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Abstract

Real world scenes often contain both bright and dark regi@ssilting in a high con-
trast ratio, beyond the capabilities of conventional caserFor these casebligh
Dynamic Ranger HDR images can be captured with expensive hardware oikioygta
multiple exposures of the same scene. However, these netiogtiextra resources —
either spatial or temporal resolution is sacri ced, or mthr&n one piece of hardware is
needed. In this thesis, a novel technique is presentedsticapiable of capturing High
Dynamic Range images in only one exposure of a conventiarakca. We observe
that most natural HDR images have only 2-5% pixels that aréotimht compared to
the rest of the scene to fall inside the dynamic range of aemtional camera. Our
method spreads energy from these bright regions into tlghhering unsaturated pix-
els by defocus blurring. Bright pixels still get clipped imet captured image due to
saturation of the sensor; but some information about thiggged pixels gets encoded
or multiplexedin the form of superimposed glare patterns in the image. Ueecy
preservation and decoding of this information can be fuiitheroved by using a cross-
screen lter instead of using defocus blur. Superimposedegpatterns are recovered
with the help of natural image statistics. These glare padtprovide information about
how much energy there is in the saturated pixels, which allatomography-like re-
construction of the saturated regions. Once the saturatgdns are known, the rest of

the image can be restored by removing the estimated glaterpsit
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Chapter 1

Introduction

(a) LDR Image (b) Tonemapped HDR Image

Figure 1.1: LDR vs HDR. A lot of details can be missing in a photograph taken by a con-
ventional camera. The HDR image “Atrium Night” has been taken from httpsmnpi-
inf. mpg.de/resources/hdr/gallery.html, courtesy oédéric Drago. Greg Ward's tone-

mapping operator has been used.

The termdynamic rangdndicates the ability of an image capture or display device
to adequatelyimage the bright and dark regions of a scene. Informally,naage (a
device) ishigh dynamic ranger HDR (capable) if it has (can capture or display) details

in the bright regions in the image as well as in the dark regjion



Chapter 1. Introduction
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Although brightness or luminance is a continuous quardityjinimum brightness or
luminance is required for an object to be perceivable. Thie & the brightness or
luminance of the brightest to that of the darkest percee/ablject gives the dynamic
range of a scene. To capture or display every perceivabég det scene, an imaging

device must be capable of handling a wide dynamic range.

Natural scenes can have both very bright objects (such bsdaurces and specular
re ections) and very dark regions (such as object in shadmhjch results in a large
dynamic range, often on the order of®101. Due to limitations of optical systems
and hardware, imaging devices often have limited dynantigea This limitation is
expressed as havingaw dynamic rang®r LDR. The images that they capture do not
have HDR information, and therefore are LDR images. Corneeat digital sensors
have a dynamic range of ¥8: 1 while the human visual system typically has 10
simultanous dynamic range, which can go up té 1Dover time [20, 24] (Figure 1.2).
Clearly, conventional cameras cannot capture all theldeteit can be seen with naked

eye.

Not surprisingly, display devices often have a limited dyi@range, and therefore an

HDR image, when presented using an LDR device, needs torie=mapped?21] to



1.1. High Dynamic Range Photography

make it tinto the limited dynamic range such that it does loste details at different

parts of the image (Figure 1.1).

Evidently, HDR images match real world experience. That ligy iesearch around
HDR capture and display devices has become a center ofiatientthe last decade.
Technologies are available today that can ful Il this gdalit they are still either too

expensive or too impractical for being as ubiquitous as DR ltechnologies are today.

This thesis addresses the HDR image acquisition problenpaopbses a new method
to capture HDR images using conventional LDR cameras, witie\a to making this

technology accessibteday.

1.1 High Dynamic Range Photography

As long as the dynamic range of the scene is smaller than tteatamera, the scene
can be captured without any quality degradation. Howewerlarger scene dynamic
ranges, special techniques need to be used to captureltbgrfamic range. Otherwise
bright regions may be saturated and hence get clipped, atitos that are too dark
would produce numercially zero values. In both cases, integail is lost and cannot

be reconstructed.

Dynamic range of images is de ned as the ratio of the brighpesel value to the
smallest nonzero pixel value or the smallest noticeablerdifice [24]. Since image
acquisition techniques inherently incur noise, the srsajpéxel value does not always
give a reasonable contrast ratio. Instead, the smallest p&tue greater than the ex-
pected noise may be used as the smallest discernible vallieN®te that one of the
components of the noise incurred by capture devicgshion shot noisavhich is

Poisson noise, and therefore is related to the brightnespixiel [9].
However, when HDR is mentioned, the following qualities la@sely referred to:

High contrast ratio : Bright areas need to be captured, dsaw#he dark regions.

Black should appear black and bright objects should not thiok
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High bit depth : enough to encode values with quantizatioelfeas small as
thejust noticeable differen¢eo that no stepping is visible in a smooth color/in-
tensity gradient. It should be noted that the human visustiesy has close to a
logarithmic response curve, therefore encoding the cagtiuminances in such
a way that makes the best use of bits is implied. For examipdegiantization
levels at lower intensities should have higher granulatign those at higher

intensity levels [12].

Details are preserved : there is no or little clipping duev@reor under-saturation.

1.2 Motivation
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Figure 1.3: Bright feature statistics. The graphs above show the dynamic rangeswye
to adequately capture different pecentage of image pixels. The grageaight zooms
into the 95-100% region of the plot and clearly shows that the brightest &&ispare
responsible for increasing dynamic rage from abd@€® : 1 to about10® : 1, in most

cases. A few well-known HDR images were used to produce these statistics.

Natural scenes often contain certain bright features ssdiglat sources, specular re-
ections and highlights. These features are much brightantthe rest of the scene
(often in the order of 1000:1), but they occupy very few pixé2—5%) in an image
(Figure 1.3). A typical example is shown in Figure 1.4.



1.2. Motivation

xlq

£

Frequency
A%

10 12

4 6
Iog2 Luminance

(a) Full Histogram

(b) Long Exposure (c) Short Exposure
4
6% 10 3000
> >
g4 ©2000
o [}
3 =}
g g
L2 ’t 1000
0
2 .4 6 8 lE 12
Iog2 Luminance Iog2 uminance
(d) Long Exposure Histogram (e) Short Exposure Histogram

Figure 1.4: Light sources are very bright compared to the rest of the scene., A&
ally light sources take up only a few pixels in the image. (a) shows the full hestogf
2,316,480 values. (b) shows a simulated long exposure which ctureayer 98.8% pixel
data without clipping. (c) shows a short exposure which can capturesthaining pixels
that comprise the highlight. The histograms below the simulated exposyresid (c)

show the part of the histogram covered by that exposure.



1.3. Objective and Scope

While HDR capture is important for visually pleasing imagksman visual system
cannot perceive details in highlights because of intrdardight scatter and limita-
tions in local adaptations [20], therefore capturing higfiis very accurately is rarely
needed. Also, there are applications where accurate plghtietail is not necessary
but the knowledge of overall energy can be useful, such dmgitbumination using an

environment map.

Single exposure dynamic range can only be increased at gteotdigher signal-
to-noise ratio. Other existing methods of capturing HDRde®either require more
images to be captured at different exposure settings, adalthe sensor array into
multiple sub-arrays with different cell size or neutral digyn Itering (Section 2.1).
These observation led to this research on developing a mhetia does not use up

more resources, yet can perform reasonably well undericedaditions.

1.3 Objective and Scope

The objective of this thesis is to capture High Dynamic Rainggges with only one

exposure with a conventional camera.

We propose a method that takes a computational photograggrpach towards HDR
imaging. We modify the light path such that some addition&imation is encoded
or multiplexedin the image. A postprocessing step is then required to destax this

information.

Our postprocessing step results from the observation thratesof the information
present in a natural image is redundant; and a suitable, foioexample the sparse
gradient prior for natural images [15, 28], can help recatstan image, to some ex-

tent, if part of the information is missing.

A tomography-like reconstruction technique will be usedecoonstruct the highlight.
Only a very small number (typically 8) of views will be usedus reducing the condi-
tioning of the system to solve which puts a restriction ondize of the high-intensity

regions.
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Recovering the complete image information is very hardoif impossible, in cases
where the saturation region is large. In our proposed wd preference would be
given to producing a visually pleasing result and failingagfully, rather than produc-

ing bad artifacts.

This thesis does not address under-saturation. Regioharth#oo dark give no infor-
mation and hence they cannot be recovered using multipleednation approach.

However, under-saturation can be avoided with a suf cielthg exposure.

1.4 Outline

The rest of the thesis is organized as follows. Related wodidcussed in chapter 2.
The fundamental concept behind the proposed method isibdedén chapter 3. A few
failed attempts that we pursued at onset of the project alatigthe result analysis
are also described here. The proposed method is detaileldajpter 4, which is
followed by result analysis in chapter 5. Finally, chaptgrdints to a few possible

future directions of research and concludes the thesis.

1.5 Symbols

Throughout the thesis, bold uppercase letté&sE, ...) denote matrices, and bold
lowercase lettersa( b, ...) denote vectors. Same letters would be reserved tateleno
the same entity, for examplédenotes the observed image qm#notes the vectorized

form of it. We have used column-major ordering for vectarizmatrices.

Scalars are denoted by italicized lowercase lett@rb,(...), while sets are denoted by
uppercase blackboard bold lettefs B, ...).

Other speci ¢ symbols are de ned as they are used for thetirae in the text.



Chapter 2

Literature Review

This chapter presents a literature review of related aréadrief analysis of high
dynamic range imaging techniques is given in Section 2.lestidbe the context of
this research. Since the method proposed in this thesisogmphe general idea of
encoding omultiplexingscene information in the image, similar publications asteli

in Section 2.2. It also relates closely to image restoraimhenhancement, and so brief

summary of relevant research work is presented in Sectin 2.

