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Abstract

This paper addresses the problem of recognizing specific objects in very large

datasets. A common approach has been based on the bag-of-words (BOW) method,

in which local image features are clustered into visual words, providing memory

savings through feature quantization. In this paper we take an additional step to

reducing memory requirements by selecting only a small subset of the training

features to use for recognition. This approach, which we name Robust Feature

Selection (RFS), is based on the observation that many local features are unreliable

or represent irrelevant clutter. We are able to select “maximally robust” features

by an unsupervised preprocessing step that identifies correctly matchingfeatures

among the training images. We demonstrate that this selection approach allows an

average of 4% of the original features per image to provide matching performance

that is as accurate as the full set in the Oxford Buildings dataset. In addition, we

employ a graph to represent the matching relationships between images. Doing

so enables us to effectively augment the feature set for each image by merging

them with maximally robust features from neighbouring images. We demonstrate

adjacent and 2-adjacent augmentation, both of which give a substantial boost in

recognition performance.
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Preface

A version of the robust feature selection method outlined in Chapters 4 and 6has

been published. Turcot, P. and Lowe, D. (2009), “Better matching with fewer fea-

tures: The selection of useful features in large database recognition problems.”

2009 IEEE International Conference on Computer Vision Workshops. All imple-

mentation of methods presented and testing was conducted by Panu Turcot. The

manuscript was written by Panu Turcot with contributions by David Lowe.
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Chapter 1

Introduction

1.1 Motivation

Making use of computer vision algorithms to perform image search would allow

for content-based retrieval, in which images themselves could be used to findaddi-

tional images and any associated information. Image-based retrieval wouldallow

a user with a mobile phone camera to easily obtain information of a location or

object simply by taking a photo and using the photo to search the internet. A smart

shopper in a store might search the internet for similar products, price compare

with online retailers and find reviews on an item they find in the store. A curi-

ous tourist might want more information on a local attraction, or help identifying

something they encounter in their travels.

Internet scale image search is challenging due to the amount of data available.

Resources such as online collections contain hundreds of millions of images and

are open to the public. Efforts are underway to create sets of millions of hand-

labelled images of thousands of objects [7]. When we consider the amount of

video available on the internet, the amount of data is further increased. Algorithms

able to work on this scale require new techniques and new frameworks.

Current image search methods used by popular internet search enginesare ef-

fectively text-based retrieval methods making use of web-page content, and image

file names to determine image search results. In order for users to search for an im-

age, the subject of the image must be first translated to text in order for an effective
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query to be formulated, e.g., the name of a person or location, a description of the

image contents. While this allows users to find example images on a known topic,

identification of unknown image content becomes difficult. In order for content-

based retrieval of images on the internet to be possible new image search methods

need to be developed.

In this work, we address the task of image retrieval on large collections of

images which we refer to as large database image recognition. Similar to text

document retrieval, image recognition refers to the task of correctly identifying

matches from a large database given a query. The query consists of animage which

contains an object of interest and correct matches from the database should contain

the same object of interest. We show that feature selection is an effective technique

for improving recognition performance while reducing memory requirements.This

is achieved by leveraging the large amount of visual data to identify and augment

robust features in object images.

1.2 Background

One method which has proven to be successful at object recognition waspresented

by Lowe [15]. Lowe’s Scale-Invariant Feature Transform (SIFT) makes use of

local scale and orientation invariant image descriptors to perform matching,mak-

ing it robust to viewpoint changes, as well as occlusions. A final verification step

consisting of a geometric check of tentative correspondences formed during the

descriptor matching phase results in a highly reliable set of matched features.

As the number of images increases, the method becomes less suitable as mem-

ory requirements increase. Lowe uses a k-d tree and a best-bin first search strategy,

resulting in sub-linear increase in search times, however all descriptors must re-

side in main memory in order for fast searching to be possible. When the number

of database descriptors reaches the billions, storage of all the descriptors becomes

difficult.

A partial solution to this problem was proposed by Sivic and Zisserman [27]in

which nearest neighbour (NN) searching through descriptor space is replaced with

a quantization of the descriptor space. This method is now commonly referred

to as bag-of-words (BOW) matching. In theBOW matching framework presented
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by Sivic and Zisserman, descriptors are clustered using k-means and cluster cen-

ters are stored. These cluster centers, called visual words, form what is referred

to as a visual vocabulary, with each word defining a Voronoi region in descriptor

space. The visual vocabulary effectively now becomes the basis for matching be-

tween database and query images. Descriptors mapped to the same visual word

approximate a K nearest neighbour (K-NN) voting scheme.

Following image descriptor assignment to visual words, individual descriptors

are discarded. As many methods still employ theSIFT descriptor, this memory

savings corresponds to the compaction of a 128-dimensional vector (128bytes)

into a single integer of a few bytes. Geometric information associated with each

descriptor must still be stored.

For matching, Sivic and Zisserman employ a common text-retrieval method

known as term frequency inverse document frequency (tf-idf ) ranking [2] and

demonstrate that it is suitable for image recognition. While the exact formulation

of term frequency (tf ) and inverse document frequency (idf ) terms in the ranking

can vary, they represent word frequencies in documents and a weighting to reduce

the impact of common visual words respectively. Like many feature based meth-

ods, final recognition is improved using a geometric check of the inital matches

provided by thetf-idf ranking.

The work from Sivic and Zisserman [27] set the basic framework forBOW-

based large database image recognition. Many advancements have been proposed

to improve recognition performance, speed and memory use. However, these meth-

ods consist of the same key components:

• Visual vocabulary generation

• Visual word assignment

• tf-idf matching

• Geometric re-ranking
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1.3 Contributions

In this thesis we present Robust Feature Selection (RFS), a method to further reduce

the amount information stored from each image, while still maintaining strong

recognition performance for objects of interest, through the preservation of only a

minimal set of image features, which we refer to asmaximally robust features.

We define a maximally robust feature to be an image feature which has proven

to be robust enough to be matched with a corresponding feature in the same object,

stable enough to exist in multiple viewpoints, and distinctive enough that the cor-

responding features are assigned to the same visual word. Sample images showing

maximally robust features followingRFSare shown in Figure 1.1.

Our method builds on that of Philbin et al. [23], employing a BOW frame-

work andtf-idf ranking. ABOW image database is built using the full feature set.

Following construction, database images are used as queries in order to discover

additional viewpoints of the objects contained in these images. For each database

image, the besttf-idf matches are geometrically validated through estimation of

epipolar or affine geometry combined with additional image feature constraints. In

cases where a match between images is found, geometrically consistent descriptors

are labelled and retained while all other descriptors are discarded. In cases where

there is limited memory, the number of features used to represent an image can be

effectively throttled to a chosen memory size usingRFS.

In addition to feature selection, this pre-processing step provides an effective

way to discover relationships between database images containing the same ob-

ject. Rather than discard this information, we store discovered pairwise matches

between images in a graph structure which we later use to improve image recogni-

tion performance.

In our experiments, testing is conducted on the Pasadena Buildings [1] andOx-

ford Buildings [23] datasets using a cross validation procedure. Our results show

that on the Oxford Buildings dataset,RFS eliminates 97% of image descriptors

while maintaining recognition performance. Using the image matching graph, we

achieve significantly improved recognition performance without necessitating the

storage of any additional features. Results are also presented for the University of

Kentucky [20] object dataset.
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Figure 1.1: Original image features (left) and those preserved by robust fea-
ture selection (right). Transient objects in the foreground and non-
distinctive areas of the scenes do not contain robust features.

1.4 Organization

This thesis presents our method for extracting and using maximally robust features

as follows. Chapter 2 outlines previous work done in the field of large database

image recognition. Section 2.1 presents theBOW framework used in our method

used to generate our initial matches. Robust Feature Selection and the geometric

validation are discussed in Chapter 3 and Chapter 4. Chapter 5 discussesthe image

matching graph as well as introduces a new method making use of matching rela-

tionships in aBOW framework. The evaluation procedure is provided in Section

5



Chapter 6 and results are presented in Section Chapter 7.
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Chapter 2

Previous work

2.1 Bag-of-words matching

TheBOW framework developed by Sivic and Zisserman [27] is built from a group

of cluster centers in descriptor space, referred to as visual wordsW = {w1,w2, ...,wi}.

