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Abstract

Social relatedness measures such as the Katz score and the commute time between

pairs of nodes have been subject of significant research effort motivated by social

network problems including link prediction, anomalous link detection, and collab-

orative filtering.

In this thesis, we are interested in computing: (1) the score for a given pair of

nodes, and (2) the top-k nodes with the highest scores from a specific source node.

Unlike most traditional approaches, ours scale to large networks with hundreds of

thousands of nodes.

We introduce an efficient iterative algorithm which calculates upper and lower

bounds for the pairwise measures. For the top-k problem, we propose an algorithm

that only has access to a small subset of nodes. Our approaches rely on techniques

developed in numerical linear algebra and personalized PageRank computing. Us-

ing three real-world networks, we examine scalability and accuracy of our algo-

rithms as in a short time as milliseconds to seconds.

We also hypothesize that incorporating item based tags into a recommender

system will improve its performance. We model such a system as a tri-partite graph

of users, items and tags and use this graph to define a scoring function making use

of graph-based proximity measures.

Exactly calculating the item scores is computationally expensive, so we use the

proposed top-k algorithm to calculate the scores. The usefulness and efficiency of

the approaches are compared to a simple, non-graph based, approach. We evaluate

these approaches on a combination of the Netflix ratings data and the IMDb tag

data.
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Chapter 1

Introduction

1.1 Social Networks
A social network is “a network of social interactions and personal relationships” as

defined by Oxford Dictionary 1. Social networks have been studied and analyzed

by sociologists since 1950s (e.g., see [6]).

The advent of large social networks (such as Facebook, MySpace, and Twit-

ter) and the availability of large quantities of social interaction data (on movies,

books, music, etc) have caused people to ask: what can we learn by mining this

wealth of data? Measures of social relatedness play a fundamental role in answer-

ing this question. For example, Liben-Nowell and Kleinberg [26] identify a variety

of topological measures as features for link prediction, the problem of predicting

the likelihood of users/entities forming social ties in the future, given the current

state of the network. The measures identified in [26] fall into one of two cate-

gories – neighborhood-based measures and path-based measures. It is known that

the former are cheaper to compute, although the latter are more effective at link

prediction. The best path based measurements from [26] are the Katz measure and

the hitting time/commute time (HT/CT) measure. The details of these measures

could be found shortly in the following subsections.

1http://www.oxforddictionaries.com

1
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1.1.1 Katz Measure and Commute Time

The Katz measure (also called Katz status score, or just Katz) K(x,y) between

nodes x and y captures the connectivity between these nodes in terms of an en-

semble of paths. The key intuition is that the more paths connecting x and y, the

stronger their affinity, but also the shorter the paths, the more important the contri-

bution of the paths to the affinity.

Katz [24] proposed a measure for gauging the importance of actors in a net-

work. Given an undirected graph G, intuitively, the Katz status score between

nodes x and y is a weighted sum over the ensemble of all paths between x and y.

More precisely, let pathi(x,y) denote the number of paths of length i between x and

y. Then the Katz score is score(x,y) = ∑
∞
i=1 α i×pathsi(x,y), where α ∈ (0,1) is an

attenuation constant. We can formulate the paths in terms of an (n×n) adjacency

matrix of the graph. If α < 1, this definition weighs shorter paths more heavily

than longer paths. A given power k of the matrix A gives all the paths of length k.

In matrix notation, the matrix of Katz scores between all pairs of nodes is given by

K = αA+α
2A2 + · · ·= (I−αA)−1− I.

Katz was interested in centrality measure of nodes, a measure signifying their

global importance, so he proposed the column sums of the matrix K as the re-

quired centrality scores. More precisely, he defined s(y) = ∑
n
x=1 Kx,y, where s(y)

denotes the Katz score of node y. These scores can be conveniently computed by

solving the system of linear equations ( 1
α

I−AT )t = s, where t is a vector of un-

knowns corresponding to the Katz scores to be computed and s is a vector with

component si being the sum of entries in column i of A. Foster et al. [14] proposed

an O(n+m) algorithm for computing Katz centrality scores for nodes, where n (m)

is the number of nodes (resp., edges) in the network.

The particular variant of Katz scores, adapted for the problem of link predic-

tion, proposed by Newell and Kleinberg, goes back to the original matrix equation.

Notice that according to this definition, the Katz score of a pair of nodes x and

y is defined based on entries of this matrix. This is different from the node-wise

centrality score defined by Katz in his paper. Computing the pairwise Katz score

by explicitly computing matrix inverse takes O(n3) time which is impractical for
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most real life networks. The computational time may be reduced if a column of

the inverse is computed by solving a linear system with a standard basis vector on

the right hand side. However, for computing the Katz score for a single pair of

nodes, we can use a direct procedure, (i.e., one that does not produce a solution of

a linear system as an intermediate step) and show that we can effectively use upper

and lower bounds to estimate the error and converge to a result with a prescribed

accuracy.

The hitting time from node x to y is the expected number of steps taken for a

random walk started at x to reach y. At any current node v, the walk progresses

to one of the neighbors chosen uniformly at random. The probability of transition

is computed as follows. Let wi j denote the weight of the edge (i, j) whenever

the edge exists and is 0 otherwise (as a special case, all non-zero weights wi j in

the adjacency matrix may be 1). Then the probability of a transition from node

i to j is pi j = wi j/∑` wi`. Denote by P the resulting matrix. Notice that P is a

stochastic matrix, i.e., every row sums to 1. The random walk characterized by P

is described by hi j = 1 + ∑` pi`h` j, i.e., H = I + PH, where H denotes the matrix

of hitting times. That is, P = (I−P)−1. Note again the matrix inverse operation in

this equation, similar to that for the Katz measure. However, unlike Katz, hitting

time is not necessarily symmetric. A related quantity of interest is the commute

time, which is defined as the sum of hitting times from x to y and from y to x and

is symmetric. In this thesis, we have chosen commute time over hitting time for

simplicity of computation, while it still serves as a proximity measure in social

networks.

In previous research, both the Katz measure and the commute time measure

have been shown to be effective at link prediction. A related task is to determine

if a given link is peculiar or even anomalous. In [32], Rattigan and Jensen use a

pairwise Katz score K(x,y) to detect anomalous links, i.e., links with low likelihood

of formation. More precisely, they treat a new link as anomalous if the Katz score

between the endpoints is low. This motivates the problem of computing the score

for a given pair of nodes.

Another recent paper [25] studies efficient computation of SimRank [22] for

a given pair of nodes. Furthermore, commute time has also been applied in spec-

tral clustering [30, 31]. There, the commute time between a node and a group of

3



nodes (e.g., a cluster) measures their affinity. This usage motivates computing the

aggregate Katz score or commute time between a node and a set of other nodes.

Commute time has also been used for generating recommendations based on

collaborative filtering [35], and for spectral clustering [30, 31]. For both link pre-

diction and recommendation, another common task is: find the k best predictions

or recommendations for a particular node. Thus, given a specific node, we ex-

plore computing the k-nearest-neighbors with respect to both Katz and a diffusion

measure inspired by commute time.

In link prediction, anomalous link detection, and recommendation, the under-

lying graph is dynamic and evolving in time. These tasks require almost real-time

computation because the results should reflect the latest state of the network, not

the results of an offline cached computation. Therefore, calculation of these metrics

must be as fast as possible. An alternative is to combine some offline processing

with techniques to get fast online estimates of the scores. These techniques invari-

ably involve a compromise between scalability of the approach (e.g., computing a

matrix factorization offline) and the complexity of implementation (see [7, 23] for

examples in personalized PageRank).

1.1.2 Bidirectional Diffusion Affinity

Another measure we investigate is inspired by commute time. In particular, we

cannot state the top-k commute time scores as the solution of a single linear sys-

tem (see Section 1.2 for details). Thus, we wanted a measure that was capturing

something similar to commute-time, but could be computed with a single linear

system.

Our new measure is defined by a diffusion in the graph. Consider the systems

(I−P)X = I and (I−PT )Y = I (See Section 1.1.1 for definitions). The matrices

X and Y model a forward and backward diffusion from each node. (We discuss

the singularity of these systems shortly.) Think of Xi, j as the amount of “liquid” at

node j when we inject 1 unit of “liquid” at node i and it diffuses according to P.

Our new measure is F = X +Y .

Because bidirectional diffusion affinity is inspired by computing top-k com-

mute times, we wanted to understand how the top-k commute time sets compared

4



with the top-k F scores. We decided to gauge this correspondence by computing

exact commute times, which is of course feasible only on small graphs. For one

small graph2, we look at an empirical relationship between our bidirectional dif-

fusion affinity F matrix and the exact commute time matrix C. In Figure 1.1, we

explore the similarity in smallest commute time and highest bidirectional diffusion

affinity; Left: For a line graph, we plot both the commute times and bidirectional

diffusion affinity (F-measure) scores from a target node in the middle of the graph

(in red). Right: Consider the k nodes with smallest commute time to a target node.

Each box-plot shows the precision at k using the top-k nodes from our diffusion

affinity measure. The plots aggregates 300 trials (for 300 different target nodes)

and shows the median precision at k in red, and the 25th and 75th percentiles in the

box. We exclude the neighbors of the target from the top-k set. This figure shows

that, in the majority of experiments, the top-k sets of these two measures overlap

by at least 75%, that is, the precision at top-k for most values of k is at least 75%.

1.1.3 PageRank

PageRank is a random-walk-based authority measure defined for nodes in a net-

work. The PageRank score between two nodes is

R(u,v) = (1−α)
∞

∑
`=0

α
`Probl(u,v)

where Probl(u,v) is the probability of random walk starting at u and ending at

v in exactly l steps. If we fix v and look at the vector R(·,v), it is the vector

of personalized PageRank scores where the reset step always moves to node v.

