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Abstract

To use hockey broadcast videos for automatic game analysis, we need to com-

pensate for camera viewpoint and motion. This can be done by using features on

the rink to estimate the homography between the observed rink and a geometric

model of the rink, as specified in the appropriate rule book (top down view of

the rink). However, occlusion due to players, wide range of camera motion and

frames with few reliable key-points pose a significant challenge for robustness and

accuracy of the solution. In this work, we describe a new method to use line and

ellipse features along with key-point based matches to estimate the homography.

We combine domain knowledge (i.e., rink geometry) with an appearance model of

the rink to detect these features accurately. This overdetermines the homography

estimation to make the system more robust. We show this approach is applicable

to real world data and demonstrate the ability to track long sequences on the order

of 1,000 frames.
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Chapter 1

Introduction

Automated sports video analysis is an active and challenging research area in com-

puter vision. A large part of the motivation comes from the complexity and variety

of activities occurring in a multi-player field game. There are some game-specific

events (i.e., a pass in soccer or a shot in a hockey game) which are crucial to under-

stand game play along with the rules and domain knowledge. These key events can

be manually annotated by a human to be searched for future reference. Automation

of these event detections can lead to saving a significant amount of time in manual

annotation. Knowing player locations and velocities with respect to the field is one

of the most basis requirements for such applications. This information can be used

to analyze [35] or even predict [33] game play.

To motivate the problem further, consider the problem of finding player trajec-

tories (with respect to the field) over time. The problem is simpler in the case of a

stationary camera because of the stationary background. As players are constantly

moving background subtraction combined with the motion model for players can

be used to track players in the image. Recent advances in generic object category

recognition [15](specifically human recognition) have opened doors for tracking

by detection for players in the case of a moving camera. However, given player de-

tections in each frame, to obtain the trajectories of players on the field (or rink), we

need to transform the field’s geometric model and map it to the the image frame.

The inverse transformation can be used to map activities from image coordinates

to the field (or rink) coordinates (see Figure 1.2). All the images of a plane are
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related to each other by a homography transformation [25]. Hence the geometric

model is also related to its image (image of the rink in a video frame) by a homog-

raphy. Again for a stationary camera the problem is simpler as this homography

transformation is not changing over time. For a moving camera, the problem is to

calculate the homography for each frame, given a geometric model and features on

the rink in the frame.

Homography estimation given point matches between two images is a well

studied problem, but there are no direct point matches available between the geo-

metric model and the image frame (some point matches can be obtained by using

curve intersections). Even if we obtain an appearance model of the whole rink,

many parts of the rink are relatively textureless and therefore cannot generate point

matches. However, there are other geometric shapes like lines and circles on the

rink surface which can be utilized to overcome this limitation.

In this work, we present a novel method to combine point, ellipse and line

matches to get an accurate homography estimate using linear methods. We also

propose an area-based geometric error measure, which can be minimized to fine-

tune our linear estimate. We combine an appearance model (key frames) with the

geometric model of the rink to estimate the homography robustly over time.

1.1 Problem definition
The problem we address in this work can be described as: finding the best possible

homography estimate between the geometric model and each video frame over a

long sequence of images (see Figure 1.2). Here are some properties of the desired

solution:

• geometric accuracy

• robustness to error in feature detection

• robustness to image artifacts like lens distortion

• robustness to motion blur due to fast camera motion

This can also be seen as finding the transformation to map the sports field image

in the video frame to the world coordinates (a process known as rectification). We

2



Figure 1.1: Player detections with trajectories on the rink from last few
frames. This is one of the examples of data visualizations achieved by
tracking player positions on the ground plane.

Model ImageH

H−1

Figure 1.2: The problem definition: finding a best fitting transformation ma-
trix H between geometric model and every frame in the sequence. The
transformed geometric model superimposed on the image is shown in
red.
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are specifically dealing with rectification of hockey videos. We refer to the sports

field as a rink in the following discussion.

1.1.1 Scope

We limit the scope of our problem and make some simplifying assumptions. We

assume that there are no scene cuts in the video sequence and all the video frames

correspond to an actual game (i,e. the rink is visible all the time). Other important

assumptions are:

Constrained camera motion

We obtain the image sequence from a single camera, mounted on a tripod. How-

ever, it is allowed to pan, tilt and zoom. We assume that the optical center of the

camera coincides with its center of rotation. This assumption is useful for our cur-

rent homography estimation technique, however it can be relaxed with some minor

changes in the system (see Section 5.1.2 for details). Also, there is a significant

radial distortion in the hockey video sequence. In this work, we choose not to es-

timate the radial distortion parameters. We design our system to operate even in

presence of minor distortions.

Accurate geometrical model

For all the methods described in this work, we assume that the geometric model

used for the hockey rink is an accurate representation of the rink in the image

sequence. However, we know that it might not be the case for every rink. Hockey

rinks do not have perfectly matching dimensions.

Manual input

The system as of now is not completely automated. The key-frames used are manu-

ally annotated for the homography and the homography estimate for the first frame

is also provided by the user. Another set of frames are annotated to obtain a range

of parameters for the optimization (discussed in Section 5.3.3). The manual input

is used to simplify certain challenges which can be dealt with later. We clearly

mark it in the system overview. We try to keep it minimal and discuss possible
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ways to relax this assumption in the future work section.

1.1.2 Data

All the experiments are done on McGill high definition (HD) data from an NHL

game. We choose a 1000 frame sequence for our experiments. This is expected to

be a typical sequence, however we still need to test the system on larger sequences

and variety of games to prove its robustness of to various camera angles, zoom

levels and other variables in the input data. In this sequence, we crop out the

graphical score bar at the top of the frame. Apart from this, we utilize full HD

resolution (1920x) for all our calculations.

1.2 Thesis outline
In Figure 1.3 we present a flow chart to summarize the complete working of the

system.

Manual initialization

We are not targeting the problem of detecting and localizing the rink in an isolated

image; an initial estimate of the homography needs to be provided for the first

frame. Another user input is choice of key-frames and their homography estimates.

These are also manually obtained by choosing points on the key frame images and

the model (see Section 3.1.2 for details).

Key-frame matching

We take a key-frame based approach. The key-frames are representative images

from the sequence. We choose these as to allow some feature overlap. Also, the

homography between each key-frame and the model is known. Each new frame is

matched with the key-frames to find consistent point matches. A key-frame with

the maximum number of matches and a set of well distributed features (discussed

in Section 3.2.2) is selected as the matching key-frame.
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Image sequence Manual initialization

Find closest key
frames (§ 3.2.2)

Key-frames
Homography
estimate for

previous frame

Localize lines and
ellipses in cur-

rent frame (§ 3.3)

Establish feature (point,
line and ellipse)

correspondences with
the selected key-frame

Geometric model

Linear homography
estimation (§ 4.2)

Get initial value for fur-
ther refinement (§ 5.3.2)

Homography estimation
between consecutive

frames (§ 5.1.2)

Homography es-
timation based on
minimization of

geometric error (§ 5.3)

Final homography estimate

Input

Model

Next frame

Figure 1.3: System overview. Rectangles denote important software mod-
ules. Rounded rectangles represent data. The program flow is shown
with solid lines with arrows. Dashed lines with arrows reflect the
data flow. The corresponding sections with the detailed discussions are
shown in parentheses.
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Feature localization

To establish point correspondences between the current frame and a selected key-

frame we use key-point based matching. We already know the homography be-

tween key-frames and the geometric model. We can back-project these points from

the matching key frame to the model to get point correspondences between the ge-

ometric model and the current frame. For locating line and ellipse features, we

initialize the search for features using an estimate of the homography for the pre-

vious frame. We begin with edge and gradient information. Edges undergo model

based filtering to limit false matches. Once we have filtered edges RANSAC based

ellipse and line fitting is used to find the best fit for each line and circle in the

model.

Linear homography estimation

Given point, line and ellipse correspondences between the matching key-frame

and the current frame, we can estimate the homography between these two images.

We describe a novel approach to include ellipses in the same DLT (Direct Linear

Transform) algorithm used for the homography estimation using points (described

in Chapter 4. However, this linear estimate is sensitive to the error in detections.

We cannot always trust this as a good initialization for the non-linear refinement

step.

Choosing initial value for non-linear estimation

We have one more estimate available from the homography estimate from previous

frames, as we also calculate the frame to frame homography between all the con-

secutive frames based on key-point based matches and RANSAC. Multiplying this

frame to frame homography with the last homography estimate gives us a close

estimate for the homography of the current frame. We choose between this esti-

mate (tracking) and the estimate from linear homography estimation (detection)

depending upon the measure of residual error we use (defined in Section 5.2). This

switching between initial estimates makes the system robust to errors in detections

and drift caused due to tracking.
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Residual area minimization

The last fine-tuning step aligns features as close as possible to the projected model.

The aim is to calculate the homography such that the area between features in the

model superimposed on images and features detected is minimized. We achieve

this by minimizing a residual area-based cost function. We use a sampling based

optimization technique called DIRECT to solve the optimization problem. The

final homography estimate is the output of the system.

1.3 Organization
We organize this thesis as follows: first, we discuss related work in Chapter 2.

Here, we summarize video rectification systems developed for hockey and other

sports. The past approaches taken for solving different sub-problems are also dis-

cussed. In Chapter 3, we describe our feature detection and matching framework.

We discuss how to find ellipse and line matches in the video frame correspond-

ing to lines and circles in the geometric model. Including ellipse correspondences

in the DLT (a linear homography estimation technique) framework is discussed in

Chapter 4. We utilize simple geometric properties of ellipses to generate additional

point and line correspondences. We then move on to describe our homography es-

timation technique based on minimization of geometric error in Chapter 5. In this

chapter we also discuss the tracking approach combining detections in the cur-

rent frame with information from previous frames to ensure robust tracking over

long sequences. We analyze the system’s performance in different scenarios in

the results chapter (Chapter 6). Finally, the main contributions and possible future

directions are described in Chapter 7.
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Chapter 2

Related Work

We are looking at the problem of sports video rectification. There are similar

systems developed for rectification for hockey [44], soccer [27], tennis [14], and

American football [29] videos. However, these systems differ in goals and scope.

