suited to a parallel implementation [Lee et al., 2009].

Many extensions and improvements have been proposed, including the unscented

particle filter [van der Merwe et al., 2000], and the boosted particle filter [Okuma

et al., 2004], [Lu et al., 2009].

The challenge in implementing a particle filter for a particular application is

calculating particle weights, and in particular, determining how to compute the

marginal distribution, p(yt |xt).

w(i)
t = w(i)

t−1
p(yt |x̂(i)t )p(x̂(i)t |x

(i)
t−1)

q(x̂(i)t |x
(i)
1:t−1,y1:t)

(2.6)

w̃(i)
t = w(i)

t [
N

∑
j=1

w( j)
t ]−1 (2.7)

p(x0:t |y1:t)≈ p̂(x0:t |y1:t) =
1
N

N

∑
i=1

δ
(x(i)0:t)

(dx0:t) (2.8)

In general, particle filters perform poorly for the case of multi-modal data.

Returning to the example in Figure 2.4, the particles would gradually migrate to

the global maximum on the left and away from the local maximum on the right.

Once the particles are concentrated in one location, they will fail to respond to a

peak arising in another location, unless a particle happens to be sampled in the

neighbourhood of that peak when variation was introduced in the prediction step.

There are several approaches to dealing with multi-modal data, including multiple

independent particle filters and mixtures of filters [Vermaak et al., 2003].

2.7 Summary
Many strategies were investigated, including the effects of atmospheric conditions,

optical snow, underwater video techniques, background subtraction, optical flow
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Algorithm 4: Particle Filter
input : observations y0:t
output: unobserved state x0:t

Initialization;1

t = 0;2

for i← 1 to N do3

sample the states x(i)0 ∼ p(x0);4

end5

for t← 1 to T do6

Importance Sampling;7

for i← 1 to N do8

sample x̂(i)t ∼ q(x(i)t |x
(i)
0:t−1,y1:t);9

set x̂(i)0:t = (x̂(i)0:t−1, x̂
(i)
t );10

end11

for i← 1 to N do12

evaluate the importance weights w(i)
t by (2.6);13

normalize the importance weights w̃(i)
t by (2.7);14

end15

Resampling;16

multiply/suppress samples x0:t with high-low importance weights w̃(i)
t ,17

respectively, to obtain N random samples (x)i
0:t approximately

distributed according to p(x(i)0:t |y1:t);
for i← 1 to N do18

w(i)
t = w̃(i)

t = 1
N ;19

end20

Output;21

approximate posterior distribution p(x0:t |y1:t) using the samples (x)i
0:t22

by 2.8;
end23
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estimation, edge detection, line extraction, and SMC methods. In some cases,

the required assumptions are not appropriate for the problem under considera-

tion. However, many techniques are suitable, including temporal median filtering,

Lucas-Kanade first-order optical flow, Canny edge detection, Hough transforms

and SMC methods. Implementation details such as equations and pseudocode are

provided for these suitable techniques.
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Chapter 3

System

3.1 Problem Description
The goal of this project is the automatic detection and tracking of man-made ob-

jects in underwater environments with poor visibility. The system is tested on video

from an ROV.

The video was recorded in July, 2009, in Saanich Inlet, BC, by a Seaeye Falcon

ROV at depths of approximately 100m below the surface. The camera was a Seaeye

CAM04N with a field of view of 90◦ in water and a sensitivity of 0.35 Lux. The

iris, gain control and exposure adjustment were all automatic. Vehicle-mounted

cameras provided all lighting as no light from the surface penetrates that deeply.

The video was initially used for navigation purposes during an inspection of an

underwater structure.

The video has a frame rate of 30 Hz and resolution of 720x480 in RGB. The

resolution is 340x185 after downsampling to remove interlacing, converting to a

single-channel (intensity) image and cropping to remove video overlay artifacts.

The video frames suffer from poor visibility due to turbidity and marine snow.

The marine snow in the video is visual clutter caused by planktonic organ-

isms and particulate matter suspended in the water. The appearance of the snow

varies spatiotemporally and ranges from large, bright fish to barely visible particles

that create a hazy environment. There are many possible causes for the motion of

marine snow, including currents, moving water from the ROV’s thrusters, and self-
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(a) Seaeye Falcon ROV (b) Seaeye CAM04N video
camera

Figure 3.1: ROV and camera used for data collection

propelled organisms. The motion of the the ROV also creates apparent motion of

the marine snow. With so many dynamic factors contributing to the apparent mo-

tion, it is unlikely that an a priori model could be used to fully describe the optical

flow.

3.2 System Description
The proposed system consists of pre-processing, optical flow calculation, and de-

tection and tracking of a set of long, continuous straight line targets that persist

over time. The full system is summarized in Algorithm 7. Code is available online

[Gamroth, 2010].

Though it is not optimized for real-time performance, design choices allow for

this possibility. The system does not rely on having knowledge of the future (i.e. it

is causal), nor does it require any prior knowledge of the environment that an ROV

operator could not obtain in a short initialization step.
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3.2.1 Pre-processing

Each image is pre-processed to minimize marine snow, remove background ar-

tifacts and convert to a single channel. The first step is conversion from a three-

channel (RGB) image to a single-channel (gray) intensity image using Equation 3.1.

This conversion is used in Matlab and reflects humans’ perception of the illumi-

nance of the three colours. However, it is not optimized for an underwater environ-

ment. A line of future investigation would be to adapt the full system to operate on

an RGB image or consider using alternative colour spaces such as TCbCr which

may offer greater robustness to underwater photometric noise [Qi and Cooperstock,

2007].

gray = 0.2989R+0.5870G+0.1140B (3.1)

The second pre-processing step is reducing marine snow through temporal me-

dian filtering. The value of each pixel is set to the temporal median of that pixel

over the past t images. Since most of the optical snow moves quickly relative to

the targets, the proper selection of t causes the snow to be filtered out while the

targets are retained. Too low a value of t results in the optical snow not being fil-

tered out. Too high a value results in slower-moving objects being filtered out, or

the location of the edges being mis-identified (in particular, the pixels along the

leading edge being replaced by background pixels). Therefore, if a higher value

of t is required due to higher levels of snow, the camera or ROV must move more

slowly. Figure 3.2 gives an example of the results of temporal median filtering.