Personalized PageRank (PPR) biases the authority towards a subset of nodes by

defining a preference vector. The PPR vector v satisfies

v = αPv+(1−α)u

where α ∈ (0,1) is the damping or attenuation constant, and u is the preference

vector. The matrix P has entries Pji = 1/di if node i links to node j, where di is

2The undirected connected component of Stanford CS webgraph, University of Florida sparse
matrix collection.
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Figure 1.1: Bidirectional diffusion affinity plots

the degree of node i. If u has 1
m as m elements corresponding to m nodes, and 0

as other ones, the PPR score shows how the authority is propagated from those m

nodes to each node. The propagation of authority could also be used to determine

closeness of nodes [35]. Thus, we define R(i, j) = vi when u = e j.

1.1.4 Other Measures

Works on other measures, mainly motivated by link prediction or collaborative fil-

tering, abound. We just give a few examples. Spielman and Srivastava [39] develop

a technique for computing the effective resistance (which is proportional to com-

mute time) measure between nodes in amortized O(logn) time. Haveliwala [19]

studies topic-sensitive PageRank, which is proposed as a useful measure for link

prediction. Jeh and Widom [22] develop an algorithm for efficient computation

of SimRank, a measure defined by a recurrence and is computationally intensive,

while more recently, Li et al. [25] develop an efficient algorithm for computing the

6



SimRank for a given pair of nodes, avoiding the computation for pairs of nodes not

needed for the query.

1.1.5 The Problems

As we explain shortly in Section 1.2, computing these measures is closely related

to solving a linear system. Solution techniques for linear systems fall into two

categories: iterative methods (e.g., conjugate gradient) or direct methods (e.g.,

Cholesky); see [16]. Each methodology leaves something to be desired in the

context of this work.

Standard iterative methods solve a linear system with only matrix-vector prod-

ucts. These algorithms scale to large systems, but do not generally provide ac-

curacy estimates of individual entries of the solution. Direct methods produce an

easier-to-solve system by manipulating the entries of the matrix directly. However,

computing these matrix factorizations requires O(n3) time and O(n2) memory in

the worst case. Sparse factorization techniques improve performance empirically

[12]; but for graphs with hundreds of thousands or millions of nodes, the time and

memory required with these algorithms is prohibitive.

In this thesis, we seek approaches forming an attractive middle ground that at

once provide a straightforward implementation and good scalability. We explore

two cases where fast approximations of the proximity measures are possible:

• Given a pair of nodes x,y in a social network, find the proximity measure

between x and y.

• Given a node x in a social network, compute the top-K nodes (in terms of

proximity measures) associated with it.

In [41], the authors use a commute time kernel based approach to detect clus-

ters and show that this method outperforms other kernel based clustering algo-

rithms. The authors use commute time to define a distance measure between nodes,

which in turn is used for defining a so-called intra-cluster inertia. Intuitively, this

inertia measures how close nodes within a cluster are to each other. They fol-

low a k-means approach to clustering and define the total intra-cluster inertia as

follows. Let C be a clustering, i.e., an assignment of nodes to clusters. Then

7



J(C ) = ∑C∈C ∑i∈C ||xi−gC||2, where C is a cluster, xi is the feature vector of node

i, and gC is the representative feature vector of cluster C and ||xi− gC|| is the dis-

tance between the two vectors. The algorithm we propose for computing the Katz

and commute time score for a given pair of nodes x,y extends to the case where one

wants to find the aggregate score between a node x and a set of nodes S. Conse-

quently, this has applications for finding the distance between a point and a cluster

as well as for finding intra-cluster inertia.

1.2 Numerical Computation Remarks
In this section, computing the first three proximity measures (i.e. Katz score, com-

mute time, and bidirectional diffusion affinity) is discussed. Please note that Per-

sonalized PageRank has been introduced in this thesis, but the approximation al-

gorithms to calculate proximity measures are not applicable to it. It has only been

used in our recommender system models. Lanczos and quadrature rules, as basic

notions employed in our proposed algorithms are also introduced in the following.

1.2.1 Computing the Measures

Computing the pairwise Katz score by explicitly computing matrix inverse takes

O(n3) time which is impractical for most real life networks. The computational

time may be reduced if a column of the inverse is computed by solving a linear

system with a standard basis vector on the right hand side.

Using a Neumann series expansion, for α sufficiently small, we have

(I−αA)−1 = I +αA+α
2A2 + · · · ,

and hence K is component-wise positive. Based on this expansion, Foster et al. [14]

proposed an O(n + m) algorithm for computing Katz centrality scores for nodes,

where n (m) is the number of nodes (resp., edges) in the network. This complexity

is based on their claim, empirically verified, that their method converges in a small

number of iterations.

The matrix K has a few useful properties. Consider the matrix that needs to

be inverted, namely B = I−αA. For α sufficiently small (α < 1/dmax1, where
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dmax = ‖A‖1 is the maximum degree or 1-norm of the matrix), B is a symmetric

positive definite, diagonally dominant M-matrix [40], which asserts that (i) its diag-

onal is positive, (ii) its off-diagonal elements are non-positive, (iii) the diagonal ele-

ments in each row are larger than the absolute value of the sum of the remaining el-

ements, and (iv) the inverse B−1 is component-wise positive. If α < (maxλ (A))−1,

where λ (A) is the set of eigenvalues of A, then B is a symmetric positive definite

matrix. Computing a pairwise score amounts to computing a single entry of B−1.

Computing the k-largest scores involves computing the largest entries in a column

of B−1.

By definition, commute time is symmetric. Let C denote the commute time

matrix of an undirected graph G, and ci, j be the commute time between a pair of

nodes. We now review how to compute ci, j. Let W be a weighted adjacency matrix.

Typically, this matrix contains real values that hold the weight of an edge (zero if

an edge does not exist). If D is the diagonal matrix holding the row sums of W ,

then the graph Laplacian is defined as L = D−W. Define the volume of a graph

as Vol(G) = ΣiDii. Then we have ci, j = Vol(G)(ei− e j)T L†(ei− e j), where G is

the graph, ei and e j are standard basis vectors, and L† is the pseudo-inverse of the

symmetric positive semidefinite graph Laplacian.

The graph Laplacian is singular since its row sums are all zero, which means it

has a nontrivial null space that contains constant vectors. Standard techniques for

dealing with this generate a shift that eliminates the zero eigenvalue, for example by

projection onto the space orthogonal to the null space. Thus, one possible way of

eliminating the null space (see, e.g., [34]) is by working with (L+ 1
n eeT )−1− 1

n eeT ,

where e is the vector of all 1s. That is, eeT is a rank 1 correction associated with the

null vectors, and the matrix to be inverted here is now positive definite. Another

possible way of eliminating the singularity is simply by eliminating a row and a

column of L.

We can compute bidirectional diffusion affinity with a single solve of the Lapla-

cian system. Let LZ = (D−W )Z = I. Then Y = DZ by direct substitution; and

X = ZD by direct substitution using P = D−1W and WZ = DZ− I. Furthermore,

F = DZ +(DZ)T because Z is symmetric.

All of these linear systems are singular and moreover, none of the right-hand

sides are compatible. Thus, “solutions” do not exist. We take each of these systems
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as a least-squares problem instead. Consequently, Z = L† corresponds to solving

each least-squares problem with the minimum length solution [16]. This solution

is unique, which allows us to uniquely define F = DL† +(DL†)T . We note, how-

ever, that this is a theoretical observation, and the pseudo-inverse is not explicitly

computed in our experiments.

1.2.2 Lanczos Algorithm

A centerpiece in the methods we propose is the Lanczos algorithm. We there-

fore devote a special section to it. This algorithm (see, for example, [13, 16] for

excellent and thorough descriptions) is a procedure of constructing an orthogonal

sequence of vectors in a special linear space, which results in a small tridiagonal

matrix that can be used in matrix computations related to eigenvalues and linear

systems. Input for the algorithm is a matrix B, an initial vector q and a number of

steps k. Upon exit, we have an n× (k +1) matrix Qk+1 with orthonormal columns

and a (k +1)× k tridiagonal matrix Tk+1,k, that satisfy the relation

BQk = Qk+1Tk+1,k,

where Qk is the n× k matrix that contains the first k columns of Qk+1, and

Tk+1,k =



α1 β1

β1 α2 β2

β2 α3 β3
. . . . . . . . .

. . . . . . . . .
. . . αk−1 βk−1

βk−1 βk−1

βk


.

The columns of Qk form an orthogonal basis for the so called Krylov subspace

K k(B,q) = span{q,Bq,B2q, . . . ,Bk−1q}.
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where span(v1, ...,vk) denotes the vector space spanned by the vectors vi.

Figure 1.2: The Lanczos algorithm schema

It is worth explaining how the orthogonality relation is constructed. Basically,

we perform the well known Gram-Schmidt process, and terminate it after a mere

k steps. Starting off with the initial vector q, we normalize it: q1 = q /‖q‖, so as

to have a vector with unity norm. We then compute Bq1, but instead of leaving

it intact, we orthogonalize it against q1 and normalize it to obtain q2, so that q1

and q2 are now orthogonal, but span the exact same subspace as q and Bq. The

process is now repeated, column by column. The symmetry of the matrix allows

for constructing the orthonormal basis using short recurrence relations, which is

reflected in the fact that Tk+1,k is tridiagonal. (In the general nonsymmetric case

we cannot expect to have this desirable situation; the tridiagonal matrix is replaced

by an almost upper triangular matrix known as upper Hessenberg.)

