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Abstract

In this dissertation, we study the problem of knowledge reuse by a reinforcement

learning agent. We are interested in how an agent can exploit policies that were

learned in the past to learn a new task more efficiently in the present. Our approach

is to elicit spatial hints from an expert suggesting the world states in which each

existing policy should be more relevant to the new task. By using these hints with

domain exploration, the agent is able to detect those portions of existing policies

that are beneficial to the new task, therefore learning a new policy more efficiently.

We call our approach Spatial Hints Policy Reuse (SHPR). Experiments demon-

strate the effectiveness and robustness of our method. Our results encourage fur-

ther study investigating how much more efficacy can be gained from the elicitation

of very simple advice from humans.
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Chapter 1

Introduction

One of the central goals of Artificial Intelligence is the engineering of competent

behaviour in complex environments. The complexity of the environments that in-

terest AI research may require different degrees of intelligent behaviour, ranging

from those dealt with well by colonies of non-intelligent biological agents, passing

through those which require human intelligence to cope with its challenges, and

including environments where a society of humans (the ultimate intelligent agent

to date) is necessary for a sufficiently good performance.

The biggest challenge for Artificial Intelligence is the impossibility of formally

identifying intelligence. Even though intelligent behaviour is routinely recognized

by intelligent agents (humans), the apparent impossibility to directly specify it im-

peded the synthetic creation of intelligent agents. Therefore, this design limitation

leads to a research agenda that attempts to achieve desired behaviour indirectly by

using recognition instead of specification. This area is known as Machine Learn-

ing.

In this dissertation, we focus on a sub-field of Machine Learning called Rein-

forcement Learning (RL). In RL, the recognition of the desired behaviour is passed

to an agent in the form of a reinforcement signal. This signal follows the actions

of a computational agent who is able to affect some environment. The higher the

signal received by the agent, the better was the influence of the agent’s actions on

the environment. Therefore, if an agent is able to keep track of the states of the

environment and of the actions taken between transitions of these states, then this
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agent can learn to maximize rewards received during a task by collecting statis-

tics about the rewards received under certain states of the environment after some

action was executed.

One formulation of RL is temporal difference learning. In this framework, the

agent interprets the resulting statistic associated with a state and an action as the

value of being in this state and performing this action. And the reward signal is

regarded as the different between the true value of the pair state, action and the

current value maintained by the agent. The agent can then update the value of

state, action pairs after observing rewards using the equation:

Q(st ,a) = Q(st ,a)+α[r+ γ maxa Q(st+1,a)−Q(st ,a)],

where α is the learning rate, γ is the discount factor, and Q(s,a) is the value

of performing action a after observing the environment in state s. The collection

Q(., .) is referred to as the Q-table.

This formulation is generic, in the sense that it can learn an optimal policy

(mapping between states and actions) for every task that is expressible using a real-

valued reward signal. However, the problem with this approach is that the time it

takes the learning agent to reach a satisfactory performance on the task might be

too long. This motivates the search for alternative RL methods.

Many approaches have been proposed to accelerate the acquisition of compe-

tent behaviour by a RL agent, notably to incorporate information other than the

reinforcement signal to guide the learning agent. A popular approach is to try to

reuse policies learned in the past and transform them into a useful bias for learning

a new task. This approach is called Transfer Learning [11].

A fundamental challenge of Transfer Learning is to discover similarities be-

tween tasks learned in the past and the task faced in the present. However, because

of the multiple ways in which similarities can occur, Transfer Learning is a very

challenging problem. Existing approaches for Transfer Learning in RL domains

vary considerably with regards to their settings. One feature of a Transfer Learn-

ing setting is the incorporation of human supervision of the execution of the work

of the agent. Under this perspective, two important works from the literature il-

lustrate different ways to bring humans into the loop. In [12], a human expert is

allowed to create mappings between two tasks, one that was already learned and
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Figure 1.1: A spectrum of Transfer Learning methods.

one that is being faced by the agent. These mappings can connect states of the

world between the two tasks, or they can connect actions that are equivalent in the

two tasks. After eliciting this association between the tasks, the agent then initial-

izes the Q-table of the current task based on the mapping created by the expert and

the Q-table of the old task. For example, if both (s1,a1) and (s2,a2) in the learned

task map to (s3,a3) in the current task, the value of Q(s3,a3) is initialized to the

average of (s1,a1) and (s2,a2).

In [1], the computational agent is more autonomous because no configuration

of existing policy is required before the actual learning step begins. As the agent

faces different tasks in its lifetime, it stores their respective policies in a library, and

then uses this Library of Policies when a new task is to be learned. By combining

random exploration of the environment with exploitation of both the existing poli-

cies and the policy that is being built for the current task, the learning process can

be accelerated given the presence of a task in the agent’s library that is sufficiently

similar to the current learning task1.

These two approaches attack the same fundamental problem, but they lie on

two extremes of a spectrum (as shown in Figure 1.1). While the work in [1] relieves

the agent’s designer from participating in the transfer of knowledge between tasks,

in [12] the contribution of a human expert is a decisive factor for the efficiency of

the method. At the same time that we need an efficient way to engineer competent

behaviour, it is important to note that human contributions are a scarce resource in

computational systems. Therefore, this motivates the question of whether one can

design a method for transfer learning that find a balance in this spectrum, i.e. a

method that takes human input to improve the performance of a learning agent, but

without posing an excessive burden on the provider of information.

1[1] reports a reduction from 20 hours of training time to 20 seconds in order to keep the ball for
9 seconds in the Keepaway domain

3



1.1 Problem statement
In this dissertation, we focus on the transfer of knowledge between tasks defined

on the same domain. Therefore, the policies learned in the past and the policy faced

by the agent in the present share the same state and action spaces.

