
Background Subtraction with a Pan/Tilt Camera

by

Egor Tsinko

BSc. The University of Calgary, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

December 2010

c© Egor Tsinko, 2010

Abstract

Background subtraction is a common approach in computer vision to detect mov-

ing objects in video sequences taken with a static camera. Some background sub-

traction algorithms have been extended to support a pan/tilt camera but they are

required to provide a background mosaic for motion estimation purposes. This

thesis describes a system that avoids this requirement by separating the motion

estimation system and background subtraction system into two separate modules.

The first module performs motion compensation by employing a feature based im-

age registration method and the RANSAC algorithm. The second module detects

moving objects in rectified image frames using a background subtraction algorithm

designed for a static camera.

Three background subtraction algorithms were extended in the course of this

project: mixture of Gaussians, non-parametric kernel density estimation and code-

book. This thesis demonstrates the usefulness of separating of motion estimation

from the background subtraction system as it allows us to extend any background

subtraction algorithm designed for a static camera to support a pan/tilt camera. The

detection results are presented for both indoor and outdoor video sequences taken

with a pan/tilt camera.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

Glossary . viii

Acknowledgments . ix

1 Introduction . 1

2 Related Work . 8
2.1 Static camera . 8

2.1.1 Parametric methods . 9

2.1.2 Non-parametric methods 11

2.1.3 Spatial methods . 14

2.2 Moving camera . 16

3 Motion Model Estimation and Mosaic Building 21
3.1 Homography . 22

3.2 Direct linear transformation . 23

3.2.1 Normalization . 25

3.3 Minimizing geometric error . 25

3.4 Feature points and inlier selection 26

iii

3.5 Decreasing the number of outliers 27

3.6 Keypoints update strategies . 31

3.6.1 Recalculating keypoints 31

3.6.2 Appending keypoints . 33

3.6.3 Comparison of strategies 34

4 Background Subtraction . 38
4.1 Mixture of Gaussians . 40

4.2 Non-parametric kernel density estimation 45

4.3 Codebook . 47

4.3.1 Color model improvement 54

5 Results and Discussion . 65
5.1 Detection of moving objects in outdoor scenes 66

5.1.1 Sequence 1 . 67

5.1.2 Sequence 2 . 71

5.1.3 Sequence 3 . 76

5.2 Detection of moving objects in indoor scenes 78

5.2.1 Sequence 4 . 80

5.2.2 Sequence 5 . 82

5.2.3 Sequence 6 . 88

5.3 Discussion . 92

6 Conclusions and Future Work . 94

Bibliography . 97

iv

List of Tables

Table 4.1 Intersection rule for Short-term and Long-term models [36] . . 46

Table 4.2 Comparison of codebook algorithm with three different metrics

without using brightness statistics Î, Ǐ 64

Table 4.3 Comparison of codebook algorithm with three different metrics

with brightness statistics Î, Ǐ 64

Table 5.1 Comparison of the three background subtraction pan/tilt algo-

rithms for Sequence 1 . 70

Table 5.2 Comparison of the three background subtraction pan/tilt algo-

rithms for Sequence 2 . 75

Table 5.3 Comparison of the three background subtraction pan/tilt algo-

rithms for Sequence 3 . 79

Table 5.4 Comparison of the three background subtraction pan/tilt algo-

rithms for sequence by Xu . 83

Table 5.5 Comparison of the three background subtraction pan/tilt algo-

rithms for Sequence 5 . 86

Table 5.6 Comparison of the three background subtraction pan/tilt algo-

rithms for Sequence 6 . 91

v

List of Figures

Figure 1.1 Two frames from a typical surveillance sequence and the out-

put of a background subtraction algorithm. 4

Figure 3.1 Background mosaics built with and without using a Hough

transform . 30

Figure 3.2 Background mosaics built by recalculating keypoints and by

appending keypoints to the list 35

Figure 3.3 Background mosaic with misaligned areas outlined in red . . . 36

Figure 3.4 Number of keypoints in the list L 36

Figure 4.1 Four situations that a pan/tilt background subtraction algorithm

might encounter . 39

Figure 4.2 Frames 100, 200 and 300 of image sequence taken with pan/tilt

camera . 47

Figure 4.3 The color model of Kim et al. 51

Figure 4.4 Frame 400 and detection results from an artificial image sequence 57

Figure 4.5 Frames 0 and 251 of the Wallflower Camouflage video sequence 57

Figure 4.6 Classification results of frames 0 and 251 with ε = 8 58

Figure 4.7 Classification results of frames 0 and 251 with ε = 1 58

Figure 4.8 The color model for the codebook (CB) algorithm used in this

thesis. 60

Figure 4.9 Classification results of frames 0 and 251 with the threshold

for θ = 2 ◦ . 61

Figure 4.10 Normalized vector distance (adapted from [19]) 61

Figure 5.1 Frames 501, 604, 700 and 949 of Sequence 1 67

vi

Figure 5.2 Frames 625, 720, 850 and 930 of Sequence 1 with ground truth

and detection results . 69

Figure 5.3 Background model for the mixture of Gaussians (MOG) algo-

rithm at frames 625 and 720 71

Figure 5.4 Frames 78, 180, 413 and 829 of Sequence 2 72

Figure 5.5 Frames 400, 460, 660 and 900 of Sequence 2 with ground truth

and detection results . 74

Figure 5.6 Classification results for frames 660 and 900 of Sequence 2

produced by non-parametric kernel density estimation (KDE) . 76

Figure 5.7 Frames 350, 430, 500 and 570 of Sequence 3 with ground truth

and detection results . 77

Figure 5.8 Frames 1 and 52 of Sequence 4 by Xu[41] 80

Figure 5.9 Frames 65, 95, 125 and 150 of Xu sequence with ground truth

and detection results . 81

Figure 5.10 Frames 400, 600, 720 and 999 of Sequence 5 84

Figure 5.11 Example of radial distortion in Sequence 5 84

Figure 5.12 Frames 400, 600, 720 and 999 of Sequence 5 with ground truth

and detection results . 87

Figure 5.13 Frames 239, 314, 406 and 442 of Sequence 6 88

Figure 5.14 Frames 239, 314, 406 and 442 of Sequence 6 with ground truth

and detection results . 90

vii

Glossary

BG background

BS background subtraction

CB codebook

DLT Direct Linear Transformation

EM expectation maximization

FG foreground

FP false positive

FN false negative

GT Ground Truth

KDE non-parametric kernel density estimation

MLESAC maximum likelihood estimation sample consensus

MOG mixture of Gaussians

MRF Markov random field

NVD normalized vector distance

PDF probability density function

RANSAC Random Sample Consensus

SIFT Scale Invariant Feature Transform

viii

Acknowledgments

I would like to acknowledge profound contribution to this work made by a number

of individuals. First of all I would like to thank Dr. Bob Woodham for being my

supervisor, his guidance, encouragement and financial support. I would also like

to express my gratitude to Dr. Jim Little for his help in getting me accepted into

the Masters program at UBC. Special thanks goes to Tomas Hoffman for his help

in creating test video sequences. Finally, I would like to thank my wife Yulia for

all the help and support she offered me.

ix

Chapter 1

Introduction

The work presented in this thesis extends a group of background subtraction algo-

rithms designed to segment moving objects in video sequences taken with a static

camera. The extension relaxes the camera’s motion constraints and allows back-

ground subtraction algorithms to build the background model and subtract a back-

ground from video sequences taken with the camera that rotates about its optical

center thus widening the application range of these algorithms.

One of the active problems in the field of computer vision is to segment an

image into “interesting” and “uninteresting” regions for future processing. The

“interesting” regions might be defined by object categories such as “cars” or “hu-

mans”. Alternatively they might be defined by the objects’ physical properties such

as change of position or orientation, i.e., “moving objects”.

Background subtraction is a group of algorithms whose task is to separate mov-

ing objects from the rest of the scene in a camera’s visual field. All stationary

objects of a scene are considered to be “uninteresting” and the goal of the algo-

rithm is to segment moving objects from the “uninteresting” static objects. Usually

there is no notion of an object in background subtraction; the algorithm just locates

groups of pixels that are different from the background model. These pixels can be

grouped together as objects at later stages of image processing.

Usually background subtraction is used as a first step in a high-level sys-

tems [35]. The most common ones are surveillance[32] and tracking algorithms[16].

Each frame of a video sequence is segmented and moving (i.e., “interesting”) ob-

1

jects are located. These objects are then tracked and classified. For example, an

algorithm by [32] uses background subtraction to segment the moving objects and

then classifies them into different categories based on activity patterns. Another

algorithm [37] employs background subtraction to track human bodies in complex

scenes. Alternatively, background subtraction can be used to remove moving ob-

jects from the scene to generate a static background scene.

Essentially, background subtraction can be seen as a classification problem

— the goal of such an algorithm is to classify each pixel of a video sequence

as “foreground” or “background”, where “foreground” means that this pixel be-

longs to some moving object (i.e., “interesting”) and “background” means that the

pixel belongs to a static, or “uninteresting” object. Some apparent motion can

still be considered “uninteresting”, for example repetitive motion of swaying tree

branches, flags waving in the wind or a flashing light at the intersection are usually

not considered to be “interesting”. Depending on the task, these types of motion

could be filtered out.

In order to perform a classification the algorithm needs to build a model, which

is an internal representation of the background. To detect moving objects the al-

gorithm then compares each new frame to this model. In the simplest case this

background model could be a reference image which contains the scene without

any moving objects. The algorithm calculates the difference between the reference

image and the current frame to find the “interesting” pixels. In some other algo-

rithms the background model is more complex than that and incorporates probabil-

ity distributions of the values for each pixel.

In most of the cases there is no training set of pre-labeled images to build a

background model. Therefore, the key assumption in background subtraction is

that most of the pixel values in the image sequence belong to the background. This

usually results in a higher number of mislabeled pixels in the beginning of the

process as some moving objects are classified as background since there is not yet

enough evidence. Eventually the model stabilizes as more samples are collected

and the number of misclassified pixels decreases. To avoid this problem some

algorithms perform a training step during which they collect enough samples over

some period of time to build a background model which contains pixel values that

reappeared often during the training.

2

In surveillance scenarios the camera usually monitors a scene for a long period

of time, during which the background scene might change. For example in an

outdoor scene the lighting conditions might change as sun travels across the sky.

Also, some new objects can be introduced or removed from the background such

as parked cars leaving the scene or new cars parking at the parking lot. The back-

ground subtraction algorithm should be able to adapt to such changing background,

and therefore the background model should be able to change with time.

A serious limitation of background subtraction algorithms is that each pixel

in an image frame is typically considered to be independent [4]. Typically in the

image frame a brightness and a color of neighboring pixels that belong to the same

object are similar. Therefore these pixels should not be labeled as background

or foreground independently. The probability of one pixel having a specific label

should depend on how other pixels belonging to the same object were labeled. Sev-

eral solutions have been proposed for this problem — from using Markov Random

Fields [40] to using a multi-scale image pyramids [42]. However, these solutions

significantly increase computation time and, therefore, currently are impractical

when real-time processing is needed.

Another limitation of background subtraction algorithms is the common re-

quirement that the camera remains static. There is no notion of spatial position for

each pixel in a background subtraction algorithm. Therefore, if camera’s orienta-

tion changes the algorithm will not know the position of the new pixels relative to

the background model. This severely limits the application range of background

subtraction algorithms.

Given the availability of cheap pan/tilt cameras surveillance can be performed

using rotating setups where camera sweeps over a large area. This means that back-

ground subtraction algorithms that are used in these kind of applications must be

able to accommodate camera movement. This thesis addresses the case of pan/tilt

camera motion in background subtraction. A typical surveillance scene taken with

a pan/tilt camera can be seen in Figure 1.1. Figure 1.1a and Figure 1.1b show

frames 50 and 100 respectively. In this sequence a pan/tilt camera monitors an

intersection. During the sequence, a car and a pedestrian pass by. The panning

motion of the camera along with some background objects, in this case trees and

poles, that partially occlude the moving object makes this sequence challenging

3

(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Two frames from a typical surveillance sequence and the output
of a background subtraction algorithm. Figure 1.1c and Figure 1.1d
show manually produced ground truth where white pixels denote fore-
ground and black pixels denote background. The results produced by
the algorithm described in this thesis are shown in Figure 1.1e and Fig-
ure 1.1f.

4

and beyond the scope of a background subtraction algorithm designed for static

camera. Figure 1.1c and Figure 1.1d show the ground truth for these two frames,

where “uninteresting” pixels are labeled black and “interesting” pixels are white.

The segmentation produced by the algorithm described in this thesis can be seen in

Figure 1.1e and Figure 1.1f. Note, that the orientation of the camera has changed

between these two frames and the algorithm was able to recognize that and suc-

cessfully distinguish the camera motion from the motion of the foreground object.

A pole and a tree in Figure 1.1f are also correctly classified as background.

Since the assumed camera motion only involves rotation about the camera’s

optical center there is no motion parallax [20]. This simplifies the problem of esti-

mating camera motion since the apparent motion of all objects in the scene doesn’t

depend on their distance from the camera. With this assumption the motion param-

eters can be estimated from the video sequence and the frames can be warped to a

common background coordinate system. This reduces the problem to a stationary

camera case when each frame of the sequence only covers some part of the overall

background model [33].

The goal of the described algorithm is to detect object motion independent of

the motion introduced by camera pan/tilt. The algorithm is a two-step process: first,

the camera motion is estimated and this motion is compensated for by transforming

the new frame into the coordinate system of the background model; second, back-

ground subtraction is performed normally in the background model’s coordinate

system using the warped frame.

There are several ways to compensate for camera motion. One approach is to

build and maintain an explicit background mosaic image. Each time a new frame

is registered, each matching pixel in the mosaic image is updated by averaging

its value with the value of the corresponding pixel in the warped frame. This ap-

proach will work for both direct and feature-based image registration techniques.

In the first case the new frame is directly matched to the mosaic using one of the

existing techniques. In the second case the keypoints are calculated from both the

background mosaic and the new frame and then transformation between them is

calculated. Unfortunately, there is a problem with this approach. The presence of

moving objects in some image frames can decrease the quality of the mosaic and

the registration can be thrown off by an incorrect mosaic image [20].

5

To solve this problem the algorithm described in this thesis uses feature-based

image registration using SIFT keypoints [18]. The algorithm maintains a list of

SIFT keypoints instead of keeping an explicit background mosaic image. For each

new frame the matching keypoints are found in the list of background keypoints

and motion parameters are estimated using the RANSAC[8] algorithm. All the

keypoints in the new frame that don’t have matching keypoints in the list are then

added to the list. The idea is that adding keypoints that already have matches will

only create redundancy and quickly increase the size of the list. By adding only

unmatched keypoints the list size doesn’t increase rapidly and the keypoints from

the previously unseen areas of the scene get incorporated into the list. There are

some keypoints from the moving object that also get added to the list, but exper-

iments have shown that in the surveillance scenarios where the moving objects

occupy a relatively small portion of the field of view these keypoints don’t affect

the registration and motion estimation.

For the background subtraction step the algorithm described in this thesis uses

variations of three state of the art algorithms — mixture of Gaussians [31], non-pa-

rametric kernel density estimation [6] and the codebook approach [15]. Initially all

these algorithms were designed to work with a static camera. In a pan/tilt scenario

some areas of the scene that were not part of the training sequence may become

visible later as the camera rotates. Therefore the background subtraction algorithm

must be able to grow the model as previously unseen areas of the scene become

visible. This thesis extends each of the three background subtraction algorithms to

support dynamically growing the background model.

A new method to compare codewords is suggested for the codebook algorithm.

To match two codewords the original algorithm developed by Kim et al.[15] calcu-

lates the Euclidean distance between the codewords’ color vectors. It is shown that

calculating angles instead of a distance produces more robust results under differ-

ent illumination and actually improves the detection rate for the original codebook

algorithm.

The experimental results presented Chapter 5 show that all of the three back-

ground subtraction algorithms extend to handle pan/tilt camera and show satisfac-

tory performance in surveillance scenarios. This suggests that the motion compen-

sation approach demonstrated in this thesis can be used to extend any static camera

6

background subtraction algorithm to a pan/tilt configuration.

The rest of the thesis is organized as follows. In Chapter 2 a review of the

related techniques for both static and pan/tilt cameras is given. Descriptions of

the motion model and of the algorithm to estimate camera motion are given in the

Chapter 3. Chapter 4 describes the three background subtraction (BS) algorithms

used in this thesis. The results of the experiments and the comparison of the three

algorithms are given in the Chapter 5. Chapter 6 concludes the thesis and suggests

future work.

7

Chapter 2

Related Work

Background subtraction characterizes a family of algorithms used to detect moving

objects in a video sequence. It is a well studied area of computer vision with a

history of over 25 years. The core of every background subtraction algorithm is a

background model which is an internal representation of static objects in the scene.

Each time a new image frame is obtained it is compared to the model and pixels that

represent moving objects according to the current model are marked as foreground.

Many different background subtraction algorithms have been proposed that model

the value of each pixel in an image as a probabilistic distribution. These algorithms

can be classified by the type of the distribution used to represent the background

model. Parametric methods assume that the background can be modeled by a given

parametric distribution while non-parametric methods don’t make this assumption.

That is, they don’t use parametric distributions to model the background.

2.1 Static camera
In the simplest case the background subtraction is performed on an image se-

quence taken with a static camera. Since there is no significant camera motion

between consecutive frames in an image sequence, it is reasonable to assume that

the same small area of the scene is always observed by the same sensor in the

camera. Therefore each pixel in a video sequence consistently represents the same

part of the scene. Once a moving object passes through the scene the values of

8

pixels that correspond to the parts of the scene occluded by the moving object

will change. Indeed the simplest way to detect changes in the scene described

in [17, 35] is to compare pixel values of two adjacent frames in the video sequence

and mark the pixels whose difference is greater than some predefined threshold as

foreground. Although simple and fast, this approach does not retain any history

about the scene and only edges of moving objects are detected as objects rarely

move fast enough to cover entirely new area of the scene in the next frame [17].

2.1.1 Parametric methods

Parametric methods assume that each pixel in the scene can be modeled as a statisti-

cal process and this process can be approximated by a given parametric distribution

or a mixture of distributions. In most of the cases [9, 26, 31, 39] a Gaussian distri-

bution is used for this purpose. Parametric models are simple and computationally

inexpensive ways to represent the process that generates the background. However,

they cannot quickly adapt to a changing background [6]. If the background scene

suddenly changes, for example when a light is switched on or off in an indoor en-

vironment, these algorithms fail to classify pixels correctly until the background

model finally adapts to the new background.

A simple idea to represent a background model was used in a straightforward

statistical approach by Wren et al. [39]. In this algorithm each pixel in the visual

field is represented by a single Gaussian distribution in a background model. To

classify a new pixel the algorithm compares it to the mean and depending on how

far it is from the mean marks it as either foreground or background. Each time

the new pixel is classified as background the mean of a corresponding Gaussian is

updated using a running average scheme. The advantage of this method over the

simple interframe differencing is that it can adapt to a slowly changing background

based on a learning rate that is used in an updating mechanism. Therefore this

method can work for scenes in which lighting can slowly and dynamically change

such as outdoor scenes. The problem of this approach is that it assumes that back-

ground is uniformly distributed and cannot represent multimodal backgrounds such

as a flashing light or waving trees.