Many modern methods in numerical linear algebra rely on the Lanczos algo-

rithm for computing approximate eigenvalues or approximate solutions of linear

systems. One way of understanding why this procedure can help to solve these

problems, is by observing that in the limit k = n we have an orthogonal similarity

transformation of the form B = QT QT ; see Fig. 1.2. (When k < n we do not have

equality.) Thus, the eigenvalues of B are preserved under this transformation, and

if we were interested in a linear system solution, as follows from simple matrix

algebra, a solution for Bx = b could be obtained by solving Ty = QT b and setting
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x = Qy.

But what makes Lanczos attractive is not the exact similarity transformation

that is obtained in the limit k = n. Rather, it is the good approximation properties

that this procedure has for k� n. The matrix Tk+1,k is small since k� n, but the

spectrum if its k× k upper part (i.e. the same matrix, with its last row excluded)

approximates that of the large n× n matrix B in a least squares sense; a detailed

analysis is beyond the scope of this thesis, see, e.g., [13].

1 : q1 = q/‖q‖2,β0 = q0 = 0
2 : for j = 1 to k
3 : z = Bq j

4 : α j = qT
j z

5 : z = z−α jq j−β j−1q j−1
6 : β j = ‖z‖2
7 : if β j = 0, quit
8 : q j+1 = z/β j

9 : end for

Figure 1.3: Lanczos(B,q,k).

Another crucial point here is that the matrix B does not necessarily have to be

provided explicitly; a look at the algorithm (Figure 1.3) reveals that all we need

here is a ‘black box’ routine that, given a vector x, returns a vector y = Bx. In

other words, it is sufficient to have a routine that generates matrix-vector products,

for any given vector. In any case, whether or not the matrix is available explic-

itly, a central point here is that the cost of matrix-vector products in O(n). This

is particularly important in the context of the problems discussed in this thesis,

where the size of the social networks considered could easily be in the hundreds of

thousands. Decomposition approaches are generally infeasible due to prohibitive

storage and computational requirements. On the other hand, algorithms that rely

on matrix-vector products are promising.
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1.3 Social Search and Recommender Systems
Recommender systems provide recommendations (usually items from a large set

that are hard to find otherwise) for users based on stored and/or acquired infor-

mation such as their history, history of similar users, and explicit queries. The

term social search is used to describe a type of web search that considers social

information gathered from Web 2.0 applications [9].

Improving the usability of recommender systems and user satisfaction has al-

ways been one of the main concerns of the recommender systems community. The

popularity of search engines suggests that, in general, users prefer easy-to-use ways

of communicating with the system to express their current preferences.

In this thesis, we propose two models that integrate user history (of rating

items) and keywords (a.k.a tags) assigned to items in order to make query-based

recommendations. Our original motivation was to improve the usability of these

systems by allowing users to issue keyword queries to a recommender system.

For example, a user trying to find a family friendly movie would issue the query

“family-friendly.” In our system, we could use the tag “family-friendly” as the tag

portion of the recommendation instead of the user’s implied set of tags (as dis-

cussed in the previous two sections). Without this explicit information, we can

only infer the current interests of users by complex statistical models, which are

not necessarily accurate due to possible lack of sufficient information.

We identified three broad classes of related work for this section: social search,

graph based recommendation, and query based hybrid recommendation, that ap-

pear in the following subsections.

1.3.1 Social Search

Many methods have been proposed to improve discovery of relationships from so-

cial data and enhance social search results. For example, [20] proposed FolkRank,

a generalized link analysis approach (similar to PageRank), to compute strengths

of each entity of the network. FolkRank computes the score of each entity based on

its relationships with others and the strengths of the relationships that spread acti-

vation. Therefore, a tag stated to be strong by important users becomes strong, and

a document strongly related to strong tags by strong users becomes strong itself.
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In [5] the popularity of web pages, users, and annotations are captured simulta-

neously by SocialPageRank based on relationships of entities. The intuition behind

this model is that the annotations are good summaries of web pages and popular

web pages have higher annotation counts. The contribution of SocialSimRank [5]

and SocialPageRank is that combining social score of a page with textual similarity

of tags associating that web page to a query improves the quality of the results.

Chakrabarti [10] presents HubRank; a method for proximity searches in entity-

relation (ER) graphs, which is fast and space efficient compared to previous prox-

imity search algorithms. HubRank has a preprocessing phase which chooses a

small fraction of nodes using query log statistics, and then computes and indexes

certain random-walk fingerprints for that fraction of nodes in the multi-entity graph.

At query time, a small active subgraph is identified and bordered by nodes with

existing indexed fingerprints. These fingerprints are adaptively loaded and the re-

maining active nodes are then computed iteratively in order to calculate approxi-

mate personalized PageRank vectors.

Schenkel et al. [38] expand the scope of social search by collecting social infor-

mation from LibraryThing3. They model social and semantic relationships among

tags and items, and calculate the score of a document for a tag for each user based

on these relations. The score of a document for a query, then, is produced by

summing up the scores of that document for tags in the query. Similarly, [37]

develop an incremental top-k algorithm considering strengths of relations among

users and relations of different tags. They use a top-k threshold model and use

social and semantic expansions in an incrementally on-demand manner to leverage

social wisdom.

In [9], Carmel et al. try to take searcher’s personal preferences into account by

re-ranking search results. In order to re-rank search results for a user, they extract

related users to that user and compute the similarity strength between them based

on their social activity and re-rank the non-personalized search results. Therefore,

documents that are strongly related to similar users get boosted in the personalized

result.

Zhou et al. [43] combined language-modeling-based methods for information

3http://www.librarything.com

14



retrieval with social annotations in a unified framework to detect topical informa-

tion in tags and integrate those information into traditional information retrieval

techniques. In the first step they categorize users by domain and extract topics

from contents and annotation of documents, and in the second step they incorpo-

rate user domain interests and topical background models to enhance document

and query language models.

1.3.2 Graph-Based Recommendation Methods

Collaborative filtering is a popular approach to recommender systems in general [3].

Sarkar and Moore [35] motivated commute time in the context of collaborative fil-

tering and proposed an interesting and efficient approach for finding approximate

nearest neighbors with respect to a truncated version of the commute time mea-

sure. In [36], Sarkar et al. use their truncated commute time measure for link

prediction over a collaboration graph and show that it outperforms personalized

PageRank [22]. Saerens et al. [34] develop an application for spectral clustering

based on principal component analysis of graphs, based on the Euclidean commute

time distance between nodes, defined as the square root of the average commute

time.

The relationships between users and items based on their rating preferences can

be modeled as a bipartite graph. For example, in a movie recommender system,

the nodes of the graph are users and movies, where a user is connected to a movie

with a weighted edge if the user rated that movie and the rating is the weight of the

edge. Gori et al. ([18]) present ItemRank, a random-walk based scoring algorithm

that by using a similarity measure, ranks movies according to expected user pref-

erences. Average commute time, PCA commute time distance, and elements of the

graph Laplacian’s pseudo-inverse are some of the measures characterizing similar-

ity that Gori et al. used in ItemRank. The intuition behind ItemRank is that user

preferences can spread through the correlation graph, so they used the PageRank

algorithm because it has both propagation and attenuation properties.

In [15], the authors present a similar method for measuring similarity between

any pair of nodes based on the number and length of the paths between them. They

compute similarities based on a Markov chain model of random walk through the
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graph by assigning transition probabilities to the edges and considering items as

states of the Markov chain. They show that the pseudo-inverse of the Laplacian

matrix of the graph is a valid kernel and can be considered as a similarity measure.

Moreover, [8] present various measures and show that commute time is highly

sensitive to nodes’ degrees, which can be scaled to the stationary distribution of a

simple random walk. They propose angular-based measures for recommendation

and showed that its performance is much better than using commute time alone. An

alternate approach proposed in [21] is to use link prediction measures, including

Katz’s score, to improve standard the accuracy of collaborative filtering.

Zhang et al. [42] model the label distribution for users and items and also

pairwise relationships between users and items as a Gaussian Markov random field.

They use this Gaussian semi-supervised model in order to solve the problem of

top-k recommendations. Another contribution of their work is using an absorbing

random-walk algorithm while considering degrees of nodes and directly generating

top-k items without predicting ratings, just like our proposal.

1.3.3 Query Based Hybrid Recommenders

Many recent commercial movie recommendation systems4 are designed around the

idea of a “movie genome project” – a set of features describing the movies. These

were most likely inspired by the success of Pandora’s5 “music genome project”

used to build user customized radio-stations. The movie “genes” identified by

these systems could easily serve as the tags in our approach. In particular, Jinni

implements a query-based search and recommendation system similar to the future

work we outline in Chapter 5.

To improve query based movie search results, [29] combines predicted user rat-

ings with common search methods. In a more general setting, Cheng et al. [11] in-

troduce a model for recommender system where attributes are added to item nodes

as new nodes. Items are then sorted based on random walk proximity to a query,

which could be a set of item nodes or attribute nodes. Multi-way clustering is used

to reduce the amount of computation and hence the effectiveness and efficiency are

4See http://www.jinni.com, http://www.hellomovies.com, http://www.clerkdogs.com, and
http://www.nanocrowd. com.

5http://www.pandora.com

16



improved.

1.4 Contributions
In this thesis, we make the following contributions:

• We propose a fast method for approximately computing the Katz score and

the commute time score for a given pair of nodes based on the Lanczos/Stielt-

jes procedure [17]. Computing aggregate Katz or commute time scores be-

tween a node and a set of nodes is solved by similar algorithmic means. The

algorithm we use produces lower and upper bounds on our measures.

