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Abstract

Real world scenes often contain both bright and dark regions, resulting in a high con-

trast ratio, beyond the capabilities of conventional cameras. For these cases,High

Dynamic Rangeor HDR images can be captured with expensive hardware or by taking

multiple exposures of the same scene. However, these methods cost extra resources —

either spatial or temporal resolution is sacri�ced, or morethan one piece of hardware is

needed. In this thesis, a novel technique is presented that is capable of capturing High

Dynamic Range images in only one exposure of a conventional camera. We observe

that most natural HDR images have only 2–5% pixels that are too bright compared to

the rest of the scene to fall inside the dynamic range of a conventional camera. Our

method spreads energy from these bright regions into the neighboring unsaturated pix-

els by defocus blurring. Bright pixels still get clipped in the captured image due to

saturation of the sensor; but some information about these clipped pixels gets encoded

or multiplexedin the form of superimposed glare patterns in the image. Frequency

preservation and decoding of this information can be further improved by using a cross-

screen �lter instead of using defocus blur. Superimposed glare patterns are recovered

with the help of natural image statistics. These glare patterns provide information about

how much energy there is in the saturated pixels, which allows a tomography-like re-

construction of the saturated regions. Once the saturated regions are known, the rest of

the image can be restored by removing the estimated glare patterns.
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Chapter 1

Introduction

(a) LDR Image (b) Tonemapped HDR Image

Figure 1.1: LDR vs HDR. A lot of details can be missing in a photograph taken by a con-

ventional camera. The HDR image “Atrium Night” has been taken from http://www.mpi-

inf.mpg.de/resources/hdr/gallery.html, courtesy of Fréd́eric Drago. Greg Ward's tone-

mapping operator has been used.

The termdynamic rangeindicates the ability of an image capture or display device

to adequatelyimage the bright and dark regions of a scene. Informally, an image (a

device) ishigh dynamic rangeor HDR(capable) if it has (can capture or display) details

in the bright regions in the image as well as in the dark regions.

1



Chapter 1. Introduction

4 8 12 160 18

Cameras

over time
Human eye - simultaneous

LCD

CRT

Screen Projection

Natural Scenes

log2 Dynamic Range

Figure 1.2: Dynamic range of different systems.

Although brightness or luminance is a continuous quantity,a minimum brightness or

luminance is required for an object to be perceivable. The ratio of the brightness or

luminance of the brightest to that of the darkest perceivable object gives the dynamic

range of a scene. To capture or display every perceivable detail in a scene, an imaging

device must be capable of handling a wide dynamic range.

Natural scenes can have both very bright objects (such as light sources and specular

re�ections) and very dark regions (such as object in shadow), which results in a large

dynamic range, often on the order of 108 : 1. Due to limitations of optical systems

and hardware, imaging devices often have limited dynamic range. This limitation is

expressed as having alow dynamic rangeor LDR. The images that they capture do not

have HDR information, and therefore are LDR images. Conventional digital sensors

have a dynamic range of 103:5 : 1 while the human visual system typically has 102 : 1

simultanous dynamic range, which can go up to 106 : 1 over time [20, 24] (Figure 1.2).

Clearly, conventional cameras cannot capture all the details that can be seen with naked

eye.

Not surprisingly, display devices often have a limited dynamic range, and therefore an

HDR image, when presented using an LDR device, needs to betone-mapped[21] to

2



1.1. High Dynamic Range Photography

make it �t into the limited dynamic range such that it does notlose details at different

parts of the image (Figure 1.1).

Evidently, HDR images match real world experience. That is why research around

HDR capture and display devices has become a center of attention in the last decade.

Technologies are available today that can ful�ll this goal,but they are still either too

expensive or too impractical for being as ubiquitous as the LDR technologies are today.

This thesis addresses the HDR image acquisition problem andproposes a new method

to capture HDR images using conventional LDR cameras, with aview to making this

technology accessibletoday.

1.1 High Dynamic Range Photography

As long as the dynamic range of the scene is smaller than that of a camera, the scene

can be captured without any quality degradation. However, for larger scene dynamic

ranges, special techniques need to be used to capture the full dynamic range. Otherwise

bright regions may be saturated and hence get clipped, or locations that are too dark

would produce numercially zero values. In both cases, imagedetail is lost and cannot

be reconstructed.

Dynamic range of images is de�ned as the ratio of the brightest pixel value to the

smallest nonzero pixel value or the smallest noticeable difference [24]. Since image

acquisition techniques inherently incur noise, the smallest pixel value does not always

give a reasonable contrast ratio. Instead, the smallest pixel value greater than the ex-

pected noise may be used as the smallest discernible value [24]. Note that one of the

components of the noise incurred by capture devices isphoton shot noisewhich is

Poisson noise, and therefore is related to the brightness ofa pixel [9].

However, when HDR is mentioned, the following qualities areloosely referred to:

� High contrast ratio : Bright areas need to be captured, as well as the dark regions.

Black should appear black and bright objects should not lookdim.

3



1.2. Motivation

� High bit depth : enough to encode values with quantization levels as small as

thejust noticeable difference; so that no stepping is visible in a smooth color/in-

tensity gradient. It should be noted that the human visual system has close to a

logarithmic response curve, therefore encoding the captured luminances in such

a way that makes the best use of bits is implied. For example, the quantization

levels at lower intensities should have higher granularitythan those at higher

intensity levels [12].

� Details are preserved : there is no or little clipping due to over- or under-saturation.

1.2 Motivation
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Figure 1.3: Bright feature statistics. The graphs above show the dynamic range necessary

to adequately capture different pecentage of image pixels. The graph onthe right zooms

into the 95–100% region of the plot and clearly shows that the brightest 5% pixels are

responsible for increasing dynamic rage from about103:5 : 1 to about106 : 1, in most

cases. A few well-known HDR images were used to produce these statistics.

Natural scenes often contain certain bright features such as light sources, specular re-

�ections and highlights. These features are much brighter than the rest of the scene

(often in the order of 1000:1), but they occupy very few pixels (2–5%) in an image

(Figure 1.3). A typical example is shown in Figure 1.4.
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1.2. Motivation
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Figure 1.4: Light sources are very bright compared to the rest of the scene. Also, usu-

ally light sources take up only a few pixels in the image. (a) shows the full histogram of

2,316,480 values. (b) shows a simulated long exposure which can capture over 98.8% pixel

data without clipping. (c) shows a short exposure which can capture theremaining pixels

that comprise the highlight. The histograms below the simulated exposures (b) and (c)

show the part of the histogram covered by that exposure.
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1.3. Objective and Scope

While HDR capture is important for visually pleasing images,human visual system

cannot perceive details in highlights because of intra-ocular light scatter and limita-

tions in local adaptations [20], therefore capturing highlights very accurately is rarely

needed. Also, there are applications where accurate highlight detail is not necessary

but the knowledge of overall energy can be useful, such as global illumination using an

environment map.

Single exposure dynamic range can only be increased at the cost of higher signal-

to-noise ratio. Other existing methods of capturing HDR images either require more

images to be captured at different exposure settings, or divide the sensor array into

multiple sub-arrays with different cell size or neutral density �ltering (Section 2.1).

These observation led to this research on developing a method that does not use up

more resources, yet can perform reasonably well under certain conditions.

1.3 Objective and Scope

The objective of this thesis is to capture High Dynamic Rangeimages with only one

exposure with a conventional camera.

We propose a method that takes a computational photography approach towards HDR

imaging. We modify the light path such that some additional information is encoded

or multiplexedin the image. A postprocessing step is then required to demultiplex this

information.

Our postprocessing step results from the observation that some of the information

present in a natural image is redundant; and a suitable prior, for example the sparse

gradient prior for natural images [15, 28], can help reconstruct an image, to some ex-

tent, if part of the information is missing.

A tomography-like reconstruction technique will be used toreconstruct the highlight.

Only a very small number (typically 8) of views will be used, thus reducing the condi-

tioning of the system to solve which puts a restriction on thesize of the high-intensity

regions.

6



1.4. Outline

Recovering the complete image information is very hard, if not impossible, in cases

where the saturation region is large. In our proposed work, the preference would be

given to producing a visually pleasing result and failing gracefully, rather than produc-

ing bad artifacts.

This thesis does not address under-saturation. Regions that are too dark give no infor-

mation and hence they cannot be recovered using multiplexedinformation approach.

However, under-saturation can be avoided with a suf�ciently long exposure.

1.4 Outline

The rest of the thesis is organized as follows. Related work is discussed in chapter 2.

The fundamental concept behind the proposed method is described in chapter 3. A few

failed attempts that we pursued at onset of the project alongwith the result analysis

are also described here. The proposed method is detailed in chapter 4, which is

followed by result analysis in chapter 5. Finally, chapter 6points to a few possible

future directions of research and concludes the thesis.

1.5 Symbols

Throughout the thesis, bold uppercase letters (A, B, ...) denote matrices, and bold

lowercase letters (a, b, ...) denote vectors. Same letters would be reserved to denote

the same entity, for example,J denotes the observed image andj denotes the vectorized

form of it. We have used column-major ordering for vectorizing matrices.

Scalars are denoted by italicized lowercase letters (a, b, ...), while sets are denoted by

uppercase blackboard bold letters (A, B, ...).

Other speci�c symbols are de�ned as they are used for the �rsttime in the text.

7



Chapter 2

Literature Review

This chapter presents a literature review of related areas.A brief analysis of high

dynamic range imaging techniques is given in Section 2.1 to describe the context of

this research. Since the method proposed in this thesis employs the general idea of

encoding ormultiplexingscene information in the image, similar publications are listed

in Section 2.2. It also relates closely to image restorationand enhancement, and so brief

summary of relevant research work is presented in Section 2.3.

2.1 HDR Image Acquisition

Conventional cameras act asphoton counters, therefore they have a linear response.