The goal is to use the reinforcement signal associated with the new task to

generate a policy mapping states of the world into actions. Other than the rein-

forcement signal, humans contribute collaboratively with a computational agent in

order to facilitate the learning process. This contribution takes the form of Spatial

Hints, i.e. a human provides a map from the policies already learned by the agent

to elements of the state space of the task. The respective state associated with a

policy is called that policy’s reference state, and it implies that the human believes

that is the condition in which the old policy will be most similar to an ideal policy

for the current task. A collection of existing policies with their reference state is

called a Library of Spatial Hints. The central problem of this dissertation is thus

how to use this Library of Spatial Hints to learn a new task in a more efficient way.

1.2 Hypotheses
Our working hypotheses observe the performance of our method using a Library

of Spatial Hints. In this work, we used two baseline methods: the first is the

traditional temporal-distance Q-learning, which does not incorporate any extrinsic

information, only the exploration of the state space of the task. The second is

PRQL [1], which uses a Library of Policies to improve learning of the new task.

Our null hypotheses are the following:

H0a : µ1 = µ2,

H0b : µ1 = µ3,

Where µ1 is the mean performance transfer learning method that uses a Li-

brary of Spatial Hints to perform transfer of knowledge between tasks, µ2 is the

mean performance of the PRQL method and µ3 is the mean performance of the

Q-learning method.

The alternative hypotheses are the following:

H1a : µ1 > µ2,

H1b : µ1 > µ3.
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1.3 Premise
Our premise is that the interaction between the human who is constructing the Li-

brary of Spatial Hints and the learning agent is collaborative. In other words, while

one can easily construct an adversarial input that will deteriorate the performance

of our method, we assume that it is against the human’s interest to do so. Neverthe-

less, we do not assume perfect human knowledge of the relation between the old

tasks and the current one. In other words, we will address conditions in which the

human provides associations between previous tasks and points in the state space

in which the respective task will contribute with detrimental knowledge for the per-

formance of the current task. Robustness to such conditions is important because

otherwise the effort to engineer a good enough input could be overwhelming.

1.4 Research Method and Evaluation Metric
Our research method will consist of empirical evaluation of the proposed algorithm

in different scenarios. We define a scenario as a specific construction of a Library

of Spatial Hints or a Library of Policies, depending on the algorithm in question.

Each scenario varies in the quality of the input, from one that is constituted of

beneficial tasks that are very similar to the current learning task, to one is which

the existing tasks are very different from the current task.

The evaluation of our method will be defined over the resulting policy produced

by the learning agent. The metric considered will be the sum of discounted rewards

accumulated during the learning period. This is a metric commonly used in the

literature, and helps evaluate the final policy produced by the algorithm as well as

the learning period. The evaluation of the learning period is especially relevant if

one considers the learning stage as relevant to the performance of the agent, i.e. if

the agent is not training in a fictitious environment, but already in a realistic one in

which its actions are already relevant from the point of view of the agent’s designer.

1.5 Outline
In Chapter 2, we will review the literature and highlight the most important work

that is relevant to our contribution. Chapter 3 formally introduces our method
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and positions its contributions to the literature surveyed in the previous chapter.

The empirical work that validates our contribution will be presented in Chapter

4, while Chapter 5 ends this dissertation with a general discussion and examines

possibilities for future work.
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Chapter 2

Related work

In this Chapter, we will discuss some of the relevant works from the literature, in-

cluding contributions to the design of reinforcement learning agents, and different

approaches to accelerate the generation of satisfactory policies.

One important contribution to the design of satisfactory high-level behaviour

in complex environments is the Layered Learning approach introduced by [7] for

the Robocup domain. Layered learning was developed as a hierarchical, learned

solution to tasks that are sufficiently complex that cannot be solved by hand-coded

policies. Features such as limited communication, real time decision making and

noisy environments in a multi-agent setting all contribute to the impossibility of

solving tasks with manually created policies, and to the difficulty of applying stan-

dard learning techniques that deal with a direct representation of data collected

from the noisy sensors of the agent.

The layered approach consists of breaking the agent design into behavioural

modules, allowing for independent development that avoids the full domain com-

plexity. Layers are defined by the agent’s designer, taking into consideration the

domain of action and the Machine Learning techniques available.

The first challenge in the implementation of this technique is to define a bottom-

up task decomposition that will enable Machine Learning algorithms to treat the

output of the learning process in one abstraction to be used as a sub-routine in

another abstraction of a higher level.

Table 1 (Table 4.2 in [7]) illustrates an example of the task decomposition for
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Table 2.1: The design of a layered task decomposition for the Robocup do-
main. Layers are defined bottom-up- to cope with the domain complexity.
Policies defined in lower layers serve as primitives for the behaviour of
higher-level layers.

Layer Strategic Behaviour Behaviour Type Example
1 robot-ball individual ball interception
2 one-to-one player multi-agent pass evaluation
3 one-to-many player team pass interception
4 team formation team strategic positioning
5 team-to-opponent adversarial strategic adaptation

Robocup. In this domain, agents must learn to play a soccer game in collaboration

with 10 agents, against an adversarial team. The challenges of the task make it

impossible to develop a satisfactory policy for the task manually. Therefore, this

domain emerged as a very popular test bed for Machine Learning techniques.

Layers are defined bottom-up, in the sense that the agent designer first focuses

on the most elementary aspects of the task, looking for the simplest behaviour that

must be followed by a satisfactory policy. Next, these behaviours serve as guidance

for the design of more abstract patterns of an ideal policy.

This bottom-up approach ensures that the agent can cope with the domain com-

plexity. In each layer, the agent designer can make an independent choice of the

specific technique that will better fit the conditions of the respective sub-task (e.g.

a supervised learning technique, a reinforcement learning setting, or even a direct

specification of the policy, in those lower-level layers where the sub-task is suffi-

ciently simple.)

With regards to Machine Learning techniques, our main focus in this thesis is

on reinforcement learning. In this setting, an agent interacts with an environment

in discrete steps. In each step, the agent observes a state of the world st ∈ S and

must choose an action a ∈ A. In response to an action, the environment produces a

numerical reward r and the next state of the world st+1 ∈ S.