Finally, background subtraction is performed to remove lighting and lens arti-

facts, and parts of the ROV that are visible. This requires a few seconds of video

in which there are no objects of interest. For each pixel, the temporal median is

calculated and the resulting image is called the “background”. In the final pre-

processing step, the background is subtracted from the image. Figure 3.2 gives

examples of the background image and the results of background subtraction.

During real-world operation of the vehicle, the background may change when,

for example, the camera tilts so that the ROV’s manipulator is visible. In some

cases, the operator could reset the background image but this may not always be

feasible. Adaptive background subtraction is an area for future work.
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(a) Raw image (b) Image after median filtering

(c) Background image (d) Image after median filtering and back-
ground subtraction

Figure 3.2: Image pre-processing. (a) Original image. (b) Temporal median
filtering over 5 video frames. Marine snow is reduced at the expense of
losing information about small or fast-moving targets. (c) Background
image identifies light artifacts including a beam of light in top centre
and gradual darkening at perimeter of image. (d) Pre-processing reduces
noise and lighting artifacts.

3.2.2 Motion Estimation

The scene motion can be accurately described as “optical snow” as defined in

Section 2.1.1 because it is characterized by spatial and temporal motion discon-

tinuities. Although the background and targets are stationary, rigid and relatively

textureless, the marine snow is ubiquitous, high-contrast and unpredictable.

Scenes that can be readily analyzed using optical snow filtering techniques

tend to involve globally consistent motion that can be modelled a priori, such as

rain falling in straight lines or forward motion through a cluttered scene. In this

problem, no such model is available. In some special cases, the motion of the

marine snow is simple and could be modelled, such as when the snow itself is
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Figure 3.3: Optical flow between two subsequent video frames. The circles
identify the pixels for which flow is displayed; the direction and magni-
tude of the lines represents the flow. The assumption of (global) affine
flow provides flow estimates in featureless regions.

stationary and the only motion is relative to a translating camera. However, in

most cases, the motion of the marine snow is far more complex, such as when the

snow is caught in turbulent water from the ROV’s thrusters or the camera is moving

and rotating in an unpredictable manner. Therefore, the motion is not estimated

using optical snow methods.

Since the scene is relatively textureless and sparse in features, any attempts to

find local matches between images yield few, if any, unique matches. The snow

is largely homogeneous and any “flake” of optical snow is a relatively good match

to any other. As a result, methods for estimating motion that allow for local dis-

continuities were found to be prone to error and often assume zero motion at all

locations except edges of bright objects where the intensity gradient can be reliably

matched. Therefore, global assumptions about motion are required.

It is assumed that the optical flow between two subsequent frames can be ap-

proximated by an affine transform. Over short enough timescales, factors such

as motion parallax and occlusion have negligible effects. With this assumption,

the Lucas-Kanade method can be applied. The sparsity of features and textures

means that intensity-matching in the Lucas-Kanade algorithm is dominated by the

object of interest rather than the snow. A visualization of the results optical flow

calculations is shown in Figure 3.3.

There are conditions under which the affine approximation will fail. For exam-
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ple, large non-stationary objects like fish cannot be described by affine motion. For

our dataset, this does not appear to be a problem. Firstly because these cases are

rare, and secondly because the motion estimate is used as an input to a system that

is robust to error or inaccuracy. The affine approximation may also fail if back-

ground subtraction is not done properly. Bright, stationary artifacts will force the

flow to zero at those locations.

The accuracy of the flow estimate depends on the geometry of the scene. Faint

edges have less influence on the results than high-contrast edges and better re-

sults are obtained when there is more evidence. As a result, the best estimates are

obtained when the scene contains several strong intensity gradients that are well-

separated in space.

It is also important to note that this does not provide a true estimate of camera

motion, only of the visual difference between two video frames. For example, if the

camera is moving in an empty environment, the optical flow will be zero regardless

of the actual ROV motion.

An avenue of future work would be to incorporate additional data into the mo-

tion estimation, such as the control signals sent to the ROV thrusters, or measure-

ments from depth sensors, accelerometers or flow meters.

3.2.3 Edge Detection and Line Extraction

Edge detection is performed using the Canny edge detector and line extraction is

performed using a Hough transform. Parameters for these methods were chosen by

trial and error. The standard deviation sigma of the Gaussian for the Canny edge

detector is set to 3; the spacing of the Hough histogram bins is 2◦ along the θ axis

and 3 along the ρ axis.

Although the pre-processing step reduces noise, the resulting image is not clear

enough for perfect edge and line detection. The result is many missed detections

and false positives as well as overlapping true positives. A post-processing step is

needed to improve results.

Figure 3.4 shows the results of edge detection and the extracted line segments

are overlaid on the image. To reduce the number of false positives, the lines re-

turned by the Hough transform are evaluated using a Gabor filter and any lines
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with a filter response below a threshold are discarded. The Gabor filter is also used

to determine the true orientation of the line, since the Hough lines are insensitive

to the sign of the gradient.

The overlapping true positives are undesirable since they add complexity and

uncertainty to the system. Many of the overlapping lines are segments of the same

true line and are therefore merged to generate one longer line. Figure 3.4 shows

the results after post-processing to merge overlapping lines.

3.2.4 Gabor Filter

The edge strength, or fit of a line segment, is evaluated using a Gabor filter [Gabor,

1946]. This is done by constructing a filter based on the parameters of the line.

The Gabor filter is centred on the (x,y) centre of the line segment, oriented at θ

degrees, and has a length proportional to the length of the line segment. The width

of the filter is also proportional to the length to allow greater uncertainty of the

exact location or orientation of longer line segments and to prevent line segments

from degenerating to points. The angle, θ , of the filter ranges from 0 to 360 to

capture the direction of the edge as well as the direction of the intensity gradient.

Equation 3.2 describes a Gabor filter. The filter is a function of location (x,y),

frequency λ , phase ψ and orientation θ of a sinusoid, standard deviation σ of a

Gaussian, and aspect ratio γ .

g(x,y,λ ,θ ,ψ,σ ,γ) = exp
(
−x′2 + γ2y′2

2σ2

)
cos
(

2π
x′

λ
+ψ

)
(3.2)

x′ = xcosθ + ysinθ

y′ = −xsinθ + ycosθ

A disadvantage of Gabor filters for applications with marine snow is that the

filter responds equally strongly to one long, low-contrast edge in the direction of

the filter and one small, high-contrast dot. Additionally, it is difficult to select a

threshold for a Gabor filter that will eliminate false positives without also eliminat-

ing the low-contrast true positives. An improvement on this approach is proposed

whereby we replace the Gabor filter with several smaller Gabor filters along the
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(a) Binary edge image

(b) Line segment extraction

(c) Line segments after post-processing

Figure 3.4: Line segment extraction. (a) The edge detector successfully de-
tects and localizes the higher contrast edges but is less successful with
weaker edges. (b) A post-processed Hough transform returns many
overlapping line segments that fit the binary edge image. (c) Additional
post-processing merges line segments.
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same axis. We compare the results of the smaller filters: similar values across

all segments indicates a long line and varying results among segments indicates

marine snow.