They often comprise multiple modules each dealing with different functionality

e.g., feature detection (and matching), homography estimation and tracking.

In this chapter, we discuss related work for each of these sub-problems. We

also highlight cases where we borrow ideas from an approach or suggest an im-

provement over an existing method. We also justify our design choices, with these

methods as basis for comparison.

2.1 Feature detection and matching
Feature matches are used to establish correspondence between model and the im-

age (or between two images). These correspondences are used for homography

estimation and tracking. Points and lines are two widely used features. Lines are

useful as most sports fields have line markings, which also correspond to fixed

geometry (as defined in the rule book). Some sports fields (e.g, hockey, soccer,

basketball) also have circular (or partial circular) markings which transform to el-

lipse (or partial ellipses) in the image. Ellipses have also been used for homography

estimation (see Section 2.2.1 for details) but, to best of our knowledge, not specif-

ically applied to the problem of sports video rectification.
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2.1.1 Points

Okuma et al. [44] and Hayet and Piater [27] use KLT [46] based point feature

tracking. KLT tracking has an advantage of being fast. However, features tracked

using KLT can only be used to match frames close in time. Hess and Fern [29] use

Harris affine [42] key-points with SIFT [37] descriptors. They use these features to

build a map of features registered to field coordinates. The main motivation behind

using these key-points and descriptors is that they are robust to minor changes in

viewpoint [29]. Also, two frames need not be adjacent in time to be matched, as

long as there are some common features visible in the frames. We adopt a similar

approach by using SFOP [23] key-points with SIFT descriptors (see Section 3.2

for details).

2.1.2 Lines

One of the common techniques used for detecting line segments ([3, 13]) in the

images is to connect edges obtained using the Canny edge detector [7]. These con-

nected edges are then split at points of high curvature. A line is fitted to each of

these connected edge components using orthogonal regression. Orthogonal regres-

sion minimizes the perpendicular distance from data points to fitted line in contrast

with linear regression (in 2D) which minimizes the sum of squared vertical dis-

tance between y data values and the corresponding y values on the line. One of the

obvious limitation of this method is: we get one line fit corresponding to each con-

nected component but there may be multiple components contributing to the same

line. We may not be able to fit a line to data from multiple connected components.

The Hough transform [10] applied to the edge image is another popular method

for line detection (used in [14] and [32]). Hayet and Piater [27] use RANSAC [18]

for line fitting. RANSAC makes fitting robust to outliers. We combine the two

by using Hough transform to generate initial line hypothesis and narrow down the

search for edges. We fit a single line to all the selected edges in the narrow neigh-

borhood. RANSAC helps us to avoid fitting a separate line to each connected edge,

rather we want to fit a single line using all the corresponding edges (connected or

separate) in the image.

Line matching between two views far apart is a challenging problem. A recent
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work by Wang et al. [49] approaches the problem by defining features based on a

cluster of line segments lying in proximity and generating matching based on this.

This can be useful where images are able to produce fewer or no point matches dues

to low texture. Fan et al. [13] successfully use noisy point matches for generating

robust line matches. We simplify the problem of line matching by searching only

in a narrow rectangular region and assigning the best fit lines (as per our score, see

Section 3.3.4 for details) as a matched line. This simplification is justified because

in a typical video sequence the overall movement of features in two consecutive

frames is small and not drastic. Also, we do not attempt to solve the problem of

initializing tracking by matching the first frame in the sequence automatically (see

Section 2.3.5 for details on initialization).

2.1.3 Ellipses

The problem of ellipse detection deals with finding ellipse candidates in a noisy im-

age where other shapes might be present. The Hough transform [10] has been one

of the popular approaches for ellipse detection [53]. These methods are compu-

tationally and memory intensive. McLaughlin [41] suggested using a randomized

Hough transform [52] to overcome these issues. There are multiple variants of

Hough transform and other approaches (e.g., fuzzy logic, genetic algorithms) em-

ployed to solve the problem (see [38, 55] for a summary of previous work in the

field). However, as the number of ellipses in the image increases the accuracy in

detections goes down. Zhang and Liu [55] suggest a rule based system and show a

significant improvement in speed (almost real-time) and accuracy. A recent work

by Mai et al. [38] suggests ways to overcome the problem of false matches by using

a set of arc segments for each ellipse candidate and then using RANSAC [18] to

find a robust fit. Their method works even in the case of occluded and overlapping

ellipses.

Our problem also requires finding multiple ellipses in a noisy image. However,

we simplify the problem by using the matches from the last frame to guide the

search. Our focus is more on finding an accurate fit given a set of noisy points (i.e.,

robust ellipse fitting). There are a series of geometric and algebraic methods de-

scribed for ellipse fitting given 2D points by Gander et al. [24]. Geometric fits are
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much slower compared to algebraic fits (10-100 times) [24]. Various constraints

and weighting schemes are suggested to make algebraic solutions stable and close

to the geometric fit. Fitzgibbon et al. describe such a method in their highly cited

work [19]. They suggest a constraint for algebraic fitting to make the solution sta-

ble even for noisy data. This algorithm is fast and easy to implement. We choose to

use this approach for ellipse fitting inside a RANSAC [18] loop (see Section 3.3.3

for details).

2.2 Homography estimation
A homography transformation can be estimated given a set of feature matches.

These algorithms can be again divided in two main categories: geometric and al-

gebraic. Geometric methods generally involve iterative minimization of an error

function based on geometric properties of features. Geometric fits are often used as

a refinement to an algebraic fit. In this section we summarize various homography

estimation techniques and error measures.

2.2.1 Algebraic fit

The homography transformation between two images can be calculated by four

point correspondences by solving a linear system of equations. In case of an

overdetermined system (more than four point matches), the homography solution

is approximate. There are various cost functions (or error measures) that can be

used to define the “best fit”. The DLT algorithm (see Section 4.1.1 for details) is

based on minimization of algebraic error. Due to the linear nature of this prob-

lem, the DLT algorithm is computationally inexpensive and easy to implement

but algebraic error does not correspond to any physically or statistically meaning-

ful quantity. However, given appropriate normalization of data (see Section 4.1.2

for details) the results obtained are good [25]. Lines being the dual of points in

homogeneous coordinates can be similarly used for homography estimation [54].

Dubrofsky and Woodham [9] show how to combine line and point matches in the

same image to solve for homography using the DLT approach. Conic correspon-

dences have also been used in a similar linear framework. However conics, to the

best of our knowledge, have not been combined with line and point matches for
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homography estimation. We describe a method to combine these heterogeneous

features in a single framework in Chapter 4.

Conic based homography estimation

An early attempt at conic based homography estimation by Sugimoto [48] proves

that conic coefficients transform linearly under homography. Using this approach

the homography can be estimated using a linear method. However, this requires a

minimum of seven conic correspondences. It can be shown that two conic corre-

spondences are enough to solve for a homography Kumar et al. [34]. However, the

work assumes that both the conics are images of circles transformed by the same

homography and obtains four different possible solutions, one of which is geo-

metrically accurate. A more generic approach is suggested by Kannala et al. [31],

which provides a linear solution based on three of more conic correspondences.

Conomis [8] shows that a new set of invariant points can be obtained using con-

ics. This approach uses the pole-polar relationship to generate additional points of

intersection which are also invariant under homography. These point correspon-

dences are then used to estimate the homography using the DLT.

2.2.2 Geometric fit

Generally the homography estimate obtained by an algebraic method is used as an

initial value for non-linear minimization of geometric error. Methods are depen-

dent on the choice of error measure. We describe some of the common geometric

error measures based on geometric distance between points. We also suggest a

geometric error measure for homography estimation based on line and ellipse fea-

tures (see Section 5.2 for details).

Geometric error

Geometric error function, unlike algebraic error, is defined in terms of measure-

ment of geometric distances in the image [25]. Figure 2.1 summarizes some of the

geometric error measures. Let us assume point matches in two images are given

by {xi ←→ x′i}, where xi and x′i are measured point coordinates. If error is only

present in one of the images (let us say in second image in this case) the geometric
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Image 1 Image 2
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Figure 2.1: Summary of geometric error measures for homography estima-
tion. (a) transfer error, (b) symmetric transfer error, and (c) reprojection
error are defined for point correspondences. We extend this to lines and
ellipses by (d) using residual area (area of the shaded region) as our
error measure. Dotted lines show features from Image 1 transformed
under the homography H.
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error function can be defined as

∑
i

d(x′i,Hxi)
2 (2.1)

where H is the homography we need to estimate. This error is also known as

transfer error (see Figure 2.1(a)). Now, let us consider the case when measurement

in both the images can be noisy. We can sum the geometric errors corresponding

to two transformations to define symmetric transfer error (see Figure 2.1(b))

∑
i

d(xi,H−1x′i)
2 +d(x′i,Hxi)

2 (2.2)

A third error measure is reprojection error (see Figure 2.1(c)) which defines a cor-

rected location for each of the measured points and minimizes the sum of squared

distances between measured and corrected points in both the images. In optimiza-

tion based on this cost function, we not only need to estimate the homography H

but also pairs of perfectly matched points {x̂i←→ x̂′i} such that x̂′i = Hx̂i ∀i. The

error function is give by

∑
i

d(xi, x̂i)
2 +d(x′i, x̂

′
i)

2 (2.3)

This cost function is hard to minimize because of the large number of parameters.

For n point correspondences the total number of parameters in the optimization is

2n+9 (9 parameters correspond to the homography estimate). There is an approx-

imate method called Sampson approximation, initially proposed to fit conics [45],

which only requires 9 parameters. For more details on Sampson error see Section

4.2.6 of Hartley and Zisserman [25].

Hartley and Zisserman analyze geometric error measures in a maximum likeli-

hood framework under the assumption of independent Gaussian noise. When mea-

surements in the first image are noise free, minimization of transfer error gives

the maximum likelihood estimate for the homography. When measurements in

both the images are noisy, reprojection error provides the maximum likelihood

estimate [25].