The environment is an MDP consisting of a set of states S, a set of actions A, a

transition function P : S×A×S→ [0,1] defining the probability of seeing a given

state st+1 ∈ S after executing an action a ∈ A at state st ∈ S, and a reward function
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Ra(st ,st+1). The assumption is that the learning agent does not know the system

dynamics P or the reward function R. The objective of a reinforcement learning

agent is to generate a policy π : S→ A.

A common metric for the evaluation of reinforcement learning algorithms is

the sum of discounted rewards
∞

∑
t=0

γ trt . But this alone is not enough to illustrate

the usefulness of a method. Aspects like the kind of extrinsic information used to

improve learning, or the performance of the method in restricted durations are also

of general importance. This motivates the introduction of different algorithms for

the same problem. In this Chapter, we mention three that are distinguished mostly

regarding the kind of input that is asked from users. In the Options framework [9],

a generalization of the action space is introduced by allowing the agent designer to

define sequences of actions. These sequences can be thought of as macros that an

expert knows will be useful for a given task. Later, we will introduce Policy Reuse

[1]. In this method, the agent is restricted to atomic actions in the environment,

but is now allowed to consult policies learned in the past for different tasks. And

finally the last method is called TLITM [12]. Here, the agent elicits from an expert

a manual mapping between a pair of tasks. This map allows the agent to transfer

knowledge from a task that was learned in the past into a new task that is being

faced in the present. These three approaches are the most relevant existing work

related to the contributions of this thesis.

2.1 The Options framework
The MDP framework introduced above models the influence of the agent in the

environment as the set of actions A, and this imposes the use of a single level of

abstraction for the entire learning problem. Unfortunately, this might be a con-

siderable restriction for the design of the learning problem. Humans are used to

thinking in multiple levels of abstraction, and if the MDP is created with low-level

actions, it might take too long for the agent to adopt a satisfactory behaviour, while

high-level actions can be adopted at the expense of the efficiency of the final policy.

This problem motivated a search for a more flexible representation of actions

in a reinforcement learning domain. The Options framework introduced then a

generalization of an MDP by replacing the set of actions A with a collections of

9



options in the form o ≡< I,π,β >, where I ∈ S represents the states of the world

in which the option o can start, π : S×A→ [0,1] represents the (stochastic) policy

followed during o, and β : S→ [0,1] is the probability that o terminates after the

next state is revealed.

It is easy to see that the standard formulation presented above can be achieved

by defining for each primitive action an option that follows that action in every

state and always ends with certainty regardless of the next state. And since the

integration of an MDP with options generalizes to a Semi-MDP, the value func-

tions and Q-table can be defined in terms of states and options, instead of states

and actions. However, this does not impede an agent who is making choices over

options to learn the values of the actions that compose each option. If an option A

is executed, then the following is observed:

s0,a0,r0, s1,a1,r1, . . . , sn,an,rn

where s0 ∈ IA and a0,a1, . . .an were generated by following π from the respec-

tive states. Therefore, the temporal distance update can be executed after each step

of the option (and not only after it is finished), allowing the agent to learn the holis-

tic value of the sequence, but also the individual value of each of its components.

The main contribution of the Options framework was a more flexible knowl-

edge representation, allowing the designer of the learning agent to represent actions

in different levels of temporal abstraction. On the other hand, there is still a bur-

den on the designer to study the task and know which options to make available to

the agent. Even though detrimental options will tend not to be used as the agent

exploits its Q-table, they still degrade the performance of learning the new task.

2.2 Policy Reuse (PRQL)
A different approach to accelerating the performance of a reinforcement learner is

Policy Reuse Q-Learning (PRQL) [1]. Unlike the Options framework, this work

builds on a traditional MDP model. Additionally, it allows the agent to exploit

policies learned in the past in order to accelerate learning of a new task. Here, it

is assumed that all policies faced by the agent are defined in the same state space,

and the same action space.
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The idea is that if the existing policies are sufficiently similar to the task faced

by the learning agent, then these policies can induce a more efficient exploratory

behaviour, allowing the agent to experiment more with those actions that result in

higher rewards.

Unlike the options framework, in PRQL there is no need for the agent designer

to specify anything other than the basic MDP parameters. In each episode of this

method, the learning agent makes a choice between exploiting one of the existing

policies learned in the past or the knowledge already accumulated in its Q-table.

Either way, a random exploration is combined with this choice to allow a temporal

distance method to refine the Q values by executing actions and collecting rewards

from the environment. In other words, even if the agent is following the actions

dictated of an existing policy designed for a different task, the learning agent still

tracks state transitions and rewards from the environment. Therefore, the existing

policies can be seen as an exploration bias to the learning agent.

2.3 Transfer Learning via Inter-Task Mappings (TLITM)
One limitation of the PRQL method is the necessity to directly apply existing poli-

cies into the episodes of the new task. This limits the knowledge reuse between

policies defined over the same state space and action space. However, the ultimate

goal of transfer learning is to be able to transfer knowledge between arbitrary pairs

of tasks that may not share any MDP component.

This is the main advantage of Transfer Learning via Inter-Task Mappings (TLITM)

[12]. In this method, the association between two tasks is made manually by a spe-

cialist in the domains of both tasks, who maps states of the task which the agent

still needs to learn to states of the task that was already learned before. Similarly,

actions of the current task are mapped to equivalent actions of the previous task.

From this mapping, the agent has for each pair state-action a set of equivalent

state-action pairs in the reference task. Therefore, the Q-table of the current task

can be initialized based on this information, where the value of each entry is the

average of the values of the equivalent entries of the already learned task.

What TVILM provides is in fact an initial bias for a learning task. The transfer

will be beneficial if a learning algorithm that starts with this carefully generated
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bias learned more effectively than if another alternative initialized of the Q-table

was used. After the initialization of the Q values, a Temporal Distance (TD) learn-

ing algorithm will exploit this bias and explore the environment, accumulating

rewards and updating value estimations for states and actions, and consequently

refining the policy for the current task1.