However, human perception exhibits approximately logarithmic response, a conse-

quence of the Weber-Fechner law. This is due to percepted adaptation mechanisms.

A comprehensive quantitative analysis and comparison of HDR image acquisition tech-

niques can be found in [7].

2.1.1 Nonlinear Sensors

Nonlinear sensors, for examplelogarithmic sensors, can also capture high dynamic

range information. The logarithmic compression is achieved utlizing the exponen-

tial I-V characteristics of MOS transistors in subthreshold region. While linear sen-

sors would accumulate charge over an exposure period, logarithmic sensors directly

8



2.1. HDR Image Acquisition

convert photocurrent to voltage for readout. This very non-integrating property limits

maximum possible signal-to-noise ratio (SNR) [7].

2.1.2 Multiple Exposures

Conventional digital cameras can only capture at most 103:5 : 1 contrast ratio [23]. One

solution to obtain an HDR image is to take photos at differentexposure settings and

blend them together. Longer exposures would capture details in the dark areas of an

image while the shorter exposures would capture the bright areas (Figure 2.1).

Although this method was known even before mid Twentieth century [21, 8], the un-

derlying mathematics was �rst formalized by Mann and Picard[19]. Debevek and

Malik [6] introduced this method to the Computer Graphics community. They gave

a method to recover an HDR image and camera response curve simultaneously. An

improved method was published later by Robertson et al [31].Both of these methods

compute the camera's response function, and combine all unsaturated samples of the

same image pixel weighted by somenoise model, instead of using some simplelast

sample before saturationmethod which would have produced artifacts.

However, the biggest limitation of this process is that the scene needs to remain static

and lighting conditions have to remain the same throughout an exposure sequence.

Even subpixel movements of the camera would require proper image alignment before

merging them into an HDR image. This approaches are also limited by ghosting and

related misalignment problems, which are still largely unsolved for general cases [22].

2.1.3 Spatially Varying Techniques

On the other extreme of this space-time tradeoff lies spatially varying exposure tech-

niques [25], or Assorted pixels [26]. Such a technique emulates multiple capture but

sacri�ces spatial resolution. It modi�es the Bayer patternby adding an array of neutral

density (ND) �lters. Thus adjacent pixels will be exposed differently; giving a number
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2.1. HDR Image Acquisition

Figure 2.1: Multiexposure HDR reconstruction example. The graph below each image

shows the log-log response curve (log value vs. log luminance) of that image. The �rst

column shows three different exposures with lowest to highest exposure times. The second

column shows the images after clipping values close to 0 or 1, and then scalingthe values

according to their exposure time. The image on the last column shows the HDR image,

after merging these three LDR images; the dynamic range has been compressed by a simple

linear tone mapping.
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2.2. Multiplexing Additional Scene Information

of lower resolution images each with different exposure settings, and also offset by at

least one pixel.

The space-time tradeoff can be won only if the exposure setting can be manipulated

on a per pixel basis. Direct readout increases SNR as in logarithmic sensors; instead

synchronous (and asynchronous) self reset with multiple capturemethods [7] read out

values to update per pixel exposure settings such that the pixels do not get saturated.

If a pixel is saturated, itsexposure intervalis halved, pixel reading discarded, and the

pixel is exposed again. However, these techniques suffer from spatial incoherence in

the image if bright objects in the scene are moving too fast.

2.1.4 Multiple Exposure for Video

Conventional video cameras have the same dynamic range limitation as still cameras.

As a result, trivial HDR video acquisition solutions can be constructed using multi

exposure techniques; however, since there has to be a numberof frames captured in

rapid succession, either a high speed camera has to be used with interleaving frames

having different exposure or aperture settings or a number cameras can be combined

using a beam splitter to form acompoundHDR camera.

Kang et. al. [11] presented a technique to capture HDR video with off-the-shelf cam-

corders. They capture a sequence of video frames while rapidly changing the exposure

settings. Since the frames at different exposure settings are captured at slighly different

points in time, they use global and local registration schemes to warp the images before

combining color information at dark and bright regions.

2.2 Multiplexing Additional Scene Information

Often images contain redundant information which can be predicted reasonably well

using suitable prior information. Since the total amount ofinformation (e.g. in terms

of number of bits) per image remains the same, someredundantinformation has to be

11



2.2. Multiplexing Additional Scene Information

given up in order to make room for additional information about the scene. Additional

information of interest can include, for example, depth or velocity of objects.

The �uttered shutter approach due to Raskar et. al. [29] encodes motion by opening

and closing the shutter in a binary pattern. The idea is to produce a blur pattern that

preserves high frequencies and therefore can beinverted. Levin et. al. [17], on the

other hand, achieves motion invariance by driving the camera in a parabolic motion on

a line parallel to the motion of the object of interest.

The recovery process is an inverse problem and, in most cases, it is heavily under-

determined. To improve the overall conditioning of the problem, information can be

changed such that a slightly wrong reconstruction would amplify artifacts and make

them detectable or measurable. Then, �nding the solution simply amounts to �nding

right parameter values that produce a result with the smallest artifacts. Levin et. al.

[15] multiplex depth by utlizing defocus blur and a coded aperture. To measure depth,

they use the defocus blur kernel, whose radius at differentpartsof the image would be

related to the depth of the scene in that part. They have designed a binary patterned

aperture �lter that would increase the ringing artifacts ina reconstructed image when

deconvolved with a point spread function of wrong radius. This paper also uses the

sparse gradient prior for natural images. They approximatethe heavy tailed natural

image gradient prior by optimizingL0:8 norm of image gradients. The deconvolu-

tion technique that utilizes Iterative Reweighted Least Squares is described in detail in

[15, 28].

Bando et. al. [4] do digital refocusing with a single image. They perform color image

segmentation and apply their proposed blur radius estimation method to measure the

depth of each segment. They look for the maximum radius of blur that produces ripple

artifacts with oscillation measure below some threshold. However, their method was

found to fail on images with clipping due to over exposure.

12



2.3. Restoration of Clipped Signal

2.3 Restoration of Clipped Signal

Probably the most challenging kind of image distortion to restore isclipping due to

over- or under-saturation. Saturation occurs due to insuf�cient dynamic range of a

sensor. For band limited 1D signals, recostruction algorithms have been proposed for

when the number of missing samples is low [1], and when a statistical model of an

undistorted signal is known [27]. However, neither of theseapproaches can be trivially

extended to images because of the dif�culties in modeling statistics of complex images,

and especially clipped image features.

In the case of color images, pixels that are clipped in one or two color channels can

be faithfully estimated using cross-channel correlation [34]. This technique tries to

model the pixel values as a single three dimensional Gaussian distribution. More com-

plex techniques that utilize thelinear color model[10] to model an image pixel color

distribution as a combination of Gaussians are also possible.

Inpainting techniques [5, 32, 33], although designed to �ll-in missing pixels, are not

well suited for restoration of clipped signal since they tend to smooth out (interpolate)

missing pixels, that, on the contrary, should be much brighter than the neighboring

pixels used for interpolation.

2.4 Deconvolution

Image deconvolution is a well-explored area, yet a generalized satisfactory algorithm

is yet to be developed. Richardson [30] and Lucy [18] gave the�rst deconvolution

algorithm based on Bayesian statistics.

With stronger prior knowledge, better deconvolution methods can be designed. One

such algorithm for natural images is due to Levin et. al. [15,14]; they used the sparse

gradient prior for natural images [15, 28]. Joshi et. al. [10] has used thecolor line

model— a local color statistics and used it in combination with thesparse gradient

prior for deconvolving and denoising blurred images.

13



Chapter 3

HDR by Deconvolution

It is often the case that saturated regions are small in size.Energy in these regions is

usually too high to capture with a conventional camera. However, many of the high bits

at the neighboring unsaturated regions do not get used, simply because the pixel values

are not big enough to use up full bit depth. Information aboutthe high energy regions

can be transferred in a systematic way to these neighboring unsaturated areas and these

unused bits can be used to hold the extra information — given that it is possible to

separate original information from encoded information atthese pixels. In theory, if

information about saturation regions can be spread to neighboring unsaturated areas

without destroying any underlying information, the process can be reversed and the

saturated regions can be reconstructed. One way of performing this systematic transfer

is by convolution. Convolution can help spread the energy toneighboring areas and

reconstructing the original image can then be posed as a deconvolution problem [13].

Convolution is a linear operation that can be easily appliedwith a camera, for example,

by defocus or motion. However, a suitable blur kernel is needed so that the convolution

can be inverted to get the original image back.

3.1 Model

An observed imageJ can be expressed as a convolution of the (unaffected) original

imageI and the convolution kernelH,

J = H 
 I + N; (3.1)
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3.1. Model

whereN is noise. In matrix notation,

j = Hi + n; (3.2)

wherei, j andn are the vectorized forms ofI , J andN. In our problem, noise will be

assumed to be negligible and will be ignored in the derivations that follow.

The idea here is to deconvolveJ in order to computeI . This can be done by solving

above system of linear equations, under the assumption of some noise distribution.

There are two fundamental dif�culties with this approach, however:

� Deconvolution is an inverse problem and therefore ill-posed. This problem can

be solved, at least partially, by using a frequency preserving convolution kernel.

� The solution may enhance noise since deconvolution is a inherently a sharpening

operation and noise is a high frequency component.

� Each pixel ofJ contributes one equation. The pixel valueJ(x;y) is expressed

in terms of a linear sum of pixel values in the original imageI . However, since

observed values are clipped at saturated pixels, the linearrelation breaks down

at these pixels. These pixels do not give valid constraints,and hence they cannot

contribute towards the problem formulation. Therefore with clipping, there are

even fewer equations and hence the problem is underdetermined.

Some prior information about the image can add more constraints to the system.

For example, in natural images, gradients tend to show a heavy-tailed distribution

[15, 28]; a smoothness prior that imposes this property on the solution can be

added to the optimization target.