Several comparable approaches that use a Kalman filter to update a background

9

model have been proposed [14, 16, 27]. Similarly to the previous algorithm, the

background model is represented by an image of static objects in the scene (i.e.,

means of background Gaussians). To detect moving objects these algorithms sub-

tract the current image from the background image and threshold the difference.

The common idea in these techniques is that they use a Kalman filter to update

the background model, which means that a pixel value in the background image

still gets updated even if the corresponding pixel in the new image frame is clas-

sified as foreground. This allows the background model to recover in cases when

the algorithm mistakenly classifies foreground pixels as background. Neverthe-

less similarly to [39] these approaches use a unimodal distribution to model the

background and as a consequence are not able to represent repetitive motion in the

background scene such as a flashing light.

To capture complex backgrounds with repetitive motion another type of model

is needed. A number of approaches that use a mixture of several distributions [9,

25, 31] to represent multimodal background processes were introduced. In all the

cited cases a mixture of Gaussian distributions used to model the background.

One of the earliest algorithms that used a mixture of parametric distributions

is by Friedman and Russell[9]. In a traffic monitoring task, the authors modeled

the background process as a mixture of three Gaussian distributions, one of which

represented a road, another one represented a shadow on the road and the last one

represented vehicles. Therefore pixels that belong to road and shadow distributions

could be classified as background. Although tailored for a very specific task this

algorithm was one of the first steps towards background models that were repre-

sented by multimodal distributions.

Stauffer and Grimson introduced a more general algorithm that modeled each

pixel in the background model as a weighted mixture of several Gaussian distri-

butions [31]. The expectation maximization (EM) algorithm used for parameter

learning in [9] was too slow for real-time performance. Consequently, this ap-

proach used a K-means algorithm approximation to find the parameters and the

weights of each Gaussian distribution. In principle, the algorithm allows any num-

ber of Gaussians in the mixture model to belong to a background thus permitting

the model to capture complex backgrounds. A decision to which Gaussian a new

pixel belongs was based on the mean and variance of the different Gaussians. One

10

of the major advantages of this algorithm is its ability to have more than one distri-

bution to represent the background. This thesis uses Stauffer and Grimson as one

of the modules for background subtraction for a pan/tilt camera. A more detailed

description of the algorithm is given in Chapter 4.

Since the first publication by Stauffer and Grimson other researches have im-

proved and extended some aspects of the original algorithm [13, 25]. However, the

algorithm along with the whole group of parametric algorithms suffers from one

important drawback — in many cases a background process is very complex and

cannot be modeled by a single distribution or a mixture of Gaussian distributions.

Another problem parametric approaches have is that they are difficult to adapt to

high frequency variations in the background such as leaves shaking in the wind [6].

2.1.2 Non-parametric methods

Parametric models can handle complex backgrounds but their ability to success-

fully adapt to a changing background highly depends on the learning rate. If the

learning rate is low, the model fails to detect a sudden change in the background.

On the other hand if the learning rate is high, the model adapts too quickly and pix-

els that belong to the slow moving foreground objects become incorporated into the

model [15]. The high dependence on the learning rate and the inability of paramet-

ric mixture models to handle fast variations in the background [6, 15] led researches

to look for background subtraction approaches that avoid these problems. One such

group of background subtraction algorithms consists of non-parametric methods.

These approaches assume that the background process is complex and cannot be

modeled by a parametric distribution. Instead they use non-parametric approaches

to represent a background model. Non-parametric models are able to adapt to rapid

changes in the background and to detect objects with higher sensitivity [6, 15].

Elgammal et al. developed a method [6] that used a non-parametric kernel den-

sity estimation algorithm[23] to perform a background subtraction. During the

training phase the algorithm only collects sample values for each pixel in a training

data set. To classify a pixel in each new frame the probability density function is es-

timated using the Parzen window method[23] and the probability of the pixel being

foreground or background is calculated. To accommodate a changing background

11

the authors suggest maintaining two separate background models. One model is

updated blindly in FIFO manner. The other model employs a more selective up-

date mechanism in which only the pixels that are classified as background are up-

dated. This thesis uses this algorithm. It is explained in greater detail in Chapter 4.

This approach proved to be more sensitive to moving low contrast objects rather

than did a mixture of Gaussians (MOG)[31] and could quickly adapt to changes

in the background [6]. However, a lot of computational resources are required to

store all the samples and to estimate a probability density function (PDF) for each

pixel. This limits the ability of this method to model long background sequences,

as the model quickly “forgets” the samples in the distant past as new samples are

coming in. Therefore this approach may not be practical when the background re-

quires significant sampling over long-time periods [15]. In addition this approach

is very sensitive to the kernel bandwidth, a parameter that affects the shape of the

estimated PDF [24].

Several attempts [24, 36, 37] have been made to develop an algorithm that

would retain the advantages of the non-parametric kernel density estimation (KDE)

while decreasing the computational load and improving efficiency.

The approach by Wang and Suter[37] was inspired by RANSAC [8]. Their

algorithm, called SACON, keeps N recent pixel samples in a background model.

To classify a pixel in a new image frame the algorithm calculates a number of

samples in the model that agree with the new pixel (i.e., have their values close to

the new pixel value) and if this number is larger than some predefined threshold

the pixel is labeled as background, otherwise it is labeled as foreground. This

simple non-parametric background subtraction approach requires fewer parameters

in comparison to MOG [31] and is computationally efficient [37].

To overcome high sensitivity to kernel bandwidth and very high computational

load of KDE approach[6] Piccardi and Jan proposed a new method that is based

on the mean-shift algorithm[24]. The original mean-shift technique is an iterative

approach that can obtain the modes of a multi-variate distribution from a set of

samples[10]. In the case of the background subtraction the pixel’s recent values

are used as samples. Since this process is iterative it is very computationally inten-

sive and, therefore, cannot be used in real-time applications directly [24]. Due to

particular characteristics of the background subtraction problem (e.g., pixels have

12

only integer values), the authors were able to introduce several optimizations for

the mean-shift algorithm to reduce computational cost and to make the algorithm

perform background subtraction in real-time. The authors didn’t explain mech-

anisms used to update the background model. It is unclear how the algorithm

updates samples in the background model.

The inability of the KDE approach[6] to model long background sequences

motivated Kim et al. to develop a method that uses a codebook to model the back-

ground [15]. This approach builds a highly compressed background model that can

learn long background sequences without making parametric assumptions [15]. To

learn the background model during the training phase the algorithm builds a list

of codewords for each pixel. Each codeword contains information including av-

erage color value, minimum and maximum pixel brightness, and codeword access

frequency. If the background contains repetitive motion, like waving trees, pix-

els can have multiple codewords with each codeword representing a different ob-

ject that was seen by the pixel at some time during training. During the testing

phase the algorithm compares a pixel in a new image frame to the existing code-

words associated with the pixel position. If the pixel matches any codeword it is

labeled as background. Initially, this algorithm was not able to adapt to a slowly

changing background or to incorporate new information after the training was com-

plete. The authors proposed some extensions to the original algorithm to let it adapt

to slowly changing background and incorporate new objects into the background

model. More information about this approach along with an improvement is pre-

sented in Chapter 4.

Toyama et al. developed an algorithm that processed each frame of a sequence

at three different levels — pixel, region and frame [35]. At the pixel level the

algorithm assumes that each pixel is independent from other pixels and performs

a background subtraction using a one step Weiner filter. It stores a number of

past pixel values and tries to predict the next value of the pixel. If it is different

from the predicted, the pixel is marked as foreground. At the region level the

algorithm takes interpixel relationships into account thus making the algorithm

spatial. At this level the algorithm tries to detect regions in the frame that could

belong to one object. Finally, at the frame level the algorithm keeps track of a

number of pixels that are labeled as foreground in each frame. When this number

13

exceeds a threshold, the background model is switched to a new one. This keeps

the number of misclassified pixels to a minimum when there is a sudden change in

the background (e.g., lights turning on in a room).

2.1.3 Spatial methods

Usually parts of an image that represent the same object have similar color values.

This implies that there exists dependence among the pixels. The background sub-

traction algorithms discussed so far make the assumption that pixels in every image

frame are independent from each other. Algorithms that try to use this additional

information have been described. Background models that consider neighboring

pixels are called block-based or spatio-temporal [36]. Some consider blocks of

pixels instead of each pixel individually [19, 22, 29, 35]. In the work by Wu and

Peng[40] a Markov random field (MRF) is used to represent interpixel correlations.

Recently authors have described spatio-temporal extensions to existing background

subtraction algorithms [36, 40].

Matsuyama et al. suggest partitioning an image into a set of N×N pixel blocks

each of which can be represented by a N2 dimensional vector [19]. To build the

background model the algorithm calculates a median image of a training video

sequence and then computes vectors for each pixel from this background median

image. To perform background subtraction a variant of vector distance is calcu-

lated between the vectors in a new image frame and the vectors in the background

image. Whole blocks are classified as foreground or background based on the cal-

culated distance. Similarly, the algorithm by Seki et al.[29] subdivides the image

into blocks which are then represented as N2 dimensional vectors. The covari-

ance matrix is calculated for each block and it is then decomposed into eigenvalues

and eigenvectors. An eigenspace is then formed by taking eigenvectors with large

eigenvalues. To detect foreground moving objects the algorithm subdivides a new

image frame into blocks and projects them on to eigenspace. The background

subtraction is then performed using points in the eigenspace instead of the N2 di-

mensional vectors. Although these approaches are fast the quality of the result

is degraded and appears “blocky” because each block is completely classified as

foreground or background.

14

Instead of looking at smaller image blocks a method developed by Oliver et al.

considers a whole image frame as a single block [22]. To learn a background

model this algorithm calculates a covariance matrix of several samples of video

frames taken with a static camera. The covariance matrix is then diagonalized

using eigenvalue decomposition and M eigenvectors that correspond to M largest

eigenvalues are stored in a eigenbackground matrix ΦM which represents a back-

ground model. Since moving objects are always in a new location in each frame

they don’t contribute significantly to the background model and, therefore, are al-

lowed during the learning phase [22]. To detect moving objects during the back-

ground subtraction phase each new image frame is projected onto the eigenspace

using the matrix ΦM and then a distance D between the frame and its projection is

calculated. All the pixels where D is greater than a predefined threshold are marked

as foreground [22]. By calculating the covariance matrix this algorithm essentially

takes into account spatial dependencies between all the pixels in an image. How-

ever, this approach cannot incorporate new information into the background model

such as objects being relocated in the background or new objects becoming a part

of the background. Depending on the training set and the frequency, any repetitive

motion in the background will not be learned which will result in a large number

of misclassified pixels.

Vemulapalli and Aravind[36] extended the KDE model [6] to a spatio-temporal

domain. To consider interpixel correlations the authors suggest using 3-by-3 blocks

around each pixel in an image as 9 dimensional vectors to represent each pixel in a

background model. Since a 9-dimensional Gaussian kernel significantly increases

computational load for non-parametric kernel estimation the authors propose to

use a 9-dimensional hyperspherical kernel instead of a Gaussian kernel. Similarly

to [6] the authors use a global threshold on the estimated PDF to label each pixel

as foreground or background. Vemulapalli and Aravind argue that their approach

is significantly faster than the original KDE algorithm and produces better results

for noisy image sequences and dynamic backgrounds [36]. One drawback of this

approach is that switching to the hyperspherical kernel leads to worse foreground

detection as the Gaussian kernel provides a better estimation of pixel’s PDF [36].

Similarly Wu and Peng[40] developed a spatio-temporal extension to the code-

book (CB) algorithm [15]. The extension consists of two parts. The first is called

15

the spatial codebook. The authors make the assumption that due to image noise and

camera parameters background pixels can spatially fluctuate [40]. Therefore, dur-

ing the background subtraction phase, for each pixel in a new frame the algorithm

considers not only all the codewords in a corresponding location in the background

model but also codewords in the neighboring locations as well. The second im-

provement employs an MRF to model dependencies between current pixel labels

and the previous frame’s labels. The MRF consists of three layers: current pixel

values and previous pixel labels represent observable layers and current pixel la-

bels make a hidden layer. The algorithm employs an energy minimization routine

to find best labels for the current image frame. Although the results produced by

this approach are superior to the results obtained by using the original codebook

algorithm they come at a price of a great computational load.

2.2 Moving camera
Given the availability of pan/tilt cameras the assumption that a camera is stationary

restricts the application range of background subtraction algorithms [30]. In recent

years researchers have been attempting to overcome this limitation by extending

the background subtraction algorithms to support moving cameras. A common

theme [7, 12, 20, 26] is to utilize some form of motion compensation algorithm that

rectifies each frame of a video sequence to a coordinate system of a background

model and to perform the background subtraction in a normal fashion. Usually,

to simplify the motion compensation these algorithms impose a pan/tilt motion

constraint on a camera.

Sugaya and Kanatani introduced a method [33] that estimated camera motion

and performed a background subtraction from the entire video stream off-line. The

authors make the assumption that the camera model is affine and that there is no

significant camera orientation change. The algorithm extracts feature points from

all the images in the video sequence and creates motion trajectories for each point.

To find the camera motion between frames the algorithm employs an iterative pro-

cedure that finds the affine transformation that most of the trajectories agree on.

Then a background mosaic is created by mapping all the frames to a common ref-

erence frame. For pixels that have multiple values coming from different frames the

16

median value is used. Finally, for each frame in the sequence the labeling is done

by mapping the mosaic image into the frame coordinate system and performing

the background subtraction with this mosaic image. There are two major limita-

tions of this approach. First, the motion constraints used are unfeasible for real

life applications. Second, the simple background model does not support changing

backgrounds thus resulting in many misclassified pixels.

Sheikh et al. developed an algorithm [30] that performs background subtraction

on video sequences taken with a camera that can go through any type of motion

including rotation and translation. To make this possible the authors make two im-

portant assumptions: first, the camera projection is considered to be orthographic

and second, the background is rigid and dominates the whole scene. The first

assumption removes the problem of a motion parallax, the physical phenomenon

whereby the apparent motion of objects closer to the image plane is higher than

that of objects that are further away. Because of these two assumptions as the

camera moves all static rigid objects in the background have identical trajectories.

As the first step, the algorithm extracts and tracks salient points in an image se-

quence. Because of the above assumptions, the majority of the salient points will

be produced by the background objects and these salient points will be moving

along similar trajectories. The algorithm uses RANSAC[8] to find the background

trajectory that most of the points agree on. All the salient points are then labeled

as foreground or background depending on their agreement to the background tra-

jectory. An MRF representing the probability of each pixel label based on salient

point labels is used to produce pixelwise labeling. Generalizing beyond pan/tilt

constraints makes this approach useful for handheld devices. The assumption that

the camera is orthogonal limits the approach [30].

To accommodate camera rotation many approaches suggest building a back-

ground mosaic image to use as a reference frame for estimating camera motion

and performing the background subtraction. A problem with background mosaics

is that the total field of view cannot be larger than 180 ◦[7]. To solve this problem

one can use spherical or cylindrical coordinate representations for the background

mosaic but these representations are computationally intensive techniques [7]. In

Farin et al.[7] a solution to this problem is presented. The idea is to split the

background mosaic into a set of independent images, called multisprites. Each

17

multisprite covers a different part of the whole scene. This decreases both the

area of each multisprite as they are less distorted, and execution time. Finally this

allows for camera rotation angles greater than 180 ◦ [7]. After motion parame-

ters have been estimated by a conventional method, the training video sequence

is partitioned into a set of segments using an iterative approach that minimizes

the area of the multisprite that is produced by each segment. Moving objects are

then removed in cases where a single pixel in a multisprite corresponds to several

overlapping pixels in different image frames. This is done by applying a tempo-

ral median filter. The moving object detection is then performed by employing a

static camera background subtraction algorithm with a warped background sprite

that corresponds to the current image frame.

Ren et al. describe a pan/tilt background subtraction algorithm called spatial

distribution of Gaussians. Their algorithm performs motion segmentation in two

steps. First, the motion parameters are estimated and motion compensation is per-

formed on an image frame. Second, the background is subtracted using a back-

ground model resembling other mixture models [9, 31]. The background model

used in this algorithm allows for any number of Gaussian distributions in the mix-

ture although only one of them represents background. A precise match between

a new frame and the background mosaic is not required. This approach always

assumes a registration error. To minimize the effect of the error during the back-

ground subtraction stage the algorithm considers a window around each pixel. If

at least one pixel in the window matches the background distribution in the back-

ground model, the pixel is labeled as background. The size of this window can

change as the algorithm progresses depending on the registration error from the

motion estimation step. A key limitation of this approach is that only one Gaus-

sian distribution in the mixture is considered to be background thus essentially the

background is modeled as a unimodal distribution. More complex scenes that have

repetitive motion in the background cannot be described by this model [31].

Due to the complex motion of a mobile robot background subtraction generally

cannot be used when the robot is in motion. However, when the robot is station-

ary background subtraction can be used to detect moving objects in a field of view

of a robot head pan/tilt camera, if available. Hayman and Eklundh[12] developed

a background subtraction algorithm to use in this case. As the basis of their ap-

18

proach the authors used an MOG[31] approach for background subtraction. Motion

between a new frame and the background mosaic is estimated using corner features

and the MLESAC algorithm [34]. Since there exist registration errors in addition to

sub-pixel motion and motion blur there could be cases when a pixel is misclassified

because it is not compared with the right mixture of distributions. To address this

problem the authors propose a statistical model which is very similar to the model

by Ren et al.[26]. It considers neighboring pixel distributions in the background

model in order to label a pixel in a new frame.

During the background model initialization stage slowly moving objects can be

incorporated into the background model which leads to a large number of misclas-

sified pixels until the model stabilizes. Although this may not matter for algorithms

that run over a longer period of time and thus eventually stabilize themselves, it is

unsuitable when background subtraction is intended for a mobile robot, in which

case valid segmentation results are required quickly [12]. Hayman and Eklundh

address this problem by developing a bootstrapping procedure to set up the back-

ground model during the initialization stage. As with other approaches that use an

MOG[9, 13, 20, 26, 31] shortcoming of this algorithm is that the background model

cannot adapt to a rapidly changing background.

Similarly to other approaches [7, 12, 26, 33], a method by Mittal and Hutten-

locher[20] combines motion compensation with static camera background subtrac-

tion. The authors assume that there is no motion parallax which implies that the

camera motion is restricted to pan/tilt. An MOG[31] is used to represent the back-

ground model. The highest weighted Gaussian in each pixel mixture approximates

the most probable background value for the pixel. The means of these Gaussians

determine the background image for the registration step. To locate moving objects

each new image frame is registered against the background mosaic and a transfor-

mation matrix is obtained. Each pixel in the new frame is then warped to the

coordinate system of the background mosaic and background subtraction is per-

formed normally. To accommodate registration errors or a changing background

the algorithm compares the new pixel to a small neighborhood in the mosaic thus

essentially making it a spatial approach.