Figure 3.5 shows a standard Gabor filter and the corresponding smaller filters.

Note that the filter in subfigure (b) is for visualization purposes only and is not

convolved with the image.

In practice, we found many cases where we wish to allow a small portion of

the smaller filters to have a higher or lower response than the rest. For example,

some true positives have a break due to an occlusion, and sometimes the extracted

line is improperly located on the true line, causing low filter responses at one or

both ends. To allow for these cases, we considered the 70th percentile response and

divide that by the response of the standard Gabor filter. This process is described

in Algorithm 5 and was found to improve results when evaluating which tracked

edges should be propagated to future time steps. The standard Gabor filter is used

for initial edge detection.

Algorithm 5: Modified Gabor Filter
input : intensity image I, line (x,y,θ , l)
output: edge strength

generate a Gabor filter using the line parameters (x,y,θ , l) and convolve1

with I to calculate the filter response R;
generate a set of smaller Gabor filters equally spaced along the line2

(x,y,θ , l) and convolve each with I to calculate the responses r(i);
calculate g(i) = r(i)

R for each smaller filter;3

return a given percentile of g(i)4

3.2.5 Line Similarity

In several cases, it is necessary to quantify the similarity between two lines. The

Hough transform often returns several line segments that form parts of one long

edge on a target object. Targets that are initialized as two separate line segments

will sometimes converge over time and it is desirable to identify this situation and

merge the two targets. Also, detected line segments need to be evaluated to deter-

mine if they provide support for an existing tracked line or if they should be used
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Figure 3.5: Gabor Filter. (a) The Gabor filter cannot differentiate between a
long, low-contrast edge and a short high-contrast edge. (b) The over-
all shape of a Gabor filter can be recreated by adding together a bank
of smaller Gabor filters. (c-k) Filter bank of multiple Gabor filters.
When an image is convolved with the filter bank, the relative response
strengths differentiate between a long low-contrast edge and a short,
high-contrast edge.
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(g) Similarity = 999

Figure 3.6: Line similarity. Circle denotes start of each line and thereby the
positive/negative orientation. Dissimilar lines filtered out in the first step
are shown with a similarity of 999.

to initialize a new target. In all cases, lines should be compared and those that meet

some similarity criterion can be paired.

Intuitively, the location and angle of the lines are important and interdependent.

For example, collinear line segments could be considered to be similar even with

a large distance between their centre points, while orthogonal lines should not be

considered similar even if their centre points coincide. The angle of the line must

represent the direction of the intensity gradient in the image so that, for example,

the top and bottom edges of a thin white bar are not considered matches for each

other.

A similarity measure that meets these criteria was developed. First, a filtering

step identifies dissimilar lines whose orientations differ by more than 45◦ or that

are too far apart to overlap at all (in other words, the centre points are separated

by a distance greater than half the sum of the lengths of the lines). Second, lines

that were filtered out in the first step are compared by calculating the area of the

quadrilateral described by the four line end points and normalizing by the average

length of the lines. This calculates the area per unit length. Lines with a corre-

spondence value of zero are collinear, and less-similar lines have larger values. For
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convenience, the lines filtered out in the first step are assigned an artificially high

value.

As illustrated in Figure 3.6, this approach produces reasonable results. How-

ever, the discontinuity introduced in the filtering step can lead to instability in cases

like Figure 3.6 (e) and (f). The line segments in (e) overlap while those in (f) do not.

This behaviour can be advantageous when it prevents several short streaks of ma-

rine snow from being interpreted as one longer line segment, but disadvantageous

when it prevents two halves of a long, low-intensity edge from being connected.

Most tracked targets are not affected by this property of the similarity measure,

but it is possible that a different approach to measuring similarity could improve

system performance in some challenging cases.

3.2.6 Sequential Monte Carlo Tracker

Edge detection and line extraction are not adequate on their own as a means of

identifying target locations over time. The sparseness of image features (such as

SIFT features [Lowe, 2004]) precludes tracking by matching across images. In-

stead, evidence from edge detections should be propagated forward in time, allow-

ing evidence from past detections to increase the probability of target identification

at the current time step. Particle filtering, a Sequential Monte Carlo (SMC) method,

provides a framework for capturing this uncertainty.

As described in Section 2.6, there are four main steps to a particle filter: ini-

tialization, importance sampling, weighting, and resampling. This process is sum-

marized in Algorithm 6 and is discussed in this section. Section 3.2.7 addresses

the details of how detected edges are matched to a particle filter and how multiple

edges are handled.

We rely on the terminology introduced in Section 2.6. The unobserved state

(true edge location), xt , is modelled as a Markov process with initial distribution

p(x0) and transition equation p(xt |xt−1). The observations (images) yt , are as-

sumed to be conditionally independent given the process xt and marginal distribu-

tion p(yt |xt).

A new particle filter with N = 30 is initialized by sampling the initial distribu-

tion p(x0) from a four-dimensional Gaussian centred on an edge in the image using
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Equation 3.4. Each particle represents an edge centred at (x,y) with length 2l and

orientation of θ degrees. This parameterization was chosen because the line orien-

tation is typically much closer to ground truth than the line length and the system is

simpler and more intuitive if these variables can be sampled with zero covariance

while allowing greater variation in length than orientation. Although it might seem

desirable to allow, for example, the centre point of a line to have greater variance

along the direction of the line than tangent to the line, it was found that the simpler

approximation was acceptable. The assumption of zero covariance would not have

been appropriate had the lines been parameterized using the (x,y) coordinates of

the two endpoints.

Once the particles have been initialized, they are evaluated at each subsequent

time step. The first step is to transform the particles using the optical flow from

the previous to the current image, as described in Section 3.2.2. Each particle

is transformed by finding the two (x,y) endpoints, applying the transformation in

Equation 2.1, and converting back to the (x,y,θ , l) line parameterization.