Given a new imageI, image descriptors{d1,d2,d3...} are extracted. Assignment

of descriptors to visual words is performed using a nearest word search:

d → w∗ = argmin
w

dist(d,w) (2.1)

As the number of visual words increases, visual word assignment can become

a computational bottleneck. In such cases, approximate nearest word search can

be used which provides significant speedup over linear search while maintaining

high accuracy. Our implementation of theBOW framework employs the FLANN

approximateNN library developed by Muja and Lowe [19].

While not used in the initialBOW matching process, geometric information

associated with image descriptors can be used on a limited subset of candidate

images in a secondary re-ranking of initial query results. The set of cluster centers,

image word occurrences and descriptor geometric information form aBOW image

database.

While the visual words used in this and other work consist of K-Means cluster-

ing of descriptor space using Euclidean distance, it should be noted that this choice

7



of vocabulary is not limited to this formulation. Word assignment in theBOW

framework can be conducted using any method that converts high dimensional de-

scriptors into a single index, such as locality sensitive hashing [12].

2.1.1 Querying BOW databases

Images used to query the database follow the same word assignment process and

are converted into visual word occurrences. In order to compare imageword oc-

currence histograms, word occurrences are converted totf-idf weights,xi j:

xi j =
ni j

∑i ni j
︸ ︷︷ ︸

tfi j

log
N

∑ j |ni j > 0|
︸ ︷︷ ︸

idfi

(2.2)

whereni j is the number of occurrences of wordi in image j and N is the total

number of images in the image database. In theidf term ∑ j |ni j > 0| denotes the

number of images in which wordi is present.

Tf-idf weights are used in a vector space model, where query and database im-

agesI are represented by a vector made up oftf-idf weightsI j = [x1 j,x2 j,x3 j, ...,xi j]

which is then normalized to unit length.

Ī j =
I j

∥
∥I j

∥
∥

2

= [x̄1 j, x̄2 j, x̄3 j, ..., x̄i j]

Distance between images is calculated using theL2 distance metric or cosine

similarity, which are equivalent for length-normalized vectors. Two images that

contain no shared visual words are orthogonal and by default have adistance of 2.

dist(ĪA, ĪB) = ‖(ĪA − ĪB)‖
2
2 (2.3)

= ĪA
T ĪA −2ĪA

T ĪB + ĪB
T ĪB

= 2−2ĪA
T ĪB

= 2−2∑
i

¯xiA ¯xiB (2.4)

While (2.4) is in fact a form of weighted histogram intersection, it is important

to note that the number of visual words greatly affects the behaviour of thematch-
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ing method.Tf-idf weight vectors used to represent images have a length equal to

the number of visual words,|W |. As each image generates roughly 3000 descrip-

tors and it is common for|W | to approach one million in the field of large database

image recognition, thetf-idf weight image representation is a sparse vector.

As a result, it is common for a given query image to not intersect a large por-

tion of the image database, a property which allows for querying speed as only

intersections need be computed by (2.4). In effectBOW matching with a very large

visual vocabulary should be interpreted as a method for performing approximate

nearest-neighbour search of individual descriptors.

To speed up querying, theidf term idfi and the normalizing factor fortf-idf

weight vectorsI j of database images are precomputed and stored.

As images contain often repeated and therefore uninformative descriptors, a

stop-list of the most common words is generated and those words suppressed, a

technique shown by Sivic and Zisserman to be effective at improving recognition

performance.

Our tests show that the effect of the stop-list ontf-idf performance (Figure 2.1)

varies depending on the dataset and vocabulary size. For simplicity, a stop-list size

of 1% of the visual vocabulary was used in all reported results as this appeared to

perform well in most cases.

2.2 Scaling bag-of-words

Nister and Stewenius [20] demonstrated that atf-idf based approach can scale up

to a large number of images with the use of a larger visual vocabulary. This was

achieved using recursive k-means clustering to form a vocabulary treecontaining

up to 16 million leaf nodes. The increased quantization resulted in more accurate

matches but came at the cost of a loss of generality; small changes to the image

descriptor could cause it to be quantized into a different visual word resulting in a

missed match. To counteract this, higher level nodes in the tree were givenweights

as well, allowing a coarser quantization to influence thetf-idf score. Despite this

weighting of higher level nodes, performance decreased as the numberof visual

words was increased above 1 million suggesting 1 million visual words as beinga

good compromise between over and under quantization.
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Figure 2.1: Performance oftf-idf ranking based on the Oxford and Pasadena
Buildings datasets when using 200,000 and 1,000,000 visual words.
Recognition varies noticeably with the size of the stop-list used.

Nister and Stewenius also improved search times inBOW matching through the

use of an inverted index data structure to store word occurences. With aninverted

index, a list of images is indexed based on visual words and only databaseimages

containing the same visual words as the query need be accessed. Exploiting the

sparsity of a larger number of visual words, scores could be computed much more

efficiently and fast matching from a set of thousands of images was possible.

Also using vocabulary trees, Schindler et al. [26] showed that the selection of

features which maximized information gain in the tree allowed for the construc-

tion of more discriminative visual vocabularies. To do this, a tree was constructed

to evaluate how informative features were at discriminating between images of

similar locations. A new tree was then trained using only these informative fea-

tures, improving overall recognition performance. The feature selectionmethod of

Schindler et al. relies on labelled images in order to perform informative feature

selection and is focused on improving the performance of the visual vocabulary.

All features extracted from images are still used.

Philbin et al. [23] compared a vocabulary tree to a flat vocabulary of 1 million

words using an approximateNN algorithm to allow for efficient clustering. Their

results showed that a flat clustering of the descriptors allowed for a more uniform

10



partioning of the descriptor space and outperformed a vocabulary tree.Again, re-

sults suggested that a vocabulary of 1 million visual words yielded the best results,

with vocabulary sizes up to 1.25 million being tested. Thetf-idf framework em-

ployed by Philbin et al. was the same as Sivic and Zisserman.

Evaluation of their research was conducted on the original University ofKen-

tucky dataset but also they introduced a new dataset which has proven tobe the

benchmark on which much future work has been evaluated: the Oxford buildings

dataset. Furthermore, to demonstrate the scalability of this method, a background

dataset of 1 million images was used while still maintaining fast search times. Our

work builds directly upon the method presented by Philbin et al.

2.3 Multiple word assignment

As the number of visual words increases, the accuracy of visual vocabularies as

an approximation to theK-NN improves (Figure 2.2). However, the recall of the

NN search decreases as there is a loss in generality: small perturbations indescrip-

tors can cause them to be mapped to neighbouring visual words due to verysmall

Voronoi regions. One solution proposed was to allow for multiple word assign-

ment: rather than link a descriptor to a single visual word, store entries in the index

for multiple words (Figure 2.2). Nister and Stewenius’s use of higher levelnodes

in the vocabulary tree was a form of multiple assignment, however as the tree struc-

ture was generated in a greedy fashion, these higher level nodes wereeffectively

a small visual vocabulary and did not have the improved accuracy of multipleas-

signment on a flat clustering of the descriptor space. Philbin et al. [24] adapted

their earlier work [23] to include multiple assignment. Their approach was to per-

form a weighted assignment of descriptors to the nearest 3 visual wordsresulting

in improvements to recall without a loss in precision.

Jégou et al. [10] introduced a concept calling Hamming embedding (HE) which

allowed for smaller vocabularies (e.g., 200,000 visual words) to performas well as

of 1 million word vocabularies. This was done through further encoding ofa de-

scriptor’s position within a visual word using a binary code. Query descriptors

were then matched to database descriptors by selecting all descriptors in thesame

visual word within a fixed hamming distance of the query binary code. The bi-
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Figure 2.2: A comparison ofBOW to K-NN. A query descriptor (blue) is
matched to database descriptors (x) based on Voronoi regions repre-
senting visual words.Top: Visual vocabulary with small vocabulary;
Middle: Visual vocabulary with large vocabulary and multiple assign-
mentBottom: K nearest neighbours of the query descriptor.
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nary code effectively further quantized each visual word and the hamming distance

threshold acted as a criterion for multiple assignment. Later, Jégou et al. [11] in-

corporated a multiple assignment, making use of a variable number of words for

assignment. When combined with Hamminng embedding, it was shown that multi-

ple assignment resulted in improved recognition over Hamming embedding alone.