• We provide algorithms to approximate the strongest ties (top-k) between a

given source node and its neighbors, in terms of the Katz score and a diffu-

sion measure. Our algorithms capitalize on the underlying graph structure

and only access the out-links of a small set of vertices, producing good esti-

mates of the final results.

• We propose and implement two models to integrate tags and ratings in a

recommender system: the first is a straightforward combination of content

scores (from tags) and predicted user score (from ratings); the second is

novel and employs two commonly used graph proximity measures enhanced

by a nearest-neighbor heuristic.

• We present an extensive experimental evaluation of the algorithms and mod-

els proposed in this thesis. Our experiments were conducted on five large

real-world networks. We report the results of our evaluation in Chapter 4:

our results attest to the scalability, effectiveness, and accuracy of our meth-

ods.

1.5 Thesis Structure
In this chapter, required background and related work were introduced as well as

the problems being addressed, and the contributions made in this regard (see Sec-

tion 1.4). In Chapter 2, our algorithms to approximate pairwise and top-k scores

are discussed. In Chapter 3, a simple and a graph-based model for recommender
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systems are introduced. The graph-based model makes use of the proposed top-k

algorithm. Experiments and experimental results are provided in Chapter 4, and

Chapter 5 gives the conclusions and future work.
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Chapter 2

Approximation of Social
Relatedness Measures

2.1 Algorithms for Pairwise Scores
We have earlier explained that computing the measure for a pair of given nodes

boils down to computing the entry of an inverse of a matrix. Thus, let us define a

matrix E, and for a given pair (i, j), we seek to approximate E−1(i, j).
Since E is symmetric positive definite, it admits an orthogonal spectral decom-

position,

E = QΛQT ,

where Q is an orthogonal matrix whose columns are eigenvectors of E with unity

2-norm, and Λ is a diagonal matrix with the eigenvalues of E along its diagonal.

Given this decomposition, we see that

uT f (E)v = uT Q f (Λ)QT v =
n

∑
i=1

f (λi)ũT
i ṽi,

where ũi and ṽi are the components, respectively, of ũ = QT u and ṽ = QT v. The

last sum can be thought of as a quadrature rule for computing integrals:

uT f (E)v =
∫ b

a
f (λ )dγ(λ ). (2.1)
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Here γ is a piecewise constant measure, which is monotonically increasing when

u = v, and its values depend directly on the eigenvalues of E; λ denotes the set

of all eigenvalues. γ is a discontinuous step function, each of whose pieces is a

constant function. Specifically, γ(λ ) is identically zero if λ < mini λi(E), is equal

to ∑
i
j=1 ũ jṽ j if λi ≤ λ ≤ λi+1, and is equal to ∑

n
j=1 ũ jṽ j if λ > maxi λi(E).

Once we have identified that the problem may be posed as an approximation of

an integral, we can apply a quadrature rule. In a few words, these are finite summa-

tion formulas that rely on the fact that computing a definite integral can be done by

subdividing the given interval into small subintervals that are small enough so that

each of them can be approximated by a function value. Sophisticated quadrature

rules seek to evaluate exactly polynomials of order as high as possible; these are

known as Gaussian rules and are fundamental in numerical computations; we use

them in this thesis.

For any given vectors u and v and any symmetric matrix E, the following holds:

uT Ev≡ 1
2
(
(u+ v)T E(u+ v)−uT Eu− vT Ev

)
.

Thus, without loss of generality, for computing the form (E−1)i, j = eT
i E−1e j we

can consider performing the easier computation of uT E−1u with u being ei, e j and

ei+ j in sequence.

In the case of computing elements of E−1 for the Katz score or Commute time,

our function f is given by f (E) = E−1. Since matrix operations are involved, it

is convenient to approximate this function (or any other given smooth function for

that matter) by a linear combination of polynomials. This gives the advantage of

relying on matrix-vector products rather than the prohibitively costly operation of

matrix inversion, though we settle for an approximation. In the context of our prob-

lem this works well for purposes of obtaining the value with prescribed accuracy

of several decimal digits.

We need to compute an approximation for an integral of the form (2.1). An

effective quadrature rule is

∫ b

a
f (λ )dγ(λ )≈

N

∑
i=1

wi f (ti). (2.2)

20



where R[ f ] is the error and is given by

R[ f ] =
f (2N)(η)
(2N)!

∫ b

a

(
N

∏
i=1

(λ − ti)

)2

dγ(λ ). (2.3)

This formula is obtained by seeking to integrate exactly polynomials of as high a

degree as possible. The nodes ti and the weights wi are unknown, and we set them to

achieve this goal. (Note that these are not graph nodes but rather quadrature nodes.)

If N = 1 then we have one node and one weight to determine. Linear functions are

integrated exactly in this case. The more nodes and weights we have, the higher

degree of polynomials we can integrate without error. But in the general case of

an arbitrary function f , an exact formula cannot be developed. The formula for the

error can then be obtained by the general theory of polynomial interpolation. In

particular, observing that in general an integral of a function can be approximated

by a polynomial, the error can be approximated by the integral of the error in

polynomial interpolation. For the latter, it is possible to find an expression for the

error by means in univariate calculus.

If orthogonal polynomials are used, then they admit a three-term recurrence

relation that can be computationally exploited. Orthogonal polynomials satisfy the

relation ∫ b

a
pi(x)p j(x)ω(x)dx = δi, j,

where δi, j = 1 if i = j and 0 otherwise. Here pi and p j are polynomials of degrees

i and j respectively. The weight function ω(x) is nonnegative, and in the context

of our problem it may be the measure γ(λ ).
Specifically, given orthogonal polynomials {p j} that are orthogonal with re-

spect to the measure γ , we have the recurrence relation

λ j p j = (λ −ω j)p j−1− γ j−1 p j−2; (2.4)

see, for example, [17, Section 3], or any textbook on numerical integration or or-

thogonal polynomials. As a result, we can iterate and be assured that as we progress

along with the iteration, the recurrence relations stay short (i.e. three term recur-

rences); this presents an attractive feature in terms of required storage space.
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If the nodes of the Gauss quadrature, namely t j, are the eigenvalues of a tridi-

agonal matrix whose elements are exactly the γi and ωi values; in other words the

symmetric matrix is given by

T = tri(γi,ωi,γi).

The weights of the Gaussian quadrature rule are the squares of the first elements of

the eigenvalues of T .

A central question that remains is how to construct the orthogonal polynomials

in an efficient manner. Here is where the Lanczos algorithm [13, 16] comes in

handy. It turns out that if orthogonal polynomials are used to compute the integrals,

the Lanczos procedure can be used to construct a tridiagonal matrix one step at a

time, whose eigenvalues are the nodes that are required. This is accomplished by

using recurrence relations that are identical to recurrence relations that arise in the

computation of the Gauss integrals for bilinear forms. Therefore, the iterates of

Lanczos are vectors of the form

q j = p j(E)q0,

where p j are precisely the orthogonal polynomials defined in the quadrature rule.

Hence, constructing approximations for eT
i E−1ei can be done by applying k steps of

Lanczos and using the coefficients of the underlying tridiagonal matrix, to estimate

the value of the quadratic form.

An important feature of the formula is that since f (λ ) = 1
λ

is a simple function,

computing its derivatives is an easy task, and in fact we can get a precise idea of

the error in the computation. Indeed, for this function f , we have that

f (2n)(λ ) = (2n)!λ−(2n+1),

and therefore the sign of the error is readily available. We can use variants of the

Gaussian integration formula to obtain both lower and upper bounds and ‘trap’

the value of the element of the inverse that we seek, between these bounds. The

ability to estimate bounds for the value is powerful and allows also for effective

stopping criteria for the algorithm. It is important to note that such bounds cannot
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be obtained if we were to extract the value of the element from a column of the

inverse, by solving the corresponding linear system.

Algorithm 1 shows the procedure. Input is a matrix A, a vector u, and estimates

of extremal eigenvalues of A, a and b. The algorithm computes b j and b j, lower

and upper bounds for uT A−1u. The core of the algorithm are steps 3–6, which

are nothing but the Lanczos algorithm. Notice in particular that ω j and γ j are the

coefficients of the triangular matrix, what we called Tk+1,k in Section 1.2. The

values a and b are the endpoints of the quadrature interval, and may be difficult to

compute, but in our case a can be taken as zero (a lower bound on the eigenvalues

of A) and b can be taken as the maximum of the sum of absolute values of all rows

of A; this gives an upper bound on the maximal eigenvalues. In line 7 we apply

the summation for the quadrature formula. The computation needs to be done for

upper bound as well as the lower bound; see lines 10 and 11, as well as 12 and 13.

The remaining lines provide the actual values that ‘trap’ from above and below the

required quadratic form. Lines 14 and 15 compute the required bounds.

2.1.1 Computational Complexity

The algorithm is based on the Lanczos procedure. It takes time O(nη) where η

is the number of iterations. In our experiments we found the number of iterations

needed for convergence to be several orders of magnitude smaller than n. It is

linear in the size of the matrix, but the number of iterations needs to be taken into

account. Recall that our approach to Problem 2 is generic and can make use of a

linear solver or an eigensolver and use it once until convergence. Given this, our

algorithm for Problem 2 inherits the complexity of the solver used. For example,

if we use the linear solver by Foster et al. [14], we will inherit their complexity

of O(n + m), where m is the number of edges in the graph. Finally, our algorithm

for Problem 3 is based on invoking a computation similar to that for Problem 2

(K + 1) times. This is done in Steps 1 and 2 of that algorithm. In Step 3, the kn

scores generated thus far are sorted, contributing an additional cost of KnlogKn.

