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Abstract

The goal of this thesis is to develop efficient numerical solvers for the time-harmonic

Maxwell equations and for incompressible magnetohydrodynamics problems.

The thesis consists of three components. In the first part, we present a fully

scalable parallel iterative solver for the time-harmonic Maxwell equations in mixed

form with small wave numbers. We use the lowest order Nédélec elements of the

first kind for the approximation of the vector field and standard nodal elements for

the Lagrange multiplier associated with the divergence constraint. The correspond-

ing linear system has a saddle point form, with inner iterations solved by precondi-

tioned conjugate gradients. We demonstrate the performance of our parallel solver

on problems with constant and variable coefficients with up to approximately 40

million degrees of freedom. Our numerical results indicate very good scalability

with the mesh size, on uniform, unstructured and locally refined meshes.

In the second part, we introduce and analyze a mixed finite element method for

the numerical discretization of a stationary incompressible magnetohydrodynam-

ics problem, in two and three dimensions. The velocity field is discretized using

divergence-conforming Brezzi-Douglas-Marini (BDM) elements and the magnetic

field is approximated by curl-conforming Nédélec elements. Key features of the

method are that it produces exactly divergence-free velocity approximations, and

that it correctly captures the strongest magnetic singularities in non-convex poly-

hedral domains. We prove that the energy norm of the error is convergent in the

mesh size in general Lipschitz polyhedra under minimal regularity assumptions,

and derive nearly optimal a-priori error estimates for the two-dimensional case. We

present a comprehensive set of numerical experiments, which indicate optimal con-

vergence of the proposed method for two-dimensional as well as three-dimensional
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problems.

Finally, in the third part we investigate preconditioned Krylov iterations for

the discretized stationary incompressible magnetohydrodynamics problems. We

propose a preconditioner based on efficient preconditioners for the Maxwell and

Navier-Stokes sub-systems. We show that many of the eigenvalues of the precondi-

tioned system are tightly clustered, and hence, rapid convergence is accomplished.

Our numerical results show that this approach performs quite well.
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Preface

This thesis describes results in three papers.

i. C. Greif, D. Li, D. Schötzau, and X. Wei. A mixed finite element method with

exactly divergence-free velocities for incompressible magnetohydrodynamics.

Computer Methods in Applied Mechanics and Engineering, 199:2840-2855,

2010.

ii. D. Li. Parallel numerical solution of the time-harmonic Maxwell equations.

Lecture Notes in Computer Science on High Performance Computing and Ap-

plications, 5938:224-229, 2010.

iii. D. Li, C. Greif, and D. Schötzau. Parallel numerical solution of the time-

harmonic Maxwell equations in mixed form. Numerical Linear Algebra with

Applications, Submitted (19 pages), 2010.

The first two are published and the third is in review. Chapter 2 describes the work

in [ii, iii], and Chapter 3 is based on the work published in [i].

I have taken a central role in all aspects of the work on these papers, as fol-

lows. Paper [ii] is a single-authored conference publication, and I worked on it and

prepared it on my own. I was the lead author in Paper [iii], which is joint with

my research supervisors, Chen Greif and Dominik Schötzau. Paper [i] is joint with

my research supervisors and with Xiaoxi Wei, who is a PhD student supervised by

Dominik Schötzau in the UBC Mathematics Department. My focus in this paper

was on the numerical issues and the implementation, while my colleague Xiaoxi

Wei has focused on the finite element analysis. For this reason, my thesis mainly

discusses numerical results for this part, whereas some of the theoretical results

will be presented in X. Wei’s thesis [95].
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Chapter 1

Introduction

The main topic of this thesis is the efficient numerical solution of the time-harmonic

Maxwell and incompressible magnetohydrodynamics equations. These two prob-

lems are central themes in the study of physical phenomena in the field of compu-

tational electromagnetics [55, 60, 73]. In this introductory chapter, we first give a

brief overview of Krylov subspace methods. Following that we present an intro-

duction to scientific parallel computing. We then provide the physics of the two

problems we study. Finally, an overview of the thesis structure and contributions

is given.

1.1 Krylov subspace methods
For solving linear systems of a reasonable size, direct methods are very popular in

many applications in science and engineering. For large systems, iterative methods

are more appropriate. We are interested in iterative solvers, particularly, precondi-

tioned Krylov subspace solvers.

Suppose we are to solve

Ax = b

iteratively, with an initial guess x0 and initial residual r0 = b−Ax0. For any real,

n× n nonsingular matrix A and vector y of the same length, the k-dimensional

1



Krylov subspace of A with respect to y is defined by

Kk(A;y) = span{y,Ay,A2y, . . . ,Ak−1y}.

Krylov subspace methods are based on finding a solution within the shifted Krylov

subspace x0 +Kk(A;r0) which satisfies a certain optimality criterion. There are

three important building blocks for the family of Krylov subspace solvers:

1. construct an orthogonal basis for the Krylov subspace;

2. define an optimality property;

3. use an effective preconditioner.

Computing an orthogonal basis. The vectors {r0,Ar0,A2r0, . . . ,Ak−1r0} span

the Krylov subspace Kk(A,r0), but as j increases, A jb approaches the dominant

eigenvector of A and the vectors become more linearly dependent. As a result, it

is more appropriate to consider an orthonormal basis for Kk(A,r0). If A is unsym-

metric, the Arnoldi process is used to construct the basis iteratively. Each iteration

adds an orthogonal vector to the basis. This process can be written as

AQk = Qk+1Hk+1,k,

where Qk+1 is the matrix containing the k+ 1 vectors of the orthogonal basis for

the Krylov subspace, Qk is the same matrix but with the first k columns only, and

Hk+1,k is a matrix in upper Hessenberg form of size (k+1)× k. It is easy to show

that

QT
k AQk = Hk,k,

where Hk,k a matrix containing the first k rows of Hk+1,k. When A is symmetric,

Hk,k must be symmetric. Therefore, it must be tridiagonal; let us denote it by Tk,k.

In this case the Arnoldi process reduces to the well known Lanczos method. This

process can be written as

AQk = Qk+1Tk+1,k.

Defining an optimality property. Now that the orthogonal basis is available,

we need to define an optimality criterion for a Krylov subspace solver. There are

2



various alternatives for deciding on the type of solution we are looking for within

the Krylov subspace. Two particularly popular criteria are the following:

• seek a residual with minimum `2-norm within the Krylov subspace,

• force the residual to be orthogonal to the Krylov subspace.

The first approach leads to MINRES (for minimum residual) when A is symmet-

ric [79] and GMRES (for generalized minimum residual) when A is nonsymmet-

ric [86]. The second approach leads to the SYMMLQ algorithm [79] when A is

symmetric. When A is nonsymmetric, the FOM (for full orthogonalization method)

algorithm works [85]. When A is symmetric positive definite, the second approach

is equivalent to minimizing the energy norm of the error, ||xk − x||A [33, Theo-

rem 6.8] and after some manipulation we get the CG (conjugate gradient) algo-

rithm [53].

In this thesis, the numerical solvers we use are MINRES, GMRES and CG. We

discuss these three algorithms briefly.

• GMRES for general matrices. By the Arnoldi algorithm, we have that AQk =

Qk+1Hk+1,k. We can write

xk = x0 +Qkz,

and aim to find xk which minimizes ||b−Axk||. We solve the corresponding

least-squares problem through the QR factorization and derive that

z = R−1
k,kUT

k+1,k||r0||e1.

Here,

Hk+1,k =Uk+1,kRk,r,

where Rk,k is an upper triangular matrix and Uk+1,k consists of k orthonormal

vectors. The vector e1 is (1,0, . . . ,0)T . Once we have z, we compute the kth

iteration simply by setting xk = x0 +Qkz.

• MINRES for symmetric matrices. For symmetric matrices A, Arnoldi is

replaced by Lanczos and the upper Hessenberg matrix is just tridiagonal.

3



The same mechanism as GMRES can be applied but the resulting iterative

method is simpler and requires short three-term recurrence relations; this is

MINRES.

• CG for symmetric positive definite matrices. We write

xk = x0 +Qkz,

and impose QT
Krk = 0. It can be shown that

z = T−1
k,k ||r0||e1.

Further manipulations related to the Cholesky decomposition of Tk,k lead to

the elegant CG algorithm; see, e.g., [33, Chatper 6].

Preconditioning The convergence rate of Krylov subspace solvers depends on

the distribution of A’s eigenvalues. Preconditioning means replacing the system

Ax = b with the system M−1Ax = M−1b, where M is an approximation to A. There

are several important properties a preconditioner should have [10, 33, 93]:

• the system Mz = s must be easy to solve,

• the matrix M−1A is well conditioned and/or has strongly clustered eigenval-

ues,

• the matrix M must not be too difficult to construct.

Loosely speaking, there are two general approaches to constructing precon-

ditioners [10]. One approach is to design specialized algorithms in applications

involving partial differential equations (PDEs); see, e.g., [37]. These algorithms

are usually optimal (or nearly so) for a narrow class of problems, but they require

complete knowledge of the problem at hand, including the original (continuous)

equations, the domain of integration, the boundary conditions, details of the dis-

cretization, and so forth. The second approach is to design general-purpose, purely

algebraic methods that use only information contained in the coefficient matrix A;

see, e.g., [85]. In this thesis, since we have an underlying PDE, we design our

preconditioners based on the first methodology.
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1.2 Scientific parallel computing
One of the core tasks in the numerical simulation of mathematical models is solv-

ing very large linear systems of equations. Indeed, the number of equations may

reach millions very quickly as we refine the mesh, especially in three dimensions.

Sequential single-processor solution procedures are often prohibitive in terms of

CPU time and memory requirements. In this thesis we develop a parallel comput-

ing paradigm to derive efficient scalable linear solvers.

Parallel computing is the application of two or more processing units to solve

a single problem [81, 90]. These units can be physical processors or logical pro-

cesses. Our parallel numerical examples are run on a cluster with distributed mem-

ory machines with multiple processors. Each processor executes the same program,

but with different data.

To accomplish the task of developing an efficient parallel code, a few issues

need to be addressed.

Data access. Since processors calculate values that are needed by other pro-

cessors, we need a way to distinguish among those data at different processors. It is

useful to have a processor-centric mechanism whereby the data of a processor un-

der consideration are considered on-processor data and all the rest are off-processor

data. Accessing off-processor data is often referred to as communication. In us-

ing multiple processors to solve a problem, varying degrees of coordination are

required. Coordination primarily resolves accessing off-processor data required by

some processors to compute its tasks. There are two ways to access off-processor

data.

1. Direct memory access. In this method, the processor requesting information

will access the off-processor information directly from memory where it was

written. This requires some form of synchronization so that the value in

memory is accessed when it is valid. The approach is typically used in shared

memory parallelism. An intrinsic characteristic of shared memory machines

is a strategy for memory coherence and a fast tightly coupled network for

distributing data from a commonly accessible memory system.

2. Data exchange via messages. This is another method to acquire off-processor

information using messages. In a message, the required information is pack-

5



aged, identified, and sent from the processor that defined it to the processor

that requires it. Thus, messages have both the information and synchroniza-

tion. This approach to accessing off-processor data is typically used in dis-

tributed memory architectures. We use messages to exchange data between

processors in this thesis.

Load balancing. The overall time spent in parallel programs includes the com-

putational time and communication time. Load balancing is very important in par-

allel computing. If the work is not distributed equally, then one processor may end

up taking longer than the others. Since we are doing a cooperative project, the

entire job cannot be finished until the slowest subtask is finished. To reduce the

computational time, in addition to optimizing the parallel algorithms, one require-

ment is that the work to be done by each processor needs to be balanced among

all the processors. Reducing communication cost is another import factor affecting

efficiency of parallel programs. Even if the load is well balanced, the communica-

tion cost can be high, if all processors need to access a lot of off-processor data.

To reduce the communication time, we need to design the data structures that each

processor will require minimum off-processor data.

Numerical libraries. To write sophisticated parallel application codes that in-

volve the numerical simulation of large-scale engineering applications, we require

the use of portable, efficient numerical libraries. Over the last few decades, various

agencies world-wide have invested heavily in making parallel computing usable

for more than very special high-budget custom projects. There are many numeri-

cal libraries available for this purpose, such as MUMPS [1], SuperLU DIST [71],

PARDISO [87], Trilinos [52], Hypre [38], and PETSc [6–8]. We adopt PETSc

(the Portable, Extensible Toolkit for Scientific Computation) as the framework of

our parallel code in this thesis. PETSc uses the MPI standard [46] for all message

passing communications. To accomplish maximum flexibility PETSc utilizes the

object-oriented methodology, which in turn seamlessly allows for a high level of

abstraction; see Figure 1.1. The user initiates communications of sequential and

parallel phases of computations, but PETSc handles the detailed message pass-

ing required during the coordination of the computations. This provides a good

balance between ease of use and efficiency of implementation. Each part of the
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PETSc library manipulates a particular family of objects (vectors, matrices, Krylov

subspaces, preconditioners, etc.) and operations that can be performed on them.

Matrices are distributed as block rows in PETSc (i.e., block distribution, see [81,

Chapter 5] for details), such that each process holds an array of contiguous rows of

the matrix and owns complete rows. Our data structures are designed to meet this

data distribution scheme; see Section 2.3.4 for details.

There are many open source finite element libraries available, such as FEM-

STER [16], NGSolve [88], and Deal.II [9]. Instead of using any of these libraries

we have written our own code, because it gives us easy access to the matrices and

allows us to numerically test the various solvers studied in this work.

Matrices

KSP
(Krylov Subspace Methods)

PC
(Preconditioners)

Vectors Index Sets

(Linear Equations Solvers)
SLES

LAPACKBLAS

Level of
Abstraction Application Codes

(Time Stepping)
TS

(Nonlinear Equations Solvers)
SNES

PDE Solvers

MPI

DrawFIGURE 2. Organization of the PETSc LibraryThe use of communicators in parallel software libraries is extremely important, since it enablesall communication for a particular operation (e.g., a matrix-vector product) to be isolated fromcommunication in other parts of code. Such encapsulation eliminates the problem of colliding tags(for example, when two libraries inadvertently use the same tag on di�erent messages, one librarymay incorrectly receive a message intended for the other library), which was a serious limitation ofolder message-passing systems.The underlying communicators in PETSc objects ensure that communications for di�erent com-putations are separate. We achieve this segregation upon object creation by immediately duplicatingvia MPI Comm dup() (an MPI function that makes a copy of a given communicator) any communica-tor that is not already a \PETSc communicator" and then denoting it as such by inserting an MPIattribute via MPI Attr put(). An MPI attribute is simply any collection of data a user chooses toattach to a communicator. This PETSc attribute essentially contains a tag number that is assignedto the PETSc object. The tag number is then decremented to ensure that each PETSc object thatshares a common communicator has a unique tag (or tags) for use in its internal communication.4 Six Guiding PrinciplesAs introduced in Section 1, the six guiding principles in the development of the parallel PETScsoftware are strongly interrelated. This section discusses each principle, while the following sectiondescribes their integration into the PETSc design.4.1 Managing the Communication in the Context of Higher-Level Operations onParallel ObjectsRaw message-passing code is often extremely di�cult to understand and debug because, unless thecode is very carefully documented, it is often unclear what speci�c message is associated with a par-ticular operation or data structure in the code. PETSc is designed so that application programmersgenerally need not worry about writing individual message-passing calls. Instead, they can directcommunication as part of higher-level operations on a parallel object or objects. For example, thematrix-vector product interface routine, given by8

Figure 1.1: Organization of the PETSc library. The objects above the line
are manipulated by PETSc. Objects at a higher level of abstraction are
based on objects below them.
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1.3 The problems and their physics

1.3.1 The time-harmonic Maxwell equations

The modern theory of electromagnetism was founded by James Clerk Maxwell

(1831-1879) in 1873 with the publication of his A Treatise on Electricity and Mag-

netism [72]. The Maxwell equations are a system of PDEs that describe how the

electric and magnetic fields relate to their sources, charge density and current den-

sity.

The classical macroscopic electromagnetic field is described by four vector

functions of position x ∈ R3 and time t ∈ R, denoted by E , D , H and B [73].

The fundamental field vectors are E and H , called the electric and magnetic field

intensities, respectively. The vector functions D and B are called the electric

displacement and magnetic induction, respectively. They will later be eliminated

from the description of the electromagnetic field via suitable constitutive relations.

Our exposition in this section mainly follows [32, 73].

An electromagnetic field is created by a distribution of sources consisting of

static electric charges and the directed flow of electric charge, the current. The

distribution of charges is given by a scalar charge density function ρ , while currents

are described by the vector current density function J . The Maxwell equations

then state that the field variables and sources are related by the following equations:

Farady’s law:
∂B

∂ t
+∇×E = 0, (1.1a)

Coulomb’s law: ∇ ·D = ρ, (1.1b)

Ampère’s law:
∂D

∂ t
−∇×H =−J , (1.1c)

Gauss’s law: ∇ ·B = 0. (1.1d)

Since charge is conserved, ρ and J are connected by the relation

∇ ·J +
∂ρ

∂ t
= 0. (1.2)
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We assume the current density and charge density are time-harmonic:

J (x, t) = R(exp(−iωt)Ĵ(x)),

ρ(x, t) = R(exp(−iωt)ρ̂(x)),

where i =
√
−1, ω > 0 is the temporal frequency and R(·) denotes the real part of

the expression. Then the electromagnetic fields are time-harmonic:

E (x, t) = R(exp(−iωt)Ê(x)),

D(x, t) = R(exp(−iωt)D̂(x)),

H (x, t) = R(exp(−iωt)Ĥ(x)),

B(x, t) = R(exp(−iωt)B̂(x)).

The field Ê is now a complex-valued vector function of position but not time.

Substituting these relations into (1.1) leads to the time-harmonic Maxwell equa-

tions:

−iωB̂+∇× Ê = 0, (1.3a)

∇ · D̂ = ρ̂, (1.3b)

−iωD̂−∇× Ĥ =−Ĵ, (1.3c)

∇ · B̂ = 0, (1.3d)

where the time-harmonic charge density ρ̂ is given via charge conservation (1.2)

and hence can be eliminated from the equations.

The equations in (1.3) must be augmented by two constitutive laws that relate Ê
and Ĥ to D̂ and B̂, respectively. These laws depend on the properties of the matter

in the domain occupied by the electromagnetic field. We assume the linear relation

D̂ = εÊ and B̂ = µĤ, (1.4)

where ε and µ denote, respectively, the permittivity (measured in F/m in SI units)

and permeability (H/m), which are positive, bounded, scalar functions of position.