Despite a smaller vocabulary, the variable word multiple assignment employed by

Jégou et al. outperformed the multiple assignment scheme used by Philbin et al.

when vocabularies were trained on an unrelated set of images. We would like to

note that direct comparison of results between methods is difficult due to the dif-

fering vocabulary sizes and training images used.

Multiple assignment, while proven to be effective at improving performance

[24] [21] [10] is also a trade-off. When conducted on database descriptors, the

size of the inverted index is increased as well as the time needed to computetf-idf

distances. Due to memory restrictions, a popular approach has been the use of mul-

tiple assignment only on the query image descriptors, which increases recognition

accuracy at the cost of some extra computation, but without increasing theindex

size [21] [11].

2.4 Vocabulary generation

Wherever possible, the visual vocabulary should be generated from asample of

images of the objects attempting to be matched [23] [21]. Philbin et al. [23] showed

that for the Oxford buildings dataset, recognition of buildings decreasedby over

25% when the visual vocabulary was trained on a separate set of images.In this

case, the training images were also of buildings of similar architectural style found

in Paris.

While many methods are evaluated using vocabularies generated from the set

of images being tested [27] [20] [6] [24], we adopt the approach of Jégou et al.

[11] and use a vocabulary from an independent set of images taken randomly from

Flickr. Using an independent set of images is motivated by the fact that it is not

always possible to know the test images at training time, such as when images are

added incrementally to an existing database.

Jégou et al. [11] employ exact k-means for visual vocabulary generation, and
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showed that the use of exact k-means provides a more uniform quantization of

descriptors than hierarchical methods, which improves average query time. As

vocabulary generation consists of clustering millions of descriptors into hundreds

of thousands of visual words, the use of exactNN is very computationally expensive

and no clear benefit over using approximateNN has been demonstrated.

As approximateNN libraries such as FLANN1 offer fast parameter tuning, high

NN accuracy and significant speedups over linear search, the use of approximate

methods is highly favorable for vocabulary generation. It should be mentioned that

visual word assignment is also conducted using approximateNN [10][11] [23] [6]

[24] in order maintain fast query times. While Jégou et al. are able to learn a graph

structure which outperforms FLANN in fast visual word assignment, their method

requires manual parameter tuning and longer training times.

2.5 Geometry

The intial spatial re-ranking conducted by Sivic and Zisserman [27] consisted of a

consistency check of the neighbouring regions around each correspondence. Local

neighbourhoods surrounding matched features in the query and database images

were searched and consistent neighbors from both images voted towards that im-

age as a valid match. While simpler than computing an affine mapping between

images, it was found by Sivic and Zisserman that a local neighbourhood check was

sufficient.

Philbin et al. [23] introduced fast spatial verification based on a single corre-

spondence between two elliptical regions generated by an affine invariant Hessian

regions [16]. The overall transform between two images was limited to vertical

shear, scaling in x and y, as well as translation and was computed by transform-

ing both elliptical regions to a unit circle while preserving the vertical orientation.

Using a single correspondence allowed for explict checking of every possible cor-

respondence in a matched pair of images, making geometry checking deterministic.

The limitations of this single correspondence geometry checking is that it reliedon

the use of an affine invariant interest point detector and was limited to a 5 degree

of freedom (DOF) model.

1http://www.cs.ubc.ca/∼mariusm/index.php/FLANN/
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Jégou et al. [10] successfully integrated feature scale and orientation intothetf-

idf ranking process using a method they called weak geometric constraints (WGC).

When ranking images usingWGC, severaltf-idf scores are computed for each im-

age based on estimated scale and orientation changes. In this way, features with

consistent scale and orientation shifts provide evidence for a given imageand in-

consistent features do not affect thetf-idf score. To our knowledge, this is the

only work which has attempted to integrate geometric information directly into the

tf-idf ranking stage ofBOW matching. All other work has focused on using ge-

ometric information only at the re-ranking stage. Suprisingly, naı̈ve use ofWGC

results in decreasedtf-idf performance, and only when priors on scale and orien-

tation changes are introduced does thetf-idf ranking benefit fromWGC. While

our matching method does not incorporateWGC into thetf-idf distance computa-

tion, we do make use of a similar filtration method based on scale and orientation

differences to speed up geometric verification.

Perdoch et al. [21] approached geometric information with the mindset of

memory reduction. The same way clustering was used to quantize image descrip-

tors, a method for quantizing geometric data associated with image features was

employed. Quantization was achieved through the formation of a geometric vocab-

ulary which was used to represent affine invariant regions surrounding each feature.

In doing so, Perdoch et al. was able to quantize geometric information to as few as

8 bits with a negligible reduction in performance, resulting in significant memory

savings for fast searching of a database of 5 million images.

One property used by various methods was that objects in many images found

in online collections are either upright or rotated by multiples ofπ/2. J́egou et al. as

well as Perdoch et al. leveraged this fact to improve results. Perdoch etal. showed

that if a gravity vector assumption is made, recognition performance improved

suggesting many photos found in online collections are already correctly oriented.

2.6 Query expansion

Chum et al. [6] successfully improved recall through the successful application of

query expansion, a document retrieval technique, to image retrieval. Their method

extended the work of Philbin et al. [23] by making use of the top ranked initial
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tf-idf image to formulate new queries which in turn generate new matches in the

database. Following geometric verification of the multiple queries, a final rerank-

ing was conducted aggregating the multiple sets of results.

In order for query expansion to succeed, a valid match to the query image must

be established through strict geometric verification; naı̈ve use of thetf-idf matches

to generate a synthetic query results in lowered recognition performance.While

more advanced synthetic query generation schemes were proposed, thesimplest

method proposed was called average query expansion. In average query expan-

sion, all geometrically validated images are averaged together to generate a single

additional query. In all cases, the success of query expansion at improving recall

hinges on a strong initialtf-idf ranking to provide positive matches for synthetic

query generation and requires multiple iterations oftf-idf searching and geometric

re-ranking at query time.

We propose a similar strategy to improve BOW matching called image aug-

mentation. Unlike query expansion, image augmentation improves initialtf-idf

results and offers recognition performance improvements without requiring addi-

tional queries.

2.7 Object discovery

Philbin and Zisserman [22] employed their earlier work [23] in order to perform

unlabelled object discovery from a set of images. This was done by discovering

matching pairs of images within the image collection and storing the results in a

graph structure called a matching graph which we also use in our approach. Each

image was used to query the image collection and a geometric consitency check

used to validate matches. Following construction, clustering was performed on the

graph to isolate interconnected groups of images into distinct objects or scenes.

The result was that groups of related images, usually depicting a common object

or scene in the image collection, were identified.

Chum and Matas [3] presented a similar concept for object discovery however

focused instead on fast computation of the graph. Rather than an exhaustive search,

initial image pairs were determined through the use of a fast hashing-basedmatch-

ing. In this way, it is possible to seed the matching graph with candidate images.
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While it is possible that some object clusters will be missed, they showed that large

clusters will be found with high confidence. Furthermore, no post-processing was

conducted on the graph, resulting in very large interconnected groups of images.

In both cases, the purpose of the matching graph was object discovery inlarge

unlabelled image collections. While our matching graph construction is very sim-

ilar to that of Philbin and Zisserman, we show that the relationships discovered

during graph construction can be used to improve recognition in a dataset through

our image augmentation method.

The approach taken by Gammeter et al. [8] is again similar to that of Philbin

and Zisserman [22], however rather than generating a large image collectionthey

used image meta-data to generate many small collections before attempting to iden-

tify objects. This was done by generating a kd-tree using GPS coordinatesand

subdividing images based on geographic location, simplifying the task of extract-

ing objects by removing many irrelevant images. As part of the object discovery

method, a bounding box for objects is estimated in images and they show that dis-

carding descriptors outside the bounding box results in a 33% reduction in the im-

age index size without a significant drop in performance. While this work performs

one type of feature reduction, we show that by combining the matching graphwith

feature selection, we can achieve improved recognition results while reducing the

image index size by over 95%.