Then, particles are resampled. A mixture proposal is used whereby a fraction,

α , of the particles is sampled from the corresponding edge extracted at time t and

the remaining (1−α) are sampled assuming a random walk diffusion from the

previous time step. This is given by Equation 3.5 and serves to combine evidence

from both sources.The particle filter becomes unstable when α is too high because

of the variation in the edge detections from image to image. When the edge detector

does not return a matching edge, α is set to 0.

The next step, assigning particle weights, determines which particles best match

the observations. First, the edge strength, G, is calculated by convolving the im-

age with a Gabor filter centred on the particle. The observation likelihoods are

calculated using Equation 3.6 which measures how similar the edge is to a black-

white step edge. Finally, the importance weights, w(i)
t are calculated using Bayes’

Theorem in Equation 3.7 and then normalized.

The final step, resampling, is done using residual resampling [de Freitas, 1998].

It is expected that results would not be significantly affected by the choice of resam-

pling scheme and therefore minimum variance sampling or multinomial sampling

could also have been used.
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Algorithm 6: Particle Filter
input : observations yt

output: unobserved state xt

Initialization;1

t = 0;2

extract target edge with parameters (x,y,θ , l) from y0;3

set µ0 = (x,y,θ , l);4

for i← 1 to N do5

sample the states x(i)0 by (3.4);6

end7

for t← 1 to T do8

estimate optical flow and apply transform to particles;9

Importance Sampling;10

for i← 1 to N do11

sample x̂(i)t by (3.5);12

end13

for i← 1 to N do14

compute the observation likelihood for x(i)t by (3.6);15

evaluate the importance weights w(i)
t by (3.7);16

normalize the importance weights w̃(i)
t ;17

end18

Resampling;19

generate unweighted samples x̃(i)t by resampling x(i)t according to the20

importance weights w(i)
t ;

for i← 1 to N do21

w(i)
t = w̃(i)

t = 1
N ;22

end23

Output;24

approximate edge location µt by posterior distribution p(xt |yt) in (3.8);25

end26
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p(xt |xt−1) = e
−(x(i)t )−x(i)t−1)

2

2σ2 (3.3)

qe(xt |yt) = e
−(x(i)t −µt )2

2σ2 (3.4)

where µt is the (x,y, l,θ) of the edge detection at time step t.

q(x(i)t |x
(i)
1:t−1,y1:t) = αqe(x

(i)
t |yt)+(1−α)p(x(i)t |x

(i)
t−1) (3.5)

where qe is a Gaussian distribution centered at the edge detection and p uses a ran-

dom walk diffusion model

p(yt |xt) = e
−(1−G(i)

t )2

2σ2 (3.6)

where G(i)
t is the correlation of yt with the Gabor filter (3.2) described by particle

x(i)t .

w(i)
t = w(i)

t−1
p(yt |x(i)t )p(x(i)t |x

(i)
t−1)

q(x(i)t |x
(i)
1:t−1,y1:t)

(3.7)

p(xt |yt)≈ p̂(xt |yt) =
1
N

N

∑
i=1

xt (3.8)

3.2.7 Multiple Monte Carlo Trackers

Particle filters are not well-suited for multi-modal data as they tend to converge

to the global maximum while losing support for other maxima. Since our goal is

to track an unlimited number of target edges, we require a way to extend particle

filters to track multiple objects. This also requires a means to match detections in

the image to existing targets, to initialize new targets, to merge overlapping targets,

and to eliminate low-confidence targets.

The approach to tracking multiple targets is to create multiple, independent par-

ticle filters. This simple method is appropriate since the targets are well-separated
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Figure 3.7: Multiple targets tracked by particle filters. The blue lines repre-
sent the mean particle for each tracker. The black lines are the individual
particles.

in the parameter space and targets are not required to maintain separate identities

(if two targets cross, it isn’t important which tracker follows which target). The

disadvantage of this approach is that the computational time increases with each

new target. However, the increase is linear with the number of targets and particle

filters can be computed in parallel.

The line similarity measure in Section 3.2.5 is used to match detected line

segments to existing particle filters. In general, there is no more than one match

per particle filter, but in the case of multiple matches, the best match is used. It is

possible for a single detection to be matched to two different targets, but likely that

those two targets will be merged in a subsequent step. If no match is identified,

the particle filter simply proceeds without sampling from a new edge detection.

Detected edges that are not matched to an existing target are used to initialize new

particle filters.

Figure 3.7 shows multiple particle filters, each tracking a different target edge.

The black lines represent individual particles. The trackers with the greatest vari-

ation in particles are those with the largest difference between tracked edge and

matching detection.

To avoid maintaining redundant targets, the means of all particle filters are

compared using the line similarity measure. If two targets are deemed to be similar,

only the particle filter with the strongest mean edge strength is retained. An avenue

for future work is to investigate other means of merging two particle filters.
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The edge strength of the mean particle is evaluated at each time step. Targets

are removed if the mean strength falls below a threshold. There is a hysteresis loop

in that the edge strength threshold for initial detection is higher than the threshold

for target propagation. This successfully reduces the number of false targets but the

system is sensitive to these parameters. In a real-time system, it is recommended

that the operator have direct, real-time control over these settings.

Although the particle filters are treated independently, they are affected by the

same flow transform at each time step. This has the effect of constraining all targets

to move in a cohesive fashion, consistent with the motion of a rigid object.

3.2.8 System Performance

The full system is described in Algorithm 7. This system can run indefinitely,

iterates at every time step, and requires only the previous and current states as

input.

In order to run indefinitely in real-time, a system must have memory and Cen-

tral Processing Unit (CPU) requirements that are non-increasing with time and must

not require knowledge of the future. This is true of our system. Temporal median

filtering requires the past n images. Optical flow estimation requires the images at

time t and t− 1. Line extraction uses the image at time t. Tracking requires the

image at time t and M particle filters, where Mt is determined by the number of

targets at time t. Therefore, storage requirements do not increase with time and are

only affected by the content of the video (number of targets). Similarly, the number

of compute cycles per iteration is proportional only to the number of active targets.

This implementation is a proof-of-concept and is not optimized for computa-

tional speed. The current system, implemented in MATLAB, takes in the order of

two seconds to process one video frame on a 2.53 GHz Intel core 2 Duo processor.