2.1 HDR Image Acquisition

Conventional cameras act photon counterstherefore they have a linear response.
However, human perception exhibits approximately logamit response, a conse-

quence of the Weber-Fechner law. This is due to perceptquiatoan mechanisms.

A comprehensive quantitative analysis and comparison dRliiBage acquisition tech-

nigques can be found in [7].

2.1.1 Nonlinear Sensors

Nonlinear sensors, for examplegarithmic sensorscan also capture high dynamic
range information. The logarithmic compression is achideudlizing the exponen-
tial I-V characteristics of MOS transistors in subthreshmgion. While linear sen-

sors would accumulate charge over an exposure period,itlogec sensors directly



2.1. HDR Image Acquisition

convert photocurrent to voltage for readout. This very imdegrating property limits

maximum possible signal-to-noise ratio (SNR) [7].

2.1.2 Multiple Exposures

Conventional digital cameras can only capture at mo$P 1 contrast ratio [23]. One
solution to obtain an HDR image is to take photos at diffeexgosure settings and
blend them together. Longer exposures would capture detathe dark areas of an

image while the shorter exposures would capture the briglasa(Figure 2.1).

Although this method was known even before mid Twentiethwsr{21, 8], the un-
derlying mathematics was rst formalized by Mann and Picftl]. Debevek and
Malik [6] introduced this method to the Computer Graphicsnowunity. They gave
a method to recover an HDR image and camera response curu#asigously. An
improved method was published later by Robertson et al [Bibth of these methods
compute the camera's response function, and combine alturaged samples of the
same image pixel weighted by someise modelinstead of using some simplast

sample before saturatiomethod which would have produced artifacts.

However, the biggest limitation of this process is that tbeng needs to remain static
and lighting conditions have to remain the same throughaugxposure sequence.
Even subpixel movements of the camera would require propageé alignment before
merging them into an HDR image. This approaches are alstelihily ghosting and

related misalignment problems, which are still largelyalned for general cases [22].

2.1.3 Spatially Varying Techniques

On the other extreme of this space-time tradeoff lies sihatrarying exposure tech-
niques [25], or Assorted pixels [26]. Such a technique eteslanultiple capture but
sacri ces spatial resolution. It modi es the Bayer pattéyadding an array of neutral

density (ND) lters. Thus adjacent pixels will be exposedéfeliently; giving a number
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Figure 2.1: Multiexposure HDR reconstruction example. The graph below each image
shows the log-log response curve (log value vs. log luminance) of tlz@eimThe rst
column shows three different exposures with lowest to highest expias@s. The second
column shows the images after clipping values close to 0 or 1, and then sttadinglues
according to their exposure time. The image on the last column shows tReitBge,
after merging these three LDR images; the dynamic range has beenessagiby a simple

linear tone mapping.

10



2.2. Multiplexing Additional Scene Information

of lower resolution images each with different exposuréregs, and also offset by at

least one pixel.

The space-time tradeoff can be won only if the exposurengettan be manipulated
on a per pixel basis. Direct readout increases SNR as inithgac sensors; instead
synchronous (and asynchronous) self reset with multipéura methods [7] read out
values to update per pixel exposure settings such that ke¢spio not get saturated.
If a pixel is saturated, itexposure intervais halved, pixel reading discarded, and the
pixel is exposed again. However, these techniques suffen gpatial incoherence in

the image if bright objects in the scene are moving too fast.

2.1.4 Multiple Exposure for Video

Conventional video cameras have the same dynamic rangatiiom as still cameras.
As a result, trivial HDR video acquisition solutions can lmstructed using multi
exposure techniques; however, since there has to be a nuwhframes captured in
rapid succession, either a high speed camera has to be ugemhterleaving frames
having different exposure or aperture settings or a numaerecas can be combined

using a beam splitter to form@mpouncHDR camera.

Kang et. al. [11] presented a technique to capture HDR vidido off-the-shelf cam-
corders. They capture a sequence of video frames whilelyaghdnging the exposure
settings. Since the frames at different exposure settiregsaptured at slighly different
points in time, they use global and local registration sab&to warp the images before

combining color information at dark and bright regions.

2.2 Multiplexing Additional Scene Information

Often images contain redundant information which can beipted reasonably well
using suitable prior information. Since the total amouninéérmation (e.g. in terms

of number of bits) per image remains the same, stedandantinformation has to be

11



2.2. Multiplexing Additional Scene Information

given up in order to make room for additional information abihe scene. Additional

information of interest can include, for example, depthelpeity of objects.

The uttered shutter approach due to Raskar et. al. [29] dasanotion by opening
and closing the shutter in a binary pattern. The idea is toyre a blur pattern that
preserves high frequencies and therefore camberted Levin et. al. [17], on the
other hand, achieves motion invariance by driving the carirea parabolic motion on

a line parallel to the motion of the object of interest.

The recovery process is an inverse problem and, in most caigssheavily under-
determined. To improve the overall conditioning of the peal, information can be
changed such that a slightly wrong reconstruction would ldynartifacts and make
them detectable or measurable. Then, nding the solutiorpsi amounts to nding
right parameter values that produce a result with the ssteaddifacts. Levin et. al.
[15] multiplex depth by utlizing defocus blur and a codedréayge. To measure depth,
they use the defocus blur kernel, whose radius at diffgrarts of the image would be
related to the depth of the scene in that part. They have niedig binary patterned
aperture lter that would increase the ringing artifactsaimeconstructed image when
deconvolved with a point spread function of wrong radiusisTgaper also uses the
sparse gradient prior for natural images. They approxirttegeheavy tailed natural
image gradient prior by optimizingo.g norm of image gradients. The deconvolu-
tion technique that utilizes Iterative Reweighted Leasi&8qs is described in detail in
[15, 28].

Bando et. al. [4] do digital refocusing with a single imagéey perform color image
segmentation and apply their proposed blur radius estimatiethod to measure the
depth of each segment. They look for the maximum radius aftblt produces ripple
artifacts with oscillation measure below some thresholdwever, their method was

found to fail on images with clipping due to over exposure.

12



2.3. Restoration of Clipped Signal

2.3 Restoration of Clipped Signal

Probably the most challenging kind of image distortion tsteee isclipping due to
over- or under-saturation. Saturation occurs due to irgent dynamic range of a
sensor. For band limited 1D signals, recostruction algoré have been proposed for
when the number of missing samples is low [1], and when as§itzdl model of an
undistorted signal is known [27]. However, neither of thapproaches can be trivially
extended to images because of the dif culties in modeliagistics of complex images,

and especially clipped image features.

In the case of color images, pixels that are clipped in onavordolor channels can
be faithfully estimated using cross-channel correlatid4][ This technique tries to
model the pixel values as a single three dimensional Gauds#ibution. More com-
plex techniques that utilize tHmear color model[10] to model an image pixel color

distribution as a combination of Gaussians are also p@ssibl

Inpainting techniques [5, 32, 33], although designed tenlimissing pixels, are not
well suited for restoration of clipped signal since theydtém smooth out (interpolate)
missing pixels, that, on the contrary, should be much beigttian the neighboring

pixels used for interpolation.

2.4 Deconvolution

Image deconvolution is a well-explored area, yet a germdlsatisfactory algorithm
is yet to be developed. Richardson [30] and Lucy [18] gave ftstedeconvolution

algorithm based on Bayesian statistics.

With stronger prior knowledge, better deconvolution methoan be designed. One
such algorithm for natural images is due to Levin et. al. [l4; they used the sparse
gradient prior for natural images [15, 28]. Joshi et. al.][i@s used theolor line

model— a local color statistics and used it in combination with fparse gradient

prior for deconvolving and denoising blurred images.

13



Chapter 3

HDR by Deconvolution

It is often the case that saturated regions are small in &nergy in these regions is
usually too high to capture with a conventional camera. Haranany of the high bits
at the neighboring unsaturated regions do not get used|ysbapause the pixel values
are not big enough to use up full bit depth. Information alibathigh energy regions
can be transferred in a systematic way to these neighbonsgturated areas and these
unused bits can be used to hold the extra information — gilian it is possible to
separate original information from encoded informatiorthaise pixels. In theory, if
information about saturation regions can be spread to beigig unsaturated areas
without destroying any underlying information, the pracean be reversed and the
saturated regions can be reconstructed. One way of perfgrthis systematic transfer
is by convolution. Convolution can help spread the energyeighboring areas and

reconstructing the original image can then be posed as andelcdion problem [13].

Convolution is a linear operation that can be easily applighd a camera, for example,
by defocus or motion. However, a suitable blur kernel is eelesb that the convolution

can be inverted to get the original image back.

3.1 Model

An observed imagd can be expressed as a convolution of the (unaffected) atigin

imagel and the convolution kernél,

J=H I+N; 3.1)
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3.1. Model

whereN is noise. In matrix notation,
j=Hi+n; (3.2)

wherei, j andn are the vectorized forms ¢f J andN. In our problem, noise will be

assumed to be negligible and will be ignored in the derivettitnat follow.

The idea here is to deconvolJein order to computé. This can be done by solving
above system of linear equations, under the assumptionroé swise distribution.

There are two fundamental dif culties with this approachwever:

Deconvolution is an inverse problem and therefore ill-plosthis problem can

be solved, at least partially, by using a frequency presgreonvolution kernel.

The solution may enhance noise since deconvolution is aenlilg a sharpening

operation and noise is a high frequency component.

Each pixel ofJ contributes one equation. The pixel vallig;y) is expressed
in terms of a linear sum of pixel values in the original imagedlowever, since
observed values are clipped at saturated pixels, the Ine¢ation breaks down
at these pixels. These pixels do not give valid constraamd,hence they cannot
contribute towards the problem formulation. Thereforehvdlipping, there are
even fewer equations and hence the problem is underdetmin

Some prior information about the image can add more conssrto the system.
For example, in natural images, gradients tend to show ayhiadgted distribution
[15, 28]; a smoothness prior that imposes this property enstilution can be

added to the optimization target.