Thus, in general the problem can be formulated as an optimization problem,

bi = argmin
i

(kjU � HU ik2 + l kÑik0:8) ; (3.3)

wherejU decontes the unsaturated observed pixels,HU is a (possibly nonsquare) sub-

matrix of H to produce values at only the unsaturated pixel locations,Ñ represents the

gradient operator andl gives the smoothness regularization coef�cient. The second

term above enforces the sparse gradient prior [15, 28].
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3.2. Clear Aperture

Unfortunately, the sparse gradient prior cannot be utilized to recover a large volume

of missing information. Thus this approach can only be expected to recover small

saturated regions, or to produce a blurry reconstruction ofsaturated regions.

The proposed technique using cross-screen �lters will be discussed at length in the

next chapter, Chapter 4. However, before we formulated thatmethod, we designed

a few other methods that helped us improve our solution to theproblem. The two

most signi�cant such methods are theclear aperturemethod and thesplit aperture

method. Things that we learned from these methods helped shape the proposed method.

Therefore these methods are important to discuss in their own right.

The �rst approach to be discussed below uses a clear apertureto reduce diffraction

(Section 3.2), while the second one uses a split aperture to increase frequency preser-

vation (Section 3.3).

3.2 Clear Aperture

3.2.1 Motivation

Coded aperture approaches have been proven useful in many publications; for example,

[29] and [15] use binary coded apertures. However, for the purpose of capturing HDR

images, these apertures introduce a number of limitations:

� These apertures create diffraction patterns as they tend tointroduce manyedges

in the aperture.

� The full aperture is not used, hence energy spread capacity is greatly reduced.

Since energy spread is the central idea of the proposed method, blocking off a

signi�cant portion of the aperture must be considered a limitation.

Since regular apertures too can create the same diffractionpattern due to diaphragm

blades [15] that control the size of the aperture of a camera,we used a clear aperture

instead. Initially, we hypothesized that the diffraction patterns would be minimal.
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3.2. Clear Aperture

3.2.2 Method

Bando et. al. [4] used clear aperture blurring which they found to not work for images

with clipping due to saturation. Having that knowledge, theinitial target was to spread

energy so that pixels having values greater than the saturation limit cand spread their

energy to neighboring unsaturated regions rather than get clipped.

Also, since the size of defocus blur would differ depending on the depth of the scene

at different pixels, initially only scenes with objects at the optical in�nity were consid-

ered. The goal was to use a method similar to [4] to estimate depth and to use different

kernels to deblur different parts of the image.

Bando et. al. [4] used a disk function as their PSF estimate. But in our case, the PSF

was measured. How we measure the kernels is described next.

Kernel Measurement

Figure 3.1: Clear aperture (disk) �lter. 4 different radii are shown. The original set

contained 11 different radii. Top: measured �lter images, Bottom: Fourier transforms of

the �lters above. Note that the Fourier transforms are not perfect 2D Bessel functions due

to diffraction and noise present in the �lter measurement. The Fourier transforms also show

that these �lters preserve the low frequencies very well, but most of the high frequencies are

destroyed. Also, the larger the kernel is, the smaller range of frequencies it can preserve.
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3.2. Clear Aperture

Actual point spread functions (PSF) or blur kernels were measured by a simple decon-

volution technique, described below.

To measure the defocus blur kernel, one image of a test pattern was taken in focus,

and then a number of images were taken out-of-focus. Different amounts of defocus

yielded PSFs at different kernel sizes (Figure 3.1).

For a given pair of images: one blurred,B and the other sharp,I , the computation of

blur kernelK with sizek� k becomes an optimization problem.

B is a convolution ofI andK,

B = I 
 K = K
 I ; (3.4)

by commutativity of the convolution operator.
 denotes the convolution operator.

By de�nition, since the convolution operator can be expanded into multiplications

and additions, one equation can be formed per blurred image pixel Bi; j , i=1,2,...,n,

j=1,2,...m, wheren� m is the image size,

k

å
p;q= � k

I i+ p; j+ q�K p;q = Bi; j : (3.5)

Stacking up all these equations for alli=1,2,...,n, j=1,2,...m, in a large linear system

gives an overdetermined system, the solution of which in a least square sense gives the

best �t for the PSFestimate, K̂ ,

K̂ = argmin
K







k

å
p= � k

k

å
q= � k

I i+ p; j+ q�K p;q � Bi; j







2

: (3.6)

In practice, defocusing also introduces some small scalingin the image. Therefore,

proper image registration and warping was carried out before running the optimization

step.

Deconvolution

For deconvolution, the deconvolution method described in [15, 28] was used. This

method makes use of the sparse gradient prior for natural images.

18



3.2. Clear Aperture

The clear aperture kernel acts as a two-dimensional (rotated) box �lter, which is a

Bessel function in frequency domain. Clearly, some of the frequencies will be de-

stroyed, but the hope was that the information could be reconstructed with the help of

the sparse gradient prior.

Clipping

We also tried to deal with clipping in the model described in Section 3.1 by simply

discarding these observed values from the optimization problem described by Equa-

tion 3.6.

3.2.3 Arti�cial PSFs

PSF estimation was dif�cult since it is by itself a deconvolution problem. That is why

arti�cial PSFs have also been explored (Figure 3.2).

(a) Arti�cial PSF (b) Real PSF (c) (Real� Arti�cial ) � 10+ :5

Figure 3.2: Using arti�cial clear aperture. In (c), 50% grey (the background) denotes no

difference.

3.2.4 Results and Analysis

This method worked reasonably well for very small blur kernels, smaller than 5� 5

pixels in size (Figure 3.3), but failed in case of larger blurkernels (Figure 3.4).
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3.2. Clear Aperture

(a) Blurred (b) Ground Truth

Figure 3.3: Clear aperture result. The deconvolution algorithm uses the sparse gradient

prior as described in [15, 28]. p is the measured PSF number, and w is the smoothness

regularizer. Each column represents deconvolution with a measured PSF with a different

regularization strength.
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3.2. Clear Aperture

(a) Blurred (b) Ground Truth

Figure 3.4: Clear aperture result for a large blur radius. The deconvolution algorithmuses

the sparse gradient prior as described in [15, 28]. p is the measured PSF number, and w

is the smoothness regularizer. Each column represents deconvolution with a measured PSF

with a different regularization strength.
21



3.2. Clear Aperture

From these images, it can be deduced that:

� When deconvolved with a wrong PSF, the result either remains blurry if a smaller

blur radius is used, or becomes oversharpened if a larger blur radius is used.

� The smoothness regularization parameter dominates if it istoo high. When it

dominates, virtually no deconvolution takes place and the method returns the

original image.

Thus, blurring occurs in the bottom left portion of the grid,and oversharpening occurs

in the top right portion. A suitable solution can then be found somewhere in the middle

section lying between the portions described above. However, it can be observed that

if an image is originally convolved with a large PSF (larger than 5� 5), the bottom left

blurred portion will overlap with the top right oversharpened portion and thus no space

will be left in the middle to contain the good deconvolved result. Thus this method

fails to work for large PSFs.

Arti�cial PSFs were tested to see if fractional-sized PSFs can give a better result for

certain images. However, this approach showed little or no improvement in the results.

(a) Ground Truth (b) Deconvolved results (c) Blurred

Figure 3.5: Clear aperture method on cases with clipping. Note that the deconvolution

results contain ringing artifacts. The smoothness regularizer falls off from left to right, and

so does the ringing artifact, but at the same time results become more blurry.

This algorithm also failed for cases with clipping due to saturation (Figure 3.5).

Image reconstruction was very poor even without clipping. Also, high energy spread

requires quite a large blur kernel, but then there are more zeros in the response function

and more information gets lost. The sparse gradient prior was not found to be strong

enough to recover this lost information.
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3.3. Split Aperture

3.2.5 Observations

It was observed that frequency preservation makes faithfulreconstruction a bit easier,

since much of the information is already in the image. This led to the next method —

split aperture.

3.3 Split Aperture

Scene Split Aperture

Figure 3.6: Concept of split aperture approach. Green (top) beam shows the lightpath that

is in focus. On the other hand, the blue beam (bottom) goes through a lens withslightly

different focal length, and creates a blurred image on the image plane.

3.3.1 Motivation

Frequency preservation seemed to be the key criteria for a good reconstruction of the

in-focus image. Therefore,addinghigh frequency components to the PSF, such as a

Dirac peak, simpli�es the problem.

3.3.2 Method

Since convolution is a distributive operator, kernels can be addedif the end image is a

superimposition of two individually blurred images. That is, if B = K1
 I + K2
 I then

B = K
 I whereK = K1 + K2.
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3.3. Split Aperture

(a) Disk �lter PSF �

10

+

(b) Dirac Peak

=

(c) Split aperture PSF

� 10

(d)

+

(e)

=

(f)

Figure 3.7: Simulated split aperture �lter. The split aperture �lter is simulated by adding

75% Dirac peak with the 25% measured disk kernel shown in (a). (d)–(e) gives the Fourier

transform of the PSFs in (a)–(c). Note the signi�cant improvement in the frequency domain

— there are no zeros.

The straightforward approach to implement this is to take two images — one blurred

and one sharp — and add them up. This can be donebeforecapturing the image simply

by dividing the light path.

By splitting the aperture, different parts can be set to havedifferent focal lengths, one

part of it focusing on the image plane, while the other one focusing at a small distance

apart (Figure 3.6). This would superimpose a sharp image on ablurred one.

In effect, the blur kernel for this optical system would be a linear combination of a

Dirac peak �lter and a disk �lter (Figure 3.7). The strength of the Dirac peak can be

controlled by controlling the proportion of the aperture dedicated to the in-focus part.