However, a real-time system is possible, and the SMC framework lends itself to a

GPU implementation [Lee et al., 2009].

3.3 Summary
The system described in this section detects and tracks target objects in an under-

water environment, despite poor visibility and the presence of marine snow. The
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Algorithm 7: System
input : observations (images) yt

output: unobserved state (true edge locations) xm,t for each of m targets

M = 0;1

for t← 1 to T do2

preprocess image yt ;3

estimate optical flow ft using Lucas-Kanade method for first-order4

affine optic flow;
extract targets using edge detector and Hough transform;5

if there are Mnew new targets then6

for m← 1 to Mnew do7

generate N particles by sampling from a Gaussian distribution8

centered on (x,y, l,θ) of detection;
ft,m = 0 ;9

end10

M = M+Mnew;11

end12

for m← 1 to M do13

transform unweighted samples x̃(i)m,t−1 using ft ;14

propose N new particles x(i)m,t by (3.5) ;15

compute the observation likelihood for x(i)m,t by (3.6);16

update the importance weights w(i)
m,t by (3.7);17

generate unweighted samples x̃(i)m,t by resampling x(i)m,t according to18

the importance weights w(i)
m,t ;

end19

remove M1 targets whose edge detection confidence is below a20

threshold;
merge M2 pairs of targets who overlap with each other;21

M = M−M1−M2;22

end23
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main system components are a method of estimating optical flow, an edge detector,

and multiple particle filters.

This system is designed to be of practical value to an ROV operator. The design

choices lead to several recommendations for how the system should be config-

ured and what the operator can to do improve performance. Under heavy snow

conditions, the operator should increase the time over which median filtering is

performed. This, in turn, means the vehicle should be maneuvered more slowly.

The system is sensitive to the edge strength thresholds and the operator should

have direct, real-time control over these settings in order to adapt as conditions

change.

If the background conditions change, the background subtraction will become

less effective and this will affect both the motion estimation and edge detection.

Depending on operating conditions, the operator may be able to reset the back-

ground by capturing 2 to 3 seconds of video with no targets in sight. However,

in many cases, the operator risks losing his or her bearings by maneuvering the

camera to capture background footage.

There are several avenues of future research, including alternative colour spaces,

feedback from vehicle sensors or controllers as input to motion estimation, auto-

matic parameter tuning (including edge strength thresholds) and dynamic back-

ground subtraction. Another possibility that has not been discussed is to build a

3D object model based on edge locations and assumptions of rigid motion, and

use that model to provide additional evidence for the location of faint edges. Fi-

nally, a GPU-based real-time implementation would allow the system to be used in

practice.
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Chapter 4

Results and Discussion

This chapter presents the results of running the proposed system on a video se-

quence captured by a ROV operating in an environment with marine snow. The

goal of these tests is to evaluate the success of the system and identify overall

trends in performance. In addition to reporting the total number of errors over the

full dataset, we will examine the errors in individual video frames under different

conditions in the video and different system settings.

Similar to many other computer vision systems, there is a trade-off between

types of error: false positives can often be reduced at the expense of increasing

false negatives. A common goal, and one that holds for this application, is to

reduce the number of false negatives as far as possible while keeping the number

of false positives at a “reasonable” level. A less ambiguous measure for a given

dataset is the equal error rate, or point at which the numbers of false negatives and

false positives are equal.

4.1 Dataset
The dataset consists of 50 seconds (1500 frames) of test video plus 3 seconds (90

frames) of background video [Gamroth, 2010]. The dataset includes several dif-

ferent test conditions and the marine snow varies from moderate to heavy. These

conditions are representative of poor visibility conditions in this area. There are

lighting artifacts including a gradual reduction in intensity towards the perimeter

46



of the image and a beam of light in the top centre.

The video segment begins with no visible objects of interest, followed by quick

camera motion as targets come into view. There are several seconds of relatively

slow motion followed by several seconds of faster motion, all while keeping the

target object in the frame. Next, the vehicle’s tether becomes visible; it is very

high contrast and is located between the camera and the targets. The tether is so

much brighter than the rest of the image that the camera settings were automatically

adjusted, causing everything but the tether to become darker. While the tether is

in view, the camera moves farther from the targets until they are barely visible in

the background. Finally, the tether leaves the frame and the camera approaches the

object of interest. In the final several seconds of video, the marine snow becomes

very heavy. This dataset will allow the proposed system to be tested under a range

of realistic conditions.

The proposed system relies on having several seconds of background video

under the same lighting and camera conditions as the test video. In practical set-

tings, this could be acquired by an ROV operator by turning the vehicle to point

away from the targets. The purpose of the background video is to identify lens

and camera artifacts so they can be removed during processing. In this case, the

background video was recorded several seconds before the test sequence.

4.2 Ground Truth
A measure of ground truth is required in order to quantitatively evaluate the success

of the proposed system. Ground truth is defined as the edges that an ROV operator

would like to see highlighted. Some of the ground truth edges are difficult to see,

and some narrow bars (with top and bottom edges) are marked only with a single

edge. Although some of the ground truth edges are unlikely to be detected by this

or other systems, they represent the benchmark of an ideal system against which

the proposed system can be measured.

An annotation tool was developed to allow ground truth to be easily generated.

The tool consists of a Graphical User Interface (GUI) that automatically loads the

next video frame and allows the user to identify each edge by clicking the two

endpoints. An annotation file is created with the pixel locations of all the ground
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Figure 4.1: Screenshot of annotation tool. Ground truth edges (blue line seg-
ments) are created for every tenth video frame by selecting the end
points (red circles).

truth edges for each image.

The user interface for this tool is shown in Figure 4.1. Each tenth frame was

annotated (three annotated frames per second). There are 1383 ground truth edges

over the full sequence. A subset of the ground truth annotations can be seen in Fig-

ure 4.4 and Figure 4.5. The black and blue lines are ground truth. The annotations

were reviewed by the ROV operator who provided the video sequences.

4.3 Test Methodology
For each annotated image, the line segments identified by the system were com-

pared to ground truth. Matching line segments are considered true positives, line

segments that do not match ground truth are considered false positives, and ground
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truth lines with no match are considered false negatives. The two numbers, false

positives and false negatives, are reported for each ground truth image as a means

of quantitatively evaluating the system.

The scoring for matches is binary; the result is either true or false without as-

signing a value to the quality of the match. The line similarity measure described in

Section 3.2.5 is used to identify matches between ground truth and system results.