Thus, in general the problem can be formulated as an optilmizproblem,
= argmin(kjy  Huyiky+ [ kNiko.g) ; (3.3)
|

wherejy decontes the unsaturated observed pixeéisjs a (possibly nonsquare) sub-
matrix of H to produce values at only the unsaturated pixel locatiingpresents the
gradient operator ant gives the smoothness regularization coef cient. The sdcon

term above enforces the sparse gradient prior [15, 28].
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3.2. Clear Aperture

Unfortunately, the sparse gradient prior cannot be utilierecover a large volume
of missing information. Thus this approach can only be etqubto recover small

saturated regions, or to produce a blurry reconstructiatfrated regions.

The proposed technique using cross-screen lters will lszwised at length in the
next chapter, Chapter 4. However, before we formulated niethod, we designed
a few other methods that helped us improve our solution topteblem. The two
most signi cant such methods are tletear aperturemethod and thesplit aperture
method. Things that we learned from these methods helpea sha proposed method.

Therefore these methods are important to discuss in theirimht.

The rst approach to be discussed below uses a clear apedgurduce diffraction
(Section 3.2), while the second one uses a split aperturectease frequency preser-

vation (Section 3.3).

3.2 Clear Aperture

3.2.1 Motivation

Coded aperture approaches have been proven useful in mbliggtions; for example,
[29] and [15] use binary coded apertures. However, for theqse of capturing HDR

images, these apertures introduce a number of limitations:

These apertures create diffraction patterns as they teintrtaluce manyedges

in the aperture.

The full aperture is not used, hence energy spread capacgseatly reduced.
Since energy spread is the central idea of the proposed thebhacking off a

signi cant portion of the aperture must be considered athtion.

Since regular apertures too can create the same diffraptitiern due to diaphragm
blades [15] that control the size of the aperture of a canveeajsed a clear aperture

instead. Initially, we hypothesized that the diffracticatterns would be minimal.

16



3.2. Clear Aperture

3.2.2 Method

Bando et. al. [4] used clear aperture blurring which theynfbto not work for images
with clipping due to saturation. Having that knowledge, ithigal target was to spread
energy so that pixels having values greater than the setnr&hit cand spread their

energy to neighboring unsaturated regions rather thanligeed.

Also, since the size of defocus blur would differ dependinglee depth of the scene
at different pixels, initially only scenes with objects laetoptical in nity were consid-
ered. The goal was to use a method similar to [4] to estimgithdind to use different

kernels to deblur different parts of the image.

Bando et. al. [4] used a disk function as their PSF estimaitg.irBour case, the PSF

was measured. How we measure the kernels is described next.

Kernel Measurement

Figure 3.1: Clear aperture (disk) lter. 4 different radii are shown. The originadts
contained 11 different radii. Top: measured lter images, Bottom: Fautiensforms of
the lters above. Note that the Fourier transforms are not perfect 2DsBEf&inctions due
to diffraction and noise presentin the lter measurement. The Fouriersfiamms also show
that these lters preserve the low frequencies very well, but most ofigiheftequencies are

destroyed. Also, the larger the kernel is, the smaller range of fredegitcan preserve.



3.2. Clear Aperture

Actual point spread functions (PSF) or blur kernels weresuezd by a simple decon-

volution technique, described below.

To measure the defocus blur kernel, one image of a test paites taken in focus,
and then a number of images were taken out-of-focus. Diitemenounts of defocus

yielded PSFs at different kernel sizes (Figure 3.1).

For a given pair of images: one blurré8l,and the other sharp, the computation of

blur kernelK with sizek k becomes an optimization problem.

B is a convolution of andK,
B=1 K=K I; 3.4
by commutativity of the convolution operator. denotes the convolution operator.

By de nition, since the convolution operator can be expahd&o multiplications
and additions, one equation can be formed per blurred image B;;j, i=1,2,...,n,
j=1,2,...m, wher@ mis the image size,
&
A lirpjrg Kpg= Bij: (3.5)
pig= k
Stacking up all these equations for &il,2,...,n,j=1,2,...m, in a large linear system
gives an overdetermined system, the solution of which irastlequare sense gives the
best t for the PSFestimateK,
5 & &
K=argmn g a lispjrqKpg Biyj (3-6)
K p= kq: k 2
In practice, defocusing also introduces some small scafirthe image. Therefore,
proper image registration and warping was carried out leafanning the optimization

step.

Deconvolution

For deconvolution, the deconvolution method describedlBy P8] was used. This

method makes use of the sparse gradient prior for naturgéma
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3.2. Clear Aperture

The clear aperture kernel acts as a two-dimensional (idtdtex Iter, which is a
Bessel function in frequency domain. Clearly, some of tlegdiencies will be de-
stroyed, but the hope was that the information could be r&cacted with the help of

the sparse gradient prior.

Clipping

We also tried to deal with clipping in the model described eti®n 3.1 by simply
discarding these observed values from the optimizatioblprm described by Equa-
tion 3.6.

3.2.3 Articial PSFs

PSF estimation was dif cult since it is by itself a deconviodm problem. That is why

arti cial PSFs have also been explored (Figure 3.2).

(a) Arti cial PSF (b) Real PSF (c) (Real Articial ) 10+:5

Figure 3.2: Using arti cial clear aperture. In (c), 50% grey (the background)ni¢es no

difference.

3.2.4 Results and Analysis

This method worked reasonably well for very small blur késnemaller than 5 5

pixels in size (Figure 3.3), but failed in case of larger iamels (Figure 3.4).
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3.2. Clear Aperture

(a) Blurred  (b) Ground Truth

Figure 3.3: Clear aperture result. The deconvolution algorithm uses the sparseggad
prior as described in [15, 28]. p is the measured PSF number, and weistioothness
regularizer. Each column represents deconvolution with a measurediat8 a different

regularization strength. 20



3.2. Clear Aperture

(a) Blurred  (b) Ground Truth

Figure 3.4: Clear aperture result for a large blur radius. The deconvolution algoritisas
the sparse gradient prior as described in [15, 28]. p is the measuf®d Rumber, and w

is the smoothness regularizer. Each column represents deconvolitiva measured PSF

with a different regularization strength.
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3.2. Clear Aperture

From these images, it can be deduced that:

When deconvolved with a wrong PSF, the result either reméimsyif a smaller

blur radius is used, or becomes oversharpened if a largerdadius is used.

The smoothness regularization parameter dominates ift@ashigh. When it
dominates, virtually no deconvolution takes place and tle¢hiod returns the

original image.

Thus, blurring occurs in the bottom left portion of the gihd oversharpening occurs
in the top right portion. A suitable solution can then be fdgomewhere in the middle
section lying between the portions described above. Howéwean be observed that
if an image is originally convolved with a large PSF (lardeart 5 5), the bottom left
blurred portion will overlap with the top right overshargehportion and thus no space
will be left in the middle to contain the good deconvolvedules Thus this method

fails to work for large PSFs.

Arti cial PSFs were tested to see if fractional-sized PSBEa give a better result for

certain images. However, this approach showed little ormrovement in the results.

(a) Ground Truth (b) Deconvolved results (c) Blurred

Figure 3.5: Clear aperture method on cases with clipping. Note that the deconvolution
results contain ringing artifacts. The smoothness regularizer falls off frénoeight, and

so does the ringing artifact, but at the same time results become more.blurry

This algorithm also failed for cases with clipping due tausation (Figure 3.5).

Image reconstruction was very poor even without clippingsoAhigh energy spread
requires quite a large blur kernel, but then there are momesze the response function
and more information gets lost. The sparse gradient prier wadt found to be strong

enough to recover this lost information.
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3.3. Split Aperture

3.2.5 Observations

It was observed that frequency preservation makes faiteftdnstruction a bit easier,
since much of the information is already in the image. Thisteethe next method —

split aperture.

3.3 Split Aperture

Split Aperture

Scene

Figure 3.6: Concept of split aperture approach. Green (top) beam shows thedaghtthat
is in focus. On the other hand, the blue beam (bottom) goes through a lensligtitly

different focal length, and creates a blurred image on the image plane.

3.3.1 Motivation

Frequency preservation seemed to be the key criteria food geconstruction of the
in-focus image. Therefor@ddinghigh frequency components to the PSF, such as a

Dirac peak, simpli es the problem.

3.3.2 Method

Since convolution is a distributive operator, kernels caaddedif the end image is a
superimposition of two individually blurred images. ThaitifB= K1 |+ K> | then
B= K | whereK = K;+ Ko.
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3.3. Split Aperture

] ]

(a) Disk lter PSF (b) Dirac Peak (c) Split aperture PSF
10 10

(d) (e) (®

Figure 3.7: Simulated split aperture Iter. The split aperture Iter is simulated by adding
75% Dirac peak with the 25% measured disk kernel shown in (a). (Hyi(es the Fourier
transform of the PSFs in (a)—(c). Note the signi cant improvement in ggguency domain

— there are no zeros.

The straightforward approach to implement this is to take itwages — one blurred
and one sharp — and add them up. This can be Befmrecapturing the image simply

by dividing the light path.

By splitting the aperture, different parts can be set to tthfferent focal lengths, one
part of it focusing on the image plane, while the other onei$ong at a small distance

apart (Figure 3.6). This would superimpose a sharp imagebduareed one.

In effect, the blur kernel for this optical system would beireeér combination of a
Dirac peak Iter and a disk Iter (Figure 3.7). The strengthtbe Dirac peak can be
controlled by controlling the proportion of the apertureligated to the in-focus part.
Blur radius can be controlled by the focal length differennehe apertures (and of
course the depth of the scene, but for now it was assumedthaténe is at the optical

in nity).
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3.3. Split Aperture

This can be achieved by having a bifocal lens, or by introolgiéi second lens which
has a smaller size and curves light rays very slightly. Thasl form a combined lens

at that part of the aperture and in effect create a bifocal (Eigure 3.6).