These error measures are defined for point correspondences and are not useful

in our case. We intend to estimate the homography between the geometric model
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and the video frame using line and ellipse features, in addition to points. Instead

of using a distance measure for points, we use an area measure between projected

features from the geometric model and the features detected in a video frame (see

Section 5.2 for details). Under the assumption that there is no error in the mea-

surement of geometric model features, the area based error measure we define (as

shown in Figure 2.1(d)) is analogous to the transfer error (Equation 2.1) for point

correspondences.

2.3 Tracking
Detecting and tracking lines is one of the popular methods for homography estima-

tion over a sequence of frames ([26, 32]). On a textureless field like a soccer pitch,

lines prove to be a useful features. However, usually there are not enough lines vis-

ible in each frame to uniquely determine the homography. Methods based on line

tracking are often combined with frame to frame point tracking. In the following

sub-sections we summarize a few different approaches described in the literature.

2.3.1 Generating point correspondences

Okuma et al. [44] tackle the problem of rink rectification for hockey videos. Their

approach is based on tracking point correspondences (using KLT [46]) to estimate

the homography between consecutive frames (using RANSAC [18] for robustness).

As this can lead to significant drift over time, they correct their estimate based on

a geometric model. This approach works as follows: after finding a close estimate

based on a frame to frame homography, a set of points are found in the image corre-

sponding to sampled points on lines and circles in the model. These point matches

are searched along the normals of lines and ellipses. This gives an additional set of

points for a better homography estimation and also registers the current frame to

the model, canceling drift. They initialize their system by manually specifying the

point matches for the first frame. Since this work is closest to ours, we describe the

key differences in the approach:
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Feature detections vs. sampling points

Okuma et al. generate additional point correspondences by searching for edges

along the normals for lines and ellipse models projected onto the image. These

points correspond to 296 features pre-sampled in the model. We, on the other hand,

detect corresponding lines and ellipses in the image. Once a line or ellipse is fit to

a set of edge points the rest of the inconsistent and noisy edges can be discarded

and do not interfere with the error measure. We utilize the structure inherent in

geometric shapes present in the rink image.

Combining lines and ellipses in homography estimation

Finding point correspondences along the normals can only approximate the actual

point correspondences. We do not sample points on our lines or ellipses to find

additional point correspondences but use parameters of line and ellipse detections

to estimate the homography.

Using geometric error measure

In [44] final drift correction is based on the DLT (a linear estimate based on alge-

braic minimization of error). We use a new measure to combine different geometric

errors in line, point and ellipse matches (see Section 5.2 for details).

2.3.2 Using lines

The idea of using line features (boundary lines) to avoid drift while tracking planar

surfaces is explored by Xu et al. [51]. They consider planar surfaces with clearly

defined boundaries and track them robustly over time. They show that line features

make tracking more accurate. However, when they do correction based on lines the

point match information is discarded. We overcome this limitation by combining

points in the same framework (see Chapter 4 for details).

Hayet et al.[26] use direct line to line matching between the model and the

image to estimate the homography. However this approach works only for cases

when there are enough line correspondences (four or more) available in the image.

For other cases the image to image homography is calculated based on point and

line correspondences. However, they do not clearly describe how they combine
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these two. They also simplify the algebraic fitting of the homography under the

assumption of a camera with fixed center (it can only only pan, tilt or zoom). This

reduces the minimum number of points required to estimate the homography to

3 (compared to 4).

Farin et al. [14] use lines to calculate real and virtual points of intersection.

These points are used to establish the homography between image and the model.

They also define a geometric error measure which they minimize for estimating the

homography based on lines. They project the white pixels (court lines in the case

of tennis) onto the model. The error measure is defined as the sum of the geometric

distance between model lines and these projected points.

2.3.3 Key-frames

Our use of key-frames (described in Section 3.1.2) is inspired by the work of Hess

and Fern [29]. They also use a set of manually annotated frames as reference

images (or key-frames). They use these images to assemble a set of model features

registered to the field. They argue that many of these features are not distinctive

at a global level (i.e., if we try to match each new frame with the whole model

feature set). However, these can be distinctive if matched with the features spatially

located in a smaller neighborhood in the model. We use this idea by defining a set

of key-frames covering only a smaller portion of the complete model. For every

new image we match only one key-frame at a time. Also, for every new frame, we

use the last matched key-frame to choose the key-frames (in the neighborhood) we

should match it with. We do not explicitly construct a set of model features but our

method takes advantage of the local distinctiveness.

2.3.4 Modeling motion

Kim and Sang Hong [32] use camera calibration as the first step for homography

estimation for a pan-tilt and zoom camera. After initial line matching between

image and model they estimate the camera parameters by an exhaustive search

over a wide range of discrete parameters. Once the camera intrinsics are known

tracking lines in subsequent frames is assisted by camera parameters (CP based

tracking). This system also tracks camera zoom and rotation for every new frame.
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Hayet and Piater [27] describe a method to estimate the covariance of the es-

timated homographies to measure uncertainty. They switch modes between detec-

tion and tracking when uncertainty becomes too large. We do not specifically build

a motion model for the homography but, similar to [14], we also use the previously

computed homography to limit the search space for features in the current frame.

In this work, we also do not deal with the problem of camera calibration as the

homography can be estimated without knowing camera parameters.

2.3.5 System initialization

Hayet et al. [28] propose a system for field-to-image registration based on geomet-

ric reasoning. They start with noisy line matches to generate multiple hypotheses

for matches with the field (or geometric model). Farin et al. [14] also prune and

search possibilities for line matches to fit a model to images from tennis videos for

automatic initialization. Okuma et al. [44] use hand-picked points in the image

and the model to initialize the first frame. Since we use key-frames with a known

homography, for initialization we match the first frame with all the key-frames to

get an initial estimate of the homography. Handpicking and annotating key-frames

is part of our initialization process.
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Chapter 3

Feature Detection

Along with local point features, we use lines and ellipses as additional features

for tracking. Lines and ellipses in the video images are the projection of lines

and circles (in the model/world) respectively. There are multiple reasons we focus

on detecting actual lines and ellipses on the rink rather than just relying on key-

point based matches. First, these features can be localized accurately under motion

blur (as shown in Figure 3.1(a)) and are robust to minor occlusions (as shown in

Figure 3.1(b)) due to players. Second, these features correspond to markings on

the rink which are important for game play (i.e., a player crossing a certain line has

a meaning in the game). On the other hand key-point detections have no physical

significance from a rules perspective.

In this chapter, we discuss the rink model used for detection and tracking. We

also summarize the methods for establishing key-point based matches between a

video frame and a set of key-frames (defined in Section 3.1.2). We choose the

best matching key-frame as the closest key-frame. Then, we move onto localizing

line and ellipse features given a close initialization (i.e., approximate parameter

estimates from previous frames).

3.1 Modeling sports rink
A geometric model (CAD model) is extremely useful as it gives us accurate geom-

etry. However, it does not have any appearance information (i.e., logos, advertise-
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(a) (b)

Figure 3.1: Figure shows actual line and ellipse detection results returned by
the detection module under motion blur and occlusion. A fast panning
camera causes (a) motion blur in the image. It is hard to localize spe-
cific edges (e.g., some characters on the boards are unreadable). How-
ever, lines and ellipses are localized well in the image. Also, (b) minor
occlusion due to players (in this image there is additional occlusion due
to the broadcaster’s logo), lines and ellipse detections remain stable and
accurate.

ments and writings on the rink on that particular day). Appearance information is

useful to obtain point correspondences between model and image (using key-point

detection and matching). To augment the geometric model with appearance in-

formation, we select a few frames from the sequence and use them as key-frames.

This has two advantages: first, we need not build an appearance model of the whole

rink, we just use a set of images. Second, we need to provide a ground truth homog-

raphy only for these frames. Additionally, these key-frames have a point of view

specific to the camera which makes point matches more accurate and repeatable.

A synthesized top down view will not have the same property. Manually choosing

point correspondences to calculate the homography between the key-frames and

the model is part of the initialization procedure for the system which needs to be

done only once for each camera in the game.

3.1.1 Geometric model

The geometric model of the rink is defined by the rule book for the game. These

models slightly differ for different sports authorities (e.g., International Ice Hockey

Federation (IIHF), National Collegiate Athletic Association (NCAA), National
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Figure 3.2: The simplified geometric model of hockey rink. This model also
contains the normal directions for lines and circles in the images. Black
circles (represent inner boundary of the circular shape) have normals
pointing towards the circle center. Red circles are filled which makes
their normals point away from the center. Similarly, red lines represents
lines with normal pointing away from from the model center (i.e., center
of the central circle). Black lines have opposite normal direction.

Hockey League (NHL)). We obtained our rink model from the official website of

the NHL [43], as our dataset is taken from an NHL game. Our model would only

need minor metric modifications to make it compatible with other rule book rink

specifications. The model gives us information about absolute sizes and positions

of lines and circles on the rink. We have simplified the model considerably (i.e.,

not all lines are used), as shown in Figure 3.2. Please note that we leave out corners

in the model as we do not intend to track the projected curves (partial ellipses) cor-

responding to partial circles at the corners. Models also keep track of the normal

direction for each line and circle. These normals correspond to gradient directions

at the corresponding feature in the image (we use it as described in Section 3.3.2).

This geometric model serves as the backbone of the complete tracking and detec-

tion cycle. It is also used for initializing the system.

3.1.2 Key-frames

The key-frames are a set of images with overlapping features to cover the whole

range of camera motion. For our dataset, we choose five frames as the key-frames

22



Key-frame 1 Key-frame 3 Key-frame 5

Figure 3.3: The key-frames used in appearance model of the rink. Figure
shows three key frames with the transformed geometric model superim-
posed. The homography between these frames and the geometric model
is obtained by manually selecting point correspondences.

to cover the complete rink. The choice of number of key-frames is mainly guided

to cover the whole rink with frames having significant overlap (around 20-30 % of

the area). Three of these key-frames are show in Figure 3.3. During tracking, we

calculate the closest key-frame for every new frame (as described in Section 3.2.2).