Of course, the success of this method depends heavily on the quality of the

mappings between states and actions of the tasks. The robustness of this approach

to errors made in this mapping is yet to be studied, but it seems like the effort nec-

essary to provide this method with a sufficiently detailed mapping requires expert

knowledge that may be too hard or costly to elicit from a human.

Chapter 4 includes experimental evaluation of our contribution. PRQL was

chosen as a baseline method in the evaluation, and therefore empirical results are

presented there together.

1[12] demonstrates an improvement of 43% in the 5vs4 version of the Keepaway task, when
transfering from policies generated from the 4vs3 and 3vs2 versions, in comparison to learning the
5vs4 directly tabula rasa.
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Chapter 3

Spatial hints

3.1 Problem definition
In this chapter we present the main contribution of this thesis, called Spatial Hints

from Policy Reuse. This is a method for transfer learning in Reinforcement Learn-

ing domains. In this sense, we envision an agent that learns new tasks characterized

by a reinforcement signal.

In this thesis, we focus on transfer between tasks that share the same state- and

action-spaces. This is applicable, for example, to an agent that acts in the same

room, but must execute different activities across its lifetime.

This agent faces tasks that are presented through time, and it’s important that

once a new task is presented to the agent, they are learned as fast as possible. This

means that the agent should be fast in generating a satisfactory policy for tasks

given limited training time. For this reason, we want our agent to be able to use

any resource that might accelerate the formation of such a policy. In this thesis,

we explore the problem of policy reuse for transfer learning, therefore we want our

agent to reuse the policies it learned in the past to generate a policy for the new

task faster.

13



3.2 Formalization of the method
We define a Reinforcement Learning problem using a Markov Decision Process

(MDP). An MDP is a tuple < S,A,T,R >, where S is the set of states, A is the set

of actions, R : S×A→ ℜ is a reward function, and T : S×A× S→ [0,1] is the

transition function. T and R are unknown to the agent.

Definition 1. A domain D is a tuple < S,A,T >, where S is the set of all states;

A is the set of all actions; and T is a state transition function, T : S×A×S→ [0,1].

This definition characterizes the invariants across the current task and all tasks

that will be reused by the method. It enables a policy defined in one task to be

executed for a different task in the same domain.

Definition 2. A policy π : S→ A assigns one action for each member of the

state space of some domain.

Definition 3. A task Ω is a tuple < D,RΩ >, where D is a domain, and RΩ is a

reward function, R : S×A→ℜ.

Therefore, the only difference across tasks that are defined in the same domain

is the different reward that an agent receives after executing actions in certain states.

Definition 4. A hint h is a pair < πh,sh >, where πh is a policy defined on the

domain D and sh ∈ S(D) is a state in the state space S of D. We call sh the reference

point of the policy πh.

Definition 5. A hint library L is a set of n hints h1, . . . , hn. ∃D, such that each

hint hi ∈ L solves a task Ω =< D,RΩ >.

Therefore, every hint in the library is defined over the same domain. This

makes every policy and state across all hints in L to share the same domain as well.

The library can have hints that share the same policy, or even hints that share the

same reference point.

We are interested in episodic tasks with absorbing goal states, i.e. p(sgoal,a,sgoal)=

1, ∀a. By analogy with the scheduling problem we define an episode as follows:

Definition 6. A step t begins in a certain state st and ends when the agent

executes an action at and receives a reward rt for that action in that state. A slot σ

is a sequence of k steps.

Definition 7. An episode is a sequence of slots σ0, . . . , σk−1, each of them con-

taining the same number of steps (except possibly the last one). An episode ends

14



Figure 3.1: We define an episode as containing k slots. Each slot is occupied
by a policy (or an exploration strategy such as ε − greedy) that will
dictate the actions to be taken in the steps of this slot.

after reaching the maximum number of slots k or when the goal state is reached.

As illustrated in 3.1, our method schedules policies (or any algorithm that dic-

tates which actions to take given a state) to slots in each episode, much like a

pre-emptive scheduler of an operating system [10].

This definition is a generalization of the standard concept of an episode. In

Policy Reuse, for example, the same policy is used across all slots of the same

episode. Likewise, one could not use any existing policy and let a particular algo-

rithm dictate actions for every slot of all episodes.

The evaluation metric is defined as the average reward per episode:

W (E) = 1
E

E−1
∑

e=0

ke−1
∑

k=0

tk−1
∑

t=0
γk+1rk,t,e

(3.1)

where E is the number of episodes, ke is the number of slots in episode e and

tk is the number of steps in slot k (either T or less if the goal state was reached).

γ ∈ [0,1] is the discount factor for future rewards, and rk,t,e is the reward received

in step t of slot k of episode e.

The challenge when reusing policies is to discriminate the states of the world in

which some policy from the library should be reused from the states of the world in

which no policy from the library would be useful (therefore requiring independent

exploration).
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While a library of hints is a good initial approach for this problem, it doesn’t

solve it altogether. Since a hint associates a policy with a single state, it would

be excessive to ask users to specify the ideal policy for every state of the world.

Therefore, some metric is needed to estimate how useful each hint could be for

each state of the world.

Naturally, such a metric should consider the distance between the current state

of the world and the policy’s reference point. Hints that are farther away would

be less likely to be useful than closer hints. Additionally, the quality of the hints

might not be uniform. While some existing policies might be more suitable to be

executed in more states of the new task, some of them might be less useful, and

therefore should exert a weaker influence on the learning agent.

For this reason, we associate with each hint hi a variable reachi which estimates

how good the policy πi is around its reference state si. Policies that perform well

around their reference state should have their respective reach increased to extract

significant contributions from good existing policies.

Likewise, hints that are not as good (e.g. whose policy is not a good alternative

for that reference point) should not be reused as often. This has an analogy to the

laws of attraction from physics. The reach of a hint can be considered its mass.

Bodies with stronger mass exert a stronger force of attraction, just like bodies that

are closer to the respective object.