Note that this method was developed independent of [16]bbtit approaches use a

multi-focal lens.

Simulation

The simulated test cases used the measured clear apentnedskevith a Dirac peak
added at the center (Figure 3.7).

3.3.3 Results

Simulated cases showed that the deconvolution results geete good (Figure 3.8).
But even in simulated cases, dynamic range increase (wiffifareconstruction)

higher than 60% could not be achieved.
We did not capture real images.

It was found that the strength of the method was the Dirac peakedded in the PSF.
Since a Dirac peak has nonzero components for all frequeincide Fourier domain,

this bifocal Iter can be easily inverted to get the origimalage.
However, there were several limitations:

Energy spread was found not to be strong enough, resultirgviery limited

dynamic range increase.

In addition, clipping was still hard to handle. If the satexhpixel value is too
high, all the energy cannot be spread to neighboring arews chpping will
occur. Test data showed that even for small saturated regfienreconstruction

was really poor. Ringing artifacts were very prominent.
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3.3. Split Aperture

(a) Synthetically blurred with an (b) Recovered (c) Ground truth
arti cial PSF

(d) Synthetically Blurred = Cap- (e) Recovered (f) Captured in-focus (ground

tured Blurred + Captured in-focus truth)

Figure 3.8: Split aperture synthetic test case. In (a)—(c) (the cameraman imdge),
ground truth image was convolved with a mixed PSF with 20% Dirac peak &t 8
Gaussiang =6.67) and then quantized to 12 bits to produce the blurred test image. The
vignetting-type effect in the recovered image is created due to the bouodadition as-
sumed. In (d)—(f), the blurred image has been formed by superingpasiaptured in-focus
image with a clear aperture defocus-blurred image. In this example test tlae in-focus
image was weighted 30% and the out-of-focus image was weighted 70% velyemete
superimposed. The point spread function is estimated by using the ajgpeomeasured
clear aperture lIter kernel, with a dirac peak added to it, the weight beingshme as

before.
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3.4. Observations

Defocus blur is achieved by moving the CCD towards or awamyftioe the focal
plane; thus blurring also involves a scaling operation. déetie blur kernel is
not completely shift-invariant any more. Thus the operatiannot be expressed

in terms of convolution and the idea broke down.

3.4 Observations

The approaches presented in this chapter show that highligive to be allowed to
be clipped to obtain better dynamic range increase. Infoamabout them has to be
multiplexed in the image, within the unsaturated pixels] tien a postprocessing step

will be necessary to demultiplex that information.

These observations led to the use of cross-screen lterghatiave the strengths of
the approaches described so far but not the weaknesseschmgue that uses cross-

screen lters is proposed in Chapter 4, and results are aadlin Chapter 5.
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Chapter 4

HDR with Cross Screen Filters

4.1 Motivation and Overview

(a) Ground truth HDR image (b) An LDR image captured using a cross-

screen lter

Figure 4.1: Imaging with a cross-screen lIter

The deconvolution approach presented in the previous ehbps an optimization step
which is highly underdetermined — there are many possillgieas to the problem,
each of which can satisfy the constraints. In other wordsgtlare many sharp images,
all of which can produce the same blurred image. On one haodgasing the error
tolerance level would increase number of candidate soistiand on the other hand,
reducing it would result in over tting and hence noise wouldminate. Due to this
inherent ill conditioning of the deconvolution problemsbetter constrained energy
dissipation and reconstruction approach is needed toremst more reliable method.

A cross-screen lter can provide just that.
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4.1. Motivation and Overview

A cross-screen lter can be used effectively to dissipatergy from saturated regions
(Figure 4.1). In addition, since the Iter kernel has shagptiires, the Iter isiotband
limited. Therefore, information is not destroyed, but omiyiltiplexedwithin an image.
This means, at least theoretically, a good reconstructiorbe achieved this encoded

information can be demultiplexed properly.

The cross-screen lter acts as a convolution kernel/operand therefore the con-
volution equation (Equation 3.2) applies. Although a deodution problem can be
massively underdetermined, fortunately, a cross-scrééenhas several properties that
help us pose a better constrained optimization problenraitismits most energy di-
rectly, only a small part is spread into the star-shapedegaiterns; and therefore the
star-shaped glare patterns are primarily created aroundright points in the scene,

as can be seen in Figure 4.1(b). The brighter the point, tbager the glare pattern.
Glare rays due to
a cross-screen filte

~ give aggregate
information

~—— Saturated Region

Figure 4.2: Glare patterns give aggregate information

The glare patterns around a clipped saturated region rfrextgggregateinformation
about that region inside a number of glare rays (Figure 8B%)using natural image
statistics, this glare can be separated from the undergage detail and the aggregate

information can be recovered.

Each glare ray around a saturated region gives one aggrégateiew of the 2-D
clipped region (Figure 4.3). All of these views can be coreblito form a tomography-

like reconstruction problem to reconstruct the unknowppsid regions. Once satu-
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4.1. Motivation and Overview

Figure 4.3: Different glare rays give different aggregate views of the saturateidmeg

rated regions are reconstructed, an optimization steshegtore the glared regions of

the observed image.

4.1.1 Chapter Outline

The following sections begin by analyzing the cross-scrééenand constructing an
empirical model of the Iter in Section 4.2. Then a model okgliinteractions due to

this Iter, namely, thelimited interaction modelis derived in Section 4.3.

In the rest of this chapter, this model and a few suitablerpnigap this problem into a
tomography-like reconstruction problem. Section 4.4 gjiga overview of the whole

algorithm, which is detailed in the remaining sections.

Section 4.5 details the rst step, how to remove unsaturaigel interactions. Sec-
tion 4.6 describes how natural image statistics and otheiréral constraints can help
compute aggregate information about the saturated regidmnsh are then combined
in a linear system to solve a tomography-like reconstragbimblem in Section 4.7 in
order to reconstruct the saturated pixels. Section 4.&giMerief description of how to

recover the glared region.
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4.2. Image Formation with Cross-Screen Filters

4.2 Image Formation with Cross-Screen Filters

v

Uyt T‘FFEN e 51—,;‘* (il

Figure 4.4: A 4-point cross-screen lter.

A cross-screen lter(also known astar lter) is a transparent photographic Iter with
parallel scratch marks or grooves on its surface (Figurge ¥When mounted in front of
a camera lens, it creates linear glare in a number of dinestidhese glare directions
are perpendicular to the direction of the grooves on theaserfi.e. horizontal grooves
on the Iter produce vertical glare on the image. This glasausually very faint and

hence stars are often noticeable only around very briglaisarethe scene.

Determining the precise underlying physics of star pagtésribeyond the scope of this

thesis, but the pattern is generated by one or more of thewWii effects:
Diffraction grating,
Prismatic effect, and
Multiple re ection within the lIter.

Most of the light passes through the unscratched path ofltee Part of the light hits

the grooves and gelsurred along one dimension (Figure 4.5).

Usually the glare patterns generated around a point ardlggpaced. The lter is
called p-pointif it createsp glare rays around a bright point whepeis even since
opposite rays are created by the same set of grooves on tlaeesurSince light is

linear, ap-point cross-screen lter can be modeled as a combinatiog afdividual
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4.2. Image Formation with Cross-Screen Filters

i Lens

Parallel beam of IigV
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Cross-screen

filter | Aperture

Focal plan

(a) One groove (Side View)

Parallel beam of light Lens

Cross-screen
filter

' Aperture

Focal plane

(c) Multiple parallel grooves (Side View)

Parallel beam of light | Lens

Sharp
image

Focal

Cross-s¢reen
plan

filter Aperture
(b) One groove (Top View)

Parallel beam of light i Lens

\ Sharp

/ image

Focal

Cross-screen
i plan

filter | Aperture

(d) Multiple parallel grooves (Top View)

Figure 4.5: How blurring occurs due to a 2-point cross-screen lter. (a) For arizontal

groove, the incoming beam spreads out vertically. (b) But it stays orsdh@ course
horizontally, that is, when viewed from top the beam would look as if it hashaotged its
direction. Therefore it will be focusetbrizontallyat the image plane. (c) Multiple parallel
grooves provide the same glare pattern which will be superimposetd8dc2.1) on the
same vertical line at the focal plane. Different colors are used aboveeuatify parts of

the beam of light. (d) Horizontally they will be in focus just like the single groase.

2-point cross-screen lters.
First, we list some assumptions regarding a 2-point croeses Iter and their impact:

Itis a one dimensional Iter; therefore images can be preedon aow-by-row
basis; there will be no crosstalk between adjacent rowssf tter is applied.
This assumption is important for modeling the glare gradpsrpendicular to

the glare direction.

It has aDirac peakcomponent (Figure 4.2) which helps preserve all frequancie
Since high frequency information is preserved, image tetaiot completely

lost, except at the clipped regions.
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4.2. Image Formation with Cross-Screen Filters

Figure 4.6: Cross-screen lter pro le. A point light source seen through an 8rpaross-
screen lter. 8 rays are emanating from the center along 4 glare directiofisis Iter
pro le has been estimated by taking a photo of a point light source placdbin of a
black background. Since it is hard to get a true point light source, tipdurad image gives

a reasonable estimate.

If the lens- are around the Dirac peak of the PSF is ignoréds assumed that
each pixel can interact with other pixels only along a nundieflare rays. For a

p-point cross-screen lterp glare rays can be seen to emanate from each pixel.

There is a shargropbeyond the central Dirac peak, which amounts to 3—4 orders
of magnitude. This observation leads to a simpli cation o pixel interaction

structure, and helps to greatly reduce the complexity optioblem.