Most of the pan/tilt camera background subtraction approaches reviewed here

require a complete background mosaic for all possible camera orientations before

19

they can actually perform background subtraction. This severely limits their appli-

cation range as a video sequence containing all possible camera orientations must

be available for training the algorithm. This is not always feasible. A background

subtraction algorithm for pan/tilt camera should be able to grow its background

model on the fly as new parts of the scene become visible.

Many approaches developed for a pan/tilt camera use an MOG as the back-

ground model. One of the reasons for this is that it is very easy to extract a back-

ground image that represents static objects in the scene from an MOG model. This

image is then used to calculate camera motion parameters for a new frame. It is

not so straightforward to extract the background image from other static camera

background subtraction algorithms such as KDE[6] or CB[15]. Therefore another

desired property of a pan/tilt background subtraction algorithm is independence of

the background image used to estimate motion parameters from the background

model used for background subtraction.

The work described in this thesis separates background image maintenance

from the background model used by a given background subtraction algorithm.

They are kept as two different modules, one that performs motion compensation

and another that performs background subtraction. This allows the background

subtraction algorithm to be a ”plug-in“, which lets any background subtraction

algorithm designed for a static camera be used with a pan/tilt camera with minimal

changes.

20

Chapter 3

Motion Model Estimation and
Mosaic Building

This chapter describes the part of the system that deals with motion compensa-

tion. The goal of this subsystem is to register a new frame to the background

model’s coordinate system and provide the background subtraction subsystem with

the warped frame.

We assume that all frames of the image sequence are taken with a pan/tilt cam-

era that rotates about its optical center. In reality a typical camera will rotate about

some point that is not aligned with its optical center. But our experiments have

shown that it is not a major concern and does not result in significant registration

errors for scenes in which objects are sufficiently far away.

In the case of a pan/tilt camera all the frames are related by a homography [11].

We assume that the background model’s coordinate system is the coordinate sys-

tem of the first frame of a sequence. This means that the homography for the first

frame of the sequence is the identity matrix I. For each consecutive frame we cal-

culate a homography H that transforms the new frame to the background model’s

coordinate frame. The new frame and the homography H are then passed to the

background subtraction module. It is the responsibility of the background subtrac-

tion subsystem to maintain and to grow the background model depending on the

new frame and the homography H.

To estimate H we employ a feature based approach using Scale Invariant Fea-

21

ture Transform (SIFT) keypoints [18]. The motion estimation module maintains a

list of background SIFT keypoints, henceforth called L. Each time a new frame

is obtained a set of SIFT keypoints is extracted from it and these keypoints are

then matched to those in L. The homography H is then estimated in two steps.

Firstly, an initial guess for H and a list of inlier matches are found using the Direct

Linear Transformation (DLT) [2] and Random Sample Consensus (RANSAC) [8]

algorithms. Secondly, the final matrix H is estimated by using a non-linear least

squares minimization algorithm that minimizes Sampson error [28]. Finally the

list L is updated with the keypoints from the new frame according to one of the

strategies described later in this chapter.

3.1 Homography
In order to perform background subtraction with a pan/tilt camera we estimate

camera motion between frames. Since the camera’s motion is assumed to be a

pure rotation about its optical center, the transformation from any frame to another

frame is a homography which is an 8 d.o.f. transformation of the projective plane

that preserves colinearity [11].

Let x = [x,y,1]T be the coordinates of a given keypoint in one image frame

represented as a homogeneous column vector. Similarly, let x′ = [x′,y′,1]T be the

coordinates of the corresponding keypoint in another image frame. In this thesis

we use symbol ∼ to denote similarity up to scale. If both of these images are

taken with the same camera rotated about its optical center then the transformation

between these points is defined up to a scale by a homography H:

x′ ∼ Hx (3.1)

Since homography is an 8 d.o.f. transformation and a pair x↔ x′ provides con-

straints for 2 d.o.f. we need at least 4 pairs xi↔ x′i to estimate the H between two

image frames.

22

3.2 Direct linear transformation
Since both x′ and x′i are homogeneous vectors and H is only defined up to scale x′i
might not be equal to Hxi. Therefore we solve the equivalent equation x′i×Hxi =
0 [11], where × denotes cross product. One algorithm that can find a homog-

raphy H from a similarity relation is the DLT algorithm originally developed by

Abdel-Aziz and Karara[2]. Here, the variant of the DLT described by Hartley and

Zisserman[11] is used.

Assume that we have 4 2D keypoint correspondences between two images xi↔
x′i, where x′i and xi are represented, not necessarily by x′i = [x′i,y

′
i,z
′
i]

T and xi =
[xi,yi,zi]T and i ∈ {1 . . .4}. The goal is to find a homography H such that x′i ∼Hxi

for all i ∈ {1 . . .4}.
The product Hxi can be written as follows:

Hxi =

h11 h12 h13

h21 h22 h23

h31 h32 h33

xi

yi

zi

=

h11xi +h12yi +h13zi

h21xi +h22yi +h23zi

h31xi +h32yi +h33zi

=

hT
1 xi

hT
2 xi

hT
3 xi

 , (3.2)

where h1 = [h11 h12 h13]T , h2 = [h21 h22 h23]T and h3 = [h31 h32 h33]T . The cross

product x′i×Hxi = 0 can be written as

x′i×Hxi =

y′ihT
3 xi− z′ihT

2 xi

z′ihT
1 xi− x′ihT

3 xi

x′ihT
2 xi− y′ihT

1 xi

= 0. (3.3)

Using the fact that hT
j xi is a scalar and hT

j xi = xT
i h j Equation 3.3 can be rewrit-

ten as y′ixT
i h3− z′ixT

i h2

z′ixT
i h1− x′ixT

i h3

x′ixT
i h2− y′ixT

i h1

= 0 (3.4)

Equation 3.4 can be represented as a linear system: 0 −z′ixT
i y′ixT

i

z′ixT
i 0 −x′ixT

i

−y′ixT
i x′ixT

i 0

h1

h2

h3

= (3.5)

23

 0 0 0 −z′ixi −z′iyi −z′izi y′ixi y′iyi y′izi

z′ixi z′iyi z′izi 0 0 0 −x′ixi −x′iyi −x′izi

−y′ixi −y′iyi −y′izi x′ixi x′iyi x′izi 0 0 0

h11

h12

h13

h21

h22

h23

h31

h32

h33

=

Aih = 0, (3.6)

where h = [h11 h12 h13 h21 h22 h23 h31 h32 h33]T . Since the third row of Ai is a linear

combination of the first and the second rows the rank of the matrix Ai is 2 [11].

Given 4 corresponding keypoint pairs x1↔ x′1, x2↔ x′2, x3↔ x′3, x4↔ x′4
we can stack the 4 matrices Ai to obtain 12x9 matrix A [11]:

A1

A2

A3

A4

h = Ah = 0. (3.7)

The rank of each Ai is 2. If no three points are colinear the rank of the matrix A is

8, hence the solution of this system is a null-space of A [11].

There could be a case when 3 or more of the 4 keypoints in one image frame

lie on a line (i.e., are colinear) and the corresponding keypoints in the other image

frame are not colinear. In this case there exists no homography H since H by

definition preserves colinearity [11]. Another situation happens when 3 keypoints

are colinear in both image frames. In this case H is degenerate and is not uniquely

defined by the 4 correspondences [11]. No 3 of the 4 corresponding keypoints

xi↔ x′i can be colinear in order for the DLT to find the homography H.

In reality we are usually able to obtain more than 4 keypoints for each image

and as a consequence there are more than 4 correspondences x′i↔ xi. The positions

of these points typically are not exact, and, therefore, h = 0 is the only one solution

to Equation 3.7 [11]. Instead, the problem is reformulated as the minimization of

24

‖Ah‖ subject to ‖h‖= 1. The solution to this optimization problem is the smallest

eigenvector of AT A [11].

3.2.1 Normalization

Because the DLT algorithm minimizes algebraic error it is not invariant to the co-

ordinate frame for keypoints [11]. Therefore, sets of matching keypoints in both

the new image frame and the list L are normalized individually using coordinate

transformations denoted T ′ and T respectively. The normalized keypoint coordi-

nates are then x̃i = T xi and x̃′i = T ′x′i. After that the DLT algorithm is applied to

find the H̃ that relates normalized keypoints x̃i↔ x̃′i such that x̃′i = H̃x̃i. Finally the

homography H for the unnormalized points is calculated as follows:

H = T ′−1H̃T (3.8)

To calculate normalization matrices T and T ′ Hartley and Zisserman[11] sug-

gest translating each set of coordinates so that the centroid of each set is located at

origin. Each set is then scaled in such a way that the mean distance from the points

to the origin is
√

2. Hence the matrix T for the coordinates {xi} has the following

form:

T =

√
2

µdst
0 −

√
2

µdst
µx

0

√
2

µdst
−
√

2
µdst

µy

0 0 1

 , (3.9)

where µdst is a mean distance from the set of coordinates to the origin, µx and µy

are the x and y coordinates of the mean of the set respectively. The matrix T ′ for

the coordinates {x′i} is determined similarly.

3.3 Minimizing geometric error
Since we are performing background subtraction it is important that each pixel in

the image frame is compared to the correct pixel in the background model. Hence

it is important that each new image frame is registered as precisely as possible to

the background model.

25

The quality of homography estimation obtained by minimizing algebraic error

depends on the choice of coordinate systems for each image [5, 11]. Quality is

partially improved by the normalization described in the previous section. A better

estimate of the homography is obtained by minimizing a geometric distance for all

pairs x′i↔ xi :

∑
i

d(xi, x̂i)2 +d(x′i,Hx̂i)2, (3.10)

where d(x,y) is an Euclidean distance between the two points x and y, H is the

homography being estimated and x̂i is the noise-free coordinates of the ith key-

point [5]. Although difficult to optimize, this geometric error is invariant to the

choice of coordinate system for the images [5, 11]. In this thesis we use a first

order approximation of the geometric error called Sampson error [28]. A com-

plete derivation of this error metric and a proof of its invariance to the choice of

coordinate system are presented in [5].

To estimate the homography that minimizes Sampson error we employ a non-

linear least squares algorithm initialized using the homography H produced by the

normalized DLT algorithm.

We have found experimentally that minimizing Sampson error does not im-

prove homography estimation significantly in our examples and therefore this step

is considered optional.

3.4 Feature points and inlier selection
The DLT algorithm needs to be provided with a set of correspondences x′i ↔ xi.

Hence we need to be able to detect keypoints in each image such that two key-

points representing the same locations in the scene in two different images match

to produce a pair x′↔ x. The DLT algorithm needs at least 4 correct matches.

We use SIFT keypoints developed by Lowe[18]. The SIFT algorithm produces

a large number of distinctive scale and rotation invariant features that are located at

extremum points of a difference of Gaussian functions convolved with an image at

different scales. Furthermore SIFT keypoints demonstrate low sensitivity to affine

changes up to 30 ◦[18].

In typical video sequences hundreds of SIFT keypoints are extracted from each

26

image frame, however only a portion of these keypoints represent static background

objects since some keypoints typically are also extracted from moving objects.

Similarly, the list L that contains the background model keypoints can also include

keypoints from moving objects that once were in the camera’s field of view. Fur-

thermore, when the keypoints are matched and matching pairs x′i ↔ xi are estab-

lished there can be incorrect matches. All these cases produce outliers — matches

that don’t fit the correct homography H between the image frame and the back-

ground model’s coordinate frame.

We employ the RANSAC algorithm to find inliers and to estimate the homog-

raphy H while ignoring outliers. This algorithm randomly samples data points,

which, in the case of homography estimation, are corresponding matches x′i↔ xi

and tries to fit a model, the homography H, to these data points. After that, an

error is calculated between the rest of the data points and the model and the data

points are classified as outliers or inliers based on some threshold t. This process is

repeated until the number of outliers is sufficiently small. More detailed overview

of this algorithm applied to homography estimation is presented in [11].

In order to distinguish inliers from outliers RANSAC has to be able to calculate

how well the estimated homography H fits all data points. For this purpose we use

the symmetric transfer error as the distance measure:

E(xi,x′i) = d(xi,H−1x′i)
2 +d(x′i,Hxi)2, (3.11)

where d(x,y) is an Euclidean distance between the two points x and y, xi and x′i are

the coordinates of the corresponding keypoints and H is the estimated homography

matrix. A pair x′i↔ xi is considered an inlier if E(xi,x′i) < t for some predefined

constant threshold t. The RANSAC algorithm used for this thesis is presented in

Algorithm 3.1.

3.5 Decreasing the number of outliers
When the proportion of outliers grows above 50% RANSAC often fails to produce

a correct estimate in a reasonable amount of time [18]. Hence in some cases when

foreground objects occupy a large portion of an image and provide many keypoints

the number of inliers can be lower than the number of outliers. In order to decrease

27

Require: set of matches M = {x′i↔ xi}, threshold t, desired probability p
Normalize x′i and xi producing T ′, T and M̃ = {x̃′i↔ x̃i} as in Equation 3.9
c← 0
N← 1
M̃best ← /0
while c < N do

Randomly select 4 corresponding pairs x̃′i↔ x̃i

Calculate homography H̃ from the 4 random pairs solving Equation 3.7
Find inliers M̃in ⊆ M̃ by calculating symmetric transfer error Ei for each
pair x̃′i↔ x̃i as in Equation 3.11 and compare it to threshold t
if |M̃in|> |M̃best | then

M̃best ← M̃in

N = log(1− p)/ log(1− (|M̃best |/|M̃|)4)
end if
c← c+1

end while
Perform a final least squares to find H̃ using all correspondences in M̃best
and solving Equation 3.7
Denormalize H̃ to obtain H using T and T ′ as in Equation 3.8

Algorithm 3.1: RANSAC algorithm used for homography estimation

the number of outliers we employ a Hough transform [3] before applying RANSAC.

The Hough transform is a method that uses voting procedure to fit a parametric

model to some data points which contain outliers. It is not feasible to use the

Hough transform to estimate all the parameters for a homography matrix, therefore

we only utilize it to remove outlying matches x′i↔ xi.

Since we assume that background objects are static and are sufficiently far

away we can also assume that all the keypoints representing these objects have

approximately same speed as the camera pans across the scene. We use the Hough

transform to find the clusters of matching pairs x′i ↔ xi that have similar vertical

and horizontal displacements vx and vy, which are calculated by taking a difference

between x and y components of points x′i and Hpxi. A homography Hp that relates

a previous image frame to the background coordinate system is used to predict the

motion of the camera.

To test the performance of the Hough transform we have used the pan/tilt

28

dataset found in [41]. In this video sequence taken indoors a pan/tilt camera fol-

lows a person’s hand holding a box. A particular difficulty with this dataset is

that both the hand and the box occupy a large portion of most of the frames thus

producing a lot of outliers. Every 4th frame of the sequence was loaded and a back-

ground mosaic was built by overlaying each matched frame on top of the existing

mosaic. Every time a new image frame was overlaid, the mosaic was saved to a

corresponding image file.

Figure 3.1 shows two mosaics after frame 128 has been overlaid. The mosaic

built with the Hough transform applied before RANSAC is shown in Figure 3.1a

while the mosaic built without Hough transform is shown in Figure 3.1b. A new

image frame that is matched and overlaid on the mosaic is outlined in blue. All

keypoints extracted from the new image frame that were matched to some key-

points in the background mosaic and then passed to RANSAC are marked by red

and green crosses. The red crosses denote keypoints that were determined to be an

outlier by RANSAC, while the green crosses denote inliers.

The mosaic built using the Hough transform and displayed in Figure 3.1a shows

that there are fewer keypoints that were passed to RANSAC compared to the mosaic

shown in Figure 3.1b. Almost all the keypoints extracted from the hand and from

the box were filtered out by the Hough transform since their motion is not con-

sistent with the motion of keypoints representing the background objects. All the

background objects in the mosaic show no signs of distortion and align properly to

the background objects in the new frame outlined in blue.

Conversely, the new frame outlined in blue in Figure 3.1b contains many key-

points that were extracted from both the hand and the box. As the green crosses

show, only a small percentage of the matched pairs were determined to be inliers

by RANSAC due to the large number of outlying matches from the hand and the

box. The homography obtained by RANSAC using only a small number of inliers

is inaccurate as background objects, including the chair and the cabinet, are not

matched precisely to the same objects in the mosaic.

The above observations suggest that the Hough transform improves the ability

of RANSAC to estimate the homography in cases where there is a high proportion

of outliers (i.e., foreground objects occupying a large portion of an image frame).

A complete workflow of the algorithm that matches a new image frame to the

29

(a) With Hough transform

(b) Without Hough transform

Figure 3.1: Background mosaics built with and without using Hough trans-
form as a pre-filter. Red and green crosses denote all the keypoints that
were passed to RANSAC algorithm. Keypoints that are classified as out-
liers by RANSAC are red, while keypoints that are inliers are green.

30

Require: new frame Ft , list of background keypoints L
if |L|= 0 then

This is a very first frame of the sequence:
L← all keypoints from Ft

H← Identity
else

P← all keypoints from Ft

Find all matches between keypoints Mall = P↔ L
Pre-filter to remove outliers from Mall using Hough transform
Find inliers Min ⊆Mall and homography Hinit using RANSAC and
normalized DLT as in Algorithm 3.1
Optional: Find homography H by minimizing Sampson error using Hinit

and Min to initialize algorithm
Update list of background keypoints L

end if
Algorithm 3.2: The complete homography estimation algorithm

background coordinate system and estimates the homography H between the new

frame to the background coordinate system is summarized in Algorithm 3.2.

3.6 Keypoints update strategies
The algorithm presented in Algorithm 3.2 specifies that the list of background key-

points L has to be updated. There are several methods to update the keypoints

in the background model. First, the list of keypoints L can be recalculated every

time a new frame has been matched using the image representing all the static ob-

jects in the scene as obtained via BS. Second, the keypoints from the new frame

can be warped using the estimated homography H and appended to the list of the

background model keypoints. Each of these two approaches has advantages and

disadvantages.

3.6.1 Recalculating keypoints

One way to acquire keypoints that represent the background is to create an image

representing all the static objects (i.e., a background mosaic) and to calculate key-

points from this image every time a new image frame is obtained. All the keypoints

31

in the list L are then replaced with the ones that are calculated from the background

mosaic.

This approach has several advantages. First, the number of keypoints repre-

senting the background is maintained at its minimum as the list L only contains

keypoints that are obtained from the mosaic. The number of keypoints increases

only when the background mosaic grows as new scene areas becoming visible.

This is useful when the background subtraction algorithm runs for a long period of

time and there is a constraint on memory available for the list L. Second, since the

background mosaic only contains background objects all the keypoints in the list

L represent the actual background. Hence there will be no outliers due to incorrect

matches with foreground objects.

However, there are two significant drawbacks to this approach. The back-

ground mosaic obtained from the background subtraction module is a combined

image consisting of all warped image frames that have been seen by the back-

ground subtraction algorithm so far. Parts of this mosaic can represent viewpoint

angle changes larger than 30 ◦ and be warped to such a degree that SIFT keypoints

extracted from these parts do not match accurately with keypoints calculated from

an image frame representing the same part of the scene but a taken with camera

pointing directly. This can lead to an incorrectly estimated homography.