In a vacuum, we have ε ≡ ε0 and µ ≡ µ0, where ε0 = 8.854× 10−12 F/m and
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µ0 = 4π×10−7 H/m.

There is one additional constitutive relation. In a conducting material, the elec-

tromagnetic field itself gives rise to currents. If the field strengths are not large, we

can assume that Ohm’s law holds so that:

Ĵ = σ Ê+ Ĵa, (1.5)

where σ is called the conductivity (S/m) and is a non-negative function of position.

The vector function Ĵa describes the applied current density.

Using the constitutive equations in (1.4) and the constitutive relation for the

currents in (1.5), we use (1.3) to obtain the following time-harmonic Maxwell sys-

tem:

−iωµĤ+∇× Ê = 0, (1.6a)

∇ · (εÊ) =
1

iω
∇ · (σ Ê+ Ĵa), (1.6b)

−iωεÊ+σ Ê−∇× Ĥ =−Ĵa, (1.6c)

∇ · (µĤ) = 0. (1.6d)

Define

E = ε
1/2
0 Ê and H = µ

1/2
0 Ĥ.

Using (1.6) and defining the relative permittivity and permeability by

εr =
1
ε0
(ε +

iσ
ω
) and µr =

µ

µ0
,

the following version of the first-order Maxwell system is obtained:

− ikµrH+∇×E = 0, (1.7a)

−ikεrE−∇×H = − 1
ik

f, (1.7b)

where f= ikµ
1/2
0 Ĵa and the wave number is k=ω

√
ε0µ0. The following divergence
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conditions follow from (1.6):

∇ · (εrE) = − 1
k2 ∇ · f,

∇ · (µrH) = 0.

The magnetic field H can be eliminated by solving (1.7a) for H and substituting

into (1.7b). Thus, we obtain the second-order Maxwell system

∇× (µ−1
r ∇×E)− k2

εrE = f. (1.8)

Equation (1.8) is the model problem we will consider in Chapter 2. We will con-

sider a lossless medium (σ = 0) in which case the material coefficients are real;

and the real and imaginary parts of (1.8) decouple into two problems of the same

form. From now on, we assume E and f are real.

Computer simulation has become an essential tool in the design and analysis of

electronic and electromechanical devices, such as micro-chips, medical equipment,

transformers, sensors and coils. Nowadays, there are many commercial software

packages available, such as Maxwell by Ansoft (www.ansoft.com), Microwave Of-

fice by AWR (web.awrcorp.com), CST EM studio by CST (www.cst.com), and

COMSOL Multiphysics by COMSOL (www.comsol.com).

There are a number of solvers available for (1.8). For example, a parallel solver

based on virtual space preconditioners has been implemented in Hypre [38] and a

Maxwell solver based on AMG preconditioners has been developed in [39].

1.3.2 Incompressible magnetohydrodynamics

The field of magnetohydrodynamics (MHD) studies the behavior of electrically

conducting fluids (such as liquid metals, plasmas, salt water, etc.) in electromag-

netic fields [30, 42, 74]. The equations of electromagnetics and fluid dynamics are

coupled through two fundamental effects: first, the motion of a conducting mate-

rial in the presence of a magnetic field induces an electric current that modifies the

existing electromagnetic field (this effect is often referred to as electromotive force

(EMF)). Secondly, the current and the magnetic field generate the Lorentz force,

which accelerates the fluid particles in the direction normal to both the magnetic
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field and the electric current. Our focus is on incompressible viscous fluids whose

electric resistivity is non-negligible [42]. The corresponding incompressible MHD

model is a system of PDEs, where the Navier-Stokes equations are coupled with

the Maxwell equations. Incompressible MHD has a number of technological and

industrial applications such as metallurgical engineering, electromagnetic pump-

ing, stirring of liquid metals, and measuring flow quantities based on induction;

cf. [28, 42].

In the MHD equations, the non-relativistic motion of Newtonian fluids is gov-

erned by the Navier-Stokes equations as follows (see, e.g., [18])

∂U

∂ t
−νv∆U +(U ·∇)U − 1

ρ
∇P̄ = fL + f, (1.9a)

∇ ·U = 0. (1.9b)

Here U is the velocity field, νv is the kinematic viscosity of the fluid, P̄ is the

pressure of the fluid, fL is the Lorentz force per mass, and f is the external body

force per mass. The constraint (1.9b) corresponds to conservation of mass.

Electromagnetic effects are governed by the Maxwell equations in (1.1). Recall

that ε and µ are functions of position only. We assume

D = εE and B = µH . (1.10)

If the densities of positive and negative charges are assumed to be equal in any

sizable region (quasi-neutrality assumption, see, e.g., [59] for details), Ohm’s law

simplifies to:

J = σ(E +U ×B). (1.11)

Here, U ×B represents the electric field induced by the fluid flow.

If we further assume that phenomena involving high frequency are not consid-

ered, the displacement current ∂D
∂ t in (1.1c) can be neglected, leading to

J = ∇×H . (1.12)
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Combining (1.11)–(1.12), we solve for E

E =
1
σ

J −U ×B

=
1
σ

∇×H −U ×B

=
1

σ µ
∇×B−U ×B.

(1.13)

We substitute (1.13) into (1.1a) and obtain

∂B

∂ t
+

1
σ µ

∇×∇×B−∇× (U ×B) = 0,

where the term ∇× (U ×B) counts for the electromotive force.

On the other hand, the Lorentz’s force fL is the body force exerted by the elec-

tromagnetic effects on the fluid. Based on (1.10) and (1.12), it is given by

fL =
1
ρ

J ×B =
1

ρµ
(∇×B)×B. (1.14)

Substituting (1.14) into (1.9a), we obtain

∂U

∂ t
−νv∆U +(U ·∇)U − 1

ρ
∇P̄ =

1
ρµ

(∇×B)×B+ f.

It is convenient to rewrite the MHD equations in non-dimensional form. For

this purpose, we introduce characteristic values: the characteristic magnetic induc-

tion B, characteristic velocity U and characteristic length L. The resulting sys-

tem of the incompressible MHD equations is cast in terms of the non-dimensional

space variable x
L , time variable tU

L (again denoted by x and t), as well as the

non-dimensional fields u = U
U , b = B

B , p = P̄
ρU2 and f = fL

U2 . The resulting non-
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dimensionalized system of equations is

∂u
∂ t
−ν ∆u+(u ·∇)u+∇p−κ (∇×b)×b = f,

∂b
∂ t

+νm ∇× (∇×b)−∇× (u×b) = 0,

∇ ·u = 0,

∇ ·b = 0,

where ν = 1
Re , νm = 1

Rm , and Re, Rm and κ are three non-dimensional numbers.

The parameter Re = UL
νv

is the hydrodynamic Reynolds number. The parameter

Rm = σ µUL is the magnetic Reynolds number. The parameter κ = B2

µρU2 is the

coupling number. For further discussion of these parameters and their typical val-

ues, we refer the reader to [3, 42, 84].

In this thesis, we are interested in the steady-state MHD equations given by

−ν ∆u+(u ·∇)u+∇p−κ (∇×b)×b = f, (1.15a)

νm ∇× (∇×b)−∇× (u×b) = 0, (1.15b)

∇ ·u = 0, (1.15c)

∇ ·b = 0. (1.15d)

The PDE system (1.15) is the focus of our interest in Chapters 3 and 4. We will

transform the system into mixed form, making it amenable to discretized curl-

confirming elements.

1.4 Thesis overview and contributions
This thesis is organized in five chapters. In Chapter 2, we discuss the numeri-

cal solution of the Maxwell equations in (1.8) and present a fully scalable parallel

iterative solver. It is based on a mixed finite element discretization on tetrahe-

dral meshes, using the lowest order Nédélec elements of the first kind [76] for the

approximation of the vector field, and standard nodal elements for the Lagrange

multiplier associated with the divergence constraint. The corresponding linear sys-
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tem has a saddle point form, and is solved using preconditioned MINRES [79].

We adopt and extend the block diagonal preconditioning approach derived in [43],

with a nodal auxiliary space preconditioning technique as an inner iteration for the

shifted curl-curl operator [56].

Our main contribution is the development and parallel implementation of this

approach for large-scale problems in complex three-dimensional domains with

variable coefficients. We demonstrate the performance of our parallel solver on

problems with up to approximately 40 million degrees of freedom. Our numerical

results indicate very good scalability with the mesh size, on uniform, unstructured

and locally refined meshes. A preliminary version of this work has been published

in the conference proceedings of the second international conference on High Per-

formance Computing and Applications (Shanghai, China, 2009) in Lecture Notes

in Computer Science on High Performance Computing and Applications [69]. A

complete version has been submitted to Numerical Linear Algebra with Applica-

tions in June, 2010 [70].

In Chapter 3, we move on to consider the more complex incompressible MHD

problem (1.15), of which the Maxwell equations discussed in Chapter 2 are a sub-

problem. We propose a new finite element method for the numerical discretization

of a stationary incompressible MHD problem in two and three dimensions. The

novelty of the method is two-fold: first, the method produces exactly divergence-

free velocity approximations and the resulting discretization is provably energy-

stable; secondly, it captures the strongest magnetic singularities. The velocity

field is discretized using divergence-conforming Brezzi-Douglas-Marini (BDM)

elements [15] and the magnetic field is approximated by curl-conforming Nédélec

elements. The H1-continuity of the velocity field is enforced by a discontinuous

Galerkin (DG) approach. The energy norm of the error is convergent in the mesh

size in general possibly non-convex Lipschitz polyhedra under minimal regular-

ity assumptions, and we have nearly optimal a-priori error estimates for the two-

dimensional case, and slightly suboptimal ones for the three-dimensional case. We

present a comprehensive set of numerical experiments, which indicate optimal con-

vergence of the proposed method for two-dimensional as well as three-dimensional

problems. We numerically confirm that the strongest magnetic singularities can be

correctly captured. This work has been published in Computer Methods in Applied
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Mechanics and Engineering [44].

In Chapter 4, we focus on the specific issue of developing efficient solvers for

the linear system arising from our finite element discretization, introduced in Chap-

ter 3. Here, the main difficulty is the presence of possibly strong skew-symmetric

coupling terms. We present preliminary results for preconditioning techniques

applied to the discretized MHD equations. We propose a preconditioning ap-

proach based on combining efficient preconditioners of the Maxwell sub-system

(discussed in Chapter 2) and Navier-Stokes sub-system [37, Chapter 8]. We pro-

vide some preliminary analysis for our approach. We present numerical results to

show that our approach performs reasonably well. We did not try to parallelize the

solver for the MHD problems. This is left as an interesting topic for future work.

Conclusions and an outline of related future work are provided in Chapter 5.
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Chapter 2

Solution of the discretized
time-harmonic Maxwell
equations in mixed form

In this chapter we develop a fully scalable parallel solver for the time-harmonic

Maxwell equations in complicated domains in three dimensions. The precondi-

tioned iterations are based on outer iterations of the form introduced in [43], ex-

tended to the variable coefficient case, and inner iterations of the form derived

in [56]. We use algebraic multigrid solvers for each elliptic problem, and accom-

plish almost linear complexity in the number of degrees of freedom. With our

implementation we can solve problems of dimensions of up to approximately 40

million degrees of freedom. Our numerical results scale very well with the mesh

size, on uniform, unstructured, and locally refined meshes.

This chapter is structured as follows. First, we discuss related work in Sec-

tion 2.1. In Section 2.2 we present the mixed finite element discretization and

analyze the properties of the discrete operators. The preconditioning approach is

presented in Section 2.3. In Section 2.4 we provide numerical examples to demon-

strate the scalability and performance of the proposed solvers.
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2.1 Background and related work
To find the solution to (1.8), we need to know the boundary conditions associated

with the domain Ω. We assume ∂Ω is a perfectly conducting connected boundary

of Ω, and have the following boundary condition:

n×E = 0 on ∂Ω,

where n denotes the outward normal unit vector to ∂Ω.

We are interested in numerically solving (1.8) using mixed finite element meth-

ods. Mixed formulations of the Maxwell equations have been used in [17, 80, 94].

Such formulations may improve the stability for vanishing wave numbers [94] and

yield a well defined problem. A mixed approach has been used in [17] for treat-

ing non-matching meshes. To derive a mixed formulation we apply the Helmholtz

decomposition [80], and write

E = u+∇p̂,

where εru is divergence-free, and p̂ has homogeneous Dirichlet boundary condi-

tions. Setting p = −k2 p̂, we obtain the following mixed problem: find the vector

field u and the scalar multiplier p such that

∇×µ
−1
r ∇×u− k2

εru+ εr∇p = f in Ω, (2.1a)

∇ · (εru) = 0 in Ω, (2.1b)

n×u = 0 on ∂Ω, (2.1c)

p = 0 on ∂Ω. (2.1d)

We assume that

0 < µmin ≤ µr ≤ µmax < ∞ and 0 < εmin ≤ εr ≤ εmax < ∞.

The wave number k is assumed small,

k� 1.
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In the two-dimensional case, the curl operator ∇× applied to a vector u =

(u1,u2) is defined as ∇× u = ∂u2
∂x −

∂u1
∂y , while the curl of a scalar function p is

determined by ∇× p = ( ∂ p
∂y ,−

∂ p
∂x ). Similarly, the cross product of two vectors u =

(u1,u2) and v = (v1,v2) is given by u×v = u1v2−u2v1.

Finite element discretization using Nédélec elements of the first kind [76] for

the approximation of u and standard nodal elements for p yields a saddle point

linear system of the form

K x≡

(
A− k2M BT

B 0

)(
u

p

)
=

(
f

0

)
≡ b, (2.2)

whose size is (m+ n)× (m+ n). The matrix A ∈ Rn×n corresponds to the µ−1
r -

weighted discrete curl-curl operator; B ∈ Rm×n is the εr-weighted divergence op-

erator with full row rank; M ∈Rn×n is the εr-weighted vector mass matrix; f ∈Rn

is now the load vector associated with the right-hand side in (2.1a), and the vec-

tors u ∈ Rn and p ∈ Rm represent the finite element coefficients. Note that A is

symmetric positive semidefinite with nullity m.

In [43], block diagonal preconditioners were designed for iteratively solving

system (2.2) with constant coefficients. These preconditioners were motivated by

spectral equivalence properties. Each iteration of the scheme requires inverting

A+ γM,

where γ > 0 is a given parameter. There exist several effective multigrid meth-

ods for doing so. When a hierarchy of structured meshes is available, geometric

multigrid can be applied [54]; for unstructured meshes, algebraic multigrid (AMG)

approaches have been explored and implemented in [13, 39, 61, 83], using the

smoothers introduced in [54]. A different approach has been proposed in [56]: a

nodal auxiliary space preconditioner, which reduces the problem into solving two

scalar elliptic problems on the nodal finite element space. A parallel solver based

on the nodal auxiliary space preconditioners is implemented in [38, 67].

In this chapter we develop a fully scalable parallel implementation for solv-

ing (2.2) in complicated domains in three dimensions. The preconditioned itera-

tions are based on outer iterations of the form introduced in [43], extended to the
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variable coefficient case, and inner iterations of the form derived in [56]. We use

algebraic multigrid solvers for each elliptic problem, and accomplish almost lin-

ear complexity in the number of degrees of freedom. With our implementation we

can solve problems of dimensions of up to approximately 40 million degrees of

freedom. Our numerical results scale very well with the mesh size, on uniform,

unstructured, and locally refined meshes.

2.2 Finite element discretization
In this section, we present a mixed finite element method that employs curl-conforming

elements. Then, we discuss properties of the discrete operators.

2.2.1 Variational formulation

We assume Ω is a bounded simply-connected Lipschitz polytope in Rd (d = 2 or 3),

with a connected boundary ∂Ω. To write (2.2) in weak form, we denote by (·, ·)Ω

the inner product in L2(Ω) or L2(Ω)d . For the computational domain Ω⊂ Rd , we

let

C = H0(curl;Ω) = {u ∈ L2(Ω)d : ∇×u ∈ L2(Ω)d ,n×u = 0 on ∂Ω},

S = H1
0 (Ω) = {p ∈ H1(Ω) : p = 0 on ∂Ω}.

(2.3)

The variational formulation of the Maxwell equations (2.1) is to find (u, p)∈C×S

such that

A(u,v)− k2M(u,v)+B(v, p) = (f,v)Ω, (2.4a)

B(u,q) = 0, (2.4b)

for all (v,q) ∈ C×S. The variational forms are given by

A(u,v) =
∫

Ω

µ
−1
r (∇×u) · (∇×v)dx,

M(u,v) =
∫

Ω

εru ·vdx,

B(u,q) =
∫

Ω

εru ·∇qdx.
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Recall that the wave number k is given by k =ω
√

ε0µ0 and ω 6= 0 is the angular

frequency. We assume throughout that k2εr is not a Maxwell eigenvalue. The well-

posedness of (2.1) has been proved in [32, 80]. Note that (2.1) is well-posed for

k = 0. In this case, if εr ≡ 1, this corresponds to the mixed formulation of the

magnetostatic problem in terms of the vector potential u, along with Coulomb’s

gauge ∇ ·u = 0. In our numerical tests, we will also consider k = 0 and variable εr.

2.2.2 Mixed discretization

We consider a family of regular and quasi-uniform triangulations Th of a suffi-

ciently small mesh size h that partition the domain Ω into simplices {K} (i.e.,

triangles for d = 2 and tetrahedra for d = 3).

For k ≥ 1, we wish to approximate the solution of (2.1) by finite element func-

tions (uh, ph) ∈ Ch×Sh, where

Ch = {u ∈ H0(curl;Ω) : u|K ∈Pk−1(K)d⊕Rk(K), K ∈Th },

Sh = { p ∈ H1
0 (Ω) : p|K ∈Pk(K), K ∈Th }.

(2.5)

Here, we denote by Pk(K) the space of polynomials of total degree at most k on

element K, and by Rk(K) the space of homogeneous vector polynomials of total

degree k that are orthogonal to the position vector x.

The space Ch represents the first family of curl-conforming Nédélec elements

(cf. [76, Chapter 5]); its degrees of freedom are defined for the tangential compo-

nents of functions along faces. Figure 2.1 shows the degrees of freedom on the

lowest order Nédélec elements in 2D and 3D.

Now we consider the following finite element method: find (uh, ph) ∈ Ch×Sh

such that

A(uh,v)− k2M(uh,v)+B(v, ph) = (f,v)Ω, (2.6a)

B(uh,q) = 0, (2.6b)

for all (v,q) ∈ Ch×Sh.