Thus this last algorithm has a time complexity of O(K(n+m)+KnlogKn).
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Algorithm 1 GQL – Method for Pairwise Problem
1: Initial step: h1 = 0, h0 = u, ω1 = uT Au, γ1 = ||(A−ω1I)u||, b1 = ω

−1
1 , d1 =

ω1, c1 = 1, d1 = ω1−a, d1 = ω1−b, h1 = (A−ω1I)u
γ1

.
2: for j = 2, ...l do
3: ω j = hT

j−1Ah j−1

4: h̃ j = (A−ω jI)h j−1− γ j−1h j−2

5: γ j =
∣∣∣∣∣∣h̃ j

∣∣∣∣∣∣
6: h j = h̃ j

γ j

7: b j = b j−1 +
γ2

j−1c2
j−1

d j−1(ω jd j−1−γ2
j−1)

8: d j = ω j−
γ2

j−1
d j−1

.

9: c j = c j−1
γ j−1
d j−1

10: d j = ω j−a− γ2
j−1

d j−1

11: d j = ω j−b− γ2
j−1

d j−1

12: ω j = a+
γ2

j

d j

13: ω j = b+
γ2

j
d j

14: b j = b j +
γ2

j c2
j

d j(ω jd j−γ2
j )

15: b j = b j +
γ2

j c2
j

d j(ω jd j−γ2
j )

16: end for

2.2 Top-k Algorithms
In this section, we show how to adapt techniques for rapid personalized PageRank

computation [4, 7, 27] to the problem of computing the top-k largest Katz scores

and the bidirectional diffusion affinity measure F . These algorithms exploit the

graph structure by accessing the edges of individual vertices, instead of accessing

the graph via a matrix-vector product. They are “local” because they only access

the outlinks of a small set of vertices and need not explore the majority of the

graph.

The basis of these algorithms is a variant on the Richardson stationary method

for solving a linear system [40]. Given a linear system Ax = b, the Richardson
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iteration is x(k+1) = x(k) +ωr(k), where r(k) = b−Ax(k) is the residual vector at the

kth iteration and ω is an acceleration parameter. While updating x(k+1) is a linear

time operation, computing the next residual requires another matrix-vector product.

To take advantage of the graph structure, the personalized PageRank algorithms [4,

7, 27] propose the following change: do not update x(k+1) with the entire residual,

and instead change only a single component of x. Formally, x(k+1) = x(k) +ωr(k)
j e j,

where e j is a vector of all zeros, except for a single 1 in the jth position, and r(k)
j

is the jth component of the residual vector. Now, computing the next residual

involves accessing a single column of the matrix A:

r(k+1) = b−Ax(k+1) = b−A(x(k) +ωr(k)
j e j) = r(k) +ωr(k)

j Ae j.

Suppose that r, x, and Ae j are sparse, then this update introduces only a small

number of new nonzeros into both x and the new residual r. Each column of A

is sparse for most graphs, and thus keeping the solution and residual sparse is a

natural choice for graph algorithms where the solution x is localized (i.e., many

components of x can be rounded to 0 without dramatically changing the solution).

By choosing the element j based on the largest entry in the sparse residual vector

(maintained in a heap), this algorithm often finds a good approximation to the

largest entries of the solution vector x while exploring only a small subset of the

graph. Let d be the maximum degree of a node in the graph, then each iteration

takes O(d logn) time. We now discuss a few details of these algorithms for Katz

and bidirectional diffusion affinity scores.

2.2.1 Katz Scores

For a particular node i in the graph, the Katz scores to the other nodes are given by

ki = [(I−αA)−1− I]ei. Let (I−αA)x = ei. Then ki = x− ei. We use the above

algorithm with ω = 1 to compute x. For this system, x and r are always positive,

and the residual converges to 0 geometrically if α < 1/‖A‖1. For larger α , we

can show convergence if α < 1/‖A‖2. This result follows from the relationship

between the Richardson iteration and gradient descent on the problem minx xT Ax−
xT b. The update with the maximum value of r(k)

j always maintains a sufficient
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decrease of 1/
√

n. To terminate our algorithm, we wait until the largest element in

the residual is smaller than a specified tolerance, for example 10−4.

2.2.2 Bidirectional Diffusion Affinity Scores

As in previous sections, let D be the diagonal matrix of row-sums and di be the

degree of node i. The diffusion scores from a single node are given by Fei = Dx+
dix, where x = L†ei, we now address how to compute x. Recall that (D−A)x = ei

up to an unknown constant. Let y = Dx. We now have (I−AD−1)y = ei. Solving

this system instead of the Laplacian allows us to work with bounded quantities –

everything is smaller than 1, for instance. However, both systems have a singularity

and the residual will not converge to 0. Even given a solution x? = (D− A−
1
n eeT )−1ei, the residual in our system is ei− (I − AD−1)(Dx?) = (1/n)e. (This

follows from directly substituting into the residual equation and further showing

that eT x? =−1.) Using ω = 1 in the top-k algorithm, the 1-norm of the residual is

always 1. Consequently, we run the iteration until each element of the residual is

smaller than τ/n, for values of τ larger than 1. Due to the nature of the iteration,

values of τ much smaller than 2 often will not converge.
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Chapter 3

Recommender System Models

3.1 A Simple Model Integrating Tags
There has been much work on keyword searching within the information retrieval

literature. In the most popular scenario, items are ranked via a combination of

query-dependent features and document-importance features. The idea is that a less

precise match in a highly important document may trump a great match in a total

stinker. Common query-based features are the TF-IDF score or the BM25 score [33]

between a document and a query. Document-importance features take many forms.

Possibly the most well-known are the PageRank scores associated with pages on

the web, but domain specific heuristics, such as the number of document views, are

equally valid.

Our proposed model for combining tags and recommender systems takes a

similar approach to an information retrieval search. Instead of a query, we assume

there is a set of tags associated with each user. In our experiments, these are the

set of tags on all items the user has rated. Our problem setting is still different

from classic keyword search in two main ways. First, our input data is different.

In our case we are dealing with two matrices MU (user/item rating matrix) and MW

(item/keyword occurrence matrix). Second, the ranking must be done with respect

to the individual user issuing the query. In this setting, it has more in common with

personalized search than standard keyword search, but as pointed out in Section

2, our problem is considerably different from personalized search in taking user
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ratings into account.

Similar to the ranking described above, we use two main components in our

score formula, one of which represents the score of every item regardless of the tag

set but with respect to the user issuing the query. Second, we use the TF-IDF score

of every item with respect to each tag. Let SQ represent the TF-IDF score and SC

represent the predicted content score from a collaborative filtering approach. Both

score values are then scaled to the [0,1] interval and linearly combined through

a β parameter. Let T represent the set of tags for the user, we define the score

associated with user u and item i to be

score(u, i;T ) = β ·SQ(T, i)+(1−β ) ·SC(u, i). (3.1)

This model, however, does not take into account indirect tag similarities. There-

fore, it is especially sensitive to tag sparsity. This is due to the fact that every item’s

score with respect to the tags is calculated only based on those tags that appear in

item’s set. This might cause problems in situations where the set of tags assigned to

every item is not expressive enough to describe all aspects of the item. In the next

section, we proposed a more sophisticated and principled approach for combining

the query relevance of an item with its user preference.

3.2 A Graph-Based Model Integrating Tags

3.2.1 The Data Structure

The data available to our proposed system is, as mentioned earlier, the user-item

rating matrix and a list of tags for each item. We now model the input as a tri-

partite graph of user, item, and tag nodes. Edges connect users and items based

on the available ratings, while edges between items and tags are simply defined

using the item-tag matrix – the MW matrix. The intuition behind this model is that

similarity between items, induced by users or tags, is reinforced.

Let U = {u1,u2, . . . ,um} be the set of users, I = {i1, i2, . . . , in} be the set of

items, and W = {w1,w2, . . . ,wk} be the set of tags. Therefore, we can define an

undirected graph G = (V,E), where V = U ∪ I ∪W is the set of nodes and the
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adjacency matrix is defined as:

Ai, j =

{ 1 i ∈U, j ∈ I,ri j ≥ µ OR i ∈ I, j ∈U,r ji ≥ µ

1 i ∈ I, j ∈W, ti j = 1 OR i ∈W, j ∈ I, t ji = 1

0 otherwise

where ri j is the rating of item i j by user ui, ti j is the element in ith row and jth

column of MW matrix. This means we add an edge between a user and an item

only if the rating of the user on that particular item is at least µ , which in our case

is set to 3 (on a scale of 1-5). This setting corresponds to picking all movies that

the user “liked”, “really-liked”, or “loved” according to the Netflix rating scale.

Defining edges between items and tags is done in the obvious way using the MW

matrix. Notice that we do not define any edges between users and tags, in keeping

with our desire to make our model as general as possible in assuming as little

information as possible.

3.2.2 The Proximity Measures

We are not the first to suggest graph based proximity measures for a recommender

system. Bao et al. [5] propose a matrix-algebraic method to propagate similarity

of users, items, and tags iteratively until convergence. Sarkar and Moore suggest

that an approximated version of commute time could be used to measure similarity

of users and items in a recommender system [35]. In our proposed graph-based

model, we too assume that the proximity of nodes indicates similarity. From the

variety of proximity measures proposed in social networks [26], we have selected

the pair-wise Katz measure and the personalized PageRank [28] measure.