2.8 Relevance

A summary of relevant work is chronologically arranged in Table 2.1. While awide

array of methods improve and refine image recognition using theBOW framework,

few approaches focus on reducing the memory requirements which ultimately de-

termine the ability of this framework to scale to larger datasets. As image descrip-

tors and geometric information associated with individual image features haveal-

ready been compressed effectively [21], the solution to further memory reduction

in a feature based approach is to reduce the number of features stored inthe index.

In this work, we apply feature selection to theBOW framework. In doing so

we reduce the size of the index stored through the elimination of features which

do not aid in the task of object recognition. While some approaches have begun
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to experiment with the removal of non-informative features using object bounding

boxes, effectively identifying important sub-regions of images, we focus instead

on feature level selection and attempt to preserve a minimal set of features needed

to properly represent an object.

Such an approach has successfully been used by Li and Kosecka [13] in loca-

tion recognition, allowing for accurate recognition with as few as 10% of the origi-

nal descriptors. However, Li and Kosecka make use of the originalSIFT descriptors

and therefore the question as to whether aggressive feature selection can be suc-

cessfully applied to theBOW matching framework remains open. Furthermore, like

Schindler et al., the work of Li and Kosecka requires the location associated with

every image to be known in order to perform feature selection.

One important focus of this work is that we make no assumptions that image

collections will be annotated with class information and do not rely on class labels

to identify features, but instead rely on our unsupervised matching technique. Fur-

thermore, while it has been shown that assumptions on image scale and orientation

can be used to improve performance, we attempt to make no such assumptions

about the data.
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Table 2.1: Summary of related researching employing theBOW framework

Year Author
Vocabulary Vocabulary Multiple Scoring

Geometry
size type assignment method

2003
Sivic and Zisserman [27]

60K KM
-

tf-idf
local neighbourhood

- check

2006
Nister and

10K - 16M HKM
weighted high Hierarchical

-
Stewenius [20] level nodes tf-idf

2007 Schindler et al. [26] 1M
Discrim.

-
weighted

-
HKM votes

2007 Philbin et al. [23] 50K - 1.25M
AKM

- tf-idf
3-5 degree of freedom (DOF)

& HKM from 1 corresp.

2007 Chum et al. [6] 1M AKM - tf-idf
3 DOF

from 1 corresp.

2008 Philbin et al. [24] 10K - 1M AKM nearest 5 tf-idf
5 DOF

from 1 corresp.

2008 Jégou et al. [10] 20K - 200K AKM
Hamming tf-idf

affine
embedding + WGC

2009 Gammeter et al. [8] 500K AKM - idf homography

2009 Perdoch et al. [21] 1M AKM
nearest 5

tf-idf
geometry quantization

(query only) + gravity vector

2010 Jégou et al. [11] 20K - 200K
KM Hamming tf-idf

affine
(AKM query) embedding + WGC

KM - (Exact) K-means
AKM - Approximate K-means. K-means generated using an approximateNN algorithm.
HKM - Hierarchical K-means. Vocabulary trees using recursive K-means clustering.
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Chapter 3

Feature selection

In this work we examine the effectiveness of feature selection in the context of

BOW image matching. We define feature selection to be the task of selecting a

subset of image featuresIsub for an image which provide an accurate and efficient

representation of the image to allow for later retrieval throughtf-idf matching.

Isub ⊂ I : { f1, f2, f3...}

The use of a stop-list is a form of feature selection in which only features from

uncommon visual words are preserved. In the case of a stop-list, feature selection

is conducted based on visual words. The number of features preserved for each

image depends entirely upon the distribution of visual words in the database and

the individual image.

In order to conduct feature selection on an image level, we must have a method

by which to differentiate individual image features according to some metric of

robustness. An ideal method would produce a ranked list of the most robust fea-

tures in an image and would allow the user to throttle the number of features to

be preserved from each image. In cases where more memory is available, astrin-

gent number of original image features can be preserved whereas in situations with

large memory restrictions, the number of features to be preserved from each image

can be small.

20



3.1 Maximally robust features

When generating features from an image, many image features which are not ro-

bust are extracted. When using interest point detectors, interest pointsthat are not

present in multiple viewpoints, which we call unstable interest points, are a source

of non-robust image features. Feature descriptors that are uninformative and occur

frequently in many images are also considered non-robust. Non-robustfeatures

could also include those on transient occlusions, such as a person or vehicle in the

foreground.

Rejection of useless features is motivated by the fact that occlusions and un-

stable object features will likely exist in only a single image, while robust features

are likely to be found in more than one image of the same object or location. Iden-

tification of the features that are robust to change of view can be performed by

determining which features exist in multiple views and are geometrically consis-

tent with one another. While doing so requires that at least two views of a given

object or location exist in the image database prior to robust feature selection, for

large datasets this condition will normally be met. We discuss the special case of

images with single views (singleton images) in Section 3.3.

In large database image matching applications, it is assumed that images may

not be labelled. Therefore, RFS is fully unsupervised.

3.2 Implementation

In order to perform robust feature selection, aBOW image database containing

the full feature set is constructed. Each image in the database,I j, is used as a

query to perform standardtf-idf search, ranking the remaining database images.

The highestM ranked images are verified for geometrically consistent features,

validating possible matches generated by the initialtf-idf ranking. If a match is

deemed present, only those features which pass the geometric consistencycheck

are flagged as robust. The overall robustness score of a given imagefeature fi in

query imageI j is simply the number of images in which geometric consistency was

established using that feature:
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R( fi) =
M

∑
α=1

1 fi matchedIrank−α

0 otherwise
(3.1)

whereR( fi) defines a robustness function for a given image featurefi andIrank−1, Irank−2, Irank−3

represents the first, second and third besttf-idf matches to imageI j respectively.

For our tests, the number of ranked images to check geometrically was set to

30 (M = 30). The value of theM parameter affectsRFS by influencing search for

possible matches. Higher values will lead to longer training times due to increased

geometric verification, however they will permit more images to influence feature

selection. Lower values ofM can result in missed matches, possibly resulting in

images failing to find a suitable match.

During RFS, stop-listed visual words are excluded for geometric verification

and subsequently never get labelled as robust. This choice is motivated thefact that

stop-lists are an effective method for improvingtf-idf performance. We observed

that inclusion of the stop-listed visual words inRFS results in a decrease in final

recognition performance.

3.3 Singleton images

Images without any geometrically valid matches are considered singleton images.

In the context of object discovery in large image collections, singleton imagesrep-

resent images containing no commonly occuring objects or scenes of interest which

we call non-object images. As such descriptors from these images can bediscarded

allowing for further memory savings.

In applications where isolated single views of an object may be important, it

will become necessary to preserve some features from singleton images. To avoid

the memory requirements of preserving all features, a subset of the largest-scale

image features in each image can be kept. This is equivalent to preserving low

resolution copies of singleton images, with the resolution chosen to achieve a target

number of features for each image.

It would also be possible to select a subset of singleton image features based

on other criteria, such as selecting features which are robust to affine or other dis-

tortions of the image [25].
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3.4 Labelled and annotated data

In cases where image labels, or some other form of image annotation is present, im-

age metadata can be used to speed up or improveRFS. In this caseBOW databases

would be constructed using a subset of images with similar image labels or image

properties. In the work of [8], GPS coordinates are used to subdividethe full set

of images into geographic regions. Similarly,BOW databases for individual classes

can be generated and used forRFS.

Alternatively, class labels can be used to re-rank initialtf-idf matches, allowing

for images from the same class to be preferentially used for geometric validation.

In the case where there are many labelled images from the same class, those with

the besttf-idf score can be used for validation. If few labelled images are avail-

able, robust feature selection will still allow for object discovery from theunla-

belled images by validating features against the toptf-idf matches. This method is

effectively identical to unlabelled robust feature selection, with an improved initial

tf-idf ranking.
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Chapter 4

Geometric verification

The use of visual words to represent image descriptors between images introduces

unique challenges to geometric verification of image features. OurBOW framework

makes use of theSIFT descriptor [15] and the visual vocabulary is a quantization of

SIFT descriptor space. In traditional descriptor-based matching usingSIFT, point

correspondences between query and database images are determined using nearest

neighbor search, often combined with a distance ratio check [15]. This typically

results in a rich set of putative correspondences, which we will refer toasSIFT cor-

respondences.SIFT correspondences typically contain few false correspondences

resulting in a high inlier ratio, simplifying the task of geometric verification.