3.2 Key-point based feature detection
Once we have chosen our model, we need to detect corresponding features be-

tween the model and images. Key-point based detection relies on two main steps:

first, detection of salient points (key-points) in the image; second, calculating

a feature vector (descriptor) corresponding to each key-point (e.g., SIFT [37],

SURF [4] descriptors), which is used for matching it to key-points in another

image. There are various key-point detection algorithms suggested in the recent

past (e.g., MSER [40], Harris Affine[42], SIFT [37])). These methods use differ-

ent definitions for the “saliency” of a point.

3.2.1 SFOP key-point detection

SFOP [22], suggested by Förstner et al., is a key-point detection algorithm de-

signed around interpretability of features (i.e., feature points detected correspond

to a physical shape). In their paper Förstner et al. show that their method is more

effective (generates more matches) for indoor, man-made and low-texture environ-

ments and performs at par with other state-of-the-art detectors on other scenes.
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Key-frame 2

Key-frame 3

130 matches

Area = 1.39×106

172 matches

Area = 9.68×105

Figure 3.4: Choosing between two competing key-frames for a given input
frame. Consistent matches with key-frame2 and key-frame3 are repre-
sented by green and red markers respectively. We also show the number
of matches with each key-frame. Area value denotes the area of the
smallest rectangle containing all the matches in the input frame. Fol-
lowing Algorithm 3.1, we prefer key-frame2 over key-frame3 as the
closest key frame.

This property makes it a good choice for us as a large part of a hockey rink con-

tains geometric shapes and no significant texture. We choose to use SFOP key-

point detection along with SIFT descriptor. For a given pair of images we first find

SFOP key-points in both the images and then calculate SIFT descriptors for each

of these key-points. To match these key-points, we use the demo software pro-

vided here [36], with the default threshold for matching (a distance ratio of 0.6).

For SFOP, we use the Matlab implementation from the authors [21]. To extract the

SIFT descriptor, we use the code available here [1].

24



Algorithm 3.1: findClosestKeyFrame
Input: Hest , current frame f , a set of key-frames K, dT h, W
Output: keyInd, ptMatches
maxArea←− 0
maxMatches←− 0
keyInd←− (−1)
foreach ki ∈ K do

M←− φ

[Xk,X f ]←− Get all point matches between ki and f
foreach x f j ∈ X f do

if dist(x f j,Hest × xk j)≤ dT h then
M←− {M, j}

end
end
ai←− Area of the smallest rectangle enclosing points Xk{M}
ni←− Size of the set M
if ai > maxArea and ni > maxMatches/W then

keyInd←− i
maxArea←− ai

maxMatches←− ni

ptMatches←− [Xk,X f ]

end
end

3.2.2 Finding closest key-frame

For every new frame in the video we need to find the closest key-frame. First,

we perform SFOP-SIFT (as described in the last section) matching between the

current frame and a set of key-frames. We choose this set to be the last key-frame

and the two nearest neighbor key-frames. However, when initializing the system,

we match the first frame with all the key-frames.

Consistent matches

Not all the matches we obtain from key-point matching are correct. To eliminate

the spurious matches, we use the homography estimate from the last frame. We

project the matched key-points from the key-frame to the current frame. All the

points lying within a loose threshold of corresponding points in the frame are re-
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tained as consistent matches.

Defining closest

We keep track of the number of consistent point matches for all the candidate key-

frames. As key-frames have visible overlap, it may not be appropriate to choose

the closest key-frame just based on the maximum number of consistent matches.

Another important factor is the spatial distribution of points in the frame. Well

distributed points are crucial for an accurate homography estimate [5]. The area

covered by these consistent matches along with the number of matches proves to

be a simple but robust criteria for choosing closest key-frame. Figure 3.4 illustrates

this point, where we prefer a key-frame with more spatially distributed key-point

matches over a key frame with a larger number of key-points matches.

Algorithm 3.1 summarizes the routine we use to find the closest matching key-

frame and corresponding point matches. It requires an approximate homography

estimate between each key-frame and the current frame Hest (we obtain it from the

last frame homography estimate). There are two more parameters in this algorithm:

dT h is the distance threshold used to filter out inconsistent matches and W is the

weight we assign to area covered by matches with respect to number of matches.

In our experiments, we choose dT h = 0.05× imageDimension and W = 3.

3.2.3 Correspondence with geometric model

We have now obtained the point correspondences between the current video frame

and its closest key-frame. This is still an image to image correspondence. We

would like to find out the point correspondence between the geometric model and

the current frame. We already have the homography between key-frames and the

model. We can back-project these matching points onto the model to get the corre-

spondence. We use it later for the homography estimation (described in Chapter 5).

3.3 Line and ellipse detection
Under perspective projection lines transform to lines [25] and circles transform to

ellipses [38]. We use this as the basis of our feature detection process. We also

assume that we have a close initialization available from the previous frames. We
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Gradient image

Edge image

Canny [7] edge detector

Gaussian smoothing +

Sobel [47] operator

Figure 3.5: Preprocessing for each new frame involves finding edges and cal-
culating gradients. We show results only for a selected area (the black
rectangle) in the image. Gradients are depicted by blue arrows pointing
along the gradient direction. The length of each arrow is proportional
to the gradient magnitude. We have plotted the gradient for every third
pixel to avoid clutter.

use edge detection as the first step in our detection module. However, it also returns

edges corresponding to the foreground objects and other neighboring features. The

close initialization available from previous frames helps us to filter edges for a

particular feature based on the image gradient and model parameters. We use these

filtered edges for robust line and ellipse fitting.
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3.3.1 Preprocessing

We combine edges with gradient information to use as building blocks for detecting

and matching features. First, we calculate an edge image for each frame using

Canny edge detection [7]. For gradient calculation, we smooth the image using the

Gaussian filter to suppress noise. We then convolve it with (3× 3) Sobel masks

[47] to obtain the gradient at each pixel. Please note that gradient calculation is

also an intermediary step in Canny edge detection algorithm, but since we are

using the Matlab implementation for edge detection, we do not have access to

the intermediate results. We redo the calculation to obtain gradients. Figure 3.5

summarizes the preprocessing step.

3.3.2 Model based edge filtering

We assume that we have approximate feature locations to begin the detection pro-

cess. First, we only consider edges in the vicinity of the initial estimate. However

not all edges in the vicinity belong to the the feature we are looking for. To filter out

these noisy edges further, we use additional information (i.e., gradients, continuity

of edges).

Ellipse

For an ellipse, we choose an annular region around the expected ellipse boundary

(see Figure 3.6(a)). We only consider edges in this region. The rink model also

keeps track of the normal for each ellipse to help us choose between the outer and

inner edges of a thick line in the image. This also helps to filter out edges which

are inconsistent with the expected gradient direction (i.e., edges due to foreground

objects or neighboring features). To achieve this, we divide the angular space for

the ellipse boundary into small regions. We get a unit vector along the expected

normal direction for each of these regions. We similarly calculate the unit vector

for edges lying in this region and calculate the dot product with the expected unit

vector. We choose only the edges for which the dot product is higher than a certain

threshold th (We choose th = 0.85 in our experiments). Now, we have edges in the

vicinity of the expected ellipse boundary which are consistent with the normal at

the model ellipse boundary (see Figure 3.6(e)).
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(a) Frame with initial estimate of ellipse

(b) Selected region (c) All edges in the selected region

(d) Edges in annular region (e) Filtering based on gradient information

(f) Final clean up based on size of the connected edge pixels

Figure 3.6: Edge filtering based on initial estimate and model. In (a) the ini-
tial ellipse estimate is shown in solid blue. The dashed ellipses around
it mark the area we consider for searching for an ellipse. Only (d) edges
in this annular region are considered. These edges are then (e) filtered
based on gradient information. Only edges with gradient direction con-
sistent with the geometric model remain. Please note that the outer edge
of the thick ellipse line in the image is filtered out in (e). Finally, the
small edges are cleaned up to give (f) the edge points used for ellipse
fitting.
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Continuity is another important property of the ellipses in the image. As the

final step to filter out smaller edges, we calculate connected components for edges

and filter out edges smaller than certain length threshold lth. This gives us cleaned

up edges, even for ellipses surrounded with texture or occlusion due to moving

foreground objects. Figure 3.6 outlines the steps involved in obtaining the final

cleaned up edges in the image corresponding to a particular ellipse in the geometric

model.

Line

A similar approach is taken to filter edges corresponding to lines. For each approx-

imate estimate of the model line projected onto the image we choose a rectangular

region around it (see Figure 3.7(a)). We only consider edges lying in the region.

Similar to the ellipse case these edges can also be filtered on the basis of gradient

directions. This approach is useful to distinguish between two lines close to each

other, having a different gradient direction (see Figure 3.7(c)). Figure 3.7 summa-

rizes the steps involved in filtering edges based on the line model and an initial

estimate. We obtain a set of cleaned up edges which are used as input for line

detection.

3.3.3 Ellipse and line fitting

After performing edge filtering, we fit a line or an ellipse to these set of edge points.

In case of an ellipse, we require a minimum of five points to fit. Typically the num-

ber of edge points we have for ellipse fitting is much larger than that. Since there

are still some noisy edge points, we also use RANSAC to remove outliers. An al-

gebraic fit suggested by Fitzgibbon et al. [19] is used to fit the model in RANSAC.

This work describes an ellipse specific fit (not a general conic) which is fast and

robust. For a brief review of various ellipse fitting approaches, please see Sec-

tion 2.1.3. Line fitting, because of fewer parameters, is relatively less sensitive to

noise and outliers. However, there could be multiple lines in the neighborhood we

are searching. We first use a Hough transform to generate hypotheses for possible

lines. We also fit lines using RANSAC for each of these hypotheses.
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(a)

(b) (c)

Figure 3.7: Edge filtering based on the initial estimate and model for line
detection. (a) Solid blue line shows the initial estimate for line detection.
The corresponding line is highlighted in the geometric model shown
in top-right corner. Dashed lines around the solid blue line mark the
search region. (b) All the edges in the region. (c) Edges filtered based
on direction of the gradient at each edge point. Please note that the
edges corresponding to a parallel line in the neighborhood are filtered
out because they have opposite gradient direction.
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Ellipse

Cai et al. [6] suggested using RANSAC for ellipse fitting to give a robust fit with

noisy data. Algorithm 3.2 describes the routine we use to fit an ellipse to noisy

data. X denotes a set of candidate points in 2D. Other parameters of this algorithm

are M and t. M is the maximum number of random samples allowed. This limit is

set for the algorithm to finish within a reasonable time. t is the threshold to choose

the inliers for a model generated using a set of random points. We use geometric

distance between the model and the points, the points lying within the distance t are

chosen as inliers. Sub-function FitEllipse [20] is the authors’ own implementation

of the direct least square algebraic fit for an ellipse [19]. The number of trials

required to choose a set with probability p which contains no outliers (based on

current bestScore) is calculated by the function RequiredTrials. Length returns

length of the array. For our experiment we use N = 2000, t=0.01.