Blur radius can be controlled by the focal length differenceof the apertures (and of

course the depth of the scene, but for now it was assumed that the scene is at the optical

in�nity).
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3.3. Split Aperture

This can be achieved by having a bifocal lens, or by introducing a second lens which

has a smaller size and curves light rays very slightly. This would form a combined lens

at that part of the aperture and in effect create a bifocal lens (Figure 3.6).

Note that this method was developed independent of [16], butboth approaches use a

multi-focal lens.

Simulation

The simulated test cases used the measured clear aperture kernels, with a Dirac peak

added at the center (Figure 3.7).

3.3.3 Results

Simulated cases showed that the deconvolution results werequite good (Figure 3.8).

But even in simulated cases, dynamic range increase (with faithful reconstruction)

higher than 60% could not be achieved.

We did not capture real images.

It was found that the strength of the method was the Dirac peakembedded in the PSF.

Since a Dirac peak has nonzero components for all frequencies in the Fourier domain,

this bifocal �lter can be easily inverted to get the originalimage.

However, there were several limitations:

� Energy spread was found not to be strong enough, resulting ina very limited

dynamic range increase.

� In addition, clipping was still hard to handle. If the saturated pixel value is too

high, all the energy cannot be spread to neighboring areas, and clipping will

occur. Test data showed that even for small saturated regions the reconstruction

was really poor. Ringing artifacts were very prominent.
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3.3. Split Aperture

(a) Synthetically blurred with an

arti�cial PSF

(b) Recovered (c) Ground truth

(d) Synthetically Blurred = Cap-

tured Blurred + Captured in-focus

(e) Recovered (f) Captured in-focus (ground

truth)

Figure 3.8: Split aperture synthetic test case. In (a)–(c) (the cameraman image),the

ground truth image was convolved with a mixed PSF with 20% Dirac peak and 80%

Gaussian(s =6.67) and then quantized to 12 bits to produce the blurred test image. The

vignetting-type effect in the recovered image is created due to the boundary condition as-

sumed. In (d)–(f), the blurred image has been formed by superimposing a captured in-focus

image with a clear aperture defocus-blurred image. In this example test case, the in-focus

image was weighted 30% and the out-of-focus image was weighted 70% when they were

superimposed. The point spread function is estimated by using the appropriate measured

clear aperture �lter kernel, with a dirac peak added to it, the weight being thesame as

before.
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3.4. Observations

� Defocus blur is achieved by moving the CCD towards or away from the the focal

plane; thus blurring also involves a scaling operation. Hence the blur kernel is

not completely shift-invariant any more. Thus the operation cannot be expressed

in terms of convolution and the idea broke down.

3.4 Observations

The approaches presented in this chapter show that highlights have to be allowed to

be clipped to obtain better dynamic range increase. Information about them has to be

multiplexed in the image, within the unsaturated pixels, and then a postprocessing step

will be necessary to demultiplex that information.

These observations led to the use of cross-screen �lters, which have the strengths of

the approaches described so far but not the weaknesses. The technique that uses cross-

screen �lters is proposed in Chapter 4, and results are analyzed in Chapter 5.
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Chapter 4

HDR with Cross Screen Filters

4.1 Motivation and Overview

(a) Ground truth HDR image (b) An LDR image captured using a cross-

screen �lter

Figure 4.1: Imaging with a cross-screen �lter

The deconvolution approach presented in the previous chapter has an optimization step

which is highly underdetermined – there are many possible solutions to the problem,

each of which can satisfy the constraints. In other words, there are many sharp images,

all of which can produce the same blurred image. On one hand, increasing the error

tolerance level would increase number of candidate solutions, and on the other hand,

reducing it would result in over�tting and hence noise woulddominate. Due to this

inherent ill conditioning of the deconvolution problems, abetter constrained energy

dissipation and reconstruction approach is needed to construct a more reliable method.

A cross-screen �lter can provide just that.
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4.1. Motivation and Overview

A cross-screen �lter can be used effectively to dissipate energy from saturated regions

(Figure 4.1). In addition, since the �lter kernel has sharp features, the �lter isnot band

limited. Therefore, information is not destroyed, but onlymultiplexedwithin an image.

This means, at least theoretically, a good reconstruction can be achievedif this encoded

information can be demultiplexed properly.

The cross-screen �lter acts as a convolution kernel/operator, and therefore the con-

volution equation (Equation 3.2) applies. Although a deconvolution problem can be

massively underdetermined, fortunately, a cross-screen �lter has several properties that

help us pose a better constrained optimization problem. It transmits most energy di-

rectly, only a small part is spread into the star-shaped glare patterns; and therefore the

star-shaped glare patterns are primarily created around the bright points in the scene,

as can be seen in Figure 4.1(b). The brighter the point, the stronger the glare pattern.

give aggregate

Saturated Region

a cross-screen filter
Glare rays due to

information

Figure 4.2: Glare patterns give aggregate information

The glare patterns around a clipped saturated region multiplex aggregateinformation

about that region inside a number of glare rays (Figure 4.2).By using natural image

statistics, this glare can be separated from the underlyingscene detail and the aggregate

information can be recovered.

Each glare ray around a saturated region gives one aggregate1-D view of the 2-D

clipped region (Figure 4.3). All of these views can be combined to form a tomography-

like reconstruction problem to reconstruct the unknown clipped regions. Once satu-
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4.1. Motivation and Overview

Figure 4.3: Different glare rays give different aggregate views of the saturated region

rated regions are reconstructed, an optimization step helps restore the glared regions of

the observed image.

4.1.1 Chapter Outline

The following sections begin by analyzing the cross-screen�lter and constructing an

empirical model of the �lter in Section 4.2. Then a model of pixel interactions due to

this �lter, namely, thelimited interaction model, is derived in Section 4.3.

In the rest of this chapter, this model and a few suitable priors map this problem into a

tomography-like reconstruction problem. Section 4.4 gives an overview of the whole

algorithm, which is detailed in the remaining sections.

Section 4.5 details the �rst step, how to remove unsaturatedpixel interactions. Sec-

tion 4.6 describes how natural image statistics and other empirical constraints can help

compute aggregate information about the saturated regions, which are then combined

in a linear system to solve a tomography-like reconstruction problem in Section 4.7 in

order to reconstruct the saturated pixels. Section 4.8 gives a brief description of how to

recover the glared region.
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4.2. Image Formation with Cross-Screen Filters

4.2 Image Formation with Cross-Screen Filters

Figure 4.4: A 4-point cross-screen �lter.

A cross-screen �lter(also known asstar �lter ) is a transparent photographic �lter with

parallel scratch marks or grooves on its surface (Figure 4.4). When mounted in front of

a camera lens, it creates linear glare in a number of directions. These glare directions

are perpendicular to the direction of the grooves on the surface, i.e. horizontal grooves

on the �lter produce vertical glare on the image. This glare is usually very faint and

hence stars are often noticeable only around very bright areas in the scene.

Determining the precise underlying physics of star patterns is beyond the scope of this

thesis, but the pattern is generated by one or more of the following effects:

� Diffraction grating,

� Prismatic effect, and

� Multiple re�ection within the �lter.

Most of the light passes through the unscratched path of the �lter. Part of the light hits

the grooves and getsblurred along one dimension (Figure 4.5).

Usually the glare patterns generated around a point are equally spaced. The �lter is

called p-point if it createsp glare rays around a bright point wherep is even since

opposite rays are created by the same set of grooves on the surface. Since light is

linear, ap-point cross-screen �lter can be modeled as a combination of
p
2

individual
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4.2. Image Formation with Cross-Screen Filters

Lens
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Cross-screen

Aperture Focal plane
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Sharp

Glare

Glare

Parallel beam of light

(a) One groove (Side View)
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Sharp

image

plane
FocalCross-screen

filter Aperture

Parallel beam of light

(b) One groove (Top View)

Lens

filter
Cross-screen

Aperture Focal plane
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Sharp

Parallel beam of light
Glare

Glare

(c) Multiple parallel grooves (Side View)

Lens

Sharp

image

plane
FocalCross-screen

filter Aperture

Parallel beam of light

(d) Multiple parallel grooves (Top View)

Figure 4.5: How blurring occurs due to a 2-point cross-screen �lter. (a) For a horizontal

groove, the incoming beam spreads out vertically. (b) But it stays on thesame course

horizontally, that is, when viewed from top the beam would look as if it has notchanged its

direction. Therefore it will be focusedhorizontallyat the image plane. (c) Multiple parallel

grooves provide the same glare pattern which will be superimposed (Section 4.2.1) on the

same vertical line at the focal plane. Different colors are used above to identify parts of

the beam of light. (d) Horizontally they will be in focus just like the single groovecase.

2-point cross-screen �lters.

First, we list some assumptions regarding a 2-point cross-screen �lter and their impact:

� It is a one dimensional �lter; therefore images can be processed on arow-by-row

basis; there will be no crosstalk between adjacent rows if this �lter is applied.

This assumption is important for modeling the glare gradient perpendicular to

the glare direction.

� It has aDirac peakcomponent (Figure 4.2) which helps preserve all frequencies.

Since high frequency information is preserved, image detail is not completely

lost, except at the clipped regions.

32



4.2. Image Formation with Cross-Screen Filters

Figure 4.6: Cross-screen �lter pro�le. A point light source seen through an 8-point cross-

screen �lter. 8 rays are emanating from the center along 4 glare directions. This �lter

pro�le has been estimated by taking a photo of a point light source placed infront of a

black background. Since it is hard to get a true point light source, the captured image gives

a reasonable estimate.

� If the lens-�are around the Dirac peak of the PSF is ignored, it is assumed that

each pixel can interact with other pixels only along a numberof glarerays. For a

p-point cross-screen �lter,p glare rays can be seen to emanate from each pixel.

� There is a sharpdropbeyond the central Dirac peak, which amounts to 3–4 orders

of magnitude. This observation leads to a simpli�cation of the pixel interaction

structure, and helps to greatly reduce the complexity of theproblem.