In a BOW framework, only visual words are available to differentiate features.

Correspondences are established between all features that share thesame visual

word with no further information by which to filter these initial correspondences.

As a result, each feature in the query image can match multiple features in the

database image resulting in multiple pairwise correspondences, only one of which

is correct. This problem is compounded when multiple features in the query image

share the same visual word. The resulting many-to-many point correspondences

greatly increase the number of false correspondences in the image posing difficul-

ties in the geometric verification.
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SIFT: Inliers 45 of 93 ( 48.4% ) [distRatio = 0.85]

BOW: Inliers 9 of 23 ( 39.1% ) [stoplist words excluded]

Figure 4.1: Results of geometric verification of traditional descriptor-based
feature matching (top) where query image features are matched to at
most a single database feature (one-to-one).BOW-based feature match-
ing (bottom) allows multiple query image features to match multiple
database features (many-to-many).

4.1 Correspondence ranking

Geometric verification is performed using a modified version of the LO-RANSAC

algorithm [5] to determine either the epipolar or affine geometry between images.

In order to improve our chances of finding a correct model using LO-RANSAC, a

subset of correspondences with the highest probability of containing aninlier are

used for sampling and verification.
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Figure 4.2: Examples of possible bipartite graphs found in bag of words cor-
respondences. Nodes represent features from the query image (blue)
and database image (yellow) while edges represent a shared visual word
between query and database feature.

A feature in the query image should only match a single feature in any given

database image. When a query image feature shares a visual word with two database

image features, two possible correspondences are generated, each with at best a

50% probability of being correct.

In the case of a matching betweenα query andβ database features, we ap-

proximate:

P( inlier )≈
1

αβ
(4.1)

While this represents only an upper bound on the true probability of finding an

inlier in a group of correspondences, it gives a useful ranking of theprobability

for any pair being a correct correspondence. In our experiments, models were

generated using the 200 highest ranked correspondences. This choice was made

primarily to improve processing times through the preservation of a relevant subset

of correspondences. It was observed that in near duplicate images aswell as images

with highly repeated structure, the number of putative correspondencescould be in

the thousands, significantly decreasing run time.

Figure 4.3 shows an image pair with a large number ofBOW correspondences.

Increasing the number of correspondences allowed for LO-RANSAC toreliably

find the correct solution in fewer iterations. The downside however is the compu-

tation time needed to validate candidate models, which increases linearly with the
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BOW: Inliers 193 of 676 ( 28.6% )

Figure 4.3: Example image pair from the Pasadena Buildings dataset con-
taining many correspondences.

number of correspondences (Figure 4.4). The increased variability in the number

of inliers found in the 600 inlier case is due to LO-RANSAC occasionally failing

to converge onto a valid solution. Examination of the correspondences confirms

that smaller subsets of ranked correspondences do contain a higher proportion of

inliers (Figure 4.5).

4.2 Model fitting

As previously mentioned, we consider both epipolar and affine geometry between

images during the geometric verification step using the LO-RANSAC algorithm.

The normalized 8-point algorithm [9] is used for epipolar geometry estimation

from the initial sampling, and a least-squares approximation is used for the local

optimization parameter estimation. Following LO-RANSAC, a least squares solu-

tion is estimated from all inliers and a final iteration of local optimization is applied

to determine the final solution. In our experiments, the local optimization step in

LO-RANSAC resulted a more consistent solution and increased the inlier count

when compared to the standard RANSAC algorithm.

An affine fit is determined using a 3-point sample of tentative correspondences,

and follows the same steps as estimation of the epipolar geometry. Previous work

employed a simplified geometric model along with local affine parameters of the
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top 200 of 676 correspondences.

feature to solve the many-to-many correspondence problem [23], however it has

been suggested that the storage of local affine invariant patches might not be nec-

essary and that only point correspondences need be preserved [21].

Our sampling and verification also make use of feature geometry to discard

matches and speed up model verification. All valid inliers for a given sample must

share a scale change that agrees within a factor of 2, as well as an orientation

difference within a range ofπ6 . Using these constraints allows for fast rejection of

outliers, speeding up geometric validation considerably (Table 4.1).

In the presence of many-to-many correspondences, care must be taken so that

features are only used to validate one correspondence. This amounts to finding a

matching set of a bi-partite graph where nodes and edges represent features and
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Table 4.1: Processing time for 100 trials of RANSAC under varying condi-
tions. All methods resulted in correctly identifying 193 inliers from a set
of 676 correspondences.

Time (sec)

Top 200 correspondencesAll 676 correspondences

Orientation & scale filtering 0.199 0.219

No filtering 1.82 1.86

correspondences which satisfy orientation, scale and model constraints. One valid

solution would be to include the correspondences that make up the maximal match-

ing set of the bipartite graph. An alternative would be to select inlier correspon-

dences in a greedy fashion based on which correspondences more closely match

the geometric model, which we call best-fit first selection of correspondences. Our

tests show that while the maximal matching yields more inliers,RFSperformance

improves when using a best-fit first selection is used. One possible explanation is

that the best-fit first selection choses correspondences that are morelikely to be

correct as they more closely match the geometric model between images.
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Chapter 5

Image adjacency

In addition to filtering out uninformative descriptors, robust feature selection pro-

vides information about the relationships between images in the database. We in-

troduce the concept of image adjacency, in which two images that match following

geometric verification are said to be adjacent.

To represent these relationships between database images, a graphG = (V,E)

is constructed during robust feature selection such that each vertexv∈V represents

an image and each edgee = (vA,vB) ∈ E represents a geometrically verified match

between imagesvA andvB.

A visualization of the image matching graph shows the relationships between

database images (Figure 5.1). Even though the matching graph constructionis

unsupervised, images of the same building naturally group together and form in-

terconnected clusters. New object detection can be conducted by analyzing the

matching graph for these clusters of interconnected images, suggesting many pho-

tos of the same object. Figure 5.2 highlights the effectiveness of the matching

graph at identifying objects from an unlabelled set of images.

5.1 Image augmentation

The construction of the matching graph allows for improvements to theBOW im-

age matching. Since adjacent images are geometrically verified and are assumed

to contain the same object of interest, we can assume adjacent images represent
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Figure 5.1: Matching graph showing connectivity between database images.
This is one connected sub-graph from the full Oxford Buildings dataset.
Ground truthed images are coloured by building labels. Images of the
same location naturally form highly connected regions in the graph
without any prior knowledge about image content. Graph generated
using GraphViza

ahttp://www.graphviz.org

nearby viewpoints of the same object. We present a method for integrating multi-

ple viewpoints, also referred to as view clustering [14], which allows imageswith

similar views to share features.

As previously discussed,tf-idf matching is effectively a weighted histogram

intersection between two sparse vectors which approximates nearest-neighbour

searching on individual image descriptors. Making use of the matching graph, we

implement a scheme which allows for the transfer of individual feature matches

between linked database images. This is conducted through a simple modification

of the image representation.
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Figure 5.2: Objects discovered from robust feature selection performed on a
set of 10,000 musical instrument images taken from Imagenet

For every imageI j in our image database, referred to as the base image, we rep-

resent the image not only with its own descriptors, but also include the descriptors

of every image within a local neighborhood in the matching graph. We define the

local neighborhood of a given base image as all images that can be reached withT -

edge traversals on the matching graph (Figure 5.5). This pool of descriptors forms

the new augmented representation for the base imageI′j.

In our BOW framework, this simple variation on view clustering can be imple-

mented by adding word occurrences of all adjacent images to those of the base

image. We use the notationRFS+1 to denote the caseT = 1, i.e., only images im-

mediately adjacent to base image are used formI′j. Formally, this can be computed
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Figure 5.3: Example matching graph showing sub-graphs connecting to Ash-
molean images from the Oxford Buildings dataset. Positive examples of
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in the match.