Line

For line fitting we consider multiple hypotheses for a selected region. After edge

filtering, we perform a Hough transform [10] on the filtered image to obtain mul-

tiple line hypotheses. We narrow down the search corresponding to these line seg-

ments returned by the Hough transform. We run RANSAC based line detection on

edges in a narrow rectangular region around these hypotheses. Only one hypothesis

is used for each region to avoid duplicates. We finally choose the best hypothesis

based on a verification score (i.e., a line with strongest edge support, described in

Section 3.3.4).

Algorithm 3.3 summarizes the procedure to generate line candidates. Function

GetHoughLines, returns the lines corresponding to local maxima in the Hough

transform of the edge image. Function FitRansacLine fits the line to 2D points

using RANSAC. DIST T H is the threshold applied to choose edges in the neigh-

borhood of the approximate line hypothesis obtained by the Hough transform. t is

the threshold used to filter outliers in RANSAC. The RANSAC part of this algo-

rithm is quite similar to the procedure described in Algorithm 3.2 (think of it as

choosing only 2 random points at a time and replacing function FitEllipse with

FitLine).
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Algorithm 3.2: FitRobustEllipse
Input: A set of points X , MaxTrials M, Threshold t
Output: Ellipse parameters C
N←− 0
p←− 0.99
numTrials←− 0
bestScore←− 0
bestinliers←− φ

bestM←− φ

while numTrials≥ N do
ptToFit←− randomly choose 5 points from X
M←− FitEllipse(ptToFit)
inliers←− {xi ∈ X : Dist(M, xi)< t}
ninliers←− Length(inliers)
if ninliers > bestscore then

bestScore←− ninliers
bestInliers←− inliers
bestM←−M
N←− RequiredTrials(bestScore, p)

end
numTrials←− numTrials+1
if numTrials > M then

break
end

end
C←− FitEllipse(bestInliers)

Algorithm 3.3: FitRobustLine
Input: A set of points X , DIST T H, Threshold t
Output: Line hypothesis L
H←− GetHoughLines(X)
foreach hi ∈ H do

x f ←− {xi ∈ X : Dist(hi,xi)< DIST T H}
Li←− FitRansacLine(x f , t)
L←− {L Li}

end
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3.3.4 Verification

Even after using RANSAC to filter outliers, the fit may not correspond to the ac-

tual edges used to estimate an ellipse, especially when only part of the ellipse is

visible in the image. We develop a measure of “goodness” for the estimate we

have obtained. We need to discard invalid or improbable matches for both lines

and ellipses.

Ellipse

One of the basic checks for ellipse verification is length of major, minor axis and

orientation of the ellipse. We compare these quantities to the expected dimensions

of the transformed geometric model. Please note that the orientation measure be-

comes unstable for ellipse that are near circular. Orientation should not be used

when the ratio of the length of the minor and major axis of the model is close to

one. This is the first stage of filtering. Then, we calculate a measure of fitness based

on the alignment of normals at the fitted ellipse boundary to the gradient in the im-

age. See Algorithm 3.4 for details. C is the fitted ellipse and M is the corresponding

ellipse model projected onto the image (based on the same homography estimate

which was used to initialize ellipse fitting). Function GetEllipseParameters re-

turns the center (z), length of major and minor axis (a, b) and the rotation an-

gle (α), given the algebraic equation of the ellipse. In our experiment, we choose

lT h = 0.15 and αT h = π/9.

To generate a quantitative verification score, we again divide the ellipse in

angular spaces from 0 to 2π with an interval of ∆θ = 0.02. GetModelNormal

returns the expected normal at a particular angle for model ellipse M. Function

GetClosestEdgeGradient gets the image gradient at the edge point closest to the

fitted ellipse boundary in the image. This also returns the edge point’s distance

d from the ellipse boundary. Taking the dot product of the two normals gives us

measure of alignment of image gradient with normals at the boundary of the fitted

ellipse. Edge points far from the fit ellipse boundary should be penalized. Hence,

the score is inversely proportional to the square of the distance. We sum this score

for the whole angular range of the visible ellipse in the image. We reject ellipse

detection below a certain threshold, to make sure only accurate ellipse fits are used
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for homography estimation.

Algorithm 3.4: GetEllipseVeri f icationScore
Input: Ellipse C, model M, lT h, aT h
Output: Score s
s←− 0
∆θ ←− 0.02
[z a b α]←− GetEllipseParameters(C)
[z′ a′ b′ α ′]←− GetEllipseParameters(M)
aRatio←− ‖a−a′‖/a′

bRatio←− ‖b−b‖/b′

if (aRatio > lT h) OR (bRatio > lT h) OR (‖α−α ′‖> aT h) then
return

end
foreach θ ∈ {0, 0+∆θ ...360} do

nm←− GetModelNormal(θ)
[ne d]←− GetClosestEdgeGradient(θ)
s←− s+nm.ne/d2

end

Line

Line verification is necessary to choose the best line among a set of candidates.

Also, we reject lines which do not have enough edge support in the frame. We

summarize the procedure for line verification in Algorithm 3.5. M is the model

line projected onto the image (based on the same homography estimate which was

used to initialize line fitting). nm denotes the normal to the model line. L is a

set of candidate matches obtained using line fitting (described in Section 3.3.3).

One of the simplest tests for discarding false detections is to check the orientation

of the fitted line. We accept a line fit only if its normal aligns with the expected

model normal within a given threshold θth (we choose θth = π/13). Lines not

meeting the criterion are not considered for further score evaluation. To calcu-

late a score, we sample points on the line and get the normal for the closest edge

point to it, similar to the ellipse case (described in the last section), using function

GetClosestEdgeGradient. GetEndPoints returns the end points of the fitted line.

Note that we fit a line with no defined end points. End points returned by this
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function are corresponding points to the expected ends of the projected model line

segment visible in the image.

Once we have the score corresponding to each line candidate, the one with the

highest score is chosen as the final line match.

Algorithm 3.5: GetLineVeri f icationScore
Input: Lines L, model M, θth
Output: Score s
s←− [0,0, ...0]
nm←− GetLineNormal(M)
lm←− GetLineSegmentLength(M)
∆t←− 1/lm
foreach li ∈ L do

n←− GetLineNormal(li)
if nm.n < cosθth then

continue
end
[xb xe]←− GetEndPoints(M, li)
foreach t ∈ {0, 0+∆t, ...1} do

xt←− xb + t(xe−xb)
[ne, d]←− GetClosestEdgeGradient(xt)
s[i]←− s[i]+ne.nm/d2

end
end
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Chapter 4

Using Ellipse Correspondences
for Homography Estimation

Four or more point correspondences between two images provide sufficient con-

straints to estimate the homography between two images (or planes), which can

be computed using the Direct Linear Transformation algorithm (DLT) [25]. In the

case of noisy data, appropriate normalization is a crucial step in the DLT. Line

correspondences can be used in a similar way by the duality principle. Dubrof-

sky and Woodham [9] show that point correspondences can be combined with line

correspondences to obtain a better estimate. They describe a method to transform

lines with the same normalizing transformation as points which allows them to

treat lines and points in a similar way in the same linear framework. Ellipse fea-

tures occur in many images due to circular symmetry in various real world objects.

These features also have the advantage of being distinctive and robust [8, 48].

In this chapter, we describe a method to incorporate ellipse feature correspon-

dences between two views along with line and point correspondences to estimate

the homography. Using some basic properties of an ellipse, we generate additional

point and line correspondences. We show that this simple strategy can combine

point, line and ellipse correspondences in a single flexible framework.
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4.1 Line based homography estimation
Lines can be treated similarly to points in the original DLT algorithm.

4.1.1 The DLT algorithm

Assume that pi =
[
xi yi wi

]T
and p′i =

[
x′i y′i w′i

]T
are two corresponding

points related by a homography written in homogeneous coordinates. The homog-

raphy matrix, H, by definition relates these two points as

p′i = Hpi ∀i ∈ {1...np} (4.1)

where np is the number of point correspondences and H is a 3x3 matrix given by

H =

h1 h2 h3

h4 h5 h6

h7 h8 h9

 (4.2)

Equation 4.1 can be rewritten in the form

Aih = 0 (4.3)

where h=
[
h1 h2 h3 h4 h5 h6 h7 h8 h9

]T
and Ai is a 2×9 matrix given

by

Ai =

[
0T −w′ipi y′ipi

w′ipi 0T −x′ipi

]
(4.4)

The matrices, Ai, corresponding to each point correspondence can be stacked to

form a matrix A =
[
A1 A2 · · · Anp

]T
which satisfies the relation

Ah = 0 (4.5)

In the case of noisy points an approximate solution can be obtained by minimiza-

tion of the cost function (algebraic distance) ‖Ah‖. This is the DLT algorithm for

point correspondences (see Hartley and Zisserman [25] for details).
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4.1.2 Normalization for points

The DLT algorithm is sensitive to the choice of the coordinate frame (origin and

scale). Hartley and Zisserman [25] suggest a normalization step to make the data

well conditioned. A similarity S is applied to transform points such that their cen-

troid is at the origin and the average distance from the origin is
√

2

p̃i = Spi ∀i ∈ {1...np} (4.6)

where S is defined as

S =

s 0 tx
0 s ty
0 0 1

 (4.7)

Corresponding points are also normalized by a similar transform S′. The homogra-

phy matrix H̃ is computed using DLT on these normalized correspondences. It is

denormalized to get the homography estimate for the original correspondences.