The Katz measure between vertices u and v is defined as

K(u,v) =
∞

∑
`=1

α
`Pathsl(u,v),

where Pathsl(u,v) is the number of paths of length l between two vertices and

0 < α < 1 is an attenuation factor. Likewise, PageRank is a random-walk-based

authority measure defined for nodes in a network. The PageRank score between
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two nodes is

R(u,v) = (1−α)
∞

∑
`=0

α
`Probl(u,v)

where Probl(u,v) is the probability of random walk starting at u and ending at v

in exactly l steps. If we fix v and look at the vector R(·,v), it is the vector of

personalized PageRank scores where the reset step always moves to node v.

Recall our setting from the simple model, we assume each user is associated

with a set of tags T based on their items. Therefore, the returned items should be

as close to those tags as possible, as well as being close to the user itself. In order

to define a score for each item, suppose that set of user tags is ut = {t1, t2, . . . , tl},
we may define:

score(u, i;T ) = β ·S(u, i)+(1−β ) ·∑
t∈ut

S(i, t), (3.2)

where S( j,k) is either of the two graph similarity measures defined above.

In order to compute pairwise Katz scores between the user and different items,

we use the following approach. The pairwise Katz score between a user (ui) and all

other nodes including all items is a vector (x) found by x = (I−α ·A)−1 ·ei, where

ei is a standard basis vector whose ith element (corresponding to user node ui) is set

to 1 and all other elements to 0, and A is the adjacency matrix of the graph. After

finding x, we only use those similarity values that correspond to item nodes and

normalize the vector. Calculating the similarity between every tag node and every

item can be done in the same way.

Unfortunately, computing Katz score using the previous formula with matrix

inversion is too expensive for large matrices. Instead, we approximate the solution

of the linear system. That is, we define B = (I−α ·A), and the Katz score of all

nodes with respect to ui can be computed by solving the following linear system

B · x = ei.

However, even this is too expensive. In the next section we describe a technique

to approximate the solution of this system by adapting methods for personalized

PageRank [7, 27]. This technique only explores a small set of nodes nearby vertex
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ui to approximate the largest results.

Personalized PageRank scores satisfy a similar linear system. The PageRank

scores between a user (ui) and all other nodes satisfy

(I−αP) · x = (1−α)ei,

where the matrix P has entries Pji = 1/di if node i links to node j, where di is the

degree of node i. The algorithms in [7, 27] efficiently estimate the largest elements

in x by only exploring a small set of nodes nearby ui.

3.2.3 The Algorithm

To approximate the vector of Katz scores, B · x = ei, we use the top-k algorithm in

Section 2.2. We briefly summarize its features here. Standard iterative methods for

large linear systems employ a sequence of matrix-vector products to approximate

a solution x. The algorithm employs a sequence of column queries from B instead.

It is inspired by fast techniques for personalized PageRank computation [7, 27]

where column queries correspond to out-link queries for a node of the graph. When

applied to approximating Katz scores, column queries also correspond to out-link

queries.

Results from personalized PageRank computation and Katz score computation

demonstrate that when solutions of the linear system are localized (meaning only

a few entries of x have non-trivial values), these algorithms only access a small set

of distinct columns, although they may repeatedly query any particular column. In

practice, the computation time for an approximate solution may be only slightly

larger than a single matrix-vector product. Furthermore, this algorithm does not

involve any preprocessing of the graph. It can be implemented straightforwardly

whenever there is a technique to access the out-links from a node.

3.2.4 Nearest Neighbors Heuristic

Since we are only interested in the items that have not been rated by the query-

ing user, those items are connected to the user through paths of at least 3 edges.

Therefore, the contribution of these paths to Katz or PPR scores could be insignif-

icant and perhaps lost in numerical computations or approximation. A heuristic

31



method to raise the score of items of potential interest to the user is adding edges

from the querying user to a few other user nodes. A common measure for finding

these nodes in neighbor-based recommender systems approaches is Pearson corre-

lation coefficient. We add these edges before calculating the proximity measure,

and remove them afterwards for queries in the future. The number of non-zeros

added to the matrix is negligible, but it can significantly improve the quality. We

only find nearest neighbors of the user among those users that have rated at least

one common item with the querying user. Moreover, the number of nearest neigh-

bors should be empirically determined, so we took 10 nearest neighbors based on

smaller experiments.
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Chapter 4

Experiments

In this chapter we report the experimental analysis we conducted. Our goals are:

(i) to test the convergence speed; (ii) measure the accuracy and scalability of our

algorithms; (iii) compare our algorithms against the standard conjugate gradient

(CG) approach; and (iv) validate our recommender system models.

4.1 Experiment Settings and Networks Used
We implemented our methods in MATLAB and MATLAB mex codes. We used five

real-world networks for our experiments: two citation-based networks based on

publications databases, and three social network. The dataset statistics are reported

in Table 4.1.

Table 4.1: Basic statistics about our datasets.

Graph Nodes Edges Average
Degree

Max
Singular
Value

2-core
Size

dblp 93,156 178,145 3.82 39.5753 76,578
arxiv 86,376 517,563 11.98 99.3319 45,342
flickr 513,969 3,190,452 12.41 663.3587 233,395

netflix&imdb 200,000 25,554,966 255.55 2672.4586 187,890

DBLP coauthor graph - We extracted the DBLP coauthors graph from a re-

cent snapshot (2005-2008) of the DBLP database (http://www.informatik.uni-trier.
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de/∼ley/db/index.html). We considered only nodes (authors) that have at least three

publications in the snapshot. There is an undirected edge between two authors

if they have coauthored a paper. From the resulting set of nodes, we randomly

chose a sample of 100,000 nodes, extracted the largest connected component, and

discarded any weights on the edges.

arXiv coauthor graph - This dataset contains another coauthorship graph ex-

tracted by a snapshot (1990-2000) of arXiv (http://arxiv.org/), which is an e-print

service owned, operated and funded by Cornell University, and which contains bib-

liographies in many fields including computer science and physics. This graph is

much denser than DBLP. Again, we extracted the largest connected component of

this graph and only work with that subset.

Flickr contacts - Flickr (http://flickr.com) is a popular online-community for

sharing photos, with millions of users. The first graph we construct is representa-

tive of its social network, in which the node set V represents users, and the edge

set E is such that (u,v) ∈ E if and only if a user u has added user v as his/her con-

tact. We start with a crawl extracted from Flickr in May 2006. This crawl began

with a single user and continued until the total personalized PageRank on the set

of uncrawled nodes was less than 0.0001. The result of the crawl was a graph with

820,878 nodes and 9,837,214 edges. In order to create a sub-graph suitable for

our experimentation we performed the following steps. First, we created a graph

from Flickr by taking all the contact relationships that were reciprocal, and second,

we again took the largest connected component.

Netflix and IMDb -In order to run experiments to validate our recommender

system models, we selected Netflix [2] and IMDb [1] datasets. Netflix provides

a collection of user-movie ratings, but it lacks keywords or tags for each movie.

Therefore, we joined movies from Netflix to IMDb’s database to find a set of key-

words for each movie. Our final data contains almost 1 million ratings from 175000

users on 5000 movies, and there are 20000 tags linked to these movies.
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4.2 Experiments

4.2.1 Pairwise Approximation

We begin by studying the accuracy of the pairwise algorithms for Katz scores and

commute times. For this task, we first compute an exact answer using the MINRES

method [16] to solve the corresponding linear systems: (I−αA)x = ei for Katz and

(L+ 1
n eeT )x = (ei−e j) for commute time. We used a tolerance of 10−8 in these ex-

act solutions. As a point of reference, these solutions typically required more than

a thousand matrix-vector products to converge. Next, we run our pairwise method.

Recall that using Algorithm 1 requires a lower-bound on the smallest eigenvalue

of the matrix A. We use 10−4 for this bound. We terminate our algorithms when

the relative change in the upper and lower bounds is smaller than 10−4 or the upper

and lower bounds cross each other. We evaluate the accuracy at each iteration of

Algorithm 1. Because our approach to compute Katz scores requires two applica-

tions of Algorithm 1, the work at each iteration takes two matrix-vector products.

As described in previous chapters, our pairwise algorithm is closely related to it-

erative methods for linear systems, but with the added benefit of providing lower

and upper bounds. As such, it’s convergence closely tracks that of the conjugate

gradient method, a standard iterative method. We demonstrate the parallels be-

tween the convergence of conjugate gradient and our techniques in the subsequent

figures. We terminate conjugate gradient when the norm of the residual is smaller

than 10−4. The results are shown in Section 4.3.

4.2.2 Top-k Approximation

We now proceed to a similar investigation of the top-k algorithms for Katz scores

and our diffusion measure. In this section, we are concerned with the convergence

of the set of top-k results. Thus, we evaluate each algorithm in terms of the preci-

sion between the top-k results generated by our algorithms and the exact top-k set

produced by solving the linear system. Here, natural alternatives are other itera-

tive methods and specialized direct methods that exploit sparsity, and we again use

conjugate gradient (CG) as an example of iterative methods. The latter are beyond

the scope of this work, since they require a different computational treatment in

terms of caching and parallelization.
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Let T alg
k be the top-k set from our algorithm and T ∗k be the exact top-k set. The

precision at k is |T alg
k ∩T ∗k |/k. We also look at the Kendall-τ correlation coefficient

between our algorithm’s results and the exact top-k set. This experiment will let

us evaluate whether the algorithm is ordering the true set of top-k results correctly.

Let xalg
k∗ be the scores from our algorithm on the exact top-k set, and let x∗k∗ be

the true top-k scores. The τ coefficients are computed between xalg
k∗ and x∗k∗ . Both

of these measures should tend to 1 as we increase the work in our algorithms.