34



All Souls College

Radcliffe Camera

Figure 5.4: Maximally robust features for selected images from the Oxford
buildings dataset. Note that these images retain features from both All
Souls college and Radcliffe Camera. The corresponding graph shows
that the above images connect clusters of All Souls images (cyan) and
Radcliffe images (magenta).

as:

RFS+1 : mi j = ni j + ∑
k,{( j,k),(k, j)}∈E

nik (5.1)

wheremi j is the augmented number of occurrences of wordi in image j. The value

mi j replacesni j in (2.2).

While image augmentation is similar in spirit to query expansion [6], it has

the advantage of allowing known image relationships to be used in the initialtf-idf

score. Query expansion can only benefit a query when a correct match has already

obtained a high ranking.
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Figure 5.5: Sample graph showing two possible local neighborhoods for use
in image augmentation. Following image augmentation, the base image
(red) is represented with atf-idf vector formed by pooling all word oc-
currences from the images in the local neighborhood (orange, yellow).

Augmented image representations can be computed at query time using the

base image word occurences and the matching graph. In order to conducted fast

querying with image augmentation, the augmented image size,∑i mi j, for each

image needs to be stored along with the inverse document frequency,id fi, andtf-

idf normalization factors for the augmented case. This permits fast normalization

of term frequencies and calculation oftf-idf weights at query-time.
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Chapter 6

Performance evaluation

Average Precision

Following the approaches of [6, 10, 24], recognition performance waseval-

uated using the average precision (AP) score. Average precision is themean of

image precision across all recall rates, providing a single numerical metric for the

overall recognition performance of an algorithm. AP can be visually interpreted as

the area under a precision-recall curve. AP values range from 0 to 1,with the latter

only being achieved when 100% precision is obtained at full recall.

In the case of the Oxford buildings, overall mean average precision (mAP) was

computed by giving each building equal weight. In this way, overall scores are not

biased towards cases with more building images.

Though our results are not directly comparable to those in previous work due

to the need to use cross-validation, it should be noted that theBOW framework used

as our base case closely follows the approach of Philbinet al. [23].

6.1 Robust feature selection

Image features were generated from dataset images using the Hessian-Affine inter-

est point detector [17] along with the SIFT descriptor [15].

For the visual vocabulary, we used the INRIA Flickr60K vocabulary [10], gen-

erated from a separate set of images. Use of a separate set of images to generate the

vocabulary better mimics large databaseBOW image matching applications where
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vocabularies cannot be trained to recognize a specific subset of imagescontaining

the object of interest.

Unless otherwise specified, a visual vocabulary of 1,000,000 words was used as

it has been previously suggested that this yields the best recognition performance.

Recognition results using a smaller 200,000 word vocabulary are also presented.

The feature detector, visual vocabulary set and 100K background images were

obtained online1, and are publicly available.

6.2 Dataset

In order to evaluate the effectiveness of RFS, several datasets wereused as listed

in Table 6.1.

Oxford Buildings

The Oxford Buildings dataset2 consists of 5062 images taken around Oxford.

Images containing 11 different buildings have been manually ground truthed as

Good, OK or Junk. Good andOK images are treated as positive examples of a

building, whileJunk images are ignored when scoring recognition.

• Good images: building is fully visible.

• OK images: at least 25% of the building is visible.

• Junk images: building is present, but less than 25% is visible.

Pasadena Buildings

The Pasadena buildings dataset [1] consist of 750 images taken of 125 buildings

(6 images per building). Building images have varying viewpoint and lighting

conditions.

University of Kentucky

The University of Kentucky dataset [20] consists of 10200 images takenof

2550 objects (4 images per object). Object images have widely varying viewpoint

and lighting conditions, resulting in a challenging dataset.

1http://lear.inrialpes.fr/∼jegou/data.php
2http://www.robots.ox.ac.uk/$\sim$vgg/data/oxbuildings/
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Table 6.1: Summary of datasets used in testing.

Dataset Images Descriptors Cross validation

Oxford 5,062 15.89 M 5-fold

Pasadena 750 1.79 M 6-fold

Kentucky 10,200 10.70 M -

Flickr100K 100,000 206.75 M -

Flickr100K

In addition to these object datasets, a background dataset of 100,000 images

from Flickr was used. This served to increase the overall number of images to

show that the method can scale to large numbers of images, as well as provide

distractors forRFSand image recognition.

6.3 Recognition evaluation

Cross validation

In previous work, there has been no explicit separation of the data into training

(database) and test (query) images. AsRFS can be considered a training step,

separation of the dataset into testing and training sets was necessary. Failure to do

so would result in query images from the test set being used to validate features

in the training set. To prevent this, image recognition performance was evaluated

usingK-fold cross validation.

In the case of the Oxford Buildings dataset, onlyGood andOK images (566

of 5062) were split using 5-fold cross validation. Unlabelled images andJunk

images were always included with the background set. Resulting image databases

contained an average of 104,950 images.

In the case of the Pasadena Buildings and Kentucky datasets, folds weresplit

so that one image of each object was excluded at a time in the training phase.

Querying

Rather than use features from only object as queries, our work makes use of

whole images as queries. In the case of the Pasadena and Kentucky datasets, this is
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Figure 6.1: Example query images. Unlike previous work, all image features
(red & magenta) are used to formulate queries. Past work employs only
object features (red) to generate a query.

a natural choice as no object bounding boxes are provided. For the Oxford Build-

ings dataset,Good images excluded from the training set were used as queries.

Our view is that the use of whole images are queries more closely resembles a

real world query provided by an end user. Figure 6.1 shows example images from

the Oxford Buildings dataset used for querying along with previously used query

bounding boxes.

Database types

All results are generated from performingBOW querying (section 2.1.1) on

image databases. No secondary geometric re-ranking is conducted and AP results

reported reflect results from only thetf-idf ranking. Database types tested are listed

below.

• Original: Images represented using all features.

• RFS: Images represented using only RFS features.

• RFS+1: Images represented using RFS features, and those of adjacent

images (T = 1)

• RFS+2: Images represented using RFS features, and those of 2-adjacent

images (T = 2)
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Unless otherwise specified, all results are conducted with an unlabelled dataset.
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Chapter 7

Results

7.1 Feature reduction

We evaluated the effectiveness of both affine and epipolar geometry forRFSusing

the Oxford and Pasadena Buildings datasets. Both affine and epipolar models are

successful in identifying a large number of object images from the ground-truthed

datasets, while filtering our the majority of the background images.

Table 7.1 gives a summary of the RFS features found in the two buildings

datasets. In both cases, only a small subset of the original images were found to

contain RFS features. Of these matched images, only 3.5-4% of the featureswere

preserved by RFS. In order to demonstrate the effectiveness of usingonly RFS

features for recognition, we discard features from singleton images andinstead

rely on RFS to preserve the important information. As a result, the index for the

RFS image database is less than 1% the size of the original image database index.

All reported recognition results usingRFSfeatures are achieved with a substantially

reduced index.

7.2 Recognition performance

Table 7.2 outlines the overall recognition performance of the buildings datasets

following RFS. In order to evalute the benefit of labelled data, results are also

reported for the case where building image labels are known for training images.
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Table 7.1: Image database summary for the Oxford and Pasadena Buildings
datasets. Descriptor and file counts reflect the mean across all cross vali-
dation folds.

Images
Original RFS

Features Features

Oxford + Flickr100K

Total 104,950 222.27 M 0.57 M (0.26%)

Singleton 98,401 201.60 M 0 ( 0 %)

Matched 6,549 20.67 M 0.57 M (2.76%)

Pasadena + Flickr100K

Total 100,625 208.24 M 1.01 M (0.33%)

Singleton 93,676 186.58 M 0.00 M (0 %)

Matched 6,949 21.67 M 0.70 M (3.21%)

These labels are used to re-order initialtf-idf matches as outlined in Section 3.4

and represent RFS with the idealtf-idf ranking.

It is interesting to note that in both buildings datasets, the affine geometry out-

performs the epipolar geometry. We suspect this is due to the nature of the build-

ings datasets, in which objects consist predominantly planar front-face ofa build-

ing. The stricter affine solution is sufficient to model the building facade. This

suggests that the use of lowerDOF may be sufficient for tasks such as landmark

recognition.