H = S′−1H̃S (4.8)

4.1.3 Normalization for lines

A line ax+ by+ c = 0 can be represented as a vector of coefficients
[
a b c

]T
.

Using this representation, the transformation of a line li =
[

pi qi ri

]T
under the

homography H is given by

l′i = H−T li or li = HT l′i (4.9)

This is analogous to the point case described above and a similar relation as Equa-

tion 4.4 can be obtained. Additional rows corresponding to the line correspon-

dences are appended to the matrix A in Equation 4.5. However, including lines in

the same framework as points requires lines to be normalized with the same sim-

ilarity transform S. Dubrofsky and Woodham [9] extend point normalization to
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lines as

l̃i = s

 pi

qi

sri− tx pi− tyqi

 (4.10)

The corresponding lines are also normalized using the transform S′. This gives a

set of normalized line correspondences. Now, lines can be treated uniformly along

with the normalized points to estimate the homography.

4.2 Adding ellipses
The coefficients of a conic cannot be treated in a similar way to lines and points.

However, the constraints obtained from ellipses using existing points and lines in

the scene can be transformed into additional line and point correspondences.

4.2.1 Pole-polar relationship

Let C be a matrix of coefficients of a conic such that any point x lying on the conic

satisfies the relationship xTCx = 0. The transformed conic under a homography H

is given by

C′ = H−TCHT (4.11)

The polar line with respect to any point x in the plane is defined as l = Cx. It is

straightforward to prove that if two points correspond in two images (transformed

by a homography), their polar lines with respect to the corresponding conics in

the images also transform under the same homography [8]. Let x and x′ be two

matching points, C and C′ be matching conics in the images and l =Cx be the polar

corresponding to pole x with respect to conic C. The polar in the corresponding

image is given by

l′ = C′x′

= (H−TCH−1)(Hx)

= H−TCx

= H−T l (4.12)
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Figure 4.1: New correspondences generated using points and ellipses. There
are two images transformed by a homography with point correspon-
dences p, p’ and ellipse correspondences C, C’. (a) When points lie
outside the ellipse, we get two new point correspondences (shown with
solid blue dots) and (b) when points lie inside or on the ellipse we cal-
culate one new line correspondence (shown as blue solid line).

We can similarly prove that if two lines correspond then their poles with respect

to a corresponding ellipse also correspond. Despite the fact that Equation 4.12 is

true for a general conic, we use it here only in the context of ellipses. We use these

results to generate additional correspondences as described in the next Section.

4.2.2 Generating new correspondences

For each corresponding point and line, we generate additional correspondences

using an ellipse as follows (also summarized in Figure 4.1).

For a corresponding

1. point lying outside the ellipse: calculate the two points of intersection of its

polar with the ellipse (two new points correspondences, see Figure 4.1(a)).
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2. point lying inside or on the ellipse: generate a new line correspondence by

calculating its polar with respect to the ellipse (one new line correspondence,

see Figure 4.1(b)).

3. line intersecting the ellipse: use the corresponding intersection points (two

new point correspondences).

4. line not intersecting the ellipse or a tangent: calculate the corresponding

pole (one new point correspondence).

We repeat the same procedure for each ellipse in the scene. Once all new corre-

spondences are calculated, we append them to the existing matches. These aug-

mented point and line correspondences, now also including constraints due to el-

lipses, are used to estimate the homography (as described in Section 4.1).

4.2.3 Minimal case

Using this approach, two points and an ellipse (if at least one point is lying outside

the ellipse) are enough to solve for a homography transformation uniquely. In

this case we get at least two new point correspondences which we can use along

with existing points (and possibly other new line correspondences generated by

points lying inside the ellipse). We also verify experimentally that the situation is

symmetric with respect to lines. If there are two lines in the scene (if at least one

of these physically intersects the ellipse), we have enough constraint to solve for

the homography.
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Chapter 5

Homography Estimation and
Tracking

The final step of the system involves fine tuning the homography estimate using

non-linear optimization. The objective function minimized is based on the residual

area between the detected shapes and the projected model. This is inspired by the

maximum likelihood estimate of a homography using point matches between two

views [25]. This is also closely related to parametric correspondence for chamfer

matching [2] which is also effectively minimizing the integral area between the

curves. Using this approach we are able to bring ellipses, points and line features

into the same framework for minimization of geometric error. This is a complex

objective function with no clear functional form. We use the DIviding RECTan-

gle (DIRECT) [30] method for function minimization as described in Section 5.3.

Before moving onto the final fine-tuning step, we review key-frame based homog-

raphy estimation. We also describe the homography estimate between consecutive

frames used to assist robust homography estimation over a long sequence.

5.1 Linear homography estimation
We use two alternative approaches for homography estimation between the current

frame and the model using linear (DLT based) methods. The first method is based

on features correspondences with key-frames and the second is based on point
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Hlin Htr

Hinit
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Figure 5.1: Tracking pipeline.

correspondences with previous frames. Since each frame is independently com-

pared with key-frames, a homography estimate based on a key-frame can be seen

as obtained from detection. On the other hand, homography estimation by finding

correspondences between the previous frame and the current frame is a tracking

based approach (described in the next section). We can choose one of these as

an initial value for non-linear optimization (as described in Section 5.3.2). This

approach is summarized in Figure 5.1.

5.1.1 Homography with key-frame

We use the homography estimate from the previous frame to assist feature detec-

tion in the current frame. We also identify the closest key-frame to establish feature

correspondences (as described in Chapter 3). Once these feature (point, line and

ellipse) correspondences are known, we can use them for linear homography es-

timation (as described in Chapter 4). Since we already have the transforms for

key-frames available, we can calculate the homography for the current frame.
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frame n

SFOP-
SIFT based
matching

frame n−1 RANSAC+DLT
raw

matches

H(n−1)→n

(b)

Figure 5.2: Homography estimation between consecutive frames. (a) Filtered
point matches between a pair of consecutive frames. (b) Method used
for estimating frame to frame homography, H(n−1)→n.

5.1.2 Homography between consecutive frames

It is possible to obtain a large number of point matches between two consecutive

frames. We use these point matches to estimate the homography using the DLT al-

gorithm (see Section 4.1.1). The point correspondences are obtained using SFOP-

SIFT key-point matching (see Section 3.2 for details). We also use RANSAC [18]

to filter out the spurious matches (Figure 5.2(a) shows filtered correspondences

used for homography estimation). Please note that not all the point matches lie

on the image of the rink. Since the camera is mounted on a tripod, it is only al-

lowed to pan, tilt and zoom. With an additional assumption that the optical center

of the camera coincides with its center of rotation (see Section 1.1.1), all the im-

ages obtained using such a camera transform under homography (see Section 2.3

in Hartley and Zisserman[25] for details). Hence, the homography between two

frames of the video is same as the homography between the images of the rink (a

planar surface) in these frames. This allows us to use all the point matches (cor-

responding to stationary objects in the scene) for homography estimation, even if
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Figure 5.3: The area between line segments is calculated by drawing perpen-
diculars from the ends of model line segment AB onto the detected line d
intersecting it at points P and Q respectively. a) When the lines intersect
at a point (let’s say O) the residual area is the sum of areas of the two
right angle triangles OAQ and OPB and b) when there is no intersection
the residual area is given by the area of the trapezoid ABPQ.

they do not lie on the rink. If we filter out the point matches lying outside the rink,

we can completely relax this assumption of the camera with a fixed optical center.

However in the current system, we leave this implementation for future work.

We use the homography estimate (obtained after minimization of geometric

error) for the previous frame and multiply it with the frame to frame homography

to obtain the tracking based estimate. Figure 5.2(b) summarizes the method.

5.2 Residual area
For area minimization we assume that we have already localized all the feature

matches. Let the correspondences between model and image features for lines,

ellipses and points be {li↔ l′i}, {Ci↔C′i} and {xi↔ x′i} respectively. For a given

homography H, the projections of these features, l̂′i , Ĉ′i and x̂′i on the image are

given by

l̂′i = H−T li (5.1)

Ĉ′i = H−TCiH−1 (5.2)

x̂′i = Hxi (5.3)
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Once we have projected model features to the image plane, we can compute the

residual area (see more details in the following subsections). We propose the

weighted sum of these areas as our cost function for optimization

Ares(H) = Al(H)+wcAc(H)+wpAp(H) (5.4)

where Al and Ac are the sum of residual area between all the lines and ellipses

respectively. Ap is the sum of geometric errors corresponding to the point corre-

spondences. wc and wp are weights to adjust the relative importance of each feature

type in the optimization.

5.2.1 Area between line segments

Two lines can possibly have an infinite area between them. We restrict this area

to the region visible in the image. Figure 5.3 shows the simple strategy to calcu-

late the area between a projected model line segment and a detected line on the

image. If a projected model line segment is partially visible in the image, only

the visible part of the line segment is considered for area calculation. We sum the

residual area corresponding to all the visible model line segments referred to as Al

in Equation 5.4

5.2.2 Area between ellipses

The residual area between two ellipses can be simply defined by sum of areas−2×
intersecting area. There are various approximate and exact methods which can be

used to calculate the intersecting area between two ellipses. One of the simpler

methods is to approximate an ellipse with a convex polygon and calculate the area

of intersection between them. We can also use Monte Carlo integration [50] to

find the intersection area. An exact, analytical method is described by Eberly in

[12]. This approach relies on first finding the points of intersection between two

ellipses. Once these points are known, the intersection area can be described in

terms of the area between the elliptical arcs (between two points of intersection)

and the line segments joining their ends. This would require minor modifications

to be used in the scenario when the area of intersection does not completely lie

inside the image (as shown in Figure 5.5) as we would also need to take care of
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Figure 5.4: Approximating residual area between ellipses. Given a detected
ellipse D and a model ellipse M with center O, we calculate the area
for a block arc APPA′ (shaded area) subtending an angle t at the center.
We use it as an approximation for the actual area contained within two
ellipses for this angle range. For all the small arcs (we choose t=0.01
radians) for ellipse D, we sum these areas to get the total residual area.

points of intersections with the image boundaries.