It has been been empirically found to exhibit exponential dropoffbeyond
the Dirac peak (Section 4.2) with some noisy oscillatingdess (Figure 4.7).
These oscillations will be ignored in our model. This expaied approximation
is critical since this way superimposed glare from multga¢urated pixels gives
a glare with similar exponential dropoff, only with a diféeit magnitude (Sec-
tion 4.6.1). This allows formulating the saturated regiecanstruction problem

as a tomography-like reconstruction problem.

Due to the glare, objects in the scene situated beyond thgeifnrame can affect
the image. This is visible as an elevated black level in irsagken with a cross-

screen lter (Figure 4.8). For example, strong light sosrt¢kat are situated
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4.2. Image Formation with Cross-Screen Filters
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Figure 4.7: Cross-screen lter pro le estimation. The exponential falloff approxiesa

the trend of the falloff and ignores the wavy details.

outside the image frame, but are close by, would produce gégys.

The model of the blur kernel will be formalized in the nexttimt, and based on that,
the limited interaction model will be developed in SectioB.4This limited interaction

will lead to the method we are proposing in Section 4.4.

4.2.1 Split Kernel

Assuming that all the parallel grooves on the lter have tlens pro le, it can be
shown that the glare patterns will efocus This is because light is distorted in the
same wayand parallel distorted rays get focused at the same poittiefocal plane
(Figure 4.9).

Since glare patterns are in focus, the apertuedfectivelydivided up into a number of

portions.

Most of the light passes right through the unscratched paittgets focused by
the lens at the image plane in the usual manner. This is repex$ by the Dirac
Delta function in the lter pro le (Figure 4.10). This pouin of the incoming
light from the scene can be thought of being convolved withra®Delta func-

tion, i.e., incoming light remains unaltered. Thus, in efféhe largest part of the
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4.2. Image Formation with Cross-Screen Filters

(a) Without Filter (b) With a 6-point star Iter

Figure 4.8: Black level is elevated in the Itered image. These two images were taken

under the same conditions except the lter.

Parallel beam of light Lens

Glare

Sharp
image

Glare

—

1
1
{
|
|

Cross-screemperture Focal
filter plane

Figure 4.9: Glare is in focus. The scratch marks create diffraction patterns, and/isr pr
matic patterns, and these patterns are in focus becaussnoifar rays on these patterns
being parallel for a parallel input beam. For an object not at in nity, sintikehavior can

be expected.

aperture remains dedicated to the Dirac Delta componehieafribss-screen |-
ter. This is why the star-shaped glare patterns are visitlle around the bright
objects in the scene. This way most of the image remainseamedilt This is

exactly the strength of the method we are going to proposedti@& 4.4.

The grooves of the cross-screen lter are responsible fodpeing glare along

different directions where the direction is determined g drientation of the
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4.2. Image Formation with Cross-Screen Filters

grooves. Grooves that are parallel to one another prodecsstime glare pattern,

and all these instances get focused on the image plane.

fIog scale ) log scale ) log scale
avh ] 2 1
= + |
: /b\
! X L X N
Approximate PSF Delta function Exponential dropoff

Figure 4.10: Split kernel. Our estimated kernel can be split into Dirac delta function and

an exponential dropoff. Note that the vertical axes of the plots are indates

Therefore, a 2-point cross-screen lter PSF can be splii imto components (Fig-

ure 4.10):

1. A Dirac delta function representing the peak, which aktsa scaling factoa,

and

2. A low-pass exponential ltet. with slope or falloff rate parameten, scaled

down to avery lowamplitudeb,
L(x)= e ™ x; (4.1)
wherexg is the location of the saturated pixel.

In this formulation, the cross-screen lter acts as an apertlter implying that this
approach is another implementation of the split apertupgageh (Section 3.3). Evi-
dently, the cross-screen lter acts as a convolution operand therefore the convolu-
tion equation (Equation 3.2) applies. The convolution iratt can be expressed as a

combination of two components mentioned above:
H=al+blL; (4.2)

wherel is the identity matrix. The parameteasandm above are speci c for a particu-
lar glare direction (Figure 4.11) on a particular crossesar Iter, and these quantities
are measured. Note that it is important to havewuch greater thah so that most of

the cross-screen lter is dedicated to the Dirac Delta fiomct
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4.3. Limited Interaction Model

(a) Measured Filter (b) Measured after rotating the Iter 482CW

Figure 4.11: Variation in strengths of glare rays. The kernels have been measutied w
a point light source. The image on the right veri es that the variation in thergths are

due to Iter properties only.

Figure 4.11 shows a measured 16-point Iter where all theegtays are not equally
bright. This can happen because the appearance of the glereepend on the prop-

erties of the grooves on the surface of a lter.

Modeling the pro le of the grooves and the underlying phgsighenomenon is beyond
the scope of this thesis. However, we have found that ourcapation is suf cient

for this problem.

4.3 Limited Interaction Model

First, a successive approximation method to deconvolvey@sdlurred by a cross-
screen lter will be derived for cases without any clippingedto saturation. Then, the

limited interaction model will be proposed.

When there is no clipping due to saturation, general coneiudescribed by Equa-

tion 3.2 remains applicable for the split kernel model (Eoue4.2). Combining these
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4.3. Limited Interaction Model

two equations gives the split kernel convolution equation,

j=ai+ bLi: (4.3)

Sinceb is very small to whichL is scaled down, and since the low-pass lteremoves
high frequency information from an image, only a coarse exipration ofi is needed
to compute the terrhi. Thus, a successive approximation approach can be dedelope
Rewriting Equation 4.3 gives

i= %(j bLi): (4.4)

This gives a simple xed-point iteration method for commgti,
€9 =j: and

¢k = lj EL‘ii(" D: fork>0
a’ a

2 s K 4.5
= —j BL j+ EL ] EL j+ +( DK EL j (*9)
a a a a

1
a
1%t b "
g ot

where®® for k= 0; 1; ::: are the successive approximations.dincei is unknown,
j needs to be successively convolved and alternately addsubtnacted to compuie
fromj as shown above. All the terms except the rst one on the righthside are thus
acting acorrection termghat successively approximater he terminteractionwill be
used to express the successive correction terms due tanglukrth order interaction
is the intiraction among observed pixels that is descrilyetthék-th correction term,

b Y

In the above iterative method, theh error term is
Ko b k1 .
R j= L & i (4.6)

. b b . . .
Since gL = 2 andb a (Section 4.2.1), above iteration converges fast.

¥

" b .
Intuitively, 5L transfers only a small amount of energy. So, the correcéomg
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4.3. Limited Interaction Model

(b) b, . 10

(d) Ground truth (e) First iteration U] Second iteration

i & &2

Figure 4.12: Limited interaction — simulated test case. (a) is the synthetically blurred
image and (d) is the ground truth. (e) shows the image obtained by regowiy the
rst order interactions (b) from the blurred image. Note that it is hard tad any visible
difference between (e) and the original image (d). Correction due to ¢bersl order
interactions is shown in (c). The result of removing these second amtEnactions is
shown in (f). (f) does not have any visible improvement over (e). Alpcoations were
done on HDR images since successive approximation only works wheiisthe clipping.
Since strength of higher order interactions drop off rapidly, image intessin (b) and (c)

are multiplied by 10 and 100.
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4.3. Limited Interaction Model

have diminishing energy, i.e.,

b b ? b 3
L L L : 4.7
P AR > j > 4.7)

In practice, good results were obtained even with a singlation (Figure 4.12),

i=¢Y+0 b
a
D
(4.8)
j bLEO

It
V| Q|

(i bLj):
This is equivalent to removing only the rst order interacti This model of ignoring

higher order interactions will be referred to as tingited interaction model

When capturing natural images, some of the image intensitasget clipped due to
saturation. Saturation destroys information, and thealimelation as described by the
split kernel convolution equation (Equation 4.3) breakamoThat means the limited
interaction model would falil if provision for clipping is hanade. Therefore, this

model needs to be applied to saturated and unsaturated peqghrately.

Some imagg can be expressed asambinationof saturated and unsaturated pixels
(Figure 4.13),

j=lJutis (4.9)
where at any pointx;y): ju(X;y) js(x;y) = 0. Unless otherwise stated, throughout
the rest of the thesis, subscrigtdenotesunsaturatedpixels, andS, saturatedpixels.
Note thati is the true radiometric map (HDR image), and therefore itsdoat have
saturated pixels.S and U gives locations of saturated and unsaturated pixels in the

observed imagg

In the observed image saturated pixel valugs are clipped. Equation 3.2 cannot be

applied onjs. However, unsaturated pixels do follow that relation.

The contribution or the energy transferred, from other pixels to an unstadrpixel

due to pixel interaction is a sum of contributions from sated pixels and unsaturated
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4.3. Limited Interaction Model

Figure 4.13: Saturated and unsaturated pixels. Red pixels denotes pixels that ddareg be
to that part. i is the true HDR imagdg is the clipped pixels we need to recovpis the
captured LDR image, and therefore the saturated part pjtgontains only clipped pixels.

ju contains the unsaturated part and the glare.

pixels. When these two types ofteractionare modeled separately, the split kernel

convolution equation (Equation 3.2) becomes
. U . .
ju= Hiy+ bLis; (4.10)

where? denotes that the equality holds for the unsaturated pixels dhe rst term
models the effect of unsaturated pixels on unsaturatedspike U), and the second
term models the effect of saturated pixels on unsaturateslp{S! U). Figure 4.14

illustrates this relation.

Contributions to saturated pixels from unsaturated pigéls S) are ignored because
they are too small to be considered. True values at satupatets are so large that

these small contributions do not make any noticeable diffee.
Contributions to saturated pixels from other saturate@lpifs! S) do not affect our
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4.3. Limited Interaction Model

bLis 10

Figure 4.14: Split kernel convolution when clipping occurs. Saturated pixels are eaark

with red. The equality does not hold at these pixels.

algorithm since such glare would get clipped due to satdratel hence cannot be
captured or measured. However, there can be some clippets pirat would not get
clipped without the § S) interactions. This is why it cannot be assumed that the

original pixel intensity at any clipped pixel is greaternha equal to the cliiping value.