Therefore, we need a metric that is proportional to reachi, and inversely pro-

portional to the distance between the current and reference states. That’s why we

chose to assign policies to slots with probability proportional to wi:

wi =
reachi

1+distance(currentstate,re f erencestatei)

where distance can be any metric defined over the state space. In this paper, we

use the Manhattan distance.

After the assignment of a policy πi to a slot, the execution of this slot starts.

The selection of actions in this slot will be determined by two sources: the existing

policy πi and an ε−greedy procedure based on the Q-values of the current task:

ε−greedy(πnew) =

{
best action with probability ε

random action with probability 1− ε

16



Figure 3.2: Action selection process in a slot combining an existing policy πi

and an ε−greedy procedure.

The action selection is initially determined by πi. In subsequent steps, there is

a probabilistic balance between actions by πi and ε − greedy, until the end when

ε − greedy dominates the action selection process (Figure 3.2). The rationale be-

hind this choice is that the longer a policy has been in use, the farther away from its

reference state the agent will be. Therefore, the learning algorithm gives increas-

ingly more space to alternative knowledge sources.

Table 3.1 describes the algorithm executed during each slot. After the policy

for that slot has been determined, it is passed together with the initial state of the

slot to the algorithm. The basic iteration is repeated for the maximum number of

steps T , or until the goal state is reached. The ε−greedy strategy starts at a specific

level of randomness ε0, and becomes greedier in every step by a factor of ∆ε . The

update of the policy is performed no matter where the action came from. Therefore,

even if an action that was dictated by an existing policy is not appropriate in this

new task, there is still useful information that is collected through this update of

the Q-table.
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Table 3.1: Slot exploration strategy.

Algorithm slot(πi, sinitial)
p = 1.00
scurr := sinitial
epsilon := ε0
Repeat T times or until scurr = sgoal

action =
{

πi(scurr) with probability p
ε−greedy(πnew(scurr)) with probability 1− p

Execute action, collect snext and reward r
Qπnew(scurr,action) := (1−α)Qπnew(scurr,action)+α(r+ γ maxa Qπnew(snext ,a)
p := p−1/T
scurr := snext

ε := min(1,ε +δε)

Table 3.2: Episode definition strategy.

Algorithm episode( initial , Library )
scurr := sinitial
Repeat k times or until scurr = sinitial

let wi =
reachi

1+distance(scurr,si
∀i ∈ Library

Select π according to distribution p(πi) =
wi

∑
j

w j

Execute slot(π,scurr)
Retrieve new scurr from slot procedure

ε−greedy(πnew) =

{
best action with probability ε

random action with probability 1− ε

Table 3.2 contains the definition of an episode. Naturally, it consists of a se-

quence of calls to the slot algorithm. We start by considering the initial state, and

based on this state, computing a probability distribution over the existing policies

(in the library of hints). This distribution is proportional to the past performance of

each function (reachi) and inversely proportional to how far that policy was refer-

enced by the user (1+ dist). After the chosen policy guides the agent in one slot,

the current state scurr changes, yielding a different distribution over policies.
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The algorithm episode above defines how the library of hints is used to generate

an episode of the learning task. Initially, this library of hints used in each episode

is composed of those existing policies selected by the user. However, these policies

might be undefined or very ineffective in some parts of the state space. Therefore,

simply reusing the same set of hints in every episode might be too inefficient an

approach.

Naturally, one solution to overcome the inadequacy of existing policies would

be to use a traditional exploration/exploitation of the environment. We already

do this by switching from the use of the existing policy and ε − greedy in each

slot (Figure 3.2). However, it might still be the case that the area around the initial

state of an episode might not be adequately covered by existing policies. Therefore,

before the start of each episode, we artificially introduce an extra entry in the library

of hints containing the ε−greedy policy having the initial state sinitial as reference

point, with different values of reachε−greedy. This constitutes an experiment, which

tries to identify which value of reachε−greedy in sinitial will better combine with the

existing policies to lead to higher rewards.

Given that distance(sinitial,re f erenceε−greedy) = 0, we can vary reachε−greedy

from a low to a high value to estimate more precisely how the episode performs

when ε − greedy has a low probability and when it has a high probability of be-

ing assigned to one of the slots of the episode. Naturally, this is not a perfect

experiment because future tests setting a higher value of reachε−greedy will have

benefitted from the knowledge acquired in past tests. This will create a bias to-

wards higher values of reachε−greedy. However, this is not necessarily a bad thing.

One of the purposes of introducing ε−greedy in the first place is to slowly get rid

of existing policies, and with each episode to rely increasingly more on concrete

knowledge about the current task. The exploration dictated by ε − greedy relies

on this concrete knowledge, and is therefore beneficial to the learning agent in an

advanced stage of the process. An abstract version of our algorithm is presented in

Table 3.3.

Finally, Table 3.4 presents the complete version of our algorithm. It is called

SHPR, which stands for Spatial Hints for Policy Reuse. We start by repeating a

number of times (E, an input parameter) the procedure equivalent to the first Re-

peat from Table 3.3. Next, the algorithm needs to determine how many times the
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Table 3.3: Abstract definition of SHPR.

Abstract version of SHPO
Repeat
Pick a state from the state space
Repeat the question

For this state, are the existing policies good enough? If not, how strong should the
ε−greedy policy be to jumpstart the collection of good rewards?

Design an experiment to answer this question, and . . .
Record an ε−greedy entry in the library of existing policies that’s as strong as necessary.

question from the second Repeat from the abstract definition is going to be asked

(REPET IT IONS PER EPISODE is another input parameter). The experiment is

equivalent to the while loop, where each iteration is a test with a different hypoth-

esis.

There are two points where the reach table is updated. The first is immediately

after an episode, where the method can estimate each policy’s contribution to the

recent reward, and update their future influence accordingly. And finally, after

the experiment it is possible to evaluate the average of the reachε−greedy over the

different rewards (accWReach/accRewards).