The direction of the gradient is not considered and as a result the bottom and top

of a thin white bar are considered matches for each other.

The results of several tests are presented. The first test is the performance of

the proposed system excluding the SMCtracker (detector only). This characterizes

how successful the system is at distinguishing the targets from the background by

processing each frame independently. The performance of the detector is impor-

tant, since edges that are never identified by the detector cannot be tracked by the

full system. The second test is the performance of the full system (detector plus

tracker). This test demonstrates the effects of gathering evidence over time; it also

confirms that our method for motion estimation allows tracked edges to be trans-

formed from one time step to the next with sufficient accuracy. By studying how

these results change over the course of the dataset, we see how the system performs

in the face of varying levels of marine snow, camera speeds, and contrast of target

edges.

Finally, the effects of three parameters are evaluated. The parameters are: the

size of the time window, t, over which temporal median is performed, the edge

strength threshold for detection, γdetect , and the threshold for retaining a tracked

target, γtrack. The purpose of these tests is not to identify the single, optimal value

of each parameter, but rather to demonstrate how system performance is affected

and to identify a range of parameter values that produce reasonable results.

For the first set of tests, parameters were set to t = 1, γdetect = 0.02 and γtrack =

0.4 and held constant throughout the test sequence. Depending on the operational

goals of the ROV operator and the desired trade-off between false negatives and

false positives, these may not be the optimal parameter settings but they do re-

sult in reasonable conditions for benchmarking system performance. When testing

the effects of varying parameters, the parameter under consideration was adjusted

while maintaining the other two at the values given above. It is possible that ad-
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Figure 4.2: System performance as percentage of number of ground truth
edges.

justing these parameter values during the video would improve results; this was not

tested.

Each test was run 15 times. The system detector is deterministic and therefore

gives the same results each time. The tracker is probabilistic and mean results are

reported. The mean error rates over the full dataset are reported to ± 2% with

≥95% confidence.

4.4 Test Results

4.4.1 Target Detection

The detector alone returns approximately 23% false negatives and 9% false pos-

itives over the entire dataset. These results are given in Figure 4.2; they demon-

strate that the system can successfully distinguish the targets from the background.

Further understanding of system performance can be gained by studying the per-

formance over time.

Figure 4.3 shows the number of false negatives and false positives for each

ground truth image over the test dataset. The number of line segments is shown

rather than percentages since the number of ground truth edges varies from frame

to frame. From this graph we see that the system performs better for some video

segments than others. For example, in the first 350 frames there is no more than
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Figure 4.3: System performance every tenth frame. For comparison pur-
poses, the number of ground truth edge in each frame is shown. Tracker
error rates are reported to ± 0.4 with ≥95% confidence. (a) The detec-
tor has fewer false positives than the tracker and both have maxima at
the start and end of the sequence. (b) The detector has more false nega-
tives than the tracker. The spikes in false negatives are smaller than the
spikes in false positives.
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(a) Frame 0 (b) Frame 100 (c) Frame 200

(d) Frame 300 (e) Frame 400 (f) Frame 500

(g) Frame 600 (h) Frame 700 (i) Frame 800

(j) Frame 900 (k) Frame 1000 (l) Frame 1100

(m) Frame 1200 (n) Frame 1300 (o) Frame 1400

Figure 4.4: Results for detection only. Black and blue lines are ground truth
annotations. Green and red lines are system results. Blue lines are false
negatives. Red lines are false positives.
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one false positive per frame and a low false negative rate. The false negatives

increase after frame 350 while the number of false positives stays relatively low.

There is a spike in both false positives and false negatives around frame 1400.

These differences in performance reflect changing conditions in the video and can

be better understood by examining individual video frames.

Figure 4.4 shows results for every hundredth frame. The detector results and

ground truth are superimposed on the raw images, with blue lines representing

false negatives and red lines representing false positives. As would be expected,

the higher-contrast edges are detected more often. Lower-contrast edges that are

detected are more likely to be inexact matches, with only a portion of the line

segment identified.

We can make several observations about these results. In frames 100 through

500, the camera moves slowly, there is moderate marine snow and the targets are

close to the camera. There are few false positives and the false negatives are on

the lower-contrast targets. Some false positives, including those in frames 300

and 800 and the rightmost one in frame 600, appear to be aligned with portions

of the real object that were not included in ground truth. The tether of the ROV

becomes visible sometime between frame 900 and 1000 and moves quickly. Due

to the automatic camera settings, the appearance of the bright tether reduces the

contrast of the rest of the image. Frame 1000 shows a case where the background

subtraction was not able to remove the lighting pattern at the top of the image. This

is probably due to the change of contrast caused by the tether. Despite the heavy

snow in frame 1400, there is only one false positive, although many true edges

were also missed.

Overall, the detector is successful. As would be expected, the number of errors

is directly affected by the magnitudes of the intensity gradients of the target edges

and by the presence of high-contrast noise. The effects of these factors were not

quantized because the dataset does not include video segments in which the factors

are independently varied.
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(a) Frame 0 (b) Frame 100 (c) Frame 200

(d) Frame 300 (e) Frame 400 (f) Frame 500

(g) Frame 600 (h) Frame 700 (i) Frame 800

(j) Frame 900 (k) Frame 1000 (l) Frame 1100

(m) Frame 1200 (n) Frame 1300 (o) Frame 1400

Figure 4.5: Results for full system with tracker. Black and blue lines are
ground truth annotations. Green and red lines are system results. Blue
lines are missed detections. Red lines are false positives. Figure 4.3
gives mean results over 15 tests and so will not exactly match the num-
ber of errors in these images.
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4.4.2 Target Tracking

The addition of the tracker to the system decreased false negatives from 23% to

14% at the cost of increasing false positives to approximately 22%. This trend is

expected since edges from previous time steps are carried forward by the tracker,

resulting in better target identification but also allowing errors to propagate.

The overall percentages are given in Figure 4.2. Figure 4.3 shows the mean

results over time. They follow the same general trends as the detector alone but

have more severe spikes in numbers of false positives. The variance is not plotted

in Figure 4.3 but is relatively constant and each point is reported to ± 0.4 with

≥95% confidence.

Figure 4.5 shows results for every 100th frame. Again, the higher contrast tar-

gets are more likely to be identified. Frames 900, 1100 and 1300 in Figure 4.5 give

examples where the background subtraction failed to remove the lighting artifact

in the top centre of the image and caused false positives.