All four types of contributions are summarized in Figuret.1

S U
Saturated Pixels Unsaturated Pixels
(ignored)
S'S Few Many Ul u
Clipped U! s |Notclipped
Magnitude usually high | (i9nored) | Magnitude usually low

Figure 4.15: Four kinds of pixel interactions. Contributions to the saturated pixels are

ignored because they are too small compared to the true values at tixete p
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4.4. Method

4.4 Method

An overview of the method to be presented in the rest of thetehnas given below.

1. First, rst interactions among the unsaturated pixeld!( U) will be removed

(Section 4.5).

2. Next, glare patterns will be separated from scene daig ursitural image statis-
tics, and then aggregate views, or more precidelg, integral estimatesof the

saturated regions from glare directions will be computed (Section 4.6).

3. Once the line integral estimates are known alon%aglare directions, these ob-
servations will be combined into a tomography-like recogion step in order

to computds (Section 4.7),

4. Finally,iy will be recovered using the line integral estimates and treputed

is values (Section 4.8).

The rationale behind performing the last two steps abovarsggly is that they need
different objective functions and different sets of coastts for optimization (Sec-

tion 5.4).

4.5 Removing Unsaturated Pixel Interactions

The effect of rst interactionsamong unsaturated pixelg( U) can be easily reduced

or almost entirely removed.

We have modeled the cross-screen ltdr,as a split kernel; i.e., convolution with this
kernel can be modeled as a linear combination of the origimadje and a blurred image
convolved with an exponential dropoff pro ld, (Equation 4.2). When considering

only unsaturated pixels, this can be expressed as

Hiy = aiy+ bLiy: (4.11)
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4.6. Glare Estimation

Therefore, the split kernel convolution equation (Equatdd3) becomes
ju2(aiy+ bLiy)+ bLis; (4.12)

whereZ denotes that the equality holds for the unsaturated pixdis dhis relation
may not hold at the saturated pixels because the left haedsizero while the right

hand side may have some nonzero value dug!tcS interactions.

The limited interaction model (Section 4.3) dictates tat U interaction can be well

estimated withjy. Letj% denote the observed image after removifig U interactions,

ajg?ju bLiy:
y (4.13)
= aiy+ blLis:
Using Equation 4.§% can be computed without knowing,
aj® ju bLju: (4.14)

4.6 Glare Estimation

After removing glare due to unsaturated pixel interactiamdy the glare due t&' U

interactionsg, remains at the unsaturated pixels. Rearranging Equatic) we get

g= bLisZa & iy : (4.15)

In the following sections, the rst half of this equation Wbe utlized to develop a
model ofg, and then this model will help estimate glare using naturalge statistics.
The second half of this equation will be used in Section 4estonata by subtracting

the estimated glare.

4.6.1 Model of Glare

Equation 4.15 shows that the glare at a pi&el) results from the contributions from

all the saturated pixels situated on the same row. If thex&laraturated pixels on this
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4.6. Glare Estimation

=
=
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>

be Mx x| (x)

log scale

Glare
due to
saturated
pixels

T T T T T
Xo X1 X2 X3 Xa= XL

4

Saturated pixels

Mixed segmenf Unsaturated segment

Figure 4.16: Glare contribution from one side of an unsaturated region. x is an arbitrary
point in an unsaturated segmeng, X1, :::, X4 are the saturated pixels situated to the left
of this segment.  x= X4 is the closest saturation to the left. Each saturated pixel creates
its own glare pro le, all of them get summed up and only an aggregateegian be seen

in the captured image. Like glare due to only one pixel, the aggregate glsoehas an

exponential falloff pro le and an aggregate energy which we measure.

row and they are situated at locatiogs xy, :::, Xy (Figure 4.16), then,
N o
g(xy)= a be ™ Mis(x;y): (4.16)
i

For the sake of clarityy will be omitted in the equations that follow.

If we separate the saturated pixels into two groups basedhather they are situated

to the left ofx or to the right, we get

9= @ be ™ Mig(x)+ § be " Xig(x)
X< X Xi> X
= pe Mx x) é e M Xi)is(xi)+ pe MXr X é e M XR)iS(Xi) (4.17)

X <X Xj>X

= be ™ VI () + be ™R Dg(x);

45



4.6. Glare Estimation

g bl
(%]
(@]
2 T2
blr pe mx XL)|L/\\ -
be ™R Yjg—
XL X XR X
|< -
| Unsaturated segment \
Saturated pixel Saturated pi

Figure 4.17: Glare contribution. x is an arbitrary point in an unsaturated segmentx
X< XRr. X (XR) is the closest saturation to the left (right). Line integral terinsand Ir
capture the aggregate energy on each side of the unsaturated segAuinhg up these

two aggregate exponential falloff pro les givgsthe resultant glare over this segment.

wherel| (Ir) denotes théine integral— the aggregate energy — to the left (right),
L= & e ™ Wis(x);
X <X

IR = & e M Wig(x);

Xi>X

(4.18)

andx_ (xr) gives a reference location to the left (right). Withoutdasf generality,
XL (Xxr) can be assumed to be the location of the closest saturatitivetleft (right)

(Figure 4.17).

The equation above shows that if more than one such expahéaikbffs from a single
side are superimposed, the result will also have an expiahéaitoff pro le with the

same slope. Similarly, gradients of these glare pro les nave an exponential pro le.

Moreover, glare at each unsaturated segment is a linearinatidn of two exponential

functions described bly andlg.
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4.6. Glare Estimation

4.6.2 Estimating Line Integrals

Estimating line integrals directly is dif cult because équires separating the unknown
original imagei from the observed imageaffected by the IterH. However, natural

image statistics can provide strong prior knowledge ahgut

the sparse gradient priofor natural images [15, 28] makes a reasonable assumption
about natural images that they contain sharp edges ancheegaiween the edges are
smooth. That is, image gradients are sparse — only a smalbeuaf pixel gradients
have magnitudes signi cantly greater than zero. Therefaedural image gradients
follow a heavy-tailed distribution, which can be approxtetby a Laplacian distribu-
tion,

Dyi(x) Laplacém= 0; b), (4.19)

whereDy is a partial derivative operator in the direction orthoddozhe glare direc-
tion, m= 0 is the location parameter afbd> O is the scale parameter. Therefore, the

probability density function is given by

, 1 by
f(Dyi) m=0; b)= e P (4.20)
Then, the maximum likehood estimator@§i can be computed as,
, ~ 1 ioyiwj
Byi = argmax IogO%e Bl
by X (4.21)
= argmin Dyi ,;
Dyi

which amounts to ah; optimization in the gradiant space — a convex optimization

problem [2].

By combining Equations 4.13 and 4.17, and then taking thdigna along Y, we get

an expression for image gradients in terms of glare,
aDyiy(X) = aDyj§(x) be™ WDyl (x) be ™R YD, I(x); (4.22)

whereDyl (X) andDylr(X) are the unknowns. These quantities remain the same for all

pixels within some unsaturated segment. Using Equatioh, 42 can compute these
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4.6. Glare Estimation

quantities by doing ah; optimization over that segment in the gradient space, i.e.,
2 3

o,
475 = argmin - aDy§(x) be™ VDI (x) be ™R YDy Ig(x) ;
|§y|R [y T DleT]T
(4.23)
Note that the unsaturated segments at the left (right) lbatian image will have a

zerol (IR).

Because of noise and scene edges, image gradient digiributan have a nonzero
central tendency or become less peaked. In such casds, timization may give
wrong estimates. since dispersion increases as a digbribgets less peaked, the in-
verse of some appropriate dispersion measurement wouddtlggvievel of con dence
in each estimate. By introducing these con dence values eighting factors in the
linear system, we can ensure that erroneous estimatesdssveffect on the nal solu-

tion.

Once the line integral gradient estimalﬂﬁlL and lﬂyIR are computed, line integral

estimated? and are computed by a simple least square t,
2 3 02 3 2 31

I I
‘5 g4 '5A (4.24)

R ©,1r IR

wheregy is the gradient operator that takes into account the rederkatationsq. and
Xr When computing the gradient, asd ! is a diagonal matrix with the con dence

measurements on the diagonal.

A few constraints that help make the estimation process mavast are described

below.

Darkest Pixel Constraint

At each pixel, estimated glare must be less than or equaétolikerved value, i.e.,

b  ®(X): (4.25)
Note that due to the presence of noise, this constraint ¢doena hard constraint.
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4.7. Recovering Saturated Regions

Left-Right Agreement Constraint

i 3
‘er ” BT
() DNLY/ . \
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XR X XL ;(

F Saturated segmen&»‘

Figure 4.18: Left-right agreement constraint. Loci of left and right line integrals of a

saturated segment must agree at some x within the saturated segment.

The value of, (Ir) depends on the selection of reference locatio(xgr). The locus of
all values of will too have an exponential pro le with the same slope (Fiy4.18). For
a given saturated regioh, andlr represent the same amount of energy, so they should
agree at somewithin the saturated region. Therefore, for each saturs¢gthent, the
following should hold,

B emx X = R emx Xl (4.26)

4.7 Recovering Saturated Regions

The problem of computings is by contruction very similar to the tomographic recon-
struction problem. Once all the line integral estimatescaraputed, estimation o§
is formulated as a linear least squares optimization propéeg.,
R=argmin s (Ais b) ,; (4.27)
is
whereA is a sparse matrix that gives the line integral in terms ofmelets ofis, b
contains corresponding estimates anthas corresponding standard deviations along

its main diagonal.