� It has been been empirically found to exhibit anexponential dropoffbeyond

the Dirac peak (Section 4.2) with some noisy oscillating features (Figure 4.7).

These oscillations will be ignored in our model. This exponential approximation

is critical since this way superimposed glare from multiplesaturated pixels gives

a glare with similar exponential dropoff, only with a different magnitude (Sec-

tion 4.6.1). This allows formulating the saturated region reconstruction problem

as a tomography-like reconstruction problem.

� Due to the glare, objects in the scene situated beyond the image frame can affect

the image. This is visible as an elevated black level in images taken with a cross-

screen �lter (Figure 4.8). For example, strong light sources that are situated
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Figure 4.7: Cross-screen �lter pro�le estimation. The exponential falloff approximates

the trend of the falloff and ignores the wavy details.

outside the image frame, but are close by, would produce glare rays.

The model of the blur kernel will be formalized in the next section, and based on that,

the limited interaction model will be developed in Section 4.3. This limited interaction

will lead to the method we are proposing in Section 4.4.

4.2.1 Split Kernel

Assuming that all the parallel grooves on the �lter have the same pro�le, it can be

shown that the glare patterns will bein focus. This is because light is distorted in the

same way, and parallel distorted rays get focused at the same point onthe focal plane

(Figure 4.9).

Since glare patterns are in focus, the aperture iseffectivelydivided up into a number of

portions.

� Most of the light passes right through the unscratched part and gets focused by

the lens at the image plane in the usual manner. This is represented by the Dirac

Delta function in the �lter pro�le (Figure 4.10). This portion of the incoming

light from the scene can be thought of being convolved with a Dirac Delta func-

tion, i.e., incoming light remains unaltered. Thus, in effect, the largest part of the
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4.2. Image Formation with Cross-Screen Filters

(a) Without Filter (b) With a 6-point star �lter

Figure 4.8: Black level is elevated in the �ltered image. These two images were taken

under the same conditions except the �lter.

Glare

Glare

plane

Lens

FocalAperture

Sharp
image

filter
Cross-screen

Parallel beam of light

Figure 4.9: Glare is in focus. The scratch marks create diffraction patterns, and/or pris-

matic patterns, and these patterns are in focus because ofsimilar rays on these patterns

being parallel for a parallel input beam. For an object not at in�nity, similar behavior can

be expected.

aperture remains dedicated to the Dirac Delta component of the cross-screen �l-

ter. This is why the star-shaped glare patterns are visible only around the bright

objects in the scene. This way most of the image remains unaltered. This is

exactly the strength of the method we are going to propose in Section 4.4.

� The grooves of the cross-screen �lter are responsible for producing glare along

different directions where the direction is determined by the orientation of the
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4.2. Image Formation with Cross-Screen Filters

grooves. Grooves that are parallel to one another produce the same glare pattern,

and all these instances get focused on the image plane.

X XX

log scale log scale log scale

= +

Approximate PSF Delta function Exponential dropoff

a + b a

b b

Figure 4.10: Split kernel. Our estimated kernel can be split into Dirac delta function and

an exponential dropoff. Note that the vertical axes of the plots are in log scale.

Therefore, a 2-point cross-screen �lter PSF can be split into two components (Fig-

ure 4.10):

1. A Dirac delta function representing the peak, which acts like a scaling factora ,

and

2. A low-pass exponential �lterL with slope or falloff rate parameterm, scaled

down to avery lowamplitudeb ,

L(x) = e� mjx� x0j ; (4.1)

wherex0 is the location of the saturated pixel.

In this formulation, the cross-screen �lter acts as an aperture �lter implying that this

approach is another implementation of the split aperture approach (Section 3.3). Evi-

dently, the cross-screen �lter acts as a convolution operator, and therefore the convolu-

tion equation (Equation 3.2) applies. The convolution matrix H can be expressed as a

combination of two components mentioned above:

H = a I + bL; (4.2)

whereI is the identity matrix. The parametersa andmabove are speci�c for a particu-

lar glare direction (Figure 4.11) on a particular cross-screen �lter, and these quantities

are measured. Note that it is important to havea much greater thanb so that most of

the cross-screen �lter is dedicated to the Dirac Delta function.
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4.3. Limited Interaction Model

(a) Measured Filter (b) Measured after rotating the �lter 45� CCW

Figure 4.11: Variation in strengths of glare rays. The kernels have been measured with

a point light source. The image on the right veri�es that the variation in the strengths are

due to �lter properties only.

Figure 4.11 shows a measured 16-point �lter where all the glare rays are not equally

bright. This can happen because the appearance of the glare rays depend on the prop-

erties of the grooves on the surface of a �lter.

Modeling the pro�le of the grooves and the underlying physical phenomenon is beyond

the scope of this thesis. However, we have found that our approximation is suf�cient

for this problem.

4.3 Limited Interaction Model

First, a successive approximation method to deconvolve images blurred by a cross-

screen �lter will be derived for cases without any clipping due to saturation. Then, the

limited interaction model will be proposed.

When there is no clipping due to saturation, general convolution described by Equa-

tion 3.2 remains applicable for the split kernel model (Equation 4.2). Combining these
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4.3. Limited Interaction Model

two equations gives the split kernel convolution equation,

j = a i + bLi : (4.3)

Sinceb is very small to whichL is scaled down, and since the low-pass �lterL removes

high frequency information from an image, only a coarse approximation ofi is needed

to compute the termLi . Thus, a successive approximation approach can be developed.

Rewriting Equation 4.3 gives

i =
1
a

(j � bLi ) : (4.4)

This gives a simple �xed-point iteration method for computing i,

ei(0) = j ; and

ei(k) =
1
a

j �
b
a

Lei(k� 1) ; for k > 0

=
1
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j �
�

b
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�
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L
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j ;

(4.5)

whereei(k) for k = 0; 1; : : : are the successive approximations ofi. Sincei is unknown,

j needs to be successively convolved and alternately added orsubtracted to computei

from j as shown above. All the terms except the �rst one on the right hand side are thus

acting ascorrection termsthat successively approximatei. The terminteractionwill be

used to express the successive correction terms due to blurring. k-th order interaction

is the interaction among observed pixels that is described by thek-th correction term,
�

�
b
a

L
� k

j .

In the above iterative method, thek-th error term is

ei(k) � i = �
b
a

L
�
ei(k� 1) � i

�
: (4.6)

Since






b
a

L






¥
=

�
�
�
�
b
a

�
�
�
� andb � a (Section 4.2.1), above iteration converges fast.

Intuitively,
�

b
a

L
�

transfers only a small amount of energy. So, the correction terms
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4.3. Limited Interaction Model

Synthetically blurred

Ground truth First iteration Second iteration

(a) (b) (c)

(d) (e) (f)

� +

ei(1) ei(2)i

j
� 10 � 100

�
b
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L
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�
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L
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Figure 4.12: Limited interaction — simulated test case. (a) is the synthetically blurred

image and (d) is the ground truth. (e) shows the image obtained by removing only the

�rst order interactions (b) from the blurred image. Note that it is hard to �nd any visible

difference between (e) and the original image (d). Correction due to the second order

interactions is shown in (c). The result of removing these second orderinteractions is

shown in (f). (f) does not have any visible improvement over (e). All computations were

done on HDR images since successive approximation only works when there is no clipping.

Since strength of higher order interactions drop off rapidly, image intensities in (b) and (c)

are multiplied by 10 and 100.
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4.3. Limited Interaction Model

have diminishing energy, i.e.,
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In practice, good results were obtained even with a single iteration (Figure 4.12),

i = ei(1) + O
�

b
a

�

� ei(1)

=
1
a

�
j � bLei(0)

�

=
1
a

(j � bLj ) :

(4.8)

This is equivalent to removing only the �rst order interaction. This model of ignoring

higher order interactions will be referred to as thelimited interaction model.

When capturing natural images, some of the image intensitiesmay get clipped due to

saturation. Saturation destroys information, and the linear relation as described by the

split kernel convolution equation (Equation 4.3) breaks down. That means the limited

interaction model would fail if provision for clipping is not made. Therefore, this

model needs to be applied to saturated and unsaturated pixels separately.

Some imagej can be expressed as acombinationof saturated and unsaturated pixels

(Figure 4.13),

j = jU + jS; (4.9)

where at any point(x;y): jU(x;y) � jS(x;y) = 0. Unless otherwise stated, throughout

the rest of the thesis, subscriptU denotesunsaturatedpixels, andS, saturatedpixels.

Note thati is the true radiometric map (HDR image), and therefore it does not have

saturated pixels.S andU gives locations of saturated and unsaturated pixels in the

observed imagej .

In the observed imagej , saturated pixel valuesjS are clipped. Equation 3.2 cannot be

applied onjS. However, unsaturated pixels do follow that relation.

The contribution, or the energy transferred, from other pixels to an unsaturated pixel

due to pixel interaction is a sum of contributions from saturated pixels and unsaturated
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4.3. Limited Interaction Model

= +

= +

/100i iSiU

j j U jS

Figure 4.13:Saturated and unsaturated pixels. Red pixels denotes pixels that do not belong

to that part. i is the true HDR image,iS is the clipped pixels we need to recover.j is the

captured LDR image, and therefore the saturated part of it,jS, contains only clipped pixels.

jU contains the unsaturated part and the glare.

pixels. When these two types ofinteractionare modeled separately, the split kernel

convolution equation (Equation 3.2) becomes

jU
U= HiU + bLi S; (4.10)

whereU= denotes that the equality holds for the unsaturated pixels only. The �rst term

models the effect of unsaturated pixels on unsaturated pixels (U! U), and the second

term models the effect of saturated pixels on unsaturated pixels (S! U). Figure 4.14

illustrates this relation.

Contributions to saturated pixels from unsaturated pixels(U! S) are ignored because

they are too small to be considered. True values at saturatedpixels are so large that

these small contributions do not make any noticeable difference.