We approximate ellipses with small circular arcs similar to the method de-

scribed in [11]. These arcs are centered on one of the ellipse centers. Our method

is approximate but we do not have to explicitly solve the equations to find the

points of intersections. We directly approximate the residual area using a numer-

ical approximation. Intersection with the image rectangle is also handled in the

same framework. Figure 5.4 shows the area approximated for an arc using this

approach. Summing these small areas over the whole angular range gives us the

residual area for an ellipse correspondence. We sum these residual areas for all

visible ellipses to calculate Ac (see eq. Equation 5.4).

The residual area is only calculated for bigger ellipses on the rink. We treat

smaller circular spots on the rink as point matches (as described in Section 5.2.3).
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Figure 5.5: The residual area between two ellipses. The shaded region in
red shows the intersection area and the region shaded in green corre-
sponds to the residual area. The rectangle represents the image bound-
ary. Please note that we only account for the area visible in the image.

5.2.3 Point correspondences

The geometric model of the rink does not contain any texture information. It is not

an appearance model of the actual rink. Unlike lines and ellipses, we do not have

direct point correspondences between the model and the image. However, we have

a reliable estimate of the homography between key frames and the model. We can

use this to back project the point correspondences from the matching key frame to

the model. Once we have these correspondences, we can calculate the geometric

error in the point correspondence. The area term for points in Equation 5.4 is

defined as

Ap(H) = ∑
i

d(x̂′i,x
′
i)

2 (5.5)
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5.3 Geometric error minimization
Once we have the area calculation framework in place, the final optimization prob-

lem can be formulated as

Hest = argmin
H

(Ares(H)) (5.6)

where Hest is the homography estimate. We do not have a functional form for this

objective function. We use a sampling based algorithm called DIRECT. It does

not require any knowledge about the gradient of the objective function. It is meant

to solve the global optimization problem with bounded constraints (i.e., we need

to specify the range of all the input parameters). Another important merit of the

DIRECT algorithm is that it is an anytime optimization technique, which implies

that we always have a solution (with equal or lower error than the last iteration)

available in case we have to stop the optimization due to time constraints.

As DIRECT requires no knowledge of the gradient, it samples the input do-

main. The value of the function at these sampled points is used to determine where

to look next. It divides the domain into hyper-rectangles and samples their centers

to move towards the optimum (hence the name DIviding RECTangle or DIRECT).

It eventually converges to a global minimum. However, a large number of sam-

ples may be required for high dimensional (dimension of the homography vector)

problem like ours. See [16] for further details.

We use a Matlab implementation of DIRECT by Finkel [17]. To use this im-

plementation all we need is: an objective function, a real valued function which

takes a homography matrix as input to return value of the residual area; an initial

value of the homography matrix to start with and an allowed range (min and max

value) for every dimension of the homography vector.

5.3.1 Objective function

We pass the objective function as a parameter to the optimization algorithm. We

outline our objective function GetResidualArea in Algorithm 5.1. In this algo-

rithm, Trans f ormModel is a simple function which transforms the model to the

current frame using an input homography. CorrespondingModelPro jection re-
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trieves the corresponding model for each feature. Please note that we only use

the features detected in the image. FeatureResidualArea routine is based on dif-

ferent definitions of residual area for different kinds of features (as described in

Section 5.2).
Algorithm 5.1: GetResidualArea

Input: Homography matrix H, set of detected features F and model M

Output: A

A←− 0

Mt ←− Trans f ormModel(M,H)

foreach fi ∈ F do
m←−CorrespondingModelPro jection(Mt , i)

Ai←− FeatureResidualArea( fi,m)

A←− A+Ai

end

5.3.2 Choosing the initial value

In most cases, we start with a close initial estimate from linear homography esti-

mation from the last step (described in Chapter 4). However, this makes our system

sensitive to the errors in detection (i.e., a line being confused with a parallel line

or a bad fit for a noisy partial ellipse). To avoid this we switch to an estimate from

tracking if certain conditions are met. As we run this sequentially, we have the ho-

mography estimate available from the last frame and a frame to frame homography

estimate based on point matches. Now a question arises, what should be our criteria

for choosing between these two options as an initial value. We solve this problem

by deciding which value we trust more. Intuitively, to avoid drifting we would like

to assign more weight to the current estimate. Algorithm 5.2 outlines the proce-

dure. To estimate Hinit for the current frame n, we use the previous homography

estimate Hn−1, frame to frame homography H(n−1)→n and the linear estimate based

on detection Hlin. Parameter w≥ 1 defines the weight given to detection compared
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to tracking. For our experiments we choose w = 2.

Algorithm 5.2: GetInitialValue
Input: H(n−1)→n, Hn−1, Hlin, F , M, w

Output: Hinit

Htr←− H(n−1)→n×Hn−1

Alin←− GetResidualArea(Hlin,F,M)

Atr←− GetResidualArea(Htr,F,M)

if Atr ≥ w×Alin then
Hinit ←− Htr

else
Hinit ←− Hlin

end

5.3.3 Specifying bounds

With the camera intrinsics not known, we do not have a structured way to quantify

the camera motion in terms of components of the homography vector. We choose a

relaxed bound so that our fitting algorithm is not sensitive to this choice. However,

choosing too large a range can make this optimization slow. To get approximate

values of the bound, we manually annotate a few frames in the sequence to find

their homography with respect to the model. We average the absolute value of

these ground truth homography vectors. We use 15% of the average value as our

allowable range of homography correction during this non-linear step, let’s say b.

The range is given by [hinit−b hinit +b], where hinit is the vector representation of

the matrix Hinit .

5.3.4 Termination criteria

To limit the time spent on each frame, we fix number of iterations. This does not

guarantee a global minima but since DIRECT is an anytime optimization technique,

we always get a fit with an equal or lower error than what we started with. In our

experiments, we use 10,000 as the limit on number of iterations.
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Chapter 6

Results

To test the system, we use a broadcast hockey video dataset (introduced in Sec-

tion 1.1.2). In this chapter, we describe experiments and report results obtained

on this dataset. First, we describe a method to generate ground truth data and

define an error measure for the homography used for evaluation in the following

experiments. Second, we talk about the accuracy of line and ellipse detections (as

described in Section 3.3). We also evaluate the effect of including ellipse matches

in the DLT framework along with points and lines (as described in Chapter 4). We

report the reduction in error obtained after geometric minimization of the residual

area (as discussed in Section 5.3). We then discuss the results showing the im-

portance of using key-frames (described in Section 3.1.2). Finally, we discuss the

robust homography estimates obtained for a 1000 frame sequence.

6.1 Ground truth
It is hard to generate the ground truth for all the frames in the dataset. The ground

truth in this case means the best possible homography fit for a frame. A good fit

has to be visually evaluated by a user, as we do not have a clear way to quantita-

tively measure it. To simplify this issue, we only annotate a subset of frames from

the 1000 frame sequence with ground truth. The process works as follows: we

select a set of frames and manually choose point correspondences between these

frames and the geometric model to estimate the homography using the DLT algo-
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rithm for points. This initial estimate of homography is used to detect line and

ellipse features on these frames. We further refine the estimate by using geometric

minimization of the residual area error (as obtained by using Algorithm 5.1). The

error measure does not go to zero even for these ground truth frames as features

never align perfectly with the projected model. We refer to this error as the ground

truth residual area.

6.2 Error measure
These annotated frames represent a close approximation to the perfect transforma-

tion between the geometric model and the video. We make sure the frames we

choose have line and ellipse detections which are closely aligned with the actual

features in the image. We project the geometric model using the homography and

calculate the residual area between projected features (only lines and ellipses, no

points) and the detections in the ground truth frames. In the subsequent discussion,

this error is referred as the residual area error for a given homography estimate in

a particular frame.

Please note that this error measure is a comparable quantity only for differ-

ent homography estimates for a single frame. This is not an absolute measure of

the error in homography estimate as it is dependent on the features visible in that

particular frame. However, using this measure makes sure that all the different ho-

mography estimates for a frame are compared using a single set of detections (de-

tections in that ground truth frame).

6.3 Experiments
First, we describe experiments to evaluate different sub-modules of the system. We

finally test the complete system on a long sequence.

6.3.1 Line and ellipse detection

Our detection algorithm is dependent of the homography obtained for the last

frame. Figure 6.1 shows the detections obtained for lines and ellipses for a few

selected frames while running the whole system. Please note that these results
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Frame:729 Frame:755

Frame:806 Frame:874

Frame:918 Frame:993

Figure 6.1: Detection of lines and ellipses in a few selected frames from
the input sequence. There is a false line detection in Frame:755. In
Frame:874, a line is not correctly localized. Lines and ellipses are well
localized despite motion blur in Frame:806.

should not be examined in isolation, as accuracy of these detections is dependent

on the accuracy of the homography estimate for the previous frame. Lines and el-

lipses are reliable features for hockey rink images and are detected accurately for

most of the frames. We highlight some of the errors in detections. A few inaccurate

detections (see Frame:755 and Frame:874) are observed, however the performance

is not affected by motion blur (see Frame:806 in Figure 6.1).
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Figure 6.2: Error in the linear homography estimation using point, line and
ellipse correspondences compared with the error only using points. The
residual area error (defined in Section 6.2) is plotted for both the cases
along the y-axis. The x-axis shows the frame number of the image. The
performance after adding ellipses and lines is similar or worse in most
of the cases. To see what these error numbers translate to in terms of vi-
sual error, we have plotted the linear homography estimates for selected
frames (332, 660, and 1112, denoted by A, B, and C respectively) in
Figure 6.3.

6.3.2 Using ellipse correspondences

As discussed in Chapter 4, the addition of ellipse correspondences gives rise to

additional line and point correspondences. These can be used along with the ex-

isting line and point matches for linear homography estimation. We evaluate the

effect of these additional constraints on the accuracy of the homography estimate.