7.2.1 Oxford Buildings

In the case of the Oxford Buildings test, most building images were properly iden-

tified and the recognition score improves from 0.261 to as much as 0.39 despitethe

drastic reduction in features. Figure 7.1 shows the average precision recall curve

which reveals that gains are achieved through improved precision at higher levels

of recall.

A detailed view of the building by building performance can be found in Table 7.3

Figure 7.2) shows that buildings such as Radcliffe Camera (RA) and All Souls Col-
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Table 7.2: Overall recognition performance on the Pasadena and Oxford
Buildings datasets. Results presented for both affine and epipolar geom-
etry. The labelled case indicates where class labels were used to re-order
initial tf-idf results and represent RFS performance un-affected bytf-idf
performance

Method (1,000,000)
Recognition (mAP)

RFS RFS+1 RFS+2

Oxford + Flickr100K

Original (All feats) 0.261

RFS Affine 0.254 0.359 0.358

RFS Epipolar 0.257 0.347 0.343

RFS Affine + LABELS 0.271 0.365 0.390

RFS Epipolar + LABELS 0.254 0.354 0.362

Pasadena + Flickr100K

Original (All feats) 0.215

RFS - Affine 0.166 0.205 0.228

RFS - Epipolar 0.179 0.206 0.200

RFS - Affine + LABELS 0.167 0.212 0.239

RFS - Epipolar + LABELS 0.180 0.214 0.211

lege (AS) benefit significantly fromRFSwith scores improving from 0.194 (Orig.)

to 0.765 (RFS+2) in the case of Radcliffe Camera. Images with few positive ex-

amples on which to train (PI, KE, BA, CO) underperformed.

One interesting case to note is the Magdalen (MA) performance (Figure 7.3).

Despite a large number of images present, poor initial recognition performance

causedRFS to fail and no robust features to be detected. This was due to large

viewpoint and lighting changes in building images resulting in too few correspon-

dences between images to generate a valid match.
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Figure 7.1: Precision-recall curve for Oxford Buildings averaged across all
buildings. The introduction of image augmentation (RFS+1, RFS+2)
results in improved precision at higher levels of recall.

7.2.2 Pasadena Buildings

The more challenging Pasadena Buildings showed a smaller improvement from

0.215 to 0.228. As each cross validation fold contains only 5 images of any given

building, this further confirms the results from the Oxford Buildings tests in which

RFSperforms best when a large number of images are present for training. Exam-

ination of individual building scores shows that RFS performs performs similarily

on average, but that individual building scores can either benefit significantly from

RFS, or result in recognition failure. Figure 7.5 shows the diversity of individual

building performance found in the Pasadena buildings dataset. As was the case in

the Oxford Buildings dataset,RFS performance is dependent on suitable matches

being formed in the training phase. As Figure 7.4 shows, some buildings failedto

match resulting in features being incorrectly discarded.
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Figure 7.2: Oxford Buildings recognition results broken down by building.
The numbers below each building represent the total number of images
of that building. Using all features (Orig.) underperforms on many
buildings when compared to usingRFS. With the introduction of image
augmentation (RFS+1, RFS+2), buildings with many training images
see a significant improvement in recognition. Error bars represent stan-
dard error across cross validation folds.
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Table 7.3: Query performance by building on the Oxford Buildings dataset.
Building values reflect mean AP scores taken onGood queries for a
given building. Bolded results corresponding to the method with the best
performance.Orig.—original database,RFS —useful feature database,
RFS+1,RFS+2—useful features with image augmentation

Building
Images Singleton: discarded

(Queries) Orig. RFS RFS+1 RFS+2

Radcliffe 221 (105) 0.194 0.359 0.638 0.765
Christ Church 78 (51) 0.396 0.409 0.511 0.467
All Souls 77 (24) 0.292 0.401 0.671 0.711
Hertford 54 (35) 0.241 0.289 0.476 0.540
Magdalen 54 (13) 0.022 0.008 0.009 0.009
Ashmolean 25 (12) 0.309 0.331 0.417 0.452
Bodleian 24 (13) 0.288 0.249 0.312 0.196
Cornmarket 12 (5) 0.250 0.070 0.125 0.170
Balliol 9 (5) 0.119 0.022 0.076 0.073
Keble 7 (6) 0.419 0.433 0.492 0.322
Pitt Rivers 6 (3) 0.340 0.220 0.223 0.231

Average mAP 0.261 0.254 0.359 0.358
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Figure 7.3: Matching graphs for the Magdalen (MA) [top] and Hertford (HE)
[bottom] buildings. An inability to match many of the Magdalen train-
ing images causedRFS to fail resulting in many singleton images (30
of 43 building images). Hertford images formed a highly connected
matching graph and as a result showed increased benefit from image
augmentation.
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Figure 7.4: Example buildings from the Pasadena Buildings dataset.Top row: RFS detects features in all views.Middle
row: RFS detects robust features in all but one viewpoint.Bottom row: Occlusions and lighting changes prevent
RFS from detecting features in all views. In this instance, while images 1 and 3did result in a correct geometric
solution, the number ofBOW inliers was below the 20 inlier threshold needed for a valid match.
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Figure 7.5: A selection of recognition scores for individual buidlings from the Pasadena Buildings dataset.Left: Build-
ings with the largest increase in recognition following RFS.Right: Buildings with the largest decrease in recog-
nition following RFS.
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7.2.3 Stoplist size

All results presented have made use of a stop-list size of 1% of the visual words.

Like the originaltf-idf ranking, stop-list size impacts RFS performance (Figure

7.6), and while 1% provides good results in both datasets, the Oxford buildings

recognition performance peaks at 9%. One positive observation is that the recog-

nition performance following RFS is relatively robust to the initial stop-list size.

While the ideal value for a given set of images is data dependent, incorrect values

only result in a slight performance degradation.

7.2.4 Feature throttling

The above precision scores for RFS make use of all matched features to represent

images. In Section 3 the concept of feature throttling was outlined in which only

the best features from each image would be preserved. Figure 7.7 shows that it

is possible to maintain improved recognition performance with an even smaller

subset of initial image features. Interestingly enough, across both datasets there

appear to be no significant gains to extending the representation beyond 300 max-

imally robust features per image.

7.3 University of Kentucky

The University of Kentucky dataset was used to evaluate the performance of RFS

on everyday object images. This proved to be a challenging dataset as each object

was represented in only 4 views. Object recognition evaluation was conducted

using a score which reflects the average number of the top 4 ranked imageswhich

are of the same object.RFSperformance is summarized in Table 7.4.

Of the initial 10,200 object images,RFS identified only 6575 using an affine

geometry check. As it is important for all images to be matched, the largest scale

features from singleton images were preserved yielding a recognition score of 2.84,

slightly below the original score of 2.98, using less than 13% of the original image

features. The small index is a result ofRFS and feature throttling, where image

representations were restricted to 200 features per image.

One possible error with unsupervised object detection is highlighted in Figure

7.8. As multiple objects are present in the same location, features from the lo-
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Figure 7.6: The effect of initial stop-list size onRFSperformance on the Ox-
ford Buildings (top) and Pasadena Buildings (bottom) dataset. Changes
to the stop-list affect the initialtf-idf search, as well as the possible fea-
tures which can be labelled as robust.
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Figure 7.7: Examining the effect of feature throttling on recognition perfor-
mance on the Oxford (top) and Pasadena (bottom) building datasets.
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Figure 7.8: Example query images and top 4 matches from the University of
Kentucky dataset.Top: Mismatches resulting from challenging objects.
While these images contain the same object, they are photographed in
different conditions and are labeled as different objects.Middle: Mis-
matches caused by RFS identifying the background.Bottom: Success-
ful matches.
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Table 7.4: RFS performance on the University of Kentucky dataset throttled
to 200 descriptors per image. RFS identified objects in 64-65% of im-
ages. Preservation of features from singleton images results in compara-
ble recognition to the full set using a fraction of the descriptors.