Contributions to saturated pixels from other saturated pixels (S! S) do not affect our
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4.3. Limited Interaction Model

+

jU HiU bLi S
� 10

U=

Figure 4.14: Split kernel convolution when clipping occurs. Saturated pixels are marked

with red. The equality does not hold at these pixels.

algorithm since such glare would get clipped due to saturated and hence cannot be

captured or measured. However, there can be some clipped pixels that would not get

clipped without the (S! S) interactions. This is why it cannot be assumed that the

original pixel intensity at any clipped pixel is greater than or equal to the cliiping value.

All four types of contributions are summarized in Figure 4.15.

Unsaturated PixelsSaturated Pixels

(ignored)

Not clipped

ManyFew

(ignored)Magnitude usually high Magnitude usually low

Clipped

S! S

S! U

U! S

U! U

Figure 4.15: Four kinds of pixel interactions. Contributions to the saturated pixels are

ignored because they are too small compared to the true values at these pixels.
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4.4. Method

4.4 Method

An overview of the method to be presented in the rest of the chapter is given below.

1. First, �rst interactions among the unsaturated pixels (U! U) will be removed

(Section 4.5).

2. Next, glare patterns will be separated from scene data using natural image statis-

tics, and then aggregate views, or more precisely,line integral estimates, of the

saturated regions fromp glare directions will be computed (Section 4.6).

3. Once the line integral estimates are known along all
p
2

glare directions, these ob-

servations will be combined into a tomography-like reconstruction step in order

to computeiS (Section 4.7),

4. Finally, iU will be recovered using the line integral estimates and the computed

iS values (Section 4.8).

The rationale behind performing the last two steps above separately is that they need

different objective functions and different sets of constraints for optimization (Sec-

tion 5.4).

4.5 Removing Unsaturated Pixel Interactions

The effect of�rst interactionsamong unsaturated pixels (U! U) can be easily reduced

or almost entirely removed.

We have modeled the cross-screen �lter,H, as a split kernel; i.e., convolution with this

kernel can be modeled as a linear combination of the originalimage and a blurred image

convolved with an exponential dropoff pro�le,L (Equation 4.2). When considering

only unsaturated pixels, this can be expressed as

HiU = a iU + bLi U: (4.11)
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4.6. Glare Estimation

Therefore, the split kernel convolution equation (Equation 4.3) becomes

jU
U= ( a iU + bLi U) + bLi S; (4.12)

where U= denotes that the equality holds for the unsaturated pixels only. This relation

may not hold at the saturated pixels because the left hand side is zero while the right

hand side may have some nonzero value due toU! S interactions.

The limited interaction model (Section 4.3) dictates thatU! U interaction can be well

estimated withjU. Let ejU denote the observed image after removingU! U interactions,

a ejU
U= jU � bLi U:

U= a iU + bLi S:
(4.13)

Using Equation 4.8,ejU can be computed without knowingiU,

a ejU � jU � bLj U: (4.14)

4.6 Glare Estimation

After removing glare due to unsaturated pixel interactions, only the glare due toS! U

interactions,g, remains at the unsaturated pixels. Rearranging Equation 4.13, we get

g = bLi S
U= a

�
ejU � iU

�
: (4.15)

In the following sections, the �rst half of this equation will be utlized to develop a

model ofg, and then this model will help estimate glare using natural image statistics.

The second half of this equation will be used in Section 4.8 toestimateiU by subtracting

the estimated glare.

4.6.1 Model of Glare

Equation 4.15 shows that the glare at a pixel(x;y) results from the contributions from

all the saturated pixels situated on the same row. If there are N saturated pixels on this
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Figure 4.16: Glare contribution from one side of an unsaturated region. x is an arbitrary

point in an unsaturated segment. x0, x1, : : :, x4 are the saturated pixels situated to the left

of this segment. xL = x4 is the closest saturation to the left. Each saturated pixel creates

its own glare pro�le, all of them get summed up and only an aggregate glare can be seen

in the captured image. Like glare due to only one pixel, the aggregate glare also has an

exponential falloff pro�le and an aggregate energylL, which we measure.

row and they are situated at locationsx0, x1, : : :, xN (Figure 4.16), then,

g(x;y) =
N

å
i

be� mjx� xi j iS(xi ;y) : (4.16)

For the sake of clarity,y will be omitted in the equations that follow.

If we separate the saturated pixels into two groups based on whether they are situated

to the left ofx or to the right, we get

g(x) = å
xi< x

be� m(x� xi ) iS(xi) + å
xi> x

be� m(xi � x) iS(xi)

= be� m(x� xL) å
xi< x

e� m(xL� xi ) iS(xi) + be� m(xR� x) å
xi> x

e� m(xi � xR) iS(xi)

= be� m(x� xL) lL(x)+ be� m(xR� x) lR(x);

(4.17)
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Figure 4.17: Glare contribution. x is an arbitrary point in an unsaturated segment xL <

x < xR. xL (xR) is the closest saturation to the left (right). Line integral termslL and lR

capture the aggregate energy on each side of the unsaturated segment.Adding up these

two aggregate exponential falloff pro�les givesg, the resultant glare over this segment.

wherelL (lR) denotes theline integral– the aggregate energy – to the left (right),

lL(x) = å
xi< x

e� m(xL� xi ) iS(xi) ;

lR(x) = å
xi> x

e� m(xi � xR) iS(xi) ;
(4.18)

andxL (xR) gives a reference location to the left (right). Without loss of generality,

xL (xR) can be assumed to be the location of the closest saturation to the left (right)

(Figure 4.17).

The equation above shows that if more than one such exponential falloffs from a single

side are superimposed, the result will also have an exponential falloff pro�le with the

same slope. Similarly, gradients of these glare pro�les will have an exponential pro�le.

Moreover, glare at each unsaturated segment is a linear combination of two exponential

functions described bylL andlR.
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4.6.2 Estimating Line Integrals

Estimating line integrals directly is dif�cult because it requires separating the unknown

original imagei from the observed imagej affected by the �lterH. However, natural

image statistics can provide strong prior knowledge aboutiU.

the sparse gradient priorfor natural images [15, 28] makes a reasonable assumption

about natural images that they contain sharp edges and regions between the edges are

smooth. That is, image gradients are sparse — only a small number of pixel gradients

have magnitudes signi�cantly greater than zero. Therefore, natural image gradients

follow a heavy-tailed distribution, which can be approximated by a Laplacian distribu-

tion,

Dyi(x) � Laplace(m= 0; b); (4.19)

whereDy is a partial derivative operator in the direction orthogonal to the glare direc-

tion, m= 0 is the location parameter andb > 0 is the scale parameter. Therefore, the

probability density function is given by

f (Dyi(x)
�
�m= 0; b) =

1
2b

e� jDyi(x)j
b : (4.20)

Then, the maximum likehood estimator ofDyi can be computed as,

cDyi = argmax
Dyi

�
logÕ

x

1
2b

e� jDyi(x)j
b

�

= argmin
Dyi


 Dyi




1 ;
(4.21)

which amounts to anL1 optimization in the gradiant space — a convex optimization

problem [2].

By combining Equations 4.13 and 4.17, and then taking the gradient along Y, we get

an expression for image gradients in terms of glare,

a DyiU(x) = a Dy ejU(x) � bem(x� xL)DylL(x) � be� m(xR� x)DylR(x); (4.22)

whereDylL(x) andDylR(x) are the unknowns. These quantities remain the same for all

pixels within some unsaturated segment. Using Equation 4.21, we can compute these
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quantities by doing anL1 optimization over that segment in the gradient space, i.e.,
2

4
dDylL
dDylR

3

5 = argmin
[DylLT DylRT ]T



 a Dy ejU(x) � bem(x� xL)DylL(x) � be� m(xR� x)DylR(x)





1
:

(4.23)

Note that the unsaturated segments at the left (right) border of an image will have a

zerolL (lR).

Because of noise and scene edges, image gradient distributions can have a nonzero

central tendency or become less peaked. In such cases, theL1 optimization may give

wrong estimates. since dispersion increases as a distribution gets less peaked, the in-

verse of some appropriate dispersion measurement would give the level of con�dence

in each estimate. By introducing these con�dence values as weighting factors in the

linear system, we can ensure that erroneous estimates have less effect on the �nal solu-

tion.

Once the line integral gradient estimatesdDylL and dDylR are computed, line integral

estimatesblL andblR are computed by a simple least square �t,
2

4
blL
blR

3

5 = argmin
[lLT LIRT ]T







s � 1

0

@

2

4
dDylL
dDylR

3

5 � gy

2

4
lL

lR

3

5

1

A








2

; (4.24)

wheregy is the gradient operator that takes into account the reference locationsxL and

xR when computing the gradient, ands � 1 is a diagonal matrix with the con�dence

measurements on the diagonal.

A few constraints that help make the estimation process morerobust are described

below.

Darkest Pixel Constraint

At each pixel, estimated glare must be less than or equal to the observed value, i.e.,

bg(x) � ejU(x): (4.25)

Note that due to the presence of noise, this constraint cannot be a hard constraint.

48



4.7. Recovering Saturated Regions

Left-Right Agreement Constraint

Saturated segment
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Figure 4.18: Left-right agreement constraint. Loci of left and right line integrals of a

saturated segment must agree at some x within the saturated segment.