Figure 6.2 shows the residual area error (defined in Section 6.2 above) in the linear

estimate of homography obtained only using points and compare it with the case

when ellipse, line and point correspondences are combined. We expect that adding

these additional constraints would lead to a reduced error. However, the results

show that the performance after adding lines and ellipses is similar or worse in

most of the cases. We are not sure how the error in parameters of ellipse and line
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A

B

C

Figure 6.3: Rows A, B, and C correspond to the selected frames in Figure 6.2.
Images show the video frames with the a transformed geometric model
superimposed on top of them. The left column with blue lines shows
the homography estimates obtained using ellipse, lines, and point cor-
respondences while the right column with red lines shows the homog-
raphy estimates just based on point correspondence.

detections affect the homography estimate. The analyses of this behavior is left for

future work. We still use ellipse and line correspondences for linear homography

estimation. These can be useful in cases when there are not enough point corre-

spondences between an image and the corresponding key-frame. Such a situation

may arise due to motion blur (see Figure 6.4 for an example).
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Figure 6.4: Key-point matches under motion blur. Frame 807 (right image)
has only a single consistent match with its closest key-frame (left im-
age). Green and red crosses show the point correspondence.

6.3.3 Geometric error minimization

As a final step of our system we refine our linear estimate of the homography

using minimization of the geometric error. We evaluate the quantitative reduction

in the residual area error due to this non-linear optimization. In Figure 6.5 we

compare the error in homography estimation after the geometric error minimization

to the linear homography estimate. We observe that there is a significant reduction

in the error after the optimization step. We also find that the tracking is more

stable (observe the variation in the error corresponding to the linear estimate in

Figure 6.5).

6.3.4 Key-frames

Key-frames are crucial to establish a robust match between a frame and the geo-

metric model. This saves the system from drift due to using the frame to frame

correspondences. Figure 5.1 summarizes the tracking framework where we com-

bine the frame to frame estimate with the key-frame based homography estimate.

To test the importance of matching each frame with key-frames, we run the system

on the same data relying purely on the frame to frame homography (or tracking)

estimate as the initial value for the non-linear optimization. We obtain no homog-

raphy estimate from the key-frames (or detection). The rest of the system is kept

the same. Figure 6.7 shows the results for a few frames in the sequence. We ob-

serve that the error accumulates quickly and the system is not able to recover from

the error.
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Figure 6.5: The error in homography estimation after minimization of the
geometric error compared with the linear estimate. Along the y-axis
we have the residual area error, normalized by the ground truth resid-
ual area (as defined in Section 6.2). The frame numbers are plotted
along the x-axis. We also show homography estimates for three selected
frames, denoted by A, B, and C, in Figure 6.6.

6.3.5 Tracking in a long image sequence

Finally we test our system, using all the components and running it over a long

image sequence. Figure 6.8 shows a few frames from the sequence with the es-

timated homography. We observe for most of the cases features in the model are

well aligned with the features in the image. We observe a larger error in Frame:817.

However, the system is able to recover quickly (see Frame:871). This shows that

we are able to robustly estimate the homography for a long sequence accurately.

We also observe that there is no error accumulation. The last frame is well aligned

with the projected features from the model (see Frame:1299). This shows that the

system could possibly continue to track a longer sequence.
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A

B

C

Figure 6.6: Rows A, B, and C correspond to the selected frames in Fig-
ure 6.5. The images show the video frames with the transformed ge-
ometric model superimposed on top of them. The left column with red
lines shows the linear homography estimates while the right column
with blue lines shows the homography estimates obtained after the min-
imization of geometric error.
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Frame:300 Frame:368

Frame:417 Frame:493

Frame:619 Frame:703

Figure 6.7: Homography estimation for a sequence without using key-
frames. Tracking begins at Frame:300. Error accumulates quickly (see
Frame 368). The system is not able to recover subsequently.
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Frame:300 Frame:379

Frame:418 Frame:461

Frame:607 Frame:713

Frame:817 Frame:871

Frame:1131 Frame:1299

Figure 6.8: Final homography estimate for selected frames from 1000 frame
sequence.
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Chapter 7

Discussion and Future Work

We effectively combine the geometry, appearance and motion information to get

the best possible estimate of the homography between a geometric model of the

field (or rink) and each frame in the sports video. In this work, we focus on using

the geometric shapes in the model as features to estimate the homography. To

achieve this, we develop a method for incorporating ellipse features in homography

estimation along with line and point features (which have been traditionally used to

solve similar problems). We show that the minimization of an area based geometric

error measure can be used to refine the linear estimate and stabilize tracking. We

also combine the geometric model with an appearance model using the key-frame

idea to add robustness to the system.

The results we present show that our system is able to robustly track long se-

quences of the order of 1000 frames. We also show the effects of using or re-

moving different sub-modules which add to the accuracy and robustness. We still

need to show the system’s robustness for longer sequences and possibly the whole

game (around an hour long). We would also like to try it on other sports like soccer,

basketball and football.

In this chapter, we summarize the current limitations of our system along with

possible future directions. Finally, we present a brief conclusion.
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7.1 Future directions
We now summarize the major limitations and suggest improvements in the specific

sub-modules described in this work.

7.1.1 Efficient minimization of geometric error

As described in Section 5.3.1, we have a complex geometric error function with no

clear functional form. We use a sampling based technique for optimization called

DIRECT. This randomly samples (with no gradient information) a high dimen-

sional space which is not efficient and requires a large number of trials. We can

make some simplifying assumptions about our cost function to reduce it to a sim-

pler functional form so that standard techniques used for solving for the non-linear

least-squares problems (e.g., Levenberg-Marquardt algorithm [39]) can be applied.

Currently, we numerically estimate the residual area between two ellipses. We can

also obtain an estimate for the area by sampling a few points on the ellipse bound-

aries (similar to the technique described in [44]). This may lead to a large reduction

in running time.

7.1.2 Selecting key-frames

In the current implementation of the system we manually select key-frames. A set

of five images was chosen from the sequence to cover the whole range of camera

motion with some overlap between frames. However, this is dependent on the lo-

cation of the camera and its focal length. We would like to eventually automate

the process of key-frame selection. Another important question is to determine

the number of key-frames. Further experiments need to be conducted to evalu-

ate an optimal number for key-frames. There is an alternative to the key-frame

approach which involves registering point features from different frames to a geo-

metric model (as described by Hess and Fern[29]). This approach, originally im-

plemented for football videos, can also be tried for the hockey video rectification

problem.
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Figure 7.1: The complete geometric model of an NHL hockey rink [43]. This
can be compared with Figure 3.2 to see the features which we excluded
in the geometric model used for the current system.

7.1.3 Using a complete model

The model that we use currently is a simplified version of the actual geometric

model of an NHL rink (see Figure 7.1). Some of the features were left out as they

were harder to detect. However these additional features are distinct (e.g., lines

near the center of the four big outer circles) and can add to the robustness to the

detection module. Augmenting our model to incorporate all the features on the

rink is a natural extension for future work.

7.1.4 Refining the geometric model using data

The model we obtain from the rule book is a close but not a perfect representation

of all the hockey rinks we could possibly encounter. Some of the sports authorities

only provide a rough guideline for a few measurements in the rink. Since, our

whole tracking and detection framework is based on the assumption of a perfect

geometric model, we need to make sure that it is correct. To solve this problem, we

can start with an approximate model and system should be able to use the observed

features to correct the model over time. Automatically generating the accurate

geometric model is an interesting project for future work.
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7.1.5 Motion model

We do not explicitly build a motion model for the homography we are tracking over

time. We hypothesize smooth camera motion leads to a smooth variation in homog-

raphy. A major road-block in interpolating homography is the high-dimensional

nature of the transformation. Building models for homography corresponding to

specific camera motions (i.e., pan, tilt and zoom) without calibrating the camera, is

an interesting and challenging problem. Also, in this work, we only use informa-

tion from the previous frame to predict current estimate of homography. We could

possibly look at a wider horizon in time. In case of applications with no real-time

requirements, even future frames could possibly be used to smooth and stabilize

the output homography estimates over a sequence.

7.1.6 Removing lens imperfections

Lens imperfections are also a major challenge. Broadcast quality videos also have

measurable radial distortion which is visible to a careful observer. But this does

not normally affect the game viewing experience. This non-linear distortion makes

the homography assumption invalid. Also, since straight lines in the model/world

are not straight lines in the image, this also adversely affects the line detection al-

gorithm. As the camera zooms in smoothly, we hypothesize that the lens distortion

parameters also vary smoothly over time. We can track these parameters along

with the homography transformation. This can possibly make our predictions of

the player locations on the rink (based on the homography estimate and player

tracking results) more accurate.

7.1.7 Robust feature detection

We observe that in our case a large portion of the inaccuracies in detection corre-

spond to partial ellipses (not every ellipse is completely visible in the frame at a

given point in time). Also, in some other sports (e.g., soccer) many of the shapes

on the field are only partially circular. The ellipse fitting for a partial data is an

interesting challenge. The line detection can be improved by using the approach

described by Fan et al. [13]. This idea can possibly be extended to detect more

accurate ellipse boundaries.
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7.1.8 Normalization for lines

Analogous to the normalization for point correspondences in the DLT (as described

in Section 4.1.2), line correspondences also need to be normalized as described by

Zeng et al. [54]. This work also suggests a method to achieve this normalization.

The approach we currently use (as suggested by Dubrofsky and Woodham [9])

normalizes the correspondences only with respect to points. This can possibly lead

to instability in the solution when one of the line correspondences passes close to

the origin [54]. For combining lines and points for homography estimation, we still

need to work on an appropriate normalization with respect to both.

7.2 Conclusion
Rectification of the sports video captured from a moving camera is an important

problem in automated sports video analysis because it provides a mapping between

the events detected in the image coordinates and the world coordinates. In this

work, we describe a new way to aggregate the information from heterogeneous fea-

tures (points, lines and ellipses) and apply it to the specific problem of rectification

of broadcast hockey videos. We also present an integrated system which combines

various ideas related to feature detection, homography estimation and tracking.

The problem of automatic rectification still holds great challenges and possibilities

for interesting research. With all the limitations described above, our approach is

a significant next step towards combining a wider variety of heterogeneous scene

information for homography estimation and also building an application dealing

with real world broadcast data.
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