Many of the false positives in frame 1300 have similar orientations. This is

also observed at other times in the sequence (e.g. Figure 4.9 (e) and Figure 4.11

(c)), although the dominant orientation changes over time. Although it is difficult

to tell from the still images, the orientation of the false positives is aligned along

the direction of camera motion. The faint edges causing the false positives are most

likely caused by motion blur of marine snow.

4.4.3 Parameter Tuning

Three parameters are considered: the size of the time window t over which tempo-

ral median is performed, the detection threshold γdetect , and the tracking threshold

γtrack. Table 4.1 shows the parameter values that were tested. The values were

selected to focus on a performance range that would be of practical interest to a

human operator.

Time

The parameter t was tested for values ranging from 1 (no temporal median filtering)

to 5. The results, shown in Figure 4.6, indicate that the system is not very sensitive

to this parameter over the range tested. The best overall system performance is
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(c) False negatives over time

Figure 4.6: System performance for different values of the parameter t. (a)
Performance curves for tracker and detector. Tracker error rates are
reported to ± 2% with ≥95% confidence. The corresponding value
of t is shown for each datapoint. Overall performance is not greatly
affected by varying t within this range. (b) False positives for three
values of t. Although t = 1 shows the best overall performance, there are
segments of the video during which a higher value of t has fewer false
positives. (c) False negatives for three values of t. The difference in
mean performance between parameters is less than one edge per frame.
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(a) Frame 50, t=1 (b) Frame 50, t=5

(c) Frame 940, t=1 (d) Frame 940, t=5

(e) Frame 1090, t=1 (f) Frame 1090, t=5

Figure 4.7: Sample video frames for different values of the parameter t.
Black and blue lines are ground truth annotations. Green and red lines
are system results. Blue lines are missed detections. Red lines are false
positives. (a-b) With heavey marine snow, t = 5 has no false positives
while t = 1 has many. (c-d) The edges of the fast-moving tether are
properly localized for t = 1 but not t = 5. (e-f) The tether is stationary
and the edges are localized equally well by t = 1 and t = 5.
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Table 4.1: Parameter values for testing

Parameters

Test t γtrack γdetect

Time 1 0.40 0.02
3 0.40 0.02
5 0.40 0.02

Detection 1 0.40 0.01
1 0.40 0.015
1 0.40 0.02
1 0.40 0.025
1 0.40 0.03
1 0.40 0.06

Tracking 1 0.25 0.02
1 0.325 0.02
1 0.40 0.02
1 0.475 0.02
1 0.55 0.02
1 0.70 0.02

achieved for t = 1 although the difference in results is not significant. Both the

false positives and false negatives increase slightly with increasing t.

Unlike the tracker, performance of the detector is best when t = 3 and worst

when t = 1. The most likely explanation is that the detector operates best when the

temporal median filter is large enough to reduce noise but not so large as to lose

information.

Figure 4.6 shows the results over time. This shows that no value of t is always

best; a low value of t is beneficial at certain points in the video sequence and

detrimental at others. Figure 4.7 gives a few examples of this. There is heavy

marine snow and quick camera motion in frame 50 which results in more false

positives for lower values of t. At frame 940 there is quick motion of the bright

white tether. The edges of the tether are properly identified and localized for t = 1

but not for t = 5 because the leading edges of the tether are filtered out. Frame

1090 gives another example of a higher value of t outperforming a lower value.
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As suggested by the shape of the curve in Figure 4.6, adjusting the value of t is

not necessarily a trade-off between false negatives and false positives. The equal

error rate does not lie on the curve produced by these tests. Instead, the value of t

can be chosen to minimize all errors for a given set of environmental conditions. A

low value of t is suitable for fast motion and low snow while a higher value of t is

best for slower motion and heavier snow.

Detection Threshold

The parameter γdetect was evaluated for values of between 0.01 and 0.06. The

equal error rate for this dataset is approximately 0.159 and occurs when γdetect is

between 0.03 and 0.06. Decreasing γdetect results in fewer false negatives and more

false positives. As shown in Figure 4.8, this trend is observed under all conditions

in the test video. This is to be expected since a lower threshold admits smaller

intensity gradients, whether they are true edges or not. The results for the detector

alone follow the same trend as the tracker results.

Figure 4.9 gives examples of system performance at several points in the video.

In frame 630, the lower value of γdetect results in more false positives but one less

false negative. Frames 1420 and 1440 show system performance when the marine

snow is heavy and the target object is faintly visible. These images clearly illustrate

that the lower parameter setting results in fewer false negatives and more false pos-

itives. Frame 1440 gives another example of the improved quality of the matches

for the lower parameter value. This is not because the lower parameter causes bet-

ter detections, but because it allows the target to be detected sooner, giving the

tracker more time to iteratively improve the quality of the fit.

If the goal is to reduce false negatives, γdetect should be low, regardless of con-

ditions in the video. The system’s sensitivity to the parameter depends, of course,

on the intensity gradients in the image. For many parts of the segment, changing

γdetect does not have a strong effect, indicating that the strengths of the true edges

are outside the range tested. However, in cases like the spike around frame 1450,

the edge strengths fall within the range of the tested thresholds and therefore the

results are noticeably affected by the parameter setting.
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Figure 4.8: System performance for different values of γdetect . (a) Perfor-
mance curves for tracker and detector, including the equal error point at
0.159. Error rates are reported to ± 2% with ≥95% confidence.. The
corresponding value of γdetect is shown for each datapoint. (b) False
positives for three values of γdetect . The lowest value of γdetect results
in the most false positives and vice versa. (c) False negatives for three
values of γdetect . The lowest value of γdetect results in the fewest false
positives and vice versa. Changing γdetect has a smaller effect on false
negatives than false positives.
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(a) Frame 630, γdetect=0.02 (b) Frame 630, γdetect=0.06

(c) Frame 1420, γdetect=0.02 (d) Frame 1420, γdetect=0.06

(e) Frame 1440, γdetect=0.02 (f) Frame 1440, γdetect=0.06

Figure 4.9: Sample video frames for different values of γdetect . Black and
blue lines are ground truth annotations. Green and red lines are system
results. Blue lines are false negatives. Red lines are false positives. (a-
b) A local maximum in the number of false positives. (c-d) The target
edges fall below the threshold of γdetect = 0.06 and above γdetect = 0.02.
(e-d) Only two edges are above γdetect = 0.06. All other target edges, as
well as six noisy edges, are above γdetect = 0.02
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Tracking Threshold

The parameter γtrack was evaluated for values between 0.25 and 0.7. The equal

error rate for this dataset is 0.164 and occurs when γdetect is approximately 0.5.