3.3 Discussion
As mentioned before, our motivation for integrating past policies with spatial hints

is that we believe it is easy for humans to associate pairs of tasks by their spatial

relevance. In other words, it should be easy to pinpoint a specific element of the

state space in which an existing policy and the new task are most similar.

The introduction of spatial reference points allows our algorithm to combine

it with a measure of success for each hint (reachx) to create a probability distribu-

tion over hints. Naturally, this concept is technically independent of humans, and

an algorithm could be employed to learn automatically the appropriate initializa-

tion of the reference points. On the other hand, it’s possible that the overhead of

searching for the appropriate reference points might be too much compared with

the jumpstart provided to the actual learning of the new task. The answer to this

question, however, is left as future work. Regarding this thesis, we note that a good
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Table 3.4: The Spatial Hints for Policy Reuse algorithm.

Algorithm SHPR( Library )
For each πi ∈ Library

reachi := INIT IAL REACH
Repeat E times

sinitial := selectInitialState()
reachε−greedy := 1
maxReach := maxπi∈Libraryreachi

∆reach := |maxReach−reachε−greedy|
REPET IT IONS PER EPISODE

accRewards := 0
accWReach := 0
While reachε−greedy ≤ maxReach

tempLibrary := Library∪


ε−greedy(πnew)
with reference at sinitial,
reach = reachε−greedy

Execute episode(sinitial, tempLibrary)
Retrieve total discounted reward R from episode
For each πi ∈ Library

reachi := reachi + participationi×R,

where participationi =
# slots from last episode using πi

# slots from last episode
accWReach := accWReach+ reachε−greedy×R
accRewards := accRewards+R
reachε−greedy := reachε−greedy +∆reach

reachε−greedy := accWReach/accRewards
Library := Library∪ ε−greedy(πnew)withre f erenceatsinitial),reach=reachε−greedy

initialization provided by a human will allow the agent to reason about the relevant

of different hints given a state of the world, and to focus its computational power

on learning the actual task.

The options framework replaces the reuse of existing policies with the applica-

tion of macro actions (options). This is a good choice of knowledge representation,

but it is more sensitive to the problem known as the knowledge acquisition bottle-

neck. Instead of relying on an engineer to provide sequences of actions to the

design of an agent, we choose a more natural source of abstraction over actions:

past policies. Moreover, since by design the execution of past policies is broken
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down into fixed-length slots, these slots can be seen as fragments of the existing

policies, and therefore as macro actions too. And since we control and update the

estimated value of each policy around the existing policy’s reference point, we can

say that our method learns the useful options that emerge from existing policies and

their reuse throughout the lifetime of the computational agent. For a knowledge en-

gineer to manually examine these policies and identify the useful ones would be a

tremendous effort due to the infinite number of different possible options that can

be constructed from existing policies.

The knowledge acquisition bottleneck also helps to illustrate the different be-

tween our contribution and the PRQL and TLITM methods. We already discussed

in previous chapters how they differ in their use of human knowledge. The dif-

ficulty in eliciting expert knowledge highlights the importance of finding ways to

extract better performance from methods that rely less on human collaboration.
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Chapter 4

Experiments

The purpose of our experiment is to evaluate the performance of our algorithm

against two baselines: the PRQL algorithm [1] and the Q-Learning algorithm [3,

8, 14]. We selected these specific contributions because we want to evaluate the

relative performance of our method against approaches that require less human

input. The PRQL algorithm is the method we are trying to extend, and Q-Learning

is a standard baseline, against which PRQL was first compared.

We tested each algorithm with two exploration strategies: the ε−greedy strat-

egy defined before and the Boltzmann strategy, where each action is chosen accord-

ing to p(ai) =
eτQ(s,ai)

∑ j eτQ(s,a j)
where τ is a parameter whose initial value τ0 is increased

by ∆τ after each episode.

4.1 Domain
We selected the Robot Navigation domain. We made this choice in order to have

a proper comparison with existing contributions. This is a standard evaluation

domain in the transfer learning literature [5, 6, 13], and we used exactly the same

specification used when the PRQL algorithm was originally evaluated.

This domain is defined as a discreet 24×21 rectangle shown in Figure 4.1. The

set of actions is Left, Right, Up, Down, which move the agent one position to the

left, to the right, to north, and south, respectively. If the movement would crash the

agent into a wall, then the action has no effect (i.e. the agent maintains its current
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Figure 4.1: The tasks within the domain studied. Figures 4.1a-d represent the
existing policies (past tasks) used by our agent. Figure 4.1e represents
the current task we want to learn. In all of them, the red dot represents
the goal state, and the green dot is the reference state (when applicable).

position).

Five tasks are represented in Figure 4.1. In all of them, the red square represents

the goal state of the task. Figure 4.1e represents the task we want to learn. Figures

4.1a-d represent the existing policies in our library. Their policy is the optimal

policy necessary to reach their respective goal (i.e. for each state, to take the action

that minimizes the shortest distance to the goal state). For these existing policies,

the green square represents their reference state, whenever applicable.

It is noticeable that tasks Ω1 and Ω4 are very similar to the one we want to

solve. Their goal state is closer to the goal of the new task, and therefore their

optimal policy shares a greater percentage of decisions with the policy of Ω than

the policy of the more divergent tasks, namely π2 and more so π3.

In all experiments, the agent receives a reward of 1 when it reaches the goal

state and 0 otherwise.

4.2 Parameter configuration
When selecting the parameters of the baseline algorithms, we started evaluating the

values reported in [1]. For the Q-learning parameters, the discount factor γ = 0.95,

the learning rate α = 0.05. The ε−greedy strategy was configured with ε0 = 0.00

and ∆ε = 0.0005. The Boltzmann temperature was adjusted with τ0 = 0 and ∆τ =
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5.

The PRQL algorithm was executed with the total number of episodes K =

2000, H = 100 steps per episode, the probability of choosing an existing policy

ϕ = 1.00, and ϕ’s decay rate υ = 0.95.