49



4.8. Removing Glare

This linear system is often under-constrained, and a smesthprior is necessary to
make up for the missing information. The highlights showtiofv the sparse gradi-
ent prior [15, 28], which can be imposed by minimizing thenorm in the gradient
domain. After adding this smoothness term, we get,
R=argmin s (Ais b) 2+ Ris ; (4.28)
is

whereN is the gradient operator arid gives the regularization coef cient. Bound-
ary pixels around saturated regions are included in gradi@mputation for a better

reconstruction.

The Iterative Reweighted Least Squares [14] method is egdirL; optimization.

4.8 Removing Glare

Once the highlights are reconstructed, they are convolwembinpute glare which is

then subtracted froi§,. By rearranging Equation 4.13, we get,
h U, b
iD= je 5L R: (4.29)

Note that to remove glarés estimation process is run again, but with a small smooth-
ness regularization coef cient. This tends to produce aybighlight reconstruction,
but when convolved it matches well with estimated glare tiSeé.4 in the next chap-

ter presents an example that illustrates this idea.

Glare removal is not perfect since the estimated PSF doemadel the wavyness
present in the real blur kernel (Figure 4.7). A possiblefeiirection of research that

can potentially provide a x is presented in Section 6.2.3.
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Chapter 5

Results

In this chapter, a few results of the algorithm proposed egtevious chapter is pre-
sented. The proposed algorithm focuses on estimating gladeecovering the satu-
rated regions. Quality of reconstruction depends on how glate is estimated and
how well the saturated regions are reconstructed. Thexefor each test case, these

two aspects will be discussed.

First, the experiment environment is described in SectidanBhe discussion on results
starts from Section 5.2 with a few simulated test cases whidhhelp analyze the

method's performance under varying conditions such asmifft background texture,
noise and quantization. The later sections show a few redtiiest cases. Finally, we

discuss the known limitations of this algorithm in Sectio6.5

5.1 Environment

HDR reference images were created by merging a series ot tébimages captured
at different shutter speeds, ranging from 1/8192-th of aiséto 32 seconds. Aperture
setting varied from test case to test case. Raw images waverted to PNG format

using dcraw 8.77 and ImageMagick 6.3.5, using the follovdaghmands:

dcraw ¢ o1 4 v w $file > $base.ppm

convert $base.ppm $base.png

All testimages were captured with a Canon D40 digital SLRe@nplaced on a tripod.

We have found this camera to have a linear response curvefahe we developed a
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5.2. Simulated Test Cases

simple HDR merging utility that neither tries to nd the caraeurve, nor requires one

previously generated.

Some of the test images were bilinearly scaled down fronr tirgginal size to reduce

the size of the problem.

In all captured test cases, images have been manually dlgmthat one of the cross-
screen lter patterns align with the x-axis. First, whiléitag photos with the camera,
we tried to manually orient the Iter correctly so that onetbé directions of grooves
on the lter is horizontal. Any ne tuning is done after the ages were downloaded,
and merged if necessary, by simple image rotations withdsli sampling. We have
used an 8-point cross-screen lter to capture blurred ilmageimulated test images

were generated using a synthetic 8-point cross-screenPIgF.

We have implemented our code on Matlab 7.8.0 (R2009a) ardithsdinear solvers

provided in the Matlab Optimization Toolbox.

5.2 Simulated Test Cases

Simulated test cases help understand the strengths an@#&k@messes of the algorithm
presented in this thesis. In each simulated test case, iasiadist created or captured
high dynamic range reference image is blurred with an syicthess-screen Iter PSF,
added photon shot noise to, and then quantized to 10 bitssiotberwise speci ed to
produce the test image. Since only arti cial PSFs have beed uthe Wavyness in the

Iter pro le has been ignored.

The rst test case is shown in Figure 5.1. A number of diskdwidifferent strengths
are placed in front of a dark background. Note that the laagerated disk at the top
actually has two disks superimposed one or the other. Tketaff easily noticeable at

the glare; in each direction, the middle glare rays are beigthan the rest.

We have also tested the algorithm on synthetically blureadl I DR images. One such

example is presented in Figure 5.2. The HDR image of somiarailballs on a table
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) - ]
[ ]

(a) Blurred LDR (b) Glare around the double dis}

(b) Recovered HDR (c) Original HDR

Figure 5.1: Simulated Test Case. Note the double-disk, pointed by a cyan arrow.in (a)
The double disk gets clipped in the blurred LDR image, but by observingjlahearound
it one can realize there are two disks there. The actual shape of this Higlidighown in
(d). The glare pattern around it, marked by a cyan box in (a), is showh)inThe central
brighter disk is creating thin strong glare, while the larger disk is creating ardanthick

glare. Also note the tomographic reconstruction artifacts shown in the ingej.in

53



5.2. Simulated Test Cases

(a) Arti cially blurred 10 (b) Original HDR

(c) Recovered HDR 10 (d) Recovered HDR

Figure 5.2: Simulated test case. A captured HDR image has been convolved with an
arti cial 8-point cross-screen lter to create our test data. All the highitg are created

through one or more specular re ections of the sun.
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5.2. Simulated Test Cases

on a bright day has been used. Since the objects are shinhesdrtfaces are curved,
small specular re ections and inter-re ections of the samde seen. As a result, the
highlights are very small but very bright. The reconstmictis quite well even after
the fact that the glare patterns are relatively faint andrttegge has background texture
and noise. Reconstruction artifacts can be seen only wrepikel magnitudes are

multiplied by 10 in Figure 5.2(c).

5.2.1 Effect of Noise

Noise degrades the estimation process. Presence of high disturbs the estima-
tion process and the highlight recovery step “discoversiisaletail that is not there.
Figure 5.3 shows reconstruction results for different $ated additive noise added to
the same simple test case. As expected, the reconstrueigvadks as noise becomes

stronger.

Although the reconstruction can be noisy, the reconsonatian adequately capture
the total energy of the highlight. This is evident from thetfthat glare removal step
removes glare well enough. As additive noise is increasetlestimation and recon-
struction process slowly degrades to a point where noiserdaas and therefore no

energy can be estimated, as can be seen on the last row.

It should be noted that when noise becomes dominant, thergmeduces some nonex-
istent pattern in the reconstructed highlights. Howeueg, patterns created are not

completely random noise patterns because of the smootboessaint.

Figure 5.3 shows a comparison between additive and mghliilie noise components.

Effect of Quantization

Quantization is also a form of noise; and this too degradegs#timation process. As
before with shot noise, reconstruction quality degraddsest image is quantized to

fewer bits.
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(a) Blurred image(b) Reconstruction(c) Blurred image, 0.01%d) Reconstruction,
Nno noise or quantizationno noise or quantizationnoise, 8 bit quantization0.01% noise, 8 bit

quantization

0.1
0.05]
0.02
0.01

0.005

0.002

Additive Uniform Noise Mean

0.001

None

Quantization

(e) Additive Noise vs. Quantization

Figure 5.3: Effect of additive noise and quantization. The top row show two test cétbes w
glare removal. It is evident that with high noise the glare detection prosefers heavily,
and as a result the highlight reconstruction gets noisy. Also, these redstisshow that
quantization affects less strongly than noise. Same noise pattern was usedifouting
results with different quantization. A default multiplicative noise of 0.01 wed irsall the
cases above. The red pixels in the recovered HDR images indicate tveegalue in the

reconstruction.
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Additive Uniform Noise Mean

(&) Blurred image(b) Reconstruction,

Nno noise or quantizationno noise or quantization

0.1

0.05

0.02

0.01

0.005

0.002

0.001

None

None 0.001 0.002 0.005 0.01 0.02 0.05 0.10.2 0.5

Multiplicative Uniform Noise Mean

©

Figure 5.4: Effect of noise. Multiplicative noise shows little impact compared to additive
noise. Since photon shot noise is poisson noise, it is proportional to luwénand there-
fore is multiplicative. This shows that the algorithm is expected to perform neddpwell

in the presence of shot noise. The synthetic test images aboveetegantized in order

to observe the pure effect of noise. The red pixels in the recoverediiages indicate a

negative value in the reconstruction.
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Figure 5.3 shows reconstruction results for different nendf quantization levels with
the same simple test case. As expected, the reconstruetipades with fewer quanti-

zation levels.

5.3 Effect of Scene Brightness

Scene brightness has a signi cant impact on the performandbe algorithm. Since
most of the highlights are either light sources or specudagctions, the rest of the
scene usually is not so bright. Glare is easy to estimateibdtkground is relatively
dark and the glare is prominent. However, in terms of qualftthe reconstruction of
the glared region, brighter background is favorable siheétight background texture

can mask some artifacts in reconstruction.

5.3.1 Day Shots

(a) Blurred LDR (b) Recovered HDR (c) Ground Truth

Figure 5.5: Day shot example. Glare removal is not accurate but works well dinee

artifacts are barely noticeable.

Day shots are comparatively easy in terms of removing gianege glare is barely vis-
ible anyways, a rough removal of the glared region lookseggd@od; when compared

with outputs from night shots with the same effort.

On the other hand, since only a faint glare can be seen, saduregion reconstruc-
tion becomes less accurate. Often glare goes below the leoieand the estimation

process would fail.
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5.3. Effect of Scene Brightness

5.3.2 Night Shots

(a) Blurred HDR (b) Recovered HDR (c) Ground Truth

Figure 5.6: Removing glare from a night shot. Note that the wavyness patters are more
visible in a recovered night shot. Also note the glare pattern at the top-cigiter of the
image resulting from a light source lying outside the image frame. Proposéuoeh does

not handle this case; but a possible solution subject to further reseamiesented in the
Future Work (Section 6.2.2).

Night shots have clear glare rays and little interveningkgaaund structure, thus mak-

ing the glare estimation process easier. However, thispkssents a few challenges,

Since the glare patterns are brighter than scene textune bits are allocated
for the glare patterns rather than scene detail, effegtivetiucing number of
guantization levels for scene detail in the glared regiorertf glare can be well

approximated, due to low effective bit depth, reconstarctvill be poor.