Similar to the results for γdetect , the smaller the value of γtrack, the lower the rate

of false positives and the higher the rate of false negatives. This can be seen in

Figure 4.10. In this case, the performance of the detector is not affected.

Figure 4.11 gives examples of system performance at several points in the

video. In frame 240, the system has no false positives or false negatives for

γtrack = 0.4 and two of the target line segments are too faint to be detected when

γtrack is increased. By contrast, there are significant numbers of false positives in

frame 1280 when γtrack = 0.4. As observed in the previous section, many of the

false positives are aligned with the camera motion. In frame 1410, only one target

edge is correctly tracked when γtrack = 0.7. Overall, the examples in Figure 4.11

show that an operator would likely wish to adjust the value of γtrack for different

conditions to trade off false positives and false negatives.

Discussion

This set of tests shows the effects of varying the three parameters t, γdetect and

γtrack. The optimum value of t is dependent on the conditions in the video and tests

suggest that t = 1 is suitable for moderate snow conditions and faster motion while

a higher value of t is appropriate for heavier snow and slower motion. There is a

gradual and predictable change in the system performance as γdetect and γtrack are

varied. Increasing either of these parameters results in more false negatives and

fewer false positives. The values can be chosen to create the appropriate trade-off

between false negatives and false positives for a given task.

Note that the overall percentage of false positives could have been reduced

in all cases by reporting the numbers for frames 100 - 1200 only. This indicates

that the overall number can be misleading because it does not tell the whole story.

However, the shape of the performance curves indicate trends that would hold even

if the scales on the axes were shifted by the selection of a different video segment.
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Figure 4.10: System performance for different values of γtrack. (a) Perfor-
mance curves for tracker and detector, including the equal error point
at 0.164. Tracker error rates are reported to ± 2% with ≥95% confi-
dence. The corresponding value of γtrack is shown for each datapoint.
The detector is not affected by the value of γtrack and therefore appears
as a single point. (b) False positives for three values of γtrack. The
lowest value of γtrack results in the most false positives and vice versa.
(c) False negatives for three values of γtrack. The lowest value of γtrack
results in the fewest false negatives and vice versa.
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(a) Frame 240, γtrack=0.4 (b) Frame 240, γtrack=0.7

(c) Frame 1280, γtrack=0.4 (d) Frame 1280, γtrack=0.7

(e) Frame 1410, γtrack=0.4 (f) Frame 1410, γtrack=0.7

Figure 4.11: Sample video frames for different values of γtrack. Black and
blue lines are ground truth annotations. Green and red lines are system
results. Blue lines are false negatives. Red lines are false positives.
(a-b) A value of γtrack = 0.4 results in zero errors and increasing the
threshold to γtrack = 0.7 creates only two false positives. (c-d) Motion
blur causes false positives. (e-f) Most edges are strong enough to be
detected but fall below the threshold of γtrack = 0.7.
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4.5 Summary
The system was evaluated against a video recorded during an ROV mission in water

with moderate to heavy marine snow. Overall, the system performs well under the

test conditions.

The detector alone (without tracking) returns more false negatives than false

positives under nearly all test conditions. The tracker carries the detector results

forward over time and reduces the number of false negatives while increasing the

false positives. For this application, the tracker results are preferable to the detector

alone since fewer of the target edges are missed.

The equal error rate of the system with tracker is approximately 16% and the

balance between false negatives and false positives can be adjusted by parameters.

Lower false negative rates are achieved by decreasing one or both of the detection

and tracking thresholds. For example, a false negative rate of 14% occurs with a

false positive rate of 22%.

The time parameter can be increased for better performance in heavy marine

snow but the vehicle must be maneuvered more slowly.

This testing was limited in the sense that the dataset was recorded for other

purposes and did not include several interesting test cases. Future research would

benefit from being able to set up such cases, such as recording the same scene with

the camera moving at different speeds.
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Chapter 5

Conclusions and Future Work

This project addresses the issue of automatic detection and tracking of man-made

objects in underwater environments with poor visibility and marine snow. This is

demonstrated using video captured by an ROV in Saanich Inlet, BC. The challenges

of this project are to account for marine snow and poor visibility, estimate camera

motion, detect low-contrast edges and track targets.

We review many related techniques and asses their suitability for this applica-

tion. We demonstrate a prototype system that consists of consists of a temporal

median filter, Canny edge detection, the Hough transform, Lucas-Kanade optical

flow estimation, and SMC filters.

Overall, the system performs well under the conditions in the test video. The

equal error rate is approximately 16%. Parameter tuning allows the false negative

rate to be reduced at the expense of increasing the false positive rate and vice

versa. Over the range of tested values, the false negatives were reduced to 13%

at the expense of increasing false positives to 26%. Conversely, the false positives

can be reduced to 17% at the expense of increasing false negatives to 16%.

The detector alone (without tracking) returns more false negatives than false

positives under nearly all test conditions. The tracker carries the detector results

forward over time and reduces the number of false negatives while increasing the

false positives. For this application, the tracker results are preferable to the detector

alone since fewer of the targets edges are missed.

Parameter tuning allows the system to be adjusted based on the conditions in
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the video. The time parameter, t, should be reduced for low-snow conditions or

fast motion and should be increased in heavy snow. When t is high, the ROV

operator must move the camera more slowly to prevent targets from being missed

or mis-localized. The two thresholding parameters, γtrack and γdetect , allow the ROV

operator to trade off false negatives and false positives. Low thresholds result in

fewer false negatives and more false positives.

The system performance is affected by many factors. Poorest performance

occurs under conditions of heavy marine show, low-contrast targets, and fast cam-

era motion. Performance also suffers if the background conditions in the image

change.

There are several avenues of future research, including alternative colour spaces,

feedback from vehicle sensors or controllers as input to motion estimation, auto-

matic parameter tuning (including edge strength thresholds), dynamic background

subtraction, and 3D object modelling. Testing under controlled conditions would

allow the effects of environmental conditions to be studied. Finally, a GPU-based

real-time implementation would then allow the system to be used in practice and

the system could allow real-time parameter tuning by a human operator.
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