Let 〈ψ j〉nj=1 and 〈φi〉mi=1 be finite element bases for the spaces Ch and Sh re-
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(a) 2D (b) 3D

Figure 2.1: A graphical illustration of the degrees of freedom for the lowest
order Nédélec element in 2D and 3D. Degrees of freedom are average
values of tangential component of vector fields on each edge.

spectively:

Ch = span〈ψ j〉nj=1, Sh = span〈φi〉mi=1. (2.7)

Then, the weak formulation in (2.4) yields a linear system of the form (2.2), where

the entries of the matrices and the load vector are given by

Ai, j =
∫

Ω

µ
−1
r (∇×ψ j) · (∇×ψi) dx, 1≤ i, j ≤ n,

Mi, j =
∫

Ω

εrψ j ·ψi dx, 1≤ i, j ≤ n,

Bi, j =
∫

Ω

εrψ j ·∇φi dx, 1≤ i≤ m, 1≤ j ≤ n,

fi =
∫

Ω

f ·ψi dx, 1≤ i≤ n.

The mixed finite element discretization (2.6) has a unique solution; see the proof

in [32].

Let us introduce a few additional matrices that play an important role in this
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formulation. First, note that ∇Sh ⊂ Ch, and define the matrix C ∈ Rn×m by

∇φ j =
n

∑
i=1

Ci, jψi, j = 1, . . . ,m. (2.8)

For a function qh ∈ Sh given by qh = ∑
m
j=1 q jφ j, we then have

∇qh =
n

∑
i=1

m

∑
j=1

Ci, jq jψi,

so Cq is the coefficient vector of ∇qh in the basis 〈ψi〉ni=1. In the lowest order case,

the entries of C are

Ci, j =


1 if node j is the head of edge i,

−1 if node j is the tail of edge i,

0 otherwise.

Define the εr-weighted scalar Laplacian on Sh as L = (Li, j)
m
i, j=1 ∈ Rm×m with

Li, j =
∫

Ω

εr∇φ j ·∇φi dx. (2.9)

Finally, we set Q= (Qi, j)
m
i, j=1 ∈Rm×m as the εr-weighted scalar mass matrix on Sh,

that is

Qi, j =
∫

Ω

εrφ j ·φi dx.

2.2.3 Properties of the discrete operators

Let us state a few stability results that extend the analysis in [43] from constant

material coefficients to the variable coefficient case.

Denote by 〈·, ·〉 the standard Euclidean inner product in Rn or Rm, and by

null(·) the null space of a matrix. For a given positive (semi)definite matrix W

and a vector x, we define the (semi)norm

|x|W =
√
〈Wx,x〉.

Proposition 1 The following stability properties of the matrices A and B hold:
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(i) Continuity of A:

|〈Au,v〉| ≤ |u|A|v|A, u,v ∈ Rn.

(ii) Continuity of B:

|〈Bv,q〉| ≤ |v|M|q|L, v ∈ Rn, q ∈ Rm.

(iii) The matrix A is positive definite on null(B) and

〈Au,u〉 ≥ α
(
|u|2A + |u|2M

)
, u ∈ null(B),

with a stability constant α which is independent of the mesh size.

(iv) The matrix B satisfies the discrete inf-sup condition

inf
06=q∈Rm

sup
06=v∈null(A)

〈Bv,q〉
|v|M|q|L

≥ 1.

Proof The first two properties follow directly from the Cauchy-Schwarz inequal-

ity.

To show (iii), we first recall the discrete Poincaré–Friedrichs inequality from [55,

Theorem 4.7]. Let u ∈ null(B) and let uh be the associated finite element function.

Then, we have ∫
Ω

|∇×uh|2 dx≥ β

∫
Ω

|uh|2 dx,

where β > 0 is independent of the mesh size.

24



Consequently, we bound 〈Au,u〉 as follows

〈Au,u〉= 1
2
〈Au,u〉+ 1

2
〈Au,u〉

=
1
2
|u|2A +

1
2

∫
Ω

µ
−1
r |∇×uh|2 dx

≥ 1
2
|u|2A +

1
2µmax

∫
Ω

|∇×uh|2 dx

≥ 1
2
|u|2A +

β

2µmax

∫
Ω

|uh|2 dx

≥ 1
2
|u|2A +

β

2µmaxεmax

∫
Ω

εr|uh|2 dx

=
1
2
|u|2A +

β

2µmaxεmax
|u|2M,

≥min
(

1
2
,

β

2µmaxεmax

)
(|u|2A + |u|2M) = α(|u|2A + |u|2M),

where α = min
(

1
2 ,

β

2µmaxεmax

)
. Note that, since 〈Au,u〉 = |u|2A, we must have 0 <

α < 1, and then also

|u|2A ≥ ᾱ|u|2M, u ∈ null(B), (2.10)

with

ᾱ =
α

1−α
. (2.11)

To prove (iv), let 0 6= qh ∈ Sh and v be the coefficient vector of vh = ∇qh in the

basis 〈ψi〉ni=1. Then it follows that v ∈ null(A) and

sup
06=v∈null(A)

〈Bv,q〉
|v|M|q|L

= sup
06=v∈null(A)

∫
Ω

εrvh ·∇qh dx
(
∫

Ω
εrvh ·vhdx) 1

2 |q|L

≥
∫

Ω
εr∇qh ·∇qh dx

(
∫

Ω
εr∇qh ·∇qhdx) 1

2 |q|L
=
|q|2L
|q|2L

= 1,

which shows (iv).

The properties stated in Proposition 1 and the theory of mixed finite element

methods [15, Chapter 2] ensure that the saddle point system (2.2) is invertible
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(provided that the mesh size is sufficiently small).

2.3 The solver
To iteratively solve the saddle point system (2.2) we use MINRES as an outer

solver. This is discussed in Section 2.3.1. To perform each outer iteration, we apply

an inner solver based on [56] and presented in Section 2.3.2. In Section 2.3.3,

we outline the complete solution procedure, and provide details on our scalable

parallel implementation in Section 2.3.4.

2.3.1 The outer solver

Following the analysis for constant coefficients in [43], we propose the following

block diagonal preconditioner to iteratively solve (2.2):

PM,L =

(
PM 0

0 L

)
, (2.12)

where

PM = A+ γM (2.13)

and

γ = 1− k2. (2.14)

We have the following result:

Theorem 2 The preconditioned matrix P−1
M,LK has two eigenvalues λ+ = 1 and

λ−=− 1
1−k2 , each with algebraic multiplicity m. The remaining eigenvalues satisfy

the bound
ᾱ− k2

ᾱ +1− k2 < λ < 1, (2.15)

where ᾱ is the constant in (2.11).

Proof The proof follows along the lines of [43, Theorem 5.2]. First, we verify that

the following relations hold:

(1) Rn = null(A)⊕null(B).
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(2) For any u ∈ null(A), there is a unique q ∈ Rm such that u =Cq.

(3) BC = L.

(4) MC = BT .

(5) 〈Mu,Cq〉= 〈Bu,q〉 for u ∈ Rn and q ∈ Rm.

(6) 〈MCp,Cq〉= 〈Lp,q〉 for p,q ∈ Rm.

(7) Let u ∈ null(A) with u =Cp. Then |u|M = |p|L.

(8) For any u ∈ null(A), we have 〈BT L−1Bu,u〉= |u|M.

The relations (1) and (2) follow from the discrete Helmholtz decomposition [73,

Section 7.2.1].

To show (3), we have, for 1≤ i, j ≤ m,

(BC)i, j =
n

∑
k=1

Bi,kCk, j =
∫

Ω

(
n

∑
k=1

Ck, jεrψk

)
·∇φi dx =

∫
Ω

εr∇φ j ·∇φi dx = Li, j.

Relation (4) follows similarly. Relation (5) follows from relation (4).

To show (6), if ∇ph and ∇qh are the finite element functions associated with

the vectors Cp and Cq, then we have

〈MCp,Cq〉=
∫

Ω

εr∇ph ·∇qh dx = 〈Lp,q〉.

Relation (7) follows from (6).

Finally, to see (8), from relation (2), we have u = Cp for a vector p ∈ Rm.

Using relations (3) and (7), we obtain

〈BT L−1Bu,u〉= 〈L−1Bu,Bu〉= 〈L−1BCp,BCp〉= 〈Lp, p〉= |p|L = |u|M.

An orthogonality property with respect to the inner product 〈M·, ·〉 is obtained

as follows. Let uA ∈ null(A) and uB ∈ null(B). Setting uA =Cq, we have

〈MuA,uB〉= 〈MuB,Cq〉= 〈BuB,q〉= 0, (2.16)
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by relation (5).

Second, the eigenvalue problem for P−1
M,LK now is(

A− k2M BT

B 0

)(
v

q

)
= λ

(
A+(1− k2)M 0

0 L

)(
v

q

)
.

Setting q = 1
λ

L−1Bv and multiplying the resulting equation for v by λ , we have

[
(λ 2−λ )A+((1− k2)λ 2 + k2

λ )M
]

v = BT L−1Bv.

Suppose v = vA +vB, where vA ∈ null(A) and vB ∈ null(B), by relation (1). We

then have

(λ 2−λ )AvB +((1− k2)λ 2 + k2
λ )M(vA + vB) = BT L−1BvA.

There are at least m linearly independent vectors v that satisfy vA 6= 0. For m

such vectors, taking the inner product with vA and noting that by relation (8)

〈BT L−1BuA,uA〉= |u|2M and that by (2.16) we have 〈M(vA+vB),vA〉= 〈MvA,vA〉=
|vA|2M, we get

(1− k2)λ 2|vA|2M + k2
λ |vA|2M = |vA|2M,

from which λ+ and λ− are obtained as solutions of the quadratic equation

(1− k2)λ 2 + k2
λ = 1.

For the remaining eigenvectors we must have vB 6= 0. Then, we take the inner

product with vB and use that 〈BT L−1BvA,vB〉 = 〈L−1BvA,BvB〉 = 0 and by (2.16)

〈M(vA + vB),vB〉= 〈MvB,vB〉= |vB|2M. It follows that

(λ −λ
2)|vB|2A =

(
(1− k2)λ 2 + k2

λ
)
|vB|2M.

Recall that we assume k� 1 and λ 6= 0. Therefore, we must have λ < 1. Apply-

ing (2.10), we obtain (2.15).

In Figure 2.2, we show the eigenvalues of K and P−1
M,LK . We use the lowest

order Nédélec elements on Ω= (−1,1)2 and compute the eigenvalues on a uniform
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triangular mesh of moderate size, for k = 0. Figure 2.2 illustrates the effect of

preconditioning, as described in Theorem 2: the preconditioned eigenvalues are

strongly clustered, whereas the original ones become unbounded with the mesh

size.
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Figure 2.2: Eigenvalues of (a) the matrix K and (b) the preconditioned ma-
trix P−1

M,LK , for k = 0. For the non-preconditioned matrix K , the
m = 225 negative eigenvalues range in value from -2.80 to -0.20 and
the remaining n = 736 positive eigenvalues range from 0.19 to 764.89.
On the other hand, most of the eigenvalues of the preconditioned matrix
P−1

M,LK are extremely close or equal to either −1 or 1.

2.3.2 The inner solver

The overall computational cost of using PM,L depends on the ability to efficiently

solve linear systems whose associated matrices are PM in (2.13) and L in (2.9).

The linear system L arises from a standard scalar elliptic problem, for which

many efficient solution methods exist. On the other hand, efficiently inverting

PM is the computational bottleneck in the inner iteration. Recently, Hiptmair and

Xu proposed effective auxiliary space preconditioners for linear systems arising

from conforming finite element discretizations of H(curl)-elliptic variational prob-

lems [56], based on fictitious spaces as developed in [45, 96]. The preconditioner

is:

P−1
V = diag(PM)−1 +P(L̄+ γQ̄)−1PT + γ

−1C(L−1)CT , (2.17)
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with γ as in (2.14). The matrix L̄= diag(L,L,L) is the εr-weighted vector Laplacian

on S3
h, Q̄ = diag(Q,Q,Q) is the εr-weighted vector mass matrix on S3

h, C is the null-

space matrix in (2.8), and P is the matrix representation of the nodal interpolation

operator Πcurl
h : S3

h → Ch. In the lowest order case, the operator Πcurl
h is based on

path integrals along edges; for a finite element function wh ∈ S3
h it is given by

Π
curl
h wh = ∑

j

(∫
e j

wh ·ds
)

ψ j,

where e j is the interior edge associated with the basis function ψ j. We have P =

[P(1),P(2),P(3)], where P ∈ Rn×3m and P(k) (k = 1,2,3) are matrices in Rn×m. The

entries of P(k) are given by

P(k)
i, j =

{
0.5di t

(k)
i if node j is the head/tail of edge i,

0 otherwise,

where t(k)i is the k-th component of the unit tangential vector on edge i, and di is

the length of edge i.

In the constant coefficient case, it was shown in [56, Theorem 7.1] that for 0 <

γ ≤ 1, the spectral condition number κ2(P
−1
V PM) is independent of the mesh size.

Even though there seems to be no theoretical analysis available for the variable

coefficient case, the preconditioner PV was experimentally shown to be effective

in this case as well [56].

2.3.3 Solution algorithm

We run preconditioned MINRES as the outer solver for the linear system (2.2).

The preconditioner is the block diagonal matrix PM,L, defined in (2.12). For each

outer iteration, we need to solve a linear system of the form(
PM 0

0 L

)(
v

q

)
=

(
c

d

)
. (2.18)
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Two Krylov subspace solvers are applied as the inner iterations. The linear system

associated with the (1,1) block,

PMv = c, (2.19)

is solved using CG with the preconditioner PV , which is defined in (2.17). In each

CG iteration, we need to solve a linear system of the form

PV w = r. (2.20)

Following (2.17), this can be done by solving the two linear systems

(L̄+ γQ̄)y = s, (2.21a)

L̄z = t, (2.21b)

where s = PT r and t =CT r. We run one AMG V-cycle to compute y and z, and we

set

w = diag(PM)−1r+Py+ γ
−1Cz. (2.22)

The linear system associated with the (2,2) block of (2.18),

Lq = d, (2.23)

is solved using CG with an AMG preconditioner.

Our approach is summarized in Algorithm 1. The inner iteration for (2.19) is

initialized in line 4 and laid out in lines 5–10, where CG iterations preconditioned

with PV are used. The inner iteration for (2.23) is initialized in line 11 and pro-

vided in lines 12–15, where a CG scheme with an AMG preconditioner is used.

Once the two iterative solvers converge, we update the approximated solution x for

the next outer iterate in line 16. The stopping criteria are discussed in Section 2.4.

2.3.4 Scalable parallel implementation

We solve the Maxwell equations using the lowest order discretization with Nédélec

elements of the first family and linear nodal elements. The degrees of freedom
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Algorithm 1 Solve K x = b in (2.2)
1: initialize MINRES for (2.2)
2: while MINRES not converged do
3: set c, d to be the right-hand side for the current inner iteration; see (2.18)
4: initialize CG for (2.19)
5: while CG not converged do
6: run one AMG V-cycle to approximate (L̄+ γQ̄)−1; update y in (2.21a)
7: run one AMG V-cycle to approximate L−1; update z in (2.21b)
8: update w in (2.20), using (2.22)
9: update v in (2.19)

10: end while
11: initialize CG for (2.23)
12: while CG not converged do
13: apply AMG preconditioner to approximate L
14: update q in (2.23)
15: end while
16: update x in (2.2)
17: end while

in this discretization are associated with vertices and edges of the tetrahedra; cf.

Figure 2.1. To distribute data on parallel computers, a standard domain partitioning

approach is used, see, e.g., [65]. To illustrate the procedure for accomplishing load-

balanced data distribution, we provide a few details on the steps that are taken:

(1) Meshing. We use our own mesher to generate structured meshes, or use Tet-

Gen [91] for unstructured and locally refined meshes.

(2) Element partitioning. Given the mesh connectivity graph, we use METIS [62]

to partition the elements into non-overlapping subdomains. There are two pri-

mary metrics in judging the quality of a partition: the subdomain size and the

number of edge cuts in the connectivity graph. Since our meshes are comprised

of tetrahedra only, each subdomain should contain a roughly equal number of

elements so that the resulting domain partition is load-balanced across all pro-

cessors. The number of edge cuts indicates the interprocessor communication

required by the parallel solver, which is minimized in METIS [63].
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(3) Element re-numbering. We re-number all elements according to the rank of

the processor they belong to. Elements stored on a processor with a lower rank

have smaller indices. Elements stored on the same processor have contiguous

indices.

(4) Distribution of degrees of freedom. Based on the partitioning of elements,

we distribute all degrees of freedom across all processors. We do so by looping

over all elements sequentially, starting from the ones stored on the processor

with the lowest rank.

(5) Re-numbering of degrees of freedom. We re-number all degrees of freedom

such that the numbering is contiguous on the processor that owns them. The

reordering is done sequentially, starting with the processor with the lowest rank

in the communicator.

Once a partition is obtained, we assemble all system matrices and vectors in par-

allel. We use PETSc [7], BoomerAMG [51] and Hypre [38] in our own precon-

ditioned iterative solution code. The way we order the degrees of freedom and

assign them to processors is consistent with the sparse matrix partitioning scheme

employed in PETSc.

Example Figure 2.3 gives an example of how the mesh partitioning is done. The

numbers bounded by squares are indices of elements; the circled numbers are in-

dices of vertices; and the rest are indices of edges. Figure 2.3(a) shows the original

numbering of elements, vertices, and edges as the output of a mesher. Suppose that

we partition the mesh across two processors. Based on the two metrics described

in step 2 and the connectivity graph provided to METIS, it outputs the partitioning.