The value oflL (lR) depends on the selection of reference locationxL (xR). The locus of

all values ofl will too have an exponential pro�le with the same slope (Figure 4.18). For

a given saturated region,lL andlR represent the same amount of energy, so they should

agree at somex within the saturated region. Therefore, for each saturatedsegment, the

following should hold,

blL emjx� xL j = blRemjx� xRj : (4.26)

4.7 Recovering Saturated Regions

The problem of computingiS is by contruction very similar to the tomographic recon-

struction problem. Once all the line integral estimates arecomputed, estimation ofiS

is formulated as a linear least squares optimization problem, e.g.,

biS = argmin
iS


 s � 1 (A iS � b)




2 ; (4.27)

whereA is a sparse matrix that gives the line integral in terms of elements ofiS, b

contains corresponding estimates ands has corresponding standard deviations along

its main diagonal.
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This linear system is often under-constrained, and a smoothness prior is necessary to

make up for the missing information. The highlights should follow the sparse gradi-

ent prior [15, 28], which can be imposed by minimizing theL1 norm in the gradient

domain. After adding this smoothness term, we get,

biS = argmin
iS


 s � 1 (A iS � b)


 2 + l


 ÑiS




1 ; (4.28)

whereÑ is the gradient operator andl gives the regularization coef�cient. Bound-

ary pixels around saturated regions are included in gradient computation for a better

reconstruction.

The Iterative Reweighted Least Squares [14] method is applied forL1 optimization.

4.8 Removing Glare

Once the highlights are reconstructed, they are convolved to compute glare which is

then subtracted fromejU. By rearranging Equation 4.13, we get,

biU
U= ejU �

b
a

L biS: (4.29)

Note that to remove glare,iS estimation process is run again, but with a small smooth-

ness regularization coef�cient. This tends to produce a noisy highlight reconstruction,

but when convolved it matches well with estimated glare. Section 5.4 in the next chap-

ter presents an example that illustrates this idea.

Glare removal is not perfect since the estimated PSF does notmodel the wavyness

present in the real blur kernel (Figure 4.7). A possible future direction of research that

can potentially provide a �x is presented in Section 6.2.3.
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Chapter 5

Results

In this chapter, a few results of the algorithm proposed in the previous chapter is pre-

sented. The proposed algorithm focuses on estimating glareand recovering the satu-

rated regions. Quality of reconstruction depends on how well glare is estimated and

how well the saturated regions are reconstructed. Therefore, for each test case, these

two aspects will be discussed.

First, the experiment environment is described in Section 5.1. The discussion on results

starts from Section 5.2 with a few simulated test cases whichwill help analyze the

method's performance under varying conditions such as different background texture,

noise and quantization. The later sections show a few real world test cases. Finally, we

discuss the known limitations of this algorithm in Section 5.6.

5.1 Environment

HDR reference images were created by merging a series of 16 bit raw images captured

at different shutter speeds, ranging from 1/8192-th of a second to 32 seconds. Aperture

setting varied from test case to test case. Raw images were converted to PNG format

using dcraw 8.77 and ImageMagick 6.3.5, using the followingcommands:

dcraw � c � o 1 � 4 � v � w $ f i l e > $base . ppm

c o n v e r t $base . ppm $base . png

All test images were captured with a Canon D40 digital SLR camera placed on a tripod.

We have found this camera to have a linear response curve, therefore we developed a
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5.2. Simulated Test Cases

simple HDR merging utility that neither tries to �nd the camera curve, nor requires one

previously generated.

Some of the test images were bilinearly scaled down from their original size to reduce

the size of the problem.

In all captured test cases, images have been manually aligned so that one of the cross-

screen �lter patterns align with the x-axis. First, while taking photos with the camera,

we tried to manually orient the �lter correctly so that one ofthe directions of grooves

on the �lter is horizontal. Any �ne tuning is done after the images were downloaded,

and merged if necessary, by simple image rotations with bilinear sampling. We have

used an 8-point cross-screen �lter to capture blurred images. Simulated test images

were generated using a synthetic 8-point cross-screen �lter PSF.

We have implemented our code on Matlab 7.8.0 (R2009a) and used the linear solvers

provided in the Matlab Optimization Toolbox.

5.2 Simulated Test Cases

Simulated test cases help understand the strengths and the weaknesses of the algorithm

presented in this thesis. In each simulated test case, an arti�cially created or captured

high dynamic range reference image is blurred with an synthetic cross-screen �lter PSF,

added photon shot noise to, and then quantized to 10 bits unless otherwise speci�ed to

produce the test image. Since only arti�cial PSFs have been used, the Wavyness in the

�lter pro�le has been ignored.

The �rst test case is shown in Figure 5.1. A number of disks with different strengths

are placed in front of a dark background. Note that the large saturated disk at the top

actually has two disks superimposed one or the other. The effect is easily noticeable at

the glare; in each direction, the middle glare rays are brighter than the rest.

We have also tested the algorithm on synthetically blurred real HDR images. One such

example is presented in Figure 5.2. The HDR image of some billiard balls on a table
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5.2. Simulated Test Cases

(b) Recovered HDR

(a) Blurred LDR

(c) Original HDR

(b) Glare around the double disk

/1000/1000

Figure 5.1: Simulated Test Case. Note the double-disk, pointed by a cyan arrow in (a).

The double disk gets clipped in the blurred LDR image, but by observing theglare around

it one can realize there are two disks there. The actual shape of this highlight is shown in

(d). The glare pattern around it, marked by a cyan box in (a), is shown in(b). The central

brighter disk is creating thin strong glare, while the larger disk is creating a dimmer thick

glare. Also note the tomographic reconstruction artifacts shown in the inset in(c).
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(a) Arti�cially blurred � 10

/100

/100

(b) Original HDR

(c) Recovered HDR� 10

/100

/100

(d) Recovered HDR

Figure 5.2: Simulated test case. A captured HDR image has been convolved with an

arti�cial 8-point cross-screen �lter to create our test data. All the highlights are created

through one or more specular re�ections of the sun.
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5.2. Simulated Test Cases

on a bright day has been used. Since the objects are shiny and the surfaces are curved,

small specular re�ections and inter-re�ections of the sun can be seen. As a result, the

highlights are very small but very bright. The reconstruction is quite well even after

the fact that the glare patterns are relatively faint and theimage has background texture

and noise. Reconstruction artifacts can be seen only when the pixel magnitudes are

multiplied by 10 in Figure 5.2(c).

5.2.1 Effect of Noise

Noise degrades the estimation process. Presence of high noise disturbs the estima-

tion process and the highlight recovery step “discovers” some detail that is not there.

Figure 5.3 shows reconstruction results for different simulated additive noise added to

the same simple test case. As expected, the reconstruction degrades as noise becomes

stronger.

Although the reconstruction can be noisy, the reconstruction can adequately capture

the total energy of the highlight. This is evident from the fact that glare removal step

removes glare well enough. As additive noise is increased, the estimation and recon-

struction process slowly degrades to a point where noise dominates and therefore no

energy can be estimated, as can be seen on the last row.

It should be noted that when noise becomes dominant, the solver produces some nonex-

istent pattern in the reconstructed highlights. However, the patterns created are not

completely random noise patterns because of the smoothnessconstraint.

Figure 5.3 shows a comparison between additive and multiplicative noise components.

Effect of Quantization

Quantization is also a form of noise; and this too degrades the estimation process. As

before with shot noise, reconstruction quality degrades iftest image is quantized to

fewer bits.

55



5.2. Simulated Test Cases

(a) Blurred image,

no noise or quantization

(b) Reconstruction,

no noise or quantization

(c) Blurred image, 0.01%

noise, 8 bit quantization

(d) Reconstruction,

0.01% noise, 8 bit

quantization
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(e) Additive Noise vs. Quantization

Figure 5.3: Effect of additive noise and quantization. The top row show two test cases with

glare removal. It is evident that with high noise the glare detection processsuffers heavily,

and as a result the highlight reconstruction gets noisy. Also, these resultsalso show that

quantization affects less strongly than noise. Same noise pattern was used for computing

results with different quantization. A default multiplicative noise of 0.01 was used in all the

cases above. The red pixels in the recovered HDR images indicate a negative value in the

reconstruction.

56



5.2. Simulated Test Cases

(a) Blurred image,

no noise or quantization

(b) Reconstruction,

no noise or quantization
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Figure 5.4: Effect of noise. Multiplicative noise shows little impact compared to additive

noise. Since photon shot noise is poisson noise, it is proportional to luminance, and there-

fore is multiplicative. This shows that the algorithm is expected to perform reasonably well

in the presence of shot noise. The synthetic test images above werenot quantized in order

to observe the pure effect of noise. The red pixels in the recovered HDRimages indicate a

negative value in the reconstruction.
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Figure 5.3 shows reconstruction results for different number of quantization levels with

the same simple test case. As expected, the reconstruction degrades with fewer quanti-

zation levels.

5.3 Effect of Scene Brightness

Scene brightness has a signi�cant impact on the performanceon the algorithm. Since

most of the highlights are either light sources or specular re�ections, the rest of the

scene usually is not so bright. Glare is easy to estimate if the background is relatively

dark and the glare is prominent. However, in terms of qualityof the reconstruction of

the glared region, brighter background is favorable since the bright background texture

can mask some artifacts in reconstruction.

5.3.1 Day Shots

(a) Blurred LDR (b) Recovered HDR (c) Ground Truth

Figure 5.5: Day shot example. Glare removal is not accurate but works well sincethe

artifacts are barely noticeable.

Day shots are comparatively easy in terms of removing glare,since glare is barely vis-

ible anyways, a rough removal of the glared region looks quite good; when compared

with outputs from night shots with the same effort.

On the other hand, since only a faint glare can be seen, saturated region reconstruc-

tion becomes less accurate. Often glare goes below the noiselevel and the estimation

process would fail.
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5.3. Effect of Scene Brightness

5.3.2 Night Shots

(a) Blurred HDR (b) Recovered HDR (c) Ground Truth

PSfrag

Figure 5.6: Removing glare from a night shot. Note that the wavyness patters are more

visible in a recovered night shot. Also note the glare pattern at the top-rightcorner of the

image resulting from a light source lying outside the image frame. Proposed method does

not handle this case; but a possible solution subject to further research ispresented in the

Future Work (Section 6.2.2).