Since photon shot noise is proportional to luminance, dlanigels will have
higher noise compared to neighboring non-glared pixels. V¢gftere is removed,
the recovered scene details will have a poor signal-toen@tio and the noise

will become visible.

The blur kernel is not perfectly exponential, there are soswllating features
on it (Figure 4.7) which were ignored while designing thenetimodel. When
glare is estimated, the algorithm nds the best t in someseErmand when this

estimated glare is subtracted from observed image to regiave, pixels where

59



5.3. Effect of Scene Brightness

(a) Recovered HDR (b) Blurred

Figure 5.7: Removing glare from a night shot. Note the tomographic reconstruction ar-
tifacts. The inset images in (b) show the short exposure reference smage highlight
pointed by the cyan arrow creates no glare signature because its brighigeclose to

clipping value, the reconstruction algorithm fails to recover this highlight.

glare is overestimated may end up getting negative valubs ifinderlying scene
structure is not bright enough to mask the error in estinmatio

The night shot presented in Figure 5.3.2 shows such an eraipernate bright

and dark patches in the glared area of the recovered imagedyctiemonstrates
that this artifact has occurred due to subtracting the kesftthe estimated glare

pro le from the image.

Figure 5.7 shows another night shot. The saturated regrengratty large. The satu-
rated region pointed by a cyan arrow produces no glare sthdty it cannot be repro-

duced. The central large saturated region produces a gt p pretty similar to the

double-disk saturation in Figure 5.1, and the algorithmegsiiccessfully could predict
the energy distribution within the highlight. Note the tognaphy artifacts around both
of the recovered highlights shown in the insets, similahtodnes found in Figure 5.1.
The test case presented in Figure 5.8 is quite interesticguse it shows that the algo-
rithm could recover the light shade's structure which careoseen in captured HDR

image, probably due to the glare of the optics used.
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(a) Recovered HDR (b) Blurred / Reference

Figure 5.8: Recovering hidden detail. This image is interesting because it could necove
the light shade's structure which cannot be seen in captured HDR inshgeyn in the inset

of (b), probably due to glare of the optics used.
5.4 Effect of Smoothness Regularizer

Recall that we added a smoothness term to account for théngnisgormation (Sec-
tion 4.7). The tomography-like linear system is undercaised; by utilizing the
sparse gradient prior we get the additional constraintsvéyer, how smooth the re-

constructed highlights would be depends on the strengthecdinoothness regularizer.

The best glare removal is produced by a very noisy highligtitete, while the recov-

ered highlight that is closest to the original may not remgieee properly (Figure 5.9).

5.5 Failure Case: Napa Valley Image

The Napa Valley image is a test case where the glare detealnithm fails (Fig-
ure 5.10). The reason is that the gradients of the glare irskigedue to the setting
sun has a close to exponential dropoff thoughout the sky.gldre estimation process
heavily depends on image gradiemtt following an exponential pro le, so it fails in

the case of this image.
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5.5. Failure Case: Napa Valley Image

(a) Blurred (b) Ground truth

(c) Recovered HDR 10, high/ (d) Recovered HDR 10, low/

Figure 5.9: Effect of smoothness regularizér,on the recovered image (Section 4.7). Low
smoothness results in better glare estimate but noisy highlights, while higitlsness does

the opposite. Note that th epatches left in (d) are due to the wavynessipreseal Iter

PSF.
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5.6. Limitations

The saturated region is not strong enough to produce angtdete glare. However,
the algorithm does nd some energy, which is evident fromdlae estimate that has

been removed.

(a) Synthetically Blurred LDR (b) Recovered HDR

Figure 5.10: Failure case — Napa Valley image. (a) shows the blurred test image with
little or no glare present due to the cross-screen Iter. However, thalignat present in
the sky due to the sunset confuses the glare detection algorithm. Subtrdgtimgong

estimate gives (b).

5.6 Limitations

First of all, unless a large percentage of pixels can be cagtwithout clipping, the

proposed method would fail.

Since large values are estimated using small values and #meall values also con-
tain noise and other random components such as backgroxtudetethe estimation
process cannot reliably estimate line integral gradietitnedes that are nauf ciently
large. That is, if some pixel gets clipped but its intensityot high enough to produce

detectable glare, it cannot be reconstructed.

This algorithm heavily relies on the fact that glare patsdnave an exponential pro le
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5.6. Limitations

and scene edges or gradients usually do not. However, if@onextial falloff is found

the algorithm will discover some energy creating it and thletson will be off-target.

With only 8 views of a highlight, only a poor quality of higglit reconstruction can
be expected. With more views it could get better, but theregbatterns from different

directions of grooves would overlap and separating them lmeapme dif cult.

This method does not address cases with under-saturatidiciedtly long exposure
can avoid under-saturation but it can potentially incredipping due to saturation and

cause the algorithm to fail.

A few possible extensions are discussed in the next chapt8ection 6.2 that may

potentially overcome some of these limitations.
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Chapter 6

Conclusion

6.1 Conclusion

In this thesis, the problem of capturing High Dynamic Ranigesges with only one
exposusre has been addressed. A novel High Dynamic Range iatguisition tech-
nigue has been proposed. This new technique has been desi¢topugh a number of

major contributions —
1. Split aperture approach for HDR imaging through debhgyyi

2. Using cross-screen lters to do the blurring and thus ipooating a Dirac peak
into the blur kernel, which helped encode HDR informatiotoian image more

effectively than simple blurring,

3. Utilizing the sparse gradient prior and then using theoexmtial pro le of the
glare to compute line integral gradient estimates; whiclegdahe way to formu-
late the saturated pixel reconstruction problem as a toaptyrlike reconstruc-

tion problem.

6.2 Future Work

6.2.1 Additonal Constraints for Recovering Saturated Regins

In addition to the constraints discussed in Section 4.7ywanf®re constraints can be

implemented for better results. These constraints havbe®i implemented or tested,
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6.2. Future Work

but due to their theoretical strength, they can potentialfke the proposed algorithm

more robust.

Penalizing Edgelike Tomography Artifacts

(a) Simulated Blur (b) Sharp Reference Image / 1000(c) Recovered Image / 1000

Figure 6.1: Edgelike tomograpy artifacts in a simulated case.

As a common artifact in tomographic reconstructions, faldges along the glare di-
rections can be seen in the reconstructed saturated rdgguré 6.1). These artifacts
appear to be very prominent since only very few line integyealk being used to con-

struct the saturated regions.

These edgelike artifacts can be penalized by adding a peteainh to the optimiza-
tion equation. After adding this term, tle reconstruction equation (Equation 4.27)
becomes
Q: argmin s 1(Ais b) ,+ kN(is)k; + gkE(is)k ; (6.1)
is
whereE is a suitable edge detection operator to detect edges phcpéar to the glare

directions andyis a regularization parameter.

Cross-Channel Correlation Constraint

The RGB channels are highly correlated, as dictated by tloe hoe prior [10]. There-

fore unsaturated channel information can be used to recmisaturated channel in-
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6.2. Future Work

formation for pixels that are not saturated in all channalking a method similar
to [34]. As an added advantage, pixels that got clipped ksaf having a value
only slightly higher than the saturation level would ofteavé one or more unsaturated
channels. Therefore, this step helps recover from cases a/aturation region does

not have enough energy to produce a detectable glare.

6.2.2 Generalized Hough Transform

(@) An image captured with an 8-point cross- (b) GeneralizedHough Transform

screen lter

Figure 6.2: Results of a generalized Hough transform (Vertical direction). Grebng/s
the detected positive gradierdsie to glareand Reds show the negative gradiedte to
glare At each pixel (x,y), 100 pixel gradients on the same column startitigaaipixel are
taken, elementwise divided by the PSF to compute line integral gradient estisaibu-
tion (as described in Section 4.6.2), and then the median is computed tteegestimate
at that pointi.e., assuming that the point (x,y) is saturated and causing the glatbain

column.

Interestingly, given a xed bin width, actually computiniget histogram and taking the
mode as an estimate is a generalization of Hoeigh transform The Hough trans-
form takes an image and expresses it in a different pararspéee to detect a certain

pattern [3]. In this case the exponential falloff pro le st pattern being searched for.
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6.2. Future Work

As an added advantage, generalized Hough transform carbalssed to detect the
glare rays due to bright points lying beyond the image framd=igure 6.2, there is a
light source right above the top right corner, and only 2 ofégrays came into the
image. The Hough transform has successfully captured rifidismation. While the

saturated region will neither be easy to reconstruct na rtacessary, glare removal
step will need this information to remove glare due to lightirges lying beyond the

image frame.

6.2.3 Better PSF Estimation

Since an estimated PSF, rather than the actual PSF, is utieslpnocess (Figure 4.7),
an additional optimization step is necessary to estim&ativyness in the actual PSF
from the recovered unsaturated image. The optimizatioogg®needs to minimize the

deviation from estimated glare and should not blur out seslges.

Appropriate image priors, such as the sparse gradient, atimng with an assumption
that the wavyness is constant for all glare rays in an image,help construct the

optimization problem.

PSF estimation and glare estimation can be alternatelyearal times in an Expectation-

Maximization fashion until and if the algorithm converges.

6.2.4 Automatic Glare Orientation Ditection

This thesis has not investigated automatic detection atadioa of images to make
the glare patterns are completely horizontal. It is possibat the generalized Hough
transform along with some robust cost function would be ablend ne rotations

necessary to make the glare patterns horizontal.
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6.2. Future Work

6.2.5 HDR Video

An obvious extension to this work is towards HDR Video. Of g®y as was mentioned
in Section 6.2.2, the success of such a method would greagigrai on being able to

detect glare patterns created by objects lying outsidentlagé frame.
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