For this example we get that processor 1 owns elements 1, 2, 6, 8 and processor 2

owns elements 3–5, 7. We now as per step 3 reorder the elements. The new indices

of elements 1–8 become 1, 2, 7, 6, 5, 3, 8, 4 as shown in Figure 2.3(b). Next we

consider how to distribute the degrees of freedom associated with the vertices and

edges across the two processors. According to step 4, we loop over all elements

starting from those stored on processor 1, whose new indices are 1–4. For element

1, vertices 1, 4, 9 and edges 1, 2, 3 are associated with it. They have not been

assigned to any processor previously, so they belong to processor 1. Element 2 has
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vertices 4, 5, 9 and edges 2, 4, 5. Vertices 4, 9 and edge 2 have been allocated to

processor 1, so we only need to store vertex 5 and edges 4, 5 to processor 1. We

continue to do this until we have looped over all elements. The degrees of freedom

associated with the indices with underlines in Figure 2.3(c) are stored on processor

1. The remaining ones are stored on processor 2. Once the partition is obtained,

we perform the reordering procedure as in step 5. We start with elements stored on

processor 1 from element 1. Now the new indices of vertices 1, 4, 9 become 1, 2,

3 and the indices of edges 1, 2, 3 remain the same. For element 2, vertices 4, 5,

9 are associated with it. Since vertices 4 and 9 have been re-numbered in element

1, we only need to re-number vertex 5, which now becomes 4. Edge 2 has been

re-numbered in element 1. We only need to renumber edges 4 and 5. They have

the same indices in the re-ordering procedure. Once we loop over all elements,

we have the reordered mesh as shown in Figure 2.3(d). In our implementation,

steps 4–5 are combined together for better efficiency.

2.4 Numerical results
This section is devoted to assessing the numerical performance and parallel scala-

bility of our implementation on different test cases. In all experiments, the relative

residual of the outer iteration is set to 1e-6 and the relative residual of the inner it-

eration is set to 1e-8, unless explicitly specified. The code is executed on a cluster

with up to 12 nodes. Each node has eight 2.6GHz Intel processors and 16G RAM.

The following notation is used to record our results: np denotes the number

of processors of the run, its is the number of outer MINRES iterations, itsi1 is the

number of inner CG iterations for solving PM, itsi2 is the number of CG iterations

for solving L, while ts and ta denote the average times needed for the solve phase

and the assemble phase in seconds, respectively. The parameter tAMG is the time

spent in seconds in one BoomerAMG V-cycle for solving L.

2.4.1 Example 1: structured mesh

The first example is a simple domain with a structured mesh. The domain is a

cube, Ω = (−1,1)3. We test both homogeneous and inhomogeneous coefficient

cases. In the homogeneous case, we set µr = εr = 1. In the variable coefficient
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Figure 2.3: Mesh partitioning example. (a) Original mesh after step 1. The
thick line (in all four figures) indicates the partitioning of elements af-
ter step 2. (b) Reordering of elements after step 3. (c) Distribution of
degrees of freedom after step 4. (d) Reordered mesh after step 5.
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case, we assume that there are eight subdomains in the cube as shown in Figure 2.4

and each subdomain has piecewise constant coefficients.

The coefficients are

µr = εr =



1a if x < 0 and y < 0 and z < 0,

2a if x > 0 and y < 0 and z < 0,

3a if x < 0 and y > 0 and z < 0,

4a if x > 0 and y > 0 and z < 0,

5a if x < 0 and y < 0 and z > 0,

6a if x > 0 and y < 0 and z > 0,

7a if x < 0 and y > 0 and z > 0,

8a otherwise,

(2.24)

where a is a constant. We set the right-hand side so that the solution of (2.1) is

given by

u(x,y,z) =

u1(x,y,z)

u2(x,y,z)

u3(x,y,z)

=

(1− y2)(1− z2)

(1− x2)(1− z2)

(1− x2)(1− y2)

 (2.25)

and

p(x,y,z) = (1− x2)(1− y2)(1− z2). (2.26)

In this example, the homogeneous boundary conditions in (2.1) are satisfied.

Uniformly refined meshes are constructed as shown in Figure 2.5(a). The num-

ber of elements and matrix sizes are given in Table 2.1. Figure 2.5(b) shows how

grid C1 is partitioned across 3 processors. Elements with the same color are stored

on the same processor. Elements with the same color are clustered together, which

means the communication cost is minimal. Table 2.2 shows the local numbers of

elements and degrees of freedom on each processor for grid C1. The number of

degrees of freedom on each processor is roughly the same, which indicates the load

is balanced.

In our first experiment, material coefficients are homogeneous. Scalability re-

sults are shown in Table 2.3 and results with different values of k are shown in

Table 2.4. To test scalability, we refine the mesh and increase the number of pro-

cessors in a proportional manner, so that the problem size per processor remains
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Figure 2.4: Example 1. Distribution of material coefficients.

(a) (b)

Figure 2.5: Example 1. (a) Structured mesh. (b) grid C1 partitioned on 3
processors.

constant. Full scalability would then imply that the computation time also remains

constant. We observe in Table 2.3 that when the mesh is refined, the numbers of

outer and inner iterations stay constant, which demonstrates the scalability of our

method. The time spent in the assembly also scales very well. The time spent in the
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grid Nel n+m
C1 7,146,096 9,393,931
C2 14,436,624 19,034,163
C3 29,478,000 38,958,219

Table 2.1: Example 1. Number of elements (Nel) and the size of the linear
systems (n+m) for grids C1–C3.

processor local elements local DOFs
1 2,359,736 3,119,317
2 2,424,224 3,199,406
3 2,362,136 3,075,208

Table 2.2: Example 1. Partitioning of grid C1.

solve increases slightly. This is because each BoomerAMG V-cycle seems to take

more time when the mesh is refined. For different values of k, we have observed

very similar computation times as in Table 2.3. Table 2.4 shows that the iteration

counts stay the same for the values of k that we have selected. This demonstrates

the scalability of our solver.

Notice that the highest wave number in the tables, k = 1
4 , corresponds to fre-

quency ω = 7.9e7. The wave length is then 8π , which is still considerably larger

than our domain. Thus, our discretization well resolves the length scale of the

time-harmonic waves.

np grid its itsi1 itsi2 ts(sec) ta(sec) tAMG(sec)
3 C1 5 34 7 1,473.58 44.83 16.03
6 C2 5 35 9 1,634.17 45.26 20.55

12 C3 5 34 9 1,879.06 48.93 25.39

Table 2.3: Example 1. Iteration counts and computation times for various
grids, k = 0.

Setting the outer tolerance as 1e-6, we test our solver with different inner tol-

erances. The results are given in Table 2.5. We see that when the inner tolerance

is looser, fewer inner iterations are required, however if the tolerance is too loose,

more outer iterations are required. For this example, 1e-6 is the optimal inner
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k = 0 k = 1
8 k = 1

4
np grid its itsi1 itsi2 its itsi1 itsi2 its itsi1 itsi2

3 C1 5 34 7 5 34 7 5 34 7
6 C2 5 35 9 5 35 9 5 35 9

12 C3 5 34 9 5 34 9 5 34 9

Table 2.4: Example 1. Iteration counts for various values of k.

tolerance.

In the remaining examples, we stick to 1e-6 and 1e-8 as outer and inner tol-

erances respectively. We select a tight inner tolerance since one of our goals is to

investigate the speed of convergence of outer iterations.

inner tol its itsi1 itsi2 ts(sec)
1e-10 5 43 9 557.08
1e-9 5 39 8 505.30
1e-8 5 35 8 440.92
1e-7 5 30 7 383.34
1e-6 6 21 7 375.91
1e-5 8 20 6 409.57
1e-4 21 16 5 794.15

Table 2.5: Example 1. Iteration counts and computation times for grid C1 on
16 processors for inexact inner iterations, k = 0.

Next we test the variable coefficient case. Table 2.6 shows the iteration counts

for different variable coefficient cases. Note that the larger a is, the more variant the

coefficients are in different regions. As expected, the eigenvalue bound depends on

the coefficients. Table 2.6 shows that as a increases, the material coefficients vary

more dramatically, the eigenvalue bounds in Theorem 2 get looser and the iteration

counts increase. In the variable coefficient case, both the inner and outer iterations

are not sensitive to changes of the mesh size, which demonstrates that our method

is scalable in the variable coefficient case.
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a = 1 a = 10 a = 20
np grid its itsi1 itsi2 its itsi1 itsi2 its itsi1 itsi2

3 C1 10 81 8 58 147 8 107 135 8
6 C2 10 87 10 59 154 10 105 145 10

12 C3 10 87 11 58 178 10 107 187 10

Table 2.6: Example 1. Iteration counts for various values of a, k = 0.

2.4.2 Example 2: unstructured mesh

In this example, we test the problem in a complicated domain with a quasi-uniform

mesh. The domain is a complicated 3D gear, which is bounded in (0.025,0.975)×
(0.025,0.975)× (0.025,0.15292). We test two different cases: constant and vari-

able coefficient cases. In the constant coefficient test, we set µr = εr = 1. In the

variable coefficient case, we assume that there are four subdomains in the gear as

shown in Figure 2.6 and each subdomain has piecewise constant coefficients. The

coefficients are

µr = εr =


1a if x < 0.5 and y < 0.5,

2a if x > 0.5 and y < 0.5,

3a if x < 0.5 and y > 0.5,

4a otherwise,

where a is a constant. In both tests, we set the right-hand side function so that

the exact solution is given by (2.25) and (2.26), and enforce the inhomogeneous

boundary conditions in a standard way.

The domain is meshed with quasi-uniform tetrahedra as shown in Figure 2.7(a).

The number of elements and matrix sizes are given in Table 2.7. Figure 2.7(b)

shows how to partition G1 across 4 processors.

First, we test our approach with constant coefficients. The scalability results

are shown in Table 2.8. Results with different values of k are shown in Table 2.9.

We observe that when the mesh is refined, both the inner and outer iteration counts

stay constant. Again, the time spent in the assembly scales very well. The time

spent in the solve is increasing slightly, which can be explained by the increase in

tAMG. We note that the computational times for different values of k are similar to
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Figure 2.6: Example 2. Distribution of material coefficients.

(a) (b)

Figure 2.7: Example 2. (a) Quasi-uniform mesh on the gear. (b) grid G1
partitioned on 4 processors.

those reported for k = 0 in Table 2.8. Table 2.9 shows that the iteration counts do

not change for different k values.

Next we test the variable coefficient example. Table 2.10 shows the results for

different variable coefficient cases. Again, we observe that when the variation of
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grid Nel n+m
G1 723,594 894,615
G2 1,446,403 1,810,413
G3 2,889,085 3,650,047
G4 5,778,001 7,354,886

Table 2.7: Example 2. Number of elements (Nel) and the size of the linear
systems (n+m) for grids G1–G4.

np grid its itsi1 itsi2 ts(sec) ta(sec) tAMG(sec)
4 G1 4 58 8 146.15 5.86 0.73
8 G2 4 61 9 345.32 8.07 1.23

16 G3 4 61 9 399.49 7.92 1.66
32 G4 4 64 10 467.57 8.17 2.12

Table 2.8: Example 2. Iteration counts and computation times for various
grids, k = 0.

k = 0 k = 1
8 k = 1

4
np grid its itsi1 itsi2 its itsi1 itsi2 its itsi1 itsi2

4 G1 4 58 8 4 58 8 4 58 8
8 G2 4 61 9 4 61 9 4 61 9

16 G3 4 61 9 4 61 9 4 61 9
32 G4 4 64 10 4 64 10 4 64 10

Table 2.9: Example 2. Iteration counts for various values of k.

the material coefficients increases, the iteration counts increase. We also observe

that both the inner and outer iterations are not sensitive to changes of the mesh size

for the example with unstructured meshes.

2.4.3 Example 3: locally refined mesh

The last example is the Fichera corner problem. We are interested in testing our

solver on a series of locally refined meshes. The domain Ω = (−1,1)3\[0,1)×
[0,−1)× [0,1) is a cube with a missing corner. We also test both homogeneous

and inhomogeneous coefficients. In the homogeneous coefficient case, we set µr =
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a = 1 a = 10 a = 20
np grid its itsi1 itsi2 its itsi1 itsi2 its itsi1 itsi2

4 G1 5 159 8 21 294 8 35 250 8
8 G2 5 167 9 20 328 9 35 296 9

16 G3 5 177 9 20 389 9 34 342 9
32 G4 5 185 10 20 435 10 34 404 10

Table 2.10: Example 2. Iteration counts for various values of a, k = 0.

εr = 1. In the inhomogeneous case, we assume that there are seven subdomains

in the domain as shown in Figure 2.8 and each subdomain has piecewise constant

coefficients. The coefficients are the same as (2.24). In both tests, we set the right-

hand side function so that the exact solution is given by (2.25) and (2.26), and

enforce the inhomogeneous boundary conditions in a standard way.

Figure 2.8: Example 3. Distribution of material coefficients.

The domain is discretized with locally refined meshes towards the corner. Fig-

ure 2.9 shows an example of a sequence of locally refined meshes. The number of

elements and matrix sizes are given in Table 2.11. Figure 2.10 shows the partition-

ing of F1 on 4 processors.

First, we assume that the material coefficients are homogeneous. The scalabil-
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(a) (b) (c)

Figure 2.9: Example 3. A sequence of locally refined meshes.

Figure 2.10: Example 3. Illustration of grid F1 partitioned on 4 processors.

grid Nel n+m
F1 781,614 957,277
F2 1,543,937 1,917,649
F3 3,053,426 3,832,895
F4 6,072,325 7,689,953

Table 2.11: Example 3. Number of elements (Nel) and the size of the linear
systems (n+m) for grids F1–F4.
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ity results are shown in Table 2.12. The results with different values of k are shown

in Table 2.13. On the locally refined meshes, we also observe that when the mesh

is refined, both the inner and outer solvers are scalable. Again, the time spent in the

assembly scales very well. The time spent in the solve is increasing, which is due

to the increasing cost of BoomerAMG V-cycles. Table 2.13 shows that the iteration

counts do not change for different wave numbers. As in the previous examples, in

our experiments the computational times are also roughly the same as in Table 2.12

for different values of k.

np grid its itsi1 itsi2 ts(sec) ta(sec) tAMG(sec)
4 F1 5 59 8 204.82 6.54 0.88
8 F2 5 56 9 213.16 6.39 1.17

16 F3 5 58 10 253.81 6.29 1.65
32 F4 5 62 10 314.88 6.38 1.99

Table 2.12: Example 3. Iteration counts and computation times for various
grids, k = 0.

k = 0 k = 1
8 k = 1

4
np grid its itsi1 itsi2 its itsi1 itsi2 its itsi1 itsi2

4 F1 5 59 8 5 59 8 5 59 8
8 F2 5 56 9 5 56 9 5 56 9

16 F3 5 58 10 5 58 10 5 58 10
32 F4 5 62 10 5 62 10 4 63 10

Table 2.13: Example 3. Iteration counts for various values of k.

Next, we test the variable coefficient case. Table 2.14 shows the results for

different variable coefficient cases. Again, we observe that when the coefficients

vary more, the iteration counts increase, but the scalability is very good.
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a = 1 a = 10 a = 20
np grid its itsi1 itsi2 its itsi1 itsi2 its itsi1 itsi2

4 F1 7 85 9 40 157 9 74 134 9
8 F2 7 92 9 40 178 9 73 157 9

16 F3 7 100 10 39 192 10 72 167 10
32 F4 7 107 10 39 216 10 71 206 10

Table 2.14: Example 3. Iteration counts for various values of a, k = 0.
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Chapter 3

A new mixed finite element
method for the incompressible
MHD equations

In this chapter1 we design and numerically test a new finite element discretization

for the steady-state incompressible MHD equations that model electrically con-

ducting fluids in the presence of a magnetic field. We use divergence-confirming

elements for the approximation of the velocity field and curl-confirming elements

for the magnetic field. This discretization yields exactly divergence-free velocity

approximations. Here, we recapitulate the theoretical properties of our method.

This chapter is structured as follows. We start by discussing related work in

Section 3.1. Section 3.2 is devoted to the finite element discretization. In Sec-

tion 3.3 we present a series of numerical experiments validating the theoretical

results.
1 The notation in this chapter is slightly different than the notation in Chapter 2. The variables u

and p are now used to denote the velocity field and pressure field in the MHD system, respectively.
The forms A, B, M are also different than in Chapter 2, but the meaning should be obvious from the
context.
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3.1 Background and related work
We consider a standard form of the incompressible MHD equations as derived

in (1.15); see also [3, Section 2] and [41, 42, 49]. That is, we neglect phenomena

involving high frequency as well as the convection current, and consider a non-

polarizable, non-magnetizable and homogeneous medium. In addition, to make the

curl-curl operator arising in the Maxwell equations amenable to discretization with

Nédélec elements, we use the mixed formulation proposed in [89]. The governing

equations are then of the form

−ν ∆u+(u ·∇)u+∇p−κ (∇×b)×b = f in Ω, (3.1a)

κνm ∇× (∇×b)+∇r−κ ∇× (u×b) = g in Ω, (3.1b)

∇ ·u = 0 in Ω, (3.1c)

∇ ·b = 0 in Ω. (3.1d)

Here, u is the velocity, b the magnetic field, p the hydrodynamic pressure, and r

is a Lagrange multiplier associated with the divergence constraint on the magnetic

field b. The functions f and g represent external force terms.

We consider the following homogeneous Dirichlet boundary conditions:

u = 0 on ∂Ω, (3.2a)

n×b = 0 on ∂Ω, (3.2b)

r = 0 on ∂Ω, (3.2c)

with n being the unit outward normal on ∂Ω. By taking the divergence of the

magnetostatic equation (3.1b), we obtain the Poisson problem

∆r = ∇ ·g in Ω, r = 0 on ∂Ω. (3.3)

Since g is typically divergence-free in physical applications, the multiplier r is

typically zero and its primary purpose is to ensure stability; see [32, Section 3].

Various finite element methods for discretizing linear and nonlinear MHD sys-

tems can be found in the literature. The magnetic field is often approximated by
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standard nodal (i.e., H1-conforming) finite elements [3, 41, 47–49]. However, since

the strongest magnetic singularities have regularity below H1 straightforwardly ap-

plied nodal elements may fail to resolve them in non-convex polyhedral domains;

see [26] and the references therein. This is illustrated in Figure 3.1, for the strongest

magnetic singularity in an L-shaped domain in two dimensions. A number of reme-

dies have been proposed for electromagnetic problems, for example the weighted

regularization approach in [27] or the approach in [14], whereby the divergence of

the electric field is stabilized in H−α with 1
2 < α < 1. In [50], weighted regular-

ization has been applied to a full incompressible MHD system.
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(a) (b)

Figure 3.1: Failure of H1-conforming elements. (a) Contours of the first com-
ponent of the strongest magnetic singularity in an L-shaped domain; (b)
nodal approximation with piecewise linear elements. It is evident from
the plots that, on a sufficiently fine mesh, nodal elements cannot cor-
rectly resolve the magnetic field.