However, some of the exact top-k results contain tied values. Our algorithm has

trouble capturing precisely tied values and the effect is that our Kendall-τ score

does not always tend to 1 exactly.

Recall that the basic element of work in our top-k algorithms is an operation

that accesses the neighbors of a single vertex in the graph. To quantify this work,

we evaluate the algorithm in terms of the total number of edges it evaluates. How-

ever, the algorithms in the previous section used iteration count. Each iteration

involves examining each edge in the graph twice. Thus,

To compare our results with those in the previous section, we present the algo-

rithm performance in effective matrix-vector products. An effective matrix-vector

product corresponds to our algorithm examining the same number of edges as a

matrix-vector product. In other words, suppose the algorithm accesses a total of 80

neighbors in a graph with 16 edges. Then this instance corresponds to 2.5 effective

matrix vector products.

For our first set of tests, we let the algorithm run for a prescribed number of

steps and evaluate the results at the end. In our runtime tests, we describe stopping

criteria more precisely.

4.2.3 Query Enabled Recommender System

We implement two different methods; first the simple method using Pearson cor-

relation as a similarity measure and use a weighted average of ratings of 10 most

similar users who have rated the item whose score is being predicted. We have also

implemented the proposed model exactly as described in Section 3.2 using Katz

and PPR scores, both with and without the nearest neighbors heuristic. We use

α = 10−4 as the attenuation factor of Katz, α = 10−1 for PPR. We vary β from 0

to 1 in increments of 0.1.
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Missing Link Test

We randomly select 1000 users, and for each remove the edge between the user and

a random item that has been rated 5. We then apply our approaches to the dataset

to retrieve an ordered list of items. For each user, we form the set of tags of all

movies they liked. Then we randomly permute this set. We perform tests using the

first 1, 4, 7, and 10 tags in the randomly permuted set. By design then, the test with

7 tags includes all the tags used in the test with 4.

Ideally, our algorithm will place the removed item into the top set of results.

Thus, we look at the top 10 and 25 items with the highest scores from our method.

(These thresholds were chosen because they are common result set sizes on the

web.) We then calculate the ratio of the number of times that the removed item

appears in the top-k list to the number of trials and call it the hit rate. We also

compare the run time of different approaches.

Hybrid Recommender Test

We randomly separate 90% of the ratings for the training set and the remaining

10% for the testing set. From the testing set, we choose 1000 users who have more

than 20 ratings in the testing set. For each user, we make a query using all tags of

all rated items by the user. We thus have an ordered list of items rated by the users

in the test set, according to the actual ratings (L1), and retrieve an ordered list of

same items according to the scores (L2).

We take L1 as the ground truth and measure the effectiveness of approaches

by comparing L2 to it. An effective hybrid recommender system should be able to

return an L2 list as similar to L1 as possible. Among different measures to compare

these two list, we have used precision@k, mean average positions (MAP), mean

reciprocal ranks (MRR), and normalized discounted cumulative gain (nDCG). We

briefly recall these measures below:

Precision@k This is simply the ratio of relevant items in the retrieved list to all

retrieved items. In calculation of precision@k, we assume items rated 3 and

more are relevant.

MAP While precision is a well-known metric for evaluating an ordered list of
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items returned by a query, MAP is the average of precision@k values for all

possible k values.

MRR For each user in the test set, the rank of first true relevant item in the list

returned to the user is desired to be lower. The average of reciprocal of

these ranks is thus a proper metric for this study. Items rated 3 or more are

considered relevant.

nDCG Discounted cumulative gain is defined as:

DCG = rel1 +
n

∑
i=2

reli
log2i

,

where reli ∈ 0,1 indicates if ith item is relevant. Normalized DCG is cal-

culated by dividing DCG by the maximum DCG score an algorithm could

achieve given the relevancy information beforehand.

4.3 Results

4.3.1 Pairwise Approximation

Katz scores For convergence of the Katz scores, we use a value of α that makes

B = I−αA nearly indefinite. Such a value produces the slowest convergence in our

experience. The particular value we use is α = 1/(‖A‖2 +1). For a single pair of

nodes in arxiv, we show how the upper and lower bounds “trap” the pairwise Katz

scores in Figure 4.1 (left). At iteration 13, the lower bound approaches the upper

bound. Beyond this point the algorithm converges quickly. In Figure 4.1 (right),

we show the convergence of both bounds to the exact solution. Both the lower and

upper bounds converge identically. We show similar convergence results for the

other graphs in Figure 4.2.

In comparison with the conjugate gradient method, our pairwise algorithm is

slower to converge. For these problems, we also evaluated techniques based on

the Neumann series for I−αA, but those took over 100 times as many iterations

as CG or our pairwise approach. While the conjugate gradient method appears
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to outperform our pairwise algorithms here, the experiments with commute time

illustrate a case where it is difficult to terminate CG early.
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Figure 4.1: Convergence results for pairwise Katz on ArXiv.

Commute time In Figure 4.3, we show how commute time converges for the same

pair of nodes in arxiv. Again, the left figure shows the convergence of the upper

and lower bounds, and the right shows the convergence of the error. Whereas Katz

took only a few iterations, computing pairwise commute times requires a few hun-

dred iterations. A notable result is that the lower-bound from the quadrature rule

provides a more accurate estimate of commute time than does the upper bound. See

the curve of the lower bound in Figure 4.3(right); and also see the additional results

in Figure 4.4 for other cases when this occurs. This observation suggests that using

the lower bound as an approximate solution is probably better for commute time.

Note that the relative error in the lower-bound produced by our algorithm is

almost identical to the relative error from CG. This behavior is expected in cases
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where the largest eigenvalue of the matrix is well-separated from the remaining

eigenvalues – a fact that holds for the Laplacians of our graphs. When this happens,

the Lanczos procedure underlying both our technique and CG quickly produces an

accurate estimate of the true largest eigenvalue, which in turn eliminates any effect

due to our initial overestimate of the largest eigenvalue. (Recall from Algorithm 1

that the estimate of b is present in the computation of the lower-bound b j.)

Here, the conjugate gradient method suffers two problems. First, because it

does not provide bounds on our score, we are unable to terminate the algorithm

until the residual is small. Thus, the conjugate gradient method requires about

twice as many iterations as our pairwise algorithms. Note, however, this result is

simply a matter of detecting when to stop – both conjugate gradient and our lower-

bound produce similar relative errors for the same work. Second, the relative error

for conjugate gradient displays erratic behavior. Such behavior is not unexpected,

because conjugate gradient optimizes the A-norm of the solution error and it is not

guaranteed to provide smooth convergence in our norm. These oscillations make

early termination of the CG algorithm problematic, whereas no such issues occur

for the upper and lower bounds from our pairwise algorithms.

Runtime Finally, we present the runtime of our pairwise method in Table 4.2. We

explore two cases for Katz:

easy-α 1/(10‖A‖1 +10) and

hard-α 1/(max(λ (A))+1).

The former should converge more quickly than the latter. We note that estimating

either of these values is computationally inexpensive. For each graph, we evaluate

the runtime on three pairs of nodes. These pairs were chosen such that there was a

high degree-high degree pair, a high degree-low degree pair, and a low degree-low

degree pair. The results show the impact of these choices. As expected, the easy-

α cases converged faster and commute time converged slower than either Katz

score. In this small sample, the degree of the pairs played a role. On Flickr, for

example, the low-low pair converged fastest for Katz, whereas the high-low pair

converged fastest for commute time. The solution tolerance was 10−4. We do not

report separate computation times for the conjugate gradient method, but note that
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Table 4.2: Runtime (in seconds) of the pairwise algorithms for Katz scores
and commute time. See the text for a description of the cases.

Graph Pairs Score

Katz Commute

easy-α hard-α

arxiv High, high 0.6081 2.6902 24.8874
High, low 0.6068 2.3689 19.7079
Low, low 0.3619 0.5842 10.7421

dblp High, high 0.3266 1.7044 10.3836
High, low 0.3436 1.3010 8.8664
Low, low 0.2133 0.5458 8.3463

flickr High, high 5.1061 12.7508 227.2851
High, low 4.2578 11.0659 82.0949
Low, low 2.6037 3.4782 172.5125

the previous experiments suggest it should take about half the time for the Katz

problems and about twice as long for the commute time experiments.

4.3.2 Top-k Approximation

Katz scores We first present the convergence results for computing Katz scores.

In Figure 4.5, we plot the convergence of the top-k set for k = 10,25,100, and

1000 for a single node in arxiv. The left figure plots the precision at k, and the

right figure plots the Kendall-τ correlation with the exact top-k set. Both of these

measures trend to 1 quickly. In fact, the top-25 set is nearly converged after the

equivalent of a single matrix-vector product – equivalent to just one iteration of the

CG algorithm. We show results from the conjugate gradient method for the top-25

set after 2,5,10,15,25, and 50 matrix-vector products.

Figure 4.6 presents examples from the other graphs where we observe conver-

gence even more quickly. On the dblp graph, the top-k algorithm produces almost

the exact Katz top-k set with just slightly more than 1 effective matrix-vector prod-

uct. For flickr, we see a striking transition around 1 effective matrix-vector product,
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when it seems to suddenly “lock” the top-k sets, then slowly adjust their order.

In all of the experiments, the CG algorithm does not provide any useful infor-

mation until it converges. Our top-k algorithm produces useful partial information

in much less work and time.

Diffusion affinity We next investigate the convergence of the diffusion affinity

scores. See Figure 4.7 for the same figure plotted with the diffusion affinity scores.