We configured our algorithm according to the configurations above. First, we

set REPET IT IONS PER EPISODE = 101. In order to have a fair comparison

between algorithms, and since we are repeating each episode 10 times, we set our

total number of episodes E = 200 (instead of the equivalent 2000 episodes of the

remaining algorithms). For the same reason, since we set the maximum number

of slots per episode k = 10, we configure the maximum number of steps per slot

T = 10 (to be equivalent to the 100 steps per episode of the other algorithms).

4.3 Results
This section reports the empirical results from our experiments. In each experi-

ment, a different library of existing tasks was selected. For each of the algorithms

evaluated (SHPR, PRQL, and Q-Learning), we initially confronted the two action

selection strategies (ε−greedy and the Boltzmann strategy). However, the perfor-

mance of ε − greedy dominated the Boltzmann strategy in the SHPR, and Boltz-

mann dominated ε−greedy with the remaining two methods. Thats why we only

report the dominating strategies below.

The first experiment illustrates the behaviour of our method using a favourable

library configuration. Only good existing policies were selected, thus contributing

to a better performance of our algorithm. In 4.3.2, we introduce a bad existing

policy into our library. In 4.3.3, we present the case when all policies in the library

are not useful. The results are presented through the metric introduced in Equation

(1). All results displayed are an average of 20 executions of each method under the

same conditions.
1Naturally, the configuration of this and other parameters depends on the domain in which the

agent will act. A detailed study of different configurations and their effect on the learned policies is
left as future work
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4.3.1 Library = {Ω1,Ω2,Ω4}

This experiment uses the policies Ω1, Ω2, and Ω4, from those tasks represented in

Figures 4.1a, 4.1b and 4.1d, respectively. It is noteworthy that tasks Ω1 and Ω4 are

very similar to the task we are learning. In theory, this benefits both our algorithm

and PRQL.

Results of this experiment are presented in Figure 4.2. An entry at this graph,

say at (200, 0.02) means that the average reward of the respective algorithm after

it ran the first 200 episodes was 0.02 (see Equation 3.1). Our algorithm collected

the highest average rewards in this situation no matter what the action selection

strategy. However, ε−greedy demonstrated to be the best strategy for our method.

This is unlike the other algorithms, where the Boltzmann strategy always yielded

better results.

In this case where the library of policies contains favourable entries, PRQL is

able to outperform Q-Learning when using the Boltzmann strategy. The use of

the ε−greedy strategy makes PRQL even worse than Q-Learning using that same

strategy.

In order to test the significance of these results, we performed a Wilcoxon

signed rank test with continuity correction. We observed statistical significant at

the P < 0.01 that our method outperforms the two baselines.

Figure 4.3 shows the number of times each existing policy was selected by the

Spatial Hints methods. This picture shows, for each of the test runs, the number

of times each policy has been activated. Intuitively, the most favourable existing

policy from the library (π4) should be reused more often than the other ones. In-

deed, we tested this hypothesis with the Wilcoxon signed rank test with continuity

correction, and confirmed it with confidence values p < 0.01.

4.3.2 Library = {Ω1,Ω2,Ω3,Ω4}

In this experiment, we added one entry to the previous library, Ω3, which is detri-

mental to SHPR and PRQL learning the current task. This entry has its goal state in

the opposite corner of the state space, and therefore most of the actions it dictates

are bad decisions for the learning agent. This experiment tests the behaviour of the

algorithms in this more realistic scenario.
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Figure 4.2: Comparison using existing policies π1, π2, and π4. This library
contains only favourable entries for both SHPR and PRQL. The black
curve represents SHPR using ε−greedy, the blue curve represents Q−
learning using the Boltzmann strategy, while the red curve represents
PRQL using the Boltzmann strategy.

Figure 4.3: Distribution of the use of each existing policy for each of the test
runs of this Section’s experiment.
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Figure 4.4: Comparison using existing policies π1, π2, π3, and π4. This li-
brary contains entry 3 which should be detrimental to SHPR and PRQL.
The black curve represents SHPR using ε−greedy, the blue curve rep-
resents Q− learning using the Boltzmann strategy, while the red curve
represents PRQL using the Boltzmann strategy.

Figure 4.4 presents the results of this experiment. In this scenario, again SHPR

performed better than the other methods. Just like in the previous experiment, the

use of ε−greedy yielded better results than the Boltzmann selection strategy. And

again, this is the opposite of what happens with the other methods. QLearning

managed to outperform PRQL by a small difference using Bolzmann and by a

significant difference when using ε−greedy.

The algorithm correctly tended to ignore the bad entry in the library, in favor

of the better alternatives, causing hardly any damage to the final policy. This sug-

gests robustness against bad elements in the input library of hints. This result is

demonstrated in Figure 4.5, where we display for each test run of the experiment,

for number of times each existing policy has been selected by the algorithm for

reuse. In evaluating this scenario, we tested whether our method was indeed se-

lecting the less favourable policy π3 less often than the others. However, the only

statistically significant result in this matter was observed when comparing whether
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Figure 4.5: Distribution of the use of each existing policy for each of the test
runs of this Section’s experiment.

π4 was used more often than π3, at the level p < 0.01. On the other hand, it is also

possible to attest that π4 was used more often than π1 (p < 0.05), but not that π4

was used more often than π2 (p < 0.16).

4.3.3 Library = {Ω3,Ω3a,Ω3b,Ω3c}

The goal of this last experiment is to evaluate our algorithm using a library con-

sisting of less favourable entries. While before we had entries that made up for a

bad entry in the library, now the library consists of repetitions of policy Ω3, whose

goal is somewhat opposed to the goal of our learning task. Figure 4.6 depicts this

library. Figure 4.6a is simply a repetition of Ω3, while Figures 4.6b-d introduce the

same task with different reference points.

Results from this experiment are represented in Figure 4.7. The most intrigu-

ing result is the persistent good performance of our method relative to the others.