In the mixed formulation of [89] the above mentioned difficulties associated

with nodal elements are seamlessly avoided without the need for stabilizing the

divergence. This approach amounts to introducing the Lagrange multiplier r, and

yields the PDE system (3.1). As a result, it is possible to use curl-conforming

Nédélec elements for approximating the magnetic field. This makes this approach
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feasible in situations of highly singular magnetic fields [55, 73, 76]. In the con-

text of incompressible magnetohydrodynamics, a related mixed approach for the

discretization of the magnetic unknowns was presented in [34].

We are interested in discretizations for incompressible MHD problems that

are based on DG methods; see, e.g., the surveys [20, 21, 31] and the references

therein. In [48], an interior penalty technique is applied to enforce continuity of

the magnetic variable across domains with different electromagnetic properties,

while nodal elements are employed in the interior. A full DG method is proposed

in [58] for a linearized variant of the system (3.1), whereby all the variables are

approximated in discontinuous finite element spaces, based on existing discretiza-

tions for the Oseen and Maxwell equations [22, 23, 57]. However, this approach

requires a large number of degrees of freedom. Furthermore, a straightforward

extension to the nonlinear setting in a locally conservative fashion would require a

post-processing procedure for smoothing the DG velocity approximations through-

out the nonlinear iteration [23].

In this chapter, we design a new finite element discretization, in an attempt to

overcome the above mentioned difficulties. Instead of discontinuous elements for

all unknowns, we use divergence-conforming BDM elements [15, 24] for the ap-

proximation of the velocity field, and curl-conforming Nédélec elements [76] for

the magnetic field, thereby substantially reducing the total number of the coupled

degrees of freedom. The H1-continuity of the velocity field is again enforced by

a DG technique. A central feature of this discretization is that it yields exactly

divergence-free velocity approximations, guaranteeing stability of the linearized

system within each Picard iteration, without any other modifications. We note that

divergence-conforming discretizations were originally proposed and analyzed for

the incompressible Navier-Stokes equations in [24]. For the magnetic approxima-

tion we have a discrete version of the desirable property (3.3), in contrast to the

full DG method presented in [58]. Our method correctly captures the strongest

magnetic singularities in non-convex domains.

We have nearly optimal a-priori error estimates for the two-dimensional case,

and slightly suboptimal ones for the three-dimensional case. A full description

of our theoretical results can be found in [44, 95]. Here we recapitulate the main

results and present an extensive set of numerical tests. The numerical results clearly
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indicate optimal convergence rates in two and three dimensions.

3.2 Mixed finite element discretization
In this section, we introduce a mixed finite element method that employs divergence-

conforming elements for the approximation of the velocity field and curl-conforming

elements for the magnetic field. The H1-continuity of the velocity is enforced by a

DG technique.

3.2.1 Variational formulation

We assume Ω is a bounded simply-connected Lipschitz polytope in Rd (d = 2 or 3),

with a connected boundary ∂Ω. Recall the spaces C and S defined in (2.3). Upon

setting

V = H1
0 (Ω)d = {u ∈ H1(Ω)d : u = 0 on ∂Ω},

Q = L2
0(Ω) = { p ∈ L2(Ω) : (p ,1)Ω = 0},

the variational formulation of the incompressible MHD system (3.1)–(3.2) amounts

to finding (u,b, p,r) ∈ V×C×Q×S such that

A(u,v)+O(u,u,v)+C(b,v,b)+B(v, p) = (f,v)Ω, (3.4a)

M(b,c)−C(b,u,c)+D(c,r) = (g,c)Ω, (3.4b)

B(u,q) = 0, (3.4c)

D(b,s) = 0, (3.4d)

for all (v,c,q,s) ∈ V×C×Q×S. The variational forms are given by

A(u,v) =
∫

Ω

ν ∇u : ∇vdx, O(w,u,v) =
∫

Ω

(w ·∇)u ·vdx,

M(b,c) =
∫

Ω

κνm(∇×b) · (∇× c)dx, C(d,v,b) =
∫

Ω

κ (v×d) · (∇×b)dx,

B(u,q) =−
∫

Ω

(∇ ·u)qdx, D(b,s) =
∫

Ω

b ·∇sdx.
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Furthermore, we define the norm of the source terms by

|||(f,g)|||=
(
‖f‖2

L2(Ω)+‖g‖
2
L2(Ω)

) 1
2
.

Finally, we introduce the parameters

ν̄ = min{ν ,κνm},

κ̄ = max{1,κ}.

We assume that there is a constant c1 > 0 only depending on Ω such that for

small data with

c1
κ̄

ν̄2 |||(f,g)|||< 1, (3.5)

the MHD problem (3.4) has a unique solution (u,b, p,r) in V×C×Q×S; see the

proof in [89, Corollary 2.18 and Remark 2.14].

3.2.2 Mixed discretization

We consider a family of regular and quasi-uniform triangulations Th of mesh size h

that partition the domain Ω into simplices {K} (i.e., triangles for d = 2 and tetra-

hedra for d = 3). We denote by Fh the set of all edges (d = 2) or faces (d = 3) of

Th. In the following, we generically refer to elements in Fh as faces. As usual,

hK denotes the diameter of the element K, and hF is the diameter of the face F .

Finally, we write nK for the unit outward normal vector on the boundary ∂K of K.

The average and jump operators are defined as follows. Let F = ∂K ∩∂K′ be

an interior face shared by K and K′, and let x ∈ F . Let φ be a generic piecewise

smooth function and denote by φ and φ ′ the traces of φ on F taken from within the

interior of K and K′, respectively. Then, we define the mean value {{·}} at x ∈ F as

{{φ}}= 1
2
(φ +φ

′).

Furthermore, for a piecewise smooth vector-valued function φ , we define the jump:

[[φ ]] = φ ⊗nK +φ
′⊗nK′ ,
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where φ⊗n= (φin j)1≤i, j≤d . On a boundary face F = ∂K∩∂Ω, we set accordingly

{{φ}}= φ , [[φ ]] = φ ⊗n.

For k≥ 1, we wish to approximate the solution of (3.1)–(3.2) by finite element

functions (uh,bh, ph,rh) ∈ Vh×Ch×Qh×Sh, where

Vh = {u ∈ H0(div;Ω) : u|K ∈Pk(K)d , K ∈Th },

Qh = { p ∈ L2
0(Ω) : p|K ∈Pk−1(K), K ∈Th },

and the spaces Ch and Sh are defined in (2.5). Here, we denote by H0(div;Ω) the

space

H0(div;Ω) =
{

u ∈ L2(Ω)d : ∇ ·u ∈ L2(Ω), u ·n = 0 on ∂Ω

}
.

The space Vh is the divergence-conforming BDM space (see [15, Section III.3]

for details); it has degrees of freedom specified for the normal components of func-

tions along faces. Figure 3.2 shows the degrees of freedom on the lowest order

BDM elements in 2D and 3D. We notice that the finite element spaces Ch, Qh

and Sh are conforming in C, Q and S, respectively, while Vh is non-conforming

in V.

Now we consider the following finite element method: find (uh,bh, ph,rh) ∈
Vh×Ch×Qh×Sh such that

Ah(uh,v)+Oh(uh,uh,v)+C(bh,v,bh)+B(v, ph) = (f,v)Ω, (3.6a)

M(bh,c)−C(bh,uh,c)+D(c,rh) = (g,c)Ω, (3.6b)

B(uh,q) = 0, (3.6c)

D(bh,s) = 0, (3.6d)

for all (v,c,q,s) ∈ Vh×Ch×Qh×Sh.

The form Ah associated with the Laplacian is chosen as the standard interior
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(a) 2D (b) 3D

Figure 3.2: A graphical illustration of the degrees of freedom for the lowest
order BDM element in 2D and 3D.

penalty form [4, 5]:

Ah(u,v) =
∫

Ω

ν∇hu : ∇hvdx− ∑
F∈Fh

∫
F
{{ν∇hu}} : [[v]]ds

− ∑
F∈Fh

∫
F
{{ν∇hv}} : [[u]]ds+ ∑

F∈Fh

a0ν

hF

∫
F
[[u]] : [[v]]ds.

Here, ∇h is the elementwise gradient operator, and a0 > 0 is the interior penalty

stabilization parameter; it has to be chosen larger than a threshold value which

is independent of h, ν , κ and νm. For the convection form, we take the standard

upwind form [68]:

Oh(w,u,v) = ∑
K∈Th

∫
K
(w ·∇)u ·vdx

+ ∑
K∈Th

∫
∂K\∂Ω

1
2
(w ·nK−|w ·nK |)(ue−u) ·vds

−
∫

∂Ω

1
2
(w ·n−|w ·n|)u ·vds.

Here, ue is the trace of u taken from the exterior of K. The remaining forms are
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the same as in the continuous case. Notice that due to the presence of the upwind

terms the form Oh(w,u,v) is not linear in the first argument.

By choosing the divergence-conforming BDM elements as the approximating

space for the velocity, the method gives exactly divergence-free velocity approx-

imations; cf. [24]. Moreover, the Lagrange multiplier rh vanishes identically for

divergence-free source terms, thereby mimicking the continuous property in (3.3).

Proposition 3 Let (uh, bh, ph, rh) solve (3.6). Then we have:

(i) ∇ ·uh = 0 in Ω.

(ii) the Lagrange multiplier rh is the solution of

(∇rh,∇s)Ω = (g,∇s)Ω ∀ s ∈ Sh.

In particular, if g is solenoidal, then rh ≡ 0.

Proof To prove item (i), we proceed as in [24]. We note that ∇ ·uh has vanishing

mean value on Ω, and is a discontinuous polynomial of degree k− 1. Thus, we

have ∇ · uh ∈ Qh. Equation (3.6c) then implies that ∇ · uh is orthogonal to all

functions q ∈ Qh. Therefore, it is equal to zero.

To prove item (ii), we take c = ∇s in equation (3.6b) (noting that ∇Sh ⊂ Ch)

and obtain

(g,∇s)Ω = M(bh,∇s)−C(bh,uh,∇s)+D(∇s,rh) = D(∇s,rh).

Here, we have used the fact that ∇×∇s = 0. Therefore, rh satisfies

(∇rh,∇s)Ω = (g,∇s)Ω ∀ s ∈ Sh.

Since (g,∇s)Ω = (∇ ·g,s)Ω, we have rh ≡ 0 provided that ∇ ·g = 0.

The solution of (3.6) can be found by employing the following Picard-type

iteration: given (uk−1
h ,bk−1

h ) ∈Vh×Ch, let (uk
h,b

k
h, pk

h,r
k
h) in Vh×Ch×Qh×Sh be
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the solution of the linearized Oseen-type problem

Ah(uk
h,v)+Oh(uk−1

h ,uk
h,v)+C(bk−1

h ,v,bk
h)+B(v, pk

h) = (f,v)Ω, (3.7a)

B(uk
h,q) = 0, (3.7b)

M(bk
h,c)−C(bk−1

h ,uk
h,c)+D(c,rk

h) = (g,c)Ω, (3.7c)

D(bk
h,s) = 0, (3.7d)

for all (v,c,q,s) ∈ Vh×Ch×Qh×Sh.

Theorem 3.2 in [44] guarantees the convergence of the iterates {(uk
h,b

k
h, pk

h,r
k
h)},

for k= 1,2, . . ., to the solution (uh,bh, ph,rh) of (3.6) for any initial guess (u0
h,b

0
h)∈

Vh×Ch with exactly divergence-free u0
h, provided that the small data assumption

in (3.5) is satisfied. However, the scheme is only linearly convergent, as we illus-

trate in Section 3.3.

Remark 4 A more efficient nonlinear solver such as Newton’s method can also be

used for solving (3.6); see, e.g., [40, 42, 49]. When upwinding is not incorporated,

Newton’s method can be straightforwardly applied. However, when upwind terms

are included, adapting the nonlinear iteration to our discretization is more delicate,

since it requires additional linearization of the convection form Oh(w,u,v) in the

first argument. This remains an item for future investigation.

3.2.3 Theoretical results

Our first result is a convergence result. To state it, we suppose the solution (u,b, p,r)

of (3.1)–(3.2) possesses the smoothness

(u, p) ∈ Hσ+1(Ω)d×Hσ (Ω), (3.8a)

(b,∇×b,r) ∈ Hτ(Ω)d×Hτ(Ω)d×Hτ+1(Ω), (3.8b)

for σ ,τ > 1
2 .

Remark 5 The regularity assumption (3.8b) is minimal in the sense that it is satis-

fied by the strongest singularities of the Maxwell operator in polyhedral domains;
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cf. [26, 27]. Similarly, the regularity (3.8a) holds true for the strongest singular-

ities of the Stokes operator in polyhedral domains; see [2, 29]. In view of these

results, we expect (3.8) to be the minimal smoothness of solutions to the MHD

system (3.1)-(3.2) in general Lipschitz polyhedra. However, we do not have a full

proof of this conjecture.

To discuss the convergence of the finite element formulation (3.6), we intro-

duce the product norms

‖(u,b)‖Vh×Ch =
(

ν‖u‖2
1,h +κνm‖b‖2

H(curl;Ω)

) 1
2
,

‖(p,r)‖Q×S =

(
1
ν
‖p‖2

L2(Ω)+
1

κνm
‖r‖2

H1(Ω)

) 1
2

,

Here, the discrete H1-norm for the hydrodynamic velocity is defined by

‖u‖1,h =

(
∑

K∈Th

‖∇u‖2
L2(K)+ ∑

F∈Fh

h−1
F ‖[[u]]‖

2
L2(F)

) 1
2

,

and the curl-norm for the magnetic field is defined by

‖b‖H(curl;Ω) =
(
‖b‖2

L2(Ω)+‖∇×b‖2
L2(Ω)

) 1
2
.

Theorem 6 Let (u,b, p,r) and (uh,bh, ph,rh) be the solutions of (3.1)–(3.2) and

(3.6), respectively, obtained on a sequence of quasi-uniform meshes {Th}h>0 of

mesh size h. Assume (3.8) and that κ̄ ν̄−2|||(f,g)||| is sufficiently small. Then we

have

lim
h→0
‖(u−uh,b−bh)‖Vh×Ch = 0, lim

h→0
‖(p− ph,r− rh)‖Q×S = 0.

Theorem 6 guarantees that the method (3.6) gives correct solutions provided

that the (minimal) smoothness assumption (3.8) is satisfied and the data is suffi-

ciently small; see the proof in [44, Section 4.4]. In particular, it ensures conver-

gence in situations where straightforwardly applied nodal elements for the approx-

imation of b are not capable of correctly capturing the singular solution compo-
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nents.

Next, we present a-priori error estimates for the two- and three-dimensional

cases. To do so, we introduce the function `(d,h) given by

`(d,h) =

{
h−ε , d = 2,

h−
1
2 , d = 3.

Here, ε > 0 is a fixed number. The function `(d,h) will indicate the deterioration

of convergence rates for both the two-dimensional and three-dimensional cases.

We also denote by Cd > 0 a generic constant independent of h, ν , κ and νm, but

dependent on the dimension d. In particular, for d = 2 it depends on ε and might

be unbounded as ε → 0.

Theorem 7 Let Ω⊂Rd (d = 2 or 3) be a simply-connected Lipschitz polygon with

a connected boundary ∂Ω. Under the same assumption as in Theorem 6, we have

the following error estimates:

‖(u−uh,b−bh)‖Vh×Ch

≤Cd`(d,h)hmin{σ ,τ,k}
(

ν
1
2 ‖u‖Hσ+1(Ω)+(κνm)

1
2 ‖b‖Hτ (Ω)+(κνm)

1
2 ‖∇×b‖Hτ (Ω)

)
+Chmin{σ ,τ,k}

(
ν
− 1

2 ‖p‖Hσ (Ω)+(κνm)
− 1

2 ‖r‖Hτ+1(Ω)

)
,

and

‖(p− ph,r− rh)‖Q×S

≤Cd`(d,h)2hmin{σ ,τ,k}
(

ν
1
2 ‖u‖Hσ+1(Ω)+(κνm)

1
2 ‖b‖Hτ (Ω)+(κνm)

1
2 ‖∇×b‖Hτ (Ω)

)
+Cd`(d,h)hmin{σ ,τ,k}

(
ν
− 1

2 ‖p‖Hσ (Ω)+(κνm)
− 1

2 ‖r‖Hτ+1(Ω)

)
.

Here, the constants C is independent of h, ν , κ and νm.

We provide the proof of Theorem 7 in [44, Section 4.5]. The convergence rates

in Theorem 7 are optimal in the mesh size, up to a loss of O(hε) for ε arbitrarily

small in two dimensions, and up to a loss of O(h
1
2 ) in three dimensions. In addi-

tion, in the two-dimensional case, the constant Cd might become unbounded as ε
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tends to zero. However, in our numerical experiments this constant is observed to

stay bounded. In fact, we observe optimal rates of convergence in all our tests, for

both smooth and non-smooth solutions. Full details are given in Section 3.3. This

gap between the theoretical and numerical results indicates that the former could

be further improved.

For the linearized variant of the MHD system (3.1), our method converges op-

timally in the mesh size h, as follows from [58, Remark 3.3]. That is, the estimates

of Theorem 7 hold true without any loss, both in two and three dimensions. How-

ever, there we make stronger smoothness assumptions on the linearized magnetic

field. Therefore, this optimality cannot be straightforwardly carried over to the

nonlinear setting.

3.3 Numerical results
In this section we present a series of numerical experiments. Our computations

have been carried out using MATLAB, with direct linear solvers; iterative solvers

will be discussed in Chapter 4. The primary purpose of our experiments is to

confirm optimal convergence rates of our method. We start by considering one

problem with a smooth solution and a second one with a singular solution. Then,

we consider the numerical approximations of two- and three-dimensional Hart-

mann channel flow and driven cavity flow problems. Finally, we present results for

another benchmark problem: MHD flow over a step in two dimensions.

Throughout this section, the lowest order BDM and Nédélec elements are em-

ployed and the interior penalty stabilization parameter is a0 = 10. The Picard itera-

tion described in (3.7) is used to solve the nonlinear systems. For all the examples,

we solve a Stokes problem and the Maxwell equations, decoupled, to obtain an

initial guess. The tolerance for the Picard iterations is chosen as 1e-5.

We test our method on problems with mixed Dirichlet and Neumann bound-

ary conditions in the hydrodynamic variables, even though the analysis has been

carried out solely for the Dirichlet case. Throughout this section, ΓN denotes the

Neumann boundary, and ΓD the Dirichlet boundary. On Neumann boundaries, we

specify the value of (pI−ν∇u)n, where I is the identity matrix.
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3.3.1 Example 1: two-dimensional problem with a smooth solution

First, we verify the theoretical results stated in Theorems 6 and 7 for a problem

with a smooth analytical solution.