Second, the requirement to create explicitly an image that represents static ob-

jects in the scene imposes additional functionality constraints on the background

subtraction algorithm. A goal is to make background subtraction algorithms plug-

gable. Therefore the motion estimation system must be decoupled from the back-

ground subtraction system. In addition, some background subtraction algorithms

represent a background model in such a way that there is no reliable way to create

an image that only represents background objects. For example, the KDE back-

ground subtraction algorithm presented in the next chapter represents the back-

ground model as a collection of samples taken at different times and there is no

reliable or quick way to find samples that represent static objects1.

1An example of a slow approach is a mean-shift algorithm [10]

32

3.6.2 Appending keypoints

Another way to maintain the list of keypoints that represent the background is to

append some of the keypoints from a new image frame to the list each time a

new frame is processed. To do this we extract all SIFT keypoints from the new

frame and calculate the homography H as described above. Finally, the keypoints’

coordinates are transformed by the homography H and all or some of the new

keypoints are added to the list L.

There are several possible policies to determine which of the new frame’s key-

points get added to the list L:

• Blindly add all keypoints from the new frame. This policy leads to the list L

growing very quickly. In addition, the list L will eventually contain a lot of

redundant keypoints which represent both background and moving objects

that consistently appear in the camera’s frustum. This leads to a large number

of outliers for RANSAC algorithm thus affecting its performance. A large

number of keypoints representing foreground objects might eventually lead

to RANSAC failing to estimate a homography correctly. Due to these issues

we consider this policy unsuitable for the required task.

• Only add keypoints that have been matched. This policy is also unfit since

most of the keypoints obtained from a new image frame that represent pre-

viously unseen parts of the scene will not have matching keypoints in the

list L. Therefore these keypoints will not be incorporated into the list L and

eventually the algorithm will not be able to calculate a homography for an

image frame that mostly contains previously unseen parts of the scene.

• Only add keypoints that do not have matches. This policy allows keypoints

representing new parts of the scene to be added to the list L as these key-

points are not matched initially. Once these keypoints are in the list L they

will not be added to the list in subsequent frames, hence there will be no re-

dundant keypoints representing the same objects. Although some keypoints

representing foreground objects always get added to the list L this only hap-

pens once per foreground object and the Hough transform and/or RANSAC

can successfully filter them out as outliers.

33

Appending keypoints eliminates both disadvantages associated with recalcu-

lating the keypoints each time a new image frame is obtained. First, since the

keypoints in the list L are not extracted from a warped background image but are

coming from undistorted image frames, the homography H is estimated equally

well for all camera angles. Second, the background subtraction algorithm does not

need to produce an explicit image of the background, thus decreasing the coupling

between these modules.

However, appending keypoints also has disadvantages. First, there is no way to

detect whether a keypoint represents a background or a foreground object. There-

fore some foreground keypoints will eventually be added to the list of background

keypoints L. The experiments that we conducted showed that these keypoints do

not affect the quality of the estimated homography as they represent only a minor-

ity of matches for the RANSAC algorithm. Second, the number of keypoints in the

list L grows large as the video sequence progresses and more keypoints get added

to the list.

3.6.3 Comparison of strategies

We performed an experiment to compare the strategy that involves recalculating

keypoints against the strategy that appends unmatched keypoints from the new

image frame to the list of background keypoints L.

Figure 3.2 shows two mosaics created from an image sequence consisting of

2122 frames. This image sequence was taken with a pan/tilt camera in an outside

environment during the daytime. Every 10th frame was used in building each mo-

saic hence 212 frames were used altogether. The background mosaic was build

by warping each new image frame of the sequence and overlaying it on the exist-

ing mosaic. The mosaic shown in Figure 3.2a was built using the keypoint update

strategy that recalculates keypoints from the mosaic every time before registering

each new image frame. The mosaic shown in Figure 3.2b was created using the

strategy that appended unmatched keypoints in each new frame to the list of the

background keypoints.

There are visible artifacts in Figure 3.2a. Parts of the building and the tree in

the left part of the mosaic do not match. This also is seen clearly along the curb

34

(a) Recalculating keypoints

(b) Appending keypoints

Figure 3.2: Background mosaics built by recalculating keypoints and by ap-
pending keypoints to the list

of the road. There is a similar mismatch in the right part of the mosaic. Figure 3.3

shows the location of the artifacts outlined in red. Conversely, the mosaic in Fig-

ure 3.2b does not contain such artifacts. As discussed above, the reason for the

mismatches seen in Figure 3.2a is that the mosaic becomes warped at the extremes

as the horizontal angle of the mosaic widens. The keypoints that are extracted from

these parts of the scene do not match well to the keypoints calculated from the new

35

Figure 3.3: Background mosaic with misaligned areas outlined in red

0 500 1000 1500 2000 2500
Frame number

0

2000

4000

6000

8000

10000

12000

T
o
ta

l
ke

y
p
o
in

ts
 i
n
 L

Appending strategy
Recalculating strategy

Figure 3.4: Number of keypoints in the list L

36

image frame resulting in an incorrectly estimated homography.

Figure 3.4 shows plots of the number of keypoints in the list L at each frame

of the sequence for both strategies. At the last frame of the image sequence the

lists L contained 3197 and 10510 keypoints for the recalculating and appending

strategies respectively. From the plot in Figure 3.4 it is clear that recalculating

keeps the number of keypoints in the list L at a minimum, while the number of

keypoints in list L updated using the appending strategy increases with every frame

of the sequence. Although the size of list L for the appending strategy grows with

each frame, the rate at which it increases is dropping. This is due to the fact that

even though keypoints from new areas are being added to the list, keypoints from

subsequent frames that represent features already present in the list are not added.

Thus the number of keypoints increases rapidly as unseen areas become visible.

Subsequently, only a few new keypoints are added.

The experiment demonstrates that although appending keypoints to the list sig-

nificantly increases the number of keypoints in the beginning of a sequence the

rate of growth decreases as ultimately all parts of the scene are seen. As demon-

strated in Figure 3.2 the appending strategy produces a better homography esti-

mation which results in better matches between each new image frame and the

background model, which is critical for correct background subtraction. For this

reason the strategy that appends unmatched keypoints to the list was selected for

the final algorithm.

37

Chapter 4

Background Subtraction

The previous chapter describes the part of the system that deals with motion com-

pensation and aligning a new image frame to the background model’s coordinate

system. This chapter covers the part of the system that performs background sub-

traction and that maintains the background model for a pan/tilt camera. The back-

ground model is likely to be larger than the camera’s field of view since it incorpo-

rates all the previously seen parts of the scene.

From the image registration subsystem the background subtraction system gets

a new image frame and a homography matrix H that transforms the new frame to

the background model’s coordinate frame. Depending on the matrix H, the current

background model and the new frame there are several possible scenarios that the

background subtraction subsystem might face:

1. There is a one-to-one correspondence between each pixel in the new image

frame and each pixel in the background model.

2. The new image frame completely or partially overlaps the background model

and, therefore, contains previously unseen parts of the scene.

3. The new image frame is smaller than the background model and thus fits

entirely inside the background model with some parts of the background

model not seen by the new frame.

4. The new image frame does not overlap the background model at all. Thus, it

38

BG Model

New Frame

(a) Case 1

BG Model
New Frame

(b) Case 2

BG Model

New Frame

(c) Case 3

BG Model

New Frame

(d) Case 4

Figure 4.1: Four situations that a pan/tilt background subtraction algorithm
might encounter. One-to-one correspondence is shown in Figure 4.1a,
the new image frame partially or completely overlaps the BG model in
Figure 4.1b, the new image frame fits inside of the BG model in Fig-
ure 4.1c and the new image frame lies outside of the BG model in Fig-
ure 4.1d.

completely lies outside of the background model’s boundaries.

The first scenario displayed in Figure 4.1a is the simplest. It happens when

the camera is stationary and it is the usual assumption made by background sub-

traction algorithms designed for a static camera. In this case each pixel of the

background model is always visible in every frame of the image sequence and there

is a one-to-one correspondence between pixels in each image frame and pixels in

the background model.

Figure 4.1b shows the second case. This situation could happen when the cam-

era starts panning and previously unseen areas of the scene become visible. If this

scenario occurs during the training phase the background subtraction algorithm

must be able to grow the background model and incorporate new information into

39

the model. This case becomes more difficult when it happens during the testing

phase after the training of the background subtraction algorithm has been finished.

The algorithm must be able to recognize this case and to train parts of the model

on the fly during the testing phase.

The third case, shown in Figure 4.1c, happens when the model already contains

a large portion of the scene and, therefore, is larger than a single frame. There

are no previously unseen parts of the scene in the frame. All pixels in the new

frame correspond to some pixels in the background model, but not all pixels in

the background model correspond to some pixels in the new frame. In this case

the background subtraction algorithm must be able to update only the pixels in the

model that are in the camera’s field of view during either the training or testing

phases.

The final case shown in Figure 4.1d should be unlikely. If the camera’s motion

is slow compared to the frame rate each image frame will contain parts of the pre-

vious frame and the new frame will overlap the background model at least partially.

This situation also can happen if the homography H is not estimated correctly by

the image registration module. Due to its improbability this case is not considered

by the background subtraction module.

Therefore, to address the three cases of interest, the pan/tilt background sub-

traction algorithm must be able to:

• grow the background model as previously unseen parts of the scene become

visible and train these new parts of the model on the fly during the testing

phase,

• update pixels in the model selectively such that only pixels corresponding to

the currently visible parts of the scene are updated.

Extensions to support pan/tilt were developed for the three state of the art back-

ground subtraction algorithms as described in the remainder of this chapter.

4.1 Mixture of Gaussians
A mixture of Gaussians approach is a widely used background subtraction method

that has been extended for pan/tilt camera scenarios [12, 20, 26]. There are two

40

main reasons for this.

First, since each pixel in the model is represented as a mixture of Gaussian

distributions it is easy to grow the background model to accommodate Case 2 and

Case 3 mentioned above. To grow the model it is sufficient to add uninitialized

mixtures for each new part of the scene.

Second, it is easy to extract an image that only contains static objects by taking

the means of the Gaussians with the highest weights. This image can then be used

to register a new frame and to estimate camera motion parameters relative to the

background model. Two implementations [12, 20] extract this image to register

new frames to the background model’s coordinate system.

A variant of the MOG algorithm described in [31] with code from [38] is used

here. Each pixel in the background model is modeled as a time series {X1, . . . ,XN},
where each pixel sample Xn is a RGB or a grayscale vector and N is a total number

of frames in an image sequence. The probability of a pixel Xt is modeled using a

mixture of distributions:

P(Xt) =
K

∑
k=1

wk,tN (Xt |µk,t ,Σk,t), (4.1)

where K is a total number of distributions set by a user1, N (x|µk,t ,Σk,t) is the kth

Gaussian distribution at time t parametrized by its mean µk,t and covariance matrix

Σk,t and wk,t is the weight of the kth distribution in the mixture, ∑
K
k=1 wk,t = 1. In

this work the covariance matrix Σk,t is a scalar matrix σ2
k,tI, meaning that all color

channels are assumed independent with the same variances.

The algorithm needs to estimate the parameters and the weight of each of the

Gaussian distributions in the mixture model given the data {X1, . . . ,XN}. Due to

computational costs an EM approach was deemed unsuitable for this task [31]. An

alternative K-means algorithm is used instead.

For every new pixel sample Xt , 1 ≤ t ≤ N a matching distribution is found as

follows. First, the distribution N (x|µk,t−1,Σk,t−1) that is nearest to Xt is deter-

mined by finding the smallest Mahalanobis distance between the pixel sample Xt

1 Usually the value of K is between 3 and 5 [31]

41

and the mean µk,t−1:

i = argmin
k∈{1...K}

√
(Xt −µk,t−1)T Σ

−1
k,t−1(Xt −µk,t−1) (4.2)

Then an indicator variable Mk,t is calculated for each distribution:

Mk,t =

1, if k = i and
√

(Xt −µk,t−1)T Σ
−1
k,t−1(Xt −µk,t−1) < ∆

0, otherwise
, (4.3)

where ∆ is a global threshold that determines when a pixel is considered to be

a match to a distribution. For K distributions representing a single pixel in the

background model, at most one Mk,t can be equal to 1.

In a case when there is no matching distribution, i.e., Mk,t = 0 for all k ∈
{1 . . .K}, the least probable mixture distribution is replaced with a new distribu-

tion N (x|Xt ,σ
2
initI), with Xt as mean and variance set to some large value σ2

init and

weight is set to some small value winit . There are several ways to define the least

probable distribution. Here, the following formula that prefers a distribution with

a large variance and a small weight is used:

argmin
k∈{1...K}

wk,t−1

σ2
k,t−1

(4.4)

The weights of all distributions in the mixture are then adjusted using a constant

learning factor α:

wk,t = (1−α)wk,t−1 +αMk,t , (4.5)

and renormalized so they still add up to 1:

wk,t =
wk,t

∑
K
l=1 wl,t

. (4.6)

Finally parameters of the ith distribution for which Mi,t = 1 are updated as

follows:

µi,t = (1−ρ)µi,t−1 +ρXt , (4.7)

σ
2
i,t = (1−ρ)σ2

i,t−1 +ρ(Xt −µt)T (Xt −µt), (4.8)

42

where ρ is a learning factor which is constant for all pixels in all image frames.

For distributions with Mk,t = 0 the parameters remain the same:

µk,t = µk,t−1 (4.9)

σ
2
k,t = σ

2
k,t−1 (4.10)

After the mixture parameters are adjusted the next task is to determine which

mixture distributions represent background processes. All K Gaussian distributions

are sorted by wk,t

σ2
k,t

in decreasing order. The distributions that are the most probable

and have the largest evidence (i.e., have a large weight and a small variance) come

before distributions that have a low weight and a large variance. Then the first B

(B≤ K) distributions are selected such that:

B = argmin
b∈{1...K}

(
b

∑
k=1

wk,t > T

)
, (4.11)

where T,0 ≤ T ≤ 1 is a threshold that determines how much evidence should be

considered as the background model. If T is closer to 1 then more than one distri-

bution can be assigned to represent the background model thus allowing for multi-

modal backgrounds.

Finally the pixel Xt is classified as foreground or background based on whether

the distribution that it matched in Equation 4.3 is determined to be foreground or

background.

When Case 2 occurs the size of the background model must be increased to

represent newly seen parts of the scene. A MOG background model extends easily.

As the model grows, each of K Gaussians that represent a new pixel is initialized

with random means and a large σ2
init . The weights w are set to 0, except for the

first distribution which is set to 1. Usually one of the distributions gets replaced

immediately after initialization during the background subtraction. After having

processed several frames the algorithm gains enough evidence to reweigh distribu-

tions to produce valid classification results. The pan/tilt MOG algorithm used here

is given as Algorithm 4.1.

43

Require: homography H, new frame Ft , background model M
F̂t ← Ft transformed by H
if F̂t overlaps M then

Grow M:
for all new pixels in M do

Randomly initialize µk for K distributions
Set variances to σ2

init
Set wk = 0 for k ∈ {2 . . .K}
Set wk = 1 for k = 1

end for
end if
for all pixels Xt in F̂t do

Find corresponding mixture Pt−1 in M
Find i as in Equation 4.2
Calculate Mk,t for each distribution as in Equation 4.3
if Mk,t = 0 for all k ∈ {1 . . .K} then

Find least probable distribution as in Equation 4.4
Replace it with new distribution N (x|Xt ,σ

2
initI) and w = winit

end if
for all k ∈ {1 . . .K} do

Calculate wk,t as in Equation 4.5
end for
Renormalize weights as in Equation 4.6
if Mi,t = 1 then

Calculate µi,t and σ2
i,t as in Equation 4.7 and Equation 4.8

end if
Sort distributions by wk,t

σ2
k,t

Find B distributions that represent background as in Equation 4.11
if Mb,t = 1 for any b ∈ {1 . . .B} then

Xt is background
else

Xt is foreground
end if

end for
Algorithm 4.1: Mixture of Gaussians for pan/tilt camera

44

4.2 Non-parametric kernel density estimation
A modified version of the non-parametric kernel density estimation algorithm de-

scribed in Elgammal et al.[6] is used as a second background subtraction module.

Some aspects of the Elgammal approach are not included in this thesis.

Non-parametric kernel density estimation background subtraction is based on

the Parzen window method [23]. Each pixel in the background model is repre-

sented by a probability density function P(x) calculated from N recent pixel sam-

ples {X1 . . .XN} as follows:

P(Xt) =
1
N

N

∑
i=1

K(Xt −Xi), (4.12)

where Xt is a pixel sample in a new image frame that needs to be classified and K

is a kernel function. Elgammal et al. use Gaussian kernel K(x|µ,Σ) with a mean

µ and a covariance matrix Σ. Similar to other approaches [12, 20, 26, 31] Σ is

assumed to be diagonal therefore all color channels are considered to be indepen-

dent. But unlike the algorithm of Section 4.1 the covariance matrix is not a scalar

matrix. The probability of a new pixel Xt is:

P(Xt) =
1
N

N

∑
i=1

d

∏
j=1

1√
2πσ2

j

e
− 1

2

(Xt j−Xi j
)2

σ2
j , (4.13)

where d is a number of color channels in each pixel, σ j is a variance of jth channel,

Xi j is a jth channel of an ith pixel sample in the model.

To estimate Σ the median of absolute deviations over consecutive samples is

used:

σ j =
m j

0.68
√

2
, (4.14)

where σ j is a variance of a jth channel and m j is the median of absolute deviations

of a jth channel of N consecutive samples [6].

Assuming that most of the samples X1 . . .XN used to build the model belong to

the background, a new pixel Xt is classified as foreground if P(Xt) < T , where T is

a global threshold [6].

45

Short-Term model Long-Term model Final Result

foreground foreground foreground
foreground background foreground
background foreground Speciala

background background background

aA pixel is classified as background, if there is at least one pixel in an 8-neighborhood
which is classified as background in both models

Table 4.1: Intersection rule for Short-term and Long-term models [36]

To accommodate a changing background the background model needs to be

updated. There are several ways to do this. One way is to add only pixels that

are classified as background. This approach improves detection of foreground pix-

els since only background samples are collected. This could lead to a problem

if some pixels are misclassified. These pixels will be consistently misclassified

in future image frames. Another method involves blindly adding samples to the

model regardless of their classification label. This approach avoids consistently

misclassified pixels but leads to a larger number of foreground pixels classified as

background since these pixels can get incorporated into the background model.

As with Elgammal et al. two background models are maintained — short-term

and long-term. These models are essentially FIFO lists, each keeping at most Nmax

pixel samples. The short-term model stores the most recent samples that are clas-

sified as background according to Table 4.1. This model adapts very quickly to

changes in the background process which results in higher sensitivity to a changing

background. A long-term model model uses a blind update mechanism and stores

samples taken over the large window in time. The size of the window depends on

the background sampling period τ , which means that a pixel sample is added to the

model every τ frames regardless of whether the pixel is classified as foreground or

background. This model adapts to changes slower than the short-term model.

This algorithm is trained by collecting N samples for each pixel in the model.