These values take longer to converge. Our top-k algorithm begins identifying the

correct set after the equivalent of one matrix-vector product of work, and improves

from that starting point. See Figure 4.8 for additional convergence examples. Note

that top-1000 set for dblp degrades with additional work. We conjecture this occurs

once the residual vector becomes mostly uniform. At this point, our algorithm has

actually converged. If we continue to run it, it introduces small errors into the

uniform residual, which then cause other small errors. Over many steps, these

small errors erode the quality of the solution. We observe no decay in the top-

10 and top-25. Thus, the errors are concentrated in smaller values. For the flickr

experiment in the same figure, we observe slower convergence of the top-k sets.

But, just like in the case for Katz, the top-k sets seem to converge slightly before

the order.

For the arxiv experiment, we see that CG does provide useful intermediate

information; whereas for both dblp and flickr, it does not and only shows useful

information after, or close to, the convergence point of the algorithm. In compari-

son with CG, we are able to estimate the top-25 set much faster. For dblp, we get

it right with about one-tenth the work on CG.

Runtime We conclude our empirical evaluation with the runtime of each method.

We terminate the Katz algorithm when the largest element in the residual vector is

smaller than 10−4αdu where du is the degree of the source node. For most of the

experiments, this setting produced a 2-norm residual smaller than 10−4 – the same

convergence criteria for CG. We terminate the diffusion affinity top-k algorithm

when the largest element is smaller than 3/n (where n is the number of nodes in

the graph). Just as in the previous section with the pairwise algorithm, we use the
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Table 4.3: Runtime (in seconds) of the top-k algorithms for Katz with an easy
α , a hard α , and for the diffusion affinity measure.

Graph Degree Score

Katz Diffuse

easy-α hard-α

arxiv High 0.0027 0.2334 4.4566
Low 0.0003 0.2815 4.4889
Low 0.0004 0.5315 4.5609

dblp High 0.0012 0.0163 0.8112
Low 0.0011 0.0161 0.8037
Low 0.0007 0.0173 1.0654

flickr2 High 0.0741 0.0835 137.8290
Low 0.0036 36.2140 137.3796
Low 0.0040 0.0063 89.4775

same easy-α and hard-α . In this case, we characterize each source node as low

or high degree. The timing results in Table 4.3 match the convergence results and

show that the diffusion scores require more time to compute. Interestingly, it seems

the hard-α for Flickr does not affect the convergence of all nodes equally. The first

low-degree node required 36 seconds whereas the second required 0.0063 seconds.

4.3.3 Query Enabled Recommender System

Figure 4.9 shows that the best β value for combining the scores due to collaborative

filtering and keyword or tag relevance (when query size is 1, at which the plot is

more demonstrative) is neither 0 nor 1. Therefore, their combination is showing

a better performance than the parts alone. Several observations can be made from

the figure. The nearest neighbor heuristic improves hit rate significantly in case of

PPR but hardly makes a difference in case of Katz. The most effective value of β

is about 0.8.

Figures 4.10 and 4.11 report top-k hit rate at k = 10 and 25 for a few query

sizes. As is seen in these figures, the algorithm very well captures the removed

item when the query size is around 4 words, but for larger queries, the returned

results may be too broad to include the removed item. In scarce queries, PPR,

enhanced PPR, and especially the simple model do better than Katz approaches.
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MAP MRR Precision nDCG

Simple 0.0463 0.1606 0.2077 0.0829
Katz 0.1382 0.5874 0.3306 0.2406
PPR 0.0333 0.1002 0.1693 0.0358
Katz+NN 0.1400 0.5912 0.3330 0.2435
PPR+NN 0.0357 0.1051 0.1713 0.0385

Table 4.4: Comparison of mean average precision (MAP), mean reciprocal
rank (MRR), precision@k (k=25), and normalized discounted cumula-
tive gain (nDCG) for different approaches.

Figure 4.12 shows the run time of different approaches in seconds. Although

PPR has a rather better performance, it takes more time to reach the same accuracy

as Katz does. It is also obvious that enhancing the algorithm with the nearest

neighbors heuristic does not cause a significantly longer run time. Please note

that shorter run times of the simple approach is a result of preprocessing the item

similarities (which took a few hours; that means it is not practical for query time) is

not very flexible with dynamically changing data, unlike graph-based models that

simply use the latest state of graphs.

Results from the hybrid recommender system experiment are shown in Table

4.4. The nearest neighbors heuristic has slightly improved both Katz and PPR

approaches in all the measures used in the experiment. The difference between

Katz and PPR is significantly large, and thus Katz is showing a much better quality

of returned items compared to the simple model and PPR.
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Figure 4.2: More convergence results for pairwise Katz in the hard α case on
DBLP and Flickr
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Figure 4.3: Convergence results for pairwise commute time on ArXiv.
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(c) flickr bounds (d) flickr error

Figure 4.4: More convergence results for pairwise commute time case on
DBLP and Flickr.
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Figure 4.5: Convergence of the our top-k algorithm for the top-k Katz neigh-
borhood of a single node in arxiv using the same value of α as Fig-
ure 4.1.
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(c) flickr precision (d) flickr τ

Figure 4.6: More convergence results for top-k Katz in a hard α case on
DBLP and Flickr.
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Figure 4.7: Convergence of the our top-k algorithm for the top-k diffusion
affinity neighborhood of a single node in arxiv.
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Figure 4.8: Convergence results for top-k diffusion affinity on dblp and flickr.
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Figure 4.9: Hit rate vs. β
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Figure 4.10: Hit rate of approaches at top-10

52



1 4 7 10
0

10

20

30

40

50

60

70

80

90

100

Query Size

H
it 

R
at

e 
P

er
ce

nt
ag

e 
@

 2
5

 

 

Simple
Katz
Katz+NN
PPR
PPR+NN

Figure 4.11: Hit rate of approaches at top-25
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Figure 4.12: Run time of approaches
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Chapter 5

Conclusion and Future Work

5.1 Conclusions
Measures based on ensembles of paths such as the Katz and the commute time

have been found useful in several applications such as link prediction, anomalous

link detection, and collaborative filtering. In this thesis, motivated by applications,

we focused on two problems related to fast approximations for these scores.

• Finding the score between a specified pair of nodes: We have proposed an

efficient algorithm to compute it and also obtain upper and lower bounds,

making use of a technique for computing bilinear forms using a Lanczos-

Stieltjes procedure – a combination of the Lanczos procedure for partial re-

duction to tridiagonal matrices with Gauss/Stieltjes quadrature rules. It is

based on matrix-vector products and is linear in the dimension of the prob-

lem as long as the number of iterations is small (which we found was the case

in our experiments). Our algorithm readily extends to the case of finding the

aggregate score between a node and a set of nodes.

• Finding the top-k nodes that have the highest scores with respect to a given

source node: Here, we used a bidirectional diffusion affinity measure in-

spired by commute time. We proposed a top-k algorithm based on a variant

of the Richardson stationary method for solving a linear system.
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We have conducted a comprehensive set of experiments on three real-world datasets

and obtained many encouraging results. Our experiments demonstrate the good

scalability of the proposed method to very large networks, without giving up much

accuracy with respect to the exact methods (that are infeasible on such networks).

We also proposed the idea of combining tags and collaborative filtering in order

to improve usability of recommender systems. We first described a simple model

and then proposed a graph-based model based on the proposed top-k algorithm.

We empirically evaluated the approaches in terms of their capacities of per-

forming as hybrid recommender systems using a combination of two real-world

datasets and two common proximity measures. We identified the weaknesses and

strengths of our approach and will provide concrete ideas in order to improve them

for the future in the following section.

5.2 Future Work
Our future work will explore further improvements to the proposed approximation

algorithms and extensions to non-symmetric measures such as hitting time. Also,

our algorithms easily adapt to graphs stored in highly-scalable link databases or

map-reduce environments and we hope to investigate applications in these settings.

Moreover, it is useful to investigate whether any of our techniques can be

adapted to solve nonsymmetric problems, such as hitting time. In the nonsym-

metric case the ability to use short recurrence relations is lost, and one may need to

replace the Lanczos process by more costly approaches that entail higher memory

requirements. It is challenging, but new results might lead to a set of tools that will

help design efficient approximation algorithms for a suite of measures for random

walk models.

The area of hybrid recommender systems is ripe for future work. The current

thesis is a stepping stone on the path towards the vision for a query enabled rec-

ommender system. Currently, we use all of the tags in the user profile (via the

liked movies) as tags used for recommendation. There are certainly better ways

of choosing a subset of the most important tags for every user in order to design a

better system. One possible way of doing this would be grouping items into two

different categories for the user, like and dislike. We could as well group them into
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multiple categories according to rating levels. Having done this, each of the cate-

gories could be considered as a class and the mutual information between every

tag and every class could be used in order to select the most important tags of the

user for every class. Using tags that have a high mutual information with “like”

class should improve the performance.

Similarly, we can define the keyword query in such a way that it results in

diversification of recommendations. In order to do this, first we can either cluster

the tags or alternatively discover some topics in tags using their co-occurrences in

items. Then tag selection could be done again based on the mutual information

between the tag and different topics or clusters. Defining a keyword query that

contains the best representatives from each topic has the effect of giving items

of different types (according to their contents) the opportunity to get the chance

of being recommended to the user. On the other hand, the collaborative filtering

component of the scoring function will only assign high scores to the items that the

user will like and altogether a diverse set of items which are also of user’s interest

will be returned.

A final limitation of the current system is that there is no way to incorporate

information on the movies that a user dislikes. Such information is easy to include

in our formulation by subtracting graph proximity scores associated with disliked

movies.

We hope to investigate all of these ideas in the future.
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