We consider the following two-dimensional problem. We set Ω = (−1,1)2

with ΓN = {(1,y) : y ∈ (−1,1)}, ΓD = ∂Ω\ΓN , ν = κ = 1, νm = 1e4, and choose

the source terms f, g and the boundary conditions so that the analytical solution is

of the form

u(x,y) = (y2,x2), p(x,y) = x,

b(x,y) = (1− y2,1− x2), r(x,y) = (1− x2)(1− y2).

We construct this example with r 6= 0 to show the convergence rate in rh; later

examples will feature a divergence-free g and a vanishing r; cf. Proposition 3.

DOFs in uh/ph ‖u−uh‖L2(Ω) l ‖u−uh‖1,h l ‖p− ph‖L2(Ω) l
112/32 3.893e-2 – 8.297e-1 – 1.297 –
416/128 1.016e-2 1.94 4.105e-1 1.01 3.734e-1 1.78

1,600/512 2.707e-3 1.91 2.045e-1 1.01 1.293e-1 1.53
6,272/2,048 7.087e-4 1.93 1.021e-1 1.00 5.475e-2 1.24
24,832/8,192 1.813e-4 1.97 5.104e-2 1.00 2.597e-2 1.08
98,816/32,768 4.578e-5 1.99 2.552e-2 1.00 1.281e-2 1.02

Table 3.1: Example 1. Convergence of ‖u−uh‖L2(Ω), ‖u−uh‖1,h, and ‖p−
ph‖L2(Ω).

DOFs in bh/rh ‖b−bh‖L2(Ω) l ‖b−bh‖H(curl;Ω) l
56/25 4.720e-1 – 9.431e-1 –
208/81 2.358e-1 1.00 4.714e-1 1.00
800/289 1.179e-1 1.00 2.357e-1 1.00

3,136/1,089 5.893e-2 1.00 1.179e-1 1.00
12,416/4,225 2.946e-2 1.00 5.893e-2 1.00

49,408/16,641 1.473e-2 1.00 2.946e-2 1.00

Table 3.2: Example 1. Convergence of ‖b−bh‖L2(Ω) and ‖b−bh‖H(curl;Ω).
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DOFs in bh/rh ‖r− rh‖L2(Ω) l ‖∇(r− rh)‖L2(Ω) l
56/25 1.673e-1 – 9.391e-1 –
208/81 4.433e-2 1.92 4.824e-1 0.96
800/289 1.125e-2 1.98 2.429e-1 0.99

3,136/1,089 2.822e-3 1.99 1.216e-1 1.00
12,416/4,225 7.062e-4 2.00 6.085e-2 1.00

49,408/16,641 1.766e-4 2.00 3.043e-2 1.00

Table 3.3: Example 1. Convergence of ‖r− rh‖L2(Ω) and ‖∇(r− rh)‖L2(Ω).

In Tables 3.1–3.3, we investigate the asymptotic rates of convergence of the

errors in the approximations of the hydrodynamic and magnetic variables; here,

l denotes the experimental rate of convergence. We observe that ‖u− uh‖1,h,

‖p− ph‖L2(Ω), ‖b−bh‖H(curl;Ω) and ‖∇(r− rh)‖L2(Ω) converge to zero as the mesh

is refined, in accordance with Theorem 6. The rate of convergence is O(h). Notice

that we obtain the optimal rate in this numerical experiment, even though Theo-

rem 7 predicts a suboptimal rate with a loss of O(hε). Additionally, ‖u−uh‖L2(Ω)

and ‖r− rh‖L2(Ω) converge at rate O(h2) as h tends to zero, which is also optimal.

In Figure 3.3 we show the convergence history of the Picard iterations for the

grid sequence considered in this example. The plot depicts the number of iterations

against the differences between consecutive iterates corresponding to the approxi-

mated vector coefficients, measured in a normalized discrete 2-norm and labeled as

‘Tolerance’ in the plot. As expected, convergence is linear and the iteration count is

fairly insensitive to the size of the grid. A very similar behavior has been observed

in all of our other experiments, in 2D as well as in 3D.

3.3.2 Example 2: two-dimensional problem with a singular solution

In order to verify the capability of the proposed method to capture singularities in

two dimensions, we consider a problem in the L-shaped domain Ω = (−1,1)2 \
([0,1)× (−1,0]) with ΓN = {(1,y) : y ∈ (0,1)}, ΓD = ∂Ω\ΓN , and set ν = κ = 1,

νm = 1e4. We choose the forcing terms and the boundary conditions such that the

analytic solution is given by the strongest corner singularities for the underlying

elliptic operators. In polar coordinates (ρ,θ), the hydrodynamic solution compo-
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Figure 3.3: Example 1. Convergence history of the Picard iteration for the
grid sequence defined in Tables 3.1–3.3.

nents u and p are then given by

u(ρ,θ) =

[
ρλ ((1+λ )sin(θ)ξ (θ)+ cos(θ)ξ ′(θ))

ρλ (−(1+λ )cos(θ)ξ (θ)+ sin(θ)ξ ′(θ))

]
,

p(ρ,θ) =−ρ
λ−1((1+λ )2

ξ
′(θ)+ξ

′′′(θ))/(1−λ ),

where

ξ (θ) =sin((1+λ )θ)cos(λω)/(1+λ )− cos((1+λ )θ)

− sin((1−λ )θ)cos(λω)/(1−λ )+ cos((1−λ )θ),

ω = 3
2 π and λ ≈ 0.54448373678246. The magnetic pair (b,r) is given by

b(ρ,θ) = ∇(ρ2/3 sin(2/3θ)), r(ρ,θ)≡ 0.

For this example, we have that (u, p) ∈ H1+λ (Ω)2 × Hλ (Ω) and b∈H2/3(Ω)2.

Note that straightforwardly applied nodal elements cannot correctly resolve the

magnetic field. In Tables 3.4–3.5, we investigate the asymptotic rates of conver-

gence of the errors in the approximations of the hydrodynamic and magnetic vari-
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ables. Again, we observe that the discrete solution converges to the exact one as

the mesh size h approaches zero, in accordance with Theorem 6. The results show

full agreement with the optimal rates for ‖u−uh‖1,h and ‖b−bh‖H(curl;Ω). For the

pressure, we also see that the rate for ‖p− ph‖L2(Ω) is approaching the optimal rate,

albeit more slowly. Additionally, we observe the L2-norm of r is zero because g is

divergence-free, in accordance with Proposition 3.

In Figures 3.4–3.5, we show the solution computed on the finest mesh with

24,576 elements; the total number of degrees of freedom employed in the finite

element space Vh×Ch×Qh× Sh is 148,481. The results show that our solution

captures the strongest corner singularities and are comparable to the results in [58].

DOFs in uh/ph ‖u−uh‖L2(Ω) l ‖u−uh‖1,h l ‖p− ph‖L2(Ω) l
88/24 2.159e-1 – 2.468 – 15.91 –
320/96 1.781e-1 0.28 1.880 0.39 9.328 0.77

1,216/384 1.204e-1 0.56 1.368 0.46 5.387 0.79
4,736/1,536 6.816e-1 0.82 0.9588 0.51 3.301 0.71
18,688/6,144 3.490e-2 0.97 0.6627 0.53 2.124 0.64
74,240/24,576 1.705e-2 1.03 0.4559 0.54 1.408 0.59

Table 3.4: Example 2. Convergence of ‖u−uh‖L2(Ω), ‖u−uh‖1,h, and ‖p−
ph‖L2(Ω).

DOFs in bh/rh ‖b−bh‖L2(Ω) l ‖b−bh‖H(curl;Ω) l ‖rh‖L2(Ω)

44/21 2.796e-1 – 2.796e-1 – 2.162e-12
160/65 1.814e-1 0.62 1.814e-1 0.62 6.188e-12
608/225 1.169e-1 0.63 1.169e-1 0.63 2.289e-11

2,368/833 7.473e-2 0.65 7.473e-2 0.65 4.260e-11
9,344/3,201 4.754e-2 0.65 4.754e-2 0.65 1.406e-10

37,120/12,545 3.013e-2 0.66 3.013e-2 0.66 3.018e-10

Table 3.5: Example 2. Convergence of ‖b−bh‖L2(Ω), ‖b−bh‖H(curl;Ω), and
‖rh‖L2(Ω).
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Figure 3.4: Example 2. Numerical approximations of (a) velocity; (b) pres-
sure contours.
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Figure 3.5: Example 2. Numerical approximations of (a) magnetic field; (b)
contours of the first component of the magnetic field; (c) contours of the
second component of the magnetic field.
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3.3.3 Example 3: two-dimensional Hartmann flow

Next, we consider Hartmann channel flow problems in two and three dimensions;

cf. [42]. In these examples, we denote by Ha the Hartmann number, which is

defined as Ha =
√

κ

ννm
.

Consider the two-dimensional Hartmann flow problem, which involves a steady

unidirectional flow in the channel Ω = (0,10)× (−1,1) under the influence of the

constant transverse magnetic field bD = (0,1). The MHD solution then takes the

form:
u(x,y) = (u(y),0), p(x,y) =−Gx+ p0(y),

b(x,y) = (b(y),1), r(x,y)≡ 0.
(3.9)

We impose the following boundary conditions:

u = 0 on y =±1,

(pI−ν∇u)n = pNn on x = 0 and x = 10,

n×b = n×bD on ∂Ω,

r = 0 on ∂Ω,

where

pN(x,y) = p(x,y)

=−Gx− G2

2κ

(
sinh(yHa)
sinh(Ha)

− y
)2

.

The exact solution is given by (3.9) with

u(y) =
G

νHatanh(Ha)

(
1− cosh(yHa)

cosh(Ha)

)
,

b(y) =
G
κ

(
sinh(yHa)
sinh(Ha)

− y
)
,

p0(y) =−
G2

2κ

(
sinh(yHa)
sinh(Ha)

− y
)2

.

We note that p0(y) and −κb(y)2

2 are the same up to an additive constant.
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In Tables 3.6–3.7 and Figures 3.6–3.7, we set ν = κ = 1, νm = 1e4, and G =

10. We observe that rh ≡ 0, as predicted in Proposition 3, and ‖u−uh‖1,h, ‖p−
ph‖L2(Ω) and ‖b−bh‖H(curl;Ω) converge to zero at the optimal rate O(h) as the mesh

is refined. Moreover, we note that the L2-norms of the errors in the approximations

of u, b and p tend to zero optimally as well.

In Figures 3.6–3.7 we show the slices and the vector fields of the solution com-

puted on the mesh with 32,768 elements; the total number of degrees of freedom

employed in the finite element space Vh×Ch×Qh× Sh is 197,633. In order to

show the directions of vectors, in Figure 3.7(b) and later figures, b is normalized

such that the largest magnitude of each component is 1 in the computational do-

main. The computed and analytical solutions of the first components in the velocity

and magnetic fields are virtually indistinguishable; see Figure 3.6.

DOFs in uh/ph ‖u−uh‖L2(Ω) l ‖u−uh‖1,h l ‖p− ph‖L2(Ω) l
416/128 2.028e-1 – 3.215 – 13.97 –

1,600/512 5.169e-2 1.97 1.611 1.00 6.986 1.00
6,272/2,048 1.306e-2 1.99 0.8061 1.00 3.493 1.00
24,832/8,192 3.282e-3 1.99 0.4033 1.00 1.747 1.00
98,816/32,768 8.227e-4 2.00 0.2017 1.00 0.8734 1.00

Table 3.6: Example 3. Convergence of ‖u−uh‖L2(Ω), ‖u−uh‖1,h, and ‖p−
ph‖L2(Ω).

DOFs in bh/rh ‖b−bh‖L2(Ω) l ‖b−bh‖H(curl;Ω) l ‖rh‖L2(Ω)

208/81 1.679e-4 – 2.259e-4 – 3.868e-12
800/289 8.605e-5 0.96 1.148e-4 0.98 1.746e-11

3,136/1,089 4.328e-5 0.99 5.761e-4 0.99 3.627e-11
12,416/4,225 2.167e-5 1.00 2.883e-5 1.00 9.424e-11

49,408/16,641 1.084e-5 1.00 1.442e-5 1.00 2.401e-10

Table 3.7: Example 3. Convergence of ‖b−bh‖L2(Ω), ‖b−bh‖H(curl;Ω), and
‖rh‖L2(Ω).
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Figure 3.6: Example 3. Slices along x = 5, −1≤ y≤ 1: (a) velocity compo-
nent u(y); (b) magnetic component b(y).
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Figure 3.7: Example 3. Numerical approximations of (a) velocity; (b) nor-
malized magnetic field.

3.3.4 Example 4: three-dimensional Hartmann flow

In this example, we consider the three-dimensional unidirectional flow in the rect-

angular duct given by Ω = (0,L)× (−y0,y0)× (−z0,z0) with y0,z0� L under the
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influence of the constant transverse magnetic field bD = (0,1,0). We take f= g= 0
and consider solutions of the form

u(x,y,z) = (u(y,z),0,0), p(x,y,z) =−Gx+ p0(y,z),

b(x,y,z) = (b(y,z),1,0), r(x,y,z)≡ 0.

We enforce the boundary conditions

u = 0 for y =±y0 and z =±z0,

(pI−ν∇u)n = pNn for x = 0 and x = L,

n×b = n×bD on ∂Ω,

r = 0 on ∂Ω,

with pN(x,y,z) =−Gx− κb(y,z)2

2 +10. The function b(y,z) is given by the Fourier

series

b(y,z) =
∞

∑
n=0

bn(y)cos(λnz),

where

λn =
(2n+1)π

2z0
,

bn(y) =
ν

κ

(
An

λ 2
n − p2

1
p1

sinh(p1y)+Bn
λ 2

n − p2
2

p2
sinh(p2y)

)
,

p2
1,2 = λ

2
n +Ha2/2±Ha

√
λ 2

n +Ha2/4,

An =
−p1(λ

2
n − p2

2)

∆n
un(y0)sinh(p2y0),

Bn =
p2(λ

2
n − p2

1)

∆n
un(y0)sinh(p1y0),

∆n = p2(λ
2
n − p2

1)sinh(p1y0)cosh(p2y0)− p1(λ
2
n − p2

2)sinh(p2y0)cosh(p1y0),

un(y0) =
−2G
νλ 3

n z0
sin(λnz0).
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DOFs in uh/ph ‖u−uh‖L2(Ω) l ‖u−uh‖1,h l ‖p− ph‖L2(Ω) l
360/48 3.959e-1 – 1.829 – 30.89 –

2,592/384 1.320e-1 1.58 0.9561 0.94 8.194 1.91
19,584/3,072 3.609e-2 1.87 0.4903 0.96 2.837 1.53

152,064/24,576 9.590e-3 1.91 0.2484 0.98 1.091 1.38

Table 3.8: Example 4. Convergence of ‖u−uh‖L2(Ω), ‖u−uh‖1,h, and ‖p−
ph‖L2(Ω).

DOFs in bh/rh ‖b−bh‖L2(Ω) l ‖b−bh‖H(curl;Ω) l ‖rh‖L2(Ω)

98/27 1.850e-5 – 3.219e-5 – 9.855e-12
604/125 1.565e-5 0.24 2.579e-5 0.32 1.013e-10

4,184/729 8.592e-6 0.86 1.464e-5 0.82 4.098e-10
31,024/4,913 4.411e-6 0.96 7.543e-6 0.96 1.795e-9

Table 3.9: Example 4. Convergence of ‖b−bh‖L2(Ω), ‖b−bh‖H(curl;Ω), and
‖rh‖L2(Ω).

The functions u(y,z) and p0(y,z) can be also expressed by Fourier series; for de-

tails; see [40]. In fact, p0(y,z) and−κb(y,z)2

2 are identical up to an additive constant.

Note also that p(x,y,z) = pN(x,y,z).

In our tests, we set L = 10, y0 = 2, z0 = 1, ν = κ = 1, νm = 1e4 and G = 0.5.

In Tables 3.8–3.9, we investigate the asymptotic rates of convergence of the errors

in the approximations of the hydrodynamic and magnetic variables. Again, we

observe that the finite element solution converges to the exact solution as the mesh

size h approaches zero, in accordance with Theorem 6. We observe the results

show good agreement with the optimal rates for ‖u−uh‖1,h and ‖b−bh‖H(curl;Ω).

For the pressure, we also see that the rate for ‖p− ph‖L2(Ω) is approaching the

optimal rate, although more slowly. Additionally, we observe the L2-norm of r is

zero because g is divergence-free, in accordance with Proposition 3.

In Figures 3.8–3.9 we show the slices and the vector fields of the solution

computed on a uniform tetrahedral mesh of 24,576 elements; this results in a total

of 212,577 degrees of freedom in the finite element space Vh×Ch×Qh×Sh. We

observe that the computed and analytical solutions are in good agreement on this
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relatively coarse mesh; see Figure 3.8.
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Figure 3.8: Example 4. Slices along x = 5, −2 ≤ y ≤ 2, and z = 0: (a)
velocity component u(y,0); (b) magnetic component b(y,0).

3.3.5 Example 5: two-dimensional driven cavity flow

Let us consider a classic test problem used in fluid dynamics, known as driven-

cavity flow. It is a model of the flow in a cavity with the lid moving in one direction;

cf. [37, Chapter 5.1.3] and [77].

In this example, we consider the two-dimensional domain Ω = (−1,1)2 with

ΓD = ∂Ω, and set the source terms to be zero. The boundary conditions are pre-

scribed as follows:

u = 0 on x =±1 and y =−1,

u = (1,0) on y = 1,

n×b = n×bD on ∂Ω,

r = 0 on ∂Ω,

where bD = (1,0).

We set ν = 1e-2, νm = 1e5, κ = 1e5, which simulates liquid metal type flows.

Figures 3.10–3.11 show the solution computed on a mesh with 8,192 elements
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(a)

(b)

Figure 3.9: Example 4. Numerical approximations of (a) velocity; (b) nor-
malized magnetic field.

and 49,665 degrees of freedom. Figure 3.10(a) shows the circulation created by

the moving lid; Figure 3.10(b) shows that the magnetic field changes direction

due to the coupling effect. Figure 3.11(a) depicts the boundary layer formation in

terms of the first component of the velocity. Streamlines for the velocity field are
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displayed in Figure 3.11(b). The computed solution agrees with the solution in the

literature [77].

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 3.10: Example 5. Numerical approximations of (a) velocity; (b) nor-
malized magnetic field.