With a pan/tilt camera both Case 2 and Case 3 shown in Figure 4.1 can lead to a

situation where N is not the same for all pixels in the model. For instance, during

the training phase the camera can pan across the scene resulting in some parts

46

(a) Frame 100 (b) Frame 200 (c) Frame 300

Figure 4.2: Frames 100, 200 and 300 of image sequence taken with a pan/tilt
camera. Frames 200 and 300 show parts of the building not seen in
frame 100.

of the scene being visible only for a short period of time. An example of such

situation is shown in Figure 4.2. The right side of the building and the intersection

in frame 100 shown in Figure 4.2a are not visible in both frames 200 and 300 as

shown in Figure 4.2b and Figure 4.2c. Hence, assuming smooth camera motion

between these frames, the part of the model that represents the white building in

frames 200 and 300 will contain more samples after the training has been done

than the part of the model that represents the intersection and the right part of the

building. Similarly, previously unseen areas of the scene can become visible after

the training has been performed, leading to the model not having any samples to

classify pixels in these new areas.

To solve this problem the algorithm must be able to collect evidence and update

the background model after the training has been performed. We do this by blindly

updating the short-term model for pixels for which N < Nmax, where Nmax is a

maximum allowed number of samples in the model. This lets the background

model quickly collect enough evidence to start classifying pixels successfully in

previously unseen parts of the scene. The long-term background model is updated

as usual. The complete algorithm is presented in Algorithm 4.2

4.3 Codebook
The third background subtraction algorithm extended to support a pan/tilt camera

is the codebook background subtraction algorithm of Kim et al.[15]. Like the other

47

Require: homography H, new frame Ft , background model M
F̂t ← Ft transformed by H
if F̂t overlaps M then

Grow M:
for all new pixels in M do

List of short term samples← /0
List of long term samples← /0

end for
end if
for all pixels Xt in F̂t do

Find corresponding long term samples {Ẋ1 . . . ẊN} in M
Estimate Σ̇ for long term samples as in Equation 4.14
Calculate Ṗ(Xt) for long term samples as in Equation 4.13
if Ṗ(Xt) < T then

L̇ =foreground
else

L̇ =background
end if
Find corresponding short term samples {X̂1 . . . X̂M} in M
Estimate Σ̂ for short term samples as in Equation 4.14
Calculate P̂(Xt) for short term samples as in Equation 4.13
if P̂(Xt) < T then

L̂ =foreground
else

L̂ =background
end if
Classify pixel Xt using L̇ and L̂ as in Table 4.1
if Xt is background or |{X̂1 . . . X̂M}|< Nmax then

Add Xt to a short-term list of samples
end if
if Last update was done in more than τ frames ago then

Add Xt to a long-term list of samples
end if

end for
Algorithm 4.2: Non-parametric kernel density estimation for a pan/tilt cam-
era

48

two background subtraction algorithms described in this chapter the CB algorithm

needs to be modified in order to be able to handle both Case 2 and Case 3.

Each pixel in the background model is represented by a codebook C which is a

list of codewords {c1,c2, . . .cL}. Each codeword ci = (vi,auxi), where vi is a color

vector (R̃i, G̃i, B̃i) and auxi is a tuple that contains all the additional information for

the codeword ci. Kim et al. store the following variables in auxi:

• Ǐi, Îi are the minimum and the maximum brightness values that are associated

with the codeword ci. These values are used to match a new pixel to the

codeword. Kim et al. use the magnitude of (R,G,B) vector as the measure

of brightness.

• fi is a number of times the codeword has been accessed during the training

phase.

• λi is a maximum negative run-length, i.e., the number of frames during the

training period for which the codeword ci has not been matched.

• pi,qi are the numbers of the first and the last frames during the training phase

for which the ci has been matched.

Again, there can be cases during the training phase when some parts of the scene

stay in the camera’s frustum for longer than other parts of the scene. To take this

into account we add an additional variable a to the codebook C which stores the

total time (i.e., the number of frames) the current pixel appeared in the camera’s

field of view. Every time a codebook is accessed its corresponding a is increased

by 1. Hence in our extended model the codebook C is represented by a tuple

(a,{c1, . . .cL}).
Two functions π : (R3,R3)→{True,False} and ρ : (R,R,R)→{True,False}

are defined to match a pixel to a codeword. The first function π takes two color

vectors and returns True if these two vectors are close to each other according to

some metric and False otherwise. Similarly, ρ accepts a pixel’s brightness value

and maximum and minimum codeword brightness values, Îi and Ǐi respectively, and

returns True if the pixel’s brightness matches the codeword brightness according

to some metric and False otherwise. Hence a pixel Xt = (Rt ,Gt ,Bt) matches a

codeword ci if both π(vi,Xt) = True and ρ(
√

R2
t +G2

t +B2
t , Îi, Ǐi) = True.

49

The function ρ(It , Ǐi, Îi)→{True,False} checks whether the pixel’s brightness

It is within a range specified by Ilow and Ihi and is defined as follows:

ρ(It , Ǐi, Îi) =

True, if Ilow ≤ It ≤ Ihi

False, otherwise
, (4.15)

where Ilow = α Îi and Ihi = min
(

β Îi,
Ǐi

α

)
. Ilow and Ihi depend on the global con-

stants α < 1 and β > 1 that specify a valid brightness range for a valid match

between a codeword and a pixel. Decreasing the parameter α allows matches be-

tween dark pixels and bright codewords, while increasing the parameter β allows

matches between bright pixels and dark codewords.

The function π(vi,Xt) measures similarity between a codebook color vector vi

and a pixel value Xt . In Kim et al. this function is defined as follows:

π(vi,Xt) =

True, if δ =

√
‖Xt‖2− (Xt · vi)2

‖vi‖2 < ε

False, otherwise

, (4.16)

where δ represents a distance between two color vectors and ε is a global threshold

that determines the match boundary.

The complete color model is shown in Figure 4.3. The distance between the

pixel color vector Xt and the codeword vector vi is δ and Ilow = α Îi and Ihi =
min

(
β Îi,

Ǐi
α

)
determine a valid match range for a projection p of Xt onto vi. If δ is

less than a threshold ε and the length of the vector Xt is within the range defined

by Ilow and Ihi then the pixel is considered to match the codeword.

During the training phase for each new pixel Xt = (Rt ,Gt ,Bt), where 1≤ t ≤ N

and N is a total number of frames in the training sequence, the algorithm tries to

find a match between the existing codewords in the codebook C and the pixel using

the functions π and ρ . If a matching codeword ci = (vi,auxi) is found its vectors

50

R

G

B

vi

Ǐ

Î

Ihi

Ilow

ε

Xt

δ

Figure 4.3: The color model of Kim et al.. Vectors vi and Xt denote a code-
word and a pixel in the R,G,B space. The decision boundary, outlined in
blue, is determined by the threshold (radius) ε and upper and lower lim-
its Ihi and Ilow. δ denotes distance between the pixel and the codeword
vector. In this case δ > ε and the pixel is not matched to the codeword.

51

vi = (R̃i, G̃i, B̃i) and auxi = (Ǐi, Îi, fi,λi, pi,qi) are updated as follows:

vi←
(

fiR̃i +Rt

fi +1
,

fiG̃i +Gt

fi +1
,

fiB̃i +Bt

fi +1

)
(4.17)

Ǐi←min(It , Ǐi) (4.18)

Îi←max(It , Îi) (4.19)

fi← fi +1 (4.20)

λi←max(λi,a−qi) (4.21)

pi← pi (4.22)

qi← a, (4.23)

where It =
√

R2
t +G2

t +B2
t . Otherwise if no matching codeword is found the algo-

rithm adds a new codeword c j to C:

v j← (Rt ,Gt ,Bt) (4.24)

Ǐ j← It (4.25)

Î j← It (4.26)

f j← 1 (4.27)

λ j← a−1 (4.28)

p j← a (4.29)

q j← a (4.30)

Finally, regardless of whether the match was found or not, the active frame count

a for the codeword C is increased by 1. After all N frames are processed each

codeword ci in the codebook C is adjusted to a maximum negative run-length:

λi←max(λi,(a−qi + pi−1)) (4.31)

This follows from the assumption that the training sequence for each pixel is

viewed as a loop sequence of a consecutive frames. Note that a typically has

different values for different pixels.

Since moving objects can also be present in the training sequence the algorithm

52

will also create codewords representing these moving objects. Therefore, the last

step of training phase consists of removing such codewords. Kim et al. call this

the temporal filtering step. All the codewords that are not accessed for a long time

during the training phase (i.e., have λ larger than some threshold) are removed

from the codebook. Kim et al. suggest N
2 as the threshold. This is not appropriate

for a pan/tilt camera as some codewords representing background can be removed

just because they were not in the camera’s frustum for a long enough period of

time.

We use a threshold Tm, 0 < Tm < 1, that represents a fraction of the total number

of frames during which the pixel was in the camera’s field of view to find the

codewords that have not been accessed often:

C←{ci|ci ∈ C∧λi ≤ bTm ∗ac}, (4.32)

The complete codebook training algorithm for a pan/tilt camera and the temporal

filtering routine are presented in Algorithm 4.3 and Algorithm 4.4 respectively.

To perform background subtraction the algorithm matches a new pixel Xt to all

codewords in a corresponding codebook C. If for some codeword ci both π(vi,Xt)
and ρ(It , Îi, Ǐi) are True the codeword ci is updated as in Equations 4.17 - 4.23 and

the pixel Xt is classified as background. If no match is found then the pixel is

classified as foreground and the codebook remains unchanged. This only lets the

algorithm perform the background subtraction and update the background model

for those parts of the scene that were present in a training sequence. (i.e., Case 1

and Case 3).

As with MOG and KDE, in order to accommodate Case 2 when new parts of the

scene become visible during the testing phase the algorithm must be able to incor-

porate this new information into the background model. In [15] Kim et al. suggest

an improvement to their CB algorithm that lets the changed parts of the scene be

added into the background model during the testing phase. This improvement also

allows the model to handle Case 2 for a pan/tilt camera. An additional background

model H maintains all the codewords that are not found in the main background

model M. Pixels that have matching codewords in the model H are still labeled as

foreground. This model only serves as a temporary cache and all the codewords

53

that gain enough evidence (i.e., are accessed often enough) are moved to the main

model M.

The interaction of two models can be described as follows. In a case when

there is no matching codeword in the main background model M for a new pixel

a matching codeword is found or created in the additional model H. Then, to

maintain the size of the model H all the codewords that have not been accessed

for a time specified by a global constant TH are removed from H. If a codeword

stays in H for a number of frames specified by Tadd it is assumed to belong to the

background and therefore is moved to the main model M. Likewise the size of the

main model M is similarly maintained by removing the codewords that have not

been accessed for a number of frames specified by Tdelete.

The algorithm for the testing phase of a pan/tilt camera CB approach is pre-

sented in Algorithm 4.5.

4.3.1 Color model improvement

The problem with the distance measure used by Kim et al. introduced in Equa-

tion 4.16 and shown in Figure 4.3 is that the value of δ strongly depends on the

length of both the input pixel’s and the codeword’s vectors xt and Vi. These lengths

in turn depend on the brightness of the pixel and the codeword.

Consider an artificial example shown in Figure 4.4. In this sequence two

solid colored disks move against a background. A brighter disk with the color

value (100,128,0) moves against the brighter background with the color value

(128,128,0) and a darker disk with color value (50,64,0) moves against a darker

background with a color value (64,64,0). Since there is no noise and the back-

ground doesn’t change, after the algorithm has been trained all codewords that

correspond to a brighter part of the scene contain value vi = (128,128,0) and all

codewords that correspond to a darker part of the scene have value vi = (64,64,0).
The color distance δ between the brighter disk and the brighter background

is 19.79, similarly δ between the darker disk and the darker background is 9.899.

Hence if the global threshold ε used for testing is set between these two values,

the darker circle will not be detected as a moving object. An actual frame from

the sequence and a classification result with the global threshold ε = 12 are shown

54

Require: homography H, new frame Ft , background model M
F̂t ← Ft transformed by H
if F̂t overlaps M then

Grow M:
for all new pixels in M do

C← (0, /0)
end for

end if
for all pixels Xt = (Rt ,Gt ,Bt) in F̂t do

It ←
√

R2
t +G2

t +B2
t

Find corresponding codebook C in model M
Find ci in C such that π(vi,Xt) = True and ρ(It , Ǐi, Îi) = True
if No match then

Create codeword c j as in Equations 4.24 - 4.30
C← C∪ c j

else
Update ci as in Equations 4.17 - 4.23

end if
Update a← a+1

end for
Algorithm 4.3: Codebook training algorithm for a pan/tilt camera

Require: background model M
for all codebooks C j in M do

for all codewords ci in C j do
wrap λi as in Equation 4.31
if λi ≤ Tm ∗a j then

C j← C j \ ci

end if
end for

end for
Algorithm 4.4: Codebook temporal filtering algorithm

55

Require: homography H, new frame Ft , background models M, H
F̂t ← Ft transformed by H
if F̂t overlaps M then

Grow M, H:
for all new pixels in H do

C← (0, /0)
end for
for all new pixels in M do

C← (0, /0)
end for

end if
for all pixels Xt = (Rt ,Gt ,Bt) in F̂t do

Find corresponding codebook CM in model M
Find corresponding codebook CH in model H
Find matching codeword ci in CM using π and ρ

if ci is found then
Xt labeled as background
Update ci as in Equations 4.17 - 4.23

else
Xt labeled as foreground
Find matching codeword hi in CH using π and ρ

if hi is found then
Update hi as in Equations 4.17 - 4.23

else
Create codeword h j as in Equations 4.24 - 4.30
CH ← CH ∪h j

end if
end if
Remove codewords from the cache model:
CH ← CH \{hi|hi ∈ CH ∧λi > TH}
Move codewords:
CM ← CM ∪{hi|hi ∈ CH ∧a− pi > Tadd}
CH ← CH \{hi|hi ∈ CH ∧a− pi > Tadd}
Remove codewords from the main model:
CM ← CM \{ci|ci ∈ CM ∧a−qi > Tdelete}

end for
Algorithm 4.5: codebook testing phase for pan/tilt camera

56

(a) Frame 400 (b) Detection results

Figure 4.4: Frame 400 and detection results from an artificial image se-
quence. In Figure 4.4b black pixels denote background and white pixels
denote foreground. CB algorithm failed to detect the dark moving circle
against dark background with ε = 12.

(a) Frame 0 (b) Frame 251

Figure 4.5: Frames 0 and 251 of the Wallflower Camouflage video sequence

in Figure 4.4b. Black pixels represent parts of the scene classified as background

and white pixels represent foreground. Since the distance δ between the dark disk

and the dark background is less than ε = 12 the pixels that belong to this disk were

classified as background.

The described scenario is unlikely to happen in many applications. An equiva-

lent situation can occur in surveillance when, for example, the lighting conditions

change over time and the scene becomes darker. Thus the algorithm will have to

detect darker moving targets against darker background.

To detect such targets the threshold ε might be lowered in advance to accom-

57

(a) Detection results for frame 0 (b) Detection results for frame 251

Figure 4.6: Classification results of frames 0 and 251 with ε = 8. The algo-
rithm successfully detected a monitor as background in frame 0. Due to
color similarity between a computer’s screen and the person’s sweater
there are many misclassified pixels in frame 251.

(a) Detection results for frame 0 (b) Detection results for frame 251

Figure 4.7: Classification results of frames 0 and 251 with ε = 1. Lower-
ing the threshold ε allowed the algorithm detect the person correctly
in frame 251 but at the same time image noise in both frames and the
computer screen in frame 0 were misclassified as foreground.

modate a future decrease of distance δ . This leads to a situation where slight pixel

value variations due to image noise cause pixels to be classified as foreground since

these variations increase δ significantly compared to a smaller ε . Figure 4.5 shows

two frames of the Camouflage video sequence from the Wallflower dataset2. This

sequence contains 352 frames taken with a static camera. Some image noise is

2Please refer to [35] for detailed explanation of the datasets

58

present in every frame. The camera is pointed at a computer which is located on

a desk. In frame 241 a person wearing dark blue sweater enters the camera’s frus-

tum and obstructs the computer. To effectively ignore the noise a threshold ε has

to be set to a higher value, but increasing the threshold decreases the algorithm’s

sensitivity to darker pixels. The classification results with ε = 8 can be seen in Fig-

ure 4.6. As with the previous example, black pixels represent background while

white pixels represent foreground. Both frames contain few pixels misclassified

due to noise but the frame shown in Figure 4.6b contains a large part of the per-

son’s body classified as background due to a close match between the dark sweater

and the monitor.

To detect the person as a foreground object the algorithm must be able to differ-

entiate the dark pixels of the person’s sweater from the monitor’s dark pixels when

the person stands in front of the computer. Hence a lower value for the threshold

ε is required. The classification results with a lowered ε can be seen in Figure 4.7.

In this case lowering the threshold increased the algorithm’s sensitivity to image

noise thus producing a large number of misclassified pixels.

Our solution to this problem is to use a threshold for the cosine of the angle

θ instead of the threshold ε for the distance δ as the measure of “closeness” of a

pixel color to a codeword color value. The model is shown in Figure 4.8. Cosine

of the angle θ is calculated as follows:

cosθ =
Xt · vi

‖Xt‖‖vi‖
(4.33)

The benefit of using cosθ instead of δ is that it is not as sensitive to noise and

brightness changes. For example, in the artificial scene in Figure 4.4 the value of

cosθ is exactly the same for both bright and dark discs when they are compared to

bright and dark parts of the scene respectively. Figure 4.9 shows the classification

results for the same image sequence shown in Figure 4.5 obtained by thresholding

cosθ instead of δ . The resulting images contain considerably less noise compared

to the results in Figure 4.7 while successfully displaying the person as foreground.

As θ approaches 0 the sensitivity of cosθ degrades [19]. To avoid this problem

a new metric called normalized vector distance (NVD) was introduced in [21]. NVD

is a simple metric that considers a distance between two normalized to unit length

59

R

G

B

vi

Ǐ

Î

Ihi

Ilow
Xt

θ

Figure 4.8: The color model for the CB algorithm used in this thesis. Vectors
vi and Xt denote a codeword and a pixel in R,G,B space. The decision
boundary, outlined in blue, is determined by the angle of the right cir-
cular cone and upper and lower limits Ihi and Ilow. θ denotes the angle
between the pixel and the codeword vectors. In this case θ is greater
than the cone angle and the pixel is not matched to the codeword.

vectors as a measure of their similarity. In Figure 4.10 NVD is represented by D,

while new pixel’s color and the codeword’s vector are represented by Xt and vi

respectively. To match a pixel value Xt to a codeword vi NVD can be calculated as

follows:

Dt =
∥∥∥∥ vi

‖vi‖
− Xt

‖Xt‖

∥∥∥∥ (4.34)

As with color distance δ and cosine of angle θ a global threshold is applied to

Dt to decide if a pixel is “close” to a codeword’s color vector. If Dt is smaller than

60

(a) Detection results for frame 0 (b) Detection results for frame 251

Figure 4.9: Classification results of frames 0 and 251 with the threshold for
θ = 2 ◦. Using a cosine metric CB was able to correctly detect the com-
puter screen as background in frame 0 and the person as foreground in
frame 251.