Naturally it performed worse than with the previous two libraries, but SHPR still

outperforms the other two algorithms, no matter which action-selection strategy

was employed. Still, ε − greedy performed better than Boltzmann in our algo-
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Figure 4.6: A new library of bad policies used in the experiment. We removed
all the good entries from the library and create three extra copies of the
bad policy, with reference states covering different areas of the world.

rithm, but worse in the other methods. PRQL performed worse than Q-Learning,

and converged to very similar results, no matter which strategy is used.

This last experiment really suggests a strong resistance to the use of policies

that are significantly different from the current task. As is the case with the policies

in this library, the only actions that benefit the agents are those inside the rooms that

do not contain any of the goal states. But whenever the agent enters the corridor,

these tasks take it to the direction thats opposite to where it should go. SHPR is

able to reuse the subset of the policies thats beneficial to the current task.

Figure 4.8 depicts the use of each existing policy in each trial of this last exper-

iment. Naturally, no policy from the library is highlighted as of special use to the

method. However, we were interested in testing whether they would be considered

useful in inverse proportion to the proximity of their reference state and the goal

state of the task π . However, no correlation was found to be statistically significant

in this respect.
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Figure 4.7: Comparison using existing policies π3, π3a, π3b, π3c. This library
contains only entries that should not help SHPR or PRQL. These hints
reuse the dissimilar task Ω3 with different reference points. The black
curve represents SHPR using ε−greedy, the blue curve represents Q−
learning using the Boltzmann strategy, while the red curve represents
PRQL using the Boltzmann strategy.
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Figure 4.8: Distribution of the use of each existing policy for each of the test
runs of this Section’s experiment.
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Chapter 5

Conclusion

In this thesis, we presented a new algorithm for transfer learning in reinforcement

learning agents. Our method allows an agent to take advantage of tasks learned in

the past to accelerate the elaboration of good policies for new learning tasks. In

addition to a library of policies, we created a scheme where humans are allowed

to give spatial hints to the learning agent. These hints consist of an element of the

state-space for each policy in the library where the respective policy is most similar

to an ideal policy for the current task. We believe that this kind of information is

easily elicitable from non-expert users, and we demonstrated the impact is makes

on the performance of the learning agent.

Our algorithm applies the concept of time-sharing to break episodes into dif-

ferent slots, allowing the agent to repeatedly sample from the library of policies

during the exploration of the environment. Since the sampling is from a distribu-

tion proportional to the past success of policies, and inversely proportional to the

proximity to the reference point of a policy, different positions in the state-space

will lead to different choices of existing policies, and therefore to a good use of the

user contribution and the successful existing policies.

In order to validate our approach, we conducted an empirical study testing

the algorithm across different sets of existing policies. We also varied the type

of user contribution, considering cases that characterize mistakes from the user in

providing a hint that should indicate similarity between the existing policy and the

current learning task. As demonstrated in Chapter 4, our algorithm is robust to
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inputs of different qualities, and also is able to extract similarities from tasks that

at first might not be obvious to the user.

5.1 Discussion and future work
We introduced this thesis by mentioning the interest in extracting competent be-

haviour from learning agents. Because of this, it might be possible that the greedy

nature of this agenda might produce policies that are not optimal for the learning

task. That is why one important future test for our algorithm would be the study of

its performance when using a set of existing tasks that are not optimal, or perhaps

ill-defined in same subset of the state-space. This would certainly be a natural sce-

nario even for other contributions to reinforcement learning where exploration is

somehow limited by factors such as number of episodes or total training time.

One obvious approach to modeling the scenario with ill-defined existing poli-

cies is to replace calls for actions in areas of the state not considered by the existing

policy by a call to the ε-greedy method. Althought simple, this approach might re-

quire a log of the regions actually covered by the agent when learning the past poli-

cies (i.e. the value function would not distinguish unexplored regions with choices

of equivalent values). Nevertheless, it is possible that more elaborated solutions

might yield better results for this problem.

One other possibility of future empirical work is the design of experiments in

different domains. Since we are considering spatial hints from users, a metric over

the state-space will be directly relevant to the sampling of existing policies, and

therefore will have a significant effect on the overall performance of the method.

Therefore, it might be interesting to test the robustnes of our algorithm in domains

where such a metric would include non-linearities, or simply irregularities across

the domain. One simple example is a grid-world like that considered in Chapter 4,

but where each would have a heat generator that changes the temperature locally.

Therefore, since walls would block the effect of heat propagation, at some parts

of the state-space a manhattan model like the one considered in our experiments

would produce faithful results, but not in others.

Naturally, another interesting empirical study is the evaluation of the behaviour

of the algorithm in stochastic environments, where the perception of the agent and
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the effects of actions might be more noisy. Currently, we are testing this method

in the Robocup domain [4], a domain which represents very well the challenge of

stochastic environments.

From a different perspective, since we motivated our work with the idea of al-

leviating the burden on user of providing complicated input to the agent, it might

be interesting to investigate methods that learn good spatial hints automatically,

given the library of tasks and some description of the current task. Indeed, this

would spare the user from providing information that is very important for the final

performance of the learning agent. However, this would add to the learning task

the burden of learning an important parameter of the learning algorithm. While

current research demonstrates the feasibility of automatic algorithm configuration

in different settings [2], it is not clear that this would be a successful approach in

a reinforcement learning setting. One would naturally have to consider the overall

performance of such a hypothetical method and somehow compare it with the cost

of eliciting the knowledge directly from the user. Since this comparison is con-

ceptually difficult to execute, it highlights the importance of considering human

contribution to learning algorithms.

Furthermore, the high level goal of our agenda is to learn tasks fast by taking

advantage of user contribution, but without burdening the knowledge contributor. It

is possible that other aspects of the learning environment can be used in this respect,

and not only policies learned before by the agent. A user might provide something

other than points where pairs of tasks are more similar, or might contribute in a

more different setting where some other type of knowledge is considered, instead

of (only) tasks learned in the past.
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