3.3.6 Example 6: three-dimensional driven cavity flow

The problem we consider is the three-dimensional driven cavity flow in the domain

Ω = (−1,1)3 with ΓD = ∂Ω. The source terms are set to be zero. The boundary

conditions are prescribed as follows:

u = 0 on x =±1, y =±1 and z =−1,

u = (1,0,0) on z = 1,

n×b = n×bD on ∂Ω,

r = 0 on ∂Ω,

where bD = (1,0,0).

We set ν = 1e-2, νm = 1e5, κ = 1e5 and obtain Figure 3.12 on a uniform

tetrahedral mesh comprising 24,576 elements; this results in a total of 212,577

degrees of freedom. The flow vectors on slices demonstrate a similar behavior to
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Figure 3.11: Example 5. Numerical approximations of (a) contours of first
velocity components; (b) streamlines of velocity.

the two-dimensional scenario in Section 3.3.5; see Figure 3.10.

3.3.7 Example 7: two-dimensional MHD flow over a step

The example we present here is another classical problem of a flow over a step

under a transverse magnetic field; cf. [41]. The magnetic field tends to damp the

vortex of the fluid after the step.

The domain is Ω= (−0.25,0.75)×(−0.125,0.125)\(−0.25,0]×(−0.125,0],

with ΓN = {(0.75,y) : y ∈ (−0.125,0.125)} and ΓD = ∂Ω\ΓN . We set f = g = 0,

and choose ν = 1e-2, νm = 1e5, κ = 2.5e4. The boundary data are given by

u = 0 on y =±0.125 and {(x,0) : x ∈ (−0.25,0)},

u = 0 on {(0,y): y ∈ (−0.125,0)},

u = (−25.6y(y−0.125),0) on x =−0.25,

(pI−ν∇u)n = pNn on x = 0.75,

n×b = n×bD on ∂Ω,

r = 0 on ∂Ω,
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(a) (b)

Figure 3.12: Example 6. Numerical approximations of (a) velocity; (b) nor-
malized magnetic field.

where pN = 0 and bD = (0,1).

Figures 3.13–3.14 show the solution computed on a mesh with 7,168 elements

and 43,649 degrees of freedom. It is evident from Figure 3.13 that the flow field is

correctly captured; the magnetic field changes directions due to the coupling effect;

the pressure drops behind the step. Figure 3.14 shows the velocity field in terms of

stream lines. The recirculation after the step decreases as the coupling coefficient κ

increases. We observe that our numerical method reproduces this damping effect

without any oscillation in the numerical solution. The computed solutions agree

with the solutions in the literature [25, 41].
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(a) (b)

(c)

Figure 3.13: Example 7. Numerical approximations of (a) velocity; (b) nor-
malized magnetic field; (c) pressure contours.
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Figure 3.14: Example 7. Velocity flow vectors and streamlines zoomed in
behind the step for (a) κ=2.5e4; (b) κ=1e5.
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Chapter 4

Solution of the discretized
incompressible MHD equations

In this chapter, we present preliminary results for preconditioning techniques for

the discretized MHD equations in mixed form presented in Chapter 3. The MHD

system includes the Maxwell sub-system (discussed in Chapter 2), the Navier-

Stokes sub-system (mentioned in Chapter 1) and the coupling terms. A consid-

erable effort has been made to develop efficient and robust solution algorithms

for the Maxwell equations and the incompressible Navier-Stokes equations. We

present a few preconditioning ideas for the discretized MHD equations, which are

based on combining preconditioners for the sub-systems. We provide some eigen-

value analysis for our approach and show that many of the eigenvalues are tightly

clustered. Numerical results show that the resulting scheme is rapidly convergent,

and is reasonably scalable.

This chapter is structured as follows. First, we discuss related work in Sec-

tion 4.1. We propose a few ideas of preconditioning in Section 4.2 and compare

their performance in the numerical experiments of Section 4.3.
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4.1 Background and related work
To transform the Picard iteration (3.7) into matrix form, let 〈ϕ j〉n̂j=1 and 〈ζi〉m̂i=1 be

finite element bases for the spaces Vh and Qh respectively:

Vh = span〈ϕ j〉n̂j=1, Qh = span〈ζi〉m̂i=1. (4.1)

Recall from (2.7) that 〈ψ j〉nj=1 and 〈φi〉mi=1 are finite element bases for the spaces

Ch and Sh respectively.

We identify finite element functions (uk
h,b

k
h, pk

h,r
k
h) ∈ Vh×Ch×Qh× Sh with

their coefficient vectors u=(u1, . . . ,un̂)∈Rn̂, b=(b1, . . . ,bn)∈Rn, p=(p1, . . . , pm̂)∈
Rm̂, and r = (r1, . . . ,rm) ∈ Rm, with respect to the bases (2.7) and (4.1). The solu-

tion of (3.7) can now be computed by solving the linear system

K x≡


A+O BT CT 0

B 0 0 0

−C 0 M DT

0 0 D 0




u

p

b

r

=


f

0

g

0

 . (4.2)

Here, A, B, C, D, M and O are matrices associated the forms Ah(uk
h,v), B(uk

h,q),

C(bk−1
h ,v,bk

h), D(bk
h,s), M(bk

h,c) and Oh(uk−1
h ,uk

h,v) defined in Section 3.2. Vec-

tors f and g are associated with the forms (f,v)Ω and (g,c)Ω.

The system (4.2) is in a generalized saddle point form. It is unsymmetric due to

the convection term O (note also the skew-symmetric term C, which can be easily

symmetrized by manipulating signs). We are interested in solving (4.2) iteratively

using preconditioned GMRES. To the best of our knowledge, preconditioned ap-

proaches for solving (4.2) have not been previously considered in the literature.

We denote the coefficient matrix for the Navier-Stokes sub-problem by

KN =

(
F BT

B 0

)
, (4.3)
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where F = A+O, and the coefficient matrix for the Maxwell sub-system is

KM =

(
M DT

D 0

)
. (4.4)

We have already presented preconditioning techniques for the time-harmonic

Maxwell equations in Chapter 2. Thus, we discuss some related work for precon-

ditioning the Navier-Stokes system and hence focus on solution algorithms for the

linear system associated with the coefficient matrix (4.3).

Consider the LDU block factorization of the coefficient matrix,

KN =

(
I 0

BF−1 I

)(
F 0

0 −S

)(
I F−1BT

0 I

)
,

where

S = BF−1BT

is the Schur complement (of F in KN). We will investigate a preconditioning

operator of the form

M ≡

(
F 0

0 S

)
. (4.5)

The preconditioned linear system M−1KN has exactly three eigenvalues. Thus

GMRES will converge in three iterations; see [75]. However, this idealized situ-

ation is impractical, since the preconditioning operation requires the action of the

inverse of S. Effective approximate block preconditioners are often based on a

good approximation to S (e.g., [11, 12, 19, 37, 64]).

Since the linear system is nonsymmetric, we could also consider a block trian-

gular version of (4.5)

M ≡

(
F BT

0 −MS

)
, (4.6)

where MS is an approximation to S. Krylov subspace iteration with the block trian-

gular preconditioner requires approximately half as many as steps as with the block

diagonal preconditioner; see [35]. A choice for MS is the pressure mass matrix K.

If F only consists of the discrete Laplacian operator (i.e., the convection term O
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is negligible), with the choice MS = 1
ν

K, the preconditioner M makes it possi-

ble to obtain mesh-independent convergence rates; see [35, 66]. However, it does

not take into account the effects of convection on the Schur complement operator S,

and convergence rates deteriorate as the convection increases. Pressure convection-

diffusion preconditioners are proposed in [64, 92]. These preconditioners are more

faithful approximations to the Schur complement matrix. Numerous theoretical

and numerical studies have demonstrated mesh independent convergence on sev-

eral problems and the overall efficacy of this method. A drawback, however, is that

it requires the convection-diffusion operation projected onto the discrete pressure

space. As an alternative, the least-squares commutator preconditioner is proposed

in [36]. This method automatically generates an approximation to S by solving the

normal equation associated with a certain least-squares problem derived from the

commutator. A comparison and summary of convergence results for the pressure

convection-diffusion preconditioner and the least-squares commutator precondi-

tioner is given in [78].

In this chapter, we investigate efficient preconditioners for (4.2). We consider a

few different approaches and propose a preconditioner combining the least-squares

commutator preconditioner for the Navier-Stokes sub-system and the block diag-

onal preconditioner in (2.12) for the Maxwell sub-system. We have some prelim-

inary eigenvalue analysis for this approach. Our numerical results show that this

approach performs quite well, though it is not independent of the mesh size.

4.2 The solver
The MHD problem combines the Maxwell sub-system and the Navier-Stokes sub-

system with coupling terms. We first discuss ad-hoc preconditioners for these sub-

systems. Then, we propose a few ideas of combining them for the discretized MHD

problem.

4.2.1 Some ideas for preconditioning

For the Maxwell sub-system, the resulting linear system is associated with the

coefficient matrix (4.4). Note this corresponds to the discretized time-harmonic

Maxwell equations in (2.2) with εr = 1, µr =
1

κνm
and k = 0. We can apply the
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preconditioner defined in (2.12), which is

N ≡

(
M+X 0

0 L

)
. (4.7)

Here, L is the Laplacian on Sh defined as L = (Li, j)
m
i, j=1 ∈ Rm×m with

Li, j =
∫

Ω

∇φ j ·∇φi dx,

and X = (Xi, j)
n
i, j=1 ∈ Rn×n is the mass matrix on Ch, defined as

Xi, j =
∫

Ω

ψ j ·ψi dx.

For the Navier-Stokes sub-system with the coefficient matrix (4.3), we apply

the least-squares commutator preconditioner [36, 37]. This approach is based on

the assumption that

BF−1BT ≈ (BQ−1BT )(BQ−1FQ−1BT )−1(BQ−1BT ),

where Q = (Qi, j)
n̂
i, j=1 ∈ Rn̂×n̂ is the mass matrix on Vh and is defined as

Qi, j =
∫

Ω

ϕ j ·ϕi dx.

In the lowest order case, the mass matrix Q is diagonal; for higher order elements,

it is block-diagonal. In the latter case, if necessary Q can be replaced by Q̂ =

diag(Q) to enhance sparsity; see [37, Remark 6.4]. This would give the following

approximation to the Schur complement:

MS = (BQ̂−1BT )(BQ̂−1FQ̂−1BT )−1(BQ̂−1BT ). (4.8)

The least-squares commutator preconditioner has the form in (4.6) with (4.8) as

the (2,2) block. Applying this preconditioner involves the inverse

M−1
S = (BQ̂−1BT )−1(BQ̂−1FQ̂−1BT )(BQ̂−1BT )−1,

80



and so, it involves two Poisson solves, for which many efficient solution methods

are available.

Next, we discuss three different approaches to combining the preconditioners

for the sub-systems.

(1) Combining preconditioners for the sub-systems without coupling. First we

consider applying the ad-hoc preconditioners for the sub-systems directly. We

treat the coupling term C explicitly in the Picard iteration in (3.7). We obtain

the following Picard-type linearization

Ah(uk
h,v)+Oh(uk−1

h ,uk
h,v)+B(v, pk

h) = (f,v)Ω−C(bk−1
h ,v,bk−1

h ),

B(uk
h,q) = 0,

M(bk
h,c)+D(c,rk

h) = (g,c)Ω +C(bk−1
h ,uk−1

h ,c),

D(bk
h,s) = 0.

(4.9)

The coefficient matrix associated with this iteration is

KE =


F BT 0 0

B 0 0 0

0 0 M DT

0 0 D 0

 . (4.10)

The coefficient matrix (4.10) is still unsymmetric, but the two sub-systems are

decoupled. Let us refer to (4.10) as a 2× 2 block matrix. The (1, 1) block

corresponds to the Navier-Stokes sub-system and the (2, 2) block corresponds

to the Maxwell sub-system. We can apply GMRES preconditioned with (4.6)

to the (1,1) block and apply MINRES preconditioned with (4.7) to the (2, 2)

block.

If we also treat the convection term O explicitly and move it to the right-hand-
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side, we obtain the following Picard-type iteration

Ah(uk
h,v)+B(v, pk

h) = (f,v)Ω−Oh(uk−1
h ,uk−1

h ,v)−C(bk−1
h ,v,bk−1

h ),

B(uk
h,q) = 0,

M(bk
h,c)+D(c,rk

h) = (g,c)Ω +C(bk−1
h ,uk−1

h ,c),

D(bk
h,s) = 0.

(4.11)

The coefficient matrix is symmetric:

KS =


A BT 0 0

B 0 0 0

0 0 M DT

0 0 D 0

 .

We can use a symmetric solve. Similar to the previous case, the system is

decoupled. We now apply MINRES to both of the sub-systems. For the Navier-

Stokes sub-system, we use the preconditioner(
A 0

0 MS

)
.

For the Maxwell sub-system, we apply MINRES preconditioned with (4.7).

We expect to see fast convergence for the last two approaches. However, be-

cause the convection and coupling terms are treated explicitly, the Picard-type

linearization may require more iterations to converge or may not converge, if

the convection and/or coupling is strong.

(2) Combining preconditioners for the sub-systems with coupling. In order to de-

velop a more faithful approximation to the discretized MHD system in (4.2),

we need to incorporate effects of the coupling terms in the preconditioner. We
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consider the following preconditioner

PC =


F BT CT 0

0 −MS 0 0

−C 0 M+X 0

0 0 0 L

 . (4.12)

We expect this preconditioner to perform better when the coupling and/or con-

vection is strong. In order to apply the preconditioning approach, we need to

solve linear systems associated with PC. We propose to use GMRES with the

following inner preconditioner

PI =


F BT 0 0

0 −MS 0 0

0 0 M+X 0

0 0 0 L

 . (4.13)

We provide some preliminary eigenvalue analysis for this preconditioning ap-

proach in Section 4.2.2.

(3) Applying the least-squares preconditioner to the entire MHD system. The sys-

tem (4.2) can be written as
F CT BT 0

−C M 0 DT

B 0 0 0

0 D 0 0




u

b

p

r

=


f

g

0

0

 . (4.14)

Rewrite the coefficient matrix in (4.14) as a 2×2 block matrix as the following(
F BT

B 0

)
, (4.15)

where

F =

(
F CT

−C M

)
,
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and

B =

(
B 0

0 D

)
.

Note that (4.15) has the same form as (4.3). Our finite element formulation is

inf-sup stable; see [44, Section 3.3]. The operator F has a component F , which

is a convection-diffusion type operator and the size of F is bigger than M. We

assume F preserves some properties of the convection-diffusion operator. We

therefore consider applying the least-squares commutator preconditioner directly

to the entire discretized MHD system. The preconditioner is

PA =

(
F B

0 −MS

)
.

Here MS is defined as

MS = (BQ̂−1BT )−1(BQ̂−1FQ̂−1BT )(BQ̂−1BT )−1,

where

Q̂ = diag

(
Q 0

0 X

)
.

For the three approaches discussed above, if the coupling and convection are

not very strong, we can treat them explicitly. Then the Navier-Stokes and Maxwell

sub-systems are decoupled, and we apply the ad-hoc preconditioners for them sep-

arately. If the coupling and convection are strong, we apply PC as a preconditioner

for GMRES. As later shown in the numerical examples, the approach is not com-

pletely independent of the mesh size, but shows reasonably good performance. For

the approach of applying the least-squares commutator preconditioner directly to

the discretized MHD system, it is not as good as the other approaches.

4.2.2 Preliminary eigenvalue analysis

Eigenvalue analysis of the Maxwell system is given in Theorem 2. It is generally

difficult to derive convergence analysis for nonsymmetric systems. As far as we

know, there is no complete analysis of the convergence characteristics of the least-
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squares preconditioner. Thus convergence analysis for PA is also a very difficult

problem.

In this section, we provide preliminary eigenvalue analysis for the precondi-

tioner PC in (4.12). Note that the (3,3) block M +X is spectrally equivalent to

M+DT L−1D; see [43, Theorem 3.3]. In the analysis, we consider an ideal version

of (4.12)

P̂C =


F BT CT 0

0 −MS 0 0

−C 0 M+DT L−1D 0

0 0 0 L

 .

Theorem 8 The matrix P̂−1
C K has an eigenvalue λ = 1 with algebraic multiplic-

ity of at least n+ n̂ and an eigenvalue λ =−1 with algebraic multiplicity of at least

m.

Proof The corresponding eigenvalue problem is
F BT CT 0

B 0 0 0

−C 0 M DT

0 0 D 0




u

p

b

r

= λ


F BT CT 0

0 −MS 0 0

−C 0 M+DT L−1D 0

0 0 0 L




u

p

b

r

 .

The four block rows can be written as

(1−λ )(Fu+BT p+CT b) = 0, (4.16)

Bu = −λMS p, (4.17)

(λ −1)Cu+(1−λ )Mb−λDT L−1Db+DT r = 0, (4.18)

Db = λLr. (4.19)

If λ = 1, (4.16) is satisfied automatically. Equation (4.17) shows

p =−M−1
S Bu.

Equation (4.19) leads to

r = L−1Db.

85



If this holds, (4.18) is satisfied.

Therefore, (u,−M−1
S Bu,b,L−1Db) is an eigenvector. There exist n̂ linearly

independent such u’s and n linearly independent such b’s. There are at least n̂+n

linearly independent non-zero vectors satisfying the eigenvalue problem when λ =

1. Therefore λ = 1 is an eigenvalue with algebraic multiplicity of at least n+ n̂.

If λ =−1, (4.19) leads to

r =−L−1Db.

Substituting it into (4.18), we obtain

Cu = Mb.

If b is a discrete gradient in Ch, Mb= 0 and CT b= 0. If we take u= 0, then Cu= 0.

The requirement Cu = Mb is satisfied.

If u = 0 and b is a discrete gradient, (4.16) becomes

BT p = 0.

Since B has full row rank, this implies p = 0.

Therefore, if b is a discrete gradient, (0,0,b,−L−1Db) is an eigenvector corre-

sponding to λ =−1. There are m discrete gradients in Ch. Therefore λ =−1 is an

eigenvalue with at least algebraic multiplicity m.

Remark 9 In our experiments, we have observed the eigenvalue λ = 1 has alge-

braic multiplicity of exactly n+ n̂ and the eigenvalue λ = −1 has algebraic mul-

tiplicity of exactly m. Proving this may be difficult due to complicated generalized

eigenvalue problems that other eigenvalues satisfy.

Theorem 8 shows that P̂−1
C K has some tightly clustered eigenvalues and GM-

RES should converge quickly. We expect a similar behavior for P−1
C K .

Next, we show some preliminary eigenvalue analysis for the inner GMRES

iterations.

Theorem 10 The matrix P−1
I PC has an eigenvalue λ = 1 with algebraic multi-

plicity of at least m̂+ n̂+3m−n.
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Proof The corresponding eigenvalue problem is
F BT CT 0

0 −MS 0 0

−C 0 M+X 0

0 0 0 L




u

p

b

r

= λ


F BT 0 0

0 −MS 0 0

0 0 M+X 0

0 0 0 L




u

p

b

r

 .

The four block rows can be written as

(1−λ )Fu+(1−λ )BT p+CT b = 0, (4.20)

(1−λ )MS p = 0, (4.21)

−Cu+(1−λ )(M+X)b = 0, (4.22)

(1−λ )Lr = 0. (4.23)

If λ = 1, (4.21) and (4.23) are satisfied automatically.

Equation (4.20) becomes

CT b = 0.

If b is a discrete gradient, this is satisfied.

Equation (4.22) becomes

Cu = 0.

If u is in the null space of C, we have Cu = 0.

Therefore, (u, p,b,r) is an eigenvector associated with eigenvalue λ = 1, if u

is in the null space of C and b is a discrete gradient. The matrix C is n× n̂, so we

have

rank(CT )+nullity(CT ) = n, (4.24)

rank(C)+nullity(C) = n̂. (4.25)

There are m distinct discrete gradients in Ch. The nullity of CT is at least m. Ac-

cording to (4.24), the rank of CT is at most n−m. Matrix C has the same rank

as CT . According to (4.25), the nullity of C is at least n̂− n+m. We have m̂ lin-

early independent p in Qh and m linearly independent r in Sh. So, there are at least
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m̂+ n̂+3m−n linearly independent eigenvectors. Therefore, the eigenvalue λ = 1

has algebraic multiplicity of at least m̂+ n̂+3m−n.

Theorem 10 shows that many eigenvalues of P−1
I PC are tightly clustered. We

expect GMRES to converge within a few iterations.

4.3 Numerical results
In this section we present a series of numerical experiments. The primary pur-

pose of our experiments is to compare the performance of various preconditioners

presented in Section 4.2.1. We use inner-outer Krylov iterations for each Picard

iteration. In all experiments, which are carried out using MATLAB, the relative

residual of the outer iteration is set to 1e-6 and the relative residual of the inner

iteration is set to 1e-8. The tolerance for the Picard iterations is chosen as 1e-5.

For outer iterations, we show iteration counts in the last Picard iteration. For inner

iterations, we show iterations counts for the last inner iteration. In the numerical

experiments, we denote by (i), (ii), and (iii) the three Picard-type of linearization

schemes, where (i) denotes the standard Picard linearization in (3.7), (ii) and (iii)

denote the Picard-type linearizations in (4.9) and (4.11), respectively.

4.3.1 Example 1: two-dimensional problem with a smooth solution

In this example, we apply our solvers for linear systems arising from Section 3.3.1.

We assume κ = 1, νm = 1e4.

Table 4.1 shows the number of iterations required for different Picard-type lin-

earization schemes. The symbol nc indicates the linearization does not converge.

We run the experiments with different values of ν . Note that ν only shows up

in front of the diffusion operator A and reducing it, both the convection and the

coupling get relatively stronger.

Table 4.1 shows that when the convection and coupling get stronger, lineariza-

tion (iii) in (4.11) does not always converge to the solution, while the other two

schemes converge. Scheme (ii) in (4.9) behaves like the standard Picard lineariza-

tion. The numbers of steps required to converge by these two schemes are the same

in this example.
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ν = 1 ν = 0.1 ν = 0.01
DOFs (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)
169 5 5 5 8 8 nc 13 13 nc
721 5 5 5 9 9 nc 15 15 nc

2,977 5 5 5 9 9 nc 15 15 nc
12,097 5 5 5 8 8 nc 14 14 nc

Table 4.1: Example 1. Picard-type iteration counts for various values of ν .
We denote by (i) the standard Picard linearization in (3.7), by (ii) and
(iii) the Picard-type linearizations in (4.9) and (4.11), respectively.

If we treat the coupling terms explicitly, the linear system is decoupled. We

solve the Navier-Stokes and Maxwell sub-systems separately. Table 4.2 shows the

iteration counts for the two sub-problems. We solve the Navier-Stokes sub-system

with GMRES and use the least-squares commutator preconditioner. We denote by

its1 the GMRES iterations. The Maxwell system is solved with MINRES with the

block diagonal preconditioner in (4.7). We denote by its2 the MINRES iterations.

When the mesh is refined, more GMRES iterations are required, while the number

of MINRES iterations remains the same. This shows our preconditioner for the

Maxwell sub-system is independent of the mesh size, but the least-squares com-

mutator preconditioner is not (yet it is not very sensitive to a change of the mesh

size). When the convection and coupling get stronger, typically more iterations are

required. The fast convergence of the Maxwell problem can be attributed to the

fact that the eigenvalues appear in two extremely tight clusters.

ν = 1 ν = 0.1 ν = 0.01
DOFs its1 its2 its1 its2 its1 its2

169 28 2 27 2 24 2
721 51 2 48 2 57 2

2,977 58 2 58 2 85 2
12,097 66 2 65 2 99 2

Table 4.2: Example 1. Iteration counts for various values of ν . The coupling
terms are treated explicitly.
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When both the coupling and convection terms are treated explicitly, we show

the number of MINRES iterations required for the two sub-problems. We only

show results for ν = 1, because in the other cases, this linearization scheme does

not converge. When the mesh is refined, we observe that the number of iteration

counts for the Navier-Stokes problem increases, while that for the Maxwell system

remains the same.

ν = 1 ν = 0.1 ν = 0.01
DOFs its1 its2 its1 its2 its1 its2

169 38 2 nc nc nc nc
721 42 2 nc nc nc nc

2,977 44 2 nc nc nc nc
12,097 54 2 nc nc nc nc

Table 4.3: Example 1. Iteration counts for various values of ν . The coupling
and convection terms are treated explicitly.

Table 4.4 shows the inner and outer GMRES iteration counts, using the outer

preconditioner PC in (4.12) and the inner preconditioner PI in (4.13). Here, its

denotes the number of outer GMRES iterations, and itsi denotes the number of in-

ner GMRES iterations. When the mesh is refined, the outer GMRES solve requires

more iterations and the iteration counts are comparable to the iteration counts for

the Navier-Stokes sub-system in Table 4.2. The preconditioner PC is not indepen-

dent of the mesh size, but it is not very sensitive to the change. When ν decreases,

more outer iterations are required. The inner iterations show mesh-size indepen-

dent behavior and they are not sensitive to a change of ν , either.

The real eigenvalues of the preconditioned linear system P̂−1
C K are shown in

Figure 4.1. In this experiment, we take ν = 1 and use a mesh with 721 degrees of

freedom, which corresponds to n = 176, m = 49, n̂ = 368 and m̂ = 128. Accord-

ing to Theorem 8, we expect to see λ = 1 with algebraic multiplicity of at least

n+ n̂ = 544 and λ =−1 with algebraic multiplicity of at least m = 49. In our ex-

periment, we obtain λ = 1 with algebraic multiplicity of exactly 544, and λ =−1

with algebraic multiplicity of exactly 49. For the inner preconditioner, we expect

to see λ = 1 with algebraic multiplicity of at least m̂+ n̂+3m−n = 467 of the pre-
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ν = 1 ν = 0.1 ν = 0.01
DOFs its itsi its itsi its itsi

169 29 3 28 4 26 5
721 54 3 52 3 61 5

2,977 62 3 63 3 94 4
12,097 75 3 70 3 110 4

Table 4.4: Example 1. Inner and outer iteration counts for various values of
ν , using PC.

conditioned linear system P−1
I PC. Numerically, we obtain 469 real eigenvalues

and they are all 1.

Table 4.5 shows iteration counts for GMRES preconditioned with PA. The

number of iteration counts grows up very quickly, as we refine the mesh. This

preconditioning approach is more sensitive to a change of the mesh size, compared

with the previous approaches.

DOFs ν = 1 ν = 0.1 ν = 0.01
169 37 35 33
721 98 97 106

2,977 nc 283 310
12,097 nc nc nc

Table 4.5: Example 1. Iteration counts for various values of ν , using PA.

4.3.2 Example 2: two-dimensional problem with a singular solution

In this example, we apply our solvers for linear systems arising from Section 3.3.2.

We assume κ = 1, νm = 1e4.

Table 4.6 shows the number of iterations required for different Picard-type lin-

earization schemes. Again, we observe that scheme (iii), which is the Picard-

type linearization in (4.11), converges more slowly than the other two linearization

schemes. If the coupling and convection get stronger, this linearization does not

converge. Scheme (ii) given in (4.9) shows a similar behavior to the standard Pi-

card linearization. However, because the convection term is treated explicitly in
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Figure 4.1: Example 1. Plot of the eigenvalues of the preconditioned matrix
P̂−1

C K , DOFs = 721.

this scheme, it will fail to converge if convection is strong. Indeed, for this exam-

ple, taking ν = 0.01, νm = 1e4 and κ = 1e6, scheme (ii) fails to converge, while

the standard Picard linearization still converges.

Table 4.7 shows the iteration counts for the two sub-problems, when the cou-

pling terms are treated explicitly. Here, we also find that the least-squares commu-

tator preconditioner is not completely independent of the mesh size, but it is not

very sensitive to a change of the mesh size. For the Maxwell sub-problem, our

scheme is not sensitive to a change of the mesh size.

Table 4.8 shows the inner and outer GMRES iteration counts, using the outer

preconditioner PC in (4.12) and the inner preconditioner PI in (4.13). The outer
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ν = 1 ν = 0.1 ν = 0.01
DOFs (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)
117 4 4 7 6 6 nc 8 8 nc
521 5 5 9 7 7 nc 10 10 nc

2,193 4 4 9 8 8 nc 10 10 nc
8,893 4 4 9 7 7 nc 11 11 nc

Table 4.6: Example 2. Picard-type iteration counts for various values of ν .
We denote by (i) the standard Picard linearization in (3.7), by (ii) and
(iii) the Picard-type linearizations in (4.9) and (4.11), respectively.

ν = 1 ν = 0.1 ν = 0.01
DOFs its1 its2 its1 its2 its1 its2

117 22 1 20 1 18 1
521 46 1 50 1 40 1

2,193 56 1 84 1 83 1
8,893 63 1 88 1 99 1

Table 4.7: Example 2. Iteration counts for various values of ν . The coupling
terms are treated explicitly.

iterations demonstrate a similar behavior to the iterations of the Navier-Stokes sub-

system in Table 4.7. The inner iterations are not sensitive to a change of the mesh

size and ν .

ν = 1 ν = 0.1 ν = 0.01
DOFs its itsi its itsi its itsi

117 22 3 20 3 18 3
521 46 3 50 3 41 3

2,193 56 3 84 3 89 3
8,893 68 3 106 3 138 3

Table 4.8: Example 2. Inner and outer iteration counts for various values of
ν , using PC.

Table 4.9 shows iteration counts for GMRES preconditioned with PA. Here,

we also find that the iteration does not scale very well when we refine the mesh.
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DOFs ν = 1 ν = 0.1 ν = 0.01
117 27 25 23
521 79 83 73

2,193 217 245 244
8,893 nc nc nc

Table 4.9: Example 2. Iteration counts for various values of ν , using PA.

4.3.3 Discussion

We have considered three different approaches to combining the preconditioners

for the sub-systems. We choose the preconditioner based on how strong the con-

vection and coupling are. If they are not very strong, we take the first approach,

where preconditioners for the sub-systems are combined together directly without

coupling. If the coupling terms are small, we can treat them explicitly. As shown in

Tables 4.1 and 4.6, the linearization scheme (ii) requires the same iterations as the

standard Picard linearization (i). If both of the coupling and convection terms are

negligible, we can treat both of them explicitly as in scheme (iii). When the mesh

is refined, schemes (ii) and (iii) are not completely mesh-independent, but they

are not very sensitive to a change of the mesh size. However, if the coupling and

convection are strong, these schemes will converge more slowly compared with

the standard Picard scheme, or may not converge. We propose to combine the pre-

conditioners for the sub-systems with the coupling terms as in PC. As shown in

Tables 4.4 and 4.8, this approach performs qualitatively similar to the least-squares

commutator preconditioner for the Navier-Stoke sub-problem shown in Tables 4.2

and 4.7. The third approach, where the least-squares commutator is applied to the

entire discretized MHD system, does not work as well as the other two approaches,

as shown in Tables 4.5 and 4.9.
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Chapter 5

Conclusions and future work

5.1 Conclusions
In this thesis, we have studied the numerical solutions of the time-harmonic Maxwell

equations and incompressible MHD equations. For the Maxwell equations, we

have proposed and analyzed an efficient solver based on inner-outer iterations. We

have demonstrated very good scalability in our numerical experiments. For the

MHD equations, we have designed a new finite element discretization. This dis-

cretization yields exactly divergence-free velocity approximations and captures the

strongest magnetic singularities. We have also investigated preconditioning tech-

niques for the discretized MHD equations. We have proposed a preconditioner

based on efficient preconditioners of the Maxwell and Navier-Stokes sub-systems.

Our numerical results clearly indicate optimal convergence rates in two and three

dimensions and show that our preconditioning approach performs reasonably well.

In the following subsections, we summarize the results in the thesis and draw

some conclusions.

5.1.1 The Maxwell problem

We have developed and implemented a fully scalable parallel iterative solver for the

time-harmonic Maxwell equations with variable coefficients, on unstructured com-

plicated domains with heterogeneous coefficients. Our code for preconditioned

iterative solvers is specialized, dealing with the specific features of the discretiza-
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tion, such as the use of edge elements. We use state-of-the-art software packages

(PETSc [7], BoomerAMG [51], Hypre [38], and METIS [62]) to optimize the per-

formance of our solvers. We have also developed our own mesher for structured

meshes, and we use TetGen [91] for unstructured and locally refined meshes.

The preconditioned solvers are based on inner-outer iterations. For outer it-

erations we extend and generalize [43] to the variable coefficient case. The inner

iterations are based on the auxiliary spaces technique developed in [56].

We have shown that the preconditioned matrix is well conditioned and its

eigenvalues are tightly clustered; this is key to the effectiveness of the proposed

approach. As our extensive numerical experiments indicate, the inner and outer

iterations are scalable in terms of iteration counts and computation times, and the

solver is minimally sensitive to changes in the mesh size. Highly varying coef-

ficients result in higher iteration counts, but those barely change as the mesh is

refined.

5.1.2 The MHD problem

We have introduced a new mixed finite element method for the numerical dis-

cretization of a stationary incompressible magnetohydrodynamics problem, with

divergence-conforming BDM elements and curl-conforming Nédélec elements for

the velocity and magnetic fields, respectively. The approximation of the velocity

field is exactly mass conservative. The discrete formulation is well-posed under

a standard small data assumption, and the approximations are convergent under

minimal regularity assumptions.

We have presented an extensive set of numerical tests in Section 3.3. The

numerical experiments show optimal convergence in two and three dimensions,

and indicate that the constant Cd in Theorem 7 stays bounded in all cases, even

though this is not guaranteed by the analysis. Altogether, the computed results

are in excellent agreement with results in the literature, and the method correctly

resolves the strongest magnetic singularities in non-convex domains.

Based on the theoretical results in [82], we expect the same good performance

of our discretization and solution techniques to carry over to the dynamic problem,

provided that the nonlinear terms are treated (semi)implicitly. We also mention the
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issue of higher order elements. Here, too, we do not expect any deviation from our

current computational results. In particular, we expect to see optimal convergence

rates for smooth solutions.

We have done a preliminary study in efficient solvers for the discretized MHD

equations based on Krylov methods. We have investigated a few precondition-

ing ideas. If the coupling and convection are not very strong, we can treat them

explicitly. Then the Navier-Stokes and Maxwell sub-systems are decoupled, and

we apply preconditioners for them separately. If the coupling and convection are

strong, we have developed a preconditioner PC for GMRES based on combining

the preconditioners for the sub-systems and the coupling terms. We have shown

that many of the eigenvalues are well-clustered. We have also investigated a pre-

conditioner for the inner iterations. Our numerical results show that this approach

scales reasonably well, though is not fully scalable.

5.2 Future work
The scope of our work can be broadened in a number of directions:

1. Our results for the solution of the Maxwell equations apply to low wave num-

bers; dealing with high wave numbers is a primary challenge of much interest.

If the wave number is high, the inf-sup constant for our mixed formulation is

large [32], which results in numerical difficulties. Therefore, solving problems

with high wave numbers exhibits several complications that need to be dealt

with using a possibly different methodology.

2. In our parallel solver for the Maxwell equations, the meshing part is sequen-

tial and each processor stores the entire mesh. A dense mesh may require high

memory resources. Integrating our solver with parallel distributed mesh genera-

tors could relieve the memory consumption and improve the performance of our

solvers. Parallel mesh generation methods require the partitioning of the mesh

in a way that accommodates load balancing. However, this goal may not always

accommodate other important factors, such as the quality of the mesh. As a re-

sult, the overall computational time may increase. Optimizing these issues is a

challenging and involved task.
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3. Our preconditioners for the MHD equations perform reasonably well, but are

not fully scalable. Deriving effective and scalable preconditioners remains an

item for future research. While there are efficient solution techniques for the

Navier-Stokes equations as well as for the curl-curl operator, the primary chal-

lenge here is how to deal with the skew-symmetric coupling terms, especially

when coupling is strong.

4. While for the discretized Maxwell problem we have a parallelized and efficient

code, we do not have such a code yet for the discretized MHD equations. When

the mesh is refined, the size of the resulting linear system increases very quickly

and efficient parallel implementations are crucial for obtaining a solution within

a reasonable computational time.

5. Another item for future work is the derivation of a non-linear solver for the

MHD equations, which potentially converges more rapidly than the Picard it-

eration used in our experiments. As we have pointed out in Remark 4 of Sec-

tion 3.2.2, developing the Newton iteration for our discretization is somewhat

delicate and is the subject of ongoing investigation.

6. For the preconditioning techniques for the discretized MHD problems, we pro-

vide some preliminary eigenvalue analysis. The complete eigenvalue analysis is

very challenging, because it involves complicated generalized eigenvalue prob-

lems including the coupling terms. A complete analysis may require a better

understanding of the differential properties of the coupling terms.
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