Method Descriptors
Recognition (top4)

RFS RFS+1 RFS+2

Original 10.7 M 2.98

Singleton: large scale

RFS Affine 1.26 M (11.7%) 2.77 2.84 2.81

RFS Epipolar 1.37 M (12.8%) 2.81 2.86 2.79

Singleton: discarded

RFS Affine 0.61 M (5.7%) 2.27 2.33 2.29

RFS Epipolar 0.71 M (6.7%) 2.29 2.33 2.25

cation have been preserved resulting in a mismatch. Without explicitly tracking

matching regions within images, the presence of a uniform background will re-

sult some mismatchs when background features dominate the image. Figure 7.8

also highlights some difficult definitions of objects found in the University of Ken-

tucky dataset: the same physical object (e.g., book, first-aid kit) photographed in a

slightly changed environment or under different lighting conditions is labeled as a

different object.

7.4 Database size

Current state-of-the art methods employ vocabulary sizes ranging from200,000

to 1,000,000 visual words. All previously reported results make use of a visual

vocabulary of 1,000,000 visual words.

In order to establish the effect of varying the size of the visual vocabulary on

RFS performance, a vocabulary size of 200,000 visual words was tested. Eval-

uations of recognition performance conducted on the Oxford Buildings dataset,

reported in Section 7.2.1, were repeated making use of the less discriminativevo-

cabulary. Similar to previously published results, the 200,000 visual word case re-
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sulted in a decrease in recognition performance, both for the originaltf-idf match-

ing, as well as for RFS. Figure 7.9, Figure 7.10 and Figure 7.11 show the results

for the two cases side by side for comparison.

The positive observation here is that RFS behaviour, relative to the original

tf-idf matching, does not change with varying vocabulary size. Accordingly, we

reccomend the use of a visual vocabulary size of 1,000,000 for performing BOW

matching on a large image collections.
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Figure 7.9: Individual building performance when using 200,000 words (left) and 1,000,000 words (right). While some
building scores differ with varying vocabulary size, overall trends reported remain unchanged. [Oxford Buildings]

57



  20           50                  100  200          500                 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Maximum descriptors per image (log)

m
ea

n 
A

P

 

 

RFS RFS+1 RFS+2 Orig.

  20           50                  100  200          500                 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Maximum descriptors per image (log)

m
ea

n 
A

P

 

 

RFS RFS+1 RFS+2 Orig.

Figure 7.10: Effect of feature throttling on RFS performance when using 200,000 words (left) and 1,000,000 words
(right). Both curves exibit the same rolloff as the number of features is decreased. [Oxford Buildings]
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Figure 7.11: Average precision-recall curve for the Oxford Buildings dataset when using 200,000 words (left) and
1,000,000 words (right). PR-curves forRFS,RFS+1 and RFS+2 take the same shape with slightly reduced
overall performance for the 200,000 case.
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7.5 Limitations

While effective at reducing the number of features and maintaing recognition per-

formance, theRFSmethod suffers from some limitations stemming from the unsu-

pervised object detection.

As was demonstrated with the University of Kentucky dataset, cases where

multiple objects are present in the same location can result in only the features from

the location being preserved. In the event that feature throttling is employed, RFS

will tend to preserve the more commonly occuring object, possibly discarding other

objects entirely if they are seldom matched. We argue that for an unsupervised

method, this is desireable behaviour as the more commonly occuring objects and

locations are preserved.

As we currently do not track regions within an image that match in the image

graph, it is not possible to distinguish between multiple objects in an image. This

drawback is not specifically due toRFSbut rather to the family ofBOW based meth-

ods which discard spatial layout of image descriptors during the initial match.Par-

tially overlapping images, such as a series of photographs making up a panorama,

can result in a series of valid matches relating two images with no overlapping

content; a phemonenon we call viewpoint drift. Due to this, use of image aug-

mentation should be limited to smaller values ofT (e.g.,RFS+1 or RFS+2), as

larger values increase the probability of introducing unrelated content. Figure 7.12

shows an example taken from the Oxford Buildings taken of a statue and window in

the Bodleian courtyard. Examination of the matching graph reveals that eventhis

image is connected to images taken of the same courtyard but containing neither

object.

It should finally be mentioned that performance of anyBOW method is limited

to the performance of the underlying image features used.
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Figure 7.12: Top: Image taken in the Bodleain courtyard from the Oxford
Buildings dataset (base image).Middle: Images directly adjacent to
the base image.Bottom: Unrelated images connected to the base im-
age via the matching graph.
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Chapter 8

Conclusions

We have presented a method for identification of maximally robust features in aset

of images as well as a method for image feature augmentation in a bag-of-words

framework. Our results show that pre-processing images using our robust feature

selection method can improve recognition performance while reducing memory

requirements for image features by as much as 97%. It may seem surprisingthat

recognition is improved by discarding features that fail to match other training

images, as at least a few potentially robust features will inevitably be discarded.

However, our results show that when sufficient training data is present,the en-

hanced quality of the selected feature set can more than compensate for its reduced

size, while at the same time providing large reductions in memory requirements.

Our method for including features from adjacent images at the time of initial

matching gives a substantial improvement in query performance without the need

to explicitly define or reconstruct distinct objects. Instead, it efficiently combines

features at runtime from related viewpoints based on their relationships withinthe

image matching graph.

The treatment of singleton (unmatched) images should depend on the require-

ments of the application. For many real-world applications, such as recognition of

landmarks from public image collections, it will be appropriate to discard singleton

images, as they are likely to contain only transient objects and clutter. However, in

cases where it is important to use singleton images, we have demonstrated thatone

solution is to select a restricted number of large-scale features from the singleton
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images.

The matching graph has been shown to be a useful data structure for improv-

ing recognition as well as understanding image data. Our graph visualizationhas

allowed for the identification of new unlabelled landmarks. This suggests thatthe

matching graph can be used in other ways to further improve recognition, such as

attaching missing labels or correcting mislabelings.

8.1 Future work

There are many possible areas of future work stemming from the work presented

in this thesis relating the fields of large scale image retrieval as well as feature

selection.

8.1.1 Robust features

While RFShas been shown to be effective on large collections of images containing

multiple views of an object, it has limited effectiveness in cases where only single

views of objects exist. We believe that the concept of feature robustnesscan be

applied to detecting robust features in single images and should prove to be an

interest field of future research.

Recent work on improving the performance ofSIFT has shown that the match-

ing performance ofSIFT can be improved through the use of synthetic images.

Morel and Yu [18] augment theSIFT feature set of an image withSIFT features

extracted from affine distorted views of the base image, resulting in a fully affine

invariant image representation. We believe that a similar use of synthetic imagesto

detect robust features will result in a compact set of robust featureswith improved

matching performance. These synthetic images are not restricted to affine distor-

tions, but can also be simulated with other methods such as the addition of noise

or lens distortion.

8.1.2 Matching graph

We have demonstrated that the matching graph is a useful tool for improving recog-

nition performance even with a simple form of image augmentation. While effec-

tive, there is much future work to be done on the formation and application of the
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matching graph to improve recognition.

Alternate methods for graph construction, such as seeding and growing image

clusters [4], can be explored. Inclusion of additional information in the matching

graph, such as geometric transforms or matching regions may prove useful for

cases where multiple objects exist. More complex generative feature models have

been used to improve recognition in query expansion [6] and their application to

image augmentation should be explored.

Finally, graph methods which analyze trends and prune the matching graph

should be explored. While some work has been conducted on graph clustering

using a matching graph [22], the focus was on discovering objects in the images.

Applications of graph methods to improve recognition proves to be a interesting

field of future research, not only forBOW methods, but also any other methods that

are applied to large scale image retrieval.

8.1.3 Large scale image retrieval

As the performance ofBOW methods has been shown to vary significantly based on

the choice of vocabulary, methods which form better vocabularies shouldbe inves-

tigated. To our knowledge only the work of Schindler et al. [26] has investigated

learning discriminative vocabularies, however, still rely on a simple unlabelledK-

means clustering to form visual words. More complex machine learning methods

could yield improved vocabularies, but must be adapted to handle vast amounts of

high dimensional data.

Any future work in large scale image retrieval should be guided by practical

limitations in computing. Scaling image retrieval to work on the scale of the In-

ternet will require methods that have a low memory foot-print and which can be

readily parallelized.
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