R

G

B

1

1
Dt

vt

Xt

Figure 4.10: Normalized vector distance (adapted from [19]). Vectors vi and
Xt denote a codeword and a pixel in the R,G,B space. NVD, denoted as
Dt , is a length of a difference of vectors obtained by normalization of
vt and Xt .

the threshold then the pixel is considered to be “close” and the brightness test is

61

performed as described in Equation 4.15 to determine whether the pixel matches

the codeword.

Although Dt can be calculated from the cosine of the angle and vice versa,

Matsuyama et al. [19] argue that NVD provides better estimation when the angle

gets close to 0, as the sensitivity of cosine function degrades.

As with [35] experiments were performed on the Wallflower datasets. These

datasets were chosen because they cover most of the situations occurring in surveil-

lance scenarios both indoor and outdoor, including smooth and sudden illumina-

tion changes, an object being introduced into the scene and repetitive motion in the

background.

First, for each dataset and each metric the optimal threshold was estimated ex-

perimentally by finding the threshold that minimized the total number of misclas-

sified pixels. In order to find this threshold the brightness statistics Î and Ǐ were not

used. Each pixel was classified entirely by its distance to the codebook vector in

cases when color distance or NVD metrics were used or by angle when cosine met-

ric was used. The classification results and the number of errors for these thresh-

olds for each metric are presented in Table 4.2. False positives (FPs) represent

background pixels that have been classified as foreground and false negatives (FNs)

represent foreground pixels that have been classified as background.

The same thresholds obtained for each metric were used with the same datasets

again but this time with brightness function ρ(It , Îi, Ǐi) enabled. For the brightness

function ρ the parameters α and β were set to the values that minimized the total

number of misclassified pixels in each test sequence. The detection results are pre-

sented in Table 4.3. The number of false positive increased in all the cases, while

the number of FNs decreased. These changes occur because including brightness

statistics Î and Ǐ during the classification phase imposes additional constraints on

a pixel value in order for the pixel to be classified as background, leading to more

pixels being classified as foreground. This results in an increased number of false

positives (FPs). The number of FNs goes down for the same reason — with ρ

enabled the classification process becomes stricter and foreground pixels that had

matched codewords based on color threshold can fail the brightness check and thus

be classified correctly.

Both Table 4.2 and Table 4.3 show that the number of FPs generally is slightly

62

greater for the cosine and NVD metrics. This is due to the fact that to match a

pixel to a codeword neither the cosine or the NVD metrics rely on lengths of the

color vectors. Hence pairs (dark pixels, bright codewords) and (bright pixels, dark

codewords) are matched more often than in cases when the color distance metric is

used. For the same reason the number of FNs is lower for the experiments in which

the cosine and NVD metrics are used.

The results from the Camouflage image sequence presented in both tables show

that the number of FPs is about 3 times greater for the color distance metric compar-

ing to the cosine and NVD metrics. This evidence supports the claim made earlier

in this section that using the metric that does not depend on the length of the color

vectors produces better results when there are dark objects moving against a dark

background.

The number of misclassified pixels for the Light Switch image sequence in-

creased significantly for all types of metrics after brightness statistics were enabled.

This image sequence shows a dark room in which a light is suddenly turned on in

the frame 1853. Since the lighting change is sudden the background model fails to

adapt to a brighter background and classifies most of the pixels as foreground be-

cause they fail the intensity check even though they pass the threshold check as

seen in Table 4.2.

These experiments can be summarized as follows. For most of the sequences

with no large difference between dark and light objects (e.g., Bootstrap, Wav-

ing Trees) both the cosine and NVD metrics improve the detection results only

marginally. On the other hand, for the sequence with a large difference between

dark and light objects (e.g., Camouflage) using either the cosine or NVD metric

results in fewer misclassified pixels. The experiments show that there is no signif-

icant difference between the results obtained by using the cosine or NVD metrics.

63

Dataset

Metric Error
Type

Boot-
strap

Camou-
flage

FG
Aper-
ture

Light
Switch

Time of
Day

Waving
Trees

Color
distance

FP 194 1956 555 288 112 214
FN 2197 642 3392 2714 967 607
FP+FN 2391 2598 3947 3002 1079 821

Cosine
FP 121 733 627 339 186 333
FN 1971 443 1329 2452 583 205
FP+FN 2092 1176 1956 2791 769 538

NVD
FP 142 657 659 343 242 433
FN 1965 517 1314 2445 528 156
FP+FN 2107 1174 1973 2788 770 589

Table 4.2: Comparison of codebook algorithm with three different metrics
without using brightness statistics Î, Ǐ

Dataset

Metric Error
Type

Boot-
strap

Camou-
flage

FG
Aper-
ture

Light
Switch

Time of
Day

Waving
Trees

Color
distance

FP 356 2116 739 8140 263 279
FN 1537 174 984 1282 473 123
FP+FN 1883 2290 1723 9422 736 401

Cosine
FP 385 839 833 7580 247 383
FN 1360 165 766 1703 424 110
FP+FN 1745 1004 1599 9283 671 493

NVD
FP 414 774 862 7582 295 448
FN 1335 188 763 1703 379 85
FP+FN 1749 962 1625 9285 674 533

Table 4.3: Comparison of codebook algorithm with three different metrics
with brightness statistics Î, Ǐ

64

Chapter 5

Results and Discussion

The detection results obtained by the background subtraction algorithms described

in Chapter 4 adapted for the pan/tilt framework presented in Chapter 3 are demon-

strated in this chapter. Six test image sequences were used in order to analyze

the performance of the implemented pan/tilt background subtraction algorithms in

different environments. These six image sequences can be subdivided into two

categories: three image sequences were taken outdoors and the other three image

sequences were taken indoors.

The parameters for each algorithm were found experimentally by minimizing

the total number of misclassified pixels for all sequences in each category. The

obtained parameters were then used for each image sequence in a category. All

the image sequences and the detection results produced by the three background

subtraction algorithms are available on-line [1].

The detection results are presented as follows. For each test sequence a short

description, several representative frames and a figure showing test frames, ground

truth and detection results produced by each algorithm are presented. In all fig-

ures the detection results and ground truth are presented as black and white im-

ages where white pixels denote foreground objects and black pixels denote back-

ground. Furthermore, a table summarizing the number of errors for each algorithm

is provided. In these tables FPs denote background pixels that were classified as

foreground and FNs denote foreground pixels that were classified as background.

Finally, each algorithm’s detection results are discussed.

65

5.1 Detection of moving objects in outdoor scenes
To test the performance of the algorithms in an outdoor environment we used two

outdoor sequences taken with a tripod mounted camera and one taken with a hand

held camera. All outdoor test sequences were taken with a Panasonic SDR-S100

digital camera at 25fps with pixel resolution of 704x576. After that lower quality

image sequences were produced by scaling the original sequences to resolutions of

160x131 pixels.

All the outdoor sequences used the same sets of parameters for MOG, KDE and

CB algorithms. For the CB algorithm the following parameters were used: threshold

that specifies the size of the codebook Tm = 0.5, TH = 20, Tadd = 50, Tdelete = 200.

The angle metric described in Chapter 4 used a threshold of 7 ◦. The parameters α

and β that match a pixel’s brightness to one of the codewords were set to 0.7 and

1.5 respectively.

The following parameters were used for the MOG algorithm. The number of

mixture components K was set to 5. Both learning factors α and ρ were set to 0.01.

σ2
init was set to 3 and winit was set to 0.00001. The threshold T that determines how

many distributions represent background was set to 0.6. Finally, the threshold ∆

that determines if a pixel matches a distribution was set to 15.

For the KDE algorithm the background threshold T was set to 0.02 and the

background sampling rate τ was set to 1. Additionally for this algorithm we used

a normalized color model proposed by Elgammal et al.[6] to reduce the number of

channels per pixel from 3 to 2 in the following way:

RN = 255∗ R
R+G+B

(5.1)

GN = 255∗ G
R+G+B

(5.2)

where R,G,B ∈ (0 . . .255) are the original color values of the pixel and RN ,GN are

two normalized components of the pixel.

Both the KDE and CB algorithms required training. The first 200 frames of each

sequence were used to train the algorithms.

66

(a) Frame 501 (b) Frame 604

(c) Frame 700 (d) Frame 949

Figure 5.1: Frames 501, 604, 700 and 949 of Sequence 1. Figure 5.1a shows
an empty scene, in Figure 5.1b a person is entering the camera’s field of
view, in Figure 5.1c the person is immobile and Figure 5.1d shows the
person leaving the scene.

5.1.1 Sequence 1

Figure 5.1 shows several frames of a 1090 frame image sequence (called Sequence

1) which was taken with a pan/tilt camera mounted on a tripod. The scene contains

a pedestrian pathway bordered by a lawn, a building in the distance and several

trees planted in front of the building. Branches of one of the trees are swaying

in the wind. The whole scene is illuminated by direct sunlight and all images are

67

rich in contrast. In this sequence the camera mostly pans from side to side and

tilts occasionally. The frames in Figure 5.1d and Figure 5.1a show the leftmost

and the rightmost extreme angles of the camera. In frame 584 a target, a walking

person, appears on the right. The person can be seen in Figure 5.1b. After having

walked across the scene the person stops in frame 657 and then continues walking

in the same direction in frame 800. A frame with the standing person can be seen

in Figure 5.1c. Finally, in frame 981 the person leaves the camera’s field of view.

The detection results for frames 625, 720, 850 and 930 produced by the three

pan/tilt background subtraction algorithms are presented in Figure 5.2. The first

row shows the actual frames of the sequence. The GT for each frame is shown in

the second row. The results produced by the MOG, KDE and CB algorithms are

presented in rows three, four and five respectively. Table 5.1 summarizes the total

number of incorrectly classified pixels for each algorithm.

The results produced by MOG and CB, presented in Figure 5.2j and Figure 5.2r

respectively, show that both algorithms failed to detect the now immobile target in

frame 720. In the case of MOG, this is due to the fact that the learning factors α and

ρ that are responsible for the rate at which new pixel values get incorporated into

the model were set to higher values thus resulting in a faster adaptation of immobile

objects into a background model. Figure 5.3 shows composite images of the algo-

rithm’s background models. These images show the means of the most probable

components in the model for each pixel. At frame 720, as seen in Figure 5.3b, the

pixels representing the target are already included in the most probable component.

Similarly, in the case of CB the rate Tadd at which codewords move from cache

codebook to the background codebook was set to 50. This means that if a code-

word is still in the cache codebook after 50 frames it is considered to represent

background and is moved to the background codebook. Increasing Tadd will not

allow the algorithm to incorporate the target into the background model but it will

slow the rate at which previously unseen areas get incorporated into the background

model. Since KDE incorporates new information relatively slowly the classification

results produced by KDE in Figure 5.2n do not have this problem.

Figure 5.2k produced by the MOG algorithm at frame 850 shows a white silhou-

ette incorrectly classified as foreground where the target used to be in frame 720.

Since the target spent a large amount of time in the same location, the distributions

68

(a) Frame 625 (b) Frame 720 (c) Frame 850 (d) Frame 930

(e) GT 625 (f) GT 720 (g) GT 850 (h) GT 930

(i) MOG 625 (j) MOG 720 (k) MOG 850 (l) MOG 930

(m) KDE 625 (n) KDE 720 (o) KDE 850 (p) KDE 930

(q) CB 625 (r) CB 720 (s) CB 850 (t) CB 930

Figure 5.2: The first row shows actual frames from Sequence 1. The ground
truth is shown in the second row, where white pixels denote foreground
and black pixels denote background. The results produced by MOG are
shown in the third row, while the results produced by KDE and CB are
shown in the forth and fifth rows respectively.

69

Number of errors (Percentage)

Algo-
rithm

Error
Type

Frame
625

Frame
720

Frame
850

Frame
930

Total

MOG

FP 667
(3.18%)

128
(0.61%)

1778
(8.48%)

4701
(22.43%)

7274
(8.68%)

FN 860
(4.10%)

2181
(10.4%)

485
(2.31%)

317
(1.51%)

3843
(4.58%)

FP+FN 1527
(7.28%)

2309
(11.01%)

2263
(10.79%)

5018
(23.94%)

11117
(13.26%)

KDE

FP 138
(0.66%)

147
(0.7%)

177
(0.84%)

1866
(8.9%)

2328
(2.78%)

FN 136
(0.65%)

208
(0.99%)

296
(1.41%)

228
(1.09%)

868
(1.04%)

FP+FN 274
(1.31%)

355
(1.69%)

473
(2.25%)

2094
(9.99%)

3196
(3.82%)

CB

FP 340
(1.62%)

94
(0.45%)

404
(1.93%)

3179
(15.17%)

4017
(4.79%)

FN 169
(0.81%)

2148
(10.25%)

266
(1.27%)

220
(1.05%)

2803
(3.34%)

FP+FN 509
(2.43%)

2242
(10.7%)

670
(3.2%)

3399
(16.22%)

6820
(8.13%)

Table 5.1: Comparison of the three background subtraction pan/tilt algo-
rithms for Sequence 1. For each algorithm there are three rows repre-
senting FPs, FNs and the combined number of errors. Each column shows
the number of misclassified pixels in a frame and a percentage relative to
the total number of pixels in the frame. The final column shows the total
number of errors summed across all four frames.

that represented background behind the target in that location were eventually out-

weighed by the distributions that represented the immobile target. When the target

quickly left the location the algorithm had to relearn and reweigh the background

distributions. As seen in Figure 5.2o and Figure 5.2s neither KDE nor CB had this

70

(a) Background model at frame 625 (b) Background model at frame 720

Figure 5.3: Snapshots of background models for the MOG algorithm at
frames 625 and 720. Each snapshot was created by taking the mean
of the most probable component in each pixel’s mixture. At frame 720
there is a recognizable silhouette of a standing person.

issue. In the case of CB a codeword stays in the codebook for Tdelete frames if it is

not accessed. Since the target spent less than Tdelete
1 frames in the same location

codewords that represented the background behind the target were not removed

from the codebook. In the case of KDE the slow rate at which the algorithm incor-

porates new data into the model did not let the target pixels be absorbed into the

background model.

The detection results for frame 930 produced by all three algorithms seen in

Figure 5.2l, Figure 5.2p and Figure 5.2t show a large portion of background on

the left incorrectly classified as foreground (i.e., FPs). This part of the scene had

not been seen by the algorithms before and the algorithms were classifying it as

foreground while collecting enough samples and learning the background.

Since for KDE algorithm the normalized color model was used the results pro-

duced by KDE in Figure 5.2m, Figure 5.2n, Figure 5.2o and Figure 5.2p show that

the algorithm did not classify the target’s shadow as foreground.

5.1.2 Sequence 2

Another outdoor sequence (Sequence 2) was used to test the performance of the

algorithms in a case when there are many interacting foreground objects and some

1In our case Tdelete = 200

71

(a) Frame 78 (b) Frame 180

(c) Frame 413 (d) Frame 829

Figure 5.4: Frames 78, 180, 413 and 829 of Sequence 2. Figure 5.4a and
Figure 5.4b show two frames that are part of training sequence for both
KDE and CB. Figure 5.4c shows a large moving object quickly moving
in front of the camera. Figure 5.4d shows some moving objects in the
background.

72

of these objects occupy a large portion of a frame. This 1018 frame sequence was

taken at a busy intersection with several cars stopping at a red light and resuming

movement once the light changed to green. As with Sequence 1, this sequence

was taken with a camera mounted on a tripod with a pan/tilt head. Several rep-

resentative frames from this sequence are shown in Figure 5.4. Figure 5.4b and

Figure 5.4d show two frames taken at the extreme left and right angles of the cam-

era’s trajectory. A complex interaction between foreground objects is shown in

Figure 5.4a where there are several foreground objects (i.e., pedestrians and cars)

at different distances from the camera. An example of a large foreground object

moving in front of the camera is shown in Figure 5.4c.

The GT and detection masks for some of the frames are presented in Figure 5.5.

Table 5.2 summarizes FP and FN errors in each case.

The detection results for the frames 400 and 460 are similar for all three algo-

rithms — all moving objects were detected relatively accurately by all algorithms.

On the other hand, the results for frames 660 and 900 are different. Figure 5.6

shows detection results produced by KDE for the frames 660 and 900. An area that

was consistently misclassified by the algorithm as foreground is outlined in red. A

similar misclassified area is present in the result for frame 660 produced by CB as

seen in Figure 5.5s. This is caused by an immobile object that eventually starts

moving.

Frames shown in Figure 5.5a and Figure 5.5b contain a grey car that is waiting

at the intersection. Since the car had been immobile since the beginning of the

sequence, all three algorithms did not classify it as foreground object. In frame

590 the street light changed to green and the car began to move. By frame 660

the car had already traveled some distance and it was already outside of the cam-

era’s field of view by frame 900. Since the KDE algorithm adapted to changing

background very slowly it was not able to incorporate new background informa-

tion into the short-term model once the car started moving. By frame 900 there

was still not enough evidence in the model for the new background and the area

that was occupied by the car was still classified as foreground. On the contrary, the

MOG algorithm was able to completely incorporate the new background into the

model by frame 660 and the CB algorithm by frame 900.

73

(a) Frame 400 (b) Frame 460 (c) Frame 660 (d) Frame 900

(e) GT 400 (f) GT 460 (g) GT 660 (h) GT 900

(i) MOG 400 (j) MOG 460 (k) MOG 660 (l) MOG 900

(m) KDE 400 (n) KDE 460 (o) KDE 660 (p) KDE 900

(q) CB 400 (r) CB 460 (s) CB 660 (t) CB 900

Figure 5.5: The first row shows actual frames from Sequence 2. The ground
truth is shown in the second row, where white pixels denote foreground
and black pixels denote background. The results produced by MOG are
shown in the third row, while the results produced by KDE and CB are
shown in the forth and fifth rows respectively.

74

Number of errors (Percentage)

Algo-
rithm

Error
Type

Frame
400

Frame
460

Frame
660

Frame
900

Total

MOG

FP 136
(0.65%)

202
(0.96%)

88
(0.42%)

57
(0.27%)

483
(0.58%)

FN 267
(1.27%)

114
(0.54%)

43
(0.21%)

30
(0.14%)

454
(0.54%)

FP+FN 403
(1.92%)

316
(1.5%)

131
(0.63%)

87
(0.41%)

937
(1.12%)

KDE

FP 77
(0.37%)

84
(0.4%)

110
(0.52%)

117
(0.56%)

388
(0.46%)

FN 422
(2.01%)

291
(1.39%)

66
(0.31%)

36
(0.17%)

815
(0.97%)

FP+FN 499
(2.38%)

375
(1.79%)

176
(0.83%)

153
(0.73%)

1203
(1.43%)

CB

FP 57
(0.27%)

78
(0.37%)

35
(0.17%)

24
(0.11%)

194
(0.23%)

FN 281
(1.34%)

175
(0.83%)

81
(0.39%)

32
(0.15%)

569
(0.68%)

FP+FN 338
(1.61%)

253
(1.2%)

116
(0.56%)

56
(0.26%)

763
(0.91%)

Table 5.2: Comparison of the three background subtraction pan/tilt algo-
rithms for Sequence 2. For each algorithm there are three rows repre-
senting FPs, FNs and a combined number of errors. Each column shows
number of misclassified pixels in a frame and a percentage relative to the
total number of pixels in the frame. The final column shows the total
number of errors summed across all four frames.

75

(a) KDE result for frame 660 (b) KDE result for frame 900

Figure 5.6: Classification results for frames 660 and 900 of Sequence 2 pro-
duced by KDE. In both frames parts where a grey car used to be are
incorrectly classified as foreground and are outlined in red for clarity.

5.1.3 Sequence 3

An image sequence similar to Sequence 1 was taken with the same camera in the

same location. However, this time the camera was not mounted on a tripod but

instead was handheld. The camera was manually moved in an approximate pan/tilt

fashion. The goal of this experiment was to evaluate the performance of the back-

ground subtraction algorithms in the case when the frames are not exactly related

by a homography and, as a consequence, are not registered exactly.

In this image sequence, as in Sequence 1, the handheld camera sweeps across

the same scene and the target walks in from the right side of the scene, stops and

then continues walking to the left. Figure 5.7 shows several frames and the classifi-

cation results produced by each of the three BS algorithms. The summary of errors

is presented in Table 5.3.

The detection results presented in Figure 5.7 show that all three algorithms

were able to produce recognizable silhouettes of the target in all of the frames.

Since the relation between the frames was not exactly a homography, the frames

were not registered precisely and as a consequence the results produced by MOG,

which is a more sensitive algorithm, show a considerable number of misclassi-

fied pixels. In all of the masks produced by the MOG (Figure 5.7i, Figure 5.7j,

76

(a) Frame 350 (b) Frame 430 (c) Frame 500 (d) Frame 570

(e) GT 350 (f) GT 430 (g) GT 500 (h) GT 570

(i) MOG 350 (j) MOG 430 (k) MOG 500 (l) MOG 570

(m) KDE 350 (n) KDE 430 (o) KDE 500 (p) KDE 570

(q) CB 350 (r) CB 430 (s) CB 500 (t) CB 570

Figure 5.7: The first row shows actual frames from Sequence 3. The ground
truth is shown in the second row, where white pixels denote foreground
and black pixels denote background. The results produced by MOG are
shown in the third row, while the results produced by KDE and CB are
shown in the forth and fifth rows respectively.

77

Figure 5.7k and Figure 5.7l) there are visible lines coinciding with the edges of

some of the background objects. These lines correspond to the pixels which are

located at the edges of the solid colored background objects. And due to the im-

precise registration these objects overlap with some offset in some of the frames.

And these areas were detected as foreground by the MOG. A large number of FPs

that could be seen in the left and right parts of Figure 5.7i and in the lower part of

Figure 5.7k are the result of gradual changes in the color of the pavement produced

by the camera adjusting to the lighting conditions.

As with Sequence 1 both MOG and CB incorporated parts of the target into the

background model when the target was stationary. This can be seen in Figure 5.7j,

Figure 5.7k and Figure 5.7s. Again, this is due to high learning rates α and ρ in

the case of MOG and the parameter Tadd in the case of CB.

5.2 Detection of moving objects in indoor scenes
In indoor scenes we cannot assume that all objects are at a reasonable distance (i.e.,

at infinity). Hence, in order for frames to be related by a homography the camera

needs to rotate exactly about its optical center. Lens distortion is another problem

often more noticeable in indoor environment. Indoor scenes are usually taken with

a wide angle lens and contain objects that are close to the camera. The effects of

lens distortions, such as radial distortion, are stronger, thus estimation of a homog-

raphy in the indoor environment is more difficult than in the outdoor environment

as straight lines in the real world are not always represented by straight lines in the

images.

For all the indoor scenes presented in this section the parameters for the CB

algorithm were exactly the same as for the outdoor scenes. For the MOG algorithm

all the parameters were the same except for the threshold ∆ which was increased to

50, thus allowing a pixel to lie farther from the mean of a component distribution

in order to match it. Similarly, the sensitivity of the KDE algorithm was increased

for the indoor scenes by setting the threshold T to 0.01.

78

Number of errors (Percentage)

Algo-
rithm

Error
Type

Frame
350

Frame
430

Frame
500

Frame
570

Total

MOG

FP 2626
(12.53%)

584
(2.79%)

2910
(13.88%)

525
(2.5%)

6645
(7.93%)

FN 194
(0.93%)

1484
(7.08%)

1779
(8.49%)

312
(1.49%)

3769
(4.5%)

FP+FN 2820
(13.46%)

2068
(9.87%)

4689
(22.37%)

837
(3.99%)

10414
(12.43%)

KDE

FP 245
(1.17%)

84
(0.4%)

970
(4.63%)

110
(0.52%)

1409
(1.68%)

FN 441
(2.1%)

252
(1.2%)

312
(1.49%)

265
(1.26%)

1270
(1.51%)

FP+FN 686
(3.27%)

336
(1.6%)

1282
(6.12%)

375
((1.78%)

2679
(3.19%)

CB

FP 39
(0.19%)

15
(0.07%)

420
(2.0%)

34
(0.16%)

508
(0.61%)

FN 129
(0.61%)

267
(1.27%)

1549
(7.39%)

297
(1.42%)

2242
(2.67%)

FP+FN 168
(0.80%)

282
(1.34%)

1969
(9.39%)

331
(1.58%)

2750
(3.28%)

Table 5.3: Comparison of the three background subtraction pan/tilt algo-
rithms for Sequence 3. For each algorithm there are three rows repre-
senting FPs, FNs and a combined number of errors. Each column shows
number of misclassified pixels in a frame and a percentage relative to the
total number of pixels in the frame. The final column shows the total
number of errors summed across all four frames.

79

(a) Frame 1 (b) Frame 34

Figure 5.8: Frames 1 and 52 of Sequence 4 by Xu[41]. Figure 5.8a shows the
first frame of the sequence. Note the lack of objects that could produce
many features. Figure 5.8b shows a typical frame of the sequence where
the box and the arm occupy a large portion of the frame.

5.2.1 Sequence 4

One of the indoor sequences is in a dataset created by Xu[41]. This image se-

quence contains 154 frames with the resolution of 320 by 240 pixels. In this video

sequence a tripod mounted camera pans and tilts following a person’s hand that

holds a box at a close distance to the camera. Two frames from this sequence

are shown in Figure 5.8. A particular difficulty with this image sequence is that

the hand rotates and moves the box erratically, sometimes bringing it closer to the

camera so that the box occupies a large portion of the screen. This can be seen in

Figure 5.8b. The hand occupies the left portion of the screen almost all the time

thus making the learning of the background model in that part of the scene diffi-

cult. Moreover, there are few distinct background objects in the scene to extract

keypoints from and sometimes the foreground objects cover them completely as

seen in Figure 5.9c.

Detection results and ground truth are presented in Figure 5.9. The number of

FPs and FNs for each shown frame and each algorithm is presented in Table 5.4.

The total number of errors in Table 5.4 is considerably larger that for other im-

age sequences presented in this chapter. This is caused by a larger proportion of

80

(a) Frame 65 (b) Frame 95 (c) Frame 125 (d) Frame 150

(e) GT 65 (f) GT 95 (g) GT 125 (h) GT 150

(i) MOG 65 (j) MOG 95 (k) MOG 125 (l) MOG 150

(m) KDE 65 (n) KDE 95 (o) KDE 125 (p) KDE 150

(q) CB 65 (r) CB 95 (s) CB 125 (t) CB 150

Figure 5.9: The first row shows actual frames from Sequence 4. The ground
truth is shown in the second row, where white pixels denote foreground
and black pixels denote background. The results produced by MOG are
shown in the third row, while the results produced by KDE and CB are
shown in the forth and fifth rows respectively.

81

foreground pixels in each image frame compared to frames in other sequences.

Both the MOG and the KDE algorithms produced recognizable checker pattern

on the box. This is caused by the close similarity of the color of the wall and the

color of the white checkers on the box.

The KDE algorithm consistently failed to classify very dark areas of the image

sequence as background. A definite outline of the dark areas of the chair and

the desk are seen in Figure 5.9m, Figure 5.9n and Figure 5.9p. The color model

that was used for this algorithm represents each R,G,B component as a fraction

of the sum of all of the components. As a result, noisy pixels have a very large

variation in very dark areas. Consider for instance, a very dark pixel with R,G,B

values (1,1,0). According to Equation 5.1 and Equation 5.2 both of its values

RN and GN are equal to 127. If in the next frame the same pixel due to the noise

has R,G,B values (1,0,0) its RN and GN are 255 and 0 respectively. In order to

accommodate for such a large variation the background threshold T would need to

be lowered which would result in a large number of foreground pixels classified as

background.

The results produced by the MOG algorithm shown in Figure 5.9i, Figure 5.9j

and Figure 5.9k contain a large number of pixels at the top and the right sides of the

respective frames erroneously classified as foreground (i.e., FPs). This is caused by

the addition of new randomly initialized mixtures to the model as new parts of

the scene are encountered. The speed with which the MOG algorithm learns new

background depends on the learning factors α and ρ .

5.2.2 Sequence 5

To test detection of multiple targets in an indoor environment we ran the algorithms

on a hockey game broadcast video taken with a tripod mounted pan/tilt camera.

The original image sequence contains 1000 frames at the high definition resolution

of 1920 by 970 pixels. For testing purposes each image was scaled down to the

resolution of 300 by 152 pixels.

In this image sequence a pan/tilt camera tracks play during a hockey game.

Several frames from the image sequence are shown in Figure 5.10. The foreground

objects in this sequence are hockey players and the background objects are the rink

82

Number of errors (Percentage)

Algo-
rithm

Error
Type

Frame
65

Frame
95

Frame
125

Frame
150

Total

MOG

FP 6210
(8.09%)

13850
(18.03%)

7718
(10.05%)

157
(0.2%)

27935
(9.09%)

FN 3234
(4.21%)

4272
(5.56%)

11697
(15.23%)

6738
(8.77%)

25941
(8.44%)

FP+FN 9444
(12.3%)

18122
(23.59%)

19415
(25.28%)

6895
(8.97%)

53876
(17.53%)

KDE

FP 4699
(6.12%)

4874
(6.35%)

1131
(1.47%)

5279
(6.78%)

15983
(5.2%)

FN 9450
(12.3%)

5599
(7.29%)

14431
(18.79%)

4056
(5.28%)

33536
(10.92%)

FP+FN 14149
(18.42%)

10473
(13.64%)

15562
(20.26%)

9335
(12.16%)

49519
(16.12%)

CB

FP 817
(1.06%)

448
(0.58%)

328
(0.43%)

214
(0.28%)

1807
(0.59%)

FN 6850
(8.92%)

7463
(9.72%)

16162
(21.04%)

5543
(7.22%)

36018
(11.72%)

FP+FN 7667
(9.98%)

7911
(10.3%)

16490
(21.47%)

5757
(7.5%)

37825
(12.31%)

Table 5.4: Comparison of the three background subtraction pan/tilt algo-
rithms for the sequence by Xu. For each algorithm there are three rows
representing FPs, FNs and a combined number of errors. Each column
shows number of misclassified pixels in a frame and a percentage rela-
tive to the total number of pixels in the frame. The final column shows
the total number of errors summed across all four frames.

83

(a) Frame 400 (b) Frame 600

(c) Frame 720 (d) Frame 999

Figure 5.10: Frames 400, 600, 720 and 999 of Sequence 5. Figure 5.10a and
Figure 5.10b show complex interaction between players. Figure 5.10c
and Figure 5.10d show left and right parts of the rink demonstrating
the range of the camera’s motion.

Figure 5.11: Example of radial distortion in Sequence 5. The distortion is
noticeable where the edge between ice and the boards curves up and
the glass edge curves down. Red lines are overlaid for reference.

84

and boards with spectators behind them. Since the camera is using a wide angle

lens some distortion is present in the resulting images. Consider, for example, a

high resolution version of frame 1 shown in Figure 5.11, in which red lines were

drawn on top of the image to display distortion of the rink boards. The far board,

which is straight in real life, is curving up at the left and the right sides of the frame.

Similarly, the portion of the glass visible at the bottom of the frame is curving down

at the right and the left sides of the frame. This kind of distortion contributed to

the RANSAC algorithm not being able to estimate some homographies very accu-

rately. As a consequence, some image frames were not aligned precisely to the

background model.

The ground truth and the detection results for the frames shown in Figure 5.10

are presented in Figure 5.12 and detection errors for each algorithm are summa-

rized in Table 5.5. Even though all algorithms were able to detect the players on

the rink in this image sequence, the KDE algorithm significantly outperformed both

the CB and the MOG algorithms. For frame 400, shown in Figure 5.12a, both the

CB and the MOG algorithms produced a large number of FPs while KDE was able

to detect targets correctly.

Frame 400 was taken at the time when the camera was quickly panning to

the right revealing previously unseen parts of the rink. When discovering previ-

ously unseen parts of the scene KDE blindly updates both the short-term and the

long-term background models until the number of samples in the model is at full

capacity. This lets KDE learn previously unseen parts of the scene very quickly. As

the result, the KDE algorithm almost never misclassifies pixels from the previously

unseen areas of the scene as shown in Figure 5.12m.

For both MOG and CB the rate at which new parts of the scene get incorporated

into the background model depends on the parameters α and ρ for MOG and Tadd

for CB. Since the camera was quickly panning these two algorithms were not able

to learn the background for the new parts of the scene as quickly as the KDE. This

resulted in a large number of FPs as seen in Figure 5.12i and Figure 5.12q.

85

Number of errors (Percentage)

Algo-
rithm

Error
Type

Frame
400

Frame
600

Frame
720

Frame
999

Total

MOG

FP 17974
(39.42%)

3597
(7.89%)

1605
(3.52%)

735
(1.61%)

23911
(13.11%)

FN 550
(1.21%)

603
(1.32%)

370
(0.81%)

597
(1.31%)

2120
(1.62%)

FP+FN 18524
(40.63%)

4200
(9.21%)

1975
(4.33%)

1332
(2.92%)

26031
(14.73%)

KDE

FP 2202
(4.83%)

2273
(4.98%)

987
(2.16%)

817
(1.79%)

6279
(3.44%)

FN 1384
(3.04%)

438
(0.96%)

448
(0.98%)

616
(1.35%)

2886
(1.58%)

FP+FN 3586
(7.87%)

2711
(5.94%)

1435
(3.14%)

1433
(3.14%)

9165
(5.02%)

CB

FP 17758
(38.94%)

3982
(8.73%)

687
(1.51%)

583
(1.28%)

23010
(12.62%)

FN 1024
(2.25%)

392
(0.86%)

404
(0.89%)

685
(1.5%)

2505
(1.37%)

FP+FN 18782
(41.19%)

4374
(9.59%)

1091
(2.4%)

1268
(2.78%)

25515
(13.99%)

Table 5.5: Comparison of the three background subtraction pan/tilt algo-
rithms for Sequence 5. For each algorithm there are three rows repre-
senting FPs, FNs and a combined number of errors. Each column shows
number of misclassified pixels in a frame and a percentage relative to the
total number of pixels in the frame. The final column shows the total
number of errors summed across all four frames.

86

(a) Frame 400 (b) Frame 600 (c) Frame 720 (d) Frame 999

(e) GT 400 (f) GT 600 (g) GT 720 (h) GT 999

(i) MOG 400 (j) MOG 600 (k) MOG 720 (l) MOG 999

(m) KDE 400 (n) KDE 600 (o) KDE 720 (p) KDE 999

(q) CB 400 (r) CB 600 (s) CB 720 (t) CB 999

Figure 5.12: The first row shows actual frames from Sequence 5. The ground
truth is shown in the second row, where white pixels denote foreground
and black pixels denote background. The results produced by MOG are
shown in the third row, while the results produced by KDE and CB are
shown in the forth and fifth rows respectively. Both Figure 5.12i and
Figure 5.12q show a large number of FPs due to the inability of the
MOG and CB algorithms to quickly learn the background model for
new areas of the scene.

87

(a) Frame 239 (b) Frame 314

(c) Frame 406 (d) Frame 442

Figure 5.13: Frames 239, 314, 406 and 442 of Sequence 6. In Figure 5.13a
a first person enters camera’s field of view. In Figure 5.13b the first
person is walking towards the camera. In Figure 5.13c the first person
is leaving the camera’s field of view while a second person is seen
walking in the back. In Figure 5.13d the second person is leaving the
camera’s field of view.

5.2.3 Sequence 6

An indoor video sequence was taken with a hand held camera similar Sequence

3. Again, this sequence was taken with a Panasonic SDR-S100 digital camera at

resolution of 704x576 pixels. Each frame was then scaled down to resolution of

160x131 pixels.

88

In this 454 frame long sequence the camera sweeps the empty scene for the first

200 frames, then a person enters the visible part of the scene from the right,walks

towards the camera and leaves the scene in frame 419. A second person appears

in frame 345 in the middle of the scene and also walks towards the camera. This

person leaves the camera’s field of view in frame 450 when the camera rotates

away. Since the camera did not rotate about its optical center, the frames are not

necessarily related by homographies.

Several frames from this sequence are shown in Figure 5.13. In Figure 5.13a a

first person enters the visible part of the scene from the right. In frame 314, shown

in Figure 5.13b, the camera is sweeping to the left and the first person is walking

towards the camera. In Figure 5.13c the first person is leaving the camera’s field

of view while the second person is walking in the back. Figure 5.13d shows frame

442 in which the camera is sweeping to the right and the second person is leaving

the camera’s field of view.

The results show that all three background subtraction algorithms were able to

detect moving objects. As with Sequence 3, the resulting images in Figure 5.14

contain some misclassified pixels due to improper registration, which can be seen

in the form of straight lines occurring at borders of the background objects in the

resulting mask images produced by the algorithms. For the same reason there is a

noticeable number of improperly classified pixels in the frames where a large plant

is visible (i.e., frames 314 and 406). Since this plant is at close distance to the

camera and the camera’s motion is not pure rotation about its optical center there is

considerable motion parallax due to the camera’s motion. As a result of the motion

parallax the plant is not always mapped to the same location in the background

model.

The results produced by the MOG algorithm show that there are more pixels

incorrectly classified as background (i.e., FNs) than in the results produced by the

KDE and the CB algorithms. For example, in frame 239 seen in Figure 5.14i, the

MOG algorithm failed to detect an upper part of the person’s body. In frame 406,

shown in Figure 5.14k some parts of the target’s body, such as left arm, are not

classified as foreground. These problems are caused by similarity of the colors of

the background and foreground pixels. In the first case the color of the target’s t-

shirt is very similar to the color of the stairs in the background. In the second case

89

(a) Frame 239 (b) Frame 314 (c) Frame 406 (d) Frame 442

(e) GT 239 (f) GT 314 (g) GT 406 (h) GT 442

(i) MOG 239 (j) MOG 314 (k) MOG 406 (l) MOG 442

(m) KDE 239 (n) KDE 314 (o) KDE 406 (p) KDE 442

(q) CB 239 (r) CB 314 (s) CB 406 (t) CB 442

Figure 5.14: The first row shows actual frames from Sequence 6. The ground
truth is shown in the second row, where white pixels denote foreground
and black pixels denote background. The results produced by MOG are
shown in the third row, while the results produced by KDE and CB are
shown in the forth and fifth rows respectively.

90

Number of errors (Percentage)

Algo-
rithm

Error
Type

Frame
239

Frame
314

Frame
406

Frame
442

Total

MOG

FP 134
(0.64%)

964
(4.6%)

99
(0.47%)

725
(3.46%)

1922
(2.29%)

FN 158
(0.75%)

341
(1.63%)

1833
(8.75%)

346
(1.65%)

2678
(3.19%)

FP+FN 292
(1.39%)

1305
(6.23%)

1932
(9.22%)

1071
(5.11%)

4600
(5.48%)

KDE

FP 36
(0.17%)

379
(1.81%)

554
(2.64%)

1108
(5.29%)

2077
(2.48%)

FN 77
(0.37%)

107
(0.51%)

297
(1.42%)

115
(0.55%)

596
(0.71%)

FP+FN 113
(0.54%)

486
(2.32%)

851
(4.06%)

1223
(5.84%)

2673
(3.19%)

CB

FP 182
(0.87%)

144
(0.69%)

310
(1.48%)

950
(4.53%)

1586
(1.89%)

FN 59
(0.28%)

99
(0.47%)

356
(1.7%)

150
(0.72%)

664
(0.79%)

FP+FN 241
(1.15%)

243
(1.16%)

666
(3.18%)

1100
(5.25%)

2250
(2.68%)

Table 5.6: Comparison of the three background subtraction pan/tilt algo-
rithms for Sequence 6. For each algorithm there are three rows repre-
senting FPs, FNs and a combined number of errors. Each column shows
number of misclassified pixels in a frame and a percentage relative to the
total number of pixels in the frame. The final column shows the total
number of errors summed across all four frames.

the color of the arm is very similar to the color of the wooden wall. The sensitivity

of the MOG algorithm can be decreased by adjusting the threshold ∆. Since the

same threshold is applied to each pixel in the image, decreasing it will remove

these FNs while increasing the number of FPs in other areas of the image.

91

5.3 Discussion
The three algorithms showed different degrees of success in different situations

with the CB and the MOG algorithms being better suited for the situations where

the background changes. The KDE algorithm performed the best for the sequences

where the background did not change.

The KDE algorithm had the lowest number of errors in three sequences —

sequences 1,3 and 5. In the other three sequences the CB algorithm had the fewest

errors. In Sequence 2 the KDE algorithm had the largest number of misclassified

pixels. There are two main reasons for this. First, KDE produced many FNs failing

to detect parts of a moving car against dark pavement in frame 400 (shown in

Figure 5.5m). This happened because normalized color values of noisy dark pixels

have very large variation and therefore do not always match the pixels in the model.

While the normalized color model of Elgammal et al.[6] helps to avoid classifying

shadows as foreground it fails in the cases where objects or background are indeed

dark and contain some noise.

Second, KDE relearns the background model very slowly once the objects that

belonged to the background started moving. This resulted in an increased number

of FPs in frames 660 and 900 of Sequence 2.

A large number of FPs in sequences 1 and 5 produced by MOG and CB were

the result of these algorithms’ inability to quickly learn a background model for

newly discovered parts of the scene. For these algorithms there is a balance be-

tween how fast the new areas are incorporated into the background model versus

how fast stopped targets become background. If these algorithms incorporate new

information quickly, they sometimes can erroneously incorporate the stopped tar-

gets into the background model as well. This was the case for the MOG and the

CB algorithms in Sequence 1 as seen in Figure 5.2j and Figure 5.2r. On the other

hand, if the rate at which the background is learned is low large parts of the scene

might be misclassified as there is no complete background model for these parts.

This happened with the MOG and the CB algorithms in Sequence 5 as seen in Fig-

ure 5.5i and Figure 5.5q. Therefore it might be useful for these algorithms to build

a complete background model first by sweeping through the complete scene.

The KDE algorithm does not have problems with quickly building the model

92

for the new areas, but since there is no direct way to control the rate at which the

algorithm adds immobile targets to the background model this algorithm is very

slow to change the model once it has been learned. The KDE algorithm might be

very good in cases where the background scene is not expected to change (such as

sport events).

Based on the detection results for both indoor and outdoor handheld image

sequences (Sequence 4 and Sequence 6) we conclude that it is possible to perform

background subtraction on image sequences taken with a handheld camera in the

case when the handheld camera moves in a fashion similar to pan/tilt. For the back-

ground subtraction algorithms tested it is not required that the frames are exactly

related by a homography. Some misalignment is allowed. The multimodal nature

of the BS algorithms allows these algorithms to model boundary situations when

one pixel in the background model can represent several objects from the scene

due to improper registration.

93

Chapter 6

Conclusions and Future Work

This thesis extends background subtraction algorithms designed for a static cam-

era. To support camera pan/tilt a combination of Hough transform and RANSAC

algorithms is used to estimate camera motion for each frame. The homography

that transforms each new frame to the background model is estimated. The new

frame is transformed to the background model’s coordinate system and passed to

a BS algorithm. This design allows extension of any BS algorithm designed for

a static camera to support a pan/tilt camera. Three background subtraction algo-

rithms were extended to support pan/tilt cameras: MOG, KDE and CB algorithms.

These extended algorithms were then tested in different indoor and outdoor envi-

ronments and the results showed satisfactory performance in these environments.

Furthermore, experiments with Sequences 3 and 6 described in Chapter 5 have

shown that it is possible to use this approach with a hand held camera whose mo-

tion only approximates that of an ideal pan/tilt camera. In these two sequences the

algorithms still were able to detect moving targets.

A major issue inherent in most BS algorithms is the rate that determines how

fast the algorithm should accept new information into the background model. If the

algorithm adapts too fast some foreground objects become part of the background

once they become stationary for a short period of time or just move slowly. If the

algorithm adapts too slowly then changes in the background will continuously be

misclassified as foreground. This trade off is important in the case of a pan/tilt

camera since previously unseen parts of the scene become visible due only to the

94

camera’s motion. Since new parts of the scene have not been learned a BS algo-

rithm initially classifies them as foreground thus producing many FPs. To expand

the background model, the algorithm must be able to quickly incorporate new in-

formation. Consequently, it also becomes prone to incorporating slow moving or

temporarily stopped targets into the background model, as well.

One possible solution to this problem is to make parameters that are responsible

for learning rate adapt to the estimated camera motion. For example, the size of the

new previously unseen area in the current frame can be calculated by a background

subtraction module described in Chapter 4 when it needs to grow the background

model.

In the case of MOG, depending on how much the model is grown, the algorithm

may change learning parameters α and ρ to facilitate quicker learning without

incorporating slowly moving targets into the background model. Large growth of

the model means that the camera is viewing previously unseen area and, therefore,

the parameters α and ρ may be increased for several frames to let the algorithm

quickly learn the new background model. If there is no model growth, this means

that the camera is viewing previously seen areas that already are part of the model

and, therefore, the parameters α and ρ may be lowered for better detection of

slowly moving targets.

Similarly, in the case of the CB algorithm, the pixels in the background model

that correspond to the newly discovered areas will not contain any codewords for

the number of frames specified by the parameter Tadd . One possible solution is

to add the first seen pixel as a codeword if there are no other codewords for this

particular pixel in the background model. Eventually, if this pixel turned out to

represent a moving object it will be deleted from the model after the number of

frames specified by the parameter Tdelete. On the other hand, if this pixel is indeed

a background pixel it will persist in the model.

Another drawback of the algorithms presented in this thesis is that the com-

putational requirements can be high. The current implementation in Python takes

up to 40 seconds to process a single 160x131 pixel frame on a quad core Intel i5-

750 processor. The warping of a new frame to the background model’s coordinate

frame takes most of the computation time. Due to the modularity of the algorithm

it is possible to parallelize the process in such a way that the two modules described

95

in Chapter 3 and Chapter 4 run in parallel. The motion estimation module warps

frames and pushes them into a queue while the background subtraction module

reads the warped frames from the queue and performs classification.

There are several ways the work can be extended and improved. With the

advent of high frame rate cameras that can shoot sequences at speeds up to 1000

fps it is possible to perform BS on the same image sequence at different rates to

locate objects that are moving at different speeds. The learning rate controls how

fast objects get incorporated into the background model. This allows BS algorithms

to be tailored to detect objects moving with a specific speed. It is also possible to

perform background subtraction on different “time layers”, where each “layer”

contains fewer frames than the layer before. Objects moving at different speeds

will be detected at different “layers”.

Usually the colors of neighboring pixels are similar if pixels belong to the same

object. Several algorithms proposed different approaches for dealing with spatial

dependency. Some of these approaches consider neighboring pixels or blocks of

pixels when classifying a pixel in an image [19, 22, 29, 35]. Another approach pro-

posed by Wu and Peng[40] uses an MRF to represent dependency between pixels.

A possible spatial extension to a BS algorithm is to represent a background model

as a Gaussian pyramid at different scales and perform background subtraction at

each level individually. The final classification result can be obtained by combin-

ing the outputs from all layers of the pyramid. This approach avoids blocky results

provided by methods that consider blocks of pixels and decreases computational

load in comparison to methods that use an MRF.

A RANSAC algorithm fails when there are many outliers. Pre-processing using

Hough transform helps to eliminate outlying feature points whose trajectories are

not at all consistent with the homography estimated in the previous step. The

approach taken does not yet take camera motion into account. Satisfactory results

were obtained for all cases presented in Chapter 5. One issue with this filtering step

is that it could lead to problems if the camera’s motion is both rapid and erratic.

In this case the filtering step could erroneously remove inliers since they would

not be consistent with the homography obtained in the previous step. A useful

improvement would be to incorporate a prediction technique, such as Kalman filter,

to obtain a better initial estimate of the transformation between consecutive frames.

96

Bibliography

[1] http://www.cs.ubc.ca/nest/lci/thesis/etsinko/. → pages 65

[2] Y. Abdel-Aziz and H. Karara. Direct linear transformation from comparator
coordinates into object space coordinates in close-range photogrammetry.
Amer. Soc. Photogrammetry, pages 1–18, 1971. → pages 22, 23

[3] D. Ballard. Generalizing the Hough transform to detect arbitrary shapes.
Pattern recognition, 13(2):111–122, 1981. → pages 28

[4] G. Bradski and A. Kaehler. Learning OpenCV. O’Reilly, 2008. → pages 3

[5] O. Chum, T. Pajdla, and P. Sturm. The geometric error for homographies.
Computer Vision and Image Understanding, 97(1):86–102, 2005. → pages
26

[6] A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for
background subtraction. Lecture Notes in Computer Science, 1843:751–767,
2000. → pages 6, 9, 11, 12, 13, 15, 20, 45, 46, 66, 92

[7] D. Farin, P. de With, and W. Effelsberg. Video-object segmentation using
multi-sprite background subtraction. In Proc. IEEE International
Conference on Multimedia and Expo (ICME, pages 343–346. Citeseer, 2004.
→ pages 16, 17, 18, 19

[8] M. Fischler and R. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981. → pages 6, 12, 17, 22

[9] N. Friedman and S. Russell. Image Segmentation in Video Sequences: A
Probabilistic Approach. In Proceedings of 13th Conference on Uncertainty
in Artificial Intelligence (UAI), pages 175–181, 1997. → pages 9, 10, 18, 19

97

http://www.cs.ubc.ca/nest/lci/thesis/etsinko/

[10] K. Fukunaga and L. Hostetler. The estimation of the gradient of a density
function, with applications in pattern recognition. IEEE Transactions on
Information Theory, 21(1):32–40, 1975. → pages 12, 32

[11] R. Hartley and A. Zisserman. Multiple view geometry in computer vision.
Cambridge Univ Pr, 2003. → pages 21, 22, 23, 24, 25, 26, 27

[12] E. Hayman and J. Eklundh. Statistical background subtraction for a mobile
observer. In Ninth IEEE International Conference on Computer Vision,
2003. Proceedings, pages 67–74, 2003. → pages 16, 18, 19, 40, 41, 45

[13] P. KaewTraKulPong and R. Bowden. An improved adaptive background
mixture model for real-time tracking with shadow detection. In Proc.
European Workshop Advanced Video Based Surveillance Systems, volume 1.
Citeseer, 2001. → pages 11, 19

[14] K. Karmann and A. von Brandt. Moving object recognition using an
adaptive background memory. Time-varying image processing and moving
object recognition, 2:289–296, 1990. → pages 10

[15] K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis. Real-time
foreground–background segmentation using codebook model. Real-Time
Imaging, 11(3):172–185, 2005. → pages vi, 6, 11, 12, 13, 15, 20, 47, 49, 50,
51, 53, 54

[16] D. Koller, J. Weber, and J. Malik. Robust multiple car tracking with
occlusion reasoning. Computer VisionECCV’94, pages 189–196, 1994. →
pages 1, 10

[17] A. Lipton, H. Fujiyoshi, and R. Patil. Moving target classification and
tracking from real-time video. In IEEE Workshop on Applications of
Computer Vision, volume 14, page 3. Citeseer, 1998. → pages 9

[18] D. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004. → pages 6,
22, 26, 27

[19] T. Matsuyama, T. Ohya, and H. Habe. Background subtraction for
non-stationary scenes. In Proceedings of Asian Conference on Computer
Vision, pages 662–667, 2000. → pages vi, 14, 59, 61, 62, 96

[20] A. Mittal and D. Huttenlocher. Scene modeling for wide area surveillance
and image synthesis. In cvpr, page 2160. Published by the IEEE Computer
Society, 2000. → pages 5, 16, 19, 40, 41, 45

98

[21] S. Nagaya, T. Miyatake, T. Fujita, W. Ito, and H. Ueda. Moving object
detection by time-correlation-based background judgement method. IEICE
Trans Inf Syst, 79:568–576, 1996. → pages 59

[22] N. Oliver, B. Rosario, and A. Pentland. A Bayesian computer vision system
for modeling human interactions. Computer Vision Systems, pages 255–272,
1999. → pages 14, 15, 96

[23] E. Parzen. On estimation of a probability density function and mode. The
annals of mathematical statistics, 33(3):1065–1076, 1962. → pages 11, 45

[24] M. Piccardi and T. Jan. Mean-shift background image modelling. In 2004
International Conference on Image Processing, 2004. ICIP’04, pages
3399–3402, 2004. → pages 12

[25] P. Power and J. Schoonees. Understanding background mixture models for
foreground segmentation. In Proceedings Image and Vision Computing New
Zealand, volume 2002. Citeseer, 2002. → pages 10, 11

[26] Y. Ren, C. Chua, and Y. Ho. Motion detection with nonstationary
background. Machine Vision and Applications, 13(5):332–343, 2003. →
pages 9, 16, 18, 19, 40, 45

[27] C. Ridder, O. Munkelt, and H. Kirchner. Adaptive background estimation
and foreground detection using kalman-filtering. In Proceedings of
International Conference on recent Advances in Mechatronics, pages
193–199. Citeseer, 1995. → pages 10

[28] P. Sampson. Fitting Conic Sections to “Very Scattered” Data: An Iterarive
Refinement of the Bookstein Algorithm. Computer Graphics and Image
Processing, 18(1):97–108, 1982. → pages 22, 26

[29] M. Seki, T. Wada, H. Fujiwara, and K. Sumi. Background subtraction based
on cooccurrence of image variations. 2003. → pages 14, 96

[30] Y. Sheikh, O. Javed, and T. Kanade. Background subtraction for freely
moving cameras. In IEEE International Conference on Computer Vision,
2009. → pages 16, 17

[31] C. Stauffer and W. Grimson. Adaptive background mixture models for
real-time tracking. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 2, pages
246–252, 1999. → pages 6, 9, 10, 11, 12, 18, 19, 41, 45

99

[32] C. Stauffer and W. Grimson. Learning patterns of activity using real-time
tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):747–757, 2000. → pages 1, 2

[33] Y. Sugaya and K. Kanatani. Extracting moving objects from a moving
camera video sequence. In Proceedings of the 10th Symposium on Sensing
via Imaging Information, pages 279–284. Citeseer, 2004. → pages 5, 16, 19

[34] P. Torr and A. Zisserman. MLESAC: A new robust estimator with
application to estimating image geometry. Computer Vision and Image
Understanding, 78(1):138–156, 2000. ISSN 1077-3142. → pages 19

[35] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles
and practice of background maintenance. In iccv, page 255. Published by the
IEEE Computer Society, 1999. → pages 1, 9, 13, 14, 58, 62, 96

[36] R. Vemulapalli and R. Aravind. Spatio-Temporal Nonparametric
Background Modeling and Subtraction. In IEEE 12th International
Conference on Computer Vision, 2009. → pages v, 12, 14, 15, 46

[37] H. Wang and D. Suter. A consensus-based method for tracking: Modelling
background scenario and foreground appearance. Pattern Recognition, 40
(3):1091–1105, 2007. → pages 2, 12

[38] F. Wauthier. Motion tracking. http://www.anc.ed.ac.uk/demos/tracker/. →
pages 41

[39] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time
tracking of the human body. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):780–785, 1997. → pages 9, 10

[40] M. Wu and X. Peng. Spatio-temporal context for codebook-based dynamic
background subtraction. AEU-International Journal of Electronics and
Communications, 2009. → pages 3, 14, 15, 16, 96

[41] C. Xu. Datasets used for background subtraction.
http://userweb.cs.utexas.edu/∼changhai/icra10-datasets/video4.avi. →
pages v, vii, 29, 80, 83

[42] W. Xu, Y. Zhou, Y. Gong, and H. Tao. Background modeling using time
dependent Markov random field with image pyramid. In Proc of the IEEE
Workshop on Motion and Video Computing. Breckenridge, USA, pages 8–13.
Citeseer, 2005. → pages 3

100

http://www.anc.ed.ac.uk/demos/tracker/
http://userweb.cs.utexas.edu/~changhai/icra10-datasets/video4.avi

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	2 Related Work
	2.1 Static camera
	2.1.1 Parametric methods
	2.1.2 Non-parametric methods
	2.1.3 Spatial methods

	2.2 Moving camera

	3 Motion Model Estimation and Mosaic Building
	3.1 Homography
	3.2 Direct linear transformation
	3.2.1 Normalization

	3.3 Minimizing geometric error
	3.4 Feature points and inlier selection
	3.5 Decreasing the number of outliers
	3.6 Keypoints update strategies
	3.6.1 Recalculating keypoints
	3.6.2 Appending keypoints
	3.6.3 Comparison of strategies

	4 Background Subtraction
	4.1 Mixture of Gaussians
	4.2 Non-parametric kernel density estimation
	4.3 Codebook
	4.3.1 Color model improvement

	5 Results and Discussion
	5.1 Detection of moving objects in outdoor scenes
	5.1.1 Sequence 1
	5.1.2 Sequence 2
	5.1.3 Sequence 3

	5.2 Detection of moving objects in indoor scenes
	5.2.1 Sequence 4
	5.2.2 Sequence 5
	5.2.3 Sequence 6

	5.3 Discussion

	6 Conclusions and Future Work
	Bibliography