Night shots have clear glare rays and little intervening background structure, thus mak-

ing the glare estimation process easier. However, this alsopresents a few challenges,

� Since the glare patterns are brighter than scene texture, more bits are allocated

for the glare patterns rather than scene detail, effectively reducing number of

quantization levels for scene detail in the glared region. Even if glare can be well

approximated, due to low effective bit depth, reconstruction will be poor.

� Since photon shot noise is proportional to luminance, glared pixels will have

higher noise compared to neighboring non-glared pixels. When glare is removed,

the recovered scene details will have a poor signal-to-noise ratio and the noise

will become visible.

� The blur kernel is not perfectly exponential, there are someoscillating features

on it (Figure 4.7) which were ignored while designing the kernel model. When

glare is estimated, the algorithm �nds the best �t in some sense; and when this

estimated glare is subtracted from observed image to removeglare, pixels where
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5.3. Effect of Scene Brightness

(a) Recovered HDR (b) Blurred

Figure 5.7: Removing glare from a night shot. Note the tomographic reconstruction ar-

tifacts. The inset images in (b) show the short exposure reference images. The highlight

pointed by the cyan arrow creates no glare signature because its brightness is close to

clipping value, the reconstruction algorithm fails to recover this highlight.

glare is overestimated may end up getting negative values ifthe underlying scene

structure is not bright enough to mask the error in estimation.

The night shot presented in Figure 5.3.2 shows such an example. Alternate bright

and dark patches in the glared area of the recovered image clearly demonstrates

that this artifact has occurred due to subtracting the best �t of the estimated glare

pro�le from the image.

Figure 5.7 shows another night shot. The saturated regions are pretty large. The satu-

rated region pointed by a cyan arrow produces no glare, that's why it cannot be repro-

duced. The central large saturated region produces a glare pattern pretty similar to the

double-disk saturation in Figure 5.1, and the algorithm quite successfully could predict

the energy distribution within the highlight. Note the tomography artifacts around both

of the recovered highlights shown in the insets, similar to the ones found in Figure 5.1.

The test case presented in Figure 5.8 is quite interesting because it shows that the algo-

rithm could recover the light shade's structure which cannot be seen in captured HDR

image, probably due to the glare of the optics used.
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(a) Recovered HDR (b) Blurred / Reference

Figure 5.8: Recovering hidden detail. This image is interesting because it could recover

the light shade's structure which cannot be seen in captured HDR image,shown in the inset

of (b), probably due to glare of the optics used.

5.4 Effect of Smoothness Regularizer

Recall that we added a smoothness term to account for the missing information (Sec-

tion 4.7). The tomography-like linear system is underconstrained; by utilizing the

sparse gradient prior we get the additional constraints. However, how smooth the re-

constructed highlights would be depends on the strength of the smoothness regularizer.

The best glare removal is produced by a very noisy highlight estimate, while the recov-

ered highlight that is closest to the original may not removeglare properly (Figure 5.9).

5.5 Failure Case: Napa Valley Image

The Napa Valley image is a test case where the glare detectionalgorithm fails (Fig-

ure 5.10). The reason is that the gradients of the glare in thesky due to the setting

sun has a close to exponential dropoff thoughout the sky. Theglare estimation process

heavily depends on image gradientnot following an exponential pro�le, so it fails in

the case of this image.
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5.5. Failure Case: Napa Valley Image

(a) Blurred (b) Ground truth

(c) Recovered HDR� 10, highl (d) Recovered HDR� 10, low l

Figure 5.9: Effect of smoothness regularizer,l , on the recovered image (Section 4.7). Low

smoothness results in better glare estimate but noisy highlights, while high smoothness does

the opposite. Note that th epatches left in (d) are due to the wavyness present in real �lter

PSF.
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The saturated region is not strong enough to produce any detectable glare. However,

the algorithm does �nd some energy, which is evident from theglare estimate that has

been removed.

(a) Synthetically Blurred LDR (b) Recovered HDR

Figure 5.10: Failure case — Napa Valley image. (a) shows the blurred test image with

little or no glare present due to the cross-screen �lter. However, the gradient present in

the sky due to the sunset confuses the glare detection algorithm. Subtractingthe wrong

estimate gives (b).

5.6 Limitations

First of all, unless a large percentage of pixels can be captured without clipping, the

proposed method would fail.

Since large values are estimated using small values and these small values also con-

tain noise and other random components such as background texture, the estimation

process cannot reliably estimate line integral gradient estimates that are notsuf�ciently

large. That is, if some pixel gets clipped but its intensity is not high enough to produce

detectable glare, it cannot be reconstructed.

This algorithm heavily relies on the fact that glare patterns have an exponential pro�le
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5.6. Limitations

and scene edges or gradients usually do not. However, if an exponential falloff is found

the algorithm will discover some energy creating it and the solution will be off-target.

With only 8 views of a highlight, only a poor quality of highlight reconstruction can

be expected. With more views it could get better, but then glare patterns from different

directions of grooves would overlap and separating them maybecome dif�cult.

This method does not address cases with under-saturation. Suf�ciently long exposure

can avoid under-saturation but it can potentially increaseclipping due to saturation and

cause the algorithm to fail.

A few possible extensions are discussed in the next chapter in Section 6.2 that may

potentially overcome some of these limitations.
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Chapter 6

Conclusion

6.1 Conclusion

In this thesis, the problem of capturing High Dynamic Rangesimages with only one

exposusre has been addressed. A novel High Dynamic Range image acquisition tech-

nique has been proposed. This new technique has been developed through a number of

major contributions —

1. Split aperture approach for HDR imaging through deblurring,

2. Using cross-screen �lters to do the blurring and thus incorporating a Dirac peak

into the blur kernel, which helped encode HDR information into an image more

effectively than simple blurring,

3. Utilizing the sparse gradient prior and then using the exponential pro�le of the

glare to compute line integral gradient estimates; which paved the way to formu-

late the saturated pixel reconstruction problem as a tomography-like reconstruc-

tion problem.

6.2 Future Work

6.2.1 Additonal Constraints for Recovering Saturated Regions

In addition to the constraints discussed in Section 4.7, a few more constraints can be

implemented for better results. These constraints have notbeen implemented or tested,
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but due to their theoretical strength, they can potentiallymake the proposed algorithm

more robust.

Penalizing Edgelike Tomography Artifacts

(a) Simulated Blur (b) Sharp Reference Image / 1000(c) Recovered Image / 1000

Figure 6.1: Edgelike tomograpy artifacts in a simulated case.

As a common artifact in tomographic reconstructions, falseedges along the glare di-

rections can be seen in the reconstructed saturated region (Figure 6.1). These artifacts

appear to be very prominent since only very few line integrals are being used to con-

struct the saturated regions.

These edgelike artifacts can be penalized by adding a penalty term to the optimiza-

tion equation. After adding this term, theiS reconstruction equation (Equation 4.27)

becomes

biS = argmin
iS


 s � 1 (A iS � b)




2 + l kÑ(iS)k1 + gkE(iS)k2 ; (6.1)

whereE is a suitable edge detection operator to detect edges perpendicular to the glare

directions andg is a regularization parameter.

Cross-Channel Correlation Constraint

The RGB channels are highly correlated, as dictated by the color line prior [10]. There-

fore unsaturated channel information can be used to reconstruct saturated channel in-
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formation for pixels that are not saturated in all channels,using a method similar

to [34]. As an added advantage, pixels that got clipped because of having a value

only slightly higher than the saturation level would often have one or more unsaturated

channels. Therefore, this step helps recover from cases when a saturation region does

not have enough energy to produce a detectable glare.

6.2.2 Generalized Hough Transform

(a) An image captured with an 8-point cross-

screen �lter

(b) GeneralizedHough Transform

Figure 6.2: Results of a generalized Hough transform (Vertical direction). Greens show

the detected positive gradientsdue to glareand Reds show the negative gradientsdue to

glare. At each pixel (x,y), 100 pixel gradients on the same column starting atthat pixel are

taken, elementwise divided by the PSF to compute line integral gradient estimate distribu-

tion (as described in Section 4.6.2), and then the median is computed to getthe estimate

at that point, i.e., assuming that the point (x,y) is saturated and causing the glare onthat

column.

Interestingly, given a �xed bin width, actually computing the histogram and taking the

mode as an estimate is a generalization of theHough transform. The Hough trans-

form takes an image and expresses it in a different parameterspace to detect a certain

pattern [3]. In this case the exponential falloff pro�le is the pattern being searched for.
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As an added advantage, generalized Hough transform can alsobe used to detect the

glare rays due to bright points lying beyond the image frame.In Figure 6.2, there is a

light source right above the top right corner, and only 2 of 8 glare rays came into the

image. The Hough transform has successfully captured this information. While the

saturated region will neither be easy to reconstruct nor it is necessary, glare removal

step will need this information to remove glare due to light sources lying beyond the

image frame.

6.2.3 Better PSF Estimation

Since an estimated PSF, rather than the actual PSF, is used inthe process (Figure 4.7),

an additional optimization step is necessary to estimate the wavyness in the actual PSF

from the recovered unsaturated image. The optimization process needs to minimize the

deviation from estimated glare and should not blur out sceneedges.

Appropriate image priors, such as the sparse gradient prior, along with an assumption

that the wavyness is constant for all glare rays in an image, can help construct the

optimization problem.

PSF estimation and glare estimation can be alternately run several times in an Expectation-

Maximization fashion until and if the algorithm converges.

6.2.4 Automatic Glare Orientation Ditection

This thesis has not investigated automatic detection and rotation of images to make

the glare patterns are completely horizontal. It is possible that the generalized Hough

transform along with some robust cost function would be ableto �nd �ne rotations

necessary to make the glare patterns horizontal.
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6.2.5 HDR Video

An obvious extension to this work is towards HDR Video. Of course, as was mentioned

in Section 6.2.2, the success of such a method would greatly depend on being able to

detect glare patterns created by objects lying outside